US20050074890A1 - Electrophoretic in situ tissue staining - Google Patents

Electrophoretic in situ tissue staining Download PDF

Info

Publication number
US20050074890A1
US20050074890A1 US10/848,775 US84877504A US2005074890A1 US 20050074890 A1 US20050074890 A1 US 20050074890A1 US 84877504 A US84877504 A US 84877504A US 2005074890 A1 US2005074890 A1 US 2005074890A1
Authority
US
United States
Prior art keywords
tissue
electric field
electrode
conjugate
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/848,775
Inventor
Charles Lemme
William Richards
David Bryant
Catherine Wolf
Andrew Ghusson
Austin Ashby
Wayne Showalter
Anthony Hartman
Brian Kram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ventana Medical Systems Inc
Original Assignee
Ventana Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ventana Medical Systems Inc filed Critical Ventana Medical Systems Inc
Priority to US10/848,775 priority Critical patent/US20050074890A1/en
Publication of US20050074890A1 publication Critical patent/US20050074890A1/en
Assigned to VENTANA MEDICAL SYSTEMS, INC. reassignment VENTANA MEDICAL SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHBY, AUSTIN, HARTMAN, ANTHONY, KRAM, BRIAN, LEMME, CHARLES, SHOWALTER, WAYNE, WOLF, CATHERINE, BRYANT, DAVID, RICHARDS, WILLIAM, GHUSSON, ANDREW
Priority to US11/863,834 priority patent/US7618807B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body

Definitions

  • This invention relates generally to the field of automated tissue staining apparatus, and in particular is a new method of introducing stains into tissue using electrophoresis.
  • Tissue staining is an ancient art by modem standards that goes back over one hundred years. Recently, efforts have been made to automate the procedure of applying different types of chemical and biochemical stains to tissue sections. Instruments that have been invented for this purpose include the Ventana Medical Systems' line of dual carousel-based instruments such as the 320, ES®, NexES®, BENCHMARK®, and the BENCHMARK® XT. Patents that describe these systems include U.S. Pat. Nos. 5,595,707, 5,654,199, 6,093,574, and 6,296,809, all of which are incorporated herein by reference in their entirety. Another type of automated stainer is the TechMate® line of stainers, described in U.S. Pat. Nos. 5,355,439 and 5,737,499, both of which are incorporated herein by reference in their entireties.
  • the rate of Immunohistochemical and in situ hybridization staining of microtome-sectioned tissue on a glass slide is limited by the speed at which the biomolecules of interest can diffuse into the tissue from an aqueous solution placed in contact with the tissue section.
  • Intact tissue presents many barriers to diffusion such as the lipid bilayer membranes that enclose individual cells and organelles, and the effects of cross-linking that the fixation process generates.
  • the protein antibody or DNA probe molecules of interest are relatively large, ranging in size from a few kilo Daltons to several hundred kilo Daltons, which causes them to diffuse slowly into solid tissue with typical times for sufficient diffusion being in the range of several minutes to a few hours. A typical incubation period is thirty minutes at 37 degrees centigrade.
  • the diffusion rate is driven by concentration gradient so the rate can be increased by increasing the concentration of the conjugate in the reagent.
  • this has two detrimental effects.
  • the conjugates are often very expensive, so increasing their concentration is wasteful and not economically viable.
  • the excessive amount of conjugate that is driven into the tissue, when high concentrations are used gets trapped in the tissue, and cannot be rinsed out and causes high levels of background staining.
  • This background staining is called non-specific staining and, in an informational sense, is just noise. In order to reduce the noise and increase the signal of specific staining, low concentrations of conjugate are used with long incubation times to allow the conjugate to find and bind to only the specific sites.
  • Electrophoresis is an electrochemical separation technology commonly applied to separate biological molecules on the basis of their charge-to-mass ratio.
  • a gel slab is prepared from a suitable polymeric material such as polyacrylamide by adding water to it in sufficient amount to create a semi-solid gelatinous slab. This is the matrix used to both contain the sample to be separated, and transmit the electric current used to electromotively move the various charged molecules.
  • the pH of the gel can be manipulated to charge a biomolecule that is otherwise uncharged, thereby giving it the prerequisite net charge so that it will move when a field is applied to it.
  • the gel has an electric field applied to it, the charged molecules will migrate through the gel towards their opposite pole, i.e., negatively charged biomolecules will move towards the positive pole, and vice versa.
  • the process is very commonly used in the biological research field to separate complex mixtures, and is termed “PAGE” (Polyacrylamide gel electrophoresis).
  • a related technology is capillary electrophoresis (“CE”), which is the same basic electrochemical separation performed in thin glass capillary lumens filled with an electrolytic solution.
  • the present invention introduces a radically different way of accelerating biomolecule conjugates into tissue for purposes of tissue staining, and hence towards their targets.
  • the invention provides for an order of magnitude improvement over the prior art diffusion process used to stain tissue.
  • the invention comprises a method of tissue staining by applying an electric field to a tissue sample in the presence of an electrolyte and a biomolecular conjugate molecule of interest suspended in the electrolyte. Typical staining times are reduced to seconds as opposed to 30-120 minutes common in the prior art.
  • FIG. 1 shows a cross-sectional view of an apparatus using this method. It uses electrophoresis to cause molecules to pass into and through a thin cut piece of tissue.
  • FIG. 2 shows an ITO coated slide with a capillary gap.
  • FIG. 3 is an ITO coated slide with a moving upper electrode shown over the slide.
  • FIG. 4 is a cross-section through the movable upper electrode.
  • FIG. 5 is another cross-section through the movable dual electrode of embodiment four having incorporated conductive rods.
  • FIG. 6 is a schematic of wells and tissue positions in an agarose gel.
  • FIG. 7 is a photomicrograph of Tissue Section 1.
  • FIG. 8 is a photomicrograph of Tissue Section 2.
  • FIG. 9 is a photomicrograph of Tissue Section 3.
  • FIG. 10 is a photomicrograph of Tissue Section 4.
  • the invention is directed to a method of introducing a conjugate molecule into tissue comprising applying an electric field to the tissue in the presence of an electrolyte and a conjugate molecule of interest suspended in the electrolyte.
  • a conjugate molecule may be any molecule that has a complementary binding portion that, when brought into proximity to its complementary binding site, binds to the site.
  • Antibodies having complementarity determining regions, and DNA oligomers that have matching sequences to their target DNA are two examples of conjugate molecules.
  • the conjugate molecules of interest are all charged when dissolved in an aqueous solution of electrolyte of the correct pH. The net charge facilitates their movement through the electrolyte solution by the electric field.
  • Tissue includes both tissue sections and intact cells prepared according to conventional methods such as cytospins or Thin Preps.
  • Electrophoresis The technology generally known as Electrophoresis has been used for many years, both in research and industry to separate molecules of differing sizes and charges. Descriptions for the use of electrophoresis are given in U.S. Pat. Nos. 2,992,979; 3,384,564; 3,494,846; 3,677,930; 3,844,926; 5,382,522 and 5,536,382 among others.
  • the prior art describes applying the electric field across a liquid or gelatinous material, such as agrose, while the solution containing the molecules of interest is placed at one end. The molecules of interest migrate through the material, at rates that depend on their net charge and molecular weights.
  • U.S. Pat. No. 5,536,382 methods are provided for the analysis of constituents of human biological fluids using capillary electrophoresis.
  • a clinical sample was mixed with a labeled reagent which specifically binds the analyte of interest.
  • Capillary electrophoresis is then used to resolve bound from unbound reagent, and the constituents quantitated by measuring directly or indirectly the amount of bound reagent.
  • a serum or plasma sample was assayed to determine the concentration of two different analytes selected from the group consisting of creatine kinase-MB species and creatine kinase-BB species.
  • none of the prior art uses an electric field to move molecules into human tissue.
  • the most general description of this invention is that it is any method that applies an electric field across both an aqueous solution containing conjugate molecules and some tissue of interest in order to use the electrophoretic forces to drive the conjugate molecules into the tissue.
  • the tissue is human tissue that is suspected of harboring some disease and has been cut on a microtome to a thin section.
  • cell preparations comprising intact cells adhered to a flat surface for further processing are also encompassed by this general method.
  • a thin section is generally between two and thirty microns thick.
  • a first preferred method is to mount the thin cut tissue on a porous membrane, apply a conductive aqueous fluid to both sides, add reagent containing the conjugate into the fluid on at least one side, place electrodes on opposite sides and apply an electric field between the electrodes.
  • Direct current is the preferred mode of generating the electric field, but alternating current may also be used.
  • FIG. 1 shows a cross sectional view of an apparatus using this method. It uses electrophoresis to cause molecules to pass into and through a thin cut piece of tissue.
  • the tissue 11 is attached to a porous membrane 3 .
  • the tissue can be from any area of the body, but tests have been run using tonsil.
  • the membrane can be made from any hydrophilic, porous material.
  • One method that has been tried is to use PTFE film, commonly called “plumber's tape”.
  • the PTFE film must me made hydrophilic by polymerizing polyvinyl alcohol to its surface before the tissue will bond to it.
  • the lower electrode 5 is made from a solid disk of metal, preferably 316 SS and is placed into the bottom of the five millimeter deep depression in the lower ring, 1 . This depression forms a basin below the membrane 3 .
  • An electrical lead, not shown, is attached to the lower electrode and passes out through the lower ring through a sealed hole, not shown, and is connected to one leg of the electrophoresis power supply, not shown.
  • the membrane is stretched over the top of the lower ring, and down over its outer, tapered diameter.
  • the membrane is retained by pressing the intermediate ring 8 over the lower ring 1 trapping the membrane 3 between the two tapered diametrical surfaces.
  • the upper ring 2 is pressed onto the intermediate ring 8 forming another five millimeter deep basin, this one being above the membrane 3 .
  • This upper basin is hydraulically connected to the lower basin by means of two fittings 9 and a section of tubing 7 .
  • the fittings 9 are standard barb fittings made of thermoplastic and the tubing 7 is standard Tygon.
  • the upper electrode, 6 is made of stainless steel wire mesh which allows reagent to be poured into the upper basin and keeps the top surface of membrane, 3 , and the tissue, 11 , visible.
  • Upper electrode, 6 is connected to the electrophoresis power supply, not shown, by means of wire, 4 .
  • Another section of Tygon tubing, 10 is connected to a third barbed fitting, 9 , which bleeds air out of the lower basin as fluid is poured into the upper basin.
  • the upper basin is filled with conductive reagent, such as Tris-Acetate EDTA buffer at 10% concentration. This reagent also flows into the lower basin, displacing the air through the passages leading to tubing, 10 .
  • a conjugate is placed into the upper basin.
  • Tests have been run using anti-CD34 antibody which attaches to capillary tissue in the tonsil tissue.
  • the anti-CD34 is first mixed 1:1 with glycerol so that is sinks through the Tris buffer to the top of the tissue and the membrane.
  • An electric potential of ten volts is applied across the ten millimeters of distance between the electrodes, providing an electric field with a strength of 100 volts per meter.
  • the anti-CD34 antibody moves through the five micron thick tissue in less than ten seconds.
  • the apparatus is disassembled, and the area of the tissue is cut out of the membrane. It is then processed with a standard chromagin detection kit.
  • the capillaries in the tissue stand out against the background.
  • the membrane containing the tissue must be removed from its support structure, applied to a glass slide and coverslipped.
  • the membrane must be transparent after it is coverslipped.
  • the membrane In order for the membrane to be transparent after coverslipping, it must have an index of refraction that is very near that of the coverslip media.
  • Membranes that have an index of refraction close to this are PET and nylon 6.
  • a second preferred method is to apply an electric field across the aqueous solution and the thin cut tissue of interest is to coat the glass slide with a conductive layer, apply the tissue directly to the top of the conductive layer, add a conductive reagent of the correct pH that contains the conjugate molecules of interest over the top of the tissue, cover the conductive reagent with a second electrode and then apply a potential between the conductive layer on the slide and the upper conductive electrode.
  • the electric potential can be reversed, so that any unbound conjugates are driven out, reducing the background noise of non-specific binding.
  • the conductive layer needs to be transparent so that after the staining is complete, a pathologist can look at the tissue through a microscope with the tissue illuminated from below.
  • Two possible candidates for a conductive, transparent film are gold and ITO (Indium Tin Oxide). Both are applied as very thin layers in a vacuum chamber. Any material that is both transparent, conductive and resistant to oxidation can be used.
  • FIG. 2 shows an apparatus for applying an electrical field across a capillary gap of reagent that contains conjugate molecules and across a thin cut layer of tissue that is adhered to an ITO coated glass slide 22 .
  • All the components are attached to a non-conductive base plate, 21 , made from Ultem® 1000.
  • the microscope slide, 22 is retained in the fixed clamping fixture, 23 , by the force exerted by thumb screw, 24 .
  • All of the clamping fixture, 23 is made of conductive material, such as stainless steel.
  • the tissue, 25 is adhered to the top of the ITO surface of slide 22 .
  • the upper electrode, 26 is clamped into sliding clamping fixture, 27 , which is also made of stainless steel and slides in a groove in backing plate 28 .
  • the size of the capillary gap between the slide 22 and the upper electrode 26 is adjusted by screw 29 which is threaded into sliding clamp 27 and pushes against the top surface of base 21 .
  • the wire leads, 30 , 31 are connected to the electrophoresis power supply (not shown).
  • the resistance of an ITO coated surface is about 15 ohms per square inch.
  • the slides are 25 mm wide and have 50 mm of length extending from the fixed clamp, 2 . This means that the resistance of the film along the length of the 50 mm of extended slide is 30 ohms.
  • the resistance of the capillary gap is much less, being about 0.33 ohm for a 200 ⁇ m thick gap of reagent.
  • the linear resistance of the upper electrode must match that of the ITO coating. This can be done by using another ITO coated slide as the top electrode or by using a platinum or gold coated slide that has the same resistance as the slide coating.
  • the potential that needs to be applied depends on the resistance of the coatings and fluid, the length of overlap and the resistance of the capillary gap.
  • the electrical potential is applied to the capillary gap by connecting the wires to a power supply. In order to produce a uniform electric field of one volt per millimeter over a 200 ⁇ m gap (0.20 volt), a potential of 24 volts is required across the electrodes.
  • a third preferred method of applying the required potential across the reagent and tissue is to use a curved, movable upper electrode, as shown in FIGS. 3 and 4 in conjunction with an ITO coated microscope slide 22 .
  • the slide 22 is clamped in the fixed clamp 23 as in the previous embodiment.
  • the moving upper electrode 40 is attached to an air cylinder 45 that moves it lengthwise along the slide.
  • the moving upper electrode 40 is 25 mm wide and has a curved lower surface that is stepped.
  • the outer rims 41 of the movable electrode 40 are one millimeter wide at both sides and extend radially 200 ⁇ m beyond the curved lower surface 42 (see FIG. 4 ) which lies between the two rims 41 .
  • the two rims 41 slide on the surface of the slide while the raised surface 42 is approximately 200 ⁇ m above the slide.
  • the movable electrode 40 is made of a non-conductor such as Ultem® 1000. Its curved lower surface 42 lies between the rims 41 and is plated with platinum and is electrically connected to the lead wire 43 which in turn is secured to the Ultem electrode 40 by means of screw 44 .
  • Tissue 25 is adhered to the ITO surface of slide 22 and a small volume of about 15 ⁇ l of the reagent that contains the conjugates of interest is placed on the slide from a pipette (not shown).
  • the air cylinder 45 pushes the movable electrode 40 onto the slide where it contacts the 15 ⁇ l puddle of reagent.
  • the reagent is attracted to the lower platinum-plated surface 42 of the moveable electrode 40 forming a meniscus 46 .
  • the surface tension of the reagent strongly attracts the reagent to the platinum-plated surface 42 and the top of the slide 22 , and retains it there while the electrode 40 is moved axially along the slide 22 by the air cylinder 45 .
  • the reagent wets the top surface of the slide and the tissue as it slides across them and the electric potential provides the electrophoretic force that drives the molecules into the tissue.
  • the reagent is strongly mixed by the shear forces in the reagent as the electrode moves. With this apparatus, the potential can be reversed to drive out conjugate that is not bound to specific sites.
  • a constant current circuit is a well-known device to those skilled in the art of transistor circuitry.
  • the reagents used in any step need to be removed before reagents for the next step are applied. This is accomplished in this embodiment by bringing the movable electrode 40 off of the slide 22 and onto rinse block 47 .
  • Rinse block 47 has holes in its upper surface that are fed by tubing 48 .
  • Rinse fluid to the rinse block 47 is controlled by a valve, not shown.
  • Electrode 40 is rinsed at the rinse block 47 then, while it is covered with rinse solution, it is returned to the slide 22 . On the slide it picks up more reagent, and is again returned to the rinse block 47 .
  • the reagent on the slide is serially diluted until it is sufficiently dilute as not to cause any interference with the next reagent.
  • a fourth preferred method (shown in FIG. 5 ) of applying a potential across the tissue is similar to method three but does not use a conductive coating on the slide.
  • two conductive rods, 51 , 52 were used.
  • the rods are located on opposite ends of the movable block 50 with their axes running across the narrow width of the slide.
  • the voltage is applied between the two rods, one rod connected to the positive potential lead, 53 and the other connected to the negative potential lead 54 .
  • As current flows from one rod to the other through the reagent on the slide 55 the charged molecules are driven into the tissue.
  • the block was moved up and down the length of the slide while the current was being applied. Rinsing of the slide may be accomplished in the same manner as described above for method three.
  • the following experiment was run to determine if antibody could be introduced electrophoretically into tissue.
  • the tissue was adhered to a hydrophilic polytetrafluoroethylene (PTFE) membrane (TEFLON® Plumber's Tape) to enable manipulation and orientation of the tissue in the gel, and then embedded in an agarose gel for subsequent electrophoresis.
  • PTFE polytetrafluoroethylene
  • Tissues 2-4 Three of the tissue/membrane sections, shown as Tissues 2-4, were mounted in 1% agarose (GibcoBRL, Cat. No. 15510-019 in 1 ⁇ TAE buffer, Sigma Cat. No. T9650) and cut out. Tissue 1 was not mounted in agarose prior to pouring the gel and was positioned in the electrophoresis apparatus (Owl Model B1A, flatbed) adjacent to wells 2 and 3. Tissues 2-4 were first embedded in agarose than positioned vertically as shown in FIG. 6 .
  • the vertical positioning places the tissue sections in the direct path of the antibodies from the wells so that the antibodies must migrate through the tissue under the urging of the electric field and in the direction of the large arrow at the left of FIG. 6 .
  • the apparatus was filled with 1% agarose and allowed to solidify. 25 ⁇ l of anti-CD34 antibody (Ventana Medical Systems, Arlington, Ariz., Cat. No. 790-2927) was diluted 50% with glycerol (Sigma Cat No. G6279) and bromo phynol blue (Sigma Cat. No. B3269) and was added to wells 2, 3, 5, 6, 8 and 9.
  • the electrophoresis apparatus was run at 45V for 90 minutes.
  • FIGS. 7-10 Photomicrographs of the stained tissue sections corresponding to antibody from wells 2-3, 5-6, and 8-9 are shown in FIGS. 7-10 .
  • FIG. 7 shows Tissue Section 1, which was in front of wells 2-3.
  • FIG. 8 shows Tissue Section 2, which was directly in front of wells 5-6.
  • FIG. 9 shows Tissue Section 3, which was in front of Tissue Section 2.
  • FIG. 10 shows Tissue Section 4, which was in front of wells 8-9.
  • Tissue sections 1 ( FIG. 7 ) and 4 ( FIG. 10 ) were stained equally and darker than Sections 2 and 3. Section 3 was stained significantly lighter than section 2.
  • Electrophoresis is able to drive anti-CD34 antibody into tonsil tissue and through tonsil tissue that is mounted on PTFE membrane.
  • the antibody binds to its antigen under these conditions.

Abstract

The present invention introduces a radically different way of accelerating biomolecule conjugates into tissue, and hence towards their targets for purposes of tissue staining. The invention provides for an order of magnitude improvement over the prior art diffusion process used to stain tissue. The invention comprises a method of tissue staining by applying an electric field to a tissue sample in the presence of an electrolyte and biomolecular conjugates of interest suspended in the electrolyte. Typical staining times are reduced to seconds as opposed to 30-120 minutes common in the prior art. The invention is also directed to devices for performing the method.

Description

    BACKGROUND
  • 1. Field of the Invention
  • This invention relates generally to the field of automated tissue staining apparatus, and in particular is a new method of introducing stains into tissue using electrophoresis.
  • 2. Description of Related Art
  • Tissue staining is an ancient art by modem standards that goes back over one hundred years. Recently, efforts have been made to automate the procedure of applying different types of chemical and biochemical stains to tissue sections. Instruments that have been invented for this purpose include the Ventana Medical Systems' line of dual carousel-based instruments such as the 320, ES®, NexES®, BENCHMARK®, and the BENCHMARK® XT. Patents that describe these systems include U.S. Pat. Nos. 5,595,707, 5,654,199, 6,093,574, and 6,296,809, all of which are incorporated herein by reference in their entirety. Another type of automated stainer is the TechMate® line of stainers, described in U.S. Pat. Nos. 5,355,439 and 5,737,499, both of which are incorporated herein by reference in their entireties.
  • The rate of Immunohistochemical and in situ hybridization staining of microtome-sectioned tissue on a glass slide is limited by the speed at which the biomolecules of interest can diffuse into the tissue from an aqueous solution placed in contact with the tissue section. Intact tissue presents many barriers to diffusion such as the lipid bilayer membranes that enclose individual cells and organelles, and the effects of cross-linking that the fixation process generates. The protein antibody or DNA probe molecules of interest are relatively large, ranging in size from a few kilo Daltons to several hundred kilo Daltons, which causes them to diffuse slowly into solid tissue with typical times for sufficient diffusion being in the range of several minutes to a few hours. A typical incubation period is thirty minutes at 37 degrees centigrade.
  • The diffusion rate is driven by concentration gradient so the rate can be increased by increasing the concentration of the conjugate in the reagent. However, this has two detrimental effects. First, the conjugates are often very expensive, so increasing their concentration is wasteful and not economically viable. Second, the excessive amount of conjugate that is driven into the tissue, when high concentrations are used, gets trapped in the tissue, and cannot be rinsed out and causes high levels of background staining. This background staining is called non-specific staining and, in an informational sense, is just noise. In order to reduce the noise and increase the signal of specific staining, low concentrations of conjugate are used with long incubation times to allow the conjugate to find and bind to only the specific sites.
  • Electrophoresis is an electrochemical separation technology commonly applied to separate biological molecules on the basis of their charge-to-mass ratio. Generally, a gel slab is prepared from a suitable polymeric material such as polyacrylamide by adding water to it in sufficient amount to create a semi-solid gelatinous slab. This is the matrix used to both contain the sample to be separated, and transmit the electric current used to electromotively move the various charged molecules. The pH of the gel can be manipulated to charge a biomolecule that is otherwise uncharged, thereby giving it the prerequisite net charge so that it will move when a field is applied to it. When the gel has an electric field applied to it, the charged molecules will migrate through the gel towards their opposite pole, i.e., negatively charged biomolecules will move towards the positive pole, and vice versa. The process is very commonly used in the biological research field to separate complex mixtures, and is termed “PAGE” (Polyacrylamide gel electrophoresis). A related technology is capillary electrophoresis (“CE”), which is the same basic electrochemical separation performed in thin glass capillary lumens filled with an electrolytic solution.
  • There continues to be a need for faster introduction of biomolecules into tissue sections, and for lower amounts of non-specific background staining.
  • SUMMARY OF THE INVENTION
  • The present invention introduces a radically different way of accelerating biomolecule conjugates into tissue for purposes of tissue staining, and hence towards their targets. The invention provides for an order of magnitude improvement over the prior art diffusion process used to stain tissue. The invention comprises a method of tissue staining by applying an electric field to a tissue sample in the presence of an electrolyte and a biomolecular conjugate molecule of interest suspended in the electrolyte. Typical staining times are reduced to seconds as opposed to 30-120 minutes common in the prior art.
  • It is an object of this invention to accelerate the movement of conjugate molecules from the aqueous solution into the solid tissue. Another object is to reduce the background staining due to conjugates that are not bound to specific sites. A further object is to reduce the concentration of the conjugate required in the reagent.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-sectional view of an apparatus using this method. It uses electrophoresis to cause molecules to pass into and through a thin cut piece of tissue.
  • FIG. 2 shows an ITO coated slide with a capillary gap.
  • FIG. 3 is an ITO coated slide with a moving upper electrode shown over the slide.
  • FIG. 4 is a cross-section through the movable upper electrode.
  • FIG. 5 is another cross-section through the movable dual electrode of embodiment four having incorporated conductive rods.
  • FIG. 6 is a schematic of wells and tissue positions in an agarose gel.
  • FIG. 7 is a photomicrograph of Tissue Section 1.
  • FIG. 8 is a photomicrograph of Tissue Section 2.
  • FIG. 9 is a photomicrograph of Tissue Section 3.
  • FIG. 10 is a photomicrograph of Tissue Section 4.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The invention is directed to a method of introducing a conjugate molecule into tissue comprising applying an electric field to the tissue in the presence of an electrolyte and a conjugate molecule of interest suspended in the electrolyte. A conjugate molecule may be any molecule that has a complementary binding portion that, when brought into proximity to its complementary binding site, binds to the site. Antibodies having complementarity determining regions, and DNA oligomers that have matching sequences to their target DNA, are two examples of conjugate molecules. The conjugate molecules of interest are all charged when dissolved in an aqueous solution of electrolyte of the correct pH. The net charge facilitates their movement through the electrolyte solution by the electric field. Tissue includes both tissue sections and intact cells prepared according to conventional methods such as cytospins or Thin Preps.
  • The technology generally known as Electrophoresis has been used for many years, both in research and industry to separate molecules of differing sizes and charges. Descriptions for the use of electrophoresis are given in U.S. Pat. Nos. 2,992,979; 3,384,564; 3,494,846; 3,677,930; 3,844,926; 5,382,522 and 5,536,382 among others. The prior art describes applying the electric field across a liquid or gelatinous material, such as agrose, while the solution containing the molecules of interest is placed at one end. The molecules of interest migrate through the material, at rates that depend on their net charge and molecular weights. Some of the prior art discloses the use of electrophoresis to separate human biomolecules for clinical applications. In U.S. Pat. No. 5,536,382, methods are provided for the analysis of constituents of human biological fluids using capillary electrophoresis. A clinical sample was mixed with a labeled reagent which specifically binds the analyte of interest. Capillary electrophoresis is then used to resolve bound from unbound reagent, and the constituents quantitated by measuring directly or indirectly the amount of bound reagent. In U.S. Pat. No. 5,382,522, a serum or plasma sample was assayed to determine the concentration of two different analytes selected from the group consisting of creatine kinase-MB species and creatine kinase-BB species. However, none of the prior art uses an electric field to move molecules into human tissue.
  • The most general description of this invention is that it is any method that applies an electric field across both an aqueous solution containing conjugate molecules and some tissue of interest in order to use the electrophoretic forces to drive the conjugate molecules into the tissue. In the preferred embodiment, the tissue is human tissue that is suspected of harboring some disease and has been cut on a microtome to a thin section. However, cell preparations comprising intact cells adhered to a flat surface for further processing are also encompassed by this general method. A thin section is generally between two and thirty microns thick. There are several different ways to apply the electric field to thin cut tissue, three of which are described below.
  • A first preferred method is to mount the thin cut tissue on a porous membrane, apply a conductive aqueous fluid to both sides, add reagent containing the conjugate into the fluid on at least one side, place electrodes on opposite sides and apply an electric field between the electrodes. Direct current is the preferred mode of generating the electric field, but alternating current may also be used. FIG. 1 shows a cross sectional view of an apparatus using this method. It uses electrophoresis to cause molecules to pass into and through a thin cut piece of tissue.
  • The tissue 11 is attached to a porous membrane 3. The tissue can be from any area of the body, but tests have been run using tonsil. The membrane can be made from any hydrophilic, porous material. One method that has been tried is to use PTFE film, commonly called “plumber's tape”. The PTFE film must me made hydrophilic by polymerizing polyvinyl alcohol to its surface before the tissue will bond to it. The lower electrode 5 is made from a solid disk of metal, preferably 316 SS and is placed into the bottom of the five millimeter deep depression in the lower ring, 1. This depression forms a basin below the membrane 3. An electrical lead, not shown, is attached to the lower electrode and passes out through the lower ring through a sealed hole, not shown, and is connected to one leg of the electrophoresis power supply, not shown. The membrane is stretched over the top of the lower ring, and down over its outer, tapered diameter. The membrane is retained by pressing the intermediate ring 8 over the lower ring 1 trapping the membrane 3 between the two tapered diametrical surfaces. The upper ring 2 is pressed onto the intermediate ring 8 forming another five millimeter deep basin, this one being above the membrane 3. This upper basin is hydraulically connected to the lower basin by means of two fittings 9 and a section of tubing 7. The fittings 9 are standard barb fittings made of thermoplastic and the tubing 7 is standard Tygon. The upper electrode, 6, is made of stainless steel wire mesh which allows reagent to be poured into the upper basin and keeps the top surface of membrane, 3, and the tissue, 11, visible. Upper electrode, 6, is connected to the electrophoresis power supply, not shown, by means of wire, 4. Another section of Tygon tubing, 10, is connected to a third barbed fitting, 9, which bleeds air out of the lower basin as fluid is poured into the upper basin. In operation, the upper basin is filled with conductive reagent, such as Tris-Acetate EDTA buffer at 10% concentration. This reagent also flows into the lower basin, displacing the air through the passages leading to tubing, 10. After the basins are filled, a conjugate is placed into the upper basin. Tests have been run using anti-CD34 antibody which attaches to capillary tissue in the tonsil tissue. The anti-CD34 is first mixed 1:1 with glycerol so that is sinks through the Tris buffer to the top of the tissue and the membrane. An electric potential of ten volts is applied across the ten millimeters of distance between the electrodes, providing an electric field with a strength of 100 volts per meter. The anti-CD34 antibody moves through the five micron thick tissue in less than ten seconds. The apparatus is disassembled, and the area of the tissue is cut out of the membrane. It is then processed with a standard chromagin detection kit. The capillaries in the tissue stand out against the background.
  • If a membrane is used to support the tissue during electrophoresis, the membrane containing the tissue must be removed from its support structure, applied to a glass slide and coverslipped. In the preferred embodiment, the membrane must be transparent after it is coverslipped. In order for the membrane to be transparent after coverslipping, it must have an index of refraction that is very near that of the coverslip media. Standard, xylene soluble coverslip media, such as Super-Mount™, has an index of refraction of 1.54 which is very close to that of typical proteins in human tissue. Membranes that have an index of refraction close to this are PET and nylon 6.
  • A second preferred method is to apply an electric field across the aqueous solution and the thin cut tissue of interest is to coat the glass slide with a conductive layer, apply the tissue directly to the top of the conductive layer, add a conductive reagent of the correct pH that contains the conjugate molecules of interest over the top of the tissue, cover the conductive reagent with a second electrode and then apply a potential between the conductive layer on the slide and the upper conductive electrode. After the conjugate has been driven into the tissue and sufficient time has elapsed for the conjugates to find their specific sites (a few seconds at most), the electric potential can be reversed, so that any unbound conjugates are driven out, reducing the background noise of non-specific binding.
  • The conductive layer needs to be transparent so that after the staining is complete, a pathologist can look at the tissue through a microscope with the tissue illuminated from below. Two possible candidates for a conductive, transparent film are gold and ITO (Indium Tin Oxide). Both are applied as very thin layers in a vacuum chamber. Any material that is both transparent, conductive and resistant to oxidation can be used.
  • FIG. 2 shows an apparatus for applying an electrical field across a capillary gap of reagent that contains conjugate molecules and across a thin cut layer of tissue that is adhered to an ITO coated glass slide 22. All the components are attached to a non-conductive base plate, 21, made from Ultem® 1000. The microscope slide, 22, is retained in the fixed clamping fixture, 23, by the force exerted by thumb screw, 24. All of the clamping fixture, 23, is made of conductive material, such as stainless steel. The tissue, 25, is adhered to the top of the ITO surface of slide 22. The upper electrode, 26, is clamped into sliding clamping fixture, 27, which is also made of stainless steel and slides in a groove in backing plate 28. The size of the capillary gap between the slide 22 and the upper electrode 26 is adjusted by screw 29 which is threaded into sliding clamp 27 and pushes against the top surface of base 21. The wire leads, 30, 31 are connected to the electrophoresis power supply (not shown).
  • The resistance of an ITO coated surface is about 15 ohms per square inch. The slides are 25 mm wide and have 50 mm of length extending from the fixed clamp, 2. This means that the resistance of the film along the length of the 50 mm of extended slide is 30 ohms. The resistance of the capillary gap is much less, being about 0.33 ohm for a 200 μm thick gap of reagent. In order for the electric field across the gap to be constant, the linear resistance of the upper electrode must match that of the ITO coating. This can be done by using another ITO coated slide as the top electrode or by using a platinum or gold coated slide that has the same resistance as the slide coating. The potential that needs to be applied depends on the resistance of the coatings and fluid, the length of overlap and the resistance of the capillary gap. The electrical potential is applied to the capillary gap by connecting the wires to a power supply. In order to produce a uniform electric field of one volt per millimeter over a 200 μm gap (0.20 volt), a potential of 24 volts is required across the electrodes.
  • A third preferred method of applying the required potential across the reagent and tissue is to use a curved, movable upper electrode, as shown in FIGS. 3 and 4 in conjunction with an ITO coated microscope slide 22. The slide 22 is clamped in the fixed clamp 23 as in the previous embodiment. However, instead of a fixed upper electrode 26 the moving upper electrode 40, is attached to an air cylinder 45 that moves it lengthwise along the slide. The moving upper electrode 40 is 25 mm wide and has a curved lower surface that is stepped. The outer rims 41 of the movable electrode 40 are one millimeter wide at both sides and extend radially 200 μm beyond the curved lower surface 42 (see FIG. 4) which lies between the two rims 41.
  • The two rims 41 slide on the surface of the slide while the raised surface 42 is approximately 200 μm above the slide. The movable electrode 40 is made of a non-conductor such as Ultem® 1000. Its curved lower surface 42 lies between the rims 41 and is plated with platinum and is electrically connected to the lead wire 43 which in turn is secured to the Ultem electrode 40 by means of screw 44. Tissue 25 is adhered to the ITO surface of slide 22 and a small volume of about 15 μl of the reagent that contains the conjugates of interest is placed on the slide from a pipette (not shown). The air cylinder 45 pushes the movable electrode 40 onto the slide where it contacts the 15 μl puddle of reagent. The reagent is attracted to the lower platinum-plated surface 42 of the moveable electrode 40 forming a meniscus 46. The surface tension of the reagent strongly attracts the reagent to the platinum-plated surface 42 and the top of the slide 22, and retains it there while the electrode 40 is moved axially along the slide 22 by the air cylinder 45. The reagent wets the top surface of the slide and the tissue as it slides across them and the electric potential provides the electrophoretic force that drives the molecules into the tissue. The reagent is strongly mixed by the shear forces in the reagent as the electrode moves. With this apparatus, the potential can be reversed to drive out conjugate that is not bound to specific sites.
  • Even though the resistance of the ITO on the slide between the electrode and the clamped end of the slide varies significantly, a constant potential is maintained between the platinum coated surface and the ITO surface of the slide by means of a constant current circuit that supplies power to the two wires. A constant current circuit is a well-known device to those skilled in the art of transistor circuitry.
  • The reagents used in any step need to be removed before reagents for the next step are applied. This is accomplished in this embodiment by bringing the movable electrode 40 off of the slide 22 and onto rinse block 47. Rinse block 47 has holes in its upper surface that are fed by tubing 48. Rinse fluid to the rinse block 47 is controlled by a valve, not shown. Electrode 40 is rinsed at the rinse block 47 then, while it is covered with rinse solution, it is returned to the slide 22. On the slide it picks up more reagent, and is again returned to the rinse block 47. By a series of these motions, the reagent on the slide is serially diluted until it is sufficiently dilute as not to cause any interference with the next reagent.
  • A fourth preferred method (shown in FIG. 5) of applying a potential across the tissue is similar to method three but does not use a conductive coating on the slide. Instead of a conductive lower surface on the insulated movable block, two conductive rods, 51, 52, were used. The rods are located on opposite ends of the movable block 50 with their axes running across the narrow width of the slide. The voltage is applied between the two rods, one rod connected to the positive potential lead, 53 and the other connected to the negative potential lead 54. As current flows from one rod to the other through the reagent on the slide 55, the charged molecules are driven into the tissue. As in method three, the block was moved up and down the length of the slide while the current was being applied. Rinsing of the slide may be accomplished in the same manner as described above for method three.
  • Experiment 1. Electrophoretic Tissue Staining using Anti-CD34 Antibody in Tonsil.
  • The following experiment was run to determine if antibody could be introduced electrophoretically into tissue. The tissue was adhered to a hydrophilic polytetrafluoroethylene (PTFE) membrane (TEFLON® Plumber's Tape) to enable manipulation and orientation of the tissue in the gel, and then embedded in an agarose gel for subsequent electrophoresis.
  • Procedure: four sections of 5 μm-thick human tonsil were mounted to PVA-treated hydrophilic PTFE membrane, air dried for 48 hours, overnight dried at 60° C., manually de-paraffinized and re-hydrated (standard process of dipping sections sequentially in xylene, then 100% EtOH, 90% EtOH, 80% EtOH, 70% EtOH, and finally 100% H2O). The PTFE membrane was made hydrophilic by wetting in Isopropyl alcohol first, then soaking for several hours in a solution of 0.1% polyvinyl alcohol in phosphate buffer, pH 2.2 and 5% glutaraldehyde, and rinsed in DI water. Any hydrophilic membrane that will pass antibodies will work, however.
  • With regard to FIG. 6, ten wells are shown, numbered 1-10. Three of the tissue/membrane sections, shown as Tissues 2-4, were mounted in 1% agarose (GibcoBRL, Cat. No. 15510-019 in 1× TAE buffer, Sigma Cat. No. T9650) and cut out. Tissue 1 was not mounted in agarose prior to pouring the gel and was positioned in the electrophoresis apparatus (Owl Model B1A, flatbed) adjacent to wells 2 and 3. Tissues 2-4 were first embedded in agarose than positioned vertically as shown in FIG. 6. The vertical positioning places the tissue sections in the direct path of the antibodies from the wells so that the antibodies must migrate through the tissue under the urging of the electric field and in the direction of the large arrow at the left of FIG. 6. The apparatus was filled with 1% agarose and allowed to solidify. 25 μl of anti-CD34 antibody (Ventana Medical Systems, Tucson, Ariz., Cat. No. 790-2927) was diluted 50% with glycerol (Sigma Cat No. G6279) and bromo phynol blue (Sigma Cat. No. B3269) and was added to wells 2, 3, 5, 6, 8 and 9. The electrophoresis apparatus was run at 45V for 90 minutes. An additional 25 μl of anti-CD34 was added to wells 2 and 9 to see if additional antibody lead to increased staining, and 25 μl of FITC-labeled human IgG was added to wells 1 and 10 to insure that under these test conditions the antibody was migrating in the proper direction. The apparatus was run for an additional 120 minutes at 45V. The tissues on the membranes were removed from the agarose by peeling the agarose away and a streptavidin/DAB detection kit applied manually (Ventana Medical Systems, Tucson, Ariz., Cat. No. 760-124).
  • Results: Photomicrographs of the stained tissue sections corresponding to antibody from wells 2-3, 5-6, and 8-9 are shown in FIGS. 7-10. FIG. 7 shows Tissue Section 1, which was in front of wells 2-3. FIG. 8 shows Tissue Section 2, which was directly in front of wells 5-6. FIG. 9 shows Tissue Section 3, which was in front of Tissue Section 2. FIG. 10 shows Tissue Section 4, which was in front of wells 8-9. Tissue sections 1 (FIG. 7) and 4 (FIG. 10) were stained equally and darker than Sections 2 and 3. Section 3 was stained significantly lighter than section 2.
  • Conclusions:
  • 1. Electrophoresis is able to drive anti-CD34 antibody into tonsil tissue and through tonsil tissue that is mounted on PTFE membrane.
  • 2. The antibody binds to its antigen under these conditions.
  • 3. The more antibody that is passed through the tissue, the darker the stain.
  • 4. Background coloration is acceptable.
  • Although certain presently preferred embodiments of the invention have been described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the described embodiments may be made without departing from the spirit and scope of the invention. For instance, although direct current is normally used for electrophoresis, it is contemplated that alternating current could be used also. Accordingly, it is intended that the invention be limited only to the extent required by the appended claims and the applicable rules of law.

Claims (13)

1. A method of introducing a conjugate molecule into tissue comprising applying an electric field to the tissue in the presence of an electrolyte and a conjugate molecule of interest suspended in the electrolyte.
2. The method of claim 1 wherein said conjugate molecule is any molecule that has a complementary binding portion.
3. The method of claim 1 wherein said conjugate molecule is selected from the group consisting of antibodies and polynucleotide molecules.
4. The method of claim 1 wherein said tissue comprises a solid tissue sample.
5. The method of claim 1 wherein said tissue comprises a cellular preparation.
6. The method of claim 1 wherein the step of applying the electric field to the tissue comprises using alternating current.
7. The method of claim 1 wherein the step of applying the electric field to the tissue comprises using direct current.
8. The method of claim 1 wherein the step of applying the electric field to the tissue comprises orienting the electric field orthogonally to the plane of the tissue.
9. The method of claim 3 wherein said conjugate molecule is detectably labeled.
10. The method of claim 9 wherein the labels are selected from the group consisting of haptens, fluorophores, radiolabels and chromophores.
11. A device for electrophoretically directing conjugate molecules into a tissue sample comprising:
(a) a first electrode having a sample surface adapted for positioning and holding said tissue;
(b) a second electrode spaced apart from said first electrode and defining a gap between said sample surface and said second electrode;
(c) a resevoir suitable for holding an electrolyte solution disposed on both sides of the tissue sample; and
(d) means for applying an electrical current across said sample surface whereby in response to it an electric field will form sufficient to drive the conjugate molecules into said tissue.
12. A device for electrophoretically directing conjugate molecules into a tissue sample comprising:
(a) a first electrode having a sample surface adapted for positioning and holding said tissue;
(b) a second electrode spaced apart from said first electrode and defining a gap between said sample surface and said second electrode, said gap capable of supporting a meniscus of electrolye fluid; and
(c) means for applying an electrical current across said sample surface whereby in response to it an electric field will form sufficient to drive the conjugate molecules into said tissue.
13. A device for electrophoretically directing conjugate molecules into a tissue sample comprising:
(a) a movable electrically-insulated block, said block having at least two electrodes of opposite polarity positioned on it, said block being movable to thereby direct an electric field into said tissue sample;
(b) a sample surface adapted for positioning and holding said tissue, said sample surface being spaced apart from said block thereby defining a gap between said sample surface and said block, said gap capable of supporting a meniscus of electrolye fluid; and
(c) means for applying an electrical current across said electrodes whereby in response to it an electric field will form sufficient to drive the conjugate molecules into said tissue.
US10/848,775 2003-05-19 2004-05-18 Electrophoretic in situ tissue staining Abandoned US20050074890A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/848,775 US20050074890A1 (en) 2003-05-19 2004-05-18 Electrophoretic in situ tissue staining
US11/863,834 US7618807B2 (en) 2003-05-19 2007-09-28 Apparatus for electrophoretic in situ tissue staining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47181003P 2003-05-19 2003-05-19
US10/848,775 US20050074890A1 (en) 2003-05-19 2004-05-18 Electrophoretic in situ tissue staining

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/863,834 Division US7618807B2 (en) 2003-05-19 2007-09-28 Apparatus for electrophoretic in situ tissue staining

Publications (1)

Publication Number Publication Date
US20050074890A1 true US20050074890A1 (en) 2005-04-07

Family

ID=33476889

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/848,775 Abandoned US20050074890A1 (en) 2003-05-19 2004-05-18 Electrophoretic in situ tissue staining
US11/863,834 Expired - Fee Related US7618807B2 (en) 2003-05-19 2007-09-28 Apparatus for electrophoretic in situ tissue staining

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/863,834 Expired - Fee Related US7618807B2 (en) 2003-05-19 2007-09-28 Apparatus for electrophoretic in situ tissue staining

Country Status (6)

Country Link
US (2) US20050074890A1 (en)
EP (1) EP1625382A2 (en)
JP (1) JP4637847B2 (en)
AU (1) AU2004241591A1 (en)
CA (1) CA2526126C (en)
WO (1) WO2004104557A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019302A1 (en) * 2004-07-23 2006-01-26 Charles Lemme Method and apparatus for applying fluids to a biological sample
US20080305497A1 (en) * 2007-05-23 2008-12-11 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US7695929B2 (en) 2006-11-01 2010-04-13 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US20110014459A1 (en) * 2009-07-16 2011-01-20 Phillips Scientific Inc. Of South Carolina Expandable polymer membrane and tubes, and a method of manufacturing thereof
US20110236949A1 (en) * 2009-09-22 2011-09-29 Colorado State University Research Foundation Methods for Processing Biological Tissues
WO2012048154A1 (en) * 2010-10-06 2012-04-12 Biocare Medical, Llc Methods and systems for efficient processing of biological samples
US8609249B2 (en) 2011-02-09 2013-12-17 Phillips Scientific Inc. Thin wall expandable polymer tubes having improved axial and radial strength, and a method of manufacturing thereof
US8703490B2 (en) 2008-06-05 2014-04-22 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852364A (en) * 2012-11-29 2014-06-11 南京金斯瑞生物科技有限公司 Biopolymer automatic staining method, and staining device
US20150153307A1 (en) 2009-06-29 2015-06-04 Nanjingjinsirui Science & Technology Biology Corporation System for rapid electrophoresis binding method and related kits and compositions
US9945763B1 (en) 2011-02-18 2018-04-17 Biocare Medical, Llc Methods and systems for immunohistochemistry heat retrieval of biological samples
US10634590B2 (en) 2014-03-11 2020-04-28 Emd Millipore Corporation IHC, tissue slide fluid exchange disposable and system
CN106211762B (en) * 2014-04-04 2020-08-14 麻省理工学院 Active transport of charged molecules into, in and/or from a charged matrix
US9782971B2 (en) * 2015-12-07 2017-10-10 The Procter & Gamble Company Cartridge servicing cases for fluid jet cartridge
US20230313628A1 (en) * 2022-03-31 2023-10-05 Saudi Arabian Oil Company Systems and methods in which polyacrylamide gel is used to resist corrosion of a wellhead component in a well cellar
US11891564B2 (en) 2022-03-31 2024-02-06 Saudi Arabian Oil Company Systems and methods in which colloidal silica gel is used to resist corrosion of a wellhead component in a well cellar

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992979A (en) * 1957-10-03 1961-07-18 Labline Inc Electrophoresis method and apparatus
US3384564A (en) * 1962-11-21 1968-05-21 Mount Sinai Hospital Res Found Electrophoretic process for simultaneously spearating and concentrating particles
US3494846A (en) * 1968-06-11 1970-02-10 Pierre C Arquembourg Immuno-electrophoretic method and apparatus
US3677930A (en) * 1970-11-05 1972-07-18 Savant Instr Electrophoresis testing apparatus
US3844926A (en) * 1972-09-06 1974-10-29 Atomic Energy Authority Uk Separation apparatus
US5232856A (en) * 1990-06-25 1993-08-03 Firth Kevin L Electroporation device
US5355439A (en) * 1991-08-05 1994-10-11 Bio Tek Instruments Method and apparatus for automated tissue assay
US5382552A (en) * 1993-09-14 1995-01-17 Miles Inc. Rare earth-containing alkali silicate frits and their use for the preparation of porcelain enamel coatings with improved cleanability
US5536382A (en) * 1994-05-23 1996-07-16 Advanced Molecular Systems, Inc. Capillary electrophoresis assay method useful for the determination of constituents of a clinical sample
US5595707A (en) * 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US5737499A (en) * 1991-08-05 1998-04-07 Biotek Solutions, Inc. System for performing a plurality of independent tissue analysis
US5749847A (en) * 1988-01-21 1998-05-12 Massachusetts Institute Of Technology Delivery of nucleotides into organisms by electroporation
US5830877A (en) * 1993-08-26 1998-11-03 The Regents Of The University Of California Method, compositions and devices for administration of naked polynucleotides which encode antigens and immunostimulatory
US6093574A (en) * 1997-08-11 2000-07-25 Ventana Medical Systems Method and apparatus for rinsing a microscope slide
US20010001064A1 (en) * 1998-03-18 2001-05-10 Holaday John W. Flow electroporation chamber and methods of use thereof
US6296809B1 (en) * 1998-02-27 2001-10-02 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6409774B1 (en) * 1999-06-11 2002-06-25 Resolution Sciences Corporation Electrophoresis-assisted staining of materials
US20030119028A1 (en) * 2001-08-08 2003-06-26 Graves David J. Device and methods for enhanced microarray hybridization reactions
US7018819B2 (en) * 2001-11-30 2006-03-28 Cellectricon Ab Method and apparatus for manipulation of cells and cell-like structures focused electric fields in microfludic systems and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476004A (en) * 1983-04-08 1984-10-09 D.E.P. Systems, Inc. Apparatus for electrofusion of biological particles
US4561961A (en) * 1984-07-27 1985-12-31 Biotronics Cooled microscope slide and electrode apparatus for use in live cell fusion system
US5134070A (en) * 1990-06-04 1992-07-28 Casnig Dael R Method and device for cell cultivation on electrodes
US5814603A (en) * 1992-06-12 1998-09-29 Affymax Technologies N.V. Compounds with PTH activity
JP2001506172A (en) * 1997-07-22 2001-05-15 イーメッド コーポレイション Needle for iontophoretic delivery of active substance

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992979A (en) * 1957-10-03 1961-07-18 Labline Inc Electrophoresis method and apparatus
US3384564A (en) * 1962-11-21 1968-05-21 Mount Sinai Hospital Res Found Electrophoretic process for simultaneously spearating and concentrating particles
US3494846A (en) * 1968-06-11 1970-02-10 Pierre C Arquembourg Immuno-electrophoretic method and apparatus
US3677930A (en) * 1970-11-05 1972-07-18 Savant Instr Electrophoresis testing apparatus
US3844926A (en) * 1972-09-06 1974-10-29 Atomic Energy Authority Uk Separation apparatus
US5749847A (en) * 1988-01-21 1998-05-12 Massachusetts Institute Of Technology Delivery of nucleotides into organisms by electroporation
US5595707A (en) * 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US5654199A (en) * 1990-03-02 1997-08-05 Ventana Medical Systems, Inc. Method for rinsing a tissue sample mounted on a slide
US5232856A (en) * 1990-06-25 1993-08-03 Firth Kevin L Electroporation device
US5737499A (en) * 1991-08-05 1998-04-07 Biotek Solutions, Inc. System for performing a plurality of independent tissue analysis
US5355439A (en) * 1991-08-05 1994-10-11 Bio Tek Instruments Method and apparatus for automated tissue assay
US5830877A (en) * 1993-08-26 1998-11-03 The Regents Of The University Of California Method, compositions and devices for administration of naked polynucleotides which encode antigens and immunostimulatory
US5382552A (en) * 1993-09-14 1995-01-17 Miles Inc. Rare earth-containing alkali silicate frits and their use for the preparation of porcelain enamel coatings with improved cleanability
US5536382A (en) * 1994-05-23 1996-07-16 Advanced Molecular Systems, Inc. Capillary electrophoresis assay method useful for the determination of constituents of a clinical sample
US6093574A (en) * 1997-08-11 2000-07-25 Ventana Medical Systems Method and apparatus for rinsing a microscope slide
US6296809B1 (en) * 1998-02-27 2001-10-02 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US20010001064A1 (en) * 1998-03-18 2001-05-10 Holaday John W. Flow electroporation chamber and methods of use thereof
US6409774B1 (en) * 1999-06-11 2002-06-25 Resolution Sciences Corporation Electrophoresis-assisted staining of materials
US20030119028A1 (en) * 2001-08-08 2003-06-26 Graves David J. Device and methods for enhanced microarray hybridization reactions
US7018819B2 (en) * 2001-11-30 2006-03-28 Cellectricon Ab Method and apparatus for manipulation of cells and cell-like structures focused electric fields in microfludic systems and use thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820381B2 (en) * 2004-07-23 2010-10-26 Ventana Medical Systems, Inc. Method and apparatus for applying fluids to a biological sample
US20060019302A1 (en) * 2004-07-23 2006-01-26 Charles Lemme Method and apparatus for applying fluids to a biological sample
US9719986B2 (en) 2006-11-01 2017-08-01 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof preparation and method for their preparation and use
US8618265B2 (en) 2006-11-01 2013-12-31 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US7695929B2 (en) 2006-11-01 2010-04-13 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US20100184087A1 (en) * 2006-11-01 2010-07-22 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US20100297725A1 (en) * 2006-11-01 2010-11-25 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US8846320B2 (en) 2006-11-01 2014-09-30 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US9575067B2 (en) 2007-05-23 2017-02-21 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US8445191B2 (en) 2007-05-23 2013-05-21 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US8486620B2 (en) 2007-05-23 2013-07-16 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US7985557B2 (en) 2007-05-23 2011-07-26 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9103822B2 (en) 2007-05-23 2015-08-11 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US20080305497A1 (en) * 2007-05-23 2008-12-11 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9017954B2 (en) 2007-05-23 2015-04-28 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US10718693B2 (en) 2008-06-05 2020-07-21 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
US8703490B2 (en) 2008-06-05 2014-04-22 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
US20110014459A1 (en) * 2009-07-16 2011-01-20 Phillips Scientific Inc. Of South Carolina Expandable polymer membrane and tubes, and a method of manufacturing thereof
US8784710B2 (en) 2009-07-16 2014-07-22 Phillips Scientific Inc. Expandable polymer membrane and tubes, and a method of manufacturing thereof
US20110236949A1 (en) * 2009-09-22 2011-09-29 Colorado State University Research Foundation Methods for Processing Biological Tissues
US9442049B2 (en) 2010-10-06 2016-09-13 Biocare Medical, Llc Efficient processing systems and methods for biological samples
US8501434B2 (en) 2010-10-06 2013-08-06 Biocare, LLC Method for processing non-liquid biological samples with dynamic application of a processing liquid
WO2012048154A1 (en) * 2010-10-06 2012-04-12 Biocare Medical, Llc Methods and systems for efficient processing of biological samples
US8609249B2 (en) 2011-02-09 2013-12-17 Phillips Scientific Inc. Thin wall expandable polymer tubes having improved axial and radial strength, and a method of manufacturing thereof

Also Published As

Publication number Publication date
WO2004104557A2 (en) 2004-12-02
US7618807B2 (en) 2009-11-17
JP2006528784A (en) 2006-12-21
JP4637847B2 (en) 2011-02-23
CA2526126C (en) 2012-05-15
US20080020450A1 (en) 2008-01-24
CA2526126A1 (en) 2004-12-02
AU2004241591A1 (en) 2004-12-02
WO2004104557A3 (en) 2005-03-17
EP1625382A2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
US7618807B2 (en) Apparatus for electrophoretic in situ tissue staining
US11371988B2 (en) Cell concentration, capture and lysis devices and methods of use thereof
Otieno et al. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers
US7935308B2 (en) Methods and devices for analyte detection
US20060141469A1 (en) Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
Zagnoni et al. Microfluidic array platform for simultaneous lipid bilayer membrane formation
EP0558233A1 (en) Improved electrophoretic analysis method and apparatus
US10101296B2 (en) Mini-gel comb
JPH02297053A (en) Improvement in biosensor
US3917451A (en) Electrokinetic streaming current detection
Li et al. Microchip-based integration of cell immobilization, electrophoresis, post-column derivatization, and fluorescence detection for monitoring the release of dopamine from PC 12 cells
CN114088501A (en) Chip device for in-situ tissue staining and decoloring and use method
JP2001204458A (en) Microbial carrier body, device for measuring microbial number and method for measuring microbial number
CN111455034A (en) Single molecule detection method and system based on solid-state nanopore mechanism
NL2025067B1 (en) Sensor for single particle detection
US20150060278A1 (en) Cylinder cam for gel electrophoresis
CN103865785A (en) Capillary chip for detecting urine bacteria and measuring reagent
Ikeda et al. Electrochemical flow enzyme immunoassay by means of a needle-shaped sampler/reactor
JPS607230B2 (en) How to detect antigens or antibodies
Nagasawa et al. Microfluidic Detection of Biogenic Amines

Legal Events

Date Code Title Description
AS Assignment

Owner name: VENTANA MEDICAL SYSTEMS, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEMME, CHARLES;RICHARDS, WILLIAM;BRYANT, DAVID;AND OTHERS;REEL/FRAME:016319/0107;SIGNING DATES FROM 20040322 TO 20050418

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION