US20050083307A1 - Patterned conductor touch screen having improved optics - Google Patents

Patterned conductor touch screen having improved optics Download PDF

Info

Publication number
US20050083307A1
US20050083307A1 US10/686,141 US68614103A US2005083307A1 US 20050083307 A1 US20050083307 A1 US 20050083307A1 US 68614103 A US68614103 A US 68614103A US 2005083307 A1 US2005083307 A1 US 2005083307A1
Authority
US
United States
Prior art keywords
touch screen
substrate
transparent conductor
coating
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/686,141
Other versions
US8068186B2 (en
Inventor
Brian Aufderheide
Joseph Spang
Jonathan Maag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US10/686,141 priority Critical patent/US8068186B2/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUFDERHEIDE, BRIAN E., MAAG, JONATHAN P., SPANG, JOSEPH C.
Priority to JP2006535494A priority patent/JP2007508639A/en
Priority to AT04788685T priority patent/ATE473481T1/en
Priority to DE602004028035T priority patent/DE602004028035D1/en
Priority to CNA200480030475XA priority patent/CN1867882A/en
Priority to AU2004284746A priority patent/AU2004284746A1/en
Priority to EP04788685A priority patent/EP1678599B1/en
Priority to PCT/US2004/029604 priority patent/WO2005040901A2/en
Priority to TW093129257A priority patent/TW200527304A/en
Publication of US20050083307A1 publication Critical patent/US20050083307A1/en
Publication of US8068186B2 publication Critical patent/US8068186B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/204Filters in which spectral selection is performed by means of a conductive grid or array, e.g. frequency selective surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • This invention relates to touch screens, and particularly to on-display touch screens that utilize a pattern of transparent conductors as the touch sensing elements.
  • Touch screens have become an increasingly common way for users to intuitively interact with electronic systems, typically those that include displays for viewing information.
  • Touch screens include transparent touch screens that can be disposed over variable displays and/or static images so that the displayed information and images can be viewed through the touch screen.
  • Touch screen technologies that can be used in such configurations include resistive, capacitive, projected capacitive, and surface acoustic wave, among others.
  • Many projected capacitive touch screens utilize a pattern of conductors as the sensing elements.
  • the term “projected capacitive” refers to the ability of the pattern of conductors to project a field through a relatively thick dielectric such as a thin glass panel, the glove of a gloved finger, and so forth. Because projected capacitive touch screens can sense through thicker materials, such touch screens can be ruggedized and made vandal resistant, and therefore can be well suited to public access applications and extreme environments.
  • the present invention provides a construction for a touch screen that includes a substrate, a coating substantially covering the substrate, a transparent conductor pattern disposed on the coating, the pattern leaving areas of the coating uncovered, and a filler material covering and contacting both the transparent conductor pattern and the areas of the coating not covered by the transparent conductor pattern.
  • the coating has a refractive index that is less than the refractive index of the substrate and less than the refractive index of the transparent conductor pattern.
  • a second substrate can optionally be disposed over the filler material.
  • the present invention also provides a touch screen construction that includes a transparent conductor patterned on a substrate, a first layer substantially covering the substrate and disposed between the transparent conductor and the substrate, the first layer configured to increase visible light transmission through the touch screen construction in areas covered by the transparent conductor, and a second layer disposed to contact the transparent conductor in areas covered by the transparent conductor and to contact the first layer in areas not covered by the transparent conductor, the second layer configured to substantially inhibit visible light reflections at contact interfaces between the first layer and the second layer.
  • the present invention also provides a method for reducing the visibility of a patterned transparent conductor in a touch screen.
  • the method includes coating an undercoat material between a substrate and a patterned transparent conductor so that the undercoat material substantially covers the substrate, the undercoat material having a refractive index that is less than that of the substrate and that of the patterned transparent conductor.
  • the patterned transparent conductor leaves areas of the undercoat material exposed.
  • the method also includes disposing a filler material over the patterned transparent conductor and exposed areas of the undercoat material, the filler material having a refractive index and thickness selected to reduce interfacial reflections of visible light in areas covered by the patterned transparent conductor.
  • FIG. 1 is a schematic side view of a touch screen construction of the present invention
  • FIG. 2 is a schematic side view of a touch screen construction of the present invention
  • FIG. 3 is a schematic plan view of a touch screen construction utilizing a pattern of transparent conductors as sensing elements
  • FIG. 4 is a schematic side view of a touch screen construction of the present invention.
  • FIG. 5 is a schematic side view of a touch screen construction of the present invention.
  • FIG. 6 is a schematic side view of a touch screen construction of the present invention.
  • FIG. 7 is a schematic side view of a touch screen system.
  • the present invention is related to touch screens, particularly to touch screens that utilize a pattern of transparent conductors as sensing elements, and even more particularly to such touch screens that are transmissive of visible light so that an image can be viewed through the touch screen, for example on-display touch screens.
  • Many touch screens utilize transparent conductors as sensing elements, and these elements can be provided as a continuous coating or in a pattern such as discontinuous stripes, lines, pads, or the like.
  • Transparent conductors generally have optical properties that can lead to reflections (for example due to an index of refraction difference between the transparent conductor and the underlying substrate), lower transmission (for example due to absorption and reflection of light), and coloration (for example due to preferential absorption over a particular range of wavelengths in the visible spectrum).
  • the transparent conductor When the transparent conductor is provided as a single continuous coating, such optical effects may not be apparent if the coating is relatively uniform across the viewable area of the device. In devices that use a transparent conductor pattern, it may be possible to distinguish the areas covered by the pattern from the areas not covered by the pattern due to a difference in optical effects. This can be distracting to the user, and in some applications may be undesirable from an aesthetic point of view. For example, in environments where the device may be exposed to high ambient light conditions, the transparent conductor pattern of the touch sensor device may be undesirably visible even when the underlying display is off.
  • the present invention provides a touch screen construction that includes a transparent conductor pattern and is configured so that the transparent conductor pattern is less visibly distinguishable.
  • the touch screen construction of the present invention can increase light transmission and decrease reflections in areas covered by the transparent conductor pattern to thereby reduce the visibility of the pattern.
  • the touch screen substrate includes a coating covering a substrate and having a lower index of refraction than that of the substrate.
  • the transparent conductor pattern is then disposed over this lower index coating.
  • the transparent conductor pattern also has a higher index of refraction than that of the coating.
  • the optical thicknesses of the transparent conductor layer and the coating are in a range so that they form, with the substrate, an antireflection stack that functions to reduce reflections of visible light through destructive interference of light waves reflected at the substrate/coating and coating/transparent conductor interfaces.
  • This increases the transmission of light through the touch screen, for example from a display positioned behind the touch screen, and reduces reflection of light from in front of the touch screen.
  • the overall optical effect of the transparent conductor pattern is lessened, thereby making the pattern less distinguishable from areas uncovered by the pattern, and therefore less visible.
  • the overall brightness and contrast of the display can be improved due to the increased transmission and reduced external reflections.
  • Constructions of the present invention also include a material disposed over and substantially covering the transparent conductor pattern so that the material contacts the underlying coating in areas uncovered by the transparent conductor.
  • the material fills the gaps between portions of the transparent conductor pattern so that the interface in the areas not covered by the pattern is an interface between the underlying coating and the material disposed over the pattern rather than an air interface with the underlying coating.
  • Air interfaces can produce a relatively high index of refraction difference that can lead to undesirably high interfacial reflections, thereby reducing transmission of light through the touch screen and/or reducing contrast of an image viewed through the touch screen, for example due to ambient light reflections.
  • the filler material disposed over the transparent conductor pattern can be selected to reduce reflections at the interface between the substrate coating and the filler material, thus increasing light transmission through the touch screen in areas uncovered by the transparent conductor.
  • the material disposed over the transparent conductor pattern can be any suitable light transmissive material, including an adhesive material.
  • the adhesive material can be used to bond the touch screen construction to another substrate, to a display device, or to another suitable object for mounting or enclosing the touch screen construction.
  • exemplary material selections may yield the following refractive indices for each respective component: substrate index of about 1.6 to 1.7 (for example about 1.67 for a polyethylene terephthalate substrate); coating index of about 1.4 to 1.5 (for example about 1.45 for a silicon dioxide coating); transparent conductor index of about 1.8 to 2.1 (for example about 2.0 for indium tin oxide); and filler material index of about 1.4 to 1.8 (for example about 1.7).
  • the present invention is particularly suited to touch screen constructions that include a plastic substrate such as polyester, for example polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the phenomenon of transparent conductor pattern visibility has been observed by the present inventors to be more pronounced when PET or other flexible plastic films are used as substrates as opposed to when glass is used as a substrate.
  • an ITO pattern is typically annealed at temperatures between 300° C. and 400° C.
  • PET or another temperature-sensitive material is used as a substrate, an ITO pattern cannot be processed as such high temperatures.
  • ITO patterns on PET may need to be made thicker when compared to those formed and annealed on glass to achieve the desired sheet resistance and uniformity.
  • the present inventors have also observed that the resistance uniformity of an ITO pattern on a PET substrate can be improved by disposing a silicon oxide (e.g. SiO 2 ) coating between the PET substrate and the ITO pattern.
  • a silicon oxide e.g. SiO 2
  • FIG. 1 shows a touch screen construction 100 of the present invention the includes a substrate 110 , a coating 120 covering the substrate 110 , a patterned transparent conductor layer 130 disposed on the coating 120 , and a filler material 140 disposed over the transparent conductor pattern 130 , the filler material 140 contacting the coating 120 in areas not covered by the transparent conductive material.
  • Touch screen construction 100 can be used in a user activated touch input device where the transparent conductor pattern 130 provides the touch sensing elements.
  • Surface 112 of the substrate or surface 142 of the filler material can provide the touch surface.
  • one or more additional layers can optionally be disposed between the user and the substrate 110 or filler material 142 for providing a touch surface.
  • a removable and replaceable overlay can be provided so that the touch screen touch surface can be “refreshed” if the touch surface becomes scratched or otherwise damaged.
  • a hardcoat can be disposed on surface 112 of substrate 110 to provide a touch surface, particularly when substrate 110 is a plastic substrate.
  • a sheet of glass or other material having desirable durability or other properties can be laminated or otherwise adhered to substrate 110 or filler material 140 with or without other structural or otherwise functional layers disposed between.
  • Touch screen construction 100 preferably transmits visible light so that a display, graphics, or other information or indicia can be viewed through the touch screen.
  • each of the components identified in FIG. 1 is preferably transmissive of visible light.
  • Substrate 110 can be any suitable material including glass or plastic. Exemplary plastics include PET, polycarbonates, polyacrylates, substantially transparent polyimides, substantially transparent polyurethanes, and the like. Substrate 110 can be rigid or flexible. Substrate 110 can optionally include additional coatings, for example on surface 112 , such as hardcoats, antireflective coatings, polarizers, retarders, wave plates, diffusers, antiglare coatings, light control films, and the like.
  • additional coatings for example on surface 112 , such as hardcoats, antireflective coatings, polarizers, retarders, wave plates, diffusers, antiglare coatings, light control films, and the like.
  • Coating 120 can be any suitable material that is desirably transmissive of visible light when coated to a desired thickness and suitably processed. Coating 120 has an index of refraction that is less than the index of refraction of the substrate 110 and less than the index of refraction of the transparent conductive material 130 .
  • an exemplary material for coating 120 is silicon oxide such as SiO 2 .
  • Coating 120 substantially covers substrate 110 , and can be provided in any suitable manner such as sputter deposition, chemical vapor deposition, and the like. Without wishing to be bound by any theory, coating 120 preferably has a thickness selected to reduce reflections of visible light transmitted through the touch screen 100 in areas covered by the transparent conductor pattern 130 .
  • Transparent conductor pattern 130 can include any suitable transparent conductive material such as transparent conductive oxides or transparent conductive polymers.
  • transparent conductive oxides include indium tin oxide (ITO), tin antimony oxide (TAO), tin oxide (TO), and the like.
  • conductive polymers include polypyrrole, polyaniline, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly p-phenylene, polyheterocycle vinylene, and materials disclosed in European Patent Publication EP-1-172-831-A2, which is incorporated by reference herein in its entirety.
  • the transparent conductor pattern 130 an be patterned by any suitable means such as deposition of the transparent conductive material through a mask, forming a film of the transparent conductive material and then removing portions of the material by etching or any other suitable removal technique, and the like. Upon patterning the transparent conductive material, portions of the coating 120 are covered by the pattern 130 and other portions of the coating 120 are left uncovered by the pattern 130 .
  • substrate 110 is a film of PET (index of refraction about 1.67)
  • coating 120 is a coating of silicon oxide such as SiO 2 (index of refraction about 1.45) having a thickness in a range of about 15 to 70 nm, preferably 25 nm
  • transparent conductor 130 is ITO (index of refraction about 2.0) having a thickness of about 20 to 35 nm.
  • Filler material 140 can be any suitable material that can be coated or otherwise disposed over transparent conductor pattern 130 so that it covers the pattern 130 and substantially fills in the gaps between portions of pattern 130 , making contact with coating 120 in areas uncovered by the pattern 130 .
  • Filler material 140 can be the same material as used for coating 120 .
  • filler material 140 can be an adhesive material such as an optically clear adhesive, for example an optical grade acrylic pressure sensitive adhesive.
  • Filler material 140 preferably has an index of refraction of about 1.4 to 1.8 in constructions where the substrate 110 is PET, the coating 120 is silicon oxide, and the transparent conductor 130 is ITO.
  • suitable filler materials can include an acrylic pressure sensitive adhesive or a silicon oxide.
  • Construction 100 can be configured for adhering to an object such as the front of a display screen, another substrate (such as glass or another rigid or flexible plate), or another suitable object. This can be done by disposing an adhesive on surface 112 of substrate 110 , on surface 142 of filler material 140 , on another layer or layers disposed on surface 112 or surface 142 , or by using an adhesive as the filler material 140 and bonding directly to the adhesive filler. In such circumstances, a release liner may be provided over the adhesive layer for convenient storage and handling before removing the release liner and suitably adhering the construction to a desired surface.
  • FIG. 2 shows a touch screen construction 200 like that shown in FIG. 1 and additionally including a second substrate.
  • Touch screen construction 200 includes a first substrate 210 , a coating 220 covering the first substrate 210 , a transparent conductor pattern 230 disposed on coating 220 , a filler material 240 covering transparent conductor pattern 230 and contacting coating 220 in areas uncovered by the pattern 230 , and a second substrate 250 disposed over the filler material 240 .
  • Substrate 250 can be bonded to the construction 200 through the use of an adhesive disposed between the filler material 240 and the substrate 250 .
  • filler material 240 can itself be an adhesive material that can be used to adhere substrate 250 to the construction 200 .
  • any suitable adhesive can be used that is capable of being disposed over transparent conductor pattern 230 and coating 220 so that the adhesive contacts the transparent conductor pattern 230 and the uncovered portions of the coating 220 .
  • exemplary adhesives include pressure sensitive adhesives and/or acrylic adhesives, and are preferably optically clear.
  • Substrate 250 can be any suitable material include glass and plastic, and can be rigid or flexible.
  • the transparent conductor patterns 130 of construction 100 and 230 of construction 200 can form the sensing elements for touch screens.
  • the conductive touch object can be capacitively coupled to one or more of the sensing elements that make up the transparent conductor pattern.
  • the transparent conductor pattern includes a series of independently addressable transparent conductive lines, stripes, pads, traces, or the like. Controller electronics drive each of these so that capacitive coupling with a touch object results in a detectable signal. From the strength of the signals, it can be determined which portion or portions of the transparent conductor pattern are being capacitively coupled, thereby identifying the position of the touch.
  • FIG. 3 shows one example of a touch screen 300 that includes a plurality of parallel transparent conductive bars 330 disposed on a substrate 310 .
  • Each bar 330 can be connected on a first end 370 A and a second end 370 B to lead lines 380 A and 380 B, respectively.
  • the lead lines are configured so that each bar can be individually identified.
  • the lead lines can be gathered together in a grouping 360 along an edge of the touch screen 300 that can be connected to an electronic tail (not shown) for electrically coupling the touch screen to controller electronics (not shown). Examples of such touch screens are disclosed in U.S. Pat. No.5,650,597, U.S. patent Publication 2003/0103043, and U.S. patent application Ser. Nos.
  • Touch location can be determined in the y-direction by which bar exhibits the highest signal (and by interpolation methods if further positional refinement is desired), and in the x-direction by comparing the amount of current passing through each end of the bar.
  • This type of touch screen is commercially available from 3M Touch Systems, Inc., under the trade designation Near Field Imaging.
  • FIG. 4 shows another touch screen construction 400 of the present invention that includes a first substrate 410 , a first coating 420 substantially covering the substrate 410 , and a first series of parallel transparent conductive traces 430 disposed on the first coating 420 .
  • Touch screen 400 also includes a second substrate 415 substantially covered by a second coating 425 and a second series of transparent conductive traces 435 disposed on the second coating 425 and oriented perpendicular to the first series of transparent conductive traces 430 .
  • a filler material 440 is disposed between the first series of transparent conductive traces 430 and second series of transparent conductive traces 435 and contacting the first coating 420 and second coating 425 in areas uncovered by the transparent conductive traces.
  • Filler material 440 is preferably an adhesive to bond the first substrate 410 , first coating 420 , and first pattern 430 to the second substrate 415 , second coating 425 , and second pattern 435 .
  • the first coating 420 has a refractive index that is less that that of the first substrate 410 and the first series of transparent conductive traces 430 .
  • the second coating 425 has a refractive index that is less that of the first substrate 415 and the first series of transparent conductive traces 435 .
  • a conductive touch object can be capacitively coupled either through the first substrate 410 or the second substrate 415 with at least one of the first series of transparent conductive traces 430 and at least one of the second series of transparent conductive traces to determine both the x-and y-coordinates of the touch input.
  • This type of touch screen can be referred to as a matrix-type touch screen. Examples of matrix-type touch screens are disclosed in U.S. Pat. Nos. 6,188,391; 5,844,506; and 5,386,219, as well as International Publications WO 01/27868, WO 02/100074, and WO 01/52416.
  • FIG. 5 shows another example of a matrix-type touch screen according to the present invention.
  • Touch screen construction 500 includes a substrate 510 having a first coating 520 substantially covering one surface and a second coating 525 substantially covering the opposing surface.
  • a first series of transparent conductive traces 530 is disposed on the first coating 520 and a second series of transparent conductive traces 535 is disposed on the second coating 525 in an orientation orthogonal to the first series of transparent conductive traces.
  • the same substrate 510 has coatings and transparent conductor patterns on both opposing surfaces.
  • a filler material 540 is disposed over transparent conductive traces 530 in such a manner that the filler material covers the transparent conductive traces 530 and contacts the coating 520 in areas not covered by the transparent conductive traces 530 .
  • An optional top substrate 550 can be disposed over the filler layer 540 , and can be bonded to the construction 500 using a separate adhesive layer or through the filler layer 540 if the filler material is itself an adhesive.
  • An optional adhesive or other filler layer 545 can be disposed over transparent conductive traces 535 , and an optional bottom substrate 555 can be disposed over the optional filler layer 545 , if provided.
  • FIG. 6 shows another touch screen according to the present invention.
  • Touch screen 600 includes a touch screen construction 670 bonded to a support substrate 690 via an adhesive layer 680 .
  • Touch screen construction 670 includes a first substrate 615 coated with a first coating 625 , a first transparent conductor pattern 635 disposed on first coating 625 , and a first filler material 645 disposed over first transparent conductor pattern 635 and filling the gaps between portions of pattern 635 to contact coating 625 .
  • Touch screen construction 670 also includes a second substrate 610 coated with a second coating 620 , a second transparent conductor pattern 630 disposed on second coating 620 , and a second filler material 640 disposed over second transparent conductor pattern 630 and filling the gaps between portions of pattern 630 to contact coating 620 .
  • Construction 670 also includes a top substrate 650 having a hardcoat layer 660 configured to provide a touch surface for the construction.
  • filler materials 640 and 645 are adhesive materials to bond together adjacent elements of the construction. Alternatively, separate adhesive layers (not shown) can be used.
  • Support substrate 690 can be any suitable substrate including rigid or flexible materials, for example glass or plastic.
  • support substrate 690 is a rigid glass substrate, and substrates 610 , 615 , and 650 are flexible plastic substrates.
  • subconstructions of construction 670 can be made on each of the flexible substrates 610 , 615 , and 650 using roll-to-roll or other suitable processing methods. Each of the subconstructions can then be laminated or otherwise adhered together to form construction 670 , which can in turn be bonded to a support substrate 690 .
  • FIG. 7 schematically shows a touch screen system 700 that includes a touch screen 710 according to the present invention disposed proximate a display element 720 so that display element 720 can be viewed through touch screen 710 .
  • the touch screen 710 can be used as an input device to interact with information shown on the display element 720 .
  • Display element 720 can be an electronic display capable of changeably displaying information such as text or graphics.
  • Display element 720 could also include static information such as printed graphics, text, or other indicia.
  • Display element 720 can combine an electronic display with static graphics, for example in the form of icons on a display screen that may be printed or otherwise disposed directly on the display screen or provided on a separate sheet that can be positioned for viewing through the touch screen 710 .
  • Graphics, characters, or other indicia can also be provided in front of touch screen 710 .
  • a Near Field Imaging touch sensor construction was made by the following procedure.
  • SiO 2 was sputter coated on a 7 mil (about 0.2 mm) sheet of PET to form a 250 Angstrom coating of the SiO 2 substantially covering the PET substrate.
  • the PET substrate used was a standard PET film primed on one surface with a print treatment.
  • the SiO 2 was coated on the non-print treated side.
  • the SiO 2 coating had an index of refraction of about 1.46.
  • a removable, water soluble, patterning ink was screen printed on top of the SiO 2 in areas where the transparent conductor pattern was not specified, for example between areas specified for the pattern and in a border area.
  • ITO was sputter coated over both the SiO 2 and screen-printed water soluble ink at a thickness sufficient to achieve a 450 Ohm/square resistivity. ITO can be suitably sputter coated using metal or ceramic targets and over a wide range of temperature and processing conditions.
  • the patterning ink was removed with water, and the sample was dried, leaving a pattern of ITO bars as the transparent conductor pattern of sensing electrodes.
  • a silver conductive ink was screen printed on the ITO and SiO 2 and dried to thicknesses of about 0.3 to 0.6 mils (about 8 to 15 microns) to form conductive traces connecting to each of the ITO bars.
  • a solvent-based epoxy insulator ink was screen printed over the silver conductive ink and thermally cured, leaving vias in the epoxy for electrical connections to be made to an electrical tail. This printing step was repeated to produce two layers.
  • Silver conductive ink traces were screen printed over the printed insulator and dried to thicknesses of 0.3 to 0.6 mils (about 8 to 15 microns) to make connections through the vias.
  • a carbon conductive ink was screen printed and dried to a 0.3 to 0.6 mil thickness (about 8 to 15 microns) over the silver ink on the end of the tail to protect the traces from corrosion and abrasion.
  • a 1.42 mil (about 0.036 mm) PET film was coated with a 0.5 mil (about 13 microns) thick layer of an optical acrylic pressure sensitive adhesive and roll-to-roll laminated to the sample with the adhesive side down, leaving the electrical tail exposed.
  • the printed-treated side of the first PET film was sputter coated with ITO at a thickness sufficient to achieve a resistivity of about 150 Ohm/square. This ITO forms a shield layer for the touch sensor device.
  • Silver conductive ink was screen printed around the perimeter of the ITO shield layer and the electrical tail, and dried to a thickness of about 0.3 to 0.6 mils (about 8 to 15 microns mm) for electrical connection to the shield layer.
  • a solvent-based epoxy insulator ink was screen printed over the silver conductive ink on the shield layer and thermally cured.
  • Silver conductive ink was screen printed around the perimeter of the second, laminated PET film to form a top guard layer.
  • the silver ink was dried to form a thickness of 0.3 to 0.6 mils (about 8 to 15 microns mm).
  • a solvent-based epoxy insulator ink was screen printed over the top guard layer and thermally cured.
  • a 7 mil (about 0.18 mm) thick acrylic hard coated PET film was laminated to a layered construction including an acrylic optical grade pressure sensitive adhesive (0.8 mil (0.02 mm) adhesive/0.92 mil (0.023 mm) PET/0.8 mil (0.02 mm) adhesive) and then laminated over the top guard layer of the construction.
  • an acrylic optical grade pressure sensitive adhesive 0.8 mil (0.02 mm) adhesive/0.92 mil (0.023 mm) PET/0.8 mil (0.02 mm) adhesive
  • the top surface of the construction was masked with a polyethylene/adhesive mask material, and the construction was cut into sheets, which were then die cut into parts.
  • the die cut parts were laminated to glass backing panels.
  • the resulting parts had ITO bars that were very difficult to see either by reflected light or transmitted light, and the ITO bars were configured for connecting to controller electronics for sensing the position of conductive touch implements capacitively coupled to the ITO bars.
  • Optical modeling was used to compare the internal transmission of visible light for constructions of the present invention and otherwise identical constructions that did not include a lower index coating between a substrate and a transparent conductor. Each construction and its corresponding comparative construction was also compared to a similar control construction that did not include a transparent conductor layer. The difference between the transmission of each construction and the corresponding control construction indicates the relative level of distinguishability of areas covered by a transparent conductor pattern versus areas not covered by a transparent conductor pattern in the constructions in question. The following constructions were evaluated, the layers designated in order for each construction:
  • the modeling results indicate that constructions of the present invention exhibit increased transmission in areas covered by the transparent conductor pattern throughout the visible spectrum.
  • the modeling results also indicate that the transmission difference between areas covered by the transparent conductor and areas not covered by the transparent conductor are less for constructions of the invention than for otherwise identical comparative constructions that do not include a lower index coating between the substrate and the transparent conductor pattern. Such reduced difference in transmission between covered and uncovered areas results in a transparent conductor pattern that is less visually distinguishable.

Abstract

The present invention provides a touch screen that includes a pattern of transparent conductors as touch sensing elements, and that has a layered construction configured to reduce the visibility of the transparent conductor pattern. The construction includes a coating covering a substrate, the transparent conductor pattern disposed on the coating, and a filler material covering and contacting the transparent conductor pattern and the areas of the coating not covered by the transparent conductor pattern, where the index of refraction of the filler material is less than the index of refraction of the substrate and less than the index of refraction of the transparent conductor pattern.

Description

  • This invention relates to touch screens, and particularly to on-display touch screens that utilize a pattern of transparent conductors as the touch sensing elements.
  • BACKGROUND
  • Touch screens have become an increasingly common way for users to intuitively interact with electronic systems, typically those that include displays for viewing information. Touch screens include transparent touch screens that can be disposed over variable displays and/or static images so that the displayed information and images can be viewed through the touch screen. Touch screen technologies that can be used in such configurations include resistive, capacitive, projected capacitive, and surface acoustic wave, among others. Many projected capacitive touch screens utilize a pattern of conductors as the sensing elements. The term “projected capacitive” refers to the ability of the pattern of conductors to project a field through a relatively thick dielectric such as a thin glass panel, the glove of a gloved finger, and so forth. Because projected capacitive touch screens can sense through thicker materials, such touch screens can be ruggedized and made vandal resistant, and therefore can be well suited to public access applications and extreme environments.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention provides a construction for a touch screen that includes a substrate, a coating substantially covering the substrate, a transparent conductor pattern disposed on the coating, the pattern leaving areas of the coating uncovered, and a filler material covering and contacting both the transparent conductor pattern and the areas of the coating not covered by the transparent conductor pattern. The coating has a refractive index that is less than the refractive index of the substrate and less than the refractive index of the transparent conductor pattern. A second substrate can optionally be disposed over the filler material.
  • The present invention also provides a touch screen construction that includes a transparent conductor patterned on a substrate, a first layer substantially covering the substrate and disposed between the transparent conductor and the substrate, the first layer configured to increase visible light transmission through the touch screen construction in areas covered by the transparent conductor, and a second layer disposed to contact the transparent conductor in areas covered by the transparent conductor and to contact the first layer in areas not covered by the transparent conductor, the second layer configured to substantially inhibit visible light reflections at contact interfaces between the first layer and the second layer.
  • The present invention also provides a method for reducing the visibility of a patterned transparent conductor in a touch screen. The method includes coating an undercoat material between a substrate and a patterned transparent conductor so that the undercoat material substantially covers the substrate, the undercoat material having a refractive index that is less than that of the substrate and that of the patterned transparent conductor. The patterned transparent conductor leaves areas of the undercoat material exposed. The method also includes disposing a filler material over the patterned transparent conductor and exposed areas of the undercoat material, the filler material having a refractive index and thickness selected to reduce interfacial reflections of visible light in areas covered by the patterned transparent conductor.
  • The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and the detailed description that follow more particularly exemplify these embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
  • FIG. 1 is a schematic side view of a touch screen construction of the present invention;
  • FIG. 2 is a schematic side view of a touch screen construction of the present invention;
  • FIG. 3 is a schematic plan view of a touch screen construction utilizing a pattern of transparent conductors as sensing elements;
  • FIG. 4 is a schematic side view of a touch screen construction of the present invention;
  • FIG. 5 is a schematic side view of a touch screen construction of the present invention;
  • FIG. 6 is a schematic side view of a touch screen construction of the present invention; and
  • FIG. 7 is a schematic side view of a touch screen system.
  • While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the. particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
  • DETAILED DESCRIPTION
  • The present invention is related to touch screens, particularly to touch screens that utilize a pattern of transparent conductors as sensing elements, and even more particularly to such touch screens that are transmissive of visible light so that an image can be viewed through the touch screen, for example on-display touch screens. Many touch screens utilize transparent conductors as sensing elements, and these elements can be provided as a continuous coating or in a pattern such as discontinuous stripes, lines, pads, or the like. Transparent conductors generally have optical properties that can lead to reflections (for example due to an index of refraction difference between the transparent conductor and the underlying substrate), lower transmission (for example due to absorption and reflection of light), and coloration (for example due to preferential absorption over a particular range of wavelengths in the visible spectrum). When the transparent conductor is provided as a single continuous coating, such optical effects may not be apparent if the coating is relatively uniform across the viewable area of the device. In devices that use a transparent conductor pattern, it may be possible to distinguish the areas covered by the pattern from the areas not covered by the pattern due to a difference in optical effects. This can be distracting to the user, and in some applications may be undesirable from an aesthetic point of view. For example, in environments where the device may be exposed to high ambient light conditions, the transparent conductor pattern of the touch sensor device may be undesirably visible even when the underlying display is off.
  • The present invention provides a touch screen construction that includes a transparent conductor pattern and is configured so that the transparent conductor pattern is less visibly distinguishable. The touch screen construction of the present invention can increase light transmission and decrease reflections in areas covered by the transparent conductor pattern to thereby reduce the visibility of the pattern. In constructions of the present invention, the touch screen substrate includes a coating covering a substrate and having a lower index of refraction than that of the substrate. The transparent conductor pattern is then disposed over this lower index coating. The transparent conductor pattern also has a higher index of refraction than that of the coating. Without wishing to be bound by any theory, the optical thicknesses of the transparent conductor layer and the coating are in a range so that they form, with the substrate, an antireflection stack that functions to reduce reflections of visible light through destructive interference of light waves reflected at the substrate/coating and coating/transparent conductor interfaces. This in turn increases the transmission of light through the touch screen, for example from a display positioned behind the touch screen, and reduces reflection of light from in front of the touch screen. As such, the overall optical effect of the transparent conductor pattern is lessened, thereby making the pattern less distinguishable from areas uncovered by the pattern, and therefore less visible. Additionally, the overall brightness and contrast of the display can be improved due to the increased transmission and reduced external reflections.
  • Constructions of the present invention also include a material disposed over and substantially covering the transparent conductor pattern so that the material contacts the underlying coating in areas uncovered by the transparent conductor. In this way, the material fills the gaps between portions of the transparent conductor pattern so that the interface in the areas not covered by the pattern is an interface between the underlying coating and the material disposed over the pattern rather than an air interface with the underlying coating. Air interfaces can produce a relatively high index of refraction difference that can lead to undesirably high interfacial reflections, thereby reducing transmission of light through the touch screen and/or reducing contrast of an image viewed through the touch screen, for example due to ambient light reflections. The filler material disposed over the transparent conductor pattern can be selected to reduce reflections at the interface between the substrate coating and the filler material, thus increasing light transmission through the touch screen in areas uncovered by the transparent conductor. The material disposed over the transparent conductor pattern can be any suitable light transmissive material, including an adhesive material. The adhesive material can be used to bond the touch screen construction to another substrate, to a display device, or to another suitable object for mounting or enclosing the touch screen construction.
  • In a construction of the present invention that includes a substrate, a coating on the substrate, a transparent conductor pattern on the coating, and a filler material disposed over the transparent conductor pattern and filling the gaps between portions of the pattern, exemplary material selections may yield the following refractive indices for each respective component: substrate index of about 1.6 to 1.7 (for example about 1.67 for a polyethylene terephthalate substrate); coating index of about 1.4 to 1.5 (for example about 1.45 for a silicon dioxide coating); transparent conductor index of about 1.8 to 2.1 (for example about 2.0 for indium tin oxide); and filler material index of about 1.4 to 1.8 (for example about 1.7).
  • The present invention is particularly suited to touch screen constructions that include a plastic substrate such as polyester, for example polyethylene terephthalate (PET). The phenomenon of transparent conductor pattern visibility has been observed by the present inventors to be more pronounced when PET or other flexible plastic films are used as substrates as opposed to when glass is used as a substrate. When glass is used as a substrate, an ITO pattern is typically annealed at temperatures between 300° C. and 400° C. When PET or another temperature-sensitive material is used as a substrate, an ITO pattern cannot be processed as such high temperatures. As a result, ITO patterns on PET may need to be made thicker when compared to those formed and annealed on glass to achieve the desired sheet resistance and uniformity. This can lead to a more visibly noticeable transparent conductor pattern. The present inventors have also observed that the resistance uniformity of an ITO pattern on a PET substrate can be improved by disposing a silicon oxide (e.g. SiO2) coating between the PET substrate and the ITO pattern.
  • While various aspects of the present invention can be understood with reference to the Figures, the embodiments shown and described by way of example are illustrative but not exhaustive of the full scope contemplated.
  • FIG. 1 shows a touch screen construction 100 of the present invention the includes a substrate 110, a coating 120 covering the substrate 110, a patterned transparent conductor layer 130 disposed on the coating 120, and a filler material 140 disposed over the transparent conductor pattern 130, the filler material 140 contacting the coating 120 in areas not covered by the transparent conductive material. Touch screen construction 100 can be used in a user activated touch input device where the transparent conductor pattern 130 provides the touch sensing elements.
  • Surface 112 of the substrate or surface 142 of the filler material can provide the touch surface. Alternatively, one or more additional layers can optionally be disposed between the user and the substrate 110 or filler material 142 for providing a touch surface. For example, a removable and replaceable overlay can be provided so that the touch screen touch surface can be “refreshed” if the touch surface becomes scratched or otherwise damaged. As another example, a hardcoat can be disposed on surface 112 of substrate 110 to provide a touch surface, particularly when substrate 110 is a plastic substrate. As another example, a sheet of glass or other material having desirable durability or other properties can be laminated or otherwise adhered to substrate 110 or filler material 140 with or without other structural or otherwise functional layers disposed between.
  • Touch screen construction 100 preferably transmits visible light so that a display, graphics, or other information or indicia can be viewed through the touch screen. As such, each of the components identified in FIG. 1 is preferably transmissive of visible light.
  • Substrate 110 can be any suitable material including glass or plastic. Exemplary plastics include PET, polycarbonates, polyacrylates, substantially transparent polyimides, substantially transparent polyurethanes, and the like. Substrate 110 can be rigid or flexible. Substrate 110 can optionally include additional coatings, for example on surface 112, such as hardcoats, antireflective coatings, polarizers, retarders, wave plates, diffusers, antiglare coatings, light control films, and the like.
  • Coating 120 can be any suitable material that is desirably transmissive of visible light when coated to a desired thickness and suitably processed. Coating 120 has an index of refraction that is less than the index of refraction of the substrate 110 and less than the index of refraction of the transparent conductive material 130. For example, when PET is used as substrate 110 and ITO is used as the transparent conductor 130, an exemplary material for coating 120 is silicon oxide such as SiO2. Coating 120 substantially covers substrate 110, and can be provided in any suitable manner such as sputter deposition, chemical vapor deposition, and the like. Without wishing to be bound by any theory, coating 120 preferably has a thickness selected to reduce reflections of visible light transmitted through the touch screen 100 in areas covered by the transparent conductor pattern 130.
  • Transparent conductor pattern 130 can include any suitable transparent conductive material such as transparent conductive oxides or transparent conductive polymers. Examples of transparent conductive oxides include indium tin oxide (ITO), tin antimony oxide (TAO), tin oxide (TO), and the like. Examples of conductive polymers include polypyrrole, polyaniline, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly p-phenylene, polyheterocycle vinylene, and materials disclosed in European Patent Publication EP-1-172-831-A2, which is incorporated by reference herein in its entirety. The transparent conductor pattern 130 an be patterned by any suitable means such as deposition of the transparent conductive material through a mask, forming a film of the transparent conductive material and then removing portions of the material by etching or any other suitable removal technique, and the like. Upon patterning the transparent conductive material, portions of the coating 120 are covered by the pattern 130 and other portions of the coating 120 are left uncovered by the pattern 130.
  • In exemplary constructions, substrate 110 is a film of PET (index of refraction about 1.67), coating 120 is a coating of silicon oxide such as SiO2 (index of refraction about 1.45) having a thickness in a range of about 15 to 70 nm, preferably 25 nm, and transparent conductor 130 is ITO (index of refraction about 2.0) having a thickness of about 20 to 35 nm.
  • Filler material 140 can be any suitable material that can be coated or otherwise disposed over transparent conductor pattern 130 so that it covers the pattern 130 and substantially fills in the gaps between portions of pattern 130, making contact with coating 120 in areas uncovered by the pattern 130. Filler material 140 can be the same material as used for coating 120. In some embodiments, filler material 140 can be an adhesive material such as an optically clear adhesive, for example an optical grade acrylic pressure sensitive adhesive. Filler material 140 preferably has an index of refraction of about 1.4 to 1.8 in constructions where the substrate 110 is PET, the coating 120 is silicon oxide, and the transparent conductor 130 is ITO. For example, in such constructions suitable filler materials can include an acrylic pressure sensitive adhesive or a silicon oxide.
  • Construction 100 can be configured for adhering to an object such as the front of a display screen, another substrate (such as glass or another rigid or flexible plate), or another suitable object. This can be done by disposing an adhesive on surface 112 of substrate 110, on surface 142 of filler material 140, on another layer or layers disposed on surface 112 or surface 142, or by using an adhesive as the filler material 140 and bonding directly to the adhesive filler. In such circumstances, a release liner may be provided over the adhesive layer for convenient storage and handling before removing the release liner and suitably adhering the construction to a desired surface.
  • FIG. 2 shows a touch screen construction 200 like that shown in FIG. 1 and additionally including a second substrate. Touch screen construction 200 includes a first substrate 210, a coating 220 covering the first substrate 210, a transparent conductor pattern 230 disposed on coating 220, a filler material 240 covering transparent conductor pattern 230 and contacting coating 220 in areas uncovered by the pattern 230, and a second substrate 250 disposed over the filler material 240. Substrate 250 can be bonded to the construction 200 through the use of an adhesive disposed between the filler material 240 and the substrate 250. Alternatively, filler material 240 can itself be an adhesive material that can be used to adhere substrate 250 to the construction 200. In embodiments where filler layer 240 is an adhesive, any suitable adhesive can be used that is capable of being disposed over transparent conductor pattern 230 and coating 220 so that the adhesive contacts the transparent conductor pattern 230 and the uncovered portions of the coating 220. Exemplary adhesives include pressure sensitive adhesives and/or acrylic adhesives, and are preferably optically clear. Substrate 250 can be any suitable material include glass and plastic, and can be rigid or flexible.
  • The transparent conductor patterns 130 of construction 100 and 230 of construction 200 can form the sensing elements for touch screens. When a conductive touch object such as a user's finger comes into close enough proximity, the conductive touch object can be capacitively coupled to one or more of the sensing elements that make up the transparent conductor pattern. In many cases, the transparent conductor pattern includes a series of independently addressable transparent conductive lines, stripes, pads, traces, or the like. Controller electronics drive each of these so that capacitive coupling with a touch object results in a detectable signal. From the strength of the signals, it can be determined which portion or portions of the transparent conductor pattern are being capacitively coupled, thereby identifying the position of the touch.
  • FIG. 3 shows one example of a touch screen 300 that includes a plurality of parallel transparent conductive bars 330 disposed on a substrate 310. Each bar 330 can be connected on a first end 370A and a second end 370B to lead lines 380A and 380B, respectively. The lead lines are configured so that each bar can be individually identified. The lead lines can be gathered together in a grouping 360 along an edge of the touch screen 300 that can be connected to an electronic tail (not shown) for electrically coupling the touch screen to controller electronics (not shown). Examples of such touch screens are disclosed in U.S. Pat. No.5,650,597, U.S. patent Publication 2003/0103043, and U.S. patent application Ser. Nos. 10/176564, 10/324728, and 10/201400, each of which is incorporated by reference into this document. Touch location can be determined in the y-direction by which bar exhibits the highest signal (and by interpolation methods if further positional refinement is desired), and in the x-direction by comparing the amount of current passing through each end of the bar. This type of touch screen is commercially available from 3M Touch Systems, Inc., under the trade designation Near Field Imaging.
  • FIG. 4 shows another touch screen construction 400 of the present invention that includes a first substrate 410, a first coating 420 substantially covering the substrate 410, and a first series of parallel transparent conductive traces 430 disposed on the first coating 420. Touch screen 400 also includes a second substrate 415 substantially covered by a second coating 425 and a second series of transparent conductive traces 435 disposed on the second coating 425 and oriented perpendicular to the first series of transparent conductive traces 430. A filler material 440 is disposed between the first series of transparent conductive traces 430 and second series of transparent conductive traces 435 and contacting the first coating 420 and second coating 425 in areas uncovered by the transparent conductive traces. Filler material 440 is preferably an adhesive to bond the first substrate 410, first coating 420, and first pattern 430 to the second substrate 415, second coating 425, and second pattern 435. The first coating 420 has a refractive index that is less that that of the first substrate 410 and the first series of transparent conductive traces 430. Similarly, the second coating 425 has a refractive index that is less that of the first substrate 415 and the first series of transparent conductive traces 435.
  • During operation, a conductive touch object can be capacitively coupled either through the first substrate 410 or the second substrate 415 with at least one of the first series of transparent conductive traces 430 and at least one of the second series of transparent conductive traces to determine both the x-and y-coordinates of the touch input. This type of touch screen can be referred to as a matrix-type touch screen. Examples of matrix-type touch screens are disclosed in U.S. Pat. Nos. 6,188,391; 5,844,506; and 5,386,219, as well as International Publications WO 01/27868, WO 02/100074, and WO 01/52416.
  • FIG. 5 shows another example of a matrix-type touch screen according to the present invention. Touch screen construction 500 includes a substrate 510 having a first coating 520 substantially covering one surface and a second coating 525 substantially covering the opposing surface. A first series of transparent conductive traces 530 is disposed on the first coating 520 and a second series of transparent conductive traces 535 is disposed on the second coating 525 in an orientation orthogonal to the first series of transparent conductive traces. In this way, the same substrate 510 has coatings and transparent conductor patterns on both opposing surfaces. A filler material 540, preferably an adhesive, is disposed over transparent conductive traces 530 in such a manner that the filler material covers the transparent conductive traces 530 and contacts the coating 520 in areas not covered by the transparent conductive traces 530. An optional top substrate 550 can be disposed over the filler layer 540, and can be bonded to the construction 500 using a separate adhesive layer or through the filler layer 540 if the filler material is itself an adhesive. An optional adhesive or other filler layer 545 can be disposed over transparent conductive traces 535, and an optional bottom substrate 555 can be disposed over the optional filler layer 545, if provided.
  • FIG. 6 shows another touch screen according to the present invention. Touch screen 600 includes a touch screen construction 670 bonded to a support substrate 690 via an adhesive layer 680. Touch screen construction 670 includes a first substrate 615 coated with a first coating 625, a first transparent conductor pattern 635 disposed on first coating 625, and a first filler material 645 disposed over first transparent conductor pattern 635 and filling the gaps between portions of pattern 635 to contact coating 625. Touch screen construction 670 also includes a second substrate 610 coated with a second coating 620, a second transparent conductor pattern 630 disposed on second coating 620, and a second filler material 640 disposed over second transparent conductor pattern 630 and filling the gaps between portions of pattern 630 to contact coating 620. Construction 670 also includes a top substrate 650 having a hardcoat layer 660 configured to provide a touch surface for the construction. Preferably, filler materials 640 and 645 are adhesive materials to bond together adjacent elements of the construction. Alternatively, separate adhesive layers (not shown) can be used.
  • Support substrate 690 can be any suitable substrate including rigid or flexible materials, for example glass or plastic. In exemplary embodiments, support substrate 690 is a rigid glass substrate, and substrates 610, 615, and 650 are flexible plastic substrates. In this way, subconstructions of construction 670 can be made on each of the flexible substrates 610, 615, and 650 using roll-to-roll or other suitable processing methods. Each of the subconstructions can then be laminated or otherwise adhered together to form construction 670, which can in turn be bonded to a support substrate 690.
  • FIG. 7 schematically shows a touch screen system 700 that includes a touch screen 710 according to the present invention disposed proximate a display element 720 so that display element 720 can be viewed through touch screen 710. The touch screen 710 can be used as an input device to interact with information shown on the display element 720. Display element 720 can be an electronic display capable of changeably displaying information such as text or graphics. Display element 720 could also include static information such as printed graphics, text, or other indicia. Display element 720 can combine an electronic display with static graphics, for example in the form of icons on a display screen that may be printed or otherwise disposed directly on the display screen or provided on a separate sheet that can be positioned for viewing through the touch screen 710. Graphics, characters, or other indicia can also be provided in front of touch screen 710.
  • A Near Field Imaging touch sensor construction was made by the following procedure.
  • SiO2 was sputter coated on a 7 mil (about 0.2 mm) sheet of PET to form a 250 Angstrom coating of the SiO2 substantially covering the PET substrate. The PET substrate used was a standard PET film primed on one surface with a print treatment. The SiO2 was coated on the non-print treated side. The SiO2 coating had an index of refraction of about 1.46.
  • A removable, water soluble, patterning ink was screen printed on top of the SiO2 in areas where the transparent conductor pattern was not specified, for example between areas specified for the pattern and in a border area.
  • ITO was sputter coated over both the SiO2 and screen-printed water soluble ink at a thickness sufficient to achieve a 450 Ohm/square resistivity. ITO can be suitably sputter coated using metal or ceramic targets and over a wide range of temperature and processing conditions.
  • The patterning ink was removed with water, and the sample was dried, leaving a pattern of ITO bars as the transparent conductor pattern of sensing electrodes.
  • A silver conductive ink was screen printed on the ITO and SiO2 and dried to thicknesses of about 0.3 to 0.6 mils (about 8 to 15 microns) to form conductive traces connecting to each of the ITO bars.
  • A solvent-based epoxy insulator ink was screen printed over the silver conductive ink and thermally cured, leaving vias in the epoxy for electrical connections to be made to an electrical tail. This printing step was repeated to produce two layers.
  • Silver conductive ink traces were screen printed over the printed insulator and dried to thicknesses of 0.3 to 0.6 mils (about 8 to 15 microns) to make connections through the vias.
  • A carbon conductive ink was screen printed and dried to a 0.3 to 0.6 mil thickness (about 8 to 15 microns) over the silver ink on the end of the tail to protect the traces from corrosion and abrasion.
  • A 1.42 mil (about 0.036 mm) PET film was coated with a 0.5 mil (about 13 microns) thick layer of an optical acrylic pressure sensitive adhesive and roll-to-roll laminated to the sample with the adhesive side down, leaving the electrical tail exposed.
  • The printed-treated side of the first PET film was sputter coated with ITO at a thickness sufficient to achieve a resistivity of about 150 Ohm/square. This ITO forms a shield layer for the touch sensor device.
  • Silver conductive ink was screen printed around the perimeter of the ITO shield layer and the electrical tail, and dried to a thickness of about 0.3 to 0.6 mils (about 8 to 15 microns mm) for electrical connection to the shield layer.
  • A solvent-based epoxy insulator ink was screen printed over the silver conductive ink on the shield layer and thermally cured.
  • Silver conductive ink was screen printed around the perimeter of the second, laminated PET film to form a top guard layer. The silver ink was dried to form a thickness of 0.3 to 0.6 mils (about 8 to 15 microns mm).
  • A solvent-based epoxy insulator ink was screen printed over the top guard layer and thermally cured.
  • A 7 mil (about 0.18 mm) thick acrylic hard coated PET film was laminated to a layered construction including an acrylic optical grade pressure sensitive adhesive (0.8 mil (0.02 mm) adhesive/0.92 mil (0.023 mm) PET/0.8 mil (0.02 mm) adhesive) and then laminated over the top guard layer of the construction.
  • An acrylic optical adhesive/PET/acrylic optical adhesive construction (0.8 mil (0.02 mm) adhesive/0.92 mil (0.023 mm) PET/0.8 mil (0.02 mm) adhesive) with a release liner was laminated to the back shield.
  • The top surface of the construction was masked with a polyethylene/adhesive mask material, and the construction was cut into sheets, which were then die cut into parts.
  • The die cut parts were laminated to glass backing panels.
  • The resulting parts had ITO bars that were very difficult to see either by reflected light or transmitted light, and the ITO bars were configured for connecting to controller electronics for sensing the position of conductive touch implements capacitively coupled to the ITO bars.
  • Optical modeling was used to compare the internal transmission of visible light for constructions of the present invention and otherwise identical constructions that did not include a lower index coating between a substrate and a transparent conductor. Each construction and its corresponding comparative construction was also compared to a similar control construction that did not include a transparent conductor layer. The difference between the transmission of each construction and the corresponding control construction indicates the relative level of distinguishability of areas covered by a transparent conductor pattern versus areas not covered by a transparent conductor pattern in the constructions in question. The following constructions were evaluated, the layers designated in order for each construction:
  • Construction 1:
      • 1.67 refractive index layer (to simulate a PET substrate)
      • 30 nm thick 1.46 refractive index layer (to simulate silicon oxide)
      • 20 nm thick 2.0 refractive index layer (to simulate ITO)
      • 30 nm thick 1.46 refractive index layer (to simulate silicon oxide)
      • 1.5 refractive index layer (to simulate an optical adhesive)
  • Comparative Construction C1 (Same as Construction 1 without Coating Between Substrate and ITO):
      • 1.67 refractive index layer (to simulate a PET substrate)
      • 20 nm thick 2.0 refractive index layer (to simulate ITO)
      • 30 nm thick 1.46 refractive index layer (to simulate silicon oxide)
      • 1.5 refractive index layer (to simulate an optical adhesive)
  • Control Construction X1:
      • 1.67 refractive index layer (to simulate a PET substrate)
      • 30 nm thick 1.46 refractive index layer (to simulate silicon oxide)
      • 1.5 refractive index layer (to simulate an optical adhesive)
  • Construction 2:
      • 1.67 refractive index layer (to simulate a PET substrate)
      • 30 nm thick 1.46 refractive index layer (to simulate silicon oxide)
      • 20 nm thick 2.0 refractive index layer (to simulate ITO)
      • 1.5 refractive index layer (to simulate an optical adhesive)
  • Comparative Construction C2 (Same as Construction 2 without Coating Between Substrate and ITO):
      • 1.67 refractive index layer (to simulate a PET substrate)
      • 20 nm thick 2.0 refractive index layer (to simulate ITO)
      • 1.5 refractive index layer (to simulate an optical adhesive)
  • Control Construction X2:
      • 1.67 refractive index layer (to simulate a PET substrate)
      • 1.5 refractive index layer (to simulate an optical adhesive)
  • Internal transmission of visible light (wavelengths from 400 nm to 700 nm) for each of these constructions was modeled using SCI Film Wizard optical modeling software. Results for three wavelengths across the visible spectrum are given in Table 1. Δ represents the difference between the transmission of the identified construction and the corresponding control construction.
    TABLE 1
    Internal Transmission for Various Constructions
    % T @ % T @ % T @
    Construction 400 nm Δ 550 nm Δ 700 nm Δ
    1 89 0.9 89.8 0.1 90 0.1
    C1 88.5 1.4 89.2 0.7 89.4 0.5
    X1 89.9 89.9 89.9
    2 88.9 1.0 89.7 0.2 90 0.1
    C2 88.5 1.4 89.2 0.7 89.4 0.5
    X2 89.9 89.9 89.9
  • The modeling results indicate that constructions of the present invention exhibit increased transmission in areas covered by the transparent conductor pattern throughout the visible spectrum. The modeling results also indicate that the transmission difference between areas covered by the transparent conductor and areas not covered by the transparent conductor are less for constructions of the invention than for otherwise identical comparative constructions that do not include a lower index coating between the substrate and the transparent conductor pattern. Such reduced difference in transmission between covered and uncovered areas results in a transparent conductor pattern that is less visually distinguishable.
  • It is also instructive to compare the Δ for both Constructions 1 and 2 to the Δ for Comparative Construction C2, which best represents typical known constructions for such touch screens on flexible substrates. Since both Control Constructions X1 and X2 were identical in optical performance, these Δ's can be directly compared. Such comparison indicates that both Construction 1 and Construction 2 exhibit improved transmission in the ITO covered regions over the entire visible spectrum when compared to Comparative Construction C2, and that Construction 1, which includes a silicon oxide layer over and under the ITO, exhibits slightly improved transmission for portions of the visible spectrum over Construction 2, which includes a silicon oxide layer only under the ITO.
  • The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.

Claims (37)

1. A touch screen comprising:
a substrate;
a coating substantially covering the substrate;
a transparent conductor pattern disposed on the coating, the pattern leaving areas of the coating uncovered; and
a filler material covering and contacting both the transparent conductor pattern and the areas of the coating uncovered by the transparent conductor pattern;
wherein the coating has a refractive index that is less than that of the substrate and less than that of the transparent conductor pattern.
2. The touch screen of claim 1, wherein the filler material has a refractive index matching or nearly matching the refractive index of the coating.
3. The touch screen of claim 1, wherein the filler material is the same as the material of the coating.
4. The touch screen of claim 1, wherein the filler material comprises silicon oxide.
5. The touch screen of claim 1, wherein the filler material is an adhesive.
6. The touch screen of claim 1, wherein the substrate comprises plastic.
7. The touch screen of claim 1, wherein the substrate comprises polyester.
8. The touch screen of claim 1, wherein the substrate includes a hardcoat disposed on a surface opposing the coating.
9. The touch screen of claim 1, wherein the coating comprises silicon oxide.
10. The touch screen of claim 1, wherein the transparent conductor pattern comprises a transparent conductive oxide.
11. The touch screen of claim 1, wherein the transparent conductor pattern comprises indium tin oxide.
12. The touch screen of claim 1, wherein the transparent conductor pattern comprises a conductive polymer.
13. The touch screen of claim 1, wherein the substrate has a refractive index of about 1.6 to 1.7, the transparent conductor pattern has a refractive index of about 1.8 to 2.1, the coating has a refractive index of about 1.4 to 1.5, and the filler material has a refractive index of about 1.4 to 1.8.
14. The touch screen of claim 1, further comprising a second substrate disposed over the filler material.
15. The touch screen of claim 14, wherein the second substrate comprises glass.
16. The touch screen of claim 14, wherein the second substrate comprises plastic.
17. The touch screen of claim 14, wherein the second substrate comprises polyester.
18. The touch screen of claim 14, wherein the second substrate is bonded to the touch screen by an adhesive.
19. The touch screen of claim 18, wherein the adhesive is the filler material.
20. The touch screen of claim 1, wherein the coating has a thickness selected to substantially reduce reflections of visible light in areas covered by the transparent conductor pattern.
21. The touch screen of claim 1, wherein the transparent conductor pattern comprises a plurality of parallel stripes.
22. The touch screen of claim 1, wherein the transparent conductor pattern is configured for connecting to controller electronics adapted to determine touch location from signals generated when a conductive touch implement is capacitively coupled to a portion of the pattern.
23. The touch screen of claim 22 being arranged so the touch implement is capacitively coupled to the transparent conductor pattern through the substrate.
24. The touch screen of claim 22 being arranged so the touch implement is capacitively coupled to the transparent conductor pattern through the filler material.
25. The touch screen of claim 22 being arranged so the touch implement is capacitively coupled to the transparent conductor pattern through a second substrate disposed over the filler material.
26. The touch screen of claim 1 configured to be disposed over an electronic display so that the display can be viewed through the touch screen.
27. The touch screen of claim 1, further comprising a second substrate, a second coating substantially covering the second substrate, a second transparent conductor pattern disposed on the second coating to leave areas of the second coating uncovered by the pattern, and a second filler material covering and contacting both the second transparent conductor pattern and the areas of the second coating uncovered by the transparent conductor pattern.
28. A touch screen construction comprising:
a PET substrate;
an silicon oxide layer covering the PET substrate;
an array of parallel ITO bars disposed on the silicon oxide layer; and
an optically clear pressure sensitive adhesive disposed over and covering the ITO bars, the optically clear pressure sensitive adhesive having a refractive index in the range of 1.4 to 1.8 inclusive.
29. The touch screen construction of claim 28 adhered to a second substrate through the optically clear adhesive.
30. The touch screen construction of claim 29, wherein the second substrate comprises plastic.
31. The touch screen construction of claim 29, wherein the second substrate comprises glass.
32. A touch screen comprising:
a touch screen construction comprising:
a transparent conductor patterned on a substrate;
a first layer substantially covering the substrate and disposed between the transparent conductor and the substrate, the first layer configured to increase visible light transmission through the touch screen in areas covered by the transparent conductor; and
a second layer disposed to contact the transparent conductor in areas covered by the transparent conductor and to contact the first layer in areas uncovered by the transparent conductor, the second layer configured to substantially inhibit visible light reflections at contact interfaces between the first layer and the second layer.
33. The touch screen of claim 32, wherein the touch screen construction further comprises a second substrate disposed over the second layer.
34. The touch screen of claim 32, further comprising an electronic display positioned for viewing through the touch screen construction.
35. A method for reducing the visibility of a patterned transparent conductor in a touch screen comprising:
coating an undercoat material between a substrate and the patterned transparent conductor so that the undercoat material substantially covers the substrate, the undercoat material having a refractive index that is less than that of the substrate and the patterned transparent conductor, and wherein the patterned transparent conductor leaves areas of the undercoat material exposed; and
disposing a filler material over the patterned transparent conductor and exposed areas of the undercoat material, the filler material having a refractive index and thickness selected to reduce interfacial reflections of visible light in areas covered by the patterned transparent conductor.
36. The method of claim 35, further comprising the step of disposing a second substrate over the filler material.
37. The method of claim 35, further comprising the step of forming the patterned transparent conductor.
US10/686,141 2003-10-15 2003-10-15 Patterned conductor touch screen having improved optics Expired - Fee Related US8068186B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/686,141 US8068186B2 (en) 2003-10-15 2003-10-15 Patterned conductor touch screen having improved optics
EP04788685A EP1678599B1 (en) 2003-10-15 2004-09-13 Patterned conductor touch screen having improved optics
AT04788685T ATE473481T1 (en) 2003-10-15 2004-09-13 TOUCH SCREEN WITH STRUCTURED CONDUCTOR WITH IMPROVED OPTICS
DE602004028035T DE602004028035D1 (en) 2003-10-15 2004-09-13 TOUCH SCREEN WITH A STRUCTURED HEAD WITH IMPROVED OPTICS
CNA200480030475XA CN1867882A (en) 2003-10-15 2004-09-13 Patterned conductor touch screen having improved optics
AU2004284746A AU2004284746A1 (en) 2003-10-15 2004-09-13 Patterned conductor touch screen having improved optics
JP2006535494A JP2007508639A (en) 2003-10-15 2004-09-13 Patterned conductor touch screen with improved optical properties
PCT/US2004/029604 WO2005040901A2 (en) 2003-10-15 2004-09-13 Patterned conductor touch screen having improved optics
TW093129257A TW200527304A (en) 2003-10-15 2004-09-27 Patterned conductor touch screen having improved optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/686,141 US8068186B2 (en) 2003-10-15 2003-10-15 Patterned conductor touch screen having improved optics

Publications (2)

Publication Number Publication Date
US20050083307A1 true US20050083307A1 (en) 2005-04-21
US8068186B2 US8068186B2 (en) 2011-11-29

Family

ID=34520716

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/686,141 Expired - Fee Related US8068186B2 (en) 2003-10-15 2003-10-15 Patterned conductor touch screen having improved optics

Country Status (9)

Country Link
US (1) US8068186B2 (en)
EP (1) EP1678599B1 (en)
JP (1) JP2007508639A (en)
CN (1) CN1867882A (en)
AT (1) ATE473481T1 (en)
AU (1) AU2004284746A1 (en)
DE (1) DE602004028035D1 (en)
TW (1) TW200527304A (en)
WO (1) WO2005040901A2 (en)

Cited By (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007071A1 (en) * 2004-06-22 2006-01-19 3M Innovative Properties Company Capacitive touch panel sensor with improved transparency
US20060097991A1 (en) * 2004-05-06 2006-05-11 Apple Computer, Inc. Multipoint touchscreen
US20070030254A1 (en) * 2005-07-21 2007-02-08 Robrecht Michael J Integration of touch sensors with directly mounted electronic components
US20070052044A1 (en) * 2005-09-06 2007-03-08 Larry Forsblad Scrolling input arrangements using capacitive sensors on a flexible membrane
US20070063876A1 (en) * 2005-08-24 2007-03-22 Wong Alex K Multiple sensing element touch sensor
US20070083822A1 (en) * 2001-10-22 2007-04-12 Apple Computer, Inc. Method and apparatus for use of rotational user inputs
US20070132737A1 (en) * 2005-12-09 2007-06-14 Mulligan Roger C Systems and methods for determining touch location
US20070236618A1 (en) * 2006-03-31 2007-10-11 3M Innovative Properties Company Touch Screen Having Reduced Visibility Transparent Conductor Pattern
US20070283832A1 (en) * 2006-06-09 2007-12-13 Apple Computer, Inc. Imprint circuit patterning
EP1892609A1 (en) * 2005-05-26 2008-02-27 Gunze Limited Transparent planar body and transparent touch switch
US20080088597A1 (en) * 2006-10-11 2008-04-17 Apple Inc. Sensor configurations in a user input device
US20080137208A1 (en) * 2006-11-22 2008-06-12 Omnitech Partners, Inc. System and method for optical image generator and injector
US20080142281A1 (en) * 2006-12-19 2008-06-19 3M Innovative Properties Company Capacitance measuring circuit and method
US20080150916A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered device employing tunable resonant circuit
US20080149401A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered stylus employing separate communication channels
US20080149402A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered stylus employing low current power converter
WO2008076237A2 (en) 2006-12-15 2008-06-26 Apple Inc. Pet-based touchpad
US20080150658A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Frequency control circuit for tuning a resonant circuit of an untethered device
US20080150550A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Self-tuning drive source employing input impedance phase detection
US20080150917A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Oscillator circuit for use in an untethered stylus
US20080156546A1 (en) * 2006-12-28 2008-07-03 3M Innovative Properties Company Untethered stylus empolying multiple reference frequency communication
US20080158181A1 (en) * 2007-01-03 2008-07-03 Apple Computer, Inc. Double-sided touch sensitive panel and flex circuit bonding
US20080158165A1 (en) * 2006-12-28 2008-07-03 3M Innovative Properties Company Location sensing system and method employing adaptive drive signal adjustment
US20080158848A1 (en) * 2006-12-28 2008-07-03 3M Innovative Properties Company Magnetic shield for use in a location sensing system
US20080165158A1 (en) * 2007-01-05 2008-07-10 Apple Inc. Touch screen stack-ups
US20080165139A1 (en) * 2007-01-05 2008-07-10 Apple Inc. Touch screen stack-up processing
US20080176042A1 (en) * 2007-01-18 2008-07-24 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US20080185191A1 (en) * 2007-02-02 2008-08-07 Darfon Electronics Corp. Electronic product and touchpad structure thereof and method for forming the same
US20080213581A1 (en) * 2007-01-17 2008-09-04 Chih-Cheng Chen Input device for a man-machine interface
US20080230177A1 (en) * 2007-03-19 2008-09-25 White Electronic Designs Corp. Enhanced liquid crystal display system and methods
US20080252614A1 (en) * 2007-04-11 2008-10-16 Naoki Tatehata Touch panel
US20080261057A1 (en) * 2007-04-20 2008-10-23 White Electronic Designs Corp. Bezelless display system
US20080266273A1 (en) * 2007-04-24 2008-10-30 White Electronic Designs Corp. Interactive display system
US20080284742A1 (en) * 2006-10-11 2008-11-20 Prest Christopher D Method and apparatus for implementing multiple push buttons in a user input device
US20080299486A1 (en) * 2007-06-01 2008-12-04 3M Innovative Properties Company Patterned Photoacid Etching and Articles Therefrom
US20080309633A1 (en) * 2007-06-13 2008-12-18 Apple Inc. Touch-sensitive display
US20090051672A1 (en) * 2007-08-24 2009-02-26 Innolux Display Corp. Electro-wetting display device with touch mode
US20090056799A1 (en) * 2007-08-29 2009-03-05 Kinsey Geoffrey S Photovoltaic cells with selectively patterned transparent conductive coatings, and associated methods
US20090066669A1 (en) * 2007-09-06 2009-03-12 Dana Jon Olson Dual-sensing-mode touch-sensor device
WO2009039089A1 (en) * 2007-09-17 2009-03-26 Apple Inc. Device having cover with integrally formed sensor
US20090160782A1 (en) * 2007-12-21 2009-06-25 Motorola, Inc. Translucent touch screen devices including low resistive mesh
US20090160783A1 (en) * 2007-12-21 2009-06-25 Motorola, Inc. Translucent touch screens including invisible elecronitc component connections
US20090207151A1 (en) * 2008-02-18 2009-08-20 Tpk Touch Solutions Inc. Capacitive Touch Panel
US20090219258A1 (en) * 2008-08-01 2009-09-03 3M Innovative Properties Company Touch screen sensor with low visibility conductors
US20090229892A1 (en) * 2008-03-14 2009-09-17 Apple Inc. Switchable sensor configurations
US20090244028A1 (en) * 2008-03-25 2009-10-01 Epson Imaging Devices Corporation Capacitive input device, display device with input function, and electronic apparatus
WO2009108758A3 (en) * 2008-02-28 2009-11-19 3M Innovative Properties Company Touch screen sensor with low visibility conductors
US20090310314A1 (en) * 2008-06-13 2009-12-17 Ted-Hong Shinn Flexible Display Module and Method of Manufacturing the same
US20090314621A1 (en) * 2008-04-25 2009-12-24 Apple Inc. Brick Layout and Stackup for a Touch Screen
EP2144145A1 (en) * 2008-07-11 2010-01-13 Samsung Mobile Display Co., Ltd. Touch screen panel and method of fabricating the same
US20100013798A1 (en) * 2008-07-18 2010-01-21 Nitto Denko Corporation Transparent conductive film and touch panel
US20100026664A1 (en) * 2008-08-01 2010-02-04 Geaghan Bernard O Touch sensitive devices with composite electrodes
US20100053221A1 (en) * 2008-09-03 2010-03-04 Canon Kabushiki Kaisha Information processing apparatus and operation method thereof
US20100060568A1 (en) * 2008-09-05 2010-03-11 Apple Inc. Curved surface input device with normalized capacitive sensing
US20100059294A1 (en) * 2008-09-08 2010-03-11 Apple Inc. Bandwidth enhancement for a touch sensor panel
US20100065342A1 (en) * 2008-09-15 2010-03-18 Thin Film Devices, Inc. Touch screen having reduced reflection
US7710393B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for accelerated scrolling
US20100141608A1 (en) * 2008-12-09 2010-06-10 Lili Huang Index Matching For Touch Screens
US20100164881A1 (en) * 2008-12-25 2010-07-01 Au Optronics Corp. Touch Panel Structure
US20100174987A1 (en) * 2009-01-06 2010-07-08 Samsung Electronics Co., Ltd. Method and apparatus for navigation between objects in an electronic apparatus
US20100182250A1 (en) * 2009-01-16 2010-07-22 Kang Sung-Ku Touch screen panel
US20100194696A1 (en) * 2009-02-02 2010-08-05 Shih Chang Chang Touch Regions in Diamond Configuration
US7795553B2 (en) 2006-09-11 2010-09-14 Apple Inc. Hybrid button
US20100238133A1 (en) * 2009-03-17 2010-09-23 Wintek Corporation Capacitive touch panel
US20100261012A1 (en) * 2009-04-10 2010-10-14 Jen-Shiun Huang Flexible Display Panel and Method of Manufacturing the same
US20100328228A1 (en) * 2009-06-29 2010-12-30 John Greer Elias Touch sensor panel design
US20110007020A1 (en) * 2009-04-10 2011-01-13 Seung Jae Hong Touch sensor panel design
US20110018815A1 (en) * 2009-07-23 2011-01-27 Samsung Electronics Co., Ltd. Touch screen panel and method of manufacturing the same
US7880729B2 (en) 2005-10-11 2011-02-01 Apple Inc. Center button isolation ring
US20110032207A1 (en) * 2009-08-07 2011-02-10 Ritdisplay Corporation Capacitive touch sensor
US20110043479A1 (en) * 2007-12-13 2011-02-24 Polymer Vision Limited Electronic Device With A Flexible Panel And Method For Manufacturing A Flexible Panel
US7910843B2 (en) 2007-09-04 2011-03-22 Apple Inc. Compact input device
US7932897B2 (en) 2004-08-16 2011-04-26 Apple Inc. Method of increasing the spatial resolution of touch sensitive devices
US20110128252A1 (en) * 2009-12-01 2011-06-02 Lg Innotek Co., Ltd. Capacitance touch panel
US20110134050A1 (en) * 2009-12-07 2011-06-09 Harley Jonah A Fabrication of touch sensor panel using laser ablation
US20110132670A1 (en) * 2009-12-09 2011-06-09 J Touch Corporation Capacitive touch device structure
US20110148823A1 (en) * 2009-12-22 2011-06-23 Yang-Lin Chen Touch panel
US20110199328A1 (en) * 2010-02-18 2011-08-18 Flextronics Ap, Llc Touch screen system with acoustic and capacitive sensing
US20110221699A1 (en) * 2010-03-11 2011-09-15 Samsung Electronics Co. Ltd. Touch screen apparatus
US8022935B2 (en) 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US8059099B2 (en) 2006-06-02 2011-11-15 Apple Inc. Techniques for interactive input to portable electronic devices
WO2011156447A1 (en) 2010-06-11 2011-12-15 3M Innovative Properties Company Positional touch sensor with force measurement
US20120021159A1 (en) * 2010-07-23 2012-01-26 Elan Microelectronics Corporation Transparent touch panel with improved cured adhesiveness
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
US8134542B2 (en) 2006-12-20 2012-03-13 3M Innovative Properties Company Untethered stylus employing separate communication and power channels
US20120062505A1 (en) * 2010-09-14 2012-03-15 Samsung Electro-Mechanics Co., Ltd. Capacitive touch panel and method of manufacturing the same
US20120133613A1 (en) * 2010-11-29 2012-05-31 Beijing Boe Optoelectronics Technology Co., Ltd. Capacitive touch panel
US20120138352A1 (en) * 2010-12-07 2012-06-07 Qrg Limited Substrate for electrical component and method
US20120146922A1 (en) * 2010-12-14 2012-06-14 Kang Sung-Ku Touch screen panel and fabrication method thereof
WO2012067789A3 (en) * 2010-11-17 2012-07-26 3M Innovative Properties Company Method of reducing electromigration of silver and article made thereby
US20120211264A1 (en) * 2009-10-23 2012-08-23 M-Solv Limited Capacitive touch panels
US8274479B2 (en) 2006-10-11 2012-09-25 Apple Inc. Gimballed scroll wheel
EP2515217A1 (en) * 2011-04-21 2012-10-24 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
EP2515218A1 (en) * 2011-04-21 2012-10-24 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
EP2518600A1 (en) * 2011-04-27 2012-10-31 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
EP2518598A1 (en) * 2011-04-27 2012-10-31 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US20120273256A1 (en) * 2011-04-29 2012-11-01 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US20120273257A1 (en) * 2011-04-29 2012-11-01 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US20120279758A1 (en) * 2011-05-03 2012-11-08 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US8319747B2 (en) 2008-12-11 2012-11-27 Apple Inc. Single layer touch panel with segmented drive and sense electrodes
US8395590B2 (en) 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
US8416198B2 (en) 2007-12-03 2013-04-09 Apple Inc. Multi-dimensional scroll wheel
EP2579277A1 (en) * 2011-10-06 2013-04-10 Nitto Denko Corporation Transparent conductive film
US8432371B2 (en) 2006-06-09 2013-04-30 Apple Inc. Touch screen liquid crystal display
WO2013063183A1 (en) * 2011-10-25 2013-05-02 Unipixel Displays, Inc. Polarizer capacitive touch screen
WO2013062385A1 (en) * 2011-10-27 2013-05-02 Lg Innotek Co., Ltd. Touch panel
US8446370B2 (en) 2002-02-25 2013-05-21 Apple Inc. Touch pad for handheld device
US8482530B2 (en) 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
US8487898B2 (en) 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
US20130181911A1 (en) * 2012-01-17 2013-07-18 Esat Yilmaz On-Display-Sensor Stack
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US20130194220A1 (en) * 2010-07-30 2013-08-01 Lg Innotek Co., Ltd. Touch panel
US8514185B2 (en) 2006-07-06 2013-08-20 Apple Inc. Mutual capacitance touch sensing device
CN103294291A (en) * 2012-03-05 2013-09-11 联胜(中国)科技有限公司 Touch control board
US8537132B2 (en) 2005-12-30 2013-09-17 Apple Inc. Illuminated touchpad
US8552990B2 (en) 2003-11-25 2013-10-08 Apple Inc. Touch pad for handheld device
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US8633915B2 (en) 2007-10-04 2014-01-21 Apple Inc. Single-layer touch-sensitive display
AU2012244145B2 (en) * 2007-01-05 2014-01-23 Apple Inc. Touch screen stack-ups
US8654083B2 (en) 2006-06-09 2014-02-18 Apple Inc. Touch screen liquid crystal display
WO2014033058A1 (en) * 2012-08-28 2014-03-06 Oc Oerlikon Balzers Ag Patterned conductor touch screen
KR20140034205A (en) * 2011-07-11 2014-03-19 후지필름 가부시키가이샤 Conductive laminate body, touch panel, and display device
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US20140125624A1 (en) * 2012-11-02 2014-05-08 Samsung Electro-Mechanics Co., Ltd. Touch screen panel and portable electronic apparatus having the same
US8730184B2 (en) 2009-12-16 2014-05-20 3M Innovative Properties Company Touch sensitive device with multilayer electrode having improved optical and electrical performance
AU2012244160B2 (en) * 2007-01-05 2014-05-22 Apple Inc. Touch screen stack-ups
US20140139239A1 (en) * 2012-11-19 2014-05-22 Zrro Technologies (2009) Ltd. Transparent proximity sensor
US8743300B2 (en) 2010-12-22 2014-06-03 Apple Inc. Integrated touch screens
US8743327B2 (en) 2011-03-29 2014-06-03 Alps Electric Co., Ltd. Input device and method for manufacturing the same
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US20140152912A1 (en) * 2012-11-30 2014-06-05 Lg Display Co., Ltd. Oled display device having touch sensor and method of manufacturing the same
US8749493B2 (en) 2003-08-18 2014-06-10 Apple Inc. Movable touch pad with added functionality
US20140204062A1 (en) * 2013-01-23 2014-07-24 Sony Corporation Head-mounted display, display apparatus, and input apparatus
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
US20140295127A1 (en) * 2013-03-30 2014-10-02 Shenzhen O-Film Tech Co., Ltd Monolayer touch screen and method for manufacturing the same
WO2014058562A3 (en) * 2012-10-10 2014-10-16 Carestream Health, Inc. Patterned films and methods
US20140307183A1 (en) * 2013-04-12 2014-10-16 Shenzhen O-Film Tech Co., Ltd Double-layer touch screen and method for making the same
US8872771B2 (en) 2009-07-07 2014-10-28 Apple Inc. Touch sensing device having conductive nodes
US8932475B2 (en) 2008-02-28 2015-01-13 3M Innovative Properties Company Methods of patterning a conductor on a substrate
US20150022222A1 (en) * 2013-05-27 2015-01-22 Nitto Denko Corporation Touchscreen sensor
US20150077646A1 (en) * 2013-09-17 2015-03-19 Apple Inc. Touch Sensitive Display With Graded Index Layer
US9016965B1 (en) * 2009-07-31 2015-04-28 Kevin R. Stoops Keyboard/keyboard enclosure
US20150291754A1 (en) * 2014-04-15 2015-10-15 Celgard, Llc Electrically conductive, transparent, translucent, and/or reflective materials
US9201556B2 (en) 2006-11-08 2015-12-01 3M Innovative Properties Company Touch location sensing system and method employing sensor data fitting to a predefined curve
US20150370357A1 (en) * 2014-06-19 2015-12-24 Tpk Touch Solutions (Xiamen) Inc. Touch panel
US20150370395A1 (en) * 2014-06-19 2015-12-24 Tpk Touch Solutions (Xiamen) Inc. Touch display device
US20150378468A1 (en) * 2014-06-30 2015-12-31 Synaptics Incorporated Techniques to determine x-position in gradient sensors
US9280251B2 (en) 2014-07-11 2016-03-08 Apple Inc. Funneled touch sensor routing
US9354751B2 (en) 2009-05-15 2016-05-31 Apple Inc. Input device with optimized capacitive sensing
US9367151B2 (en) 2005-12-30 2016-06-14 Apple Inc. Touch pad with symbols based on mode
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel
AU2014210674B2 (en) * 2007-01-05 2016-11-10 Apple Inc. Touch screen stack-ups
US9513747B2 (en) 2010-11-04 2016-12-06 Nitto Denko Corporation Transparent conductive film and touch panel
US9557846B2 (en) 2012-10-04 2017-01-31 Corning Incorporated Pressure-sensing touch system utilizing optical and capacitive systems
US9557859B2 (en) 2011-06-09 2017-01-31 3M Innovative Properties Company Method of making touch sensitive device with multilayer electrode and underlayer
US20170038872A1 (en) * 2015-03-31 2017-02-09 Boe Technology Group Co., Ltd. Touch screen and preparation method thereof
US9642243B2 (en) 2011-09-30 2017-05-02 3M Innovative Properties Company Flexible touch sensor with fine pitch interconnect
US9642245B2 (en) 2011-07-11 2017-05-02 Fujifilm Corporation Conductive sheet, touch panel, display device, method for producing said conductive sheet, and non-transitory recording medium
US9652088B2 (en) 2010-07-30 2017-05-16 Apple Inc. Fabrication of touch sensor panel using laser ablation
EP2634675A4 (en) * 2010-10-27 2017-07-26 Nitto Denko Corporation Display panel device with touch input function, optical unit for said display panel device, and production method for same
US9874975B2 (en) 2012-04-16 2018-01-23 Apple Inc. Reconstruction of original touch image from differential touch image
US9880655B2 (en) 2014-09-02 2018-01-30 Apple Inc. Method of disambiguating water from a finger touch on a touch sensor panel
US9886141B2 (en) 2013-08-16 2018-02-06 Apple Inc. Mutual and self capacitance touch measurements in touch panel
TWI622921B (en) * 2017-09-06 2018-05-01 仁寶電腦工業股份有限公司 Capacitance value detecting method of touch device
US9996175B2 (en) 2009-02-02 2018-06-12 Apple Inc. Switching circuitry for touch sensitive display
US20180239474A1 (en) * 2006-11-29 2018-08-23 Japan Display Inc Liquid crystal display device with touch screen
US10131129B2 (en) * 2015-04-22 2018-11-20 Henghao Technology Co., Ltd. Stack film roll and stack film sheet obtained therefrom
CN109117525A (en) * 2018-07-25 2019-01-01 京东方科技集团股份有限公司 A kind of disappear shadow analogy method and the shadow simulator that disappears of touch screen
CN109521905A (en) * 2018-10-19 2019-03-26 业成科技(成都)有限公司 Touch-control display panel and its manufacturing method
US10289251B2 (en) 2014-06-27 2019-05-14 Apple Inc. Reducing floating ground effects in pixelated self-capacitance touch screens
US10365773B2 (en) 2015-09-30 2019-07-30 Apple Inc. Flexible scan plan using coarse mutual capacitance and fully-guarded measurements
WO2019155418A1 (en) * 2018-02-08 2019-08-15 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US10386965B2 (en) 2017-04-20 2019-08-20 Apple Inc. Finger tracking in wet environment
US10444874B2 (en) 2011-11-11 2019-10-15 Apple Inc. Touch sensor panel having an index matching passivation layer
US10444918B2 (en) 2016-09-06 2019-10-15 Apple Inc. Back of cover touch sensors
US10452179B2 (en) 2017-01-09 2019-10-22 Boe Technology Group Co., Ltd. Touch substrate and touch display device
US10488992B2 (en) 2015-03-10 2019-11-26 Apple Inc. Multi-chip touch architecture for scalability
US10534481B2 (en) 2015-09-30 2020-01-14 Apple Inc. High aspect ratio capacitive sensor panel
US10642374B2 (en) 2016-05-18 2020-05-05 Kevin R. Stoops Keyboard/keyboard enclosure
US10705658B2 (en) 2014-09-22 2020-07-07 Apple Inc. Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
US10712867B2 (en) 2014-10-27 2020-07-14 Apple Inc. Pixelated self-capacitance water rejection
US10740588B2 (en) * 2016-11-14 2020-08-11 Samsung Electronics Co., Ltd. Fingerprint sensor and method of manufacturing the same
US10795488B2 (en) 2015-02-02 2020-10-06 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10936087B2 (en) 2016-05-18 2021-03-02 Kevin R. Stoops Keyboard assembly
US10936120B2 (en) 2014-05-22 2021-03-02 Apple Inc. Panel bootstraping architectures for in-cell self-capacitance
US10976883B2 (en) 2017-01-09 2021-04-13 Chengdu Boe Optelectronics Technology Co., Ltd. Touch substrate and touch display device
US11294503B2 (en) 2008-01-04 2022-04-05 Apple Inc. Sensor baseline offset adjustment for a subset of sensor output values
USD948991S1 (en) 2017-05-18 2022-04-19 Kevin R. Stoops Bracket
DE112011101994B4 (en) 2010-06-14 2022-09-08 Lg Electronics Inc. Touch panel display device
US11536876B2 (en) * 2020-05-09 2022-12-27 Shanghai Tianma Micro-electronics Co., Ltd. Composite membrane, touchpad and display device
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel
US11665345B2 (en) 2018-11-16 2023-05-30 Hfi Innovation Inc. Method and apparatus of luma-chroma separated coding tree coding with constraints

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838643B2 (en) * 2006-06-27 2011-12-14 オプトレックス株式会社 Display device with input device
US20080218487A1 (en) * 2007-03-07 2008-09-11 Chun-Chung Huang Capacitive-type touch pad having special arrangement of capacitance sensor
TW200842681A (en) 2007-04-27 2008-11-01 Tpk Touch Solutions Inc Touch pattern structure of a capacitive touch panel
JP4506785B2 (en) * 2007-06-14 2010-07-21 エプソンイメージングデバイス株式会社 Capacitive input device
JP2009026152A (en) * 2007-07-20 2009-02-05 Sony Corp Input device and electronic equipment
US8605050B2 (en) 2007-08-21 2013-12-10 Tpk Touch Solutions (Xiamen) Inc. Conductor pattern structure of capacitive touch panel
JP2009053893A (en) * 2007-08-27 2009-03-12 Epson Imaging Devices Corp Electrostatic capacitance type input device
JP2009098834A (en) * 2007-10-16 2009-05-07 Epson Imaging Devices Corp Capacitance type input device, display device with input function and electronic equipment
JP5063500B2 (en) * 2008-02-08 2012-10-31 富士通コンポーネント株式会社 Panel-type input device, method for manufacturing panel-type input device, and electronic apparatus including panel-type input device
JP4888589B2 (en) * 2008-03-25 2012-02-29 ソニー株式会社 Capacitance type input device, display device with input function, and electronic device
JP5315037B2 (en) * 2008-12-17 2013-10-16 株式会社ジャパンディスプレイ Capacitive touch panel
JP5832065B2 (en) * 2009-02-05 2015-12-16 凸版印刷株式会社 Transparent conductive film
JP5484891B2 (en) * 2009-03-04 2014-05-07 株式会社ジャパンディスプレイ Display device
EP2410411B1 (en) 2009-03-20 2019-03-06 TPK Touch Solutions (Xiamen) Inc. Capacitive touch circuit pattern
JP2011060617A (en) * 2009-09-11 2011-03-24 Toppan Printing Co Ltd Transparent conductive laminate, method of manufacturing the same, and capacitance touch panel
TWI464633B (en) * 2010-02-12 2014-12-11 Cando Corp Method of manufacturing flexible touch panel
JP5606093B2 (en) * 2010-02-17 2014-10-15 アルプス電気株式会社 Input device
TW201135546A (en) * 2010-04-09 2011-10-16 J Touch Corp Contactless touch panel
JP6111666B2 (en) * 2010-07-09 2017-04-12 Jnc株式会社 Transparent conductive film and manufacturing method
KR20110118065A (en) * 2010-07-27 2011-10-28 삼성전기주식회사 Capacitive touch screen
CN102339159A (en) * 2010-07-28 2012-02-01 义隆电子股份有限公司 Transparent touch-control panel for improving bonding solidifying process
CN102467277A (en) * 2010-11-09 2012-05-23 智盛全球股份有限公司 Diffusion blocking structure, transparent conductive structure and preparation method of transparent conductive structure
WO2012061975A1 (en) * 2010-11-09 2012-05-18 Tpk Touch Solutions Inc. Touch panel device
CN102005255B (en) * 2010-11-23 2012-11-21 苏州禾盛新型材料股份有限公司 Double-sided conducting film for projection type capacitive touch panel
JP2012118936A (en) * 2010-12-03 2012-06-21 Dainippon Printing Co Ltd Touch panel sensor with transparent sheet
JP5618083B2 (en) * 2010-12-27 2014-11-05 大日本印刷株式会社 Method for manufacturing touch panel member
JP5605708B2 (en) * 2011-01-13 2014-10-15 大日本印刷株式会社 Touch panel sensor with transparent sheet
KR20120082310A (en) * 2011-01-13 2012-07-23 엘지이노텍 주식회사 Touch panel, method for manufacturing the same and liquid crystal display with touch panel
US8605232B2 (en) * 2011-01-18 2013-12-10 Apple Inc. Display backlight having light guide plate with light source holes and dual source packages
CN102681707A (en) * 2011-03-16 2012-09-19 智盛全球股份有限公司 Transparent conducting structure applied to touch panel and manufacturing method thereof
CN102681708A (en) * 2011-03-16 2012-09-19 智盛全球股份有限公司 Transparent conducting structure applied to touch panel and manufacturing method of transparent conducting structure
CN102682874A (en) * 2011-03-16 2012-09-19 智盛全球股份有限公司 Transparent conducting structure applied to touch panel and manufacturing method of transparent conducting structure
CN102681706A (en) * 2011-03-16 2012-09-19 智盛全球股份有限公司 Transparent conductive structure applied to touch panel and manufacturing method thereof
JP2012203701A (en) * 2011-03-25 2012-10-22 Dainippon Printing Co Ltd Touch panel member, substrate with transparent electrode layer, substrate laminate type touch panel member, and coordinate detection device using touch panel member or substrate laminate type touch panel member
CN102736764B (en) 2011-04-04 2015-08-12 宸鸿科技(厦门)有限公司 Contact panel and manufacture method thereof
CN102789827A (en) * 2011-05-19 2012-11-21 智盛全球股份有限公司 Conductive thin film
CN102789826A (en) * 2011-05-19 2012-11-21 智盛全球股份有限公司 Conductive thin film
CN102866794A (en) 2011-06-15 2013-01-09 宸鸿光电科技股份有限公司 Touch control sensing layer and manufacturing method thereof
EP2551756A1 (en) * 2011-07-26 2013-01-30 Innovation & Infinity Global Corp. Conductive film
JP5264979B2 (en) * 2011-11-25 2013-08-14 日東電工株式会社 Touch panel sensor
CN102402338B (en) * 2011-12-27 2013-12-18 天津美泰真空技术有限公司 Touch screen panel and method for manufacturing same
US8661662B1 (en) * 2012-08-10 2014-03-04 Eastman Kodak Company Making transparent touch-responsive device with micro-wire electrodes
US20150083464A1 (en) * 2012-03-30 2015-03-26 Applied Materials, Inc. Transparent body for use in a touch screen panel manufacturing method and system
JP5292492B2 (en) * 2012-04-24 2013-09-18 株式会社ジャパンディスプレイ Touch panel and display device using the same
KR101404399B1 (en) * 2012-05-30 2014-06-09 주식회사 엘지화학 Pressure sensitive adhesive composition
US9236202B2 (en) 2012-09-10 2016-01-12 Apple Inc. Corrosion mitigation for metal traces
KR101512546B1 (en) * 2012-10-16 2015-04-15 (주)엘지하우시스 Transparent conductive film with excellent visibility and manufacturing method thereof
TWI595386B (en) * 2012-12-12 2017-08-11 富元精密科技股份有限公司 Touch panel and method for manufacturing the same
CN103176650B (en) * 2013-03-01 2016-09-28 南昌欧菲光科技有限公司 Conducting glass substrate and preparation method thereof
CN104298381B (en) * 2013-07-17 2017-07-11 宸鸿科技(厦门)有限公司 Contact panel, the optical match glue and previous building methods that are applied to contact panel
JP2015069267A (en) * 2013-09-27 2015-04-13 デクセリアルズ株式会社 Capacitive curved touch panel and method for fabrication thereof
CN104090675A (en) * 2014-06-16 2014-10-08 信利半导体有限公司 Touch panel sensor and touch panel
JP6418631B2 (en) * 2014-06-17 2018-11-07 株式会社アルバック Transparent conductive substrate, method for manufacturing the same, and touch panel
JP5889975B2 (en) * 2014-08-13 2016-03-22 日東電工株式会社 Transparent conductive film and touch panel
JP6382243B2 (en) * 2015-02-04 2018-08-29 富士フイルム株式会社 Laminated body and image display device
JP2017200739A (en) * 2016-05-06 2017-11-09 ホシデン株式会社 Resin laminate and touch input device including the same
ES2714181T3 (en) * 2016-08-16 2019-05-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Fingerprint sensor, method for manufacturing a fingerprint and terminal sensor

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715686A (en) * 1984-11-16 1987-12-29 Seiko Epson Corporation Light-passive display device and method of manufacturing same
US4788767A (en) * 1987-03-11 1988-12-06 International Business Machines Corporation Method for mounting a flexible film semiconductor chip carrier on a circuitized substrate
US5386219A (en) * 1991-10-16 1995-01-31 International Business Machines Corp. Touch overlay for improved touch sensitivity
US5556694A (en) * 1994-12-07 1996-09-17 Photran Corporation Faceplate for a touch-sensitive video display unit
US5650597A (en) * 1995-01-20 1997-07-22 Dynapro Systems, Inc. Capacitive touch sensor
US5844506A (en) * 1994-04-05 1998-12-01 Binstead; Ronald Peter Multiple input proximity detector and touchpad system
US6188391B1 (en) * 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
US6266193B1 (en) * 1997-07-24 2001-07-24 Cpfilms Inc. Anti-reflective composite
US20010055673A1 (en) * 2000-06-23 2001-12-27 Getz Catherine A. Enhanced light transmission conductive coated transparent substrate and method for making same
US20020086188A1 (en) * 2000-10-12 2002-07-04 Eugene Halsey Reduced contrast improved transmission conductively coated transparent substrate
US6512512B1 (en) * 1999-07-31 2003-01-28 Litton Systems, Inc. Touch panel with improved optical performance
US6522322B1 (en) * 1999-03-30 2003-02-18 Smk Corporation Touch panel input device
US20030103043A1 (en) * 2001-11-30 2003-06-05 3M Innovative Properties Company System and method for locating a touch on a capacitive touch screen
US6583935B1 (en) * 1998-05-28 2003-06-24 Cpfilms Inc. Low reflection, high transmission, touch-panel membrane
US6628355B1 (en) * 1996-12-17 2003-09-30 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel including a light shielding film to control incident light
US20030203101A1 (en) * 2002-04-24 2003-10-30 Sipix Imaging, Inc. Process for forming a patterned thin film conductive structure on a substrate
US7030860B1 (en) * 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121037A (en) * 1984-11-16 1986-06-09 Seiko Epson Corp Photodeteptive display device
US4786767A (en) 1987-06-01 1988-11-22 Southwall Technologies Inc. Transparent touch panel switch
JP2763472B2 (en) 1993-01-23 1998-06-11 日東電工株式会社 Transparent conductive laminate and touch panel
JPH09185457A (en) 1995-12-28 1997-07-15 Sharp Corp Touch panel, and display device with input function using the same
EP1275204A4 (en) 2000-01-11 2009-02-04 Cirque Corp Flexible touchpad sensor grid for conforming to arcuate surfaces
EP1172831B1 (en) 2000-07-12 2012-10-24 Agfa-Gevaert N.V. Switch with at least one flexible conductive member
CN1524257B (en) 2001-06-06 2010-04-28 西奎公司 System for disposing a proximity sensitive touchpad behind a mobile phone keymat

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715686A (en) * 1984-11-16 1987-12-29 Seiko Epson Corporation Light-passive display device and method of manufacturing same
US4788767A (en) * 1987-03-11 1988-12-06 International Business Machines Corporation Method for mounting a flexible film semiconductor chip carrier on a circuitized substrate
US5386219A (en) * 1991-10-16 1995-01-31 International Business Machines Corp. Touch overlay for improved touch sensitivity
US5844506A (en) * 1994-04-05 1998-12-01 Binstead; Ronald Peter Multiple input proximity detector and touchpad system
US5556694A (en) * 1994-12-07 1996-09-17 Photran Corporation Faceplate for a touch-sensitive video display unit
US5650597A (en) * 1995-01-20 1997-07-22 Dynapro Systems, Inc. Capacitive touch sensor
US6628355B1 (en) * 1996-12-17 2003-09-30 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel including a light shielding film to control incident light
US6266193B1 (en) * 1997-07-24 2001-07-24 Cpfilms Inc. Anti-reflective composite
US6583935B1 (en) * 1998-05-28 2003-06-24 Cpfilms Inc. Low reflection, high transmission, touch-panel membrane
US6188391B1 (en) * 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
US6522322B1 (en) * 1999-03-30 2003-02-18 Smk Corporation Touch panel input device
US6512512B1 (en) * 1999-07-31 2003-01-28 Litton Systems, Inc. Touch panel with improved optical performance
US7030860B1 (en) * 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices
US20010055673A1 (en) * 2000-06-23 2001-12-27 Getz Catherine A. Enhanced light transmission conductive coated transparent substrate and method for making same
US20020086188A1 (en) * 2000-10-12 2002-07-04 Eugene Halsey Reduced contrast improved transmission conductively coated transparent substrate
US20030103043A1 (en) * 2001-11-30 2003-06-05 3M Innovative Properties Company System and method for locating a touch on a capacitive touch screen
US20030203101A1 (en) * 2002-04-24 2003-10-30 Sipix Imaging, Inc. Process for forming a patterned thin film conductive structure on a substrate

Cited By (379)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9977518B2 (en) 2001-10-22 2018-05-22 Apple Inc. Scrolling based on rotational movement
US9009626B2 (en) 2001-10-22 2015-04-14 Apple Inc. Method and apparatus for accelerated scrolling
US8952886B2 (en) 2001-10-22 2015-02-10 Apple Inc. Method and apparatus for accelerated scrolling
US20070083822A1 (en) * 2001-10-22 2007-04-12 Apple Computer, Inc. Method and apparatus for use of rotational user inputs
US7710393B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for accelerated scrolling
US7710409B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for use of rotational user inputs
US7710394B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for use of rotational user inputs
US8446370B2 (en) 2002-02-25 2013-05-21 Apple Inc. Touch pad for handheld device
US10353565B2 (en) 2002-02-25 2019-07-16 Apple Inc. Input apparatus and button arrangement for handheld device
US8749493B2 (en) 2003-08-18 2014-06-10 Apple Inc. Movable touch pad with added functionality
US8933890B2 (en) 2003-11-25 2015-01-13 Apple Inc. Techniques for interactive input to portable electronic devices
US8552990B2 (en) 2003-11-25 2013-10-08 Apple Inc. Touch pad for handheld device
US8928618B2 (en) 2004-05-06 2015-01-06 Apple Inc. Multipoint touchscreen
US10331259B2 (en) 2004-05-06 2019-06-25 Apple Inc. Multipoint touchscreen
US11604547B2 (en) 2004-05-06 2023-03-14 Apple Inc. Multipoint touchscreen
US20060097991A1 (en) * 2004-05-06 2006-05-11 Apple Computer, Inc. Multipoint touchscreen
US8416209B2 (en) 2004-05-06 2013-04-09 Apple Inc. Multipoint touchscreen
US9035907B2 (en) 2004-05-06 2015-05-19 Apple Inc. Multipoint touchscreen
US8982087B2 (en) 2004-05-06 2015-03-17 Apple Inc. Multipoint touchscreen
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US20190310734A1 (en) * 2004-05-06 2019-10-10 Apple Inc. Multipoint touchscreen
US9454277B2 (en) 2004-05-06 2016-09-27 Apple Inc. Multipoint touchscreen
US8605051B2 (en) 2004-05-06 2013-12-10 Apple Inc. Multipoint touchscreen
US8872785B2 (en) 2004-05-06 2014-10-28 Apple Inc. Multipoint touchscreen
US10908729B2 (en) * 2004-05-06 2021-02-02 Apple Inc. Multipoint touchscreen
US8125463B2 (en) 2004-05-06 2012-02-28 Apple Inc. Multipoint touchscreen
WO2006007071A1 (en) * 2004-06-22 2006-01-19 3M Innovative Properties Company Capacitive touch panel sensor with improved transparency
US7932897B2 (en) 2004-08-16 2011-04-26 Apple Inc. Method of increasing the spatial resolution of touch sensitive devices
US8603611B2 (en) 2005-05-26 2013-12-10 Gunze Limited Transparent planar body and transparent touch switch
EP1892609A1 (en) * 2005-05-26 2008-02-27 Gunze Limited Transparent planar body and transparent touch switch
EP1892609A4 (en) * 2005-05-26 2013-03-27 Gunze Kk Transparent planar body and transparent touch switch
US20080138589A1 (en) * 2005-05-26 2008-06-12 Gunze Limited Transparent Planar Body and Transparent Touch Switch
US20070030254A1 (en) * 2005-07-21 2007-02-08 Robrecht Michael J Integration of touch sensors with directly mounted electronic components
US20070063876A1 (en) * 2005-08-24 2007-03-22 Wong Alex K Multiple sensing element touch sensor
US20070052044A1 (en) * 2005-09-06 2007-03-08 Larry Forsblad Scrolling input arrangements using capacitive sensors on a flexible membrane
US20080036734A1 (en) * 2005-09-06 2008-02-14 Apple Computer, Inc. Scrolling input arrangements using capacitive sensors on a flexible membrane
US7671837B2 (en) 2005-09-06 2010-03-02 Apple Inc. Scrolling input arrangements using capacitive sensors on a flexible membrane
US7880729B2 (en) 2005-10-11 2011-02-01 Apple Inc. Center button isolation ring
US20070132737A1 (en) * 2005-12-09 2007-06-14 Mulligan Roger C Systems and methods for determining touch location
US8537132B2 (en) 2005-12-30 2013-09-17 Apple Inc. Illuminated touchpad
US9367151B2 (en) 2005-12-30 2016-06-14 Apple Inc. Touch pad with symbols based on mode
EP2002324A4 (en) * 2006-03-31 2012-12-26 3M Innovative Properties Co Touch screen having reduced visibility transparent conductor pattern
EP2002324A2 (en) * 2006-03-31 2008-12-17 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
US20070236618A1 (en) * 2006-03-31 2007-10-11 3M Innovative Properties Company Touch Screen Having Reduced Visibility Transparent Conductor Pattern
US8059099B2 (en) 2006-06-02 2011-11-15 Apple Inc. Techniques for interactive input to portable electronic devices
US9244561B2 (en) 2006-06-09 2016-01-26 Apple Inc. Touch screen liquid crystal display
US10191576B2 (en) 2006-06-09 2019-01-29 Apple Inc. Touch screen liquid crystal display
US10976846B2 (en) 2006-06-09 2021-04-13 Apple Inc. Touch screen liquid crystal display
US20070283832A1 (en) * 2006-06-09 2007-12-13 Apple Computer, Inc. Imprint circuit patterning
US8654083B2 (en) 2006-06-09 2014-02-18 Apple Inc. Touch screen liquid crystal display
US8432371B2 (en) 2006-06-09 2013-04-30 Apple Inc. Touch screen liquid crystal display
US11886651B2 (en) 2006-06-09 2024-01-30 Apple Inc. Touch screen liquid crystal display
US8451244B2 (en) 2006-06-09 2013-05-28 Apple Inc. Segmented Vcom
US9268429B2 (en) 2006-06-09 2016-02-23 Apple Inc. Integrated display and touch screen
US11175762B2 (en) 2006-06-09 2021-11-16 Apple Inc. Touch screen liquid crystal display
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US9575610B2 (en) 2006-06-09 2017-02-21 Apple Inc. Touch screen liquid crystal display
US8514185B2 (en) 2006-07-06 2013-08-20 Apple Inc. Mutual capacitance touch sensing device
US10139870B2 (en) 2006-07-06 2018-11-27 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US9360967B2 (en) 2006-07-06 2016-06-07 Apple Inc. Mutual capacitance touch sensing device
US10359813B2 (en) 2006-07-06 2019-07-23 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US9405421B2 (en) 2006-07-06 2016-08-02 Apple Inc. Mutual capacitance touch sensing device
US10890953B2 (en) 2006-07-06 2021-01-12 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US8022935B2 (en) 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US7795553B2 (en) 2006-09-11 2010-09-14 Apple Inc. Hybrid button
US8044314B2 (en) 2006-09-11 2011-10-25 Apple Inc. Hybrid button
US10180732B2 (en) 2006-10-11 2019-01-15 Apple Inc. Gimballed scroll wheel
US20080284742A1 (en) * 2006-10-11 2008-11-20 Prest Christopher D Method and apparatus for implementing multiple push buttons in a user input device
US8274479B2 (en) 2006-10-11 2012-09-25 Apple Inc. Gimballed scroll wheel
US20080088597A1 (en) * 2006-10-11 2008-04-17 Apple Inc. Sensor configurations in a user input device
US9201556B2 (en) 2006-11-08 2015-12-01 3M Innovative Properties Company Touch location sensing system and method employing sensor data fitting to a predefined curve
US8482530B2 (en) 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
US20080137208A1 (en) * 2006-11-22 2008-06-12 Omnitech Partners, Inc. System and method for optical image generator and injector
US7554740B2 (en) 2006-11-22 2009-06-30 Omnitech Partners, Inc. System and method for optical image generator and injector
US20180239474A1 (en) * 2006-11-29 2018-08-23 Japan Display Inc Liquid crystal display device with touch screen
US10191606B2 (en) * 2006-11-29 2019-01-29 Japan Display Inc. Liquid crystal display device with touch screen
WO2008076237A2 (en) 2006-12-15 2008-06-26 Apple Inc. Pet-based touchpad
US7948477B2 (en) 2006-12-15 2011-05-24 Apple Inc. PET-based touchpad
WO2008076237A3 (en) * 2006-12-15 2008-08-28 Apple Inc Pet-based touchpad
US9626061B2 (en) 2006-12-15 2017-04-18 Apple Inc. PET-based touch pad
US20110181550A1 (en) * 2006-12-15 2011-07-28 Steve Porter Hotelling Pet-based touch pad
CN102778971A (en) * 2006-12-15 2012-11-14 苹果公司 Pet-based touchpad
US9354753B2 (en) * 2006-12-15 2016-05-31 Apple Inc. PET-based touch pad
US20080142281A1 (en) * 2006-12-19 2008-06-19 3M Innovative Properties Company Capacitance measuring circuit and method
US8207944B2 (en) 2006-12-19 2012-06-26 3M Innovative Properties Company Capacitance measuring circuit and method
US20080149402A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered stylus employing low current power converter
US20080150917A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Oscillator circuit for use in an untethered stylus
US20080149401A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered stylus employing separate communication channels
US8243049B2 (en) 2006-12-20 2012-08-14 3M Innovative Properties Company Untethered stylus employing low current power converter
US20080150916A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered device employing tunable resonant circuit
US8134542B2 (en) 2006-12-20 2012-03-13 3M Innovative Properties Company Untethered stylus employing separate communication and power channels
US20080150550A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Self-tuning drive source employing input impedance phase detection
US8040329B2 (en) 2006-12-20 2011-10-18 3M Innovative Properties Company Frequency control circuit for tuning a resonant circuit of an untethered device
US20080150658A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Frequency control circuit for tuning a resonant circuit of an untethered device
US7436164B2 (en) 2006-12-20 2008-10-14 3M Innovative Properties Company Untethered device employing tunable resonant circuit
US7956851B2 (en) 2006-12-20 2011-06-07 3M Innovative Properties Company Self-tuning drive source employing input impedance phase detection
US7787259B2 (en) 2006-12-28 2010-08-31 3M Innovative Properties Company Magnetic shield for use in a location sensing system
US20080156546A1 (en) * 2006-12-28 2008-07-03 3M Innovative Properties Company Untethered stylus empolying multiple reference frequency communication
US20080158848A1 (en) * 2006-12-28 2008-07-03 3M Innovative Properties Company Magnetic shield for use in a location sensing system
US7916501B2 (en) 2006-12-28 2011-03-29 3M Innovative Properties Company Magnetic shield for use in a location sensing system
US20080158165A1 (en) * 2006-12-28 2008-07-03 3M Innovative Properties Company Location sensing system and method employing adaptive drive signal adjustment
US8159474B2 (en) 2006-12-28 2012-04-17 3M Innovative Properties Company Untethered stylus employing multiple reference frequency communication
US8040330B2 (en) 2006-12-28 2011-10-18 3M Innovative Properties Company Untethered stylus empolying multiple reference frequency communication
US20100188832A1 (en) * 2006-12-28 2010-07-29 3M Innovative Properties Company Magnetic shield for use in a location sensing system
US8089474B2 (en) 2006-12-28 2012-01-03 3M Innovative Properties Company Location sensing system and method employing adaptive drive signal adjustment
US20110094993A1 (en) * 2007-01-03 2011-04-28 Mark Arthur Hamblin Double-sided touch sensitive panel and flex circuit bonding
US7999795B2 (en) * 2007-01-03 2011-08-16 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
US20080158181A1 (en) * 2007-01-03 2008-07-03 Apple Computer, Inc. Double-sided touch sensitive panel and flex circuit bonding
US8026905B2 (en) 2007-01-03 2011-09-27 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
US8026903B2 (en) 2007-01-03 2011-09-27 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US8446386B2 (en) 2007-01-03 2013-05-21 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
US20110094098A1 (en) * 2007-01-03 2011-04-28 Mark Arthur Hamblin Double-sided touch sensitive panel and flex circuit bonding
AU2012244145B2 (en) * 2007-01-05 2014-01-23 Apple Inc. Touch screen stack-ups
AU2011201721B2 (en) * 2007-01-05 2012-08-02 Apple Inc. Touch screen stack-ups
US20170010750A1 (en) * 2007-01-05 2017-01-12 Apple Inc. Touch screen stack-ups
AU2014210674B2 (en) * 2007-01-05 2016-11-10 Apple Inc. Touch screen stack-ups
US20080165158A1 (en) * 2007-01-05 2008-07-10 Apple Inc. Touch screen stack-ups
AU2011201720B2 (en) * 2007-01-05 2012-09-06 Apple Inc. Touch screen stack-ups
AU2012244161B2 (en) * 2007-01-05 2014-04-24 Apple Inc. Touch screen stack-ups
US20150309641A1 (en) * 2007-01-05 2015-10-29 Apple Inc. Touch screen stack-up processing
US20080165139A1 (en) * 2007-01-05 2008-07-10 Apple Inc. Touch screen stack-up processing
US10613665B2 (en) * 2007-01-05 2020-04-07 Apple Inc. Touch screen stack-up processing
AU2012244160B2 (en) * 2007-01-05 2014-05-22 Apple Inc. Touch screen stack-ups
US10521065B2 (en) * 2007-01-05 2019-12-31 Apple Inc. Touch screen stack-ups
CN106227395A (en) * 2007-01-05 2016-12-14 苹果公司 Touch screen stack-ups
US9710095B2 (en) * 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
US20080213581A1 (en) * 2007-01-17 2008-09-04 Chih-Cheng Chen Input device for a man-machine interface
US20110143105A1 (en) * 2007-01-18 2011-06-16 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US20080176042A1 (en) * 2007-01-18 2008-07-24 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US20110135892A1 (en) * 2007-01-18 2011-06-09 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US20110141059A1 (en) * 2007-01-18 2011-06-16 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US20110147340A1 (en) * 2007-01-18 2011-06-23 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US8462278B2 (en) 2007-01-18 2013-06-11 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US8467006B2 (en) 2007-01-18 2013-06-18 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US8467005B2 (en) 2007-01-18 2013-06-18 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US20080185191A1 (en) * 2007-02-02 2008-08-07 Darfon Electronics Corp. Electronic product and touchpad structure thereof and method for forming the same
US20080230177A1 (en) * 2007-03-19 2008-09-25 White Electronic Designs Corp. Enhanced liquid crystal display system and methods
EP2137570A4 (en) * 2007-03-19 2011-12-21 Via Optronics Gmbh Enhanced liquid crystal display system and methods
EP2137570A1 (en) * 2007-03-19 2009-12-30 White Electronic Designs Corp. Enhanced liquid crystal display system and methods
US9348167B2 (en) 2007-03-19 2016-05-24 Via Optronics Gmbh Enhanced liquid crystal display system and methods
US20080252614A1 (en) * 2007-04-11 2008-10-16 Naoki Tatehata Touch panel
US20080261057A1 (en) * 2007-04-20 2008-10-23 White Electronic Designs Corp. Bezelless display system
US7924362B2 (en) 2007-04-20 2011-04-12 Via Optronics, Llc Bezelless display system having a display assembly with an overlay including a transparent section optically bonded to a display region with an optical layer that includes a pre-cured adhesive preform
WO2008133999A1 (en) * 2007-04-24 2008-11-06 White Electronic Designs Corp. Interactive display system
US20080266273A1 (en) * 2007-04-24 2008-10-30 White Electronic Designs Corp. Interactive display system
US7651830B2 (en) 2007-06-01 2010-01-26 3M Innovative Properties Company Patterned photoacid etching and articles therefrom
US20080299486A1 (en) * 2007-06-01 2008-12-04 3M Innovative Properties Company Patterned Photoacid Etching and Articles Therefrom
US20080309633A1 (en) * 2007-06-13 2008-12-18 Apple Inc. Touch-sensitive display
NL2001672C2 (en) * 2007-06-13 2009-09-29 Apple Inc Touch sensitive display.
US20090051672A1 (en) * 2007-08-24 2009-02-26 Innolux Display Corp. Electro-wetting display device with touch mode
US8237049B2 (en) * 2007-08-29 2012-08-07 The Boeing Company Photovoltaic cells with selectively patterned transparent conductive coatings, and associated methods
US20090056799A1 (en) * 2007-08-29 2009-03-05 Kinsey Geoffrey S Photovoltaic cells with selectively patterned transparent conductive coatings, and associated methods
US10866718B2 (en) 2007-09-04 2020-12-15 Apple Inc. Scrolling techniques for user interfaces
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US8330061B2 (en) 2007-09-04 2012-12-11 Apple Inc. Compact input device
US7910843B2 (en) 2007-09-04 2011-03-22 Apple Inc. Compact input device
US8674950B2 (en) * 2007-09-06 2014-03-18 Cypress Semiconductor Corporation Dual-sensing-mode touch-sensor device
US20090066669A1 (en) * 2007-09-06 2009-03-12 Dana Jon Olson Dual-sensing-mode touch-sensor device
TWI455000B (en) * 2007-09-06 2014-10-01 Cypress Semiconductor Corp Dual-sensing-mode touch-sensor device
WO2009039089A1 (en) * 2007-09-17 2009-03-26 Apple Inc. Device having cover with integrally formed sensor
US10331278B2 (en) 2007-10-04 2019-06-25 Apple Inc. Single-layer touch-sensitive display
US9317165B2 (en) 2007-10-04 2016-04-19 Apple Inc. Single layer touch-sensitive display
US11269467B2 (en) 2007-10-04 2022-03-08 Apple Inc. Single-layer touch-sensitive display
US8633915B2 (en) 2007-10-04 2014-01-21 Apple Inc. Single-layer touch-sensitive display
US8416198B2 (en) 2007-12-03 2013-04-09 Apple Inc. Multi-dimensional scroll wheel
US8866780B2 (en) 2007-12-03 2014-10-21 Apple Inc. Multi-dimensional scroll wheel
US9215301B2 (en) * 2007-12-13 2015-12-15 Creator Technology B.V. Electronic device with a flexible panel and method for manufacturing a flexible panel
US20160077633A1 (en) * 2007-12-13 2016-03-17 Creator Technology B. V. Electronic device with a flexible panel and method for manufacturing a flexible panel
US10572074B2 (en) * 2007-12-13 2020-02-25 Samsung Electronics Co., Ltd. Electronic device with a flexible panel and method for manufacturing a flexible panel
US20110043479A1 (en) * 2007-12-13 2011-02-24 Polymer Vision Limited Electronic Device With A Flexible Panel And Method For Manufacturing A Flexible Panel
US8619039B2 (en) * 2007-12-21 2013-12-31 Motorola Mobility Llc Translucent touch screen devices including low resistive mesh
US20090160782A1 (en) * 2007-12-21 2009-06-25 Motorola, Inc. Translucent touch screen devices including low resistive mesh
US8310454B2 (en) * 2007-12-21 2012-11-13 Motorola Mobility Llc Translucent touch screens including invisible electronic component connections
US20090160783A1 (en) * 2007-12-21 2009-06-25 Motorola, Inc. Translucent touch screens including invisible elecronitc component connections
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel
US11294503B2 (en) 2008-01-04 2022-04-05 Apple Inc. Sensor baseline offset adjustment for a subset of sensor output values
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
US9569039B2 (en) * 2008-02-18 2017-02-14 Tpk Touch Solutions Inc. Capacitive touch panel
US20090207151A1 (en) * 2008-02-18 2009-08-20 Tpk Touch Solutions Inc. Capacitive Touch Panel
US9569040B2 (en) * 2008-02-18 2017-02-14 Tpk Touch Solutions Inc. Capacitive touch panel
US20120162130A1 (en) * 2008-02-18 2012-06-28 Chen-Yu Liu Capacitive touch panel
US8665226B2 (en) * 2008-02-18 2014-03-04 Tpk Touch Solutions Inc. Capacitive touch panel
US9606675B2 (en) * 2008-02-18 2017-03-28 Tpk Touch Solutions Inc. Capacitive touch panel
WO2009108758A3 (en) * 2008-02-28 2009-11-19 3M Innovative Properties Company Touch screen sensor with low visibility conductors
US9487040B2 (en) 2008-02-28 2016-11-08 3M Innovative Properties Company Methods of patterning a conductor on a substrate
US8932475B2 (en) 2008-02-28 2015-01-13 3M Innovative Properties Company Methods of patterning a conductor on a substrate
US8508680B2 (en) 2008-02-28 2013-08-13 3M Innovative Properties Company Touch screen sensor with low visibility conductors
US9454256B2 (en) 2008-03-14 2016-09-27 Apple Inc. Sensor configurations of an input device that are switchable based on mode
US20090229892A1 (en) * 2008-03-14 2009-09-17 Apple Inc. Switchable sensor configurations
US8872786B2 (en) * 2008-03-25 2014-10-28 Japan Display West Inc. Capacitive input device, display device with input function, and electronic apparatus
US20090244028A1 (en) * 2008-03-25 2009-10-01 Epson Imaging Devices Corporation Capacitive input device, display device with input function, and electronic apparatus
US8576193B2 (en) 2008-04-25 2013-11-05 Apple Inc. Brick layout and stackup for a touch screen
US20090314621A1 (en) * 2008-04-25 2009-12-24 Apple Inc. Brick Layout and Stackup for a Touch Screen
US8487898B2 (en) 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
US8289719B2 (en) * 2008-06-13 2012-10-16 E Ink Holdings Inc. Flexible display module and method of manufacturing the same
US20090310314A1 (en) * 2008-06-13 2009-12-17 Ted-Hong Shinn Flexible Display Module and Method of Manufacturing the same
US20100007621A1 (en) * 2008-07-11 2010-01-14 Kang Sung-Ku Touch screen panel and method of fabricating the same
EP2144145A1 (en) * 2008-07-11 2010-01-13 Samsung Mobile Display Co., Ltd. Touch screen panel and method of fabricating the same
US8279201B2 (en) 2008-07-11 2012-10-02 Samsung Display Co., Ltd. Touch screen panel and method of fabricating the same
US9910545B2 (en) * 2008-07-18 2018-03-06 Nitto Denko Corporation Transparent conductive film and touch panel
US20100013798A1 (en) * 2008-07-18 2010-01-21 Nitto Denko Corporation Transparent conductive film and touch panel
US8279187B2 (en) 2008-08-01 2012-10-02 3M Innovative Properties Company Touch sensitive devices with composite electrodes
US8726497B2 (en) 2008-08-01 2014-05-20 3M Innovative Properties Company Methods of making composite electrodes
US20100028811A1 (en) * 2008-08-01 2010-02-04 3M Innovative Properties Company Methods of making composite electrodes
US20090219258A1 (en) * 2008-08-01 2009-09-03 3M Innovative Properties Company Touch screen sensor with low visibility conductors
US8284332B2 (en) 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
US20100026664A1 (en) * 2008-08-01 2010-02-04 Geaghan Bernard O Touch sensitive devices with composite electrodes
US8405633B2 (en) 2008-08-01 2013-03-26 3M Innovative Properties Company Touch sensitive devices with composite electrodes
US20100053221A1 (en) * 2008-09-03 2010-03-04 Canon Kabushiki Kaisha Information processing apparatus and operation method thereof
US20100060568A1 (en) * 2008-09-05 2010-03-11 Apple Inc. Curved surface input device with normalized capacitive sensing
US20100059294A1 (en) * 2008-09-08 2010-03-11 Apple Inc. Bandwidth enhancement for a touch sensor panel
US20100065342A1 (en) * 2008-09-15 2010-03-18 Thin Film Devices, Inc. Touch screen having reduced reflection
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit
US20100141608A1 (en) * 2008-12-09 2010-06-10 Lili Huang Index Matching For Touch Screens
US8319747B2 (en) 2008-12-11 2012-11-27 Apple Inc. Single layer touch panel with segmented drive and sense electrodes
US8395590B2 (en) 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
US20100164881A1 (en) * 2008-12-25 2010-07-01 Au Optronics Corp. Touch Panel Structure
US20100174987A1 (en) * 2009-01-06 2010-07-08 Samsung Electronics Co., Ltd. Method and apparatus for navigation between objects in an electronic apparatus
USRE44866E1 (en) 2009-01-16 2014-04-29 Samsung Display Co., Ltd. Touch screen panel
US8330740B2 (en) 2009-01-16 2012-12-11 Samsung Display Co., Ltd. Touch screen panel
US9298332B2 (en) 2009-01-16 2016-03-29 Samsung Display Co., Ltd. Touch screen panel
US9001079B2 (en) 2009-01-16 2015-04-07 Samsung Display Co., Ltd. Touch screen panel
US20100182250A1 (en) * 2009-01-16 2010-07-22 Kang Sung-Ku Touch screen panel
US20100194696A1 (en) * 2009-02-02 2010-08-05 Shih Chang Chang Touch Regions in Diamond Configuration
US9996175B2 (en) 2009-02-02 2018-06-12 Apple Inc. Switching circuitry for touch sensitive display
US9261997B2 (en) 2009-02-02 2016-02-16 Apple Inc. Touch regions in diamond configuration
US20100238133A1 (en) * 2009-03-17 2010-09-23 Wintek Corporation Capacitive touch panel
US10001888B2 (en) 2009-04-10 2018-06-19 Apple Inc. Touch sensor panel design
US20110007020A1 (en) * 2009-04-10 2011-01-13 Seung Jae Hong Touch sensor panel design
US8593425B2 (en) 2009-04-10 2013-11-26 Apple Inc. Touch sensor panel design
US8982096B2 (en) 2009-04-10 2015-03-17 Apple, Inc. Touch sensor panel design
US20100261012A1 (en) * 2009-04-10 2010-10-14 Jen-Shiun Huang Flexible Display Panel and Method of Manufacturing the same
US8593410B2 (en) 2009-04-10 2013-11-26 Apple Inc. Touch sensor panel design
US9354751B2 (en) 2009-05-15 2016-05-31 Apple Inc. Input device with optimized capacitive sensing
US8957874B2 (en) 2009-06-29 2015-02-17 Apple Inc. Touch sensor panel design
US20100328228A1 (en) * 2009-06-29 2010-12-30 John Greer Elias Touch sensor panel design
US9582131B2 (en) 2009-06-29 2017-02-28 Apple Inc. Touch sensor panel design
US8872771B2 (en) 2009-07-07 2014-10-28 Apple Inc. Touch sensing device having conductive nodes
US9519368B2 (en) 2009-07-23 2016-12-13 Samsung Display Co., Ltd. Touch screen panel and method of manufacturing the same
US20110018815A1 (en) * 2009-07-23 2011-01-27 Samsung Electronics Co., Ltd. Touch screen panel and method of manufacturing the same
US9007344B2 (en) * 2009-07-23 2015-04-14 Samsung Display Co., Ltd. Touch screen panel and method of manufacturing the same
US9016965B1 (en) * 2009-07-31 2015-04-28 Kevin R. Stoops Keyboard/keyboard enclosure
US20110032207A1 (en) * 2009-08-07 2011-02-10 Ritdisplay Corporation Capacitive touch sensor
US9040829B2 (en) * 2009-10-23 2015-05-26 M-Solv Limited Capacitive touch panels
US20120211264A1 (en) * 2009-10-23 2012-08-23 M-Solv Limited Capacitive touch panels
US20110128252A1 (en) * 2009-12-01 2011-06-02 Lg Innotek Co., Ltd. Capacitance touch panel
US9280221B2 (en) * 2009-12-01 2016-03-08 Lg Innotek Co., Ltd. Capacitance touch panel
US20110134050A1 (en) * 2009-12-07 2011-06-09 Harley Jonah A Fabrication of touch sensor panel using laser ablation
US20110132670A1 (en) * 2009-12-09 2011-06-09 J Touch Corporation Capacitive touch device structure
US8730184B2 (en) 2009-12-16 2014-05-20 3M Innovative Properties Company Touch sensitive device with multilayer electrode having improved optical and electrical performance
US20110148823A1 (en) * 2009-12-22 2011-06-23 Yang-Lin Chen Touch panel
US20110199328A1 (en) * 2010-02-18 2011-08-18 Flextronics Ap, Llc Touch screen system with acoustic and capacitive sensing
US20110221699A1 (en) * 2010-03-11 2011-09-15 Samsung Electronics Co. Ltd. Touch screen apparatus
US9904393B2 (en) 2010-06-11 2018-02-27 3M Innovative Properties Company Positional touch sensor with force measurement
US10613668B2 (en) 2010-06-11 2020-04-07 3M Innovative Properties Company Touch sensor having au-shaped electronically conducive micromesh
WO2011156447A1 (en) 2010-06-11 2011-12-15 3M Innovative Properties Company Positional touch sensor with force measurement
DE112011101994B4 (en) 2010-06-14 2022-09-08 Lg Electronics Inc. Touch panel display device
US20120021159A1 (en) * 2010-07-23 2012-01-26 Elan Microelectronics Corporation Transparent touch panel with improved cured adhesiveness
US9836144B2 (en) * 2010-07-30 2017-12-05 Lg Innotek Co., Ltd. Touch panel
US9652088B2 (en) 2010-07-30 2017-05-16 Apple Inc. Fabrication of touch sensor panel using laser ablation
US20130194220A1 (en) * 2010-07-30 2013-08-01 Lg Innotek Co., Ltd. Touch panel
US20120062505A1 (en) * 2010-09-14 2012-03-15 Samsung Electro-Mechanics Co., Ltd. Capacitive touch panel and method of manufacturing the same
EP2634675A4 (en) * 2010-10-27 2017-07-26 Nitto Denko Corporation Display panel device with touch input function, optical unit for said display panel device, and production method for same
US9513747B2 (en) 2010-11-04 2016-12-06 Nitto Denko Corporation Transparent conductive film and touch panel
WO2012067789A3 (en) * 2010-11-17 2012-07-26 3M Innovative Properties Company Method of reducing electromigration of silver and article made thereby
US20120133613A1 (en) * 2010-11-29 2012-05-31 Beijing Boe Optoelectronics Technology Co., Ltd. Capacitive touch panel
US20120138352A1 (en) * 2010-12-07 2012-06-07 Qrg Limited Substrate for electrical component and method
US9077344B2 (en) * 2010-12-07 2015-07-07 Atmel Corporation Substrate for electrical component and method
US8922505B2 (en) * 2010-12-14 2014-12-30 Samsung Display Co., Ltd. Touch screen panel and fabrication method thereof
US20120146922A1 (en) * 2010-12-14 2012-06-14 Kang Sung-Ku Touch screen panel and fabrication method thereof
US8743300B2 (en) 2010-12-22 2014-06-03 Apple Inc. Integrated touch screens
US9727193B2 (en) * 2010-12-22 2017-08-08 Apple Inc. Integrated touch screens
US20150370378A1 (en) * 2010-12-22 2015-12-24 Apple Inc. Integrated touch screens
US9146414B2 (en) 2010-12-22 2015-09-29 Apple Inc. Integrated touch screens
US9025090B2 (en) 2010-12-22 2015-05-05 Apple Inc. Integrated touch screens
US8804056B2 (en) 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
US10409434B2 (en) * 2010-12-22 2019-09-10 Apple Inc. Integrated touch screens
US8743327B2 (en) 2011-03-29 2014-06-03 Alps Electric Co., Ltd. Input device and method for manufacturing the same
US8817224B2 (en) 2011-03-29 2014-08-26 Alps Electric Co., Ltd. Input device and method for manufacturing the same
EP2515217A1 (en) * 2011-04-21 2012-10-24 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
EP2515218A1 (en) * 2011-04-21 2012-10-24 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
EP2518600A1 (en) * 2011-04-27 2012-10-31 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
EP2518598A1 (en) * 2011-04-27 2012-10-31 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US20120273257A1 (en) * 2011-04-29 2012-11-01 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US20120273256A1 (en) * 2011-04-29 2012-11-01 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US20120279758A1 (en) * 2011-05-03 2012-11-08 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
US9557859B2 (en) 2011-06-09 2017-01-31 3M Innovative Properties Company Method of making touch sensitive device with multilayer electrode and underlayer
KR20140034205A (en) * 2011-07-11 2014-03-19 후지필름 가부시키가이샤 Conductive laminate body, touch panel, and display device
US9642245B2 (en) 2011-07-11 2017-05-02 Fujifilm Corporation Conductive sheet, touch panel, display device, method for producing said conductive sheet, and non-transitory recording medium
KR101742108B1 (en) * 2011-07-11 2017-06-15 후지필름 가부시키가이샤 Conductive sheet, touch panel, display device, and method for producing said conductive sheet
KR101677508B1 (en) * 2011-07-11 2016-11-18 후지필름 가부시키가이샤 Conductive laminate body, touch panel, and display device
US9642243B2 (en) 2011-09-30 2017-05-02 3M Innovative Properties Company Flexible touch sensor with fine pitch interconnect
US8669476B2 (en) 2011-10-06 2014-03-11 Nitto Denko Corporation Transparent conductive film
US9332633B2 (en) 2011-10-06 2016-05-03 Nitto Denko Corporation Transparent conductive film
EP2579277A1 (en) * 2011-10-06 2013-04-10 Nitto Denko Corporation Transparent conductive film
US20140071356A1 (en) * 2011-10-25 2014-03-13 Unipixel Displays, Inc. Polarizer capacitive touch screen
WO2013063183A1 (en) * 2011-10-25 2013-05-02 Unipixel Displays, Inc. Polarizer capacitive touch screen
KR101611379B1 (en) 2011-10-25 2016-04-12 유니-픽셀 디스플레이스, 인코포레이티드 Polarizer capacitive touch screen
GB2510293A (en) * 2011-10-25 2014-07-30 Unipixel Displays Inc Polarizer capacitive touch screen
US9158144B2 (en) * 2011-10-25 2015-10-13 Unipixel Displays, Inc. Polarizer capacitive touch screen
US9857923B2 (en) 2011-10-27 2018-01-02 Lg Innotek Co., Ltd. Touch panel including an elastic intermediate layer
WO2013062385A1 (en) * 2011-10-27 2013-05-02 Lg Innotek Co., Ltd. Touch panel
US10558281B2 (en) 2011-11-11 2020-02-11 Apple Inc. Touch sensor panel having an index matching passivation layer
US10444874B2 (en) 2011-11-11 2019-10-15 Apple Inc. Touch sensor panel having an index matching passivation layer
US10659044B2 (en) * 2012-01-17 2020-05-19 Boe Technology Group Co., Ltd. On-display-sensor stack
US20190229729A1 (en) * 2012-01-17 2019-07-25 Atmel Corporation On-Display-Sensor Stack
US20130181911A1 (en) * 2012-01-17 2013-07-18 Esat Yilmaz On-Display-Sensor Stack
CN103294291A (en) * 2012-03-05 2013-09-11 联胜(中国)科技有限公司 Touch control board
US9874975B2 (en) 2012-04-16 2018-01-23 Apple Inc. Reconstruction of original touch image from differential touch image
WO2014033058A1 (en) * 2012-08-28 2014-03-06 Oc Oerlikon Balzers Ag Patterned conductor touch screen
US9557846B2 (en) 2012-10-04 2017-01-31 Corning Incorporated Pressure-sensing touch system utilizing optical and capacitive systems
US9099222B2 (en) 2012-10-10 2015-08-04 Carestream Health, Inc. Patterned films and methods
WO2014058562A3 (en) * 2012-10-10 2014-10-16 Carestream Health, Inc. Patterned films and methods
CN104704456A (en) * 2012-10-10 2015-06-10 卡尔斯特里姆保健公司 Patterned films and methods
US20140125624A1 (en) * 2012-11-02 2014-05-08 Samsung Electro-Mechanics Co., Ltd. Touch screen panel and portable electronic apparatus having the same
US20140139239A1 (en) * 2012-11-19 2014-05-22 Zrro Technologies (2009) Ltd. Transparent proximity sensor
US8829926B2 (en) * 2012-11-19 2014-09-09 Zrro Technologies (2009) Ltd. Transparent proximity sensor
US20140152912A1 (en) * 2012-11-30 2014-06-05 Lg Display Co., Ltd. Oled display device having touch sensor and method of manufacturing the same
US9853092B2 (en) * 2012-11-30 2017-12-26 Lg Display Co., Ltd. OLED display device having touch sensor and method of manufacturing the same
US20140204062A1 (en) * 2013-01-23 2014-07-24 Sony Corporation Head-mounted display, display apparatus, and input apparatus
US9632318B2 (en) * 2013-01-23 2017-04-25 Sony Corporation Head-mounted display including an operating element having a longitudinal direction in a direction of a first axis, display apparatus, and input apparatus
US9483147B2 (en) * 2013-03-30 2016-11-01 Shenzhen O-Film Tech Co., Ltd. Monolayer touch screen and method for manufacturing the same
US20140295127A1 (en) * 2013-03-30 2014-10-02 Shenzhen O-Film Tech Co., Ltd Monolayer touch screen and method for manufacturing the same
US9804697B2 (en) * 2013-04-12 2017-10-31 Shenzhen O-Film Tech Co., Ltd. Double-layer touch screen and method for making the same
US20140307183A1 (en) * 2013-04-12 2014-10-16 Shenzhen O-Film Tech Co., Ltd Double-layer touch screen and method for making the same
CN104380230A (en) * 2013-05-27 2015-02-25 日东电工株式会社 Touchscreen sensor
US9719770B2 (en) * 2013-05-27 2017-08-01 Nitto Denko Corporation Touchscreen sensor
US20150022222A1 (en) * 2013-05-27 2015-01-22 Nitto Denko Corporation Touchscreen sensor
US9886141B2 (en) 2013-08-16 2018-02-06 Apple Inc. Mutual and self capacitance touch measurements in touch panel
US20150077646A1 (en) * 2013-09-17 2015-03-19 Apple Inc. Touch Sensitive Display With Graded Index Layer
US20150291754A1 (en) * 2014-04-15 2015-10-15 Celgard, Llc Electrically conductive, transparent, translucent, and/or reflective materials
US10934440B2 (en) 2014-04-15 2021-03-02 Celgard, Llc Electrically conductive, transparent, translucent, and/or reflective materials
US10030157B2 (en) * 2014-04-15 2018-07-24 Celgard, Llc Electrically conductive, transparent, translucent, and/or reflective materials
US10936120B2 (en) 2014-05-22 2021-03-02 Apple Inc. Panel bootstraping architectures for in-cell self-capacitance
US9817496B2 (en) * 2014-06-19 2017-11-14 Tpk Touch Solutions (Xiamen) Inc. Touch panel
US20150370357A1 (en) * 2014-06-19 2015-12-24 Tpk Touch Solutions (Xiamen) Inc. Touch panel
US20150370395A1 (en) * 2014-06-19 2015-12-24 Tpk Touch Solutions (Xiamen) Inc. Touch display device
US9658709B2 (en) * 2014-06-19 2017-05-23 Tpk Touch Solutions (Xiamen) Inc. Touch display device
US10289251B2 (en) 2014-06-27 2019-05-14 Apple Inc. Reducing floating ground effects in pixelated self-capacitance touch screens
US20150378468A1 (en) * 2014-06-30 2015-12-31 Synaptics Incorporated Techniques to determine x-position in gradient sensors
US9778798B2 (en) * 2014-06-30 2017-10-03 Synaptics Incorporated Techniques to determine X-position in gradient sensors
US9280251B2 (en) 2014-07-11 2016-03-08 Apple Inc. Funneled touch sensor routing
US9880655B2 (en) 2014-09-02 2018-01-30 Apple Inc. Method of disambiguating water from a finger touch on a touch sensor panel
US11625124B2 (en) 2014-09-22 2023-04-11 Apple Inc. Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
US10705658B2 (en) 2014-09-22 2020-07-07 Apple Inc. Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
US10712867B2 (en) 2014-10-27 2020-07-14 Apple Inc. Pixelated self-capacitance water rejection
US11561647B2 (en) 2014-10-27 2023-01-24 Apple Inc. Pixelated self-capacitance water rejection
US11353985B2 (en) 2015-02-02 2022-06-07 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10795488B2 (en) 2015-02-02 2020-10-06 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10488992B2 (en) 2015-03-10 2019-11-26 Apple Inc. Multi-chip touch architecture for scalability
US20170038872A1 (en) * 2015-03-31 2017-02-09 Boe Technology Group Co., Ltd. Touch screen and preparation method thereof
US10131129B2 (en) * 2015-04-22 2018-11-20 Henghao Technology Co., Ltd. Stack film roll and stack film sheet obtained therefrom
US10365773B2 (en) 2015-09-30 2019-07-30 Apple Inc. Flexible scan plan using coarse mutual capacitance and fully-guarded measurements
US10534481B2 (en) 2015-09-30 2020-01-14 Apple Inc. High aspect ratio capacitive sensor panel
US10936087B2 (en) 2016-05-18 2021-03-02 Kevin R. Stoops Keyboard assembly
US10642374B2 (en) 2016-05-18 2020-05-05 Kevin R. Stoops Keyboard/keyboard enclosure
US10444918B2 (en) 2016-09-06 2019-10-15 Apple Inc. Back of cover touch sensors
US10740588B2 (en) * 2016-11-14 2020-08-11 Samsung Electronics Co., Ltd. Fingerprint sensor and method of manufacturing the same
US11301663B2 (en) 2016-11-14 2022-04-12 Samsung Electronics Co., Ltd. Fingerprint sensor and method of manufacturing the same
US10976883B2 (en) 2017-01-09 2021-04-13 Chengdu Boe Optelectronics Technology Co., Ltd. Touch substrate and touch display device
US10452179B2 (en) 2017-01-09 2019-10-22 Boe Technology Group Co., Ltd. Touch substrate and touch display device
US10386965B2 (en) 2017-04-20 2019-08-20 Apple Inc. Finger tracking in wet environment
US10642418B2 (en) 2017-04-20 2020-05-05 Apple Inc. Finger tracking in wet environment
USD948991S1 (en) 2017-05-18 2022-04-19 Kevin R. Stoops Bracket
TWI622921B (en) * 2017-09-06 2018-05-01 仁寶電腦工業股份有限公司 Capacitance value detecting method of touch device
US10539864B2 (en) 2018-02-08 2020-01-21 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
WO2019155418A1 (en) * 2018-02-08 2019-08-15 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US11099474B2 (en) 2018-02-08 2021-08-24 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US11762274B2 (en) 2018-02-08 2023-09-19 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
CN111656309A (en) * 2018-02-08 2020-09-11 佳殿玻璃有限公司 Capacitive touch panel with diffuser and patterned electrodes
CN109117525A (en) * 2018-07-25 2019-01-01 京东方科技集团股份有限公司 A kind of disappear shadow analogy method and the shadow simulator that disappears of touch screen
CN109521905A (en) * 2018-10-19 2019-03-26 业成科技(成都)有限公司 Touch-control display panel and its manufacturing method
US11665345B2 (en) 2018-11-16 2023-05-30 Hfi Innovation Inc. Method and apparatus of luma-chroma separated coding tree coding with constraints
US11536876B2 (en) * 2020-05-09 2022-12-27 Shanghai Tianma Micro-electronics Co., Ltd. Composite membrane, touchpad and display device
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel

Also Published As

Publication number Publication date
ATE473481T1 (en) 2010-07-15
WO2005040901A2 (en) 2005-05-06
TW200527304A (en) 2005-08-16
US8068186B2 (en) 2011-11-29
WO2005040901A3 (en) 2005-08-18
JP2007508639A (en) 2007-04-05
EP1678599B1 (en) 2010-07-07
EP1678599A2 (en) 2006-07-12
DE602004028035D1 (en) 2010-08-19
AU2004284746A1 (en) 2005-05-06
CN1867882A (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US8068186B2 (en) Patterned conductor touch screen having improved optics
US8264466B2 (en) Touch screen having reduced visibility transparent conductor pattern
US8743327B2 (en) Input device and method for manufacturing the same
KR100988654B1 (en) Capacitive input device
US10481743B2 (en) High-performance touch sensor and manufacturing method thereof
JP5095814B2 (en) Touch input device and electronic device
KR101328867B1 (en) Transparent adhesive unit and touch screen having the same
KR101181342B1 (en) Touch screen
KR101935434B1 (en) Window substrate, method of manufacturing the same and image display device including the same
US11067723B2 (en) Optical touch film, display device including the same, and manufacturing method thereof
CN102483656B (en) Input device and display device equipped with same
TW200928937A (en) Panel-type input device and electronic apparatus having the same
KR20070017296A (en) Patterned conductor touch screen having improved optics
EP2657818A2 (en) Touch panel and method of manufacturing the same
KR20150075908A (en) Touch sensor and method of manufacturing the same
KR20150007107A (en) Touch sensor
US20150049259A1 (en) Touch sensor module and manufacturing method thereof
KR20180124828A (en) Method of manufacturing a window substrate
KR101328763B1 (en) Transparent circuit substrate for touchscreen and method for fabricating the same
TWI636390B (en) Touch panel
CN111656309A (en) Capacitive touch panel with diffuser and patterned electrodes
KR102237833B1 (en) Touch panel
KR101426141B1 (en) Touch screen panel and method for fabricating the same
KR20160001206A (en) Touch panel
KR20120113154A (en) A method of manufacturing a touch sensor using fpcb and an apparatus for the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AUFDERHEIDE, BRIAN E.;SPANG, JOSEPH C.;MAAG, JONATHAN P.;REEL/FRAME:015078/0793

Effective date: 20040730

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20231129