US20050078256A1 - In plane switching mode liquid crystal display device and fabrication method thereof - Google Patents

In plane switching mode liquid crystal display device and fabrication method thereof Download PDF

Info

Publication number
US20050078256A1
US20050078256A1 US10/950,896 US95089604A US2005078256A1 US 20050078256 A1 US20050078256 A1 US 20050078256A1 US 95089604 A US95089604 A US 95089604A US 2005078256 A1 US2005078256 A1 US 2005078256A1
Authority
US
United States
Prior art keywords
layer
liquid crystal
ips mode
mode lcd
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/950,896
Inventor
Hyung Hong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Philips LCD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Philips LCD Co Ltd filed Critical LG Philips LCD Co Ltd
Assigned to LG. PHILIPS LCD CO., LTD. reassignment LG. PHILIPS LCD CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONG, HYUNG KI
Publication of US20050078256A1 publication Critical patent/US20050078256A1/en
Assigned to LG DISPLAY CO., LTD. reassignment LG DISPLAY CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LG PHILIPS LCD CO., LTD.
Priority to US13/043,114 priority Critical patent/US8199302B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer

Definitions

  • the present invention relates to a liquid crystal display device (LCD), and more particularly, to an In-Plane Switching (IPS) mode LCD in which a color filter layer and a thin film transistor are formed on the same substrate to drive the liquid crystal using a fringe field.
  • LCD liquid crystal display device
  • IPS In-Plane Switching
  • CTR cathode ray tube
  • a cathode ray tube has been most widely used among display devices for displaying image information on a screen.
  • CRTs are large and heavy compared with the display area.
  • the use of display devices has expanded to personal computers, notebook computers, wireless terminals, vehicle instrument panels, electronic display boards and the like.
  • information communication technology since it is possible to transmit a large amount of image information, increasing importance has been placed on a next generation display device capable of processing and displaying the large amount of image information.
  • next generation display devices are required to realize lighter, thinner, shorter and smaller characteristics, a high luminance, a large-sized screen, low power consumption and a low price.
  • LCD liquid crystal display devices
  • twisted nematic (TN) mode LCDs have been generally used.
  • TN mode type LCD after electrodes are formed on two substrates and liquid crystal directors are aligned twisted by 90°, a driving voltage is applied to the electrodes to drive the liquid crystal directors.
  • the TN mode LCD has a narrow viewing angle.
  • In-plane switching (IPS) mode LCDs optically compensated birefringence mode LCDs, etc. are examples of such LCDs.
  • the IPS mode LCD generates a horizontal electric field to drive the liquid crystal molecules in a horizontal state with respect to the substrates by forming two electrodes on an identical substrate and applying a voltage between the two electrodes.
  • the longer axis of the liquid crystal molecule does not stand up with respect to the substrates.
  • the IPS mode LCD has a small variation in the birefringence of liquid crystal according to a visual direction and thus has an excellent viewing angle characteristic compared with the TN mode LCD.
  • FIG. 1 is a sectional view of a related art IPS mode LCD.
  • a related art IPS mode LCD is formed by attaching a first substrate 118 and a second substrate 119 facing the first substrate 118 , and interposing a liquid crystal layer 130 therebetween.
  • a metal film is first deposited on the first substrate 118 and is patterned to form a plurality of gate lines and a plurality of gate electrode 109 branched from the respective gate lines and formed at a thin film transistor region.
  • a gate insulating layer 120 is formed on an entire surface of the first substrate including the gate electrode 109 , and then a semiconductor layer 115 forming an ohmic contact layer with an active layer 115 a is formed on a predetermined region of the gate insulating layer 120 .
  • a data line 110 forming a matrix configuration together with the gate line is formed.
  • source electrode 116 and drain electrode 117 of a thin film transistor are formed along with the data line 110 .
  • a common line and a common electrode 113 are formed to be parallel with the gate line 110 .
  • the common line and the common electrode 113 may be formed on the same layer as the gate electrode 109 .
  • a passivation film 128 is formed on the entire surface of the first substrate 118 constructed as above. After that, a pixel electrode 114 is formed to be electrically connected with the drain electrode 117 and be parallel to the data line 110 . On the entire surface of the first substrate 118 constructed as above, a first orientation film 129 is formed.
  • a black matrix 121 for preventing light from being leaked is formed on the second substrate 119 .
  • a color filter layer 122 consisting of color patterns of red (R), green (G), and blue (B) is formed between the black matrixes 121 .
  • an overcoat layer 123 for planarizing an upper surface thereof and protecting the underlying color filter layer 122 is formed on the color filter layer 122 .
  • a second orientation film 126 is formed on the overcoat layer 123 .
  • Edges between the first and second substrates 118 and 119 are sealed by a seal pattern (not shown) to prevent the liquid crystal layer 130 interposed between the first and second substrates 118 and 119 from being leaked.
  • Attaching of the first and second substrates 118 and 119 is determined by a margin on design of each substrate. Generally, preciseness of a few micrometers is required. If the attaching margin deviates from an allowed margin, light is leaked and accordingly a desired characteristic is not obtained.
  • an IPS mode LCD of one aspect includes: a first substrate and a second substrate; a thin film transistor and a color filter layer on the first substrate; a common electrode and a pixel electrode arranged in a zigzag configuration on the first substrate; and a liquid crystal layer between the first and second substrates.
  • a method of fabricating an IPS mode LCD includes: forming a color filter layer and a thin film transistor on a first substrate; forming a common electrode and a pixel electrode in a zigzag configuration on the thin film transistor; and forming a liquid crystal layer between the first substrate and a second substrate facing the first substrate.
  • FIG. 1 is a sectional view of a related art IPS mode LCD according to the related art
  • FIG. 2 is a plane view illustrating a schematic configuration of an IPS mode LCD having a COT structure according to an embodiment of the present invention
  • FIG. 3 is a sectional view taken along the line I-I′ of FIG. 2 ;
  • FIGS. 4A through 4C illustrate a method of fabricating an IPS mode LCD according to an embodiment of the present invention
  • FIGS. 5A and 5B are sectional views illustrating a schematic configuration of an IPS mode LCD having a TOC structure according to another embodiment of the present invention.
  • FIGS. 6A through 6C illustrate a method of fabricating an IPS mode LCD having a TOC structure according to another embodiment of the present invention.
  • FIG. 2 is a plane view illustrating a schematic configuration of an IPS mode LCD having a COT structure according to an embodiment of the present invention
  • FIG. 3 is a sectional view taken along the line I-I′ of FIG. 2 .
  • the IPS mode LCD has a color filter on TFT (COT) structure that a color filter layer is formed on an array substrate including a thin film transistor and prevents light passing through the common electrode and the pixel electrode from being absorbed into the color filter layer, thereby enhancing brightness.
  • COT color filter on TFT
  • the IPS mode LCD can be equivalently applied to IPS mode LCDs having a TFT on color filter (TOC) structure.
  • an array substrate of the IPS mode LCD is configured to include a plurality of gate lines 208 arranged spaced apart by a predetermined distance in parallel with each other in a first direction, a common line 231 arranged adjacent to and in parallel with the gate lines 208 , and a plurality of data lines 210 perpendicularly crossing the gate lines 208 and the common line 231 , and defining a pixel region together with the gate lines 208 .
  • the gate lines 208 and the data lines 210 are formed by depositing a metal film such as Al, Cu, Ta, Ti, Mo, a Mo alloy, an Al alloy and the like and patterning the deposited metal film.
  • a thin film transistor including a gate electrode 209 , a semiconductor layer 215 , a source electrode 216 , and a drain electrode 217 is formed at a crossing point of the gate line 208 and the data line 210 .
  • the source electrode 216 is connected with the data line 210 and the gate electrode is connected with the gate line 208 .
  • a pixel electrode 214 connected with the drain electrode 217 , and a common electrode 213 arranged in parallel with the pixel electrode 214 and connected with the common line 231 are formed.
  • the common line 231 may be formed extending on the gate line 208 to form a storage capacitor.
  • the pixel electrode 214 includes a plurality of vertical parts 214 b and a single horizontal part 214 a .
  • the plurality of vertical parts 214 b are electrically connected with the drain electrode 217 through a drain contact hole 233 and are spaced apart by a predetermined interval from one another.
  • the single horizontal part 214 a connects the plurality of vertical parts 214 b as one body.
  • the common electrode 213 includes a plurality of vertical parts 213 b and a single horizontal part 213 a .
  • the plurality of vertical parts 213 b extend downward from the common line 231 , and are interdigitally arranged with the vertical parts 214 b of the pixel electrode 214 , and the horizontal part 213 a connects the plurality of vertical parts 213 b as one body.
  • the vertical parts 213 b of the common electrode 213 are interdigitally arranged with and the vertical parts 214 b of the pixel electrode 214 in a zigzag configuration.
  • FIG. 2 by forming the common electrode 213 and the pixel electrode 214 in a bent structure of a zigzag configuration and performing an alignment process in one direction, it is possible to change the direction of an electric field applied to the injected liquid crystal.
  • the bend angle may be set to be less than 300 or in a range of 60-120° except for 90° with respect to the alignment direction of the liquid crystal layer by the alignment process (i.e., rubbing process). Specifically, the bend angle is set to be less than 30° when the dielectric anisotropy is positive, or to be in a range of 60-120° except for 90° when the dielectric anisotropy is negative. Chiral dopants may be added to the liquid crystal layer.
  • the common electrode 213 and the pixel electrode 214 are arranged such that alignment characteristic of the liquid crystal are symmetric to each other. Accordingly, liquid crystal molecules on a unit pixel region are aligned only in one direction but in multiple directions, thereby inducing multiple domains permitting a variety of alignment directions in one pixel region.
  • the data lines 210 , the pixel electrode 214 and/or the common electrode 213 has a bent structure.
  • a black matrix layer 240 is formed on the gate lines 208 , the data lines 210 and the TFT region.
  • a color filter layer 241 is also formed to display a desired color on the pixel region defined by the gate lines 208 and the data lines 210 crossing the gate lines 208 . If the data lines 210 are formed in a zigzag configuration, the black matrix layer and the color filter layer 241 are formed in a zigzag pattern.
  • the order of processes of forming the color filter layer 241 and the black matrix layer 240 may be exchanged. Also, the color filter layer 241 and the black matrix layer 240 may be formed on different layers. Alternatively, the black matrix layer 240 may be formed on the other substrate.
  • the IPS mode LCD is formed by attaching a first substrate 218 and a second substrate 219 facing the first substrate 218 , and forming a liquid crystal layer 230 between the first substrate 218 and the second substrate 219 .
  • a metal film is deposited on the first substrate 218 and is then patterned to form the plurality of gate lines (see 208 of FIG. 2 ), and the gate electrode 209 branched from the gate line 208 and extending to the TFT site.
  • a gate insulating layer 220 is formed on the entire surface of the first substrate 218 including the gate electrode 209 , and then a semiconductor layer 215 including an active layer 215 a and an ohmic contact layer 215 b is formed on the gate insulating layer 220 .
  • the data line 210 is formed on the gate insulating layer 220 so as to form a matrix configuration together with the gate line 208 .
  • the source electrode 216 and drain electrode 217 of a thin film transistor are formed concurrently with the date line 210 while the data line 210 is formed.
  • a passivation layer 228 is formed on the thin film transistor.
  • the passivation layer 228 may be formed from an organic material such as a photo-acryl and BCB (benzo cyclobutene) or inorganic materials such as silicon oxide (SiOx) and silicon nitride (SiNx).
  • the color filter layer 241 including a drain contact hole 233 is formed on the source/drain electrode 216 / 217 and the gate insulating layer 220 of the pixel region.
  • An overcoat layer 245 may be formed on an entire surface of a resultant structure of the first substrate 218 including the color filter layer 241 so as to planarize the resultant structure of the first substrate 218 .
  • the overcoat layer 245 also may be omitted.
  • the overcoat layer 245 is formed of a film of organic or inorganic material. On the overcoat layer 245 , the common electrode 213 and the pixel electrode 214 are formed.
  • the common electrode 213 and the pixel electrode 214 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes well.
  • the common electrode 213 and the pixel electrode 214 are formed in a zigzag configuration.
  • the data lines 210 may be also formed in a zigzag configuration.
  • the black matrix layer 240 and the color filter layer 241 may be formed in a zigzag configuration.
  • the black matrix layer 240 is formed on the TFT region, the gate lines 208 and the data lines 210 to prevent light from being leaked.
  • First and second alignment layers 229 and 226 are coated on facing surfaces of the first substrate 218 and the second substrate 219 .
  • the color filter layer 241 on the regions where the common electrode 213 and the pixel electrode 214 are positioned is removed and a hole may be formed instead of the color filter layer 241 .
  • FIGS. 4A through 4C illustrate a method of fabricating an IPS mode LCD according to an embodiment of the present invention.
  • a metal film is deposited on a substrate 218 and is then patterned to form a plurality of gate lines 208 , and a gate electrode 209 branched from each of the gate lines 208 at a TFT site.
  • a gate insulating layer 220 is formed on an entire surface of the substrate 218 including the gate electrode 209 , and then a semiconductor layer 215 including an active layer 215 a and an ohmic contact layer 215 b is formed on the gate insulating layer 220 .
  • a plurality of data lines 210 are formed on the gate insulating layer 220 so as to form a matrix configuration together with the gate lines 208 .
  • Source and drain electrodes 216 and 217 of a TFT are formed concurrently with the data lines 210 while the data lines 210 are formed.
  • the gate lines 208 and the data lines 210 are formed by depositing a metal film such as Al, Cu, Ta, Ti, Mo, a Mo ally, an Al alloy and the like and patterning the deposited metal film.
  • a black resin is coated on an entire surface of a resultant structure of the substrate 218 and is then patterned to form a black matrix layer 240 on the TFT, the data line 210 and the gate line 208 .
  • a color filter layer 241 is formed on the substrate 218 including the black matrix layer 240 , and a drain contact hole 233 exposing the drain electrode 217 is formed in the color filter layer 241 .
  • the color filter layer 241 may be formed by printing, dyeing, polymer electrodeposition, ink jet deposition, pigment dispersion or the like.
  • an overcoat layer 245 is formed on an entire surface of the substrate 218 including the color filter layer 241 so as to planarize the substrate 218 as shown in FIG. 4C .
  • the overcoat layer 245 may be an organic material such as photo-acryl and BCB (benzo cyclobutene) or an inorganic material such as silicon oxide (SiOx) or silicon nitride (SiNx). Alternatively, the overcoat layer 245 may be omitted.
  • a common electrode 213 and a pixel electrode 214 are formed on the overcoat layer 245 .
  • the drain electrode 217 is electrically connected with the pixel electrode 214 through the drain contact hole 233 .
  • the common electrode 213 and the pixel electrode 214 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the common electrode 213 and the pixel electrode 214 are formed in a zigzag configuration.
  • the data lines 210 may be also formed in a zigzag configuration.
  • the black matrix layer 240 and the color filter layer 241 may be formed in a zigzag configuration.
  • aligned liquid crystal molecules have a symmetric alignment characteristic.
  • liquid crystal molecules on one pixel may be aligned into multi-domains having at least two domains, birefringence depending on the alignment direction of liquid crystal molecules is offset, thereby minimizing color shift phenomenon. Also, it becomes possible to widen a region where gray scale inversion does not exist, thereby enhancing viewing angle characteristic.
  • the alignment material is formed on an entire surface of a resultant structure of the substrate 218 to form an alignment layer 229 .
  • the alignment material may be polyimide, polyamide or the like.
  • FIGS. 5A and 5B are sectional views illustrating a schematic configuration of an IPS mode LCD having a TFT on color filter (TOC) structure according to another embodiment of the present invention, and taken along the line I-I′ like in FIG. 2 .
  • TOC TFT on color filter
  • the IPS mode LCD having the TOC structure includes a first transparent substrate 318 , a color filter layer 341 formed on the first transparent substrate 318 , and an overcoat layer 328 formed on the color filter layer 341 , for protecting the color filter layer 341 .
  • the overcoat layer 328 may be omitted.
  • a thin film transistor is formed on the overcoat layer 328 .
  • a gate electrode 309 is first formed on the overcoat layer 328 , a gate insulating layer 320 is formed on an entire surface of the first transparent substrate 318 including the gate electrode 309 , a semiconductor layer including an active layer 315 a and an ohmic contact layer 315 b is formed on the gate insulating layer 320 , and a source/drain electrode 316 / 317 is formed on the semiconductor layer 315 .
  • a black matrix layer 340 is formed on the TFT and the gate line 310 .
  • a passivation layer 345 is formed on an entire surface of the first transparent substrate 318 including the black matrix layer 340 and the TFT.
  • a drain contact hole 333 is formed in the passivation layer 345 so as to electrically connect the drain electrode 317 with a pixel electrode 314 .
  • a common electrode 313 is formed interdigitally with the pixel electrode 314 in a zigzag configuration.
  • the pixel electrode 314 is electrically connected with the drain electrode 317 through the drain contact hole 333 .
  • the data line 310 may be also formed in a zigzag configuration.
  • the common electrode 313 and the pixel electrode 314 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes.
  • First and second alignment layers 329 and 326 are coated on facing surfaces of the first substrate 318 and a second substrate 319 .
  • the black matrix layer 340 may be formed below the TFT.
  • FIGS. 6A through 6C illustrate a method of fabricating an IPS mode LCD having a TOC structure according to another embodiment of the present invention.
  • red (R), green (G) and blue (B) color filters is selected and coated on the substrate 318 to form a color filter layer 341 .
  • the color filter layer 341 is formed by printing, dyeing, polymer electrodeposition, pigment dispersion, ink jet deposition or the like. In pigment dispersion, a photosensitive resist film colored by a prepared pigment is coated on the substrate, patterned by an exposure, and developed to form the color filter layer 341 .
  • the color filter layer 341 is, for example, formed from acryl resin or the like. In other words, the acryl resin is patterned by a pre-bake, an exposure, a development, and a post-bake.
  • a thin film transistor is formed on the resultant substrate including the color filter layer 341 as shown in FIG. 6B .
  • an overcoat layer is first formed of a BCB or a photo acryl material on the color filter layer 341 .
  • a metal film is deposited on the overcoat layer 328 and is then patterned, thereby forming a plurality of gate lines 308 and a gate electrode 309 branched from each of the gate lines 308 at a TFT site.
  • a gate insulating layer 320 is formed on an entire surface of the substrate 318 including the gate electrode 309 , and then a semiconductor layer 315 including an active layer 315 a and an ohmic contact layer 315 b is formed on the gate insulating layer 320 .
  • a plurality of data lines 310 are formed on the gate insulating layer 320 so as to form a matrix configuration together with the gate lines 308 .
  • Source and drain electrodes 316 and 317 of the TFT are formed concurrently with the data lines 310 while the data lines 310 are formed.
  • the gate lines 308 and the data lines 310 are formed by depositing a metal film such as Al, Cu, Ta, Ti, Mo, a Mo ally, an Al alloy and the like and patterning the deposited metal film.
  • a black resin is coated on an entire surface of a resultant structure of the substrate 318 including the TFT and is then patterned to form a black matrix layer 340 on the TFT, the data line 310 and the gate line 308 .
  • a passivation layer 345 is formed on the resultant substrate 318 including the black matrix layer 340 .
  • the passivation layer 345 may be formed of organic materials such as a photo-acryl or BCB (benzo cyclobutene) or inorganic materials such as silicon oxide (SiOx) and a silicon nitride (SiNx).
  • a drain contact hole 333 exposing the drain electrode 317 is formed in the passivation layer 345 .
  • a common electrode 313 and a pixel electrode 314 are formed on the passivation layer 345 including the drain contact hole 333 .
  • the drain electrode 317 is electrically connected with the pixel electrode 314 through the drain contact hole 333 .
  • the common electrode 313 and the pixel electrode 314 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes.
  • the common electrode 313 and the pixel electrode 314 are formed in a zigzag configuration.
  • the data lines 310 may be also formed in a zigzag configuration.
  • the black matrix layer 340 and the color filter layer 341 may be formed in a zigzag configuration.
  • aligned liquid crystal molecules have a symmetric alignment characteristic.
  • liquid crystal molecules on one pixel may be aligned into multiple domains having at least two domains, birefringence depending on the alignment direction of liquid crystal molecules is offset, thereby minimizing color shift phenomenon. Also, it becomes possible to widen a region where gray scale inversion does not exist, thereby enhancing viewing angle characteristic.
  • the alignment material is formed on an entire surface of a resultant structure of the substrate 318 to form an alignment layer 329 .
  • the alignment material may be polyimide, polyamide or the like.
  • the color filter layer is formed on the same substrate as the TFT and electrode patterns are arranged in a zigzag configuration, thereby inducing multiple domains to offset birefringence depending on the alignment direction of liquid crystal molecules and to minimize color shift phenomenon. Also, it becomes possible to widen a region where gray scale inversion does not exist, thereby enhancing viewing angle characteristic. Also, in the present invention, the color filter layer is formed on the same substrate as the TFT, thereby enhancing color reproducibility and reducing process time to enhance the production yield.

Abstract

An IPS mode LCD includes first and second substrates. A thin film transistor and a color filter layer are formed on the first substrate. A common electrode and a pixel electrode are arranged in a zigzag configuration on the first substrate. A liquid crystal layer is disposed between the first and second substrates.

Description

    CLAIM FOR PRIORITY
  • This application claims the benefit of the Korean Application No. P2003-70131, filed on Oct. 9, 2003, which is hereby incorporated by reference.
  • BACKGROUND
  • 1. Technical Field
  • The present invention relates to a liquid crystal display device (LCD), and more particularly, to an In-Plane Switching (IPS) mode LCD in which a color filter layer and a thin film transistor are formed on the same substrate to drive the liquid crystal using a fringe field.
  • 2. Description of the Related Art
  • In general, a cathode ray tube (CRT) has been most widely used among display devices for displaying image information on a screen. However, CRTs are large and heavy compared with the display area. With the development of the electronic industry, the use of display devices has expanded to personal computers, notebook computers, wireless terminals, vehicle instrument panels, electronic display boards and the like. Also, due to the development of information communication technology, since it is possible to transmit a large amount of image information, increasing importance has been placed on a next generation display device capable of processing and displaying the large amount of image information.
  • Such next generation display devices are required to realize lighter, thinner, shorter and smaller characteristics, a high luminance, a large-sized screen, low power consumption and a low price. Among such next generation display devices, liquid crystal display devices (LCD) are used as they have excellent resolution compared with other flat displays and a fast response time considerable to that of the CRT in implementing a moving picture.
  • More specifically, twisted nematic (TN) mode LCDs have been generally used. In the TN mode type LCD, after electrodes are formed on two substrates and liquid crystal directors are aligned twisted by 90°, a driving voltage is applied to the electrodes to drive the liquid crystal directors. However, the TN mode LCD has a narrow viewing angle.
  • Recently, LCDs employing a new mode are being actively researched to increase the viewing angle. In-plane switching (IPS) mode LCDs, optically compensated birefringence mode LCDs, etc. are examples of such LCDs.
  • The IPS mode LCD generates a horizontal electric field to drive the liquid crystal molecules in a horizontal state with respect to the substrates by forming two electrodes on an identical substrate and applying a voltage between the two electrodes. In other words, the longer axis of the liquid crystal molecule does not stand up with respect to the substrates. To this end, the IPS mode LCD has a small variation in the birefringence of liquid crystal according to a visual direction and thus has an excellent viewing angle characteristic compared with the TN mode LCD.
  • FIG. 1 is a sectional view of a related art IPS mode LCD. Referring to FIG. 1, a related art IPS mode LCD is formed by attaching a first substrate 118 and a second substrate 119 facing the first substrate 118, and interposing a liquid crystal layer 130 therebetween. A metal film is first deposited on the first substrate 118 and is patterned to form a plurality of gate lines and a plurality of gate electrode 109 branched from the respective gate lines and formed at a thin film transistor region.
  • Next, a gate insulating layer 120 is formed on an entire surface of the first substrate including the gate electrode 109, and then a semiconductor layer 115 forming an ohmic contact layer with an active layer 115 a is formed on a predetermined region of the gate insulating layer 120. On the gate insulating layer 120, a data line 110 forming a matrix configuration together with the gate line is formed.
  • In the course of forming the data line 110, source electrode 116 and drain electrode 117 of a thin film transistor are formed along with the data line 110. Also, a common line and a common electrode 113 are formed to be parallel with the gate line 110. Alternatively, the common line and the common electrode 113 may be formed on the same layer as the gate electrode 109.
  • On the entire surface of the first substrate 118 constructed as above, a passivation film 128 is formed. After that, a pixel electrode 114 is formed to be electrically connected with the drain electrode 117 and be parallel to the data line 110. On the entire surface of the first substrate 118 constructed as above, a first orientation film 129 is formed.
  • On the other hand, on the second substrate 119, a black matrix 121 for preventing light from being leaked is formed. A color filter layer 122 consisting of color patterns of red (R), green (G), and blue (B) is formed between the black matrixes 121. On the color filter layer 122, an overcoat layer 123 for planarizing an upper surface thereof and protecting the underlying color filter layer 122 is formed. Next, a second orientation film 126 is formed on the overcoat layer 123.
  • Edges between the first and second substrates 118 and 119 are sealed by a seal pattern (not shown) to prevent the liquid crystal layer 130 interposed between the first and second substrates 118 and 119 from being leaked. Attaching of the first and second substrates 118 and 119 is determined by a margin on design of each substrate. Generally, preciseness of a few micrometers is required. If the attaching margin deviates from an allowed margin, light is leaked and accordingly a desired characteristic is not obtained.
  • To realize high definition, integration of the LCD has increased and an interval between devices has narrowed. Accordingly, if even a minor error in attachment exists, corresponding devices are formed at misaligned sites, so that color reproducibility and production yield are lowered.
  • However, in the related art IPS mode LCD where the color filter layer and the thin film transistor are formed on different substrates, the attachment preciseness is lowered due to alignment margin between the color filter substrate and the array substrate. Also, since the color filter substrate and the array substrate are separately formed, process time is increased, so that production yield is lowered.
  • SUMMARY
  • By way of introduction only, as embodied and broadly described herein, an IPS mode LCD of one aspect includes: a first substrate and a second substrate; a thin film transistor and a color filter layer on the first substrate; a common electrode and a pixel electrode arranged in a zigzag configuration on the first substrate; and a liquid crystal layer between the first and second substrates.
  • According to another aspect of the present invention, a method of fabricating an IPS mode LCD is provided that includes: forming a color filter layer and a thin film transistor on a first substrate; forming a common electrode and a pixel electrode in a zigzag configuration on the thin film transistor; and forming a liquid crystal layer between the first substrate and a second substrate facing the first substrate. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
  • FIG. 1 is a sectional view of a related art IPS mode LCD according to the related art;
  • FIG. 2 is a plane view illustrating a schematic configuration of an IPS mode LCD having a COT structure according to an embodiment of the present invention;
  • FIG. 3 is a sectional view taken along the line I-I′ of FIG. 2;
  • FIGS. 4A through 4C illustrate a method of fabricating an IPS mode LCD according to an embodiment of the present invention;
  • FIGS. 5A and 5B are sectional views illustrating a schematic configuration of an IPS mode LCD having a TOC structure according to another embodiment of the present invention; and
  • FIGS. 6A through 6C illustrate a method of fabricating an IPS mode LCD having a TOC structure according to another embodiment of the present invention.
  • DETAILED DESCRIPTION
  • The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown.
  • FIG. 2 is a plane view illustrating a schematic configuration of an IPS mode LCD having a COT structure according to an embodiment of the present invention, and FIG. 3 is a sectional view taken along the line I-I′ of FIG. 2.
  • The IPS mode LCD has a color filter on TFT (COT) structure that a color filter layer is formed on an array substrate including a thin film transistor and prevents light passing through the common electrode and the pixel electrode from being absorbed into the color filter layer, thereby enhancing brightness. Alternatively, the IPS mode LCD can be equivalently applied to IPS mode LCDs having a TFT on color filter (TOC) structure.
  • As shown in FIG. 2, an array substrate of the IPS mode LCD is configured to include a plurality of gate lines 208 arranged spaced apart by a predetermined distance in parallel with each other in a first direction, a common line 231 arranged adjacent to and in parallel with the gate lines 208, and a plurality of data lines 210 perpendicularly crossing the gate lines 208 and the common line 231, and defining a pixel region together with the gate lines 208. The gate lines 208 and the data lines 210 are formed by depositing a metal film such as Al, Cu, Ta, Ti, Mo, a Mo alloy, an Al alloy and the like and patterning the deposited metal film.
  • A thin film transistor (TFT) including a gate electrode 209, a semiconductor layer 215, a source electrode 216, and a drain electrode 217 is formed at a crossing point of the gate line 208 and the data line 210. The source electrode 216 is connected with the data line 210 and the gate electrode is connected with the gate line 208. On the pixel region, a pixel electrode 214 connected with the drain electrode 217, and a common electrode 213 arranged in parallel with the pixel electrode 214 and connected with the common line 231 are formed. The common line 231 may be formed extending on the gate line 208 to form a storage capacitor.
  • The pixel electrode 214 includes a plurality of vertical parts 214 b and a single horizontal part 214 a. The plurality of vertical parts 214 b are electrically connected with the drain electrode 217 through a drain contact hole 233 and are spaced apart by a predetermined interval from one another. Also, the single horizontal part 214 a connects the plurality of vertical parts 214 b as one body.
  • The common electrode 213 includes a plurality of vertical parts 213 b and a single horizontal part 213 a. The plurality of vertical parts 213 b extend downward from the common line 231, and are interdigitally arranged with the vertical parts 214 b of the pixel electrode 214, and the horizontal part 213 a connects the plurality of vertical parts 213 b as one body.
  • In particular, the vertical parts 213 b of the common electrode 213 are interdigitally arranged with and the vertical parts 214 b of the pixel electrode 214 in a zigzag configuration. As shown in FIG. 2, by forming the common electrode 213 and the pixel electrode 214 in a bent structure of a zigzag configuration and performing an alignment process in one direction, it is possible to change the direction of an electric field applied to the injected liquid crystal.
  • The bend angle may be set to be less than 300 or in a range of 60-120° except for 90° with respect to the alignment direction of the liquid crystal layer by the alignment process (i.e., rubbing process). Specifically, the bend angle is set to be less than 30° when the dielectric anisotropy is positive, or to be in a range of 60-120° except for 90° when the dielectric anisotropy is negative. Chiral dopants may be added to the liquid crystal layer.
  • Thus, the common electrode 213 and the pixel electrode 214 are arranged such that alignment characteristic of the liquid crystal are symmetric to each other. Accordingly, liquid crystal molecules on a unit pixel region are aligned only in one direction but in multiple directions, thereby inducing multiple domains permitting a variety of alignment directions in one pixel region.
  • The data lines 210, the pixel electrode 214 and/or the common electrode 213 has a bent structure. To prevent light leakage, a black matrix layer 240 is formed on the gate lines 208, the data lines 210 and the TFT region. A color filter layer 241 is also formed to display a desired color on the pixel region defined by the gate lines 208 and the data lines 210 crossing the gate lines 208. If the data lines 210 are formed in a zigzag configuration, the black matrix layer and the color filter layer 241 are formed in a zigzag pattern.
  • The order of processes of forming the color filter layer 241 and the black matrix layer 240 may be exchanged. Also, the color filter layer 241 and the black matrix layer 240 may be formed on different layers. Alternatively, the black matrix layer 240 may be formed on the other substrate.
  • Referring to FIG. 3, the IPS mode LCD is formed by attaching a first substrate 218 and a second substrate 219 facing the first substrate 218, and forming a liquid crystal layer 230 between the first substrate 218 and the second substrate 219. In more detail, a metal film is deposited on the first substrate 218 and is then patterned to form the plurality of gate lines (see 208 of FIG. 2), and the gate electrode 209 branched from the gate line 208 and extending to the TFT site.
  • Next, a gate insulating layer 220 is formed on the entire surface of the first substrate 218 including the gate electrode 209, and then a semiconductor layer 215 including an active layer 215 a and an ohmic contact layer 215 b is formed on the gate insulating layer 220. Also, the data line 210 is formed on the gate insulating layer 220 so as to form a matrix configuration together with the gate line 208. The source electrode 216 and drain electrode 217 of a thin film transistor are formed concurrently with the date line 210 while the data line 210 is formed.
  • A passivation layer 228 is formed on the thin film transistor. The passivation layer 228 may be formed from an organic material such as a photo-acryl and BCB (benzo cyclobutene) or inorganic materials such as silicon oxide (SiOx) and silicon nitride (SiNx).
  • The color filter layer 241 including a drain contact hole 233 is formed on the source/drain electrode 216/217 and the gate insulating layer 220 of the pixel region. An overcoat layer 245 may be formed on an entire surface of a resultant structure of the first substrate 218 including the color filter layer 241 so as to planarize the resultant structure of the first substrate 218. The overcoat layer 245 also may be omitted. The overcoat layer 245 is formed of a film of organic or inorganic material. On the overcoat layer 245, the common electrode 213 and the pixel electrode 214 are formed.
  • The common electrode 213 and the pixel electrode 214 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes well. The common electrode 213 and the pixel electrode 214 are formed in a zigzag configuration. In addition to the common electrode 213 and the pixel electrode 214, the data lines 210 may be also formed in a zigzag configuration. Further, the black matrix layer 240 and the color filter layer 241 may be formed in a zigzag configuration.
  • The black matrix layer 240 is formed on the TFT region, the gate lines 208 and the data lines 210 to prevent light from being leaked. First and second alignment layers 229 and 226 are coated on facing surfaces of the first substrate 218 and the second substrate 219.
  • In the IPS mode LCD having a color filter on transistor (COT) structure, to prevent the color filter layer 241 from absorbing light at regions where the common electrode 213 and the pixel electrode 214 are positioned, the color filter layer 241 on the regions where the common electrode 213 and the pixel electrode 214 are positioned is removed and a hole may be formed instead of the color filter layer 241.
  • Hereinafter, a method of fabricating the IPS mode LCD having the COT will be described. FIGS. 4A through 4C illustrate a method of fabricating an IPS mode LCD according to an embodiment of the present invention.
  • First, referring to FIG. 4A, a metal film is deposited on a substrate 218 and is then patterned to form a plurality of gate lines 208, and a gate electrode 209 branched from each of the gate lines 208 at a TFT site. Next, a gate insulating layer 220 is formed on an entire surface of the substrate 218 including the gate electrode 209, and then a semiconductor layer 215 including an active layer 215 a and an ohmic contact layer 215 b is formed on the gate insulating layer 220. Next, a plurality of data lines 210 are formed on the gate insulating layer 220 so as to form a matrix configuration together with the gate lines 208. Source and drain electrodes 216 and 217 of a TFT are formed concurrently with the data lines 210 while the data lines 210 are formed. The gate lines 208 and the data lines 210 are formed by depositing a metal film such as Al, Cu, Ta, Ti, Mo, a Mo ally, an Al alloy and the like and patterning the deposited metal film.
  • Referring to FIG. 4B, a black resin is coated on an entire surface of a resultant structure of the substrate 218 and is then patterned to form a black matrix layer 240 on the TFT, the data line 210 and the gate line 208. Next, a color filter layer 241 is formed on the substrate 218 including the black matrix layer 240, and a drain contact hole 233 exposing the drain electrode 217 is formed in the color filter layer 241. At this time, the order of processes of forming the black matrix layer 240 and the color filter layer 241 may be exchanged. The color filter layer 241 may be formed by printing, dyeing, polymer electrodeposition, ink jet deposition, pigment dispersion or the like.
  • After the black matrix layer 240 and the color filter layer 241 are formed as above, an overcoat layer 245 is formed on an entire surface of the substrate 218 including the color filter layer 241 so as to planarize the substrate 218 as shown in FIG. 4C. The overcoat layer 245 may be an organic material such as photo-acryl and BCB (benzo cyclobutene) or an inorganic material such as silicon oxide (SiOx) or silicon nitride (SiNx). Alternatively, the overcoat layer 245 may be omitted.
  • A common electrode 213 and a pixel electrode 214 are formed on the overcoat layer 245. At this time, the drain electrode 217 is electrically connected with the pixel electrode 214 through the drain contact hole 233. The common electrode 213 and the pixel electrode 214 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes.
  • As shown in the plane view of FIG. 4C, the common electrode 213 and the pixel electrode 214 are formed in a zigzag configuration. In addition to the common electrode 213 and the pixel electrode 214, the data lines 210 may be also formed in a zigzag configuration. Further, the black matrix layer 240 and the color filter layer 241 may be formed in a zigzag configuration.
  • Thus, by arranging electrodes formed on a unit pixel in a zigzag configuration, aligned liquid crystal molecules have a symmetric alignment characteristic. As a result, liquid crystal molecules on one pixel may be aligned into multi-domains having at least two domains, birefringence depending on the alignment direction of liquid crystal molecules is offset, thereby minimizing color shift phenomenon. Also, it becomes possible to widen a region where gray scale inversion does not exist, thereby enhancing viewing angle characteristic.
  • Next, an alignment material is formed on an entire surface of a resultant structure of the substrate 218 to form an alignment layer 229. The alignment material may be polyimide, polyamide or the like.
  • Although the present embodiment shows and describes the IPS mode LCD having the COT structure, the effects of the first embodiment can be applied to an IPS mode LCD having a TOC structure. FIGS. 5A and 5B are sectional views illustrating a schematic configuration of an IPS mode LCD having a TFT on color filter (TOC) structure according to another embodiment of the present invention, and taken along the line I-I′ like in FIG. 2.
  • Referring to FIG. 5A, the IPS mode LCD having the TOC structure includes a first transparent substrate 318, a color filter layer 341 formed on the first transparent substrate 318, and an overcoat layer 328 formed on the color filter layer 341, for protecting the color filter layer 341. Alternatively, the overcoat layer 328 may be omitted.
  • A thin film transistor (TFT) is formed on the overcoat layer 328. In detail, a gate electrode 309 is first formed on the overcoat layer 328, a gate insulating layer 320 is formed on an entire surface of the first transparent substrate 318 including the gate electrode 309, a semiconductor layer including an active layer 315 a and an ohmic contact layer 315 b is formed on the gate insulating layer 320, and a source/drain electrode 316/317 is formed on the semiconductor layer 315.
  • To prevent light leakage, a black matrix layer 340 is formed on the TFT and the gate line 310. A passivation layer 345 is formed on an entire surface of the first transparent substrate 318 including the black matrix layer 340 and the TFT. A drain contact hole 333 is formed in the passivation layer 345 so as to electrically connect the drain electrode 317 with a pixel electrode 314.
  • A common electrode 313 is formed interdigitally with the pixel electrode 314 in a zigzag configuration. The pixel electrode 314 is electrically connected with the drain electrode 317 through the drain contact hole 333. In addition to the common electrode 313 and the pixel electrode 314, the data line 310 may be also formed in a zigzag configuration.
  • The common electrode 313 and the pixel electrode 314 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes. First and second alignment layers 329 and 326 are coated on facing surfaces of the first substrate 318 and a second substrate 319. Alternatively, the black matrix layer 340 may be formed below the TFT.
  • Hereinafter, a method of fabricating the IPS mode LCD having the TOC structure shown in FIG. 5A will be described in detail. FIGS. 6A through 6C illustrate a method of fabricating an IPS mode LCD having a TOC structure according to another embodiment of the present invention.
  • First, referring to FIG. 6A, red (R), green (G) and blue (B) color filters is selected and coated on the substrate 318 to form a color filter layer 341. The color filter layer 341 is formed by printing, dyeing, polymer electrodeposition, pigment dispersion, ink jet deposition or the like. In pigment dispersion, a photosensitive resist film colored by a prepared pigment is coated on the substrate, patterned by an exposure, and developed to form the color filter layer 341. The color filter layer 341 is, for example, formed from acryl resin or the like. In other words, the acryl resin is patterned by a pre-bake, an exposure, a development, and a post-bake.
  • After the color filter layer 341 is formed as above, a thin film transistor (TFT) is formed on the resultant substrate including the color filter layer 341 as shown in FIG. 6B. Prior to forming the TFT, an overcoat layer is first formed of a BCB or a photo acryl material on the color filter layer 341. Thereafter, a metal film is deposited on the overcoat layer 328 and is then patterned, thereby forming a plurality of gate lines 308 and a gate electrode 309 branched from each of the gate lines 308 at a TFT site. Next, a gate insulating layer 320 is formed on an entire surface of the substrate 318 including the gate electrode 309, and then a semiconductor layer 315 including an active layer 315 a and an ohmic contact layer 315 b is formed on the gate insulating layer 320.
  • Next, a plurality of data lines 310 are formed on the gate insulating layer 320 so as to form a matrix configuration together with the gate lines 308. Source and drain electrodes 316 and 317 of the TFT are formed concurrently with the data lines 310 while the data lines 310 are formed. The gate lines 308 and the data lines 310 are formed by depositing a metal film such as Al, Cu, Ta, Ti, Mo, a Mo ally, an Al alloy and the like and patterning the deposited metal film.
  • Referring to FIG. 6C, a black resin is coated on an entire surface of a resultant structure of the substrate 318 including the TFT and is then patterned to form a black matrix layer 340 on the TFT, the data line 310 and the gate line 308. Next, a passivation layer 345 is formed on the resultant substrate 318 including the black matrix layer 340. The passivation layer 345 may be formed of organic materials such as a photo-acryl or BCB (benzo cyclobutene) or inorganic materials such as silicon oxide (SiOx) and a silicon nitride (SiNx).
  • After the passivation layer 345 is formed, a drain contact hole 333 exposing the drain electrode 317 is formed in the passivation layer 345. A common electrode 313 and a pixel electrode 314 are formed on the passivation layer 345 including the drain contact hole 333. At this time, the drain electrode 317 is electrically connected with the pixel electrode 314 through the drain contact hole 333.
  • The common electrode 313 and the pixel electrode 314 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) through which light passes. The common electrode 313 and the pixel electrode 314 are formed in a zigzag configuration. In addition to the common electrode 313 and the pixel electrode 314, the data lines 310 may be also formed in a zigzag configuration. Further, the black matrix layer 340 and the color filter layer 341 may be formed in a zigzag configuration.
  • Thus, by arranging electrodes formed on a unit pixel in a zigzag configuration, aligned liquid crystal molecules have a symmetric alignment characteristic. As a result, liquid crystal molecules on one pixel may be aligned into multiple domains having at least two domains, birefringence depending on the alignment direction of liquid crystal molecules is offset, thereby minimizing color shift phenomenon. Also, it becomes possible to widen a region where gray scale inversion does not exist, thereby enhancing viewing angle characteristic.
  • Next, an alignment material is formed on an entire surface of a resultant structure of the substrate 318 to form an alignment layer 329. The alignment material may be polyimide, polyamide or the like.
  • As described above, in the IPS mode LCD of the present invention, the color filter layer is formed on the same substrate as the TFT and electrode patterns are arranged in a zigzag configuration, thereby inducing multiple domains to offset birefringence depending on the alignment direction of liquid crystal molecules and to minimize color shift phenomenon. Also, it becomes possible to widen a region where gray scale inversion does not exist, thereby enhancing viewing angle characteristic. Also, in the present invention, the color filter layer is formed on the same substrate as the TFT, thereby enhancing color reproducibility and reducing process time to enhance the production yield.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (40)

1. An in-plane switching (IPS) mode liquid crystal display (LCD) comprising:
a first substrate and a second substrate;
a thin film transistor and a color filter layer disposed on the first substrate;
a common electrode and a pixel electrode arranged in a zigzag configuration on the first substrate; and
a liquid crystal layer between the first and second substrates.
2. The IPS mode LCD of claim 1, wherein the color filter layer is closer to the first substrate than the thin film transistor is to the first substrate.
3. The IPS mode LCD of claim 2, further comprising an overcoat layer disposed on the color filter layer.
4. The IPS mode LCD of claim 1, wherein the color filter layer is closer to the liquid crystal layer than the thin film transistor is to the liquid crystal layer.
5. The IPS mode LCD of claim 4, further comprising an overcoat layer disposed on the color filter layer.
6. The IPS mode LCD of claim 1, further comprising:
a gate line and a data line crossing with each other on the first substrate and defining a pixel region; and
a black matrix layer on the thin film transistor, the gate line and the data line.
7. The IPS mode LCD of claim 6, wherein the thin film transistor is disposed at a crossing portion of the gate and data lines.
8. The IPS mode LCD of claim 6, wherein the black matrix layer is formed of black resin.
9. The IPS mode LCD of claim 1, further comprising a black matrix layer disposed on the first substrate.
10. The IPS mode LCD of claim 9, wherein the black matrix layer and color filter layer are laterally adjacent to each other.
11. The IPS mode LCD of claim 9, wherein the black matrix layer is closer to the liquid crystal layer than the color filter layer is to the liquid crystal layer.
12. The IPS mode LCD of claim 11, wherein the thin film transistor is closer to the liquid crystal layer than the color filter layer is to the liquid crystal layer.
13. The IPS mode LCD of claim 12, further comprising an overcoat layer that covers the black matrix layer.
14. The IPS mode LCD of claim 13, wherein the overcoat layer is disposed in a pixel region laterally adjacent to the black matrix layer.
15. The IPS mode LCD of claim 13, wherein the common and pixel electrodes are disposed on the overcoat layer.
16. The IPS mode LCD of claim 10, further comprising an overcoat layer that covers the black matrix layer and color filter layer.
17. The IPS mode LCD of claim 16, wherein the common and pixel electrodes are disposed on the overcoat layer.
18. The IPS mode LCD of claim 1, wherein the common and pixel electrodes are disposed on the color filter layer.
19. The IPS mode LCD of claim 1, wherein the common and pixel electrodes are disposed closer to the liquid crystal layer than the thin film transistor is to the liquid crystal layer.
20. The IPS mode LCD of claim 1, further comprising alignment films disposed on the first and second substrates.
21. The IPS mode LCD of claim 1, wherein the zigzag configuration has a bend angle less than 300 with respect to an alignment direction of the liquid crystal layer.
22. The IPS mode LCD of claim 1, wherein the zigzag configuration has a bend angle range of 60-120°, except 90°, with respect to an alignment direction of the liquid crystal layer.
23. The IPS mode LCD of claim 1, wherein the common and pixel electrodes are formed of a transparent conductive material.
24. The IPS mode LCD of claim 1, wherein the common and pixel electrodes have a plurality of bends.
25. A method of fabricating an IPS mode LCD, the method comprising:
forming a color filter layer and a thin film transistor on a first substrate;
forming a common electrode and a pixel electrode in a zigzag configuration after forming the thin film transistor; and
providing a liquid crystal layer between the first substrate and a second substrate facing the first substrate.
26. The method of claim 25, wherein the color filter layer is closer to the first substrate than the thin film transistor is to the first substrate.
27. The method of claim 25, wherein the color filter layer is closer to the liquid crystal layer than the thin film transistor is to the liquid crystal layer.
28. The method of claim 25, further comprising forming a black matrix layer on the thin film transistor.
29. The method of claim 25, further comprising forming a black matrix layer on the first substrate.
30. The method of claim 25, wherein the zigzag configuration has a bend angle less than 30° with respect to an alignment direction of the liquid crystal layer.
31. The method of claim 25, wherein the zigzag configuration has a bend angle range of 60-120°, except 90°, with respect to an alignment direction of the liquid crystal layer.
32. An in-plane switching (IPS) mode liquid crystal display (LCD) comprising:
a first substrate and a second substrate;
a thin film transistor and a color filter layer disposed on the first substrate;
a liquid crystal layer between the first and second substrates; and
a common electrode and a pixel electrode arranged on the first substrate in a configuration that produces multiple domains in the liquid crystal layer when liquid crystal molecules in the liquid crystal layer are aligned.
33. The IPS mode LCD of claim 32, wherein the common and pixel electrodes are arranged such that when the liquid crystal molecules are aligned, the liquid crystal molecules are symmetric.
34. The IPS mode LCD of claim 32, wherein the common and pixel electrodes are non-linear.
35. The IPS mode LCD of claim 32, further comprising a black matrix layer disposed on the first substrate and laterally adjacent to the color filter layer.
36. The IPS mode LCD of claim 32, further comprising a black matrix layer disposed on the first substrate and closer to the liquid crystal layer than the color filter layer is to the liquid crystal layer.
37. The IPS mode LCD of claim 32, wherein the thin film transistor is closer to the liquid crystal layer than the color filter layer is to the liquid crystal layer.
38. The IPS mode LCD of claim 32, further comprising:
a black matrix layer disposed on the first substrate; and
an overcoat layer that covers the black matrix layer.
39. The IPS mode LCD of claim 38, wherein the overcoat layer is disposed in a pixel region laterally adjacent to the black matrix layer.
40. The IPS mode LCD of claim 32, wherein the common and pixel electrodes have a plurality of bends.
US10/950,896 2003-10-09 2004-09-27 In plane switching mode liquid crystal display device and fabrication method thereof Abandoned US20050078256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/043,114 US8199302B2 (en) 2003-10-09 2011-03-08 In plane switching mode liquid crystal display device and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030070131A KR101001520B1 (en) 2003-10-09 2003-10-09 In Plane Switching mode liquid crystal display device and the fabrication method thereof
KRP2003-70131 2003-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/043,114 Division US8199302B2 (en) 2003-10-09 2011-03-08 In plane switching mode liquid crystal display device and fabrication method thereof

Publications (1)

Publication Number Publication Date
US20050078256A1 true US20050078256A1 (en) 2005-04-14

Family

ID=34420559

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/950,896 Abandoned US20050078256A1 (en) 2003-10-09 2004-09-27 In plane switching mode liquid crystal display device and fabrication method thereof
US13/043,114 Active US8199302B2 (en) 2003-10-09 2011-03-08 In plane switching mode liquid crystal display device and fabrication method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/043,114 Active US8199302B2 (en) 2003-10-09 2011-03-08 In plane switching mode liquid crystal display device and fabrication method thereof

Country Status (2)

Country Link
US (2) US20050078256A1 (en)
KR (1) KR101001520B1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093928A1 (en) * 2004-11-03 2006-05-04 Mu-Ching Hung Manufacturing method of color filter on TFT array and manufacturing method of LCD panel
FR2879763A1 (en) * 2004-12-31 2006-06-23 Lg Philips Lcd Co Ltd Liquid crystal display device for displaying image, has black matrix arranged on zone comprising data line and part of common electrodes, and color filter, common electrode line and pixel electrode that are arranged in pixel zone
US20060146253A1 (en) * 2004-12-30 2006-07-06 Kang Byung K In-plane switching mode liquid crystal display device
US20060203151A1 (en) * 2005-03-14 2006-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device and fabrication method thereof
US20070070008A1 (en) * 2005-09-23 2007-03-29 Samsung Electronics Co., Ltd. Liquid crystal display panel, method for driving the same, and liquid crystal display apparatus using the same
US20070070267A1 (en) * 2005-09-23 2007-03-29 Innolux Display Corp. Liquid crystal display panel with zigzag-shaped pixel color filters
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US20080239215A1 (en) * 2007-04-02 2008-10-02 Gee-Sung Chae Array substrate for liquid crystal display device and manufacturing method of the same
US20090040449A1 (en) * 2007-06-22 2009-02-12 Lg Display Co., Ltd. Liquid crystal display and method for fabricating the same
US20090303424A1 (en) * 2008-06-05 2009-12-10 Yun-Seok Lee Liquid crystal display and method for manufacturing the same
US7675579B2 (en) 2005-06-24 2010-03-09 Nec Lcd Technologies, Ltd. Liquid crystal driving electrode with protruded bent tip, liquid crystal display device, and manufacturing method thereof
US20100085508A1 (en) * 2008-10-08 2010-04-08 Samsung Electronics Co., Ltd. Display panel and liquid crystal display having the same
US20100208184A1 (en) * 2009-02-13 2010-08-19 Cheol Shin Array substrate and display apparatus having the same
US20110273412A1 (en) * 2010-05-04 2011-11-10 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device
US20120235174A1 (en) * 2011-03-16 2012-09-20 Hannstar Display Corp. Liquid crystal panel and pixel structure thereof
CN102751287A (en) * 2011-04-19 2012-10-24 瀚宇彩晶股份有限公司 Liquid crystal display panel and pixel structure thereof
US20130071973A1 (en) * 2011-09-19 2013-03-21 Lg Display Co., Ltd. Method for fabricating thin film transistor array substrate
US20130242223A1 (en) * 2008-11-28 2013-09-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101350430B1 (en) 2007-04-02 2014-01-14 엘지디스플레이 주식회사 An array substrate for IPS-LCD with color-filter on array
US8653521B2 (en) * 2012-03-08 2014-02-18 Lg Display Co., Ltd. Liquid crystal display array substrate and method for manufacturing the same
US20160187736A1 (en) * 2014-12-30 2016-06-30 Xiamen Tianma Micro-Electronics Co., Ltd. Array substrate, display panel and display device
US9632369B2 (en) * 2014-10-29 2017-04-25 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, as well as display device
US20170343870A1 (en) * 2005-09-26 2017-11-30 Japan Display Inc. Liquid crystal display device having rectangular-shaped pixel electrodes overlapping with comb-shaped counter electrodes in plan view
US20180024397A1 (en) * 2015-04-30 2018-01-25 Lg Chem, Ltd. Liquid crystal display device and method for manufacturing same
US10725357B2 (en) * 2017-03-16 2020-07-28 HKC Corporation Limited Display panel, method for manufacturing the display panel and display apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932211B1 (en) * 2008-04-11 2009-12-16 한양대학교 산학협력단 Transverse electric field type liquid crystal display device
KR101859483B1 (en) * 2012-03-06 2018-06-27 엘지디스플레이 주식회사 Stereoscopic display device and method for manufacturing the same
KR101996969B1 (en) * 2013-01-28 2019-07-08 엘지디스플레이 주식회사 Array substrate for fringe field switching mode liquid crystal display device and method of fabricating the same
CN103149763B (en) * 2013-02-28 2016-04-13 京东方科技集团股份有限公司 TFT-LCD array substrate, display panel and preparation method thereof
KR102074424B1 (en) * 2013-03-04 2020-02-07 삼성디스플레이 주식회사 Liquid crystal display and manufacturing method thereof
KR20150076878A (en) 2013-12-27 2015-07-07 삼성디스플레이 주식회사 A display device and a fabrication method of the same
CN104360527A (en) * 2014-11-03 2015-02-18 合肥鑫晟光电科技有限公司 Array substrate and manufacturing method thereof and display device
WO2017061776A1 (en) * 2015-10-06 2017-04-13 주식회사 엘지화학 Display device
KR101881119B1 (en) * 2015-10-30 2018-07-23 엘지디스플레이 주식회사 Array Substrate For Liquid Crystal Display Device
CN105353571A (en) * 2015-11-27 2016-02-24 深圳市华星光电技术有限公司 COA substrate, liquid crystal display panel and liquid crystal display device
JPWO2018008619A1 (en) * 2016-07-06 2019-05-23 シャープ株式会社 Display with touch panel
CN107195640A (en) 2017-06-28 2017-09-22 京东方科技集团股份有限公司 Array base palte and preparation method thereof and display device
CN109239989B (en) * 2017-07-11 2020-08-25 京东方科技集团股份有限公司 Array substrate, manufacturing method thereof and display device
CN109031833B (en) * 2018-10-23 2021-11-19 京东方科技集团股份有限公司 Array substrate for ADS display mode and manufacturing method and application thereof
US11789299B1 (en) * 2022-08-30 2023-10-17 Tcl China Star Optoelectronics Technology Co., Ltd. Driving substrate and display panel

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598285A (en) * 1992-09-18 1997-01-28 Hitachi, Ltd. Liquid crystal display device
US5745207A (en) * 1995-11-30 1998-04-28 Matsushita Electric Industrial Co., Ltd. Active matrix liquid crystal display having electric fields parallel to substrates
US5838037A (en) * 1996-11-15 1998-11-17 Mitsubishi Denki Kabushiki Kaisha TFT-array and manufacturing method therefor
US5946060A (en) * 1996-06-03 1999-08-31 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving the same
US5990987A (en) * 1997-11-18 1999-11-23 Nec Corporation Transverse electrical field LCD with islands having a pattern the same as the combined pattern of gate electrodes, gate bus lines and counter electrodes
US6028653A (en) * 1996-06-21 2000-02-22 Nec Corporation Active matrix liquid crystal display panel having an improved numerical aperture and display reliability and wiring designing method therefor
US6097454A (en) * 1996-06-25 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US6118505A (en) * 1997-01-21 2000-09-12 Sharp Kabushiki Kaisha Liquid crystal display device having color organic film as the interlayer insulator
US6266166B1 (en) * 1999-03-08 2001-07-24 Dai Nippon Printing Co., Ltd. Self-adhesive film for hologram formation, dry plate for photographing hologram, and method for image formation using the same
US6268895B1 (en) * 1995-10-27 2001-07-31 Sharp Kabushiki Kaisha Liquid crystal display device having light shield in periphery of display
US6288763B1 (en) * 1996-04-16 2001-09-11 Obayashiseikou Co., Ltd. Liquid crystal display device having comblike bent interdigital electrodes
US6297866B1 (en) * 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US20020021374A1 (en) * 2000-08-11 2002-02-21 Nec Corporation Liquid crystal display device and method for manufacturing the same
US20020044249A1 (en) * 1996-04-16 2002-04-18 Naoto Hirota Liquid crystal display device
US6507382B1 (en) * 1999-04-06 2003-01-14 Nec Corporation Liquid-crystal display
US20030025857A1 (en) * 2001-07-31 2003-02-06 Hitachi, Ltd. Liquid crystal display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866919A (en) * 1996-04-16 1999-02-02 Lg Electronics, Inc. TFT array having planarized light shielding element
JP3486859B2 (en) * 1996-06-14 2004-01-13 大林精工株式会社 Liquid crystal display
KR100604717B1 (en) 1999-07-08 2006-07-28 엘지.필립스 엘시디 주식회사 Liquid crystal display and method for fabricating the same
JP2001154636A (en) 1999-11-12 2001-06-08 Koninkl Philips Electronics Nv Liquid crystal display device
KR100808466B1 (en) * 2001-07-30 2008-03-03 엘지.필립스 엘시디 주식회사 array panel for a liquid crystal display device and manufacturing method of the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598285A (en) * 1992-09-18 1997-01-28 Hitachi, Ltd. Liquid crystal display device
US6268895B1 (en) * 1995-10-27 2001-07-31 Sharp Kabushiki Kaisha Liquid crystal display device having light shield in periphery of display
US5745207A (en) * 1995-11-30 1998-04-28 Matsushita Electric Industrial Co., Ltd. Active matrix liquid crystal display having electric fields parallel to substrates
US20020044249A1 (en) * 1996-04-16 2002-04-18 Naoto Hirota Liquid crystal display device
US6288763B1 (en) * 1996-04-16 2001-09-11 Obayashiseikou Co., Ltd. Liquid crystal display device having comblike bent interdigital electrodes
US5946060A (en) * 1996-06-03 1999-08-31 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving the same
US6028653A (en) * 1996-06-21 2000-02-22 Nec Corporation Active matrix liquid crystal display panel having an improved numerical aperture and display reliability and wiring designing method therefor
US6097454A (en) * 1996-06-25 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US5838037A (en) * 1996-11-15 1998-11-17 Mitsubishi Denki Kabushiki Kaisha TFT-array and manufacturing method therefor
US6118505A (en) * 1997-01-21 2000-09-12 Sharp Kabushiki Kaisha Liquid crystal display device having color organic film as the interlayer insulator
US6297866B1 (en) * 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US5990987A (en) * 1997-11-18 1999-11-23 Nec Corporation Transverse electrical field LCD with islands having a pattern the same as the combined pattern of gate electrodes, gate bus lines and counter electrodes
US6266166B1 (en) * 1999-03-08 2001-07-24 Dai Nippon Printing Co., Ltd. Self-adhesive film for hologram formation, dry plate for photographing hologram, and method for image formation using the same
US6507382B1 (en) * 1999-04-06 2003-01-14 Nec Corporation Liquid-crystal display
US20020021374A1 (en) * 2000-08-11 2002-02-21 Nec Corporation Liquid crystal display device and method for manufacturing the same
US20030025857A1 (en) * 2001-07-31 2003-02-06 Hitachi, Ltd. Liquid crystal display device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093928A1 (en) * 2004-11-03 2006-05-04 Mu-Ching Hung Manufacturing method of color filter on TFT array and manufacturing method of LCD panel
US7292294B2 (en) * 2004-11-03 2007-11-06 Chunghwa Picture Tubes, Ltd. Manufacturing method of color filter on TFT array and manufacturing method of LCD panel
US8159642B2 (en) * 2004-12-30 2012-04-17 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device having auxiliary pixel electrodes
US20060146253A1 (en) * 2004-12-30 2006-07-06 Kang Byung K In-plane switching mode liquid crystal display device
US20060146254A1 (en) * 2004-12-31 2006-07-06 Dong-Guk Kim Liquid crystal display device and method for fabricating the same
FR2879763A1 (en) * 2004-12-31 2006-06-23 Lg Philips Lcd Co Ltd Liquid crystal display device for displaying image, has black matrix arranged on zone comprising data line and part of common electrodes, and color filter, common electrode line and pixel electrode that are arranged in pixel zone
US7576824B2 (en) * 2004-12-31 2009-08-18 Lg Display Co., Ltd. Liquid crystal display device and method for fabricating the same
US7663723B2 (en) * 2005-03-14 2010-02-16 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device and fabrication method thereof
US20060203151A1 (en) * 2005-03-14 2006-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device and fabrication method thereof
US7675579B2 (en) 2005-06-24 2010-03-09 Nec Lcd Technologies, Ltd. Liquid crystal driving electrode with protruded bent tip, liquid crystal display device, and manufacturing method thereof
US20110012941A1 (en) * 2005-09-23 2011-01-20 Kyoung Ju Shin Liquid crystal display panel, method for driving the same, and liquid crystal display apparatus using the same
US20070070267A1 (en) * 2005-09-23 2007-03-29 Innolux Display Corp. Liquid crystal display panel with zigzag-shaped pixel color filters
US20070070008A1 (en) * 2005-09-23 2007-03-29 Samsung Electronics Co., Ltd. Liquid crystal display panel, method for driving the same, and liquid crystal display apparatus using the same
US7817124B2 (en) * 2005-09-23 2010-10-19 Samsung Electronics Co., Ltd. Liquid crystal display panel, method for driving the same, and liquid crystal display apparatus using the same
US8207923B2 (en) 2005-09-23 2012-06-26 Samsung Electronics Co., Ltd. Liquid crystal display panel, method for driving the same, and liquid crystal display apparatus using the same
US10254600B2 (en) * 2005-09-26 2019-04-09 Japan Display Inc. Liquid crystal display device having rectangular-shaped pixel electrodes overlapping with comb-shaped counter electrodes in plan view
US20170343870A1 (en) * 2005-09-26 2017-11-30 Japan Display Inc. Liquid crystal display device having rectangular-shaped pixel electrodes overlapping with comb-shaped counter electrodes in plan view
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US20080239215A1 (en) * 2007-04-02 2008-10-02 Gee-Sung Chae Array substrate for liquid crystal display device and manufacturing method of the same
KR101350430B1 (en) 2007-04-02 2014-01-14 엘지디스플레이 주식회사 An array substrate for IPS-LCD with color-filter on array
US8139183B2 (en) 2007-04-02 2012-03-20 Lg Display Co., Ltd. Array substrate for liquid crystal display device and manufacturing method of the same
US7808595B2 (en) * 2007-04-02 2010-10-05 Lg Display Co., Ltd. Array substrate for liquid crystal display device and manufacturing method of the same
US20090040449A1 (en) * 2007-06-22 2009-02-12 Lg Display Co., Ltd. Liquid crystal display and method for fabricating the same
KR101408252B1 (en) 2007-06-22 2014-06-17 엘지디스플레이 주식회사 Liquid crystal display device and method for fabricating the same
US8659733B2 (en) * 2007-06-22 2014-02-25 Lg Display Co., Ltd. Liquid crystal display and method for fabricating the same
US20090303424A1 (en) * 2008-06-05 2009-12-10 Yun-Seok Lee Liquid crystal display and method for manufacturing the same
US20100085508A1 (en) * 2008-10-08 2010-04-08 Samsung Electronics Co., Ltd. Display panel and liquid crystal display having the same
US20130242223A1 (en) * 2008-11-28 2013-09-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10985282B2 (en) 2008-11-28 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10424674B2 (en) 2008-11-28 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11869978B2 (en) 2008-11-28 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10008608B2 (en) * 2008-11-28 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
TWI595297B (en) * 2008-11-28 2017-08-11 半導體能源研究所股份有限公司 Liquid crystal display device
TWI571684B (en) * 2008-11-28 2017-02-21 半導體能源研究所股份有限公司 Liquid crystal display device
US8471991B2 (en) * 2009-02-13 2013-06-25 Samsung Display Co., Ltd. Array substrate and display apparatus having the same
US20100208184A1 (en) * 2009-02-13 2010-08-19 Cheol Shin Array substrate and display apparatus having the same
US8842108B2 (en) * 2010-05-04 2014-09-23 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device
US20110273412A1 (en) * 2010-05-04 2011-11-10 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device
US20120235174A1 (en) * 2011-03-16 2012-09-20 Hannstar Display Corp. Liquid crystal panel and pixel structure thereof
US9029876B2 (en) * 2011-03-16 2015-05-12 Hannstar Display Corp. Display panel with shield layer partially over gate line
CN102751287A (en) * 2011-04-19 2012-10-24 瀚宇彩晶股份有限公司 Liquid crystal display panel and pixel structure thereof
US9040365B2 (en) * 2011-09-19 2015-05-26 Lg Display Co., Ltd. Method for fabricating thin film transistor array substrate
US20130071973A1 (en) * 2011-09-19 2013-03-21 Lg Display Co., Ltd. Method for fabricating thin film transistor array substrate
US8653521B2 (en) * 2012-03-08 2014-02-18 Lg Display Co., Ltd. Liquid crystal display array substrate and method for manufacturing the same
US9632369B2 (en) * 2014-10-29 2017-04-25 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, as well as display device
US20160187736A1 (en) * 2014-12-30 2016-06-30 Xiamen Tianma Micro-Electronics Co., Ltd. Array substrate, display panel and display device
US20180024397A1 (en) * 2015-04-30 2018-01-25 Lg Chem, Ltd. Liquid crystal display device and method for manufacturing same
US10725357B2 (en) * 2017-03-16 2020-07-28 HKC Corporation Limited Display panel, method for manufacturing the display panel and display apparatus

Also Published As

Publication number Publication date
US20110157534A1 (en) 2011-06-30
KR101001520B1 (en) 2010-12-14
KR20050034261A (en) 2005-04-14
US8199302B2 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
US8199302B2 (en) In plane switching mode liquid crystal display device and fabrication method thereof
US7113243B2 (en) In-plane switching mode liquid crystal display device comprising common electrodes and pixel electrodes on both substrates and method of manufacturing the same
US6661492B2 (en) In-plane switching LCD device
US8040481B2 (en) In-plane switching mode liquid crystal display device having first and second common electrode connection lines and first and second pixel electrode connection linesbeing formed on the same layer
US7924375B2 (en) In-plane switching mode liquid crystal display device with adjustable viewing angle and method of fabricating the same
EP1605511B1 (en) Liquid crystal display with wide viewing angle
US7649604B2 (en) In-plane switching mode liquid crystal display device and method of fabricating thereof
US8264435B2 (en) Liquid crystal display device and driving method thereof
US6445435B1 (en) In-plane switching mode liquid cystal display device having common electrode on passivation layer
US7417705B2 (en) Liquid crystal display device and method for fabricating the same
US8023084B2 (en) In-plane switching mode LCD and manufacturing method thereof
US20040263750A1 (en) IPS type LCD and method for fabricating the same
JP2007178979A (en) Liquid crystal display device and method for manufacturing the same
KR20080056493A (en) Thin film transistor substrate and method of manufacturing the same
US7385661B2 (en) In-plane switching mode liquid crystal display device and method of manufacturing the same
US7724325B2 (en) Liquid crystal display device and method for manufacturing the same
US20060255337A1 (en) Multi-domain member for a display device
US7847891B2 (en) Liquid crystal display
US7906782B2 (en) Liquid crystal display device
KR100311531B1 (en) In-plane switching mode liquid crystal display device and method of manufacturing thereof
US8284361B2 (en) Method of fabricating an IPS mode LCD using both a rubbing process and a light irradiation process
KR20070049882A (en) Thin film transistor panel and liquid crystal display having the same
KR20080078993A (en) Liquid crystal display device and method for manufacturing of the same
US6822717B2 (en) In-plane switching mode liquid crystal display device and method of manufacturing the same
US6697140B2 (en) In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG. PHILIPS LCD CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HONG, HYUNG KI;REEL/FRAME:015840/0881

Effective date: 20040921

AS Assignment

Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG PHILIPS LCD CO., LTD.;REEL/FRAME:020986/0231

Effective date: 20080229

Owner name: LG DISPLAY CO., LTD.,KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG PHILIPS LCD CO., LTD.;REEL/FRAME:020986/0231

Effective date: 20080229

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION