US20050070374A1 - Enhanced golf club performance via friction stir processing - Google Patents

Enhanced golf club performance via friction stir processing Download PDF

Info

Publication number
US20050070374A1
US20050070374A1 US10/673,613 US67361303A US2005070374A1 US 20050070374 A1 US20050070374 A1 US 20050070374A1 US 67361303 A US67361303 A US 67361303A US 2005070374 A1 US2005070374 A1 US 2005070374A1
Authority
US
United States
Prior art keywords
friction stir
golf club
face
stir processing
fsp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/673,613
Inventor
Murray Mahoney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne Scientific and Imaging LLC
Original Assignee
Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Licensing LLC filed Critical Technology Licensing LLC
Priority to US10/673,613 priority Critical patent/US20050070374A1/en
Assigned to INNOVATIVE TECHNOLOGY LICENSING, LLC reassignment INNOVATIVE TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAHONEY, MURRAY W.
Priority to KR1020067008299A priority patent/KR20060069522A/en
Priority to CA002540527A priority patent/CA2540527A1/en
Priority to CNA2004800352679A priority patent/CN1886178A/en
Priority to EP04785224A priority patent/EP1691901A1/en
Priority to PCT/US2004/031875 priority patent/WO2005032667A1/en
Priority to JP2006534035A priority patent/JP2007507300A/en
Publication of US20050070374A1 publication Critical patent/US20050070374A1/en
Assigned to TELEDYNE LICENSING, LLC reassignment TELEDYNE LICENSING, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ROCKWELL SCIENTIFIC LICENSING, LLC
Assigned to ROCKWELL SCIENTIFIC LICENSING, LLC reassignment ROCKWELL SCIENTIFIC LICENSING, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INNOVATIVE TECHNOLOGY LICENSING, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/047Heads iron-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/004Striking surfaces coated with high-friction abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/32Golf

Definitions

  • This invention is concerned with fabrication of golf clubs, and in particular with surface treatment of metallic golf club heads to improve performance.
  • Golf club irons are generally designed to propel a golf ball through a trajectory for which the increase in the ball height (i.e., loft) for a given distance traveled is maximized.
  • the ball impacts the ground at a relatively large angle so that it tends to roll less and remain close to the point of ground impact, which enables the golfer to exercise better control over the final location of the ball.
  • the ball should go “straight”, i.e., its trajectory should define an arc lying in a vertical plane. This requires that horizontal spin be minimized so that the ball does not substantially hook to the left or slice to the right of the “straight” trajectory.
  • the ability to impart backwards spin is desirable to enable the golfer to minimize ball rolling or to cause the ball to roll backwards for enhanced control.
  • the club face angle (during ball impact) with respect to the vertical covers a large range for irons and tend to be larger for shorter propelled distances.
  • the faces of irons typically have horizontal grooves whose outer edges tend to “grip” the ball during impact so that more backward spin can be imparted to the ball. These grooves also facilitate removal of water, which would change the frictional characteristics of the club face.
  • the loft to distance ratio is determined primarily by the club face angle and the “launch velocity” at which the ball leaves the golf club face.
  • a higher launch velocity enables a given distance to be covered using a club with a greater face angle, which provides higher loft. Conversely, for the same launch angle, a greater distance can be achieved with an increased launch velocity.
  • One way to increase the launch velocity is to increase the hardness of the material comprising the club face so that the kinetic energy lost due to inelasticity is minimized. Because of the irregular shapes involved, however, golf club heads are typically fabricated by investment casting, which yields material having a relatively large-grain structure and low hardness.
  • Inserts of harder material may be attached to the golf club face but this does not yield optimum results. In particular, much of the benefit derived from the harder material may be offset by losses associated with energy transfer across the interface between the insert and the club head. The precision machining and secure attachment needed to minimize such losses significantly increase manufacturing costs. Inserts must also be relatively thick to withstand ball impact without deforming. Increased thickness reduces the flexibility for balancing the club's weight distribution. Such loss of flexibility is significant since peripheral weighting (around the club face) is often used to minimize the tendency of the club to twist and impart horizontal spin to the ball during impact. Horizontal spin causes the ball to deviate from a straight trajectory. A properly weighted club has a large “sweet spot” on the face for hitting the ball in a straight trajectory.
  • One possibility for fabricating a golf club with increased face hardness is to forge the golf club head from a fine-grained workpiece.
  • Reduced grain size can be achieved in a metal by introducing extensive deformation.
  • a number of conventional metal working operations are available for this purpose, such as rolling, forging, swaging and extrusion.
  • metal working operations change the grain size throughout the material so that important bulk properties, such as strength, ductility and impact resistance, are also changed.
  • the reduced impact resistance for a golf club forged from fine-grained bulk metal would significantly limit the club durability and useful life. Further, achieving a significant grain size reduction by any of these metal working practices is not practical or economical.
  • Friction stir processing involves passing a rotating FSP tool through a metallic material to locally create a fine-grain microstructure providing improved mechanical properties [F. D. Nicholas, Advanced Materials Processes 6/99, 69 (1999)].
  • the FSP operation is typically performed at room temperature but the friction and metal deformation involved raises the local temperature to just below the solidus temperature so that the friction stir processed material is fully-recrystallized but does not undergo melting.
  • Friction stir processing introduces levels of deformation considerably greater than can be achieved by conventional metal working methods, which provides exceptionally fine grain structure and greatly enhanced hardness.
  • a thin surface layer can be friction stir processed to improve hardness without significantly affecting the mechanical properties of the bulk metal.
  • Friction stir processing has been demonstrated for a variety of metals and their alloys, including aluminum, titanium, bronze, and steel.
  • the FSP approach has been used to locally improve the mechanical properties in high-stress areas of cast metal parts but has not previously been applied to increasing the hardness of golf club surfaces.
  • This invention provides an improved golf club and a method for improving the performance of a golf club via friction stir processing (FSP) to enhance the hardness of at least a portion of the golf club face.
  • FSP friction stir processing
  • Enhanced face hardness tends to increase the momentum transfer efficiency between the club and the ball so as to provide increased loft, increased distance, and better control over the final location of the ball.
  • Friction stir processing also tends to remove voids and defects in the metal that might otherwise decrease momentum transfer efficiency.
  • the friction stir processed face is also more resistant to wear, which tends to improve golfing consistency and extend the lifetime of the club.
  • Another embodiment of the invention is a practice club that provides performance feedback to the golfer in terms of a more solid feel when the ball is struck within a friction stir processed sweet spot.
  • Friction stir processing may be performed after the golf club head is formed by casting or forging, for example, or may be performed on a workpiece subsequently formed into a club head, by forging, for example.
  • the FSP depth is typically sufficiently small such that the forgability, mechanical properties, and impact resistance of the underlying bulk metal are substantially unaffected. This provides enhanced flexibility with respect to golf club fabrication and peripheral weighting, especially for forged clubs. It is generally necessary to re-surface the friction stir processed area, preferably by milling. As part of the re-surfacing operation, desirable features (grooves, for example) may be machined in the club face.
  • the FSP treatment is inexpensive to apply, enabling high quality golf clubs to be fabricated at reduced costs.
  • FIG. 1 is an optical micrograph of a cross-section of a friction stir processed golf club face showing the fine-grained microstructure produced in the surface region by the FSP treatment.
  • FIG. 2 shows the hardness for friction stir processed steel as a function of distance into the material from the surface.
  • Forming involves deforming a metal workpiece into a desired shape, usually by applying force or pressure to cause the workpiece to substantially conform to a mandrel (punch, die or stamp).
  • the term “forming” includes “forging” as a subset. Forging involves deforming a relatively thick (compared to stamping) metal workpiece into a desired shape by applying force or pressure, and usually heat.
  • surface denotes the surface region of a material.
  • friction stir processing of a surface involves processing material to a predetermined distance below the actual surface.
  • the FSP tool is the rotating bit that moves through the workpiece material during friction stir processing.
  • the present invention provides an improved golf club and a method for improving the performance of a golf club via friction stir processing to enhance the hardness of at least a portion of the surface of the golf club face.
  • the face is the part of the club that contacts the golf ball during operation.
  • Enhanced face hardness tends to increase the momentum transfer efficiency between the club and the ball so as to provide increased loft, increased distance, and better control over the final location of the ball.
  • Friction stir processing also tends to remove voids and defects in the metal that might otherwise decrease momentum transfer efficiency. Since the friction stir processed surface layer is an integral part of the golf club face, energy losses that would result from the interface between an insert and the club head are eliminated.
  • the friction stir processed face is also more resistant to wear, which tends to improve golfing consistency and extend the lifetime of the club.
  • Increased wear resistance should be particularly advantageous for the outer edges of grooves in the club face designed to enhance ball backspin. Wear of such edges is especially rapid and has a substantial effect on performance.
  • the FSP treatment is inexpensive to apply, enabling high quality golf clubs to be fabricated at reduced costs.
  • Friction stir processing according to the present invention is preferably limited to a thin (1-3 mm thick) surface region of the metal so that the properties of the underlying bulk metal are substantially unaffected.
  • hardness is imparted to the club face surface region without substantially affecting the forgability, mechanical properties, or impact resistance of the supporting material.
  • This provides enhanced flexibility with respect to golf club fabrication and peripheral weighting.
  • the bulk properties of the metal workpiece used to forge a club head can be optimized for the forging operation, and performance characteristics, such as good impact resistance, while still gaining the face hardness needed for high performance.
  • thicker or thinner friction stir processed regions may also be used.
  • Friction stir processing may be performed either before or after the golf club head is formed.
  • the metallic golf club head is first formed by casting or forging, for example, and friction stir processing is then performed over at least a portion of the surface of the club face. Since the friction stir processed surface is typically uneven and to some extent rough, it is generally necessary to re-surface the friction stir processed area, preferably by milling. As part of the re-surfacing process, desirable features (grooves, for example) may be produced (or restored) in the club face.
  • friction stir processing is first performed on at least a portion of a surface of a metallic workpiece (strip, plate or block of metal, for example), which is then formed, preferably by forging, into a golf club head having at least a portion of the friction stir processed area within the club face.
  • the friction stir processed area is preferably re-surfaced before the forming operation but re-surfacing could be performed after formation of the club head.
  • the invention further provides a golf club, and a method of fabrication, that provides feedback with respect to the performance of the golfer.
  • the “sweet spot” on the face of a practice club, within which the ball is propelled through the optimum trajectory is friction stir processed whereas the remainder of the club face is not subjected to friction stir processing.
  • a proficient golfer will feel that the ball is impacted more solidly by the FSP hardened sweet spot, compared to the softer surrounding material. This difference in feel when the ball is impacted within the FSP defined sweet spot provides immediate feedback for improving the golfer's swing.
  • the size of the FSP processed sweet spot for the practice club may be matched to the proficiency of the golfer, being smaller for a more proficient golfer.
  • wear since wear is substantially reduced for the FSP hardened sweet spot, the extent of wear observed for the softer surrounding material may be used as a long-term indicator of a golfer's performance. In this embodiment, significant wear outside the sweet spot defined by the FSP surface treatment would indicate that the ball was frequently struck outside the sweet spot, where the material is softer.
  • the softness of the base material, not subjected to the FSP treatment may be varied to provide faster or slower performance feedback to the golfer.
  • Any friction stir processing equipment and conditions providing an acceptable fine-grained microstructure may be used to practice the invention.
  • a variety of FSP tool shapes and sizes are available commercially.
  • a typical FSP tool has a spiral-shaped pin and cylindrical shoulder. Features on the pin tend to cause the workpiece material to flow toward the surface during friction stir processing, and have a diameter in the 2 mm to 15 mm range.
  • the pin feature on the FSP tool is not required but may be added for ease of operation.
  • the shoulder is designed to contain and reforge the processed material and has a diameter in the 6 mm to 50 mm range.
  • Typical FSP tool materials are tool steels, polycrystalline cubic boron nitride, nickel-based super alloys, tungsten carbide, and other tungsten-based alloys.
  • FSP tools typically rotate at 150 to 2000 rpm and move along the surface of the workpiece at 50 to 7000 mm/minute.
  • Friction stir processing equipment is available commercially from MTS, General Tool, and ESAB. As those skilled in the art will appreciate, a variety of tool designs could be used to achieve the same increased hardness results.
  • Raster passes are typically overlapped but this may not be necessary.
  • the tool could be moved in various other patterns, circular spirals, for example, to friction stir process larger areas.
  • the faces of two number 6 irons with 431 stainless steel heads were friction stir processed to a depth of 1.6 mm using a polycrystalline cubic boron nitride tool with a 12.7 mm shoulder diameter.
  • the tool was rotated at 900 rpm and was passed, with a tilt angle of 3 degrees, along the centerline of the club face at a rate of 50 mm/minute. It is estimated that the surface temperature approached 1100° C.
  • the workpiece was actively cooled by water quenching during the FSP operation to freeze in the hardened microstructure. Two passes with 50% overlap were made for each club face to provide a larger sweet spot for hitting the ball. Such rastering could be avoided by using a larger diameter tool.
  • the club faces were machined by milling to remove surface roughness and uneveness, and to fabricate grooves needed for ball spin control and water removal.
  • FIG. 1 shows an optical micrograph of the cross-section, which illustrates the fine-grained microstructure produced in the surface region by the FSP treatment.
  • FIG. 2 shows the Rockwell “C” hardness values measured at various distances from the surface (hardness indents shown in FIG. 1 ) using a Knoop hardness tester with a 500 g load.
  • the FSP treatment increased the hardness from about 26 for the bulk material to more than 40 at the face surface.
  • the intact friction stir processed (FSP) six iron was compared to a stock (unprocessed) six iron of the same type by an objective evaluator, who is a professional golf club fitter and expert golfer. This evaluator reported that balls hit with the FSP iron tended to attain higher loft and somewhat greater distance compared to those hit with the stock six iron. The evaluator also reported that the FSP six iron hit balls with a more solid feel.

Abstract

Friction stir processing (FSP) provides a hardened golf club face that more efficiently transfers momentum between the golf club and the ball, increasing the launch velocity so as to provide increased loft (for a given distance traveled by the ball). The FSP hardened face is also more resistant to wear so that the golf club provides more consistent performance and lasts longer. A practice club having a friction stir processed sweet spot on the face may enable the golfer to feel whether the ball has been hit by the sweet spot.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention is concerned with fabrication of golf clubs, and in particular with surface treatment of metallic golf club heads to improve performance.
  • 2. Description of the Related Art
  • Golf club irons are generally designed to propel a golf ball through a trajectory for which the increase in the ball height (i.e., loft) for a given distance traveled is maximized. In this case, the ball impacts the ground at a relatively large angle so that it tends to roll less and remain close to the point of ground impact, which enables the golfer to exercise better control over the final location of the ball. For a high-quality golf club, properly swung, the ball should go “straight”, i.e., its trajectory should define an arc lying in a vertical plane. This requires that horizontal spin be minimized so that the ball does not substantially hook to the left or slice to the right of the “straight” trajectory. On the other hand, the ability to impart backwards spin (in the vertical direction) is desirable to enable the golfer to minimize ball rolling or to cause the ball to roll backwards for enhanced control.
  • The golf club “face”, which is the planar surface on the club head that strikes the ball, is angled to differing degrees to provide different ratios of loft to distance traveled. The club face angle (during ball impact) with respect to the vertical covers a large range for irons and tend to be larger for shorter propelled distances. The faces of irons typically have horizontal grooves whose outer edges tend to “grip” the ball during impact so that more backward spin can be imparted to the ball. These grooves also facilitate removal of water, which would change the frictional characteristics of the club face.
  • Other factors being constant, the loft to distance ratio is determined primarily by the club face angle and the “launch velocity” at which the ball leaves the golf club face. A higher launch velocity enables a given distance to be covered using a club with a greater face angle, which provides higher loft. Conversely, for the same launch angle, a greater distance can be achieved with an increased launch velocity. One way to increase the launch velocity is to increase the hardness of the material comprising the club face so that the kinetic energy lost due to inelasticity is minimized. Because of the irregular shapes involved, however, golf club heads are typically fabricated by investment casting, which yields material having a relatively large-grain structure and low hardness.
  • Inserts of harder material may be attached to the golf club face but this does not yield optimum results. In particular, much of the benefit derived from the harder material may be offset by losses associated with energy transfer across the interface between the insert and the club head. The precision machining and secure attachment needed to minimize such losses significantly increase manufacturing costs. Inserts must also be relatively thick to withstand ball impact without deforming. Increased thickness reduces the flexibility for balancing the club's weight distribution. Such loss of flexibility is significant since peripheral weighting (around the club face) is often used to minimize the tendency of the club to twist and impart horizontal spin to the ball during impact. Horizontal spin causes the ball to deviate from a straight trajectory. A properly weighted club has a large “sweet spot” on the face for hitting the ball in a straight trajectory.
  • One possibility for fabricating a golf club with increased face hardness is to forge the golf club head from a fine-grained workpiece. Reduced grain size can be achieved in a metal by introducing extensive deformation. A number of conventional metal working operations are available for this purpose, such as rolling, forging, swaging and extrusion. However, such metal working operations change the grain size throughout the material so that important bulk properties, such as strength, ductility and impact resistance, are also changed. The reduced impact resistance for a golf club forged from fine-grained bulk metal would significantly limit the club durability and useful life. Further, achieving a significant grain size reduction by any of these metal working practices is not practical or economical. Note that some grain refinement occurs in the surface region of the workpiece during forging but the degree of grain refinement in this case is small. Also, during forging of golf club irons, the location of the deformed metal is predominantly within the cavity back and not at the club face. Thus, any grain refinement achieved by forging during club fabrication would have substantially no influence on grain size on the club face so that hardness and golf club performance would not be significantly improved.
  • Friction stir processing (FSP) involves passing a rotating FSP tool through a metallic material to locally create a fine-grain microstructure providing improved mechanical properties [F. D. Nicholas, Advanced Materials Processes 6/99, 69 (1999)]. The FSP operation is typically performed at room temperature but the friction and metal deformation involved raises the local temperature to just below the solidus temperature so that the friction stir processed material is fully-recrystallized but does not undergo melting. Friction stir processing introduces levels of deformation considerably greater than can be achieved by conventional metal working methods, which provides exceptionally fine grain structure and greatly enhanced hardness. In addition, a thin surface layer can be friction stir processed to improve hardness without significantly affecting the mechanical properties of the bulk metal. Friction stir processing has been demonstrated for a variety of metals and their alloys, including aluminum, titanium, bronze, and steel. The FSP approach has been used to locally improve the mechanical properties in high-stress areas of cast metal parts but has not previously been applied to increasing the hardness of golf club surfaces.
  • SUMMARY OF THE INVENTION
  • This invention provides an improved golf club and a method for improving the performance of a golf club via friction stir processing (FSP) to enhance the hardness of at least a portion of the golf club face. Enhanced face hardness tends to increase the momentum transfer efficiency between the club and the ball so as to provide increased loft, increased distance, and better control over the final location of the ball. Friction stir processing also tends to remove voids and defects in the metal that might otherwise decrease momentum transfer efficiency. The friction stir processed face is also more resistant to wear, which tends to improve golfing consistency and extend the lifetime of the club. Another embodiment of the invention is a practice club that provides performance feedback to the golfer in terms of a more solid feel when the ball is struck within a friction stir processed sweet spot.
  • Friction stir processing, according to the present invention, may be performed after the golf club head is formed by casting or forging, for example, or may be performed on a workpiece subsequently formed into a club head, by forging, for example. The FSP depth is typically sufficiently small such that the forgability, mechanical properties, and impact resistance of the underlying bulk metal are substantially unaffected. This provides enhanced flexibility with respect to golf club fabrication and peripheral weighting, especially for forged clubs. It is generally necessary to re-surface the friction stir processed area, preferably by milling. As part of the re-surfacing operation, desirable features (grooves, for example) may be machined in the club face. The FSP treatment is inexpensive to apply, enabling high quality golf clubs to be fabricated at reduced costs.
  • Further features and advantages of the invention will be apparent to those skilled in the art from the following detailed description, taken together with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an optical micrograph of a cross-section of a friction stir processed golf club face showing the fine-grained microstructure produced in the surface region by the FSP treatment.
  • FIG. 2 shows the hardness for friction stir processed steel as a function of distance into the material from the surface.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Technical terms used in this document are generally known to those skilled in the art. Forming involves deforming a metal workpiece into a desired shape, usually by applying force or pressure to cause the workpiece to substantially conform to a mandrel (punch, die or stamp). The term “forming” includes “forging” as a subset. Forging involves deforming a relatively thick (compared to stamping) metal workpiece into a desired shape by applying force or pressure, and usually heat. As used in this document, the term “surface” denotes the surface region of a material. Thus, friction stir processing of a surface involves processing material to a predetermined distance below the actual surface. The FSP tool is the rotating bit that moves through the workpiece material during friction stir processing.
  • The present invention provides an improved golf club and a method for improving the performance of a golf club via friction stir processing to enhance the hardness of at least a portion of the surface of the golf club face. The face is the part of the club that contacts the golf ball during operation. Enhanced face hardness tends to increase the momentum transfer efficiency between the club and the ball so as to provide increased loft, increased distance, and better control over the final location of the ball. Friction stir processing also tends to remove voids and defects in the metal that might otherwise decrease momentum transfer efficiency. Since the friction stir processed surface layer is an integral part of the golf club face, energy losses that would result from the interface between an insert and the club head are eliminated.
  • The friction stir processed face is also more resistant to wear, which tends to improve golfing consistency and extend the lifetime of the club. Increased wear resistance should be particularly advantageous for the outer edges of grooves in the club face designed to enhance ball backspin. Wear of such edges is especially rapid and has a substantial effect on performance. The FSP treatment is inexpensive to apply, enabling high quality golf clubs to be fabricated at reduced costs.
  • Friction stir processing according to the present invention is preferably limited to a thin (1-3 mm thick) surface region of the metal so that the properties of the underlying bulk metal are substantially unaffected. In this case, hardness is imparted to the club face surface region without substantially affecting the forgability, mechanical properties, or impact resistance of the supporting material. This provides enhanced flexibility with respect to golf club fabrication and peripheral weighting. For example, the bulk properties of the metal workpiece used to forge a club head can be optimized for the forging operation, and performance characteristics, such as good impact resistance, while still gaining the face hardness needed for high performance. Within the scope of the present invention, thicker or thinner friction stir processed regions may also be used.
  • Friction stir processing according to the present invention may be performed either before or after the golf club head is formed. In a preferred embodiment, the metallic golf club head is first formed by casting or forging, for example, and friction stir processing is then performed over at least a portion of the surface of the club face. Since the friction stir processed surface is typically uneven and to some extent rough, it is generally necessary to re-surface the friction stir processed area, preferably by milling. As part of the re-surfacing process, desirable features (grooves, for example) may be produced (or restored) in the club face. In another embodiment, friction stir processing is first performed on at least a portion of a surface of a metallic workpiece (strip, plate or block of metal, for example), which is then formed, preferably by forging, into a golf club head having at least a portion of the friction stir processed area within the club face. In this case, the friction stir processed area is preferably re-surfaced before the forming operation but re-surfacing could be performed after formation of the club head. The invention further provides a golf club, and a method of fabrication, that provides feedback with respect to the performance of the golfer. For this embodiment, the “sweet spot” on the face of a practice club, within which the ball is propelled through the optimum trajectory, is friction stir processed whereas the remainder of the club face is not subjected to friction stir processing. A proficient golfer will feel that the ball is impacted more solidly by the FSP hardened sweet spot, compared to the softer surrounding material. This difference in feel when the ball is impacted within the FSP defined sweet spot provides immediate feedback for improving the golfer's swing. The size of the FSP processed sweet spot for the practice club may be matched to the proficiency of the golfer, being smaller for a more proficient golfer. In addition, since wear is substantially reduced for the FSP hardened sweet spot, the extent of wear observed for the softer surrounding material may be used as a long-term indicator of a golfer's performance. In this embodiment, significant wear outside the sweet spot defined by the FSP surface treatment would indicate that the ball was frequently struck outside the sweet spot, where the material is softer. The softness of the base material, not subjected to the FSP treatment, may be varied to provide faster or slower performance feedback to the golfer.
  • Any friction stir processing equipment and conditions providing an acceptable fine-grained microstructure may be used to practice the invention. A variety of FSP tool shapes and sizes are available commercially. A typical FSP tool has a spiral-shaped pin and cylindrical shoulder. Features on the pin tend to cause the workpiece material to flow toward the surface during friction stir processing, and have a diameter in the 2 mm to 15 mm range. The pin feature on the FSP tool is not required but may be added for ease of operation. The shoulder is designed to contain and reforge the processed material and has a diameter in the 6 mm to 50 mm range. Typical FSP tool materials are tool steels, polycrystalline cubic boron nitride, nickel-based super alloys, tungsten carbide, and other tungsten-based alloys. FSP tools typically rotate at 150 to 2000 rpm and move along the surface of the workpiece at 50 to 7000 mm/minute. Friction stir processing equipment is available commercially from MTS, General Tool, and ESAB. As those skilled in the art will appreciate, a variety of tool designs could be used to achieve the same increased hardness results.
  • Larger areas are typically friction stir processed by rastering, which involves multiple parallel passes of the FSP tool along the workpiece surface. Raster passes are typically overlapped but this may not be necessary. As those skilled in the art will appreciate, the tool could be moved in various other patterns, circular spirals, for example, to friction stir process larger areas.
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • The faces of two number 6 irons with 431 stainless steel heads were friction stir processed to a depth of 1.6 mm using a polycrystalline cubic boron nitride tool with a 12.7 mm shoulder diameter. The tool was rotated at 900 rpm and was passed, with a tilt angle of 3 degrees, along the centerline of the club face at a rate of 50 mm/minute. It is estimated that the surface temperature approached 1100° C. The workpiece was actively cooled by water quenching during the FSP operation to freeze in the hardened microstructure. Two passes with 50% overlap were made for each club face to provide a larger sweet spot for hitting the ball. Such rastering could be avoided by using a larger diameter tool. After the FSP treatment, the club faces were machined by milling to remove surface roughness and uneveness, and to fabricate grooves needed for ball spin control and water removal.
  • EXAMPLE 1
  • One of the friction stir processed club heads was cross-section for microscopic examination and hardness testing. FIG. 1 shows an optical micrograph of the cross-section, which illustrates the fine-grained microstructure produced in the surface region by the FSP treatment. FIG. 2 shows the Rockwell “C” hardness values measured at various distances from the surface (hardness indents shown in FIG. 1) using a Knoop hardness tester with a 500 g load. The FSP treatment increased the hardness from about 26 for the bulk material to more than 40 at the face surface.
  • EXAMPLE 2
  • The intact friction stir processed (FSP) six iron was compared to a stock (unprocessed) six iron of the same type by an objective evaluator, who is a professional golf club fitter and expert golfer. This evaluator reported that balls hit with the FSP iron tended to attain higher loft and somewhat greater distance compared to those hit with the stock six iron. The evaluator also reported that the FSP six iron hit balls with a more solid feel.

Claims (19)

1. A method for improving the performance of a golf club, comprising the steps of:
fabricating a golf club head having a face;
friction stir processing a predetermined area of the surface of the golf club face; and
re-surfacing at least the predetermined area subjected to friction stir processing so as to provide a desired surface topology.
2. The method of claim 1, wherein the golf club head comprises a metal selected from the group consisting of aluminum, titanium, nickel, copper, iron, and alloys thereof.
3. The method of claim 1, wherein said step of fabricating includes a step of casting or forging.
4. The method of claim 1, wherein said step of friction stir processing is performed using a FSP tool rotating at a rate between 150 and 2000 rotations per minute.
5. The method of claim 1, wherein said step of friction stir processing is performed using a FSP tool moved along the workpiece surface at a rate of 50 to 7000 mm/minute.
6. The method of claim 1, wherein said step of re-surfacing includes a step of milling.
7. The method of claim 1, wherein the desired surface topology includes at least one groove.
8. A method for improving the performance of a golf club, comprising the steps of:
friction stir processing a predetermined area of the surface of a metallic workpiece; and
fabricating a golf club head having a face which includes the predetermined area.
9. The method of claim 8, wherein the metallic workpiece comprises a metal selected from the group consisting of aluminum, titanium, nickel, copper, iron, and alloys thereof.
10. The method of claim 8, wherein the metallic workpiece has a shape selected from the group consisting of strip, plate and block.
11. The method of claim 8, wherein said step of fabricating includes a step of forging.
12. The method of claim 8, wherein said step of friction stir processing is performed using a FSP tool rotating at a rate between 150 and 2000 rotations per minute.
13. The method of claim 8, wherein said step of friction stir processing is performed using a FSP tool moved along the workpiece surface at a rate of 50 to 7000 mm/minute.
14. The method of claim 8, further comprising the step of:
re-surfacing at least the predetermined area subjected to friction stir processing so as to provide a desired surface topology.
15. The method of claim 14, wherein the step of re-surfacing is performed before the step of fabricating.
16. The method of claim 14, wherein the step of re-surfacing is performed after the step of fabricating.
17. The method of claim 14, wherein the desired surface topology includes at least one groove.
18. A golf club with improved performance, comprising a head with a face, said face comprising friction stir processed metal.
19. The golf club of claim 18, wherein said friction stir processed metal is selected from the group consisting of aluminum, titanium, nickel, copper, iron, and alloys thereof.
US10/673,613 2003-09-29 2003-09-29 Enhanced golf club performance via friction stir processing Abandoned US20050070374A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/673,613 US20050070374A1 (en) 2003-09-29 2003-09-29 Enhanced golf club performance via friction stir processing
JP2006534035A JP2007507300A (en) 2003-09-29 2004-09-29 Golf club having enhanced performance by friction stir processing
EP04785224A EP1691901A1 (en) 2003-09-29 2004-09-29 Enhanced golf club performance via friction stir processing
CA002540527A CA2540527A1 (en) 2003-09-29 2004-09-29 Enhanced golf club performance via friction stir processing
CNA2004800352679A CN1886178A (en) 2003-09-29 2004-09-29 Enhanced golf club performance via friction stir processing
KR1020067008299A KR20060069522A (en) 2003-09-29 2004-09-29 Enhanced golf club performance via friction stir processing
PCT/US2004/031875 WO2005032667A1 (en) 2003-09-29 2004-09-29 Enhanced golf club performance via friction stir processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/673,613 US20050070374A1 (en) 2003-09-29 2003-09-29 Enhanced golf club performance via friction stir processing

Publications (1)

Publication Number Publication Date
US20050070374A1 true US20050070374A1 (en) 2005-03-31

Family

ID=34376649

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/673,613 Abandoned US20050070374A1 (en) 2003-09-29 2003-09-29 Enhanced golf club performance via friction stir processing

Country Status (7)

Country Link
US (1) US20050070374A1 (en)
EP (1) EP1691901A1 (en)
JP (1) JP2007507300A (en)
KR (1) KR20060069522A (en)
CN (1) CN1886178A (en)
CA (1) CA2540527A1 (en)
WO (1) WO2005032667A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252341A1 (en) * 2004-03-24 2005-11-17 Allen Charles E Solid state processing of hand-held knife blades to improve blade performance
US20140261900A1 (en) * 2013-03-12 2014-09-18 Lockheed Martin Corporation Friction surface stir process
US20190314688A1 (en) * 2016-07-26 2019-10-17 Sumitomo Rubber Industries, Ltd. Golf club head with textured striking face
US11344776B2 (en) 2016-07-26 2022-05-31 Sumitomo Rubber Industries, Ltd. Golf club head with textured striking face
CN115627330A (en) * 2022-08-17 2023-01-20 燕山大学 Treatment process for strengthening pure metal low-angle grain boundary

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158216A (en) * 2007-12-26 2009-07-16 Japan Ae Power Systems Corp Electrode contact member of vacuum circuit breaker and method for producing the same
CN109701235A (en) * 2019-02-25 2019-05-03 四川宇钛体育用品有限公司 A kind of manufacturing method of golf iron pusher head

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438931A (en) * 1982-09-16 1984-03-27 Kabushiki Kaisha Endo Seisakusho Golf club head
US5024437A (en) * 1989-06-12 1991-06-18 Gear Fit Golf, Inc. Golf club head
US5029864A (en) * 1990-06-11 1991-07-09 Keener Michael B Golf club head with grooved striking face
US5437088A (en) * 1993-01-19 1995-08-01 Igarashi; Lawrence Y. Method of making a golf club that provides enhanced backspin and reduced sidespin
US5460317A (en) * 1991-12-06 1995-10-24 The Welding Institute Friction welding
US5769306A (en) * 1996-05-31 1998-06-23 The Boeing Company Weld root closure method for friction stir welds
US5794835A (en) * 1996-05-31 1998-08-18 The Boeing Company Friction stir welding
US5813592A (en) * 1994-03-28 1998-09-29 The Welding Institute Friction stir welding
US5862975A (en) * 1996-03-20 1999-01-26 The Boeing Company Composite/metal structural joint with welded Z-pins
US5893507A (en) * 1997-08-07 1999-04-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Auto-adjustable pin tool for friction stir welding
US5971252A (en) * 1998-04-30 1999-10-26 The Boeing Company Friction stir welding process to repair voids in aluminum alloys
US5975406A (en) * 1998-02-27 1999-11-02 The Boeing Company Method to repair voids in aluminum alloys
US6029879A (en) * 1997-09-23 2000-02-29 Cocks; Elijah E. Enantiomorphic friction-stir welding probe
US6045028A (en) * 1998-07-17 2000-04-04 Mcdonnell Douglas Corporation Integral corrosion protection of friction-welded joints
US6168068B1 (en) * 1997-09-03 2001-01-02 Samsung Electronic Co, Ltd. Method for preventing a gold plate connector on a PCB from being contaminated
US6168067B1 (en) * 1998-06-23 2001-01-02 Mcdonnell Douglas Corporation High strength friction stir welding
US6227430B1 (en) * 1998-04-30 2001-05-08 The Boeing Company FSW tool design for thick weld joints
US6230957B1 (en) * 1998-03-06 2001-05-15 Lockheed Martin Corporation Method of using friction stir welding to repair weld defects and to help avoid weld defects in intersecting welds
US6247633B1 (en) * 1999-03-02 2001-06-19 Ford Global Technologies, Inc. Fabricating low distortion lap weld construction
US6250037B1 (en) * 1998-06-16 2001-06-26 Hitachi, Ltd. Structure body and hollow shape extruded frame member
US6259052B1 (en) * 1998-12-18 2001-07-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital friction stir weld system
US6273323B1 (en) * 1999-05-31 2001-08-14 Hitachi, Ltd. Manufacturing method of a structural body
US6276591B1 (en) * 2000-01-24 2001-08-21 Hitachi, Ltd. Friction stir joining method
US6299050B1 (en) * 2000-02-24 2001-10-09 Hitachi, Ltd. Friction stir welding apparatus and method
US6302315B1 (en) * 2000-05-01 2001-10-16 General Tool Company Friction stir welding machine and method
US6311889B1 (en) * 1999-05-28 2001-11-06 Hitachi, Ltd. Manufacturing method of a structure body and a manufacturing apparatus of a structure body
US6315187B1 (en) * 1998-09-29 2001-11-13 Hitachi, Ltd. Friction stir welding method
US20020011509A1 (en) * 2000-05-08 2002-01-31 Nelson Tracy W. Friction stir welding using a superabrasive tool
US6364197B1 (en) * 2000-08-04 2002-04-02 The Boeing Company Friction stir welding of containers from the interior
US6378264B1 (en) * 1999-05-28 2002-04-30 Hitachi, Ltd. Structure body and method of manufacture thereof
US6386425B2 (en) * 1999-09-30 2002-05-14 Hitachi, Ltd. Method of friction stir welding structural body, structural body, and extruded material
US6398883B1 (en) * 2000-06-07 2002-06-04 The Boeing Company Friction stir grain refinement of structural members
US6413610B1 (en) * 1999-05-28 2002-07-02 Hitachi, Ltd. Structure body and a manufacturing method of a structure body
US6419144B2 (en) * 1997-07-23 2002-07-16 Hitachi, Ltd. Method of forming structural body using friction stir welding, and structural body formed
US6422449B1 (en) * 1999-05-26 2002-07-23 Hitachi, Ltd. Method of mending a friction stir welding portion
US6457629B1 (en) * 1999-10-04 2002-10-01 Solidica, Inc. Object consolidation employing friction joining
US20020158109A1 (en) * 2000-04-28 2002-10-31 Toshiyuki Gendoh Method of processing metal members
US6499649B2 (en) * 2000-09-01 2002-12-31 Honda Giken Kogyo Kabushiki Kaisha Friction stir welding apparatus
US6638381B2 (en) * 2001-12-18 2003-10-28 The Boeing Company Method for preparing ultra-fine grain titanium and titanium-alloy articles and articles prepared thereby
US6712916B2 (en) * 2000-12-22 2004-03-30 The Curators Of The University Of Missouri Metal superplasticity enhancement and forming process
US6886180B1 (en) * 2000-08-16 2005-04-26 Intel Corporation Implementing cable modem functions on a host computer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458334A (en) * 1993-10-21 1995-10-17 Sheldon; Gary L. Golf club, and improvement process
JP2845152B2 (en) * 1995-02-03 1999-01-13 ヤマハ株式会社 Golf iron club head
US5487543A (en) * 1995-02-09 1996-01-30 Funk; Charles R. Shot peened golf club head
US5755626A (en) * 1997-03-26 1998-05-26 Carbite, Inc. Selective wear resistance enhancement of striking surface of golf clubs

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438931A (en) * 1982-09-16 1984-03-27 Kabushiki Kaisha Endo Seisakusho Golf club head
US5024437A (en) * 1989-06-12 1991-06-18 Gear Fit Golf, Inc. Golf club head
US5029864A (en) * 1990-06-11 1991-07-09 Keener Michael B Golf club head with grooved striking face
US5460317A (en) * 1991-12-06 1995-10-24 The Welding Institute Friction welding
US5460317B1 (en) * 1991-12-06 1997-12-09 Welding Inst Friction welding
US5437088A (en) * 1993-01-19 1995-08-01 Igarashi; Lawrence Y. Method of making a golf club that provides enhanced backspin and reduced sidespin
US5813592A (en) * 1994-03-28 1998-09-29 The Welding Institute Friction stir welding
US5972524A (en) * 1996-03-20 1999-10-26 The Boering Company Double lap joint with welded Z-pins
US5862975A (en) * 1996-03-20 1999-01-26 The Boeing Company Composite/metal structural joint with welded Z-pins
US5769306A (en) * 1996-05-31 1998-06-23 The Boeing Company Weld root closure method for friction stir welds
US5794835A (en) * 1996-05-31 1998-08-18 The Boeing Company Friction stir welding
US6419144B2 (en) * 1997-07-23 2002-07-16 Hitachi, Ltd. Method of forming structural body using friction stir welding, and structural body formed
US20020139831A1 (en) * 1997-07-23 2002-10-03 Kinya Aota Structural body formed by friction stir welding and having protrusion at the weld provided prior to the welding
US5893507A (en) * 1997-08-07 1999-04-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Auto-adjustable pin tool for friction stir welding
US6168068B1 (en) * 1997-09-03 2001-01-02 Samsung Electronic Co, Ltd. Method for preventing a gold plate connector on a PCB from being contaminated
US6029879A (en) * 1997-09-23 2000-02-29 Cocks; Elijah E. Enantiomorphic friction-stir welding probe
US5975406A (en) * 1998-02-27 1999-11-02 The Boeing Company Method to repair voids in aluminum alloys
US6230957B1 (en) * 1998-03-06 2001-05-15 Lockheed Martin Corporation Method of using friction stir welding to repair weld defects and to help avoid weld defects in intersecting welds
US5971252A (en) * 1998-04-30 1999-10-26 The Boeing Company Friction stir welding process to repair voids in aluminum alloys
US6227430B1 (en) * 1998-04-30 2001-05-08 The Boeing Company FSW tool design for thick weld joints
US6250037B1 (en) * 1998-06-16 2001-06-26 Hitachi, Ltd. Structure body and hollow shape extruded frame member
US6168067B1 (en) * 1998-06-23 2001-01-02 Mcdonnell Douglas Corporation High strength friction stir welding
US6045028A (en) * 1998-07-17 2000-04-04 Mcdonnell Douglas Corporation Integral corrosion protection of friction-welded joints
US6315187B1 (en) * 1998-09-29 2001-11-13 Hitachi, Ltd. Friction stir welding method
US6471112B2 (en) * 1998-09-29 2002-10-29 Hitachi, Ltd. Friction stir welding method
US6259052B1 (en) * 1998-12-18 2001-07-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital friction stir weld system
US6247633B1 (en) * 1999-03-02 2001-06-19 Ford Global Technologies, Inc. Fabricating low distortion lap weld construction
US6422449B1 (en) * 1999-05-26 2002-07-23 Hitachi, Ltd. Method of mending a friction stir welding portion
US6311889B1 (en) * 1999-05-28 2001-11-06 Hitachi, Ltd. Manufacturing method of a structure body and a manufacturing apparatus of a structure body
US6413610B1 (en) * 1999-05-28 2002-07-02 Hitachi, Ltd. Structure body and a manufacturing method of a structure body
US6378264B1 (en) * 1999-05-28 2002-04-30 Hitachi, Ltd. Structure body and method of manufacture thereof
US6502739B2 (en) * 1999-05-31 2003-01-07 Hitachi, Ltd. Method of manufacture of a structural body
US6273323B1 (en) * 1999-05-31 2001-08-14 Hitachi, Ltd. Manufacturing method of a structural body
US6325274B2 (en) * 1999-05-31 2001-12-04 Hitachi, Ltd. Method of manufacture of a structural body
US6386425B2 (en) * 1999-09-30 2002-05-14 Hitachi, Ltd. Method of friction stir welding structural body, structural body, and extruded material
US6457629B1 (en) * 1999-10-04 2002-10-01 Solidica, Inc. Object consolidation employing friction joining
US6276591B1 (en) * 2000-01-24 2001-08-21 Hitachi, Ltd. Friction stir joining method
US6461072B2 (en) * 2000-01-24 2002-10-08 Hitachi, Ltd. Structure body for use in friction stir welding
US6299050B1 (en) * 2000-02-24 2001-10-09 Hitachi, Ltd. Friction stir welding apparatus and method
US20020158109A1 (en) * 2000-04-28 2002-10-31 Toshiyuki Gendoh Method of processing metal members
US6302315B1 (en) * 2000-05-01 2001-10-16 General Tool Company Friction stir welding machine and method
US20020011509A1 (en) * 2000-05-08 2002-01-31 Nelson Tracy W. Friction stir welding using a superabrasive tool
US6398883B1 (en) * 2000-06-07 2002-06-04 The Boeing Company Friction stir grain refinement of structural members
US6364197B1 (en) * 2000-08-04 2002-04-02 The Boeing Company Friction stir welding of containers from the interior
US6886180B1 (en) * 2000-08-16 2005-04-26 Intel Corporation Implementing cable modem functions on a host computer
US6499649B2 (en) * 2000-09-01 2002-12-31 Honda Giken Kogyo Kabushiki Kaisha Friction stir welding apparatus
US6712916B2 (en) * 2000-12-22 2004-03-30 The Curators Of The University Of Missouri Metal superplasticity enhancement and forming process
US6638381B2 (en) * 2001-12-18 2003-10-28 The Boeing Company Method for preparing ultra-fine grain titanium and titanium-alloy articles and articles prepared thereby

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252341A1 (en) * 2004-03-24 2005-11-17 Allen Charles E Solid state processing of hand-held knife blades to improve blade performance
US20060032333A1 (en) * 2004-03-24 2006-02-16 Steel Russell J Solid state processing of industrial blades, edges and cutting elements
US8186561B2 (en) * 2004-03-24 2012-05-29 Megastir Technologies, LLC Solid state processing of hand-held knife blades to improve blade performance
US20140261900A1 (en) * 2013-03-12 2014-09-18 Lockheed Martin Corporation Friction surface stir process
US20190314688A1 (en) * 2016-07-26 2019-10-17 Sumitomo Rubber Industries, Ltd. Golf club head with textured striking face
US11033786B2 (en) * 2016-07-26 2021-06-15 Sumitomo Rubber Industries, Ltd. Golf club head with textured striking face
US11344776B2 (en) 2016-07-26 2022-05-31 Sumitomo Rubber Industries, Ltd. Golf club head with textured striking face
US11857849B2 (en) 2016-07-26 2024-01-02 Sumitomo Rubber Industries, Ltd. Golf club head with textured striking face
CN115627330A (en) * 2022-08-17 2023-01-20 燕山大学 Treatment process for strengthening pure metal low-angle grain boundary

Also Published As

Publication number Publication date
CN1886178A (en) 2006-12-27
CA2540527A1 (en) 2005-04-14
JP2007507300A (en) 2007-03-29
WO2005032667A1 (en) 2005-04-14
KR20060069522A (en) 2006-06-21
EP1691901A1 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US8128510B2 (en) Golf club head
US7584531B2 (en) Method of manufacturing a golf club head with a variable thickness face
US6663501B2 (en) Macro-fiber process for manufacturing a face for a metal wood golf club
US7846039B2 (en) Golf club head
US6497629B2 (en) Golfing iron club and manufacturing method thereof
US7153222B2 (en) Forged iron-type golf clubs
US6089070A (en) Method of manufacturing a metal wood golf club head
US6904663B2 (en) Method for manufacturing a golf club face
US7857712B2 (en) Golf club head
US8858364B2 (en) Welded iron-type clubhead with thin high-cor face
US8133133B2 (en) Forged iron-type golf clubs
US6929566B2 (en) Golf club head and method of manufacturing the same
US20020193177A1 (en) Peen conditioning of titanium metal wood golf club heads
US20050202900A1 (en) Forged iron-type golf clubs
US5935018A (en) Golf club and method of manufacturing therefor
US20050070374A1 (en) Enhanced golf club performance via friction stir processing
JP4545178B2 (en) Golf club head
US7166042B2 (en) Forged iron-type golf clubs
JP2004267630A (en) Golf club head
JP3486898B2 (en) Iron-type golf club manufacturing method
JP2001170228A (en) Golf club head and method for manufacturing the same
JP2002263223A (en) Golf club head and manufacturing method of it

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOVATIVE TECHNOLOGY LICENSING, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAHONEY, MURRAY W.;REEL/FRAME:014564/0757

Effective date: 20030929

AS Assignment

Owner name: TELEDYNE LICENSING, LLC,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ROCKWELL SCIENTIFIC LICENSING, LLC;REEL/FRAME:018583/0159

Effective date: 20060918

Owner name: TELEDYNE LICENSING, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ROCKWELL SCIENTIFIC LICENSING, LLC;REEL/FRAME:018583/0159

Effective date: 20060918

Owner name: ROCKWELL SCIENTIFIC LICENSING, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:INNOVATIVE TECHNOLOGY LICENSING, LLC;REEL/FRAME:018582/0949

Effective date: 20030919

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION