US20050085535A1 - Lipase inhibiting polymers - Google Patents

Lipase inhibiting polymers Download PDF

Info

Publication number
US20050085535A1
US20050085535A1 US10/960,579 US96057904A US2005085535A1 US 20050085535 A1 US20050085535 A1 US 20050085535A1 US 96057904 A US96057904 A US 96057904A US 2005085535 A1 US2005085535 A1 US 2005085535A1
Authority
US
United States
Prior art keywords
phosphate
group
lipase
polymer
lipase inhibiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/960,579
Inventor
W. Mandeville
Molly Boie
Venkata Garigapati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genzyme Corp
Original Assignee
Genzyme Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genzyme Corp filed Critical Genzyme Corp
Priority to US10/960,579 priority Critical patent/US20050085535A1/en
Publication of US20050085535A1 publication Critical patent/US20050085535A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • fats in a great many food sources greatly limits the food sources which can be used in a low fat diet. Additionally, fats contribute to the flavor, appearance and physical characteristics of many foodstuffs. As such, the acceptability of low-fat diets and the maintenance of such diets are difficult.
  • Anorectic agents such as dextroamphetamine, the combination of the non-amphetamine drugs phentermine and fenfluramine (Phen-Fen), and dexfenfluramine (Redux) alone, are associated with serious side effects.
  • Indigestible materials such as olestra (OLEAN®), mineral oil or neopentyl esters (see U.S. Pat. No. 2,962,419) have been proposed as substitutes for dietary fat.
  • Garcinia acid and derivatives thereof have been described as treating obesity by interfering with fatty acid synthesis.
  • Swellable crosslinked vinyl pyridine resins have been described as appetite suppressants via the mechanism of providing non-nutritive bulk, as in U.S. Pat. No. 2,923,662. Surgical techniques such as temporary ileal bypass surgery, are employed in extreme cases.
  • the invention features a method for treating obesity in a patient by administering to the patient a polymer that has been substituted with or comprises one or more groups which can inhibit a lipase.
  • Lipases are key enzymes in the digestive system which break down tri- and diglycerides, which are too large to be absorbed by the small intestine into fatty acids which can be absorbed. Therefore, inhibition of lipases results in a reduction in the absorption of fat.
  • the lipase inhibiting group can be a “suicide substrate” which inhibits the activity of the lipase by forming a covalent bond with the enzyme either at the active site or elsewhere.
  • the lipase inhibiting group is an isosteric inhibitor of the enzyme.
  • the invention further relates to the polymers employed in the methods described herein as well as novel intermediates and methods for preparing the polymers.
  • the invention features a method for treating obesity in a patient by administering to the patient a polymer comprising one or more groups which can inhibit a lipase. Since lipases are responsible for the hydrolysis of fat, a consequence of their inhibition is a reduction in fat hydrolysis and absorption.
  • the invention further relates to the polymers employed in the methods described herein as well as novel intermediates and methods for preparing the polymers.
  • the lipase inhibiting group inactivates a lipase such as gastric, pancreatic and lingual lipases.
  • Inactivation can result by forming a covalent bond such that the enzyme is inactive.
  • the covalent bond can be formed with an amino acid residue at or near the active site of the enzyme, or at a residue which is distant from the active site provided that the formation of the covalent bond results in inhibition of the enzyme activity.
  • Lipases contain a catalytic triad which is responsible for the hydrolysis of lipids into fatty acids.
  • the catalytic triad consists of a serine, aspartate and histidine amino acid residues.
  • serine protease inhibitors that can be covalently linked to a polymer are preferred lipase inhibiting groups.
  • a covalent bond can be formed between the lipase inhibiting group and a hydroxyl at or the catalytic site of the enzyme.
  • a covalent bond can be formed with serine.
  • Inactivation can also result from a lipase inhibiting group forming a covalent bond with an amino acid, for example cysteine, which is at some distance from the active site.
  • non-covalent interaction between the lipase inhibiting group and the enzyme can also result in inactivation of the enzyme.
  • the lipase inhibiting group can be an isostere of a fatty acid, which can interact non-covalently with the catalytic site of the lipase.
  • the lipase inhibiting group can compete for lipase hydrolysis with natural triglycerides.
  • a lipase inhibiting group can be represented by formula I: wherein,
  • the lipase inhibiting group of formula I can be represented by the following structures: wherein R, R 1 and Y are defined as above.
  • the lipase inhibiting group of structural formula I can be represented by the following structures: wherein R, R 1 , R 2 , R 3 and Y are defined as above, and p is an integer (e.g. an integer between zero and about 30, preferably between about 2 and about 10).
  • the lipase inhibitor of formula I is a mixed anhydride.
  • Mixed anhydrides include, but are not limited to, phosphoric-carboxylic, phosphoric-sulfonic and pyrophosphate mixed anhydride lipase inhibiting groups which can be represented by the following structures, respectively: wherein R, R 1 , Y and Z 1 are defined as above.
  • a lipase inhibiting group of the invention can be an anhydride.
  • the anhydride is a cyclic anhydride represented by formula II: wherein R, Z and p are defined as above, X is —PO 2 —, —SO 2 — or —CO—, and k is an integer from 1 to about 10, preferably from 1-4.
  • the anhydride lipase inhibiting groups can be a cyclic anhydride which is part of a fused ring system.
  • Anhydrides of this type can be represented by formula III: wherein X and Z are defined as above, and ring A is an optionally substituted cyclic aliphatic group or aromatic group, or combinations thereof, which can include one or more heteroatoms in the ring.
  • the cyclic anhydride is a benzenesulfonic anhydride represented by the following structure: wherein Z is defined as above and the benzene ring can be further substituted.
  • the lipase inhibiting group is an ⁇ -halogenated carbonyl which can be represented by formula IV: wherein R and Y are defined as above, and W 1 and W 2 are each independently hydrogen or halogen, for example, —F, —Cl, —Br, and —I, wherein at least one of W 1 and W 2 is a halogen.
  • a cyclic compound having an endocyclic group that is susceptible to nucleophilic attack can be a lipase inhibiting group.
  • Lactones and epoxides are examples of this type of lipase inhibiting group and can be represented by formulas V and VI, respectively: wherein R, Z, m and p are defined as above.
  • the lipase inhibiting group can be a sulfonate or disulfide group represented by formulas VII and VIII, respectively: wherein R, Z and p are defined as above, and R 5 is absent or a hydrophobic moiety, a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aromatic group.
  • the disulfide lipase inhibiting group can be represent by the following formula: wherein R, Z and p are defined as above.
  • a lipase inhibiting group can be a boronic acid which can be linked to a polymer by a hydrophobic group or to the polymer directly when the polymer is hydrophobic.
  • Boronic acid lipase inhibiting groups can be represented by the following structure: wherein R 5 , Z, n and m are defined as above.
  • an isosteric lipase inhibiting group can be a phenolic acid linked to the polymer.
  • Phenolic acid lipase inhibiting groups can be represented by the following structure: wherein Z, R 5 , n and m are defined as above and —CO 2 H and —OH are ortho or para with respect to each other.
  • the polymers can be aliphatic, alicyclic or aromatic or synthetic or naturally occurring. However, aliphatic and alicyclic synthetic polymers are preferred. Furthermore, the polymer can be hydrophobic, hydrophilic or copolymers of hydrophobic and/or hydrophilic monomers. The polymer can be non-ionic (e.g., neutral), anionic or cationic, in whole or in part. Furthermore, the polymers can be manufactured from olefinic or ethylenic monomers (such as vinylalcohol) or condensation polymers.
  • the polymers can be a polyvinylalcohol, polyvinylamine, poly-N-alkylvinylamine, polyallylamine, poly-N-alkylallylamine, polyalkylenimine, polyethylene, polypropylene, polyether, polyethylene oxide, polyamide, polyacrylic acid, polyalkylacrylate, polyacrylamide, polymethacrylic acid, polyalkylmethacrylate, polymethacrylamide, poly-N-alkylacrylamide, poly-N-alkylmethacrylamide, polystyrene, vinylnaphthalene, ethylvinylbenzene, aminostyrene, vinylbiphenyl, vinylanisole, vinylimidazolyl, vinylpyridinyl, dimethylaminomethylstyrene, trimethylammoniumethylmethacrylate, trimethylammoniumethylacrylate, carbohydrate, protein and substituted derivatives of the above (e.g., fluorinated monomers thereof) and copo
  • Preferred polymers include polyethers, such as polyalkylene glycols.
  • Polyethers can be represented by the formula IX: wherein R is defined as above and q is an integer.
  • the polymer can be polypropylene glycol or polyethylene glycol or copolymers thereof.
  • the polymers can be random or block copolymers.
  • the polymers can be hydrophobic, hydrophilic, or a combination thereof (as in random or block polymers).
  • a particularly preferred polymer is a block copolymer characterized by hydrophobic and hydrophilic polymeric regions.
  • the “core polymer can be hydrophobic with one or both ends capped with a hydrophilic polymer or vice versa.
  • An example of such a polymer is a polyethyleneglycol-polypropyleneglycol-polethyleneglycol copolymer, as is sold under the tradename PLURONIC® (BASF Wyandotte Corp.).
  • BRIJ® and IGEPAL® Aldrich, Milwaukee, Wis.
  • BRIJ® polymers are polyethylene glycols having one end capped with alkoxy group, while the hydroxy group at the other end of the polymer chain is free.
  • IGEPAL® polymers are polyethylene glycols having one end capped with 4-nonylphenoxy group, while the hydroxy group at the other end of the polymer chain is free.
  • polymers include aliphatic polymers such as, polyvinylalcohol, polyallylamine, polyvinylamine and polyethylenimine. These polymers can be further characterized by one or more substituents, such as substituted or unsubstituted, saturated or unsaturated alkyl and substituted or unsubstituted aryl. Suitable substituents include anionic, cationic or neutral groups, such as alkoxy, aryl, aryloxy, aralkyl, halogen, amine, and ammonium groups, for example.
  • the polymer can desirably possess one or more reactive functional groups which can, directly or indirectly, react with an intermediate possessing the lipase inhibiting groups.
  • the polymers have the following repeat unit: wherein,
  • the polymer can be a carbohydrate, such as chitosan, cellulose, hemicellulose or starch or derivatives thereof.
  • the polymer can be linear or crosslinked.
  • Crosslinking can be performed by reacting the copolymer with one or more crosslinking agents having two or more functional groups, such as electrophilic groups, which react with an alcohol of the polymer to form a covalent bond.
  • Crosslinking in this case can occur, for example, via nucleophilic attack of the polymer hydroxy groups on the electrophilic groups. This results in the formation of a bridging unit which links two or more alcoholic oxygens from different polymer strands.
  • Suitable crosslinking agents of this type include compounds having two or more groups selected from among acyl chloride, epoxide, and alkyl-X, wherein X is a suitable leaving group, such as a halo, tosyl or mesyl group.
  • Examples of such compounds include, but are not limited to, epichlorohydrin, succinyl dichloride, acryloyl chloride, butanedioldiglycidyl ether, ethanedioldiglycidyl ether, pyromellitic dianhydride, and dihaloalkanes.
  • the polymer composition can also be crosslinked by including a multifunctional co-monomer as the crosslinking agent in the reaction mixture.
  • a multifunctional co-monomer can be incorporated into two or more growing polymer chains, thereby crosslinking the chains.
  • Suitable multifunctional co-monomers include, but are not limited to, diacrylates, triacrylates, and tetraacrylates, dimethacrylates, diacrylamides, diallylacrylamides, and dimethacrylamides.
  • ethylene glycol diacrylate propylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, methylene bis(methacrylamide), ethylene bis(acrylamide), ethylene bis(methacrylamide), ethylidene bis(acrylamide), ethylidene bis(methacrylamide), pentaerythritol tetraacrylate, trimethylolpropane triacrylate, bisphenol A dimethacrylate, and bisphenol A diacrylate.
  • suitable multifunctional monomers include polyvinylarenes, such as divinylbenzene.
  • the molecular weight of the polymer is not critical. It is desirable that the polymer be large enough to be substantially or completely non-absorbed in the GI tract. For example, the molecular weight can be more than 900 Daltons.
  • the digestion and absorption of lipids is a complex process in which water insoluble lipids are emulsified to form an oil in water emulsion with an oil droplet diameter of approximately 0.5 mm.
  • This emulsified oil phase has a net negative charge due to the presence of fatty acids and bile salts, which are the major emulsifying agents.
  • Lipases that are present in the aqueous phase hydrolyze the emulsified lipids at the emulsion surface. Most lipases contain an active site that is buried by a surface loop of amino acids that sit directly on top of the active site when the lipase is in an aqueous solution.
  • lipase when the lipase comes in contact with bile salts at the lipid/water interface of a lipid emulsion, the lipase undergoes a conformational change that shifts the surface loop to one side and exposes the active site. This conformational change allows the lipase to catalyze hydrolysis of lipids at the lipid/water interface of the emulsion.
  • Polymers that disrupt the surface of the emulsion or alter its chemical nature are expected to inhibit lipase activity. Therefore, it may increase the effectiveness of polymers that have lipase inhibiting groups to administer them with one or more polymers that alter the emulsion surface.
  • lipase inhibiting groups can be attached directly to such a polymer.
  • fat-binding polymers have been effective in disrupting the surface of the lipid emulsion or altering its chemical nature.
  • polymers that have positively charged emulsifiers are able to form stable polycation lipid emulsions.
  • the lipids in such an emulsion are not substrates for gastrointestinal lipases because the surface of the emulsion has a net positive charge instead of the usual net negative charge.
  • Another type of fat-binding polymer destabilizes the emulsion causing the oil droplets of the emulsion to coalesce. This decreases the emulsion surface area where lipases are active, and therefore, reduces lipid hydrolysis.
  • Fat-binding polymer are further defined in copending application Ser. No. 09/004,963, filed on Jan. 9, 1998, and application Ser. No.09/166,453, filed on Oct. 5, 1998, the contents of which are incorporated herein by reference.
  • the substituted polymers described herein can be manufactured according to methods generally known in the art.
  • a lipase inhibiting intermediate characterized by a reactive moiety can be contacted with a polymer characterized by a functional group which reacts with said reactive moiety. See March, J., Advanced Organic Chemistry, 3 rd edition, John Wiley and Sons, Inc.; New York, (1985).
  • hydrophobic moiety is a moiety which, as a separate entity, is more soluble in octanol than water.
  • the octyl group (C 8 H 17 ) is hydrophobic because its “parent” alkane, octane, has greater solubility in octanol than in water.
  • the hydrophobic moieties can be a saturated or unsaturated, substituted or unsubstituted hydrocarbon group.
  • Such groups include substituted and unsubstituted, normal, branched or cyclic aliphatic groups having at least four carbon atoms, substituted or unsubstituted arylalkyl or heteroarylalkyl groups and substituted or unsubstituted aryl or heteroaryl groups.
  • the hydrophobic moiety includes an aliphatic group of between about six and thirty carbons.
  • hydrophobic moieties include the following alkyl groups: butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, docosanyl, cholesteryl, famesyl, aralkyl, phenyl, and naphthyl, and combinations thereof.
  • hydrophobic moieties include haloalkyl groups of at least fourcarbons (e.g., 10-halodecyl), hydroxyalkyl groups of at least six carbons (e.g., 11-hydroxyundecyl), and aralkyl groups (e.g., benzyl).
  • aliphatic groups include straight, chained, branched or cyclic C 4 -C 30 hydrocarbons which are completely saturated or contain one or more units of unsaturation.
  • Aromatic groups suitable for use in the invention include, but are not limited to, aromatic rings, for example, phenyl and substituted phenyl, heteroaromatic rings, for example, pyridinyl, furanyl and thiophenyl, and fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring or heteroaryl ring is fused to one or more other carbocyclic or heteroaryl rings.
  • fused polycyclic aromatic ring systems include substituted or unsubstituted phenanthryl, anthracyl, naphthyl, 2-benzothienyl, 3-benzothienyl, 2-benzofuranyl, 3-benzofuranyl, 2-indolyl, 3-indolyl, 2-quinolinyl, 3-quinolinyl, 2-benzothiazole, 2-benzooxazole, 2-benzimidazole, 2-quinolinyl, 3-quinolinyl, 1-isoquinolinyl, 3-quinolinyl, 1-isoindolyl, 3-isoindolyl, and acridintyl.
  • a “substituted aliphatic or aromatic group” can have one or more substituents, e.g., an aryl group (including a carbocyclic aryl group or a heteroaryl group), a substituted aryl group, —O-(aliphatic group or aryl group), —O-(substituted aliphatic group or substituted aryl group), acyl, —CHO, —CO-(aliphatic or substituted aliphatic group), —CO-(aryl or substituted aryl), —COO-(aliphatic or substituted aliphatic group), —COO-(aryl or substituted aryl group), —NH-(acyl), —O-(acyl), benzyl, substituted benzyl, halogenated lower alkyl (e.g.
  • activating group is a group that renders a functional group or moiety reactive.
  • electron withdrawing groups are “activating groups.”
  • R 1 or Y—R 1 of the above formulae, is preferably a good leaving group or an electron withdrawing group.
  • good leaving groups are phosphate, p-nitrophenol, o,p-dinitrophenol, N-hydroxysuccinimide, imidazole, ascorbic acid, pyridoxine, trimethylacetate, adamantanecarbonylate, p-chlorophenol, o,p-dichlorophenol, methanesulfonylate, mesitylsulfonylate and triisopropylbenzenesulfonylate.
  • a preferred leaving group is N-hydroxysuccinimide.
  • a spacer group can be a group that has one to about thirty atoms and is covalently bonded to the lipase inhibitor, to the polymer, or to the hydrophobic moiety. Generally, the spacer group can be covalently bonded to the lipase inhibitor, polymer or hydrophobic moiety through a functional group. Examples of functional groups are oxygen, alkylene, sulfur, —SO 2 —, —CO 2 —, —NR 2 —, or —CONR 2 —.
  • a spacer group can be hydrophilic or hydrophobic. Examples of spacer groups include amino acids, polypeptides, carbohydrates, and optionally substituted alkylene or aromatic groups.
  • Spacer groups can be manufactured from, for example, epichlorohydrin, dihaloalkane, haloalkyl esters, polyethylene glycol, polypropylene glycol and other cross-linking or difunctional compounds. Bromoalkylacetate is a preferred spacer group.
  • an effective amount of the polymer can range from about 10 mg per day to about 50 mg per day for an adult. Preferably, the dosage ranges from about 10 mg per day to about 20 mg per day.
  • the polymer can be administered by any suitable route, including, for example, orally in capsules, suspensions or tablets. Oral administration by mixing with food is a preferred mode of administration.
  • the polymer can be administered to the individual in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition.
  • Formulation of a polymer to be administered will vary according to the route of administration selected (e.g., solution, emulsion, capsule).
  • Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the lipase inhibiting groups of the polymer.
  • Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986).
  • the residue was dissolved in de-ionized water (100 mL).
  • the solution was dialyzed for 24 hours using Spectra/Por Membrane MWCO: 3,500.
  • the dialyzed solution was lyophilized, and the polymer was obtained as white powder.
  • the reaction mixture was washed with 10% aqueous sodium sulfate solution (3 ⁇ 100 mL).
  • the organic phase was dried over magnesium sulfate.
  • the solvent was removed, and the polymer was dried at room temperature.
  • O,O-dimethyl phosphonate (220 g, 2 mol) was added dropwise to a suspension of NaH (48 g, 2 mol) in anhydrous THF (600 mL) under nitrogen. After 1 hour, 1-bromopentane (248 mL, 2 mol) in THF (400 mL) was added slowly, and the reaction mixture was refluxed for 12 hours. The solvent was removed under vacuum, diethyl ether (1 L) was added, and the salts were removed by filtration. The ether solution was washed with water (3 ⁇ 100 mL), the organic layer was dried over anhydrous sodium sulfate. The ether was removed under reduced pressure, and the crude product was purified by distillation under vacuum to give 171 g of O,O-dimethyl n-pentyl phosphonate.
  • the organic layer was dried over Na 2 SO 4 , the solvent was removed under vacuum to give a viscous liquid.
  • the product was poured into 200 mL of diethyl ether and stirred for 10 minutes. The ether portion was decanted, and the procedure was repeated three more times. The product was obtained as a white powder which was dried under vacuum at room temperature for a week.
  • the reaction mixture was refluxed at 60° C. for 16 hours.
  • the solvent was removed under vacuum, and the resulting slurry was suspended in dichloromethane (300 mL).
  • the solids were removed by filtration, and the filtrate was washed with water (3 ⁇ 100 mL).
  • the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed to give a pale brown viscous liquid (110 g).
  • This material was dissolved in methanol (500 mL) and treated with aqueous 4N NaOH (80 mL). After 4 hours, the reaction mixture was acidified with concentrated HCl, and the solvent was removed under vacuum.
  • the viscous oil was dissolved in dichloromethane and was washed with water (4 ⁇ 100 mL).
  • N-methylimidazole hydrochloride salts separated at the bottom as an oil and were removed from the funnel.
  • Dichloromethane was removed from the mixture at less than 30° C. under vacuum to give an amber oil which was taken up in hexane (400 mL) and placed in a freezer overnight.
  • the reaction mixture was then thawed and the soluble portion was filtered to remove the crystals of p-nitrophenyl phosphorodichloridate.
  • the solvent was removed from the filtrate via rotary evaporation at less than 35° C. to give n-hexyl p-nitrophenyl phosphorochloridate.
  • Table 10 lists the polymers prepared in Examples 83, 84 and 85. TABLE 10 PLURONIC ® polymers having a variety of leaving groups.
  • HYDROPHOBIC LEAVING GROUP EXAMPLE POLYMER MOIETY (R) (Y-R 1 ) 83 PLU 2900 decyl chloride 84 PLU 2900 decyl n-hydroxysuccinyl 85 PLU 2900 decyl pyridoxinyl
  • n-Butyl lithium in hexane (1.6 M solution, 68 mL, 108 mmol) was added dropwise to a solution of N,N-diisoproyl amine (15.14 mL, 108 mmol) in THF (50 mL) which was maintained at 0° C. After the completion of addition, the mixture was stirred for an additional 10 minutes at 0° C. The mixture was cooled to ⁇ 50° C., then a solution of intermediate 2 (15 g, 54 mmol) in 100 mL of THF was added dropwise. After the completion of the addition, the mixture was allowed to warm to room temperature, then stirred for 1 hour.
  • Benzenesulfonyl chloride (9.8 g, 56 mmol) was added to a solution of intermediate 3 (12 g, 28 mmol) in pyridine (200 mL) maintained at 0° C. After addition was complete, the mixture was kept in a refrigerator at 4° C. for 24 hours, then poured into crushed ice (2 kg) and stirred at room temperature for 20 minutes. The mixture was extracted with diethyl ether (6 ⁇ 150 mL). The combined organic layers were washed with water, dried over sodium sulfate, filtered and concentrated in vacuo. The product was purified on a silica gel column using hexane:ethyl acetate (9:1) to give intermediate 4 as an oil (9.8 g). IR: 1825 ⁇ 1 cm.
  • Intermediate 6 was dissolved in a solution of methanol (1 L) and 50% sodium hydroxide solution (100 mL), then stirred for 24 hours at room temperature. The reaction mixture was acidified with concentrated HCl, and the solvent was removed under vacuum. The residue was resuspended in dichloromethane (1 L), then washed with water (4 ⁇ 250 mL). The organic layer was dried over sodium sulfate, filtered, and the solvent was removed under vacuum to give intermediate 7 as a viscous liquid (650 g).
  • Triethylamine (3 mL) was added to a solution of intermediate 8 (22 g, ⁇ 10 mmol) and intermediate 5 (6.5 g, 20 mmol) in dichloromethane (150 mL). The mixture was stirred for 4 hours at room temperature, then poured into a separatory funnel and washed with 5% HCl (3 ⁇ 20 mL) and water (3 ⁇ 50 mL). The organic layer was dried over sodium sulfate, filtered, and the solvent was removed under vacuum.
  • Example 86 was obtained as viscous liquid (26 g). This material was used directly in the in vitro and in vivo assay.
  • pancreatic lipase activity was evaluated using a titration method employing a pH Stat instrument (Radiometer America, Westlake Ohio). Substrate (1 mL tributyrin) was added to 29.0 mL of Tris-HCl buffer (pH 7.0) containing 100 mM NaCl, 5 mM CaCl 2 , and 4 mM sodium taurodeoxycholate. This solution was stirred for 5 minutes prior to the addition of 210 units of porcine pancreatic lipase (Sigma, 21,000 units/mg) dissolved in the assay buffer.
  • Tris-HCl buffer pH 7.0
  • pancreatic lipase activity was evaluated using a titration method employing a pH Stat instrument (Radiometer America, Westlake, Ohio).
  • Substrate (15 mL of an olive oil emulsion containing 80 mM olive oil and 2 mM oleic acid, dissolved and sonified in a buffer consisting of 10 mM Tris-HCl pH 8.0, 110 mM NaCl, 10 mM CaCl 2 , 2 mM lecithin, 1.32 mM cholesterol, 1.92 mM sodium glycocholate, 1.28 mM sodium taurocholate, 2.88 mM sodium glycodeoxycholate, and 1.92 mM sodium taurodeoxycholate) was added to 15 mL of assay buffer (Tris-HCl pH 8.0 containing 110 mM NaCl and 10 mM CaCl 2 ).
  • the assays were conducted as described above using either procedure 1 or 2, and the percent inhibition was derived by comparing the enzyme activities in the presence and absence of inhibitor. Three concentrations of inhibitor were assayed, and the percent inhibition was plotted against the log of the inhibitor concentration in order to determine the concentration at which 50% inhibition occurred (IC 50 ). The following compounds were assayed, with the indicated values for IC 50 presented in Tables 11-17.
  • IC 50 values of PLURONIC ® polymers having a p-nitrophenyl phosphate lipase inhibiting group and dialkoxy linkers HYDRO- PHOBIC IC 50 (mM) IC 50 ( ⁇ M) EXAM- PLU MOIETY DIALKOXY with with PLE MW (R) (Z 1 ) Tributyrin Olive Oil 61 1900 n-pentyl n-pent-1,5-dioxy 1.8 na 62 1900 n-decyl n-pent-1,5-dioxy 1.1 289 63 1900 n-hexadecyl n-pent-1,5-dioxy 1.1 278 66 1900 n-hexadecyl n-undecyl-1,10- 0.8 182 dioxy
  • IC 50 values of polyethylene glycol polymers having a p-nitrophenyl phosphate lipase inhibiting group and dialkoxy linkers HYDRO- PHOBIC IC 50 ( ⁇ M) IC 50 ( ⁇ M) EXAM- PEG MOIETY DIALKOXY with with Olive PLE MW (R) (Z 1 ) Tributyrin Oil 67 1500 n-hexyl n-pent-1,5-dioxy 71 na 68 1500 n-dodecyl n-pent-1,5-dioxy 58 371 69 1500 n-hexadecyl n-pent-1,5-dioxy 49 184
  • IC 50 values for PPG-PEG-PPG polymers having p-nitrophenyl phosphate lipase inhibiting groups HYDRO- IC 50 IC 50 PHOBIC ( ⁇ M) ( ⁇ M) EX- MOIETY with with Olive AMPLE POLYMER (R) Tributyrin Oil 81 PPG-PEG-PPG 2000 n-dodecyl 2.4 283 82 PPG-PEG-PPG 2000 n-hexadecyl 1.9 384
  • IC 50 values for PLURONIC ® polymers having n-hexadecyl hydrophobes and a variety of leaving groups LEAVING IC 50 ( ⁇ M) IC 50 ( ⁇ M) PLU GROUP with with EXAMPLE Mol.wt. (Z - R 1 ) tributyrin Olive Oil 83 2900 chloride 0.9 968 84 2900 n-hydroxysuccinyl 0.9 na 85 2900 pyridoxinyl 0.09 936 In Vivo Studies
  • Examples 8, 35, 36, 41, 42, 48, 62, 63, 67-69, 71-75, 78, 81 and 82 were evaluated for their ability to reduce daily caloric intake by increasing the excretion of fat in the feces, and to decrease body weight gain, relative to the control group, in normal rats over a six day period.
  • Male Sprague-Dawley rats (five to six weeks of age) were individually housed and fed ad libitum a powdered “high fat diet,” consisting of standard rodent chow supplemented with 15% fat (consisting of 55% coconut oil and 45% corn oil) by weight.
  • mice After feeding the animals this diet for five days, the animals were weighed and sorted into the treatment or control groups (6-8 animals per group, each group having equal mean body weights). Animals were treated for six days with the test compounds, which were added to the “high fat diet” at concentrations (w/w) of 0.0% (control), 0.3 or 1.0 percent of the diet.
  • Rat fecal samples were collected on the final three days of the six days of drug treatment. The samples were freeze dried and ground to a fine powder. One half gram of sample was weighed and transferred to extraction cells. Samples were extracted in an accelerated solvent extractor (ASE 200 Accelerated Solvent Extractor, Dyonex Corporation, Sunnyvale, Calif.) with 95% ethanol, 5% water and 100 mM KOH. The sample was extracted in 17 minutes at 150° C. and 1500 psi. An aliquot of extract was transferred to a test tube containing a molar excess of HCl. The sample was then evaporated and reconstituted in a detergent solution consisting of 2% Triton X-1200, 1% polyoxyethylene lauryl ether and 0.9% NaCl. Fatty acids were then quantitated enzymatically with a colorimetric kit (NEFAC, Wako Chemical GmbH, Neuss, Germany).
  • Table 18 contains values for fecal fat/consumed fat for both control and test animals (determined enzymatically as described above), and food consumption and body weight gain over 6 days as compared to control animals.
  • Fatty acid concentrations from the enzymatic assay are expressed as mmol/mL.
  • the mmol/mL of fatty acid is then multiplied by the number of milliliters of extract generated from 500 mg of sample to give the total mmoles of fatty acid.
  • the value for the total mmoles of fatty acid is converted to total milligrams of fatty acid using the average molecular weight of medium to long chain fatty acid. The value is corrected for any dilutions made during sample work-up.
  • results are expressed as mgs/gm of feces, the total milligrams of fatty acids is multiplied by 2.
  • results are expressed as total milligrams of fatty acid excreted in 24 hours, the mgs/gm of feces value is multiplied by fecal weight in grams excreted in 24 hours.
  • results are expressed as excreted fat as a percentage of that consumed in 24 hours, the total weight of fat excreted in 24 hours is divided by the weight of fatty acids consumed in over 24 hours and multiplied by 100.

Abstract

The invention features a method for treating obesity in a patient by administering to the patient a polymer that has been substituted with one or more groups that inhibit lipases, which are enzymes responsible for the hydrolysis of fat. The invention further relates to the polymers employed in the methods described herein as well as novel intermediates and methods for preparing the polymers.

Description

    RELATED APPLICATION
  • This application is a Divisional of U.S. application Ser. No. 09/714,541, filed Nov. 16, 2000, which is a Divisional of U.S. application Ser. No. 09/226,585, filed Jan. 6, 1999, now U.S. Pat. No. 6,352,692, which is a Continuation-in-Part of U.S. application Ser. No. 09/166,510 filed Oct. 5, 1998, now U.S. Pat. No. 6,267,952, which is a Continuation-in-Part of U.S. application Ser. No. 09/005,379 filed on Jan. 9, 1998, now abandoned, the entire teachings of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Human obesity is a recognized health problem with approximately ninety-seven million people considered clinically overweight in the United States. The accumulation or maintenance of body fat bears a direct relationship to caloric intake. Therefore, one of the most common methods for weight control to combat obesity is the use of relatively low-fat diets, that is, diets containing less fat than a “normal diet” or that amount usually consumed by the patient.
  • The presence of fats in a great many food sources greatly limits the food sources which can be used in a low fat diet. Additionally, fats contribute to the flavor, appearance and physical characteristics of many foodstuffs. As such, the acceptability of low-fat diets and the maintenance of such diets are difficult.
  • Various chemical approaches have been proposed for controlling obesity. Anorectic agents such as dextroamphetamine, the combination of the non-amphetamine drugs phentermine and fenfluramine (Phen-Fen), and dexfenfluramine (Redux) alone, are associated with serious side effects. Indigestible materials such as olestra (OLEAN®), mineral oil or neopentyl esters (see U.S. Pat. No. 2,962,419) have been proposed as substitutes for dietary fat. Garcinia acid and derivatives thereof have been described as treating obesity by interfering with fatty acid synthesis. Swellable crosslinked vinyl pyridine resins have been described as appetite suppressants via the mechanism of providing non-nutritive bulk, as in U.S. Pat. No. 2,923,662. Surgical techniques such as temporary ileal bypass surgery, are employed in extreme cases.
  • However, methods for treating obesity, such as those described above have serious shortcomings with controlled diet remaining the most prevalent technique for controlling obesity. As such, new methods for treating obesity are needed.
  • SUMMARY OF THE INVENTION
  • The invention features a method for treating obesity in a patient by administering to the patient a polymer that has been substituted with or comprises one or more groups which can inhibit a lipase. Lipases are key enzymes in the digestive system which break down tri- and diglycerides, which are too large to be absorbed by the small intestine into fatty acids which can be absorbed. Therefore, inhibition of lipases results in a reduction in the absorption of fat. In one embodiment, the lipase inhibiting group can be a “suicide substrate” which inhibits the activity of the lipase by forming a covalent bond with the enzyme either at the active site or elsewhere. In another embodiment, the lipase inhibiting group is an isosteric inhibitor of the enzyme. The invention further relates to the polymers employed in the methods described herein as well as novel intermediates and methods for preparing the polymers.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention features a method for treating obesity in a patient by administering to the patient a polymer comprising one or more groups which can inhibit a lipase. Since lipases are responsible for the hydrolysis of fat, a consequence of their inhibition is a reduction in fat hydrolysis and absorption. The invention further relates to the polymers employed in the methods described herein as well as novel intermediates and methods for preparing the polymers.
  • In one aspect of the invention, the lipase inhibiting group inactivates a lipase such as gastric, pancreatic and lingual lipases. Inactivation can result by forming a covalent bond such that the enzyme is inactive. The covalent bond can be formed with an amino acid residue at or near the active site of the enzyme, or at a residue which is distant from the active site provided that the formation of the covalent bond results in inhibition of the enzyme activity. Lipases contain a catalytic triad which is responsible for the hydrolysis of lipids into fatty acids. The catalytic triad consists of a serine, aspartate and histidine amino acid residues. This triad is also responsible for the hydrolysis of amide bonds in serine proteases, and it is expected that compounds that are serine protease inhibitors will also inhibit lipases. Therefore, serine protease inhibitors that can be covalently linked to a polymer are preferred lipase inhibiting groups. For example, a covalent bond can be formed between the lipase inhibiting group and a hydroxyl at or the catalytic site of the enzyme. For instance, a covalent bond can be formed with serine. Inactivation can also result from a lipase inhibiting group forming a covalent bond with an amino acid, for example cysteine, which is at some distance from the active site. In addition, non-covalent interaction between the lipase inhibiting group and the enzyme can also result in inactivation of the enzyme. For example, the lipase inhibiting group can be an isostere of a fatty acid, which can interact non-covalently with the catalytic site of the lipase. In addition, the lipase inhibiting group can compete for lipase hydrolysis with natural triglycerides.
  • In one aspect of the invention, a lipase inhibiting group can be represented by formula I:
    Figure US20050085535A1-20050421-C00001

    wherein,
      • R is a hydrogen, hydrophobic moiety, —NR2R3, —CO2H, —OCOR2, —NHCOR2, a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aromatic group;
      • R1 is an activating group;
      • Y is oxygen, sulfur, —NR2— or is absent;
      • Z and Z1 are, independently, an oxygen, alkylene, sulfur, —SO3—, —CO2—, —NR2—, —CONR2—, —PO4H— or a spacer group;
      • R2 and R3 are, independently, a hydrogen, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aromatic group;
      • m is 0 or 1; and
      • n is 0 or 1.
  • In one embodiment, the lipase inhibiting group of formula I can be represented by the following structures:
    Figure US20050085535A1-20050421-C00002

    wherein R, R1 and Y are defined as above.
  • In another embodiment, the lipase inhibiting group of structural formula I can be represented by the following structures:
    Figure US20050085535A1-20050421-C00003

    wherein R, R1, R2, R3 and Y are defined as above, and p is an integer (e.g. an integer between zero and about 30, preferably between about 2 and about 10).
  • In another embodiment, the lipase inhibitor of formula I is a mixed anhydride. Mixed anhydrides include, but are not limited to, phosphoric-carboxylic, phosphoric-sulfonic and pyrophosphate mixed anhydride lipase inhibiting groups which can be represented by the following structures, respectively:
    Figure US20050085535A1-20050421-C00004

    wherein R, R1, Y and Z1 are defined as above.
  • In another aspect, a lipase inhibiting group of the invention can be an anhydride. In one embodiment, the anhydride is a cyclic anhydride represented by formula II:
    Figure US20050085535A1-20050421-C00005

    wherein R, Z and p are defined as above, X is —PO2—, —SO2— or —CO—, and k is an integer from 1 to about 10, preferably from 1-4.
  • In another embodiment, the anhydride lipase inhibiting groups can be a cyclic anhydride which is part of a fused ring system. Anhydrides of this type can be represented by formula III:
    Figure US20050085535A1-20050421-C00006

    wherein X and Z are defined as above, and ring A is an optionally substituted cyclic aliphatic group or aromatic group, or combinations thereof, which can include one or more heteroatoms in the ring. In a particular embodiment, the cyclic anhydride is a benzenesulfonic anhydride represented by the following structure:
    Figure US20050085535A1-20050421-C00007

    wherein Z is defined as above and the benzene ring can be further substituted.
  • In another aspect, the lipase inhibiting group is an α-halogenated carbonyl which can be represented by formula IV:
    Figure US20050085535A1-20050421-C00008

    wherein R and Y are defined as above, and W1 and W2 are each independently hydrogen or halogen, for example, —F, —Cl, —Br, and —I, wherein at least one of W1 and W2 is a halogen.
  • In yet another aspect, a cyclic compound having an endocyclic group that is susceptible to nucleophilic attack can be a lipase inhibiting group. Lactones and epoxides are examples of this type of lipase inhibiting group and can be represented by formulas V and VI, respectively:
    Figure US20050085535A1-20050421-C00009

    wherein R, Z, m and p are defined as above.
  • In a further aspect, the lipase inhibiting group can be a sulfonate or disulfide group represented by formulas VII and VIII, respectively:
    Figure US20050085535A1-20050421-C00010

    wherein R, Z and p are defined as above, and R5 is absent or a hydrophobic moiety, a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aromatic group.
  • In a particular embodiment, the disulfide lipase inhibiting group can be represent by the following formula:
    Figure US20050085535A1-20050421-C00011

    wherein R, Z and p are defined as above.
  • In a further aspect of the invention, a lipase inhibiting group can be a boronic acid which can be linked to a polymer by a hydrophobic group or to the polymer directly when the polymer is hydrophobic. Boronic acid lipase inhibiting groups can be represented by the following structure:
    Figure US20050085535A1-20050421-C00012

    wherein R5, Z, n and m are defined as above.
  • In an additional aspect, an isosteric lipase inhibiting group can be a phenolic acid linked to the polymer. Phenolic acid lipase inhibiting groups can be represented by the following structure:
    Figure US20050085535A1-20050421-C00013

    wherein Z, R5, n and m are defined as above and —CO2H and —OH are ortho or para with respect to each other.
  • A variety of polymers can be employed in the invention described herein. The polymers can be aliphatic, alicyclic or aromatic or synthetic or naturally occurring. However, aliphatic and alicyclic synthetic polymers are preferred. Furthermore, the polymer can be hydrophobic, hydrophilic or copolymers of hydrophobic and/or hydrophilic monomers. The polymer can be non-ionic (e.g., neutral), anionic or cationic, in whole or in part. Furthermore, the polymers can be manufactured from olefinic or ethylenic monomers (such as vinylalcohol) or condensation polymers.
  • For example, the polymers can be a polyvinylalcohol, polyvinylamine, poly-N-alkylvinylamine, polyallylamine, poly-N-alkylallylamine, polyalkylenimine, polyethylene, polypropylene, polyether, polyethylene oxide, polyamide, polyacrylic acid, polyalkylacrylate, polyacrylamide, polymethacrylic acid, polyalkylmethacrylate, polymethacrylamide, poly-N-alkylacrylamide, poly-N-alkylmethacrylamide, polystyrene, vinylnaphthalene, ethylvinylbenzene, aminostyrene, vinylbiphenyl, vinylanisole, vinylimidazolyl, vinylpyridinyl, dimethylaminomethylstyrene, trimethylammoniumethylmethacrylate, trimethylammoniumethylacrylate, carbohydrate, protein and substituted derivatives of the above (e.g., fluorinated monomers thereof) and copolymers thereof.
  • Preferred polymers include polyethers, such as polyalkylene glycols. Polyethers can be represented by the formula IX:
    Figure US20050085535A1-20050421-C00014

    wherein R is defined as above and q is an integer.
  • For example, the polymer can be polypropylene glycol or polyethylene glycol or copolymers thereof. The polymers can be random or block copolymers. Also, the polymers can be hydrophobic, hydrophilic, or a combination thereof (as in random or block polymers).
  • A particularly preferred polymer is a block copolymer characterized by hydrophobic and hydrophilic polymeric regions. In such an embodiment, the “core polymer can be hydrophobic with one or both ends capped with a hydrophilic polymer or vice versa. An example of such a polymer is a polyethyleneglycol-polypropyleneglycol-polethyleneglycol copolymer, as is sold under the tradename PLURONIC® (BASF Wyandotte Corp.). BRIJ® and IGEPAL® (Aldrich, Milwaukee, Wis.) are examples of polymers having a polyethylene glycol core capped withe a hydrophobic end group. BRIJ® polymers are polyethylene glycols having one end capped with alkoxy group, while the hydroxy group at the other end of the polymer chain is free. IGEPAL® polymers are polyethylene glycols having one end capped with 4-nonylphenoxy group, while the hydroxy group at the other end of the polymer chain is free.
  • Another class of polymers includes aliphatic polymers such as, polyvinylalcohol, polyallylamine, polyvinylamine and polyethylenimine. These polymers can be further characterized by one or more substituents, such as substituted or unsubstituted, saturated or unsaturated alkyl and substituted or unsubstituted aryl. Suitable substituents include anionic, cationic or neutral groups, such as alkoxy, aryl, aryloxy, aralkyl, halogen, amine, and ammonium groups, for example. The polymer can desirably possess one or more reactive functional groups which can, directly or indirectly, react with an intermediate possessing the lipase inhibiting groups.
  • In one embodiment, the polymers have the following repeat unit:
    Figure US20050085535A1-20050421-C00015

    wherein,
      • q is an integer; and
      • R4 is —OH, —NH2, —CH2NH2, —SH, or a group represented by the following formula:
        Figure US20050085535A1-20050421-C00016

        wherein R, R1, Y, Z, Z1, m and n are defined as above.
  • Additionally, the polymer can be a carbohydrate, such as chitosan, cellulose, hemicellulose or starch or derivatives thereof.
  • The polymer can be linear or crosslinked. Crosslinking can be performed by reacting the copolymer with one or more crosslinking agents having two or more functional groups, such as electrophilic groups, which react with an alcohol of the polymer to form a covalent bond. Crosslinking in this case can occur, for example, via nucleophilic attack of the polymer hydroxy groups on the electrophilic groups. This results in the formation of a bridging unit which links two or more alcoholic oxygens from different polymer strands. Suitable crosslinking agents of this type include compounds having two or more groups selected from among acyl chloride, epoxide, and alkyl-X, wherein X is a suitable leaving group, such as a halo, tosyl or mesyl group. Examples of such compounds include, but are not limited to, epichlorohydrin, succinyl dichloride, acryloyl chloride, butanedioldiglycidyl ether, ethanedioldiglycidyl ether, pyromellitic dianhydride, and dihaloalkanes.
  • The polymer composition can also be crosslinked by including a multifunctional co-monomer as the crosslinking agent in the reaction mixture. A multifunctional co-monomer can be incorporated into two or more growing polymer chains, thereby crosslinking the chains. Suitable multifunctional co-monomers include, but are not limited to, diacrylates, triacrylates, and tetraacrylates, dimethacrylates, diacrylamides, diallylacrylamides, and dimethacrylamides. Specific examples include ethylene glycol diacrylate, propylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, methylene bis(methacrylamide), ethylene bis(acrylamide), ethylene bis(methacrylamide), ethylidene bis(acrylamide), ethylidene bis(methacrylamide), pentaerythritol tetraacrylate, trimethylolpropane triacrylate, bisphenol A dimethacrylate, and bisphenol A diacrylate. Other suitable multifunctional monomers include polyvinylarenes, such as divinylbenzene.
  • The molecular weight of the polymer is not critical. It is desirable that the polymer be large enough to be substantially or completely non-absorbed in the GI tract. For example, the molecular weight can be more than 900 Daltons.
  • The digestion and absorption of lipids is a complex process in which water insoluble lipids are emulsified to form an oil in water emulsion with an oil droplet diameter of approximately 0.5 mm. This emulsified oil phase has a net negative charge due to the presence of fatty acids and bile salts, which are the major emulsifying agents. Lipases that are present in the aqueous phase hydrolyze the emulsified lipids at the emulsion surface. Most lipases contain an active site that is buried by a surface loop of amino acids that sit directly on top of the active site when the lipase is in an aqueous solution. However, when the lipase comes in contact with bile salts at the lipid/water interface of a lipid emulsion, the lipase undergoes a conformational change that shifts the surface loop to one side and exposes the active site. This conformational change allows the lipase to catalyze hydrolysis of lipids at the lipid/water interface of the emulsion. Polymers that disrupt the surface of the emulsion or alter its chemical nature are expected to inhibit lipase activity. Therefore, it may increase the effectiveness of polymers that have lipase inhibiting groups to administer them with one or more polymers that alter the emulsion surface. Alternatively, lipase inhibiting groups can be attached directly to such a polymer.
  • Several types of fat-binding polymers have been effective in disrupting the surface of the lipid emulsion or altering its chemical nature. For example, polymers that have positively charged emulsifiers are able to form stable polycation lipid emulsions. The lipids in such an emulsion are not substrates for gastrointestinal lipases because the surface of the emulsion has a net positive charge instead of the usual net negative charge. Another type of fat-binding polymer destabilizes the emulsion causing the oil droplets of the emulsion to coalesce. This decreases the emulsion surface area where lipases are active, and therefore, reduces lipid hydrolysis. Fat-binding polymer are further defined in copending application Ser. No. 09/004,963, filed on Jan. 9, 1998, and application Ser. No.09/166,453, filed on Oct. 5, 1998, the contents of which are incorporated herein by reference.
  • The substituted polymers described herein can be manufactured according to methods generally known in the art. For example, a lipase inhibiting intermediate characterized by a reactive moiety can be contacted with a polymer characterized by a functional group which reacts with said reactive moiety. See March, J., Advanced Organic Chemistry, 3rd edition, John Wiley and Sons, Inc.; New York, (1985).
  • A “hydrophobic moiety,” as the term is used herein, is a moiety which, as a separate entity, is more soluble in octanol than water. For example, the octyl group (C8H17) is hydrophobic because its “parent” alkane, octane, has greater solubility in octanol than in water. The hydrophobic moieties can be a saturated or unsaturated, substituted or unsubstituted hydrocarbon group. Such groups include substituted and unsubstituted, normal, branched or cyclic aliphatic groups having at least four carbon atoms, substituted or unsubstituted arylalkyl or heteroarylalkyl groups and substituted or unsubstituted aryl or heteroaryl groups. Preferably, the hydrophobic moiety includes an aliphatic group of between about six and thirty carbons. Specific examples of suitable hydrophobic moieties include the following alkyl groups: butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, docosanyl, cholesteryl, famesyl, aralkyl, phenyl, and naphthyl, and combinations thereof. Other examples of suitable hydrophobic moieties include haloalkyl groups of at least fourcarbons (e.g., 10-halodecyl), hydroxyalkyl groups of at least six carbons (e.g., 11-hydroxyundecyl), and aralkyl groups (e.g., benzyl). As used herein aliphatic groups include straight, chained, branched or cyclic C4-C30 hydrocarbons which are completely saturated or contain one or more units of unsaturation.
  • Aromatic groups suitable for use in the invention include, but are not limited to, aromatic rings, for example, phenyl and substituted phenyl, heteroaromatic rings, for example, pyridinyl, furanyl and thiophenyl, and fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring or heteroaryl ring is fused to one or more other carbocyclic or heteroaryl rings. Examples of fused polycyclic aromatic ring systems include substituted or unsubstituted phenanthryl, anthracyl, naphthyl, 2-benzothienyl, 3-benzothienyl, 2-benzofuranyl, 3-benzofuranyl, 2-indolyl, 3-indolyl, 2-quinolinyl, 3-quinolinyl, 2-benzothiazole, 2-benzooxazole, 2-benzimidazole, 2-quinolinyl, 3-quinolinyl, 1-isoquinolinyl, 3-quinolinyl, 1-isoindolyl, 3-isoindolyl, and acridintyl.
  • A “substituted aliphatic or aromatic group” can have one or more substituents, e.g., an aryl group (including a carbocyclic aryl group or a heteroaryl group), a substituted aryl group, —O-(aliphatic group or aryl group), —O-(substituted aliphatic group or substituted aryl group), acyl, —CHO, —CO-(aliphatic or substituted aliphatic group), —CO-(aryl or substituted aryl), —COO-(aliphatic or substituted aliphatic group), —COO-(aryl or substituted aryl group), —NH-(acyl), —O-(acyl), benzyl, substituted benzyl, halogenated lower alkyl (e.g. trifluoromethyl and trichloromethyl), fluoro, chloro, bromo, iodo, cyano, nitro, —SH, —S-(aliphatic or substituted aliphatic group), —S-(aryl or substituted aryl), —S-(acyl) and the like.
  • An “activating group” is a group that renders a functional group or moiety reactive. Generally, electron withdrawing groups are “activating groups.” R1 or Y—R1, of the above formulae, is preferably a good leaving group or an electron withdrawing group. Examples of good leaving groups are phosphate, p-nitrophenol, o,p-dinitrophenol, N-hydroxysuccinimide, imidazole, ascorbic acid, pyridoxine, trimethylacetate, adamantanecarbonylate, p-chlorophenol, o,p-dichlorophenol, methanesulfonylate, mesitylsulfonylate and triisopropylbenzenesulfonylate. A preferred leaving group is N-hydroxysuccinimide.
  • A spacer group can be a group that has one to about thirty atoms and is covalently bonded to the lipase inhibitor, to the polymer, or to the hydrophobic moiety. Generally, the spacer group can be covalently bonded to the lipase inhibitor, polymer or hydrophobic moiety through a functional group. Examples of functional groups are oxygen, alkylene, sulfur, —SO2—, —CO2—, —NR2—, or —CONR2—. A spacer group can be hydrophilic or hydrophobic. Examples of spacer groups include amino acids, polypeptides, carbohydrates, and optionally substituted alkylene or aromatic groups. Spacer groups can be manufactured from, for example, epichlorohydrin, dihaloalkane, haloalkyl esters, polyethylene glycol, polypropylene glycol and other cross-linking or difunctional compounds. Bromoalkylacetate is a preferred spacer group.
  • The amount of a polymer administered to a subject will depend on the type and severity of the disease and on the characteristics of the subject, such as general health, age, body weight and tolerance to drugs. It will also depend on the degree of obesity and obesity related complications. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. Typically, in human subjects, an effective amount of the polymer can range from about 10 mg per day to about 50 mg per day for an adult. Preferably, the dosage ranges from about 10 mg per day to about 20 mg per day.
  • The polymer can be administered by any suitable route, including, for example, orally in capsules, suspensions or tablets. Oral administration by mixing with food is a preferred mode of administration.
  • The polymer can be administered to the individual in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition. Formulation of a polymer to be administered will vary according to the route of administration selected (e.g., solution, emulsion, capsule). Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the lipase inhibiting groups of the polymer. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986).
  • Experimental
  • Synthesis of Polymers
  • EXAMPLE 1 Preparation of Polyethylene Glycol having an n-pentyl Hydroprobic Moiety and p-nitrophenyl Phosphate Lipase Inhibiting Groups
  • A mixture of n-pentanol (19.5 mmol. 1.72 g) and N-methyl imidazole (19.5 mmol, 1.6 g) in anhydrous methylene chloride (40 mL) was added slowly over 20 minutes under anhydrous conditions to a solution of p-nitrophenyl phosphorodichloridate (5.0 g, 19.5 mmol) in anhydrous methylene chloride (100 mL). The reaction flask was cooled in a water bath during the addition. After the completion of the addition, the water bath was removed, and the reaction mixture was stirred for 2 hours at room temperature. A mixture of polyethyleneglycol (MW=8,000; 10 mmol, 80 g), and N-methyl imidazole (19.5 mmol, 1.6 g) in anhydrous methylene chloride (150 mL) was added to the reaction flask under anhydrous conditions. The mixture was stirred for 25 hours at room temperature. The solvent was removed under vacuum, the residue was purified according to method A, and the polymer was obtained as white powder (70 g).
  • Purification Procedures
  • Method A:
  • The residue was dissolved in de-ionized water (100 mL). The solution was dialyzed for 24 hours using Spectra/Por Membrane MWCO: 3,500. The dialyzed solution was lyophilized, and the polymer was obtained as white powder.
  • Method B:
  • The residue was poured into 0.5 L of diethyl ether and stirred at room temperature for 1 hour. The solvent was decanted and replaced with fresh diethyl ether (0.25 L). The mixture was stirred for 1 hour. The solvent was removed, and the polymer was dried at room temperature under vacuum.
  • Method C:
  • The reaction mixture was washed with 10% aqueous sodium sulfate solution (3×100 mL). The organic phase was dried over magnesium sulfate. The solvent was removed, and the polymer was dried at room temperature.
  • Using the above procedures, the following compounds were synthesized and are tabulated in the following table.
    TABLE 1
    Polyethylene glycols (PEG) having p-nitrophenyl phosphate lipase
    inhibiting groups with a variety of hydroprobic moieties.
    PEG HYDROPHOBIC METHOD OF PHYSICAL
    EXAMPLE MW MOIETY (R) PURIFICATION STATE
    1 8,400 n-pentyl Method A powder
    2 3,400 n-decyl Method B powder
    3 3,400 n-dodecyl Method B powder
    4 3,400 n-octadecyl Method B powder
    5 1,000 n-decyl Method B semi solid
    6 1,000 n-dodecyl Method B semi solid
    7 1,000 n-tetradecyl Method B semi solid
    8 1,000 n-hexadecyl Method B semi solid
    9 1,000 n-octadecyl Method B semi solid
    10 1,000 n-pentyl Method C semi solid
    11 1,000 n-hexyl Method C semi solid
    12 1,000 n-octyl Method C semi solid
    13 1,000 n-docosyl Method C powder
    14 1,000 cholesteryl Method C powder
    15 3,400 n-pentyl Method B solid
    16 1,500 n-pentyl Method B solid
    17 1,500 n-decyl Method B solid
    18 1,500 n-dodecyl Method B solid
    19 1,500 n-hexadecyl Method C solid
    20 1,500 n-octadecyl Method C solid
    21 1,500 n-docosyl Method B solid
    22 1,500 rac-farnesyl Method B brown, solid
    23 1,500 n-cholesteryl Method C solid
    24 1,500 5-phenyl-1-pentyl Method C solid
    25 1,500 n-octyl Method C solid
    26 1,500 n-hexyl Method C solid
    27 3,400 n-octyl Method C solid
    28 8,400 n-octyl Method C solid
  • EXAMPLE 29 Preparation of a PLURONIC® Polymer having a n-tetradecyl Hydrophobic Moiety and p-nitrophenyl Phosphate Lipase Inhibiting Groups
  • A mixture of n-tetradecanol (15 g, 70 mmol) and N-methyl imidazole (5.6 mL, 70 mmol) in anhydrous methylene chloride (75 mL) was added slowly over 20 minutes under anhydrous condition to a solution of p-nitrophenyl phosphorodichloridate (17.92 g, 70 mmol) in anhydrous methylene chloride (50 mL). The reaction flask was cooled in a water bath during the addition. After the completion of the addition, the water bath was removed, and the reaction mixture was stirred for 2 hours at room temperature. A mixture of PLURONIC® (MW=1,100; 39 g, 35 mmol) and N-methyl imidazole (5.6 mL. 70 mmol) in anhydrous methylene chloride (150 mL) was added to the reaction flask under anhydrous conditions. The mixture was stirred for 24 hours at room temperature. The reaction mixture was extracted with cold saturated NaCl solution (3×150 mL), the organic layer was dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was collected. The solvent was removed from the filtrate under reduced pressure to give 65 g of pale yellow colored viscous liquid. The material was dried under vacuum for one week at room temperature. This was used directly for the in vitro and in vivo assay.
  • The following Examples were prepared using the above procedure.
    TABLE 2
    PLURONIC ® Polymers (PLU) having p-nitrophenyl phosphate
    lipase inhibiting groups with a variety of hydrophobic moieties.
    WT. % OF HYDROPHOBIC
    PLU ETHYLENE MOIETY PHYSICAL
    EXAMPLE MW GLYCOL (R) STATE
    29 1,100 10 wt % n-tetradecyl liquid
    30 1,100 10 wt % n-dodecyl liquid
    31 1,100 10 wt % n-decyl liquid
    32 1,100 10 wt % n-octyl liquid
    33 1,900 50 wt % n-hexyl liquid
    34 1,900 50 wt % n-octyl liquid
    35 1,900 50 wt % n-decyl liquid
    36 1,900 50 wt % n-dodecyl liquid
    37 1,900 50 wt % n-tetradecyl semi solid
    38 1,900 50 wt % n-hexadecyl semi solid
    39 8,400 80 wt % n-pentyl powder
    40 8,400 80 wt % n-hexyl powder
    41 2,900 40 wt % n-octadecyl semi solid
    42 2,900 40 wt % n-hexadecyl semi solid
    43 2,900 40 wt % n-tetradecyl liquid
    44 2,900 40 wt % n-dodecyl liquid
    45 4,400 40 wt % n-octadecyl semi solid
    46 4,400 40 wt % n-hexadecyl semi solid
    47 4,400 40 wt % n-tetradecyl liquid
    48 4,400 40 wt % n-dodecyl liquid
  • EXAMPLE 51 Preparation of a Polypropylene Glycol having a n-hexadecyl Hydrophobic Moiety and p-nitrophenyl Phosphate Lipase Inhibiting Group
  • A mixture of n-hexadecanol (28.41 g, 117 mmol) and N-methyl imidazole (9.34 mL, 117 mmol) in anhydrous methylene chloride (75 mL) was added slowly over 20 minutes under anhydrous condition to a solution of p-nitrophenyl phosphorodichloridate (30 g, 117 mmol) in anhydrous methylene chloride (60 mL). The reaction flask was cooled in a water bath during the addition. After the completion of the addition, the water bath was removed and the reaction mixture was stirred for 2 hours at room temperature. A mixture of polypropylene glycol (MW=1000; 58.5 g, 58.5 mmol) and N-methyl imidazole (9.3 mL, 117 mmol) in anhydrous methylene chloride (150 mL) was added to the reaction flask under anhydrous conditions. The mixture was stirred for 24 hours at room temperature. The reaction mixture was extracted with cold saturated solution of Na2SO4 (3×150 mL). The organic layer was dried over anhydrous magnesium sulfate. The magnesium sulfate was removed by filtration, and the filtrate was collected. The solvent was removed from the filtrate under reduced pressure to give a product of 77 g. The material was dried under vacuum at room temperature for 4 days.
  • The following polypropylene glycol p-nitrophenyl phosphates were prepared using the above procedure.
    TABLE 3
    Polypropylene glycol (PPG) having p-nitrophenyl phosphate lipase
    inhibiting groups with a variety of hydrophobic moieties.
    PPG HYDROPHOBIC PHYSICAL
    EXAMPLE MW MOIETY (R) STATE
    49 1,000 n-pentyl semi solid
    50 1,000 n-octyl semi solid
    51 1,000 n-hexadecyl semi solid
    52 1,000 n-octadecyl semi solid
    53 2,000 n-pentyl semi solid
    54 2,000 n-octyl semi solid
    55 2,000 n-hexadecyl semi solid
    56 2,000 n-octadecyl semi solid
  • EXAMPLE 57 Preparation of a Polyethylene Glycol Polymer having a p-nitrophenyl Phosphonate Lipase Inhibiting Group and having a Pentyl Hydrophobic Moieties A. Preparation of O,O-dimethyl n-pentylphosphonate
  • O,O-dimethyl phosphonate (220 g, 2 mol) was added dropwise to a suspension of NaH (48 g, 2 mol) in anhydrous THF (600 mL) under nitrogen. After 1 hour, 1-bromopentane (248 mL, 2 mol) in THF (400 mL) was added slowly, and the reaction mixture was refluxed for 12 hours. The solvent was removed under vacuum, diethyl ether (1 L) was added, and the salts were removed by filtration. The ether solution was washed with water (3×100 mL), the organic layer was dried over anhydrous sodium sulfate. The ether was removed under reduced pressure, and the crude product was purified by distillation under vacuum to give 171 g of O,O-dimethyl n-pentyl phosphonate.
  • B. Preparation of n-pentylphosphonic dichloride
  • O,O-dimethyl n-pentyl phosphonate (158 g, 0.88 mol) and N,N-dimethyl formamide (700 mg) were dissolved in thionyl chloride (200 mL), and the resulted mixture was refluxed for 48 hours. The volatiles were removed under vacuum at room temperature, and the crude product was purified by distillation to give a colorless liquid (135 g).
  • C. Preparation of polyethylene glycol having a p-nitrophenyl n-pentyl phosphonate lipase inhibiting groups
  • To a solution of n-pentylphosphonic dichloride (2.65 g, 14 mmol) in 40 mL of anhydrous dichloromethane, was added bright orange colored sodium salt of p-nitrophenol (2.3 g, 14 mmol) under anhydrous condition. The bright orange color disappeared within 5-10 minutes. After 45 minutes, a mixture of polyethylene glycol (MW=8,400; 56 g, 7 mmol) and N-methylimidazole (1.5 mL, 20 mmol) was added at room temperature and stirred for 24 hours. The reaction mixture was washed with 2% K2CO3 solution (6×100 mL) followed by saturated NaCl solution (6×100 mL). The organic layer was dried over Na2SO4, the solvent was removed under vacuum to give a viscous liquid. The product was poured into 200 mL of diethyl ether and stirred for 10 minutes. The ether portion was decanted, and the procedure was repeated three more times. The product was obtained as a white powder which was dried under vacuum at room temperature for a week.
  • The following polyethylene glycol polymers having p-nitrophenyl phosphonate lipase inhibiting groups were prepared by this procedure.
    TABLE 4
    Polyethylene glycols having p-nitrophenyl phosphonate lipase
    inhibiting groups with a pentyl hydrophobic moiety.
    HYDROPHOBIC PHYSICAL
    EXAMPLE PEG MOIETY (R) STATE
    57 8,400 n-pentyl powder
    58 3,400 n-pentyl powder
    59 1,500 n-pentyl semi solid
    60 1,000 n-pentyl semi solid
  • EXAMPLE 61 Preparation of a PLURONIC® Polymer having p-nitrophenyl Phosphates Lipase Inhibiting Group Tethered by a n-pentyl-1,5-dioxy Linker and having a n-hexadecyl Hydrophobic Moiety
  • A 1 L, round-bottomed flask was charged with sodium hydride (4.0 g as a 60% dispersion of NaH in mineral oil, 0.1 mol) then washed with anhydrous heptane (3×25 mL). Anhydrous tetrahydrofuran (THF) (150 mL) was added, and the suspension was stirred at room temperature under nitrogen. A solution of PLURONIC® (MW=1900, 50 wt % polyethylene glycol, 50 wt % polypropylene glycol; 95 g, 0.05 mole) in anhydrous THF (200 mL) was added at room temperature. A solution of bromopentyl acetate (20.9 g, 0.1 mole) in anhydrous THF (50 mL) was added to the reaction mixture under anhydrous conditions. The reaction mixture was refluxed at 60° C. for 16 hours. The solvent was removed under vacuum, and the resulting slurry was suspended in dichloromethane (300 mL). The solids were removed by filtration, and the filtrate was washed with water (3×100 mL). The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed to give a pale brown viscous liquid (110 g). This material was dissolved in methanol (500 mL) and treated with aqueous 4N NaOH (40 mL). After 4 hours, the reaction mixture was acidified with concentrated HCl, and the solvent was removed under vacuum. The viscous oil was dissolved in dichloromethane, which was washed with water (4×100 mL). The organic layer was dried over sodium sulfate, and the solvent was removed to give bis-5-hydroxypentoxy PLURONIC® as a pale brown viscous liquid (98 g).
  • In a separate flask, a mixture of n-hexadecanol (7.02 g, 29.0 mmol) and N-methyl imidazole (2.3 mL, 290 mmol) in anhydrous methylene chloride (40 mL) was added slowly over 20 minutes under anhydrous conditions to a solution of p-nitrophenyl phosphorodichloridate (7.41 g, 29.0 mmol) in anhydrous methylene chloride (100 mL). The reaction flask was cooled in a water bath during the addition. After the completion of the addition, the water bath was removed, and the reaction mixture was stirred for 2 hours at room temperature. A mixture of bis-5-hydroxypentoxy PLURONIC® (30 g, 14.48 mmol), and N-methyl imidazole (2.3 mL) in anhydrous methylene chloride (150 mL) was added to the reaction flask under anhydrous conditions. The mixture was stirred for 24 hours at room temperature, then washed with saturated NaCl solution (3×100 mL). The organic layer was collected and dried over sodium sulfate. The solvent was removed to give a viscous liquid. This was washed with boiling hexane (6×50 mL), and the product was dried under vacuum at room temperature overnight to yield a pale yellow viscous liquid (39 g).
  • The following Examples were prepared using the above procedure.
    TABLE 5
    PLURONIC ® polymers having p-nitrophenyl phosphate
    lipase inhibiting groups tethered by a variety of dialkoxys
    and having a variety of hydrophobic moieties.
    PLU HYDROPHOBIC DIALKOXY
    EXAMPLE MW MOIETY (R) (Z1)
    61 1900 n-pentyl n-pent-1,5-dioxy
    62 1900 n-decyl n-pent-1,5-dioxy
    63 1900 n-hexadecyl n-pent-1,5-dioxy
    64 1900 n-pentyl n-undecyl-1,10-dioxy
    65 1900 n-decyl n-undecyl-1,10-dioxy
    66 1900 n-hexadecyl n-undecyl-1,10-dioxy
  • EXAMPLE 67 Preparation of a Polyethylene Glycol Polymer having a p-nitrophenyl Phosphates Lipase Inhibiting Group Tethered by a n-pentyl-1,5-dioxy Linker and having a n-hexadecyl Hydrophobic Moiety
  • A 1 L, round-bottomed flask was charged with sodium hydride (7.67 g as a 60% dispersion of NaH in mineral oil, 0.19 mol) and was washed with anhydrous heptane (3×25 mL). Anhydrous THF (200 mL) was added, and the suspension was stirred at room temperature under nitrogen. A solution of polyethylene glycol (MW=1,500; 150 g, 0.1 mol) in anhydrous THF (200 mL) was added at room temperature under anhydrous conditions. The mixture was stirred for 1 hour at room temperature, then a solution of bromopentyl acetate (41.82 g, 0.2 mol) in anhydrous THF (100 mL) was added to the reaction mixture. The reaction mixture was refluxed at 60° C. for 16 hours. The solvent was removed under vacuum, and the resulting slurry was suspended in dichloromethane (300 mL). The solids were removed by filtration, and the filtrate was washed with water (3×100 mL). The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed to give a pale brown viscous liquid (110 g). This material was dissolved in methanol (500 mL) and treated with aqueous 4N NaOH (80 mL). After 4 hours, the reaction mixture was acidified with concentrated HCl, and the solvent was removed under vacuum. The viscous oil was dissolved in dichloromethane and was washed with water (4×100 mL). The organic layer was dried over sodium sulfate, and the solvent was removed to give a bis-5-hydroxypentoxy polyethylene glycol as a pale brown viscous liquid (98 g). The p-nitrophenyl phosphate group was added in a manner analogous to the procedure in Example 61.
  • The following Examples were prepared using the above procedure.
    TABLE 6
    Polyethylene glycols having a p-nitrophenyl phosphate
    lipase inhibiting group tethered by a dialkoxy linker
    and having a variety of hydrophobic moieties.
    PEG HYDROPHOBIC DIALKOXY
    EXAMPLE MW MOIETIES (R) (Z1)
    67 1500 n-hexyl n-pent-1,5-dioxy
    68 1500 n-dodecyl n-pent-1,5-dioxy
    69 1500 n-hexadecyl n-pent-1,5-dioxy
  • EXAMPLE 75 Preparation of a BRIJ® Polymer having a p-nitrophenyl Phosphate Lipase Inhibiting Group and a Hexadecyl Hydrophobic Moiety
  • p-Nitrophenyl phosphorodichloridate (75 g, 0.29 mol) in anhydrous dichloromethane (300 mL) was added to a 1 L, three necked, round-bottomed flask with stir bar that had been purged with N2. A solution of hexadecanol (71.03 g, 0.29 mol) and N-methylimidazole (23.35 mL, 0.29 mol) in anhydrous dichloromethane (250 mL) was added dropwise over a period of 2 hours. The reaction mixture was stirred for an additional 1 hour before pouring into a 1 L separatory funnel. N-methylimidazole hydrochloride salts separated at the bottom as an oil and were removed from the funnel. Dichloromethane was removed from the mixture at less than 30° C. under vacuum to give an amber oil which was taken up in hexane (400 mL) and placed in a freezer overnight. The reaction mixture was then thawed and the soluble portion was filtered to remove the crystals of p-nitrophenyl phosphorodichloridate. The solvent was removed from the filtrate via rotary evaporation at less than 35° C. to give n-hexyl p-nitrophenyl phosphorochloridate.
  • A 500 mL flask with stir bar was purged with N2. The n-hexyl p-nitrophenyl phosphorochloridate (20 g, 0.043 mol) in anhydrous THF (25 mL) was added, followed by slow addition of a solution of BRIJ® 58 (polyoxyethylene(20) cetyl ether; 48.56 g, 0.043 mol) and N-methylimidazole (3.45 mL, 0.043 mol) in anhydrous THF (200 mL). The reaction mixture was stirred at room temperature for 24 hours. The solvent was removed at less than 35° C. by rotary evaporation, and the oily residue was dissolved in methanol (50 mL). A solution of methanol/water (85 mL: 15 mL, 200 mL) was added. The solid bis-n,n-dihexyl p-nitrophenyl phosphate was collected by filtration. The methanol was then stripped off on a rotary evaporator at less than 35° C. Water was removed from the product by lyophilization.
  • The Examples in Table 7 can be represented by the following structure and were prepared using the above procedure.
    TABLE 7
    Figure US20050085535A1-20050421-C00017
    BRIJ ® polymers having a terminal p-nitrophenyl phosphate
    lipase inhibiting group with a variety of hydrophobic moieties.
    HYDROPHOBIC
    EXAMPLE POLYMER MOIETY
    70 BRIJ ® 98 (n = 19, x = 17) n-dodecyl
    71 BRIJ ® 98 (n = 19, x = 17) n-hexadecyl
    72 BRIJ ® 35 (n = 22, x = 11) n-dodecyl
    73 BRIJ ® 35 (n = 22, x = 11) n-hexadecyl
    74 BRIJ ® 58 (n = 19, x = 15) n-dodecyl
    75 BRIJ ® 58 (n = 19, x = 15) n-hexadecyl
  • EXAMPLE 76 Preparation of an IGEPAL® Polymer having a Terminal p-nitrophenyl Phosphate Lipase Inhibiting Group with a n-hexadecyl Hydrophobic Moieties
  • A 500 mL flask with stir bar was purged with N2, and n-hexadecyl p-nitrophenyl phosphorochloridate (20 g, 0.043 mol) in anhydrous THF (25 mL) was added, followed by slow addition of a solution of IGEPAL® 720 (32.41 g, 0.043 mol) and N-methylimidazole (3.45 mL, 0.043 mol) in THF (200 mL). The reaction mixture was stirred at room temperature for 24 hours. The solvent was removed under vacuum at room temperature, and oily product was taken up in methanol (50 mL). A solution of methanol/water (85: 15, 200 mL) was added to product. The bis-n,n-dihexyl p-nitrophenyl phosphate was filtered off, and methanol was then stripped off under vacuum at less than 35° C. Water was removed from the product by lyophilization.
  • The Examples in Table 8 can be represented by the following structure and were prepared using the above procedure.
    TABLE 8
    Figure US20050085535A1-20050421-C00018
    IGEPAL ® polymers having a terminal p-nitrophenyl phosphate
    lipase inhibiting group with a variety of hydrophobic moieties.
    HYDROPHOBIC
    EXAMPLE POLYMER MOIETY (R)
    76 IGEPAL ® 720 (n = 11) n-dodecyl
    77 IGEPAL ® 720 (n = 11) n-hexadecyl
    78 IGEPAL ® 890 (n = 39) n-dodecyl
    79 IGEPAL ® 890 (n = 39) n-hexadecyl
  • EXAMPLE 80 Preparation of [Poly(propylene glycol) Block-poly(ethylene glycol) Blockpoly(propylene glycol)] Polymers having a p-nitrophenyl Phosphate Lipase Inhibiting Group with a n-hexyl Hydrophobic Moiety
  • A 500 mL flask with stir bar was purged with N2, and n-hexyl p-nitrophenyl phosphorochloridate (20 g, 0.043 mol) in anhydrous THF (25 mL) was added followed by slow addition of a solution of [poly(propylene glycol) block-poly(ethylene glycol) block-poly(propylene glycol)] (average MW=2000, 50 wt. % ethylene glycol; 49.36 g, 0.0215 mol) and N-methylimidazole (3.45 mL, 0.043 mol) in THF (200 mL). The reaction mixture was stirred for 24 hours at room temperature. The solvent was removed under vacuum at room temperature, and the oily residue was taken up in methanol (50 mL). A mixture of 85:15 methanol:water solution (200 mL) was added, and the bis-n,n-dihexyl p-nitrophenyl phosphate precipitate was filtered off. Methanol was stripped off by rotary evaporation at less than 35° C., and water was removed from the product by lyophilization.
  • The following Examples were prepared using the above procedure.
    TABLE 9
    Poly(propylene glycol) block-poly(ethylene glycol) block-
    poly(propylene glycol) polymers (PPG-PEG-PPG)
    having p-nitrophenyl phosphate lipase inhibiting
    groups with a variety of hydrophobic moieties.
    HYDROPHOBIC
    EXAMPLE POLYMER MOIETY (R)
    80 PPG-PEG-PPG 2000 hexyl
    81 PPG-PEG-PPG 2000 dodecyl
    82 PPG-PEG-PPG 2000 hexadecyl
  • EXAMPLE 83 Preparation of a PLURONIC® Polymer having Phosphochloridate Lipase Inhibiting Groups and a Decyl Hydrophobic Moiety
  • After purging with N2, a solution of phophorousoxychloride (30 g, 0.1956 mol) in anhydrous THF (100 mL) was added to a 3 L flask, and the mixture was cooled to 0-5° C. A mixture of freshly distilled triethylamine (27.27 mL, 0.1956 mol) and 1-decanol (30.97 g, 0.1956 mol) in anhydrous THF (300 mL) was added dropwise at a maximum rate of 75 mL/hour, keeping the solution temperature at 5° C. After the addition was complete, a mixture of PLURONIC® (average MW=2900, 142 g, 0.0489 mol) and freshly distilled triethylamine (13.7 mL, 0.0978 mol) in anhydrous THF (300 mL) was added at a maximum rate of 75 mL/hour, keeping the solution temperature at 5° C. After the addition was complete, the reaction was allowed to warm to room temperature and stirred for 24 hours. The triethylammonium hydrochloride salts were removed by filtration. The solvent was removed under vacuum at 30° C., and the resulting oil was washed with hexane (6×250 mL) to remove the unreacted n-decyl phosphorodichloridate. The product, bis-n-decyl phosphorochlorodate PLURONIC®, was dried under high vacuum (0.003 mm Hg) overnight at room temperature.
  • EXAMPLE 84 Preparation of a PLURONIC® Polymer having N-hydroxysuccinimidyl Phosphate Lipase Inhibiting Groups and a Decyl Hydrophobic Moiety
  • A 125 mL flask with stir bar was purged with N2, and a solution of bis-n-decyl phosphorochlorodate PLURONIC® (prepared as in Example 82; 30 g, 0.0178 mol) was added. N-hydroxysuccinimide (2.05 g, 0.0178 mol) was added as a solid and allowed to dissolve. Freshly distilled triethylamine (2.48 mL, 0.0178 mol) was added, and the reaction mixture was allowed to stir for 0.5 hours. The triethylammonium hydrochloride salt was filtered off, and the THF was removed from the filtrate by rotary evaporation at 30° C. The product was dried under high vacuum (0.003 mm Hg) overnight.
  • EXAMPLE 85 Preparation of PLURONIC® Polymers having Pyridoxinyl Phosphate Lipase Inhibiting Groups and a Decyl Hydrophobic Moiety
  • A 125 mL flask with stir bar was purged with N2, and bis-n-decyl phosphorochlorodate PLURONIC® (prepared as in Example 82; 30 g, 0.0178 mol) in anhydrous dichloromethane (30 mL) was added. Pyridoxine hydrochloride (2.54 g, 0.0178 mol) was added as a solid and allowed to dissolve. Freshly distilled triethylamine (4.96 mL, 0.0356 mol) was added, and the reaction mixture was allowed to stir for 2 hours. The triethylammonium hydrochloride salt was filtered off, and the solvent was removed by a rotary evaporation at less than 35° C. The oil was taken up in THF (50 mL) and refiltered. The solvent was removed by rotary evaporation, and the product was dried under high vacuum (0.003 mm Hg) overnight at room temperature.
  • Table 10 lists the polymers prepared in Examples 83, 84 and 85.
    TABLE 10
    PLURONIC ® polymers having a variety of leaving groups.
    HYDROPHOBIC LEAVING GROUP
    EXAMPLE POLYMER MOIETY (R) (Y-R1)
    83 PLU 2900 decyl chloride
    84 PLU 2900 decyl n-hydroxysuccinyl
    85 PLU 2900 decyl pyridoxinyl
  • EXAMPLE 86 Preparation of a PLURONIC® Polymer having β-Lactone Lipase Inhibiting Group (Scheme I)
  • Figure US20050085535A1-20050421-C00019
  • Intermediate 1:
  • 10-Hydroxy methyldecanoate 1 (20 g, 98 mmol), benzyloxy 2,2,2-trichloroacetimidate (30 g, 118 mmol), dichloromethane (50 mL) and cyclohexane (100 mL) were added to a 1 L, round-bottomed flask. The mixture was stirred for 5 minutes at room temperature. Trifloromethane sulfonic acid (1.3 mL) was added to the reaction mixture under nitrogen atmosphere. Within a few minutes the temperature rose from room temperature to 37° C. The reaction was monitored by TLC (hexane:ethyl acetate; 9:1). After 16 hours, the starting material completely disappeared. The solids were separated from the reaction by filtration, and the filtrate was washed with aqueous saturated sodium bicarbonate solution (3×100 mL) followed by water (3×100 mL). The organic phase was collected and dried over anhydrous sodium sulfate. The solvent was removed under vacuum at room temperature. The residue was purified on silica gel column using a gradient of ether/hexane as the mobile phase. The product was eluted from the column in ether-hexane (8:2). The solvent was removed in vacuo to yield 10-benzyloxy methyldecanoate (intermediate 1) as a solid (32 g).
  • Intermediate 2:
  • Intermediate 1 (30 g) was saponified in 6N NaOH solution (100 mL) for 12 hours, then acidified with concentrated HCl. The product was extracted with chloroform (5×100 mL). The organic layers were combined and dried over sodium sulfate. The solvent was removed under vacuum to give 10-benzyloxy decanoic acid (intermediate 2) (27 g), which was used directly in the next reaction.
  • Intermediate 3:
  • n-Butyl lithium in hexane (1.6 M solution, 68 mL, 108 mmol) was added dropwise to a solution of N,N-diisoproyl amine (15.14 mL, 108 mmol) in THF (50 mL) which was maintained at 0° C. After the completion of addition, the mixture was stirred for an additional 10 minutes at 0° C. The mixture was cooled to −50° C., then a solution of intermediate 2 (15 g, 54 mmol) in 100 mL of THF was added dropwise. After the completion of the addition, the mixture was allowed to warm to room temperature, then stirred for 1 hour. The mixture was cooled to −78° C., and a solution of decyl aldehyde (8.44 g, 54 mmol) in THF (40 mL) was added dropwise. After stirring for 3 hours at −78° C., the mixture was warmed to room temperature, then quenched by addition of saturated ammonium chloride solution (50 mL). The mixture was extracted with diethyl ether (5×50 mL). The organic layers were combined and dried over sodium sulfate, filtered and evaporated to give intermediate 3 (22 g).
  • Intermediate 4:
  • Benzenesulfonyl chloride (9.8 g, 56 mmol) was added to a solution of intermediate 3 (12 g, 28 mmol) in pyridine (200 mL) maintained at 0° C. After addition was complete, the mixture was kept in a refrigerator at 4° C. for 24 hours, then poured into crushed ice (2 kg) and stirred at room temperature for 20 minutes. The mixture was extracted with diethyl ether (6×150 mL). The combined organic layers were washed with water, dried over sodium sulfate, filtered and concentrated in vacuo. The product was purified on a silica gel column using hexane:ethyl acetate (9:1) to give intermediate 4 as an oil (9.8 g). IR: 1825−1 cm.
  • Intermediate 5:
  • Intermediate 4 (9.5 g, 22 mmol) was dissolved in methylene chloride, then hydrogenated under 50 psi of hydrogen for 4 hours using 10% Pd/C (1 g) as a catalyst. The solution was filtered, and the solvent was removed under vacuum to give intermediate 5 as an oil (6.9 g).
  • Intermediate 6:
  • PLURONIC® (MW=1,900; 570 g; 300 mmol) in THF (500 mL) was added dropwise to a stirred suspension of sodium hydride (15 g) in THF (150 mL). After the addition was complete, the mixture was stirred for an additional 30 minutes at room temperature. A solution of ethyl 4-bromobutyrate (1 17g, 600 mmol) was added dropwise, and the mixture was stirred at 60° C. for 16 hours. After cooling to room temperature, the salts were filtered off, and the solvent was removed under vacuum to give light brown viscous material which was suspended in dichloromethane (1 L) and washed with water (3×200 mL). The organic layer was collected and dried over sodium sulfate, filtered, and the solvent was removed under vacuum to give intermediate 6 as a viscous liquid (770 g).
  • Intermediate 7:
  • Intermediate 6 was dissolved in a solution of methanol (1 L) and 50% sodium hydroxide solution (100 mL), then stirred for 24 hours at room temperature. The reaction mixture was acidified with concentrated HCl, and the solvent was removed under vacuum. The residue was resuspended in dichloromethane (1 L), then washed with water (4×250 mL). The organic layer was dried over sodium sulfate, filtered, and the solvent was removed under vacuum to give intermediate 7 as a viscous liquid (650 g).
  • Intermediate 8:
  • 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (4.8 g, 25 mmol) was added under nitrogen to a solution of intermediate 7 (20.72 g, 10 mmol) in dichloromethane (100 mL) in a round bottom flask. The mixture was stirred for 10 minutes at room temperature, then N-hydroxy succinimide (2.3 g) was added. The mixture was stirred for 12 hours at room temperature, then transferred to a separatory funnel and was washed with water (3×30 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was removed under vacuum to give 22 g of intermediate 8 which was used directly in the next step.
  • EXAMPLE 86
  • Triethylamine (3 mL) was added to a solution of intermediate 8 (22 g, ˜10 mmol) and intermediate 5 (6.5 g, 20 mmol) in dichloromethane (150 mL). The mixture was stirred for 4 hours at room temperature, then poured into a separatory funnel and washed with 5% HCl (3×20 mL) and water (3×50 mL). The organic layer was dried over sodium sulfate, filtered, and the solvent was removed under vacuum. Example 86 was obtained as viscous liquid (26 g). This material was used directly in the in vitro and in vivo assay.
  • EXAMPLE 87 Preparation of a PLURONIC® Polymer having a Disulfide Lipase Inhibiting Group
  • Figure US20050085535A1-20050421-C00020
  • EXAMPLE 87
  • Intermediate 9:
  • 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (1.1 g, 5 mmol) was added to a solution of 5,5′-dithiobis(2-nitrobenzoic acid) (3.96 g, 10 mmol) in dichloromethane (100 mL). After 10 minutes N-hydroxysuccinimide (0.5 g, 5 mmol) was added, and the reaction was stirred for 6 hours at room temperature. The reaction mixture was poured into a separatory, then washed with water (3×20 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was removed under vacuum to give intermediate 9 which was used directly in the next step.
  • A solution of PLURONIC® (MW=1,900; 9.5 g; 5 mmol) in dichloromethane (50 mL), followed by triethylamine (0.5 mL) was added to a solution of intermediate 9 in dichloromethane (100 mL). The mixture was stirred for 16 hours at room temperature, then poured into a separatory funnel and washed with water (3×30 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and The solvent was removed under vacuum to give Example 87 as a viscous liquid (12 g).
  • EXAMPLE 88 Preparation of a PLURONIC® Polymer having an Anhydride Lipase Inhibiting Group
  • Figure US20050085535A1-20050421-C00021
  • EXAMPLE 88
  • Intermediate 10:
  • 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (2.2 g, 10 mmol) was added to a solution of 1,2,3-benzene tricarboxylic anhydride (2.1 g, 10 mmol) in dichloromethane (100 mL). The mixture was stirred for 10 minutes, then N-hydroxysuccinimide (1.0 g, 10 mmol) was added, and the reaction was stirred for 6 hours at room temperature. The reaction mixture was poured into a separatory funnel, then washed with water (3×20 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was removed under vacuum to give intermediate 10 which was used directly in the next step.
  • A solution of PLURONIC® (MW=1,900; 9.5 g; 5 mmol) and triethylamine (0.5 mL) in dichloromethane (50 mL) was added to a solution of intermediate 10 in dichloromethane (100 mL). The mixture was stirred for 16 hours at room temperature, then poured into a separatory funnel and washed with water (3×30 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was removed under vacuum to give Example 88 (11.2 g) as viscous liquid.
  • In Vitro Assay
  • Procedure 1: Tributyrin Substrate
  • Potential inhibitors of pancreatic lipase activity were evaluated using a titration method employing a pH Stat instrument (Radiometer America, Westlake Ohio). Substrate (1 mL tributyrin) was added to 29.0 mL of Tris-HCl buffer (pH 7.0) containing 100 mM NaCl, 5 mM CaCl2, and 4 mM sodium taurodeoxycholate. This solution was stirred for 5 minutes prior to the addition of 210 units of porcine pancreatic lipase (Sigma, 21,000 units/mg) dissolved in the assay buffer. The release of butyric acid by the lipase was monitored over a 10 minute period by titrating the assay system to a constant pH of 7.0 with 0.02 M NaOH. Enzyme activity was expressed as milliequivalents of base added per minute per gram of enzyme. In subsequent assays, varying amounts of inhibitor were solubilized in either tributyrin or buffer, depending on the solubility characteristics of the compound, and added to the assay system at time zero.
  • Procedure 2: Olive Oil Substrate
  • Potential inhibitors of pancreatic lipase activity were evaluated using a titration method employing a pH Stat instrument (Radiometer America, Westlake, Ohio). Substrate (15 mL of an olive oil emulsion containing 80 mM olive oil and 2 mM oleic acid, dissolved and sonified in a buffer consisting of 10 mM Tris-HCl pH 8.0, 110 mM NaCl, 10 mM CaCl2, 2 mM lecithin, 1.32 mM cholesterol, 1.92 mM sodium glycocholate, 1.28 mM sodium taurocholate, 2.88 mM sodium glycodeoxycholate, and 1.92 mM sodium taurodeoxycholate) was added to 15 mL of assay buffer (Tris-HCl pH 8.0 containing 110 mM NaCl and 10 mM CaCl2). This solution was stirred for 4 minute prior to the addition of 1050 units of porcine pancreatic lipase (Sigma, 21,000 units/mg) dissolved in assay buffer. The hydrolysis of triglyceride was monitored over a 30 minute period by titrating the assay system to a constant pH of 8.0 with 0.02M NaOH. Enzyme activity was expressed as milliequivalents of base added per minute per gram of enzyme. In subsequent assays, stock solutions of inhibitor were prepared in either ethanol or DMSO, and varying amounts were added to the assay system at time zero.
  • The assays were conducted as described above using either procedure 1 or 2, and the percent inhibition was derived by comparing the enzyme activities in the presence and absence of inhibitor. Three concentrations of inhibitor were assayed, and the percent inhibition was plotted against the log of the inhibitor concentration in order to determine the concentration at which 50% inhibition occurred (IC50). The following compounds were assayed, with the indicated values for IC50 presented in Tables 11-17.
    TABLE 11
    IC50 (μM) IC50 (μM)
    with with Olive
    Example Polymer Hydrophobic Moiety Tributyrin Oil
    Polyethylene glycol (PEG) nitrophenyl phosphates:
    10 PEG 1000 pentyl phosphate 400 ***
    11 PEG 1000 hexyl phosphate na ***
    12 PEG 1000 octyl phosphate 538 ***
    5 PEG 1000 decyl phosphate na ***
    6 PEG 1000 dodecyl phosphate 466 ***
    7 PEG 1000 tetradecyl phosphate 1142 ***
    8 PEG 1000 hexadecyl phosphate 67 320
    9 PEG 1000 octadecyl phosphate 98 ***
    13 PEG 1000 docosyl phosphate 345 ***
    14 PEG 1000 cholesteryl phosphate 172 ***
    16 PEG 1500 pentyl phosphate na ***
    19 PEG 1500 hexadecyl phosphate 215 ***
    29 PEG 1500 octadecyl phosphate 73 ***
    24 PEG 1500 5-phenyl-1-pentyl 24 942
    phosphate
    22 PEG 1500 farnesyl phosphate na ***
    23 PEG 1500 cholesteryl phosphate 307 ***
    15 PEG 3400 pentyl phosphate 559 ***
    1 PEG 8400 pentyl phosphate 455 ***
    Polypropylene glycol (PPG) nitrophenyl phosphates:
    49 PPG 1000 pentyl phosphate 4000 ***
    53 PPG 2000 pentyl phosphate 52000 ***
    PLURONIC ® polymers having nitrophenyl phosphate:
    32 PLU 1100 octyl phosphate 61 601
    31 PLU 1100 decyl phosphate 174 454
    30 PLU 1100 dodecyl phosphate 55 400
    29 PLU 1100 tetradecyl phosphate 133 1200 
    33 PLU 1100 hexyl phosphate 155 353
    39 PLU 1900 pentyl phosphate 3.6 9000 
    34 PLU 1900 octyl phosphate 3.8 379
    35 PLU 1900 decyl phosphate 2.4 105
    36 PLU 1900 dodecyl phosphate 2.3 183
    37 PLU 1900 tetradecyl phosphate 3.6 187
    38 PLU 1900 hexadecyl phosphate 22 196
    44 PLU 2900 dodecyl phosphate 1.7 286
    43 PLU 2900 tetradecyl phosphate 1.7 260
    42 PLU 2900 hexadecyl phosphate 0.9 106
    41 PLU 2900 octadecyl phosphate 1.0 174
    48 PLU 4400 dodecyl phosphate 8.4 ***
    47 PLU 4400 tetradecyl phosphate 5.0 ***
    46 PLU 4400 hexadecyl phosphate 1.4 ***
    45 PLU 4400 octadecyl phosphate 4.8 ***
    39 PLU 8400 pentyl phosphate 325 ***
    40 PLU 8400 hexyl phosphate 84 ***
    Polyethylene glycol (PEG) nitrophenyl phosphonates:
    60 PEG 1000 pentyl phosphonate 836 na
    59 PEG 1500 pentyl phosphonate na ***

    PLU = PLURONIC ®

    PEG = Polyethylene glycol

    PPG = Polypropylene glycol

    PLU 1,100 (10 wt % PEG monomer, 90 wt % PPG monomer)

    PLU 1,900 (50 wt % PEG monomer, 50 wt % PPG monomer)

    PLU 2,900 (40 wt % PEG monomer, 60 wt % PPG monomer)

    PLU 4,400 (40 wt % PEG monomer, 60 wt % PPG monomer)

    PLU 8,400 (80 wt % PEG monomer, 20 wt % PPG monomer)

    na = not active;

    ***not tested
  • TABLE 12
    IC50 values of PLURONIC ® polymers having a p-nitrophenyl phosphate
    lipase inhibiting group and dialkoxy linkers.
    HYDRO-
    PHOBIC IC50 (mM) IC50 (μM)
    EXAM- PLU MOIETY DIALKOXY with with
    PLE MW (R) (Z1) Tributyrin Olive Oil
    61 1900 n-pentyl n-pent-1,5-dioxy 1.8 na
    62 1900 n-decyl n-pent-1,5-dioxy 1.1 289
    63 1900 n-hexadecyl n-pent-1,5-dioxy 1.1 278
    66 1900 n-hexadecyl n-undecyl-1,10- 0.8 182
    dioxy
  • TABLE 13
    IC50 values of polyethylene glycol polymers having a p-nitrophenyl
    phosphate lipase inhibiting group and dialkoxy linkers.
    HYDRO-
    PHOBIC IC50 (μM) IC50 (μM)
    EXAM- PEG MOIETY DIALKOXY with with Olive
    PLE MW (R) (Z1) Tributyrin Oil
    67 1500 n-hexyl n-pent-1,5-dioxy 71 na
    68 1500 n-dodecyl n-pent-1,5-dioxy 58 371
    69 1500 n-hexadecyl n-pent-1,5-dioxy 49 184
  • TABLE 14
    IC50 values for BRIJ ® polymers having a
    p-nitrophenyl phosphate lipase inhibiting group.
    IC50
    HYDRO- (μM)
    PHOBIC IC50 (μM) with
    EX- MOIETY with Olive
    AMPLE POLYMER (R) Tributyrin Oil
    70 BRIJ ® 98 (n = 19, x = 17) n-dodecyl *** ***
    71 BRIJ ® 98 (n = 19, x = 17) n-hexadecyl  250 266
    72 BRIJ ® 35 (n = 22, x = 11) n-dodecyl 1800 275
    73 BRIJ ® 35 (n = 22, x = 11) n-hexadecyl 1900 392
    74 BRIJ ® 58 (n = 19, x = 15) n-dodecyl 1100 168
    75 BRIJ ® 58 (n = 19, x = 15) n-hexadecyl 2200 428
  • TABLE 15
    IC50 values for IGEPAL ® polymers having a p-nitrophenyl
    phosphate lipase inhibiting group.
    HYDROPHOBIC IC50 (μM) IC50 (μM)
    EX- MOIETY with with Olive
    AMPLE POLYMER (R) Tributyrin Oil
    76 IGEPAL ® 720 n-dodecyl *** ***
    (n = 11)
    77 IGEPAL ® 720 n-hexadecyl *** ***
    (n − 11)
    78 IGEPAL ® 890 n-dodecyl 344 148
    (n = 39)
    79 IGEPAL ® 890 n-hexadecyl *** ***
    (n = 39)
  • TABLE 16
    IC50 values for PPG-PEG-PPG polymers having p-nitrophenyl
    phosphate lipase inhibiting groups.
    HYDRO- IC50 IC50
    PHOBIC (μM) (μM)
    EX- MOIETY with with Olive
    AMPLE POLYMER (R) Tributyrin Oil
    81 PPG-PEG-PPG 2000 n-dodecyl 2.4 283
    82 PPG-PEG-PPG 2000 n-hexadecyl 1.9 384
  • TABLE 17
    IC50 values for PLURONIC ® polymers having n-hexadecyl
    hydrophobes and a variety of leaving groups.
    LEAVING IC50 (μM) IC50 (μM)
    PLU GROUP with with
    EXAMPLE Mol.wt. (Z - R1) tributyrin Olive Oil
    83 2900 chloride 0.9 968
    84 2900 n-hydroxysuccinyl 0.9 na
    85 2900 pyridoxinyl 0.09 936

    In Vivo Studies
  • Examples 8, 35, 36, 41, 42, 48, 62, 63, 67-69, 71-75, 78, 81 and 82 were evaluated for their ability to reduce daily caloric intake by increasing the excretion of fat in the feces, and to decrease body weight gain, relative to the control group, in normal rats over a six day period. Male Sprague-Dawley rats (five to six weeks of age) were individually housed and fed ad libitum a powdered “high fat diet,” consisting of standard rodent chow supplemented with 15% fat (consisting of 55% coconut oil and 45% corn oil) by weight. After feeding the animals this diet for five days, the animals were weighed and sorted into the treatment or control groups (6-8 animals per group, each group having equal mean body weights). Animals were treated for six days with the test compounds, which were added to the “high fat diet” at concentrations (w/w) of 0.0% (control), 0.3 or 1.0 percent of the diet.
  • Food consumption was measured for each animal throughout the study, and was expressed as the total amount of food consumed per animal over the six day treatment period. On day 6, each animal was weighed, and the total body weight gain over the treatment period was calculated.
  • Rat fecal samples were collected on the final three days of the six days of drug treatment. The samples were freeze dried and ground to a fine powder. One half gram of sample was weighed and transferred to extraction cells. Samples were extracted in an accelerated solvent extractor (ASE 200 Accelerated Solvent Extractor, Dyonex Corporation, Sunnyvale, Calif.) with 95% ethanol, 5% water and 100 mM KOH. The sample was extracted in 17 minutes at 150° C. and 1500 psi. An aliquot of extract was transferred to a test tube containing a molar excess of HCl. The sample was then evaporated and reconstituted in a detergent solution consisting of 2% Triton X-1200, 1% polyoxyethylene lauryl ether and 0.9% NaCl. Fatty acids were then quantitated enzymatically with a colorimetric kit (NEFAC, Wako Chemical GmbH, Neuss, Germany).
  • Table 18 contains values for fecal fat/consumed fat for both control and test animals (determined enzymatically as described above), and food consumption and body weight gain over 6 days as compared to control animals.
  • Calculation of Fecal Fat/Consumed Fat:
  • Fatty acid concentrations from the enzymatic assay are expressed as mmol/mL. The mmol/mL of fatty acid is then multiplied by the number of milliliters of extract generated from 500 mg of sample to give the total mmoles of fatty acid. The value for the total mmoles of fatty acid is converted to total milligrams of fatty acid using the average molecular weight of medium to long chain fatty acid. The value is corrected for any dilutions made during sample work-up. When results are expressed as mgs/gm of feces, the total milligrams of fatty acids is multiplied by 2. When results are expressed as total milligrams of fatty acid excreted in 24 hours, the mgs/gm of feces value is multiplied by fecal weight in grams excreted in 24 hours. When the results are expressed as excreted fat as a percentage of that consumed in 24 hours, the total weight of fat excreted in 24 hours is divided by the weight of fatty acids consumed in over 24 hours and multiplied by 100.
    TABLE 18
    In vivo results of selected polymers having lipase inhibiting groups.
    Fecal fat Total food Total weight
    Compound % of consumption change
    Number Class Backbone Hydrophobe consumed % of control % of control
     8 phosphate PEG 1000 hexadecyl   2 ± 0.5    87 ± 2.8**   66 ± 9.8**
    67 phosphate C5 PEG 1500 hexyl   3 ± 0.7   97 ± 7.8  127 ± 64.4
    68 phosphate C5 PEG 1500 dodecyl   2 ± 0.5   99 ± 12.2   82 ± 15.4*
    69 phosphate C5 PEG 1500 hexadecyl   3 ± 0.8  105 ± 5.5  92 ± 8.7
    35 phosphate PLU 1900 decyl 23 ± 5    58 ± 10**  −9 ± 17**
    36 phosphate PLU 1900 dodecyl 12 ± 3   62 ± 7**  16 ± 18**
    42 phosphate PLU 2900 hexadecyl   13 ± 2.5**    86 ± 8.6**    75 ± 16.1**
    41 phosphate PLU 2900 octadecyl   15 ± 3.5**   91 ± 6.2*   82 ± 6.6**
    48 phosphate PLU 4400 dodecyl  4 ± 1** 96 ± 7  79 ± 8**
    81 phosphate PPG-PEG-PPG dodecyl 2 ± 0 92 ± 8  78 ± 11**
    82 phosphate PPG-PEG-PPG hexadecyl 2 ± 0 114 ± 8   129 ± 12**
    62 phosphate C5 PLU 1900 decyl  12 ± 3.2   47 ± 2.6   −24 ± 13.6**
    63 phosphate C5 PLU 1900 hexadecyl  6 ± 1**  90 ± 5**    77 ± 13.3**
    71 phosphate Brij 98 hexadecyl 2 ± 1 98 ± 6 85 ± 11
    72 phosphate Brij 35 dodecyl 1 ± 0 95 ± 5  73 ± 13**
    73 phosphate Brij 35 hexadecyl 1 ± 0 106 ± 10  122 ± 17**
    74 phosphate Brij 58 dodecyl 2 ± 0  90 ± 5** 61 ± 14
    75 phosphate Brij 58 hexadecyl 1 ± 0 104 ± 8  100 ± 12 
    78 phosphate Igepal 890 dodecyl 1 ± 0 93 ± 5  72 ± 13**
    Control 2-3 100 100

    Animals were treated at a dose of 1.0%

    *p < 0.05

    **p < 0.01
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (8)

1-7. (canceled)
8. A method for treating obesity in a mammal, comprising the step of orally administering to the mammal an effective amount of a polymer substituted with at least one lipase inhibiting group, wherein the lipase inhibiting group is a boronic acid.
9. The method of claim 8, wherein the boronic acid is a phenyl boronic acid.
10. The method of claim 8, wherein the lipase inhibiting group reacts with a lipase and forms a covalent bond.
11. The method of claim 10, wherein the lipase inhibiting group forms a covalent bond with an amino acid residue at the active site of the lipase.
12. The method of claim 11, wherein the lipase inhibiting, group forms a covalent bond with an amino acid residue that is not at the active site of the lipase.
13. The method of claim 8, wherein the lipase inhibiting group is an isostere of a fatty acid.
14. The method of claim 8, wherein the polymer is a fat-binding polymer.
US10/960,579 1998-01-09 2004-10-07 Lipase inhibiting polymers Abandoned US20050085535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/960,579 US20050085535A1 (en) 1998-01-09 2004-10-07 Lipase inhibiting polymers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US537998A 1998-01-09 1998-01-09
US09/166,510 US6267952B1 (en) 1998-01-09 1998-10-05 Lipase inhibiting polymers
US09/226,585 US6352692B1 (en) 1998-01-09 1999-01-06 Lipase inhibiting polymers
US09/714,541 US6558657B1 (en) 1998-01-09 2000-11-16 Lipase inhibiting polymers
US10/359,458 US6875428B2 (en) 1998-01-09 2003-02-05 Lipase inhibiting polymers
US10/960,579 US20050085535A1 (en) 1998-01-09 2004-10-07 Lipase inhibiting polymers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/359,458 Continuation US6875428B2 (en) 1998-01-09 2003-02-05 Lipase inhibiting polymers

Publications (1)

Publication Number Publication Date
US20050085535A1 true US20050085535A1 (en) 2005-04-21

Family

ID=26674279

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/166,510 Expired - Fee Related US6267952B1 (en) 1998-01-09 1998-10-05 Lipase inhibiting polymers
US09/226,585 Expired - Fee Related US6352692B1 (en) 1998-01-09 1999-01-06 Lipase inhibiting polymers
US09/714,327 Expired - Fee Related US6572850B1 (en) 1998-01-09 2000-11-16 Lipase inhibiting polymers
US09/714,541 Expired - Fee Related US6558657B1 (en) 1998-01-09 2000-11-16 Lipase inhibiting polymers
US10/359,458 Expired - Fee Related US6875428B2 (en) 1998-01-09 2003-02-05 Lipase inhibiting polymers
US10/960,579 Abandoned US20050085535A1 (en) 1998-01-09 2004-10-07 Lipase inhibiting polymers

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US09/166,510 Expired - Fee Related US6267952B1 (en) 1998-01-09 1998-10-05 Lipase inhibiting polymers
US09/226,585 Expired - Fee Related US6352692B1 (en) 1998-01-09 1999-01-06 Lipase inhibiting polymers
US09/714,327 Expired - Fee Related US6572850B1 (en) 1998-01-09 2000-11-16 Lipase inhibiting polymers
US09/714,541 Expired - Fee Related US6558657B1 (en) 1998-01-09 2000-11-16 Lipase inhibiting polymers
US10/359,458 Expired - Fee Related US6875428B2 (en) 1998-01-09 2003-02-05 Lipase inhibiting polymers

Country Status (20)

Country Link
US (6) US6267952B1 (en)
EP (1) EP1043982B1 (en)
JP (1) JP2002500182A (en)
KR (1) KR100620634B1 (en)
CN (2) CN1287489A (en)
AT (1) ATE308979T1 (en)
AU (1) AU747016B2 (en)
BR (1) BR9907233A (en)
CA (1) CA2318416A1 (en)
DE (1) DE69928219T2 (en)
DK (1) DK1043982T3 (en)
ES (1) ES2253872T3 (en)
HK (1) HK1079706A1 (en)
HU (1) HUP0101128A3 (en)
IL (1) IL137098A (en)
NO (1) NO20003511L (en)
NZ (1) NZ505296A (en)
PL (1) PL193453B1 (en)
RU (1) RU2207861C2 (en)
WO (1) WO1999034786A2 (en)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267952B1 (en) * 1998-01-09 2001-07-31 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
DE60024101T2 (en) * 1999-09-10 2006-07-27 The Procter & Gamble Company, Cincinnati ENZYME INHIBITORS
AU7127000A (en) * 1999-09-10 2001-04-10 Procter & Gamble Company, The Enzyme inhibitors
AR025587A1 (en) 1999-09-13 2002-12-04 Hoffmann La Roche DISPERSION FORMULATIONS CONTAINING LIPASA INHIBITORS
AR025609A1 (en) 1999-09-13 2002-12-04 Hoffmann La Roche SOLID LIPID FORMULATIONS
EP1132389A1 (en) 2000-03-06 2001-09-12 Vernalis Research Limited New aza-indolyl derivatives for the treatment of obesity
RU2244542C2 (en) 2000-06-27 2005-01-20 Ф.Хоффманн-Ля Рош Аг Method for preparing composition
DK1307263T3 (en) 2000-07-28 2005-08-22 Hoffmann La Roche Hitherto unknown use of lipase inhibitors
EP1307264B1 (en) 2000-07-28 2004-10-20 F. Hoffmann-La Roche Ag New pharmaceutical composition
ATE390920T1 (en) 2000-08-09 2008-04-15 Hoffmann La Roche LIPASE INHIBITORS FOR THE TREATMENT OF DYSPEPSIA
US6900226B2 (en) 2000-09-06 2005-05-31 Hoffman-La Roche Inc. Neuropeptide Y antagonists
CA2422377C (en) 2000-09-15 2010-04-13 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US7473691B2 (en) * 2000-09-15 2009-01-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US6660731B2 (en) * 2000-09-15 2003-12-09 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
DE60135239D1 (en) 2000-10-16 2008-09-18 Vernalis Res Ltd Indoline derivatives and their use as 5-HT2 receptor ligands
GB0030710D0 (en) 2000-12-15 2001-01-31 Hoffmann La Roche Piperazine derivatives
EP1345922B1 (en) * 2000-12-21 2006-05-31 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
KR100539143B1 (en) 2000-12-27 2005-12-26 에프. 호프만-라 로슈 아게 Indole derivatives and their use as 5-ht2b and 5-ht2c receptor ligands
GB0106177D0 (en) 2001-03-13 2001-05-02 Hoffmann La Roche Piperazine derivatives
AU2002338896B2 (en) 2001-05-21 2006-04-27 F.Hoffman-La Roche Ag Quinoline derivatives as ligands for the neuropeptide Y receptor
US20030027786A1 (en) 2001-06-06 2003-02-06 Karsten Maeder Lipase inhibiting composition
US6787558B2 (en) 2001-09-28 2004-09-07 Hoffmann-La Roche Inc. Quinoline derivatives
GB0202015D0 (en) 2002-01-29 2002-03-13 Hoffmann La Roche Piperazine Derivatives
CN100383124C (en) 2002-02-04 2008-04-23 霍夫曼-拉罗奇有限公司 Quinoline derivatives as NPY antagonists
ES2437391T3 (en) * 2002-02-06 2014-01-10 Vertex Pharmaceuticals, Inc. Heteroaryl compounds useful as GSK-3 inhibitors
AU2003216317A1 (en) * 2002-02-19 2003-09-09 The Procter & Gamble Company Novel fungal lipase
BR0308108A (en) 2002-02-28 2004-12-07 Hoffmann La Roche Compounds; process for the preparation of compound; pharmaceutical composition comprising the same, use of compounds and method of treatment and prophylaxis of diseases and obesity
ATE468336T1 (en) * 2002-03-15 2010-06-15 Vertex Pharma AZOLYLAMINOAZINE AS PROTEIN KINASE INHIBITORS
AU2003223930A1 (en) * 2002-06-14 2003-12-31 Novo Nordisk A/S Pharmaceutical use of boronic acids and esters thereof
MY141867A (en) 2002-06-20 2010-07-16 Vertex Pharma Substituted pyrimidines useful as protein kinase inhibitors
KR100647932B1 (en) 2002-07-05 2006-11-23 에프. 호프만-라 로슈 아게 Quinazoline derivatives
KR20050032105A (en) * 2002-08-02 2005-04-06 버텍스 파마슈티칼스 인코포레이티드 Pyrazole compositions useful as inhibitors of gsk-3
CN100381429C (en) 2002-08-07 2008-04-16 霍夫曼-拉罗奇有限公司 Thiazole derivatives
EP1578816A1 (en) * 2002-11-19 2005-09-28 Genzyme Corporation Polymeric boronic acid derivatives as lipase inhibitors
WO2004072029A2 (en) * 2003-02-06 2004-08-26 Vertex Pharmaceuticals Incorporated Pyrazolopyridazines useful as inhibitors of protein kinases
GB0314967D0 (en) 2003-06-26 2003-07-30 Hoffmann La Roche Piperazine derivatives
DE602004019939D1 (en) 2003-08-12 2009-04-23 Hoffmann La Roche THIAZONE DERIVATIVES AS NPY ANTAGONISTS
ATE380189T1 (en) 2003-08-12 2007-12-15 Hoffmann La Roche 2-AMINO-5-BENZOYLTHIAZOLE NPY ANTAGONISTS
US20050239859A2 (en) * 2003-09-03 2005-10-27 Solvay Pharmaceuticals Gmbh Novel medical uses of 4,5-dihydro-1h-pyrazole derivatives having cb1- antagonistic activity
US20050143441A1 (en) * 2003-10-27 2005-06-30 Jochen Antel Novel medical combination treatment of obesity involving 4,5-dihydro-1H-pyrazole derivatives having CB1-antagonistic activity
US20050124660A1 (en) * 2003-10-27 2005-06-09 Jochen Antel Novel medical uses of compounds showing CB1-antagonistic activity and combination treatment involving said compounds
JP4691041B2 (en) 2003-11-20 2011-06-01 チルドレンズ ホスピタル メディカル センター GTPase inhibitors and methods of use
JP2007513184A (en) * 2003-12-04 2007-05-24 バーテックス ファーマシューティカルズ インコーポレイテッド Quinoxaline useful as an inhibitor of protein kinase
US20050244367A1 (en) * 2004-05-03 2005-11-03 Ilypsa, Inc. Phospholipase inhibitors localized in the gastrointestinal lumen
US7462394B2 (en) * 2004-05-06 2008-12-09 Ppg Industries Ohio, Inc. Method of stabilizing metal pigments against gassing
WO2006010268A1 (en) * 2004-07-30 2006-02-02 Basf Ag Polymeric boronic acid derivatives and their use for papermaking
WO2006045799A2 (en) * 2004-10-25 2006-05-04 Solvay Pharmaceuticals Gmbh Pharmaceutical compositions comprising cb1 cannabinoid receptor antagonists and potassium channel openers for the treatment of diabetes mellitus type i, obesity and related conditions
AU2006243243B2 (en) 2005-05-03 2009-05-14 F. Hoffmann-La Roche Ag Tetracyclic azapyrazinoindolines as 5-HT2 ligands
EP1920048A4 (en) 2005-07-29 2009-12-09 Childrens Hosp Medical Center Gtpase inhibitors and methods of use and crystal structure of rac-1 gtpase
KR100962827B1 (en) 2005-08-18 2010-06-10 에프. 호프만-라 로슈 아게 Thiazolyl piperidine derivatives useful as h3 receptor modulators
WO2007022384A2 (en) * 2005-08-18 2007-02-22 Vertex Pharmaceuticals Incorporated Pyrazine kinase inhibitors
AR056499A1 (en) * 2005-09-06 2007-10-10 Serapis Farmaceuticals Ltd COMPOUNDS
CN103145702A (en) * 2005-11-03 2013-06-12 顶点医药品公司 Aminopyrimidines useful as kinase inhibitors
ES2342979T3 (en) 2005-11-30 2010-07-20 F. Hoffmann-La Roche Ag DERIVATIVES OF INDOL-2-CARBOXAMIDE SUBSTITUTED IN 5.
WO2007062997A1 (en) 2005-11-30 2007-06-07 F. Hoffmann-La Roche Ag 1,1-dioxo-thiomorpholinyl indolyl methanone derivatives for use as h3 modulators
ATE500244T1 (en) 2005-11-30 2011-03-15 Hoffmann La Roche 1,5-SUBSTITUTED INDOL-2-YL AMIDE DERIVATIVE
WO2007065820A1 (en) 2005-12-09 2007-06-14 F. Hoffmann-La Roche Ag Tricyclic amide derivatives useful for treating obesity
AU2006326135A1 (en) 2005-12-15 2007-06-21 F. Hoffmann-La Roche Ag Pyrrolo[2,3-c]pyridine derivatives
JP2009519293A (en) 2005-12-16 2009-05-14 エフ.ホフマン−ラ ロシュ アーゲー Pyrrolo [2,3-b] pyridine derivatives as H3 receptor modulators
US7432255B2 (en) 2006-05-16 2008-10-07 Hoffmann-La Roche Inc. 1H-indol-5-yl-piperazin-1-yl-methanone derivatives
KR20090015098A (en) 2006-05-30 2009-02-11 에프. 호프만-라 로슈 아게 Piperidinyl pyrimidine derivatives
US7514433B2 (en) 2006-08-03 2009-04-07 Hoffmann-La Roche Inc. 1H-indole-6-yl-piperazin-1-yl-methanone derivatives
NZ576750A (en) * 2006-11-02 2012-01-12 Vertex Pharma Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
US20080146559A1 (en) 2006-12-08 2008-06-19 Li Chen 4,5,6,7-Tetrahydro-Thieno [2,3-C] Pyridine Derivatives
DE602007007985D1 (en) * 2006-12-19 2010-09-02 Vertex Pharma AS INHIBITORS OF PROTEIN KINASES SUITABLE AMINO-PRIMIDINES
AU2008226461A1 (en) * 2007-03-09 2008-09-18 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
CA2680029A1 (en) * 2007-03-09 2008-09-18 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
WO2008112642A1 (en) * 2007-03-09 2008-09-18 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
AU2008240313A1 (en) 2007-04-13 2008-10-23 Aj Park Aminopyrimidines useful as kinase inhibitors
CN101679387A (en) * 2007-05-02 2010-03-24 沃泰克斯药物股份有限公司 Aminopyrimidines useful as kinase inhibitors
CN101801959A (en) * 2007-05-02 2010-08-11 沃泰克斯药物股份有限公司 Aminopyrimidines useful as kinase inhibitors
EP2152694A2 (en) 2007-05-02 2010-02-17 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
AU2008257044A1 (en) * 2007-05-24 2008-12-04 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
JP2010534217A (en) 2007-07-25 2010-11-04 エフ.ホフマン−ラ ロシュ アーゲー Benzofuran- and benzo [B] thiophene-2-carboxylic acid amide derivatives and their use as histamine 3 receptor modulators
WO2009018415A1 (en) * 2007-07-31 2009-02-05 Vertex Pharmaceuticals Incorporated Process for preparing 5-fluoro-1h-pyrazolo [3, 4-b] pyridin-3-amine and derivatives thereof
US8185398B2 (en) * 2007-12-31 2012-05-22 Intel-Ge Care Innovations Llc Reading device with shortcut read function
MX2011002312A (en) * 2008-09-03 2011-04-26 Vertex Pharma Co-crystals and pharmaceutical formulations comprising the same.
CN106036793B (en) * 2010-03-13 2020-11-06 伊斯顿庞德实验室有限公司 Fat-binding compositions
CN102199172A (en) * 2010-03-24 2011-09-28 金凯美(大连)医药科技有限公司 Method for preparing 1-substituted phosphorus dichloride
WO2013166043A1 (en) 2012-05-02 2013-11-07 Children's Hospital Medical Center Rejuvenation of precursor cells
US10028503B2 (en) 2014-06-18 2018-07-24 Children's Hospital Medical Center Platelet storage methods and compositions for same

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923972A (en) * 1971-10-12 1975-12-02 Monsanto Co Method of lowering blood cholesterol level
US4211765A (en) * 1971-10-12 1980-07-08 Monsanto Company Method for controlling obesity
US4218443A (en) * 1979-01-15 1980-08-19 Hoffmann-La Roche Inc. Polyether ionophores as antiobesity and hypotriglyceridemic agents
US4265879A (en) * 1977-09-13 1981-05-05 Monsanto Company Method for controlling blood triglycerides
US4302450A (en) * 1979-01-15 1981-11-24 Hoffmann-La Roche Inc. Polyether ionophores as antiobesity and hypotriglyceridemic agents
US4432968A (en) * 1980-10-20 1984-02-21 The Dow Chemical Company Weight control with fat imbibing polymers
US5063210A (en) * 1989-04-20 1991-11-05 Lange Iii Louis G Use of sulfated polysaccharides to decrease cholesterol and fatty acid absorption
US5089163A (en) * 1989-01-30 1992-02-18 Lever Brothers Company, Division Of Conopco, Inc. Enzymatic liquid detergent composition
US5137716A (en) * 1990-11-15 1992-08-11 Weisenfeld Michael S Method of reducing weight in mammals
US5200183A (en) * 1987-11-19 1993-04-06 Oklahoma Medical Research Foundation Recombinant bile salt activated lipases
US5376674A (en) * 1990-02-26 1994-12-27 Hoffman-La Roche Inc. Oxetanone compounds containing proline and pharmaceutical compositions thereof
US5401498A (en) * 1992-03-28 1995-03-28 Hoechst Aktiengesellschaft Pharmaceuticals comprising polyhydroxymethylene derivatives, process for their preparation and use
US5427919A (en) * 1989-08-29 1995-06-27 The Regents Of The University Of California Hydrolytic enzyme inhibitors/inactivators and methods for using same
US5453429A (en) * 1994-01-24 1995-09-26 Rohm And Haas Company Crosslinked anion exchange particles and method for producing the particles
US5453282A (en) * 1992-03-24 1995-09-26 Kirin Beer Kabushiki Kaisha Dietary lipid digestion-absorption inhibitory agents and ingesta
US5474993A (en) * 1994-06-14 1995-12-12 Sterling Winthrop, Inc. Lactam inhibitors of cholesterol esterase
US5484777A (en) * 1989-04-20 1996-01-16 Lange, Iii; Louis G. Pancreatic cholesterol esterase inhibitor
US5618530A (en) * 1994-06-10 1997-04-08 Geltex Pharmaceuticals, Inc. Hydrophobic amine polymer sequestrant and method of cholesterol depletion
US5624963A (en) * 1993-06-02 1997-04-29 Geltex Pharmaceuticals, Inc. Process for removing bile salts from a patient and compositions therefor
US5629338A (en) * 1995-03-24 1997-05-13 Lotte Co., Ltd. Tannins and lipase inhibitors containing the same as active ingredients
US5665348A (en) * 1992-01-14 1997-09-09 Hisamitsu Pharmaceutical Co, Inc. Cholesterol-lowering drug
US5674482A (en) * 1989-08-14 1997-10-07 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Polymers with alkyl- or heteroalkyl -aryl backbone and pharmaceutical compositions incorporating same
US5679717A (en) * 1994-06-10 1997-10-21 Geltex Pharmaceuticals, Inc. Method for removing bile salts from a patient with alkylated amine polymers
US5703188A (en) * 1993-06-02 1997-12-30 Geltex Pharmaceuticals, Inc. Process for removing bile salts from a patient and compositions therefor
US5750524A (en) * 1994-08-25 1998-05-12 Zeria Pharmaceutical Co., Ltd. Remedy for hyperlipidemia
US5993675A (en) * 1997-12-31 1999-11-30 Hagerthy; Albert P. Fuel-water separator for marine and diesel engines
US6267952B1 (en) * 1998-01-09 2001-07-31 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
US6726906B1 (en) * 1999-07-14 2004-04-27 Genzyme Corporation Fat-binding polymers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7017227A (en) 1969-12-27 1971-06-29
IT1052819B (en) 1975-12-12 1981-07-20 Fargal Pharmasint Lab Biochim DIETHYLAMIN ETHYL DEXTRANE-BASED LIPID ABSORPTION INHIBITOR PREPARATION
CA1213397A (en) 1980-10-20 1986-10-28 Judith L. Page Weight control with alkyl styrene polymers
US5597810A (en) 1984-12-27 1997-01-28 Hoffman; Allan S. Method for reducing absorption of undesired lipids in the gastrointestinal tract
US4959179A (en) 1989-01-30 1990-09-25 Lever Brothers Company Stabilized enzymes liquid detergent composition containing lipase and protease
US5308766A (en) 1989-08-29 1994-05-03 The Regents Of The University Of California Hydrolytic enzyme inhibitors/inactivators and methods for using same
US5376640A (en) * 1989-12-25 1994-12-27 Nisshin Flour Milling Co., Ltd. Lipolytic enzyme inhibitors
DK244090D0 (en) 1990-10-09 1990-10-09 Novo Nordisk As CHEMICAL COMPOUNDS
CA2063499C (en) 1992-03-19 1996-06-18 Leon Edward St. Pierre Ingestible polymeric phosphonium salts for the lowering of blood cholesterol
RU2066185C1 (en) * 1993-01-11 1996-09-10 Институт пищевых веществ РАН Hypolipidemic enterosorbent
US5607669A (en) 1994-06-10 1997-03-04 Geltex Pharmaceuticals, Inc. Amine polymer sequestrant and method of cholesterol depletion
TW381025B (en) * 1993-08-05 2000-02-01 Hoffmann La Roche Pharmaceutical composition containing a glucosidase inhibitor and a lipase inhibitor
US5569452A (en) 1993-08-31 1996-10-29 Tsrl, Inc. Pharmaceutical formulation having enhanced bile acid binding affinity
BR9907234A (en) * 1998-01-09 2000-10-10 Geltex Pharma Inc Fat-binding polymers
US5942500A (en) * 1998-04-27 1999-08-24 Perry; Stephen C. Dietary composition to reduce dietary fats

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923972A (en) * 1971-10-12 1975-12-02 Monsanto Co Method of lowering blood cholesterol level
US4211765A (en) * 1971-10-12 1980-07-08 Monsanto Company Method for controlling obesity
US4265879A (en) * 1977-09-13 1981-05-05 Monsanto Company Method for controlling blood triglycerides
US4218443A (en) * 1979-01-15 1980-08-19 Hoffmann-La Roche Inc. Polyether ionophores as antiobesity and hypotriglyceridemic agents
US4302450A (en) * 1979-01-15 1981-11-24 Hoffmann-La Roche Inc. Polyether ionophores as antiobesity and hypotriglyceridemic agents
US4432968A (en) * 1980-10-20 1984-02-21 The Dow Chemical Company Weight control with fat imbibing polymers
US5200183A (en) * 1987-11-19 1993-04-06 Oklahoma Medical Research Foundation Recombinant bile salt activated lipases
US5089163A (en) * 1989-01-30 1992-02-18 Lever Brothers Company, Division Of Conopco, Inc. Enzymatic liquid detergent composition
US5484777A (en) * 1989-04-20 1996-01-16 Lange, Iii; Louis G. Pancreatic cholesterol esterase inhibitor
US5063210A (en) * 1989-04-20 1991-11-05 Lange Iii Louis G Use of sulfated polysaccharides to decrease cholesterol and fatty acid absorption
US5674482A (en) * 1989-08-14 1997-10-07 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Polymers with alkyl- or heteroalkyl -aryl backbone and pharmaceutical compositions incorporating same
US5427919A (en) * 1989-08-29 1995-06-27 The Regents Of The University Of California Hydrolytic enzyme inhibitors/inactivators and methods for using same
US5376674A (en) * 1990-02-26 1994-12-27 Hoffman-La Roche Inc. Oxetanone compounds containing proline and pharmaceutical compositions thereof
US5137716A (en) * 1990-11-15 1992-08-11 Weisenfeld Michael S Method of reducing weight in mammals
US5286481A (en) * 1990-11-15 1994-02-15 Weisenfeld Michael S Method of reducing weight in mammals
US5665348A (en) * 1992-01-14 1997-09-09 Hisamitsu Pharmaceutical Co, Inc. Cholesterol-lowering drug
US5453282A (en) * 1992-03-24 1995-09-26 Kirin Beer Kabushiki Kaisha Dietary lipid digestion-absorption inhibitory agents and ingesta
US5401498A (en) * 1992-03-28 1995-03-28 Hoechst Aktiengesellschaft Pharmaceuticals comprising polyhydroxymethylene derivatives, process for their preparation and use
US5703188A (en) * 1993-06-02 1997-12-30 Geltex Pharmaceuticals, Inc. Process for removing bile salts from a patient and compositions therefor
US5624963A (en) * 1993-06-02 1997-04-29 Geltex Pharmaceuticals, Inc. Process for removing bile salts from a patient and compositions therefor
US5453429A (en) * 1994-01-24 1995-09-26 Rohm And Haas Company Crosslinked anion exchange particles and method for producing the particles
US5618530A (en) * 1994-06-10 1997-04-08 Geltex Pharmaceuticals, Inc. Hydrophobic amine polymer sequestrant and method of cholesterol depletion
US5679717A (en) * 1994-06-10 1997-10-21 Geltex Pharmaceuticals, Inc. Method for removing bile salts from a patient with alkylated amine polymers
US5474993A (en) * 1994-06-14 1995-12-12 Sterling Winthrop, Inc. Lactam inhibitors of cholesterol esterase
US5750524A (en) * 1994-08-25 1998-05-12 Zeria Pharmaceutical Co., Ltd. Remedy for hyperlipidemia
US5629338A (en) * 1995-03-24 1997-05-13 Lotte Co., Ltd. Tannins and lipase inhibitors containing the same as active ingredients
US5993675A (en) * 1997-12-31 1999-11-30 Hagerthy; Albert P. Fuel-water separator for marine and diesel engines
US6267952B1 (en) * 1998-01-09 2001-07-31 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
US6352692B1 (en) * 1998-01-09 2002-03-05 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
US6558657B1 (en) * 1998-01-09 2003-05-06 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
US6572850B1 (en) * 1998-01-09 2003-06-03 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
US6875428B2 (en) * 1998-01-09 2005-04-05 Genzyme Corporation Lipase inhibiting polymers
US6726906B1 (en) * 1999-07-14 2004-04-27 Genzyme Corporation Fat-binding polymers

Also Published As

Publication number Publication date
DE69928219T2 (en) 2006-07-27
JP2002500182A (en) 2002-01-08
CA2318416A1 (en) 1999-07-15
EP1043982B1 (en) 2005-11-09
EP1043982A2 (en) 2000-10-18
US6352692B1 (en) 2002-03-05
AU2105699A (en) 1999-07-26
AU747016B2 (en) 2002-05-09
CN1287489A (en) 2001-03-14
IL137098A (en) 2006-07-05
US20030185789A1 (en) 2003-10-02
US6572850B1 (en) 2003-06-03
ATE308979T1 (en) 2005-11-15
US6267952B1 (en) 2001-07-31
HK1079706A1 (en) 2006-04-13
DE69928219D1 (en) 2005-12-15
HUP0101128A3 (en) 2003-01-28
US6558657B1 (en) 2003-05-06
NZ505296A (en) 2002-12-20
BR9907233A (en) 2000-10-17
NO20003511L (en) 2000-09-07
KR20010034012A (en) 2001-04-25
RU2207861C2 (en) 2003-07-10
PL344022A1 (en) 2001-09-24
WO1999034786A2 (en) 1999-07-15
NO20003511D0 (en) 2000-07-07
PL193453B1 (en) 2007-02-28
CN1636574A (en) 2005-07-13
HUP0101128A2 (en) 2002-01-28
ES2253872T3 (en) 2006-06-01
WO1999034786A3 (en) 2000-02-03
DK1043982T3 (en) 2006-02-13
IL137098A0 (en) 2001-06-14
KR100620634B1 (en) 2006-09-13
US6875428B2 (en) 2005-04-05

Similar Documents

Publication Publication Date Title
US6875428B2 (en) Lipase inhibiting polymers
US6264937B1 (en) Fat-binding polymers
EP1028717B1 (en) Unsubstituted polydiallylamine for treating hypercholesterolemia
US7049304B2 (en) Aryl boronic acids for treating obesity
US5051253A (en) Use of polyacrylates to reduce proteolytic activity in the human intestinal tract
KR20000069826A (en) Poly(diallylamine)-based bile acid sequestrants
US20060128663A1 (en) Aryl boronate functionalized polymers for treating obesity
US20060134062A1 (en) Polymeric boronic acid derivatives as lipase inhibitors
US4968616A (en) Superoxide dismutase derivatives, method of producing same and medicinal use of same
US6726906B1 (en) Fat-binding polymers
AU740233B2 (en) Fat-binding polymers
MXPA00006680A (en) Lipase inhibiting polymers
VANISREE et al. Biochemical studies evaluating the antiulcerogenic potential of ocimum sanctum in experimentally induced peptic ulcers in rats
US7048917B1 (en) Fat-binding polymers
WO2000038664A2 (en) Amine condensation polymer bile acid sequestrants

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION