US20050037163A1 - Sealable bag having an integrated timer/sensor for use in vacuum packaging - Google Patents

Sealable bag having an integrated timer/sensor for use in vacuum packaging Download PDF

Info

Publication number
US20050037163A1
US20050037163A1 US10/794,368 US79436804A US2005037163A1 US 20050037163 A1 US20050037163 A1 US 20050037163A1 US 79436804 A US79436804 A US 79436804A US 2005037163 A1 US2005037163 A1 US 2005037163A1
Authority
US
United States
Prior art keywords
bag
inner layer
panel
gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/794,368
Inventor
Hongyu Wu
Charles Albritton
David Brakes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tilia International Inc USA
Original Assignee
Tilia International Inc USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tilia International Inc USA filed Critical Tilia International Inc USA
Priority to US10/794,368 priority Critical patent/US20050037163A1/en
Priority to PCT/US2004/006768 priority patent/WO2004078590A2/en
Assigned to TILIA INTERNATIONAL, INC. reassignment TILIA INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBRITTON, CHARLES WADE, BRAKES, DAVID, WU, HONGYU
Publication of US20050037163A1 publication Critical patent/US20050037163A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B61/00Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages
    • B65B61/02Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for perforating, scoring, slitting, or applying code or date marks on material prior to packaging
    • B65B61/025Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for perforating, scoring, slitting, or applying code or date marks on material prior to packaging for applying, e.g. printing, code or date marks on material prior to packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • B65B9/042Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material for fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/004Information or decoration elements, e.g. level indicators, detachable tabs or coupons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2007Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum
    • B65D81/2038Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum with means for establishing or improving vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2160/00Shape of flexible containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • B65B2009/047Rotary pocket formers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]

Definitions

  • the present invention relates to bags for use in vacuum packaging and methods and devices for manufacturing bags for use in vacuum packaging.
  • a common method and device includes placing food into a gas-impermeable plastic bag, evacuating the air from the bag using suction from a vacuum pump or other suction source, and tightly sealing the bag.
  • a bag for use in vacuum packaging can consist of a first panel and second panel, each panel consisting of a single layer of heat-sealable, plastic-based film (for example, polyethylene).
  • the panels are sealed together along a substantial portion of the periphery of the panels by heat-sealing techniques so as to form an envelope.
  • Perishable products such as spoilable food, or other products are packed into the envelope via the unsealed portion through which air is subsequently evacuated. After perishable products are packed into the bag and air is evacuated from the inside of the bag, the unsealed portion is heated and pressed such that the panels adhere to each other, sealing the bag.
  • the embossing forms a pattern of protuberances on at least one of the panels.
  • the protuberances can be discrete pyramids, hemispheres, etc., and are formed by pressing a panel using heated female and male dies.
  • the first panel is overlaid on the second panel such that the protuberances from one panel face the opposite panel.
  • the contacting peripheral edges of the panels are sealed to each other to form an envelope having an inlet at an unsealed portion of the periphery.
  • the perishable or other products are packed into the envelope through the inlet, and the inlet is sealed. Thereafter, an opening is pierced in a part of the panel material that communicates with the channels, air is removed from the interior of the envelope through the channels and opening, and the opening is sealed.
  • This type of bag requires two additional sealing steps after the perishable or other product is packed into the envelope.
  • embossing creates impressions on the plastic such that indentations are formed on the opposite side of the panel
  • a vacuum bag having a first panel and a second panel consisting of laminated films.
  • Each panel comprises a heat-sealable inner layer, a gas-impermeable outer layer, and optionally, one or more intermediate layers.
  • Such a bag is described in U.S. Pat. No. Re. 34,929, incorporated herein by reference.
  • At least one film from at least one panel is embossed using an embossing mold to form protuberances and channels defined by the space between protuberances, so that air is readily evacuated from the vacuum bag.
  • the bag consists of a first and second panel, each panel consisting of a gas-impermeable outer layer and a heat-sealable inner layer.
  • a plurality of heat-sealable strand elements are heat bonded at regular intervals to the inner layer of either the first panel or the second panel.
  • the spaces between strand elements act as channels for the evacuation of air.
  • the strand elements are extruded from an extrusion head and heat bonded to the heat-sealable layer by use of pressure rolls. Separate equipment is required for producing strand elements, and a procedure of heat bonding a plurality of strand elements at regular intervals to the heat-sealable inner layer is complicated. Also, various shapes of pattern are hard to form using this process.
  • FIG. 1A is a perspective view of a method for manufacturing a vacuum bag in accordance with one embodiment of the present invention
  • FIG. 1B is a side view of the method shown in FIG. 1A illustrating the embossing method used in an embodiment of the present invention
  • FIG. 1C is a close-up view of a portion of FIG. 1B ;
  • FIG. 2 is a plan view of an exemplary timer/sensor on a panel in accordance with embodiments of the present invention, manufactured by the process shown in FIGS. 1A-1C ;
  • FIG. 3 is a cross-section of a portion of a panel as illustrated in FIG. 2 , according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a vacuum bag in accordance with one embodiment of the present invention.
  • FIGS. 1A-1C illustrate one embodiment of a method for manufacturing a vacuum bag in accordance with the present invention.
  • the vacuum bag comprises a first panel and a second panel, wherein each panel comprises a gas-impermeable base layer 108 and a heat-sealable inner layer 106 with at least one panel having a timer and/or sensor embedded inside the vacuum bag.
  • a laminating roll 102 and a cooling roll 104 are arranged so that the heat-sealable inner layer 106 can be laminated to the gas-impermeable base layer 108 as the melt-extruded resin is cooled. As illustrated in FIG.
  • the gap between the laminating roll 102 and the cooling roll 104 can be controlled according to specifications (for example, thickness) of a panel for use in vacuum packaging.
  • the temperature of the cooling roll 104 is maintained in a range such that the melt-extruded resin is sufficiently cooled to form the desired pattern. For example, a temperature range of about ⁇ 15° C. to about ⁇ 10° C. can be sufficient to properly form the desired pattern.
  • the temperature range of the cooling roll 104 can vary according to the composition of the resin, the composition of the gas-impermeable base layer 108 , environmental conditions, etc. and can require calibration.
  • the cooling roll 104 can be sized to have a larger diameter than the laminating roll 102 , thereby bringing the melt-extruded resin into contact with more cooled surface area.
  • the diameter of the cooling roll 104 can be about one-and-a-half to about three times as large (or more) as that of the laminating roll 102 .
  • the heat-sealable inner layer 106 typically comprises a thermoplastic resin.
  • the melt-extruded resin can be comprised of polyethylene (E) suitable for preserving foods and harmless to a human body.
  • a vacuum bag can be manufactured by overlapping two panels such that the heat-sealable inner layers 106 of the two panels can be brought into contact and heat can be applied to a portion of the periphery of the panels to form an envelope.
  • the thermoplastic resin can be chosen so that the two panels strongly bond to each other when sufficient heat is applied.
  • the gas-impermeable base layer 108 is fed to the gap between the cooling roll 104 and the laminating roll 102 by a feeding means (not shown).
  • the gas-impermeable base layer can be comprised of polyester, polyamide, ethylene vinyl alcohol (EVOH), nylon, or other material having similar properties and capable of being used in this manufacturing process, and also capable of being heated.
  • the gas-impermeable base layer 108 can consist of one layer, or two or more layers. When employing a multilayer-structured base layer, it should be understood that a total thickness thereof is also adjusted within the allowable range for the total gas-impermeable base layer 108 .
  • An extruder 110 is positioned in such a way that the melt-extruded resin is layered on the gas-impermeable base layer 108 by feeding the melt-extruded resin to the nip between the cooling roll 104 and the gas-impermeable base layer 108 .
  • the resin is fed through a nozzle 112 of the extruder 110 .
  • the temperature of the melt-extruded resin is dependent on the type of resin used, and can typically range from about 200° C. to about 250° C.
  • the amount of resin to be extruded into the laminating unit 100 is dependent on the desired thickness of the heat-sealable inner layer 106 .
  • a pattern fabricated on the circumferential surface of the cooling roll 104 in accordance with one embodiment of the present invention can include cavities for suspending timers and/or sensors for encapsulation by melt-extruded resin.
  • Timers and/or sensors 124 can be seeded in cavities of the cooling roll 104 , for example by a label machine 114 attached to the extruder 110 .
  • the resin melt-extruded by the nozzle 112 is pressed between the cooling roll 104 and the gas-impermeable base layer 108 and flows into the cavities of the cooling roll 104 and surrounds the timers and/or sensors.
  • the timer and/or sensor can be any device capable of communicating information to a user.
  • active radio frequency identification tags such as the PowerID Smart Active Labels (SAL) system manufactured by Power Paper Ltd. of Israel, contain batteries and can be used as disposable timers. Sensors such as the PowerID SALs can be user activated, are thin and flexible, and low-cost, while at the same time are non-toxic in case of package penetration.
  • the timer and/or sensor can be connected with the gas-impermeable base layer 108 , for example by adhesives, before the gas-impermeable base layer 108 is fed to the cooling roll 104 , thereby eliminating the need for cavities of the cooling roll 104 .
  • the sensor can be a temperature sensor having chemistry that can change color if exposed to specific temperatures for prolonged periods of time.
  • the resin quickly cools and solidifies with the timer and/or sensor impregnated or embedded in the resin, while adhering to the gas-impermeable base layer 108 , thereby forming the heat-sealable inner layer 106 of the panel.
  • the heat-sealable inner layer 106 can be formed while the resin is sufficiently heated to allow the resin to flow, thereby molding the resin, unlike other methods adopting a post-embossing treatment where the heat-sealable inner layer is drawn by a die or embossed between male and female components.
  • chemicals such as silver chloride or silver halide, for example, can be added to the melt-extruded resin such that molecules of the chemicals are transparent to visible light in the absence of UV light (such as artificial light), thereby allowing the user to view the contents.
  • UV light such as artificial light
  • the molecules When exposed to UV rays, as in direct sunlight, the molecules undergo a chemical process that causes them to change shape.
  • the new molecular structure absorbs portions of the visible light, causing the film to darken.
  • the number of molecules that change shape varies with the intensity of the UV rays. In this manner, contents of the vacuum bag can be protected from the harmful effects of UV rays.
  • a laminated film formed by the heat-sealable inner layer 106 and gas-impermeable base layer 108 can be fed to a second cooling roll (not shown) for adding a second inner layer, thereby forming a barrier between the impregnated resin material and the packaged product.
  • chemicals such as potassium permanganate, for example, can be added to the melt-extruded resin such that products that can spoil in the presence of ethylene can be preserved for a longer period as the ethylene is absorbed by the impregnated layer.
  • a laminated film formed by the heat-sealable inner layer 106 and gas-impermeable base layer 108 can be fed to a second cooling roll for adding a second inner layer, thereby forming a barrier between the impregnated resin material and the packaged product that prevents chemicals from leaching into the product, while allowing ethylene gas to be absorbed through the barrier.
  • timers and/or sensors can be added to a vacuum bag.
  • FIG. 2 is a plan view of a panel 220 formed by the cooling roll 104 for use in a vacuum bag, in which the heat-sealable inner layer 106 is molded in such a way that a timer/sensor 124 is embedded in the heat-sealable inner layer 106 .
  • the timer/sensor 124 can be activated to measure the amount of time a product has been packed or stored.
  • a second timer/sensor 226 can be embedded in the heat-sealable inner layer 106 such that the temperature of the bag can be monitored.
  • One of ordinary skill in the art can appreciate the different methods for monitoring the vacuum bag and the contents of the vacuum bag.
  • FIG. 3 is a cross-section of a portion of a panel 220 in accordance with one embodiment of the present invention.
  • the heat-sealable inner layer 106 can range, for example, from about 0.5-4.0 mils in thickness between timers and/or sensors, while the gas-impermeable base layer 108 can range, for example, from about 0.5-8.0 mils in thickness.
  • a second heat-sealable inner layer optionally added, can add an additional 0.5-4.0 mils in thickness.
  • the features and structures described above can be combined with other manufacturing techniques to form a valve or other structure, or tray, as described in the cross-referenced provisional applications, incorporated herein by reference.
  • the circumferential surfaces of the cooling rolls 104 described above can optionally include protuberances for forming perforations (not shown), such that a bag can be separated from a roll of bags by a customer.
  • FIG. 4 illustrates a bag for use in vacuum packaging in accordance with one embodiment of the present invention.
  • the vacuum bag 450 comprises a first panel 220 and a second panel 422 overlapping each other.
  • a timer and/or sensor is formed on the first panel 220 in accordance with an embodiment described above.
  • the second panel 422 (or first panel 220 ) optionally includes channels (not shown) along a portion of the panel for evacuating air and other gases from the bag.
  • the channels can be formed, for example, as described in the cross-referenced application “LIQUID-TRAPPING BAG FOR VACUUM PACKAGING,” incorporated herein by reference.
  • the heat-sealable inner layer 106 and the gas-impermeable base layer 108 of the first and second panels 220 , 422 are typically made of the same material respectively, but can alternatively be made of different materials that exhibit heat-sealability and gas-impermeability respectively. As described above, the heat-sealable inner layer 106 is used as an inner layer and the gas-impermeable base layer 108 is used as an outer layer. The lower, left, and right edges of the first and the second panel 220 , 422 are bonded to each other by heating, so as to form an envelope for receiving a perishable or other product to be vacuum packaged.
  • air and/or other gases can be evacuated from the bag 450 , for example by a vacuum sealing machine as described in U.S. Pat. No. 4,941,310, which is incorporated herein by reference.
  • the inlet can be sealed by applying heat, thereby activating the heat-sealable inner layers 106 and bonding them together.

Abstract

A vacuum bag comprises a first panel and a second panel, wherein each panel comprises a gas-impermeable base layer and a heat-sealable inner layer with at least one panel having a timer and/or sensor embedded or encapsulated by the inner layer. The timer and/or sensor can be used to monitor storage time, contents, and/or the condition of packaged products, or can be used to protect contents. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.

Description

    PRIORITY CLAIM
  • This application claims priority to the following U.S. Provisional Patent Application:
  • U.S. Provisional Patent Application No. 60/452,157, entitled “SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01182US0).
  • CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This U.S. Patent Application incorporates by reference all of the following co-pending applications:
  • U.S. Provisional Patent Application No. 60/452,168, entitled “LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01177US0);
  • U.S. Provisional Patent Application No. 60/452,138, entitled “METHOD FOR MANUFACTURING LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01177US1);
  • U.S. Provisional Patent Application No. 60/452,172, entitled “SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01178US0);
  • U.S. Provisional Patent Application No. 60/452,171, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01178US1);
  • U.S. Provisional Patent Application No. 60/451,954, entitled “SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01179US0);
  • U.S. Provisional Patent Application No. 60/451,948, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01179US1);
  • U.S. Provisional Patent Application No. 60/452,142, entitled “SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01180US0);
  • U.S. Provisional Patent Application No. 60/452,021, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01180US1);
  • U.S. Provisional Patent Application No. 60/451,955, entitled “SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01181US0);
  • U.S. Provisional Patent Application No. 60/451,956, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01181US1);
  • U.S. Provisional Patent Application No. 60/452,139, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01182US1);
  • U.S. patent application Ser. No. 10/169,485, entitled “METHOD FOR PREPARING AIR CHANNEL EQUIPPED FILM FOR USE IN VACUUM PACKAGE,” filed Jun. 26, 2002;
  • U.S. patent application Ser. No. ______, entitled “LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01177US2, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01177US3, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01178US2, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01178US3, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01179US2, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01179US3, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01180US2, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01180US3, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01181US2, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01181US3, filed concurrently;
  • U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01182US3, filed concurrently.
  • FIELD OF THE INVENTION
  • The present invention relates to bags for use in vacuum packaging and methods and devices for manufacturing bags for use in vacuum packaging.
  • BACKGROUND
  • Methods and devices for preserving perishable foods such as fish and meats, processed foods, prepared meals, and left-overs, and non-perishable items are widely known, and widely varied. Foods are perishable because organisms such as bacteria, fungus and mold grow over time after a food container is opened and the food is left exposed to the atmosphere. Most methods and devices preserve food by protecting food from organism-filled air. A common method and device includes placing food into a gas-impermeable plastic bag, evacuating the air from the bag using suction from a vacuum pump or other suction source, and tightly sealing the bag.
  • A bag for use in vacuum packaging can consist of a first panel and second panel, each panel consisting of a single layer of heat-sealable, plastic-based film (for example, polyethylene). The panels are sealed together along a substantial portion of the periphery of the panels by heat-sealing techniques so as to form an envelope. Perishable products, such as spoilable food, or other products are packed into the envelope via the unsealed portion through which air is subsequently evacuated. After perishable products are packed into the bag and air is evacuated from the inside of the bag, the unsealed portion is heated and pressed such that the panels adhere to each other, sealing the bag.
  • U.S. Pat. No. 2,778,173, incorporated herein by reference, discloses a method for improving the evacuation of air from the bag by forming channels in at least one of the panels with the aid of embossing techniques. Air escapes from the bag along the channels during evacuation. The embossing forms a pattern of protuberances on at least one of the panels. The protuberances can be discrete pyramids, hemispheres, etc., and are formed by pressing a panel using heated female and male dies. The first panel is overlaid on the second panel such that the protuberances from one panel face the opposite panel. The contacting peripheral edges of the panels are sealed to each other to form an envelope having an inlet at an unsealed portion of the periphery. The perishable or other products are packed into the envelope through the inlet, and the inlet is sealed. Thereafter, an opening is pierced in a part of the panel material that communicates with the channels, air is removed from the interior of the envelope through the channels and opening, and the opening is sealed. This type of bag requires two additional sealing steps after the perishable or other product is packed into the envelope. One further problem is that embossing creates impressions on the plastic such that indentations are formed on the opposite side of the panel
  • To avoid additional sealing steps, a vacuum bag is formed having a first panel and a second panel consisting of laminated films. Each panel comprises a heat-sealable inner layer, a gas-impermeable outer layer, and optionally, one or more intermediate layers. Such a bag is described in U.S. Pat. No. Re. 34,929, incorporated herein by reference. At least one film from at least one panel is embossed using an embossing mold to form protuberances and channels defined by the space between protuberances, so that air is readily evacuated from the vacuum bag.
  • U.S. Pat. No. 5,554,423, incorporated herein by reference, discloses still another bag usable in vacuum packaging. The bag consists of a first and second panel, each panel consisting of a gas-impermeable outer layer and a heat-sealable inner layer. A plurality of heat-sealable strand elements are heat bonded at regular intervals to the inner layer of either the first panel or the second panel. The spaces between strand elements act as channels for the evacuation of air. The strand elements are extruded from an extrusion head and heat bonded to the heat-sealable layer by use of pressure rolls. Separate equipment is required for producing strand elements, and a procedure of heat bonding a plurality of strand elements at regular intervals to the heat-sealable inner layer is complicated. Also, various shapes of pattern are hard to form using this process.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Further details of embodiments of the present invention are explained with the help of the attached drawings in which:
  • FIG. 1A is a perspective view of a method for manufacturing a vacuum bag in accordance with one embodiment of the present invention;
  • FIG. 1B is a side view of the method shown in FIG. 1A illustrating the embossing method used in an embodiment of the present invention;
  • FIG. 1C is a close-up view of a portion of FIG. 1B;
  • FIG. 2 is a plan view of an exemplary timer/sensor on a panel in accordance with embodiments of the present invention, manufactured by the process shown in FIGS. 1A-1C;
  • FIG. 3 is a cross-section of a portion of a panel as illustrated in FIG. 2, according to an embodiment of the present invention; and
  • FIG. 4 is a perspective view of a vacuum bag in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • FIGS. 1A-1C illustrate one embodiment of a method for manufacturing a vacuum bag in accordance with the present invention. The vacuum bag comprises a first panel and a second panel, wherein each panel comprises a gas-impermeable base layer 108 and a heat-sealable inner layer 106 with at least one panel having a timer and/or sensor embedded inside the vacuum bag. A laminating roll 102 and a cooling roll 104 are arranged so that the heat-sealable inner layer 106 can be laminated to the gas-impermeable base layer 108 as the melt-extruded resin is cooled. As illustrated in FIG. 1C, the gap between the laminating roll 102 and the cooling roll 104 can be controlled according to specifications (for example, thickness) of a panel for use in vacuum packaging. The temperature of the cooling roll 104 is maintained in a range such that the melt-extruded resin is sufficiently cooled to form the desired pattern. For example, a temperature range of about −15° C. to about −10° C. can be sufficient to properly form the desired pattern. The temperature range of the cooling roll 104 can vary according to the composition of the resin, the composition of the gas-impermeable base layer 108, environmental conditions, etc. and can require calibration. Also, the cooling roll 104 can be sized to have a larger diameter than the laminating roll 102, thereby bringing the melt-extruded resin into contact with more cooled surface area. For example, the diameter of the cooling roll 104 can be about one-and-a-half to about three times as large (or more) as that of the laminating roll 102.
  • The heat-sealable inner layer 106 typically comprises a thermoplastic resin. For example, the melt-extruded resin can be comprised of polyethylene (E) suitable for preserving foods and harmless to a human body. A vacuum bag can be manufactured by overlapping two panels such that the heat-sealable inner layers 106 of the two panels can be brought into contact and heat can be applied to a portion of the periphery of the panels to form an envelope. The thermoplastic resin can be chosen so that the two panels strongly bond to each other when sufficient heat is applied.
  • The gas-impermeable base layer 108 is fed to the gap between the cooling roll 104 and the laminating roll 102 by a feeding means (not shown). The gas-impermeable base layer can be comprised of polyester, polyamide, ethylene vinyl alcohol (EVOH), nylon, or other material having similar properties and capable of being used in this manufacturing process, and also capable of being heated. The gas-impermeable base layer 108 can consist of one layer, or two or more layers. When employing a multilayer-structured base layer, it should be understood that a total thickness thereof is also adjusted within the allowable range for the total gas-impermeable base layer 108.
  • An extruder 110 is positioned in such a way that the melt-extruded resin is layered on the gas-impermeable base layer 108 by feeding the melt-extruded resin to the nip between the cooling roll 104 and the gas-impermeable base layer 108. The resin is fed through a nozzle 112 of the extruder 110. The temperature of the melt-extruded resin is dependent on the type of resin used, and can typically range from about 200° C. to about 250° C. The amount of resin to be extruded into the laminating unit 100 is dependent on the desired thickness of the heat-sealable inner layer 106.
  • A pattern fabricated on the circumferential surface of the cooling roll 104 in accordance with one embodiment of the present invention can include cavities for suspending timers and/or sensors for encapsulation by melt-extruded resin. Timers and/or sensors 124 can be seeded in cavities of the cooling roll 104, for example by a label machine 114 attached to the extruder 110. The resin melt-extruded by the nozzle 112 is pressed between the cooling roll 104 and the gas-impermeable base layer 108 and flows into the cavities of the cooling roll 104 and surrounds the timers and/or sensors. The timer and/or sensor can be any device capable of communicating information to a user. For example, active radio frequency identification tags (RFID), such as the PowerID Smart Active Labels (SAL) system manufactured by Power Paper Ltd. of Israel, contain batteries and can be used as disposable timers. Sensors such as the PowerID SALs can be user activated, are thin and flexible, and low-cost, while at the same time are non-toxic in case of package penetration. Alternatively, the timer and/or sensor can be connected with the gas-impermeable base layer 108, for example by adhesives, before the gas-impermeable base layer 108 is fed to the cooling roll 104, thereby eliminating the need for cavities of the cooling roll 104. Alternatively, the sensor can be a temperature sensor having chemistry that can change color if exposed to specific temperatures for prolonged periods of time. In this way a user can estimate the freshness of packaged foods or other degradable products. The resin quickly cools and solidifies with the timer and/or sensor impregnated or embedded in the resin, while adhering to the gas-impermeable base layer 108, thereby forming the heat-sealable inner layer 106 of the panel. The heat-sealable inner layer 106 can be formed while the resin is sufficiently heated to allow the resin to flow, thereby molding the resin, unlike other methods adopting a post-embossing treatment where the heat-sealable inner layer is drawn by a die or embossed between male and female components.
  • In other embodiments, chemicals such as silver chloride or silver halide, for example, can be added to the melt-extruded resin such that molecules of the chemicals are transparent to visible light in the absence of UV light (such as artificial light), thereby allowing the user to view the contents. When exposed to UV rays, as in direct sunlight, the molecules undergo a chemical process that causes them to change shape. The new molecular structure absorbs portions of the visible light, causing the film to darken. The number of molecules that change shape varies with the intensity of the UV rays. In this manner, contents of the vacuum bag can be protected from the harmful effects of UV rays. A laminated film formed by the heat-sealable inner layer 106 and gas-impermeable base layer 108 can be fed to a second cooling roll (not shown) for adding a second inner layer, thereby forming a barrier between the impregnated resin material and the packaged product.
  • In other embodiments, chemicals such as potassium permanganate, for example, can be added to the melt-extruded resin such that products that can spoil in the presence of ethylene can be preserved for a longer period as the ethylene is absorbed by the impregnated layer. A laminated film formed by the heat-sealable inner layer 106 and gas-impermeable base layer 108 can be fed to a second cooling roll for adding a second inner layer, thereby forming a barrier between the impregnated resin material and the packaged product that prevents chemicals from leaching into the product, while allowing ethylene gas to be absorbed through the barrier. One of ordinary skill in the art can appreciate the myriad different ways in which timers and/or sensors can be added to a vacuum bag.
  • FIG. 2 is a plan view of a panel 220 formed by the cooling roll 104 for use in a vacuum bag, in which the heat-sealable inner layer 106 is molded in such a way that a timer/sensor 124 is embedded in the heat-sealable inner layer 106. The timer/sensor 124 can be activated to measure the amount of time a product has been packed or stored. Optionally, a second timer/sensor 226 can be embedded in the heat-sealable inner layer 106 such that the temperature of the bag can be monitored. One of ordinary skill in the art can appreciate the different methods for monitoring the vacuum bag and the contents of the vacuum bag.
  • FIG. 3 is a cross-section of a portion of a panel 220 in accordance with one embodiment of the present invention. The heat-sealable inner layer 106, can range, for example, from about 0.5-4.0 mils in thickness between timers and/or sensors, while the gas-impermeable base layer 108 can range, for example, from about 0.5-8.0 mils in thickness. A second heat-sealable inner layer optionally added, can add an additional 0.5-4.0 mils in thickness.
  • The features and structures described above can be combined with other manufacturing techniques to form a valve or other structure, or tray, as described in the cross-referenced provisional applications, incorporated herein by reference. In other embodiments, the circumferential surfaces of the cooling rolls 104 described above can optionally include protuberances for forming perforations (not shown), such that a bag can be separated from a roll of bags by a customer.
  • FIG. 4 illustrates a bag for use in vacuum packaging in accordance with one embodiment of the present invention. The vacuum bag 450 comprises a first panel 220 and a second panel 422 overlapping each other. A timer and/or sensor is formed on the first panel 220 in accordance with an embodiment described above. The second panel 422 (or first panel 220) optionally includes channels (not shown) along a portion of the panel for evacuating air and other gases from the bag. The channels can be formed, for example, as described in the cross-referenced application “LIQUID-TRAPPING BAG FOR VACUUM PACKAGING,” incorporated herein by reference. The heat-sealable inner layer 106 and the gas-impermeable base layer 108 of the first and second panels 220,422 are typically made of the same material respectively, but can alternatively be made of different materials that exhibit heat-sealability and gas-impermeability respectively. As described above, the heat-sealable inner layer 106 is used as an inner layer and the gas-impermeable base layer 108 is used as an outer layer. The lower, left, and right edges of the first and the second panel 220,422 are bonded to each other by heating, so as to form an envelope for receiving a perishable or other product to be vacuum packaged. Once a perishable or other product is placed in the vacuum bag 450, air and/or other gases can be evacuated from the bag 450, for example by a vacuum sealing machine as described in U.S. Pat. No. 4,941,310, which is incorporated herein by reference. Once the air and/or other gases are evacuated to the satisfaction of the user, the inlet can be sealed by applying heat, thereby activating the heat-sealable inner layers 106 and bonding them together.
  • The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.

Claims (30)

1. A bag adapted to receive an article, comprising:
a first panel defining at least one molded portion;
a second panel; and
the first panel and the second panel secured together to form the bag;
wherein the at least one molded includes at least one of a timer and a sensor.
2. A bag adapted to receive an article, comprising:
a first panel having:
a first outer layer; and
a first inner layer connected with the first outer layer, the first inner layer including at least one of a timer and a sensor integrally formed with the first inner layer; and
a second panel connected with the first panel such that the first panel and the second panel form an envelope having an inlet, the second panel having:
a second outer layer; and
a second inner layer connected with the second outer layer.
3. The bag of claim 2, wherein the first outer layer and the second outer layer comprise a gas-impermeable material.
4. The bag of claim 3, wherein the gas-impermeable material is one of polyester, polyamide, ethylene vinyl alcohol, and nylon.
5. The bag of claim 2, wherein the first inner layer and the second inner layer comprise a thermoplastic resin.
6. The bag of claim 5, wherein the thermoplastic resin is polyethylene.
7. The bag of claim 2, wherein the first inner layer includes at least one timer.
8. The bag of claim 7, wherein the at least one timer is an active radio frequency identification tag.
9. The bag of claim 2, wherein the first inner layer includes at least one sensor.
10. The bag of claim 9, wherein the at least one sensor is a temperature sensor.
11. The bag of claim 9, wherein the at least one sensor is a temperature sensor.
12. The bag of claim 2, wherein the first inner layer includes UV activated chemicals.
13. The bag of claim 12, wherein the UV activated chemical is one or both of silver chloride and silver halide.
14. The bag of claim 2, wherein the first inner layer includes at least one chemical for preserving the article.
15. The bag of claim 14, wherein the chemical is potassium permanganate.
16. A bag adapted to receive an article, comprising:
a first panel including:
a first gas-impermeable layer; and
a first inner layer laminated to the first gas-impermeable layer, the first inner layer having at least one of a timer and a sensor;
a second panel including:
a second gas-impermeable layer; and
a second inner layer laminated to the second gas-impermeable layer; and
wherein the first panel is connected with the second panel to form an envelope such that the first inner layer opposes the second inner layer, the envelope including a heat-sealable opening for evacuating gas.
17. A heat-sealable bag adapted to receive an article, comprising:
a first panel including:
a first gas-impermeable layer;
at least one first intermediate layer connected with the first gas-impermeable layer; and
a first inner layer laminated to the at least one first intermediate layer, the first inner layer having at least one of a timer and a sensor; and
a second panel including:
a second gas-impermeable layer;
at least one second intermediate layer connected with the second gas-impermeable layer; and
a second inner layer laminated to the at least one second intermediate layer;
wherein the first panel is connected with the second panel to form an envelope such that the first inner layer opposes the second inner layer, the envelope including a heat-sealable opening for evacuating gas.
18. The bag of claim 17, wherein the first gas-impermeable layer and the second gas-impermeable layer comprise one of polyester, polyamide, ethylene vinyl alcohol, and nylon.
19. The bag of claim 17, wherein the first inner layer and the second inner layer comprise a thermoplastic resin.
20. The bag of claim 19, wherein the thermoplastic resin is polyethylene.
21. The bag of claim 17, wherein the first inner layer includes at least one timer.
22. The bag of claim 21, wherein the at least one timer is an active radio frequency identification tag.
23. The bag of claim 17, wherein the first inner layer includes at least one sensor.
24. The bag of claim 23, wherein the at least one sensor is a temperature sensor.
25. The bag of claim 23, wherein the at least one sensor is a temperature sensor.
26. The bag of claim 17, wherein the first inner layer includes UV activated chemicals.
27. The bag of claim 26, wherein the UV activated chemical is one or both of silver chloride and silver halide.
28. The bag of claim 17, wherein the first inner layer includes at least one chemical for preserving the article.
29. The bag of claim 28, wherein the chemical is potassium permanganate.
30. A system for forming a bag including a three-dimensional structure formed on at least one panel, comprising:
an implant including at least one of a timer and a sensor;
a cooling roll having one or more structures for positioning the implant;
a laminating roll;
a backing material; and
a flowable material that can be flowed into the one or more structures to envelop the implant, the flowable material adhering to the backing material.
US10/794,368 2003-03-05 2004-03-04 Sealable bag having an integrated timer/sensor for use in vacuum packaging Abandoned US20050037163A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/794,368 US20050037163A1 (en) 2003-03-05 2004-03-04 Sealable bag having an integrated timer/sensor for use in vacuum packaging
PCT/US2004/006768 WO2004078590A2 (en) 2003-03-05 2004-03-05 System and method for forming an integrated timer/sensor for use in vacuum packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45215703P 2003-03-05 2003-03-05
US10/794,368 US20050037163A1 (en) 2003-03-05 2004-03-04 Sealable bag having an integrated timer/sensor for use in vacuum packaging

Publications (1)

Publication Number Publication Date
US20050037163A1 true US20050037163A1 (en) 2005-02-17

Family

ID=34138429

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/794,368 Abandoned US20050037163A1 (en) 2003-03-05 2004-03-04 Sealable bag having an integrated timer/sensor for use in vacuum packaging

Country Status (1)

Country Link
US (1) US20050037163A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286808A1 (en) * 2004-06-29 2005-12-29 Zimmerman Dean A Flexible storage bag
US20060048483A1 (en) * 2004-07-23 2006-03-09 Tilman Paul A Storage system having a disposable vacuum bag
US20070092167A1 (en) * 2005-10-24 2007-04-26 Paul Tilman Polymeric Package With Resealable Closure And Valve, And Methods
US20070110340A1 (en) * 2005-11-17 2007-05-17 Buchman James E Tamper evident polymeric package with zipper closure and valve, and methods
US20070125498A1 (en) * 2005-12-01 2007-06-07 Yuichiro Kataoka Heat sealer
US20070132876A1 (en) * 2005-12-14 2007-06-14 Tsuyoshi Ohno Solid-state image pickup device, color separation image pickup optical system and image pickup apparatus
US20070172157A1 (en) * 2004-07-23 2007-07-26 Alcoa Inc. Polymeric package with resealable closure and valve and methods relating thereto
US20080069736A1 (en) * 2006-09-20 2008-03-20 Kimberly-Clark Worldwide, Inc. Packaging closures integrated with disposable RFID devices
US20080256901A1 (en) * 2005-10-24 2008-10-23 Reynolds Foil Inc, D/B/A Reynolds Consumer Products Company Polymeric package with resealable closure and valve, and methods
US20080307614A1 (en) * 2007-06-15 2008-12-18 Dais Brian C Closure mechanism for a reclosable pouch
US20090003736A1 (en) * 2005-01-12 2009-01-01 Unovo, Inc. Method and apparatus for evacuating and sealing containers
US20090290817A1 (en) * 2004-06-29 2009-11-26 Borchardt Michael G Flexible Storage Bag
US20100177990A1 (en) * 2007-07-17 2010-07-15 Neltner Andrew E Storage bag
US7857514B2 (en) 2006-12-12 2010-12-28 Reynolds Foil Inc. Resealable closures, polymeric packages and systems and methods relating thereto
US7874731B2 (en) 2007-06-15 2011-01-25 S.C. Johnson Home Storage, Inc. Valve for a recloseable container
US7967509B2 (en) 2007-06-15 2011-06-28 S.C. Johnson & Son, Inc. Pouch with a valve
US8397958B2 (en) 2010-08-05 2013-03-19 Ds Smith Plastics Limited Closure valve assembly for a container
GB2503248A (en) * 2012-06-20 2013-12-25 Fernco Environmental Ltd A method and apparatus for repairing a pipe.
USD794470S1 (en) 2015-11-30 2017-08-15 Cryovac, Inc. Notebook with sheets for packaged products
AT520362A2 (en) * 2017-08-25 2019-03-15 Paul Leitner Plastic clip
CN112673515A (en) * 2018-09-04 2021-04-16 哈钦森技术股份有限公司 Sensing type battery bag
US11907897B2 (en) * 2017-09-28 2024-02-20 Amosense Co., Ltd. Transportation data logging device and item transportation system including the same

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US274447A (en) * 1883-03-20 William-kentish
US2105376A (en) * 1936-12-18 1938-01-11 Chase Bag Company Valve bag
US2633442A (en) * 1949-03-08 1953-03-31 Albert E Caldwell Method of making tufted material
US2642372A (en) * 1950-02-02 1953-06-16 Chittick Charles Yardley Flexible corrugated sheet material and method of fabricating same
US2670501A (en) * 1951-08-24 1954-03-02 Us Rubber Co Method of forming plastic material
US2776452A (en) * 1952-09-03 1957-01-08 Chavannes Ind Synthetics Inc Apparatus for embossing thermoplastic film
US2778173A (en) * 1950-11-29 1957-01-22 Wilts United Dairies Ltd Method of producing airtight packages
US2789609A (en) * 1952-03-14 1957-04-23 Flexigrip Inc Actuator for zippers and pouch embodying the same
US2821338A (en) * 1954-10-21 1958-01-28 Melvin R Metzger Valve-equipped container
US3026231A (en) * 1957-12-23 1962-03-20 Sealed Air Corp Method of making an embossed laminated structure
US3077262A (en) * 1961-03-22 1963-02-12 Poly Sil Inc Novel container
US3077428A (en) * 1956-06-29 1963-02-12 Union Carbide Corp Heat sealable polyethylene laminate and method of making same
US3135411A (en) * 1963-05-09 1964-06-02 Wiley W Osborne Vacuum sealing means
US3237844A (en) * 1963-10-07 1966-03-01 Ici Ltd Bag closure
US3251463A (en) * 1961-11-04 1966-05-17 Bodet Jean Augustin Pellet package
US3325084A (en) * 1965-10-18 1967-06-13 Ausnit Steven Pressure closable fastener
US3381887A (en) * 1967-04-14 1968-05-07 Nat Distillers Chem Corp Sealing patch valve for plastic bags
US3423231A (en) * 1965-05-20 1969-01-21 Ethyl Corp Multilayer polymeric film
US3516217A (en) * 1968-03-07 1970-06-23 Bemis Co Inc Compression packaging
US3565147A (en) * 1968-11-27 1971-02-23 Steven Ausnit Plastic bag having reinforced closure
US3575781A (en) * 1969-05-16 1971-04-20 Stauffer Hoechst Polymer Corp Plastic film wrapping material
US3661677A (en) * 1969-10-10 1972-05-09 Allied Chem Post-heat treatment for polyvinylidene chloride-coated film
US3785111A (en) * 1972-02-04 1974-01-15 Schneider W Method of forming containers and packages
US3799427A (en) * 1972-12-04 1974-03-26 L Goglio Degassing valve for hermetically sealed flexible containers and a container provided with the valve
US3809217A (en) * 1969-07-22 1974-05-07 Franklin Mint Corp Packaging for flat objects
US3937395A (en) * 1973-07-30 1976-02-10 British Visqueen Limited Vented bags
US3958693A (en) * 1975-01-20 1976-05-25 E-Z-Em Company Inc. Vacuum X-ray envelope
US3958391A (en) * 1974-11-21 1976-05-25 Kabushiki Kaisha Furukawa Seisakusho Vacuum packaging method and apparatus
US4018253A (en) * 1975-10-09 1977-04-19 Seth Ian Kaufman Home vacuum apparatus for freezer bags
US4066167A (en) * 1976-07-08 1978-01-03 Keebler Company Recloseable package
US4155453A (en) * 1978-02-27 1979-05-22 Ono Dan D Inflatable grip container
US4186786A (en) * 1978-09-29 1980-02-05 Union Carbide Corporation Colored interlocking closure strips for a container
US4310118A (en) * 1979-08-10 1982-01-12 C. I. Kasei Co. Ltd. Packaging bags for powdery materials
US4370187A (en) * 1979-12-21 1983-01-25 Mitsui Polychemicals Co. Ltd. Process and apparatus for producing a laminated structure composed of a substrate web and a thermoplastic resin web extrusion-coated thereon
US4372921A (en) * 1980-01-28 1983-02-08 Sanderson Roger S Sterilized storage container
US4449243A (en) * 1981-09-10 1984-05-15 Cafes Collet Vacuum package bag
US4569712A (en) * 1982-11-12 1986-02-11 Sanyo Kokusaku Pulp Co., Ltd. Process for producing support for use in formation of polyurethan films
US4576283A (en) * 1983-01-25 1986-03-18 Bernard Fafournoux Bag for vacuum packaging of articles
US4575990A (en) * 1982-01-19 1986-03-18 W. R. Grace & Co., Cryovac Div. Shrink packaging process
US4576285A (en) * 1983-05-20 1986-03-18 Fres-Co System Usa, Inc. Sealed flexible container with non-destructive peelable opening and apparatus and method for forming same
US4579756A (en) * 1984-08-13 1986-04-01 Edgel Rex D Insulation material with vacuum compartments
US4583347A (en) * 1982-10-07 1986-04-22 W. R. Grace & Co., Cryovac Div. Vacuum packaging apparatus and process
US4658434A (en) * 1986-05-29 1987-04-14 Grain Security Foundation Ltd. Laminates and laminated articles
US4669124A (en) * 1984-05-23 1987-05-26 Yoken Co., Ltd. Beverage container with tamperproof screwthread cap
US4747702A (en) * 1983-06-30 1988-05-31 First Brands Corporation Interlocking closure device having controlled separation and improved ease of occlusion
US4812056A (en) * 1985-03-25 1989-03-14 The Dow Chemical Company Reclosable, flexible container having an externally operated fastener
US4834554A (en) * 1987-11-16 1989-05-30 J. C. Brock Corp. Plastic bag with integral venting structure
US4890637A (en) * 1988-12-12 1990-01-02 Flavorcoffee Co. Inc. One way valve
US4892414A (en) * 1988-07-05 1990-01-09 Minigrip, Inc. Bags with reclosable plastic fastener having automatic sealing gasket means
US4903718A (en) * 1988-10-19 1990-02-27 Ipco Corporation Flexible ultrasonic cleaning bag
US4906108A (en) * 1989-03-08 1990-03-06 Mobil Oil Corporation Corrugated sticky tape bag tie closure
US4913561A (en) * 1988-11-15 1990-04-03 Fres-Co System Usa, Inc. Gussetted flexible package with presealed portions and method of making the same
US4917506A (en) * 1983-06-30 1990-04-17 First Brands Corporation Interlocking closure device having controlled separation and improved ease of occlusion
US4917844A (en) * 1987-04-01 1990-04-17 Fuji Photo Film Co., Ltd. Method of manufacturing laminate product
US5006056A (en) * 1989-09-01 1991-04-09 The Black Clawson Company Film extrusion apparatus including a quickly replaceable chill roll
US5080155A (en) * 1990-12-28 1992-01-14 Hooleon Corporation Keyboard enclosure
US5097956A (en) * 1988-09-07 1992-03-24 Paramount Packaging Corporation Vacuum package with smooth surface and method of making same
US5098497A (en) * 1989-02-23 1992-03-24 Anthony Industries, Inc. Process for preparing embossed, coated paper
US5106688A (en) * 1988-05-20 1992-04-21 W. R. Grace & Co.-Conn. Multi-layer packaging film and process
US5111838A (en) * 1991-11-25 1992-05-12 Shipping Systems, Inc. Dunnage bag air valve and coupling
US5116444A (en) * 1991-05-30 1992-05-26 Sealed Air Corporation Apparatus and method for enhancing lamination of plastic films
US5203458A (en) * 1992-03-02 1993-04-20 Quality Containers International, Inc. Cryptoplate disposable surgical garment container
US5209264A (en) * 1991-07-05 1993-05-11 Yoshihiro Koyanagi Check valve
US5397182A (en) * 1993-10-13 1995-03-14 Reynolds Consumer Products Inc. Write-on profile strips for recloseable plastic storage bags
US5402906A (en) * 1992-07-16 1995-04-04 Brown; Richard S. Fresh produce container system
USRE34929E (en) * 1985-09-23 1995-05-09 Tilia, Inc. Plastic bag for vacuum sealing
US5480030A (en) * 1993-12-15 1996-01-02 New West Products, Inc. Reusable, evacuable enclosure for storage of clothing and the like
US5592697A (en) * 1995-04-18 1997-01-14 Young; Russell Waterproof pocket
US5620098A (en) * 1994-06-08 1997-04-15 Southern California Foam, Inc. Full recovery reduced-volume packaging system
US5709467A (en) * 1996-06-18 1998-01-20 Galliano, Ii; Carol J. Device and apparatus for mixing alginate
US5735395A (en) * 1996-06-28 1998-04-07 Lo; Luke Airtight garment hanging bag
US5749493A (en) * 1983-10-17 1998-05-12 The Coca-Cola Company Conduit member for collapsible container
US5873217A (en) * 1997-05-09 1999-02-23 Smith; George E. Vacuum sealing methods and apparatus
US5874155A (en) * 1995-06-07 1999-02-23 American National Can Company Easy-opening flexible packaging laminates and packaging materials made therefrom
US5881881A (en) * 1997-06-16 1999-03-16 Carrington; Thomas Evacuateable bag
US5893822A (en) * 1997-10-22 1999-04-13 Keystone Mfg. Co., Inc. System for vacuum evacuation and sealing of plastic bags
US5898113A (en) * 1997-07-30 1999-04-27 Bellaire Industries, Inc. Multi-ply material sealed container
US6021624A (en) * 1990-04-27 2000-02-08 Kapak Corporation Vented pouch arrangement and method
US6029810A (en) * 1997-10-17 2000-02-29 Chen; Shu-Ling Dress bag and hanger assembly
US6030652A (en) * 1997-08-05 2000-02-29 Hanus; John Food bag featuring gusset opening, method of making the food bag, and method of using the food bag
US6035769A (en) * 1997-04-16 2000-03-14 Hikari Kinzoku Industry Co., Ltd. Method for preserving cooked food and vacuum sealed preservation container therefor
US6039182A (en) * 1998-08-13 2000-03-21 Light; Barry Bag
US6045264A (en) * 1998-01-29 2000-04-04 Miniea; Stephen H. Self-sealing, disposable storage bag
US6053606A (en) * 1996-10-07 2000-04-25 Seiko Epson Corporation Ink cartridge
US6059457A (en) * 1998-01-02 2000-05-09 Com-Pac International, Inc. Evacuable storage bag with integral zipper seal
USD425786S (en) * 1998-05-04 2000-05-30 Voller Ronald L Multi ply reinforced dunnage bag and valve therefor
US6202849B1 (en) * 1999-07-07 2001-03-20 David B. Graham Evacuatable rigid storage unit for storing compressible articles therein
US6220702B1 (en) * 1998-12-24 2001-04-24 Seiko Epson Corporation Ink bag for ink jet type recording apparatus and package suitable for packing such ink bag
US6224528B1 (en) * 1997-04-11 2001-05-01 Kapak Corporation Method for making bag constructions having inwardly directed side seal portions
US6227706B1 (en) * 2000-06-26 2001-05-08 Thoai S. Tran Two piece, compressible storage satchel for compressible articles
US6231234B1 (en) * 1998-05-13 2001-05-15 Tc Manufacturing Co., Inc. One piece snap closure for a plastic bag
US6231236B1 (en) * 1998-07-28 2001-05-15 Reynolds Consumer Products, Inc. Resealable package having venting structure and methods
US6357915B2 (en) * 1999-08-13 2002-03-19 New West Products, Inc. Storage bag with one-way air valve
US6520071B1 (en) * 1999-05-21 2003-02-18 Aracaria B. . Hand-held suction pump
US20040000501A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with secondary closure members
US20040000503A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with porous evacuation portal
US20040000502A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with user-deformable air vent
US20040007494A1 (en) * 2002-07-15 2004-01-15 Popeil Ronald M. Apparatus and method to more effectively vacuum package foods and other objects

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US274447A (en) * 1883-03-20 William-kentish
US2105376A (en) * 1936-12-18 1938-01-11 Chase Bag Company Valve bag
US2633442A (en) * 1949-03-08 1953-03-31 Albert E Caldwell Method of making tufted material
US2642372A (en) * 1950-02-02 1953-06-16 Chittick Charles Yardley Flexible corrugated sheet material and method of fabricating same
US2778173A (en) * 1950-11-29 1957-01-22 Wilts United Dairies Ltd Method of producing airtight packages
US2670501A (en) * 1951-08-24 1954-03-02 Us Rubber Co Method of forming plastic material
US2789609A (en) * 1952-03-14 1957-04-23 Flexigrip Inc Actuator for zippers and pouch embodying the same
US2776452A (en) * 1952-09-03 1957-01-08 Chavannes Ind Synthetics Inc Apparatus for embossing thermoplastic film
US2821338A (en) * 1954-10-21 1958-01-28 Melvin R Metzger Valve-equipped container
US3077428A (en) * 1956-06-29 1963-02-12 Union Carbide Corp Heat sealable polyethylene laminate and method of making same
US3026231A (en) * 1957-12-23 1962-03-20 Sealed Air Corp Method of making an embossed laminated structure
US3077262A (en) * 1961-03-22 1963-02-12 Poly Sil Inc Novel container
US3251463A (en) * 1961-11-04 1966-05-17 Bodet Jean Augustin Pellet package
US3135411A (en) * 1963-05-09 1964-06-02 Wiley W Osborne Vacuum sealing means
US3237844A (en) * 1963-10-07 1966-03-01 Ici Ltd Bag closure
US3423231A (en) * 1965-05-20 1969-01-21 Ethyl Corp Multilayer polymeric film
US3325084A (en) * 1965-10-18 1967-06-13 Ausnit Steven Pressure closable fastener
US3381887A (en) * 1967-04-14 1968-05-07 Nat Distillers Chem Corp Sealing patch valve for plastic bags
US3516217A (en) * 1968-03-07 1970-06-23 Bemis Co Inc Compression packaging
US3565147A (en) * 1968-11-27 1971-02-23 Steven Ausnit Plastic bag having reinforced closure
US3575781A (en) * 1969-05-16 1971-04-20 Stauffer Hoechst Polymer Corp Plastic film wrapping material
US3809217A (en) * 1969-07-22 1974-05-07 Franklin Mint Corp Packaging for flat objects
US3661677A (en) * 1969-10-10 1972-05-09 Allied Chem Post-heat treatment for polyvinylidene chloride-coated film
US3785111A (en) * 1972-02-04 1974-01-15 Schneider W Method of forming containers and packages
US3799427A (en) * 1972-12-04 1974-03-26 L Goglio Degassing valve for hermetically sealed flexible containers and a container provided with the valve
US3799427B1 (en) * 1972-12-04 1987-02-03
US3937395A (en) * 1973-07-30 1976-02-10 British Visqueen Limited Vented bags
US3958391A (en) * 1974-11-21 1976-05-25 Kabushiki Kaisha Furukawa Seisakusho Vacuum packaging method and apparatus
US3958693A (en) * 1975-01-20 1976-05-25 E-Z-Em Company Inc. Vacuum X-ray envelope
US4018253A (en) * 1975-10-09 1977-04-19 Seth Ian Kaufman Home vacuum apparatus for freezer bags
US4066167A (en) * 1976-07-08 1978-01-03 Keebler Company Recloseable package
US4155453A (en) * 1978-02-27 1979-05-22 Ono Dan D Inflatable grip container
US4186786A (en) * 1978-09-29 1980-02-05 Union Carbide Corporation Colored interlocking closure strips for a container
US4310118A (en) * 1979-08-10 1982-01-12 C. I. Kasei Co. Ltd. Packaging bags for powdery materials
US4370187A (en) * 1979-12-21 1983-01-25 Mitsui Polychemicals Co. Ltd. Process and apparatus for producing a laminated structure composed of a substrate web and a thermoplastic resin web extrusion-coated thereon
US4372921A (en) * 1980-01-28 1983-02-08 Sanderson Roger S Sterilized storage container
US4449243A (en) * 1981-09-10 1984-05-15 Cafes Collet Vacuum package bag
US4575990A (en) * 1982-01-19 1986-03-18 W. R. Grace & Co., Cryovac Div. Shrink packaging process
US4583347A (en) * 1982-10-07 1986-04-22 W. R. Grace & Co., Cryovac Div. Vacuum packaging apparatus and process
US4569712A (en) * 1982-11-12 1986-02-11 Sanyo Kokusaku Pulp Co., Ltd. Process for producing support for use in formation of polyurethan films
US4576283A (en) * 1983-01-25 1986-03-18 Bernard Fafournoux Bag for vacuum packaging of articles
US4576285A (en) * 1983-05-20 1986-03-18 Fres-Co System Usa, Inc. Sealed flexible container with non-destructive peelable opening and apparatus and method for forming same
US4917506A (en) * 1983-06-30 1990-04-17 First Brands Corporation Interlocking closure device having controlled separation and improved ease of occlusion
US4747702A (en) * 1983-06-30 1988-05-31 First Brands Corporation Interlocking closure device having controlled separation and improved ease of occlusion
US5749493A (en) * 1983-10-17 1998-05-12 The Coca-Cola Company Conduit member for collapsible container
US4669124A (en) * 1984-05-23 1987-05-26 Yoken Co., Ltd. Beverage container with tamperproof screwthread cap
US4579756A (en) * 1984-08-13 1986-04-01 Edgel Rex D Insulation material with vacuum compartments
US4812056A (en) * 1985-03-25 1989-03-14 The Dow Chemical Company Reclosable, flexible container having an externally operated fastener
USRE34929E (en) * 1985-09-23 1995-05-09 Tilia, Inc. Plastic bag for vacuum sealing
US4658434A (en) * 1986-05-29 1987-04-14 Grain Security Foundation Ltd. Laminates and laminated articles
US4917844A (en) * 1987-04-01 1990-04-17 Fuji Photo Film Co., Ltd. Method of manufacturing laminate product
US4834554A (en) * 1987-11-16 1989-05-30 J. C. Brock Corp. Plastic bag with integral venting structure
US5106688A (en) * 1988-05-20 1992-04-21 W. R. Grace & Co.-Conn. Multi-layer packaging film and process
US4892414A (en) * 1988-07-05 1990-01-09 Minigrip, Inc. Bags with reclosable plastic fastener having automatic sealing gasket means
US5097956A (en) * 1988-09-07 1992-03-24 Paramount Packaging Corporation Vacuum package with smooth surface and method of making same
US4903718A (en) * 1988-10-19 1990-02-27 Ipco Corporation Flexible ultrasonic cleaning bag
US4913561A (en) * 1988-11-15 1990-04-03 Fres-Co System Usa, Inc. Gussetted flexible package with presealed portions and method of making the same
US4890637A (en) * 1988-12-12 1990-01-02 Flavorcoffee Co. Inc. One way valve
US5098497A (en) * 1989-02-23 1992-03-24 Anthony Industries, Inc. Process for preparing embossed, coated paper
US4906108A (en) * 1989-03-08 1990-03-06 Mobil Oil Corporation Corrugated sticky tape bag tie closure
US5006056A (en) * 1989-09-01 1991-04-09 The Black Clawson Company Film extrusion apparatus including a quickly replaceable chill roll
US6021624A (en) * 1990-04-27 2000-02-08 Kapak Corporation Vented pouch arrangement and method
US6023914A (en) * 1990-04-27 2000-02-15 Kapak Corporation Vented pouch arrangement and method
US5080155A (en) * 1990-12-28 1992-01-14 Hooleon Corporation Keyboard enclosure
US5116444A (en) * 1991-05-30 1992-05-26 Sealed Air Corporation Apparatus and method for enhancing lamination of plastic films
US5209264A (en) * 1991-07-05 1993-05-11 Yoshihiro Koyanagi Check valve
US5111838A (en) * 1991-11-25 1992-05-12 Shipping Systems, Inc. Dunnage bag air valve and coupling
US5203458A (en) * 1992-03-02 1993-04-20 Quality Containers International, Inc. Cryptoplate disposable surgical garment container
US5402906A (en) * 1992-07-16 1995-04-04 Brown; Richard S. Fresh produce container system
US5397182A (en) * 1993-10-13 1995-03-14 Reynolds Consumer Products Inc. Write-on profile strips for recloseable plastic storage bags
US5480030A (en) * 1993-12-15 1996-01-02 New West Products, Inc. Reusable, evacuable enclosure for storage of clothing and the like
US5620098A (en) * 1994-06-08 1997-04-15 Southern California Foam, Inc. Full recovery reduced-volume packaging system
US5592697A (en) * 1995-04-18 1997-01-14 Young; Russell Waterproof pocket
US5874155A (en) * 1995-06-07 1999-02-23 American National Can Company Easy-opening flexible packaging laminates and packaging materials made therefrom
US5709467A (en) * 1996-06-18 1998-01-20 Galliano, Ii; Carol J. Device and apparatus for mixing alginate
US5735395A (en) * 1996-06-28 1998-04-07 Lo; Luke Airtight garment hanging bag
US6053606A (en) * 1996-10-07 2000-04-25 Seiko Epson Corporation Ink cartridge
US6224528B1 (en) * 1997-04-11 2001-05-01 Kapak Corporation Method for making bag constructions having inwardly directed side seal portions
US6035769A (en) * 1997-04-16 2000-03-14 Hikari Kinzoku Industry Co., Ltd. Method for preserving cooked food and vacuum sealed preservation container therefor
US5873217A (en) * 1997-05-09 1999-02-23 Smith; George E. Vacuum sealing methods and apparatus
US5881881A (en) * 1997-06-16 1999-03-16 Carrington; Thomas Evacuateable bag
US5898113A (en) * 1997-07-30 1999-04-27 Bellaire Industries, Inc. Multi-ply material sealed container
US6030652A (en) * 1997-08-05 2000-02-29 Hanus; John Food bag featuring gusset opening, method of making the food bag, and method of using the food bag
US6029810A (en) * 1997-10-17 2000-02-29 Chen; Shu-Ling Dress bag and hanger assembly
US5893822A (en) * 1997-10-22 1999-04-13 Keystone Mfg. Co., Inc. System for vacuum evacuation and sealing of plastic bags
US6059457A (en) * 1998-01-02 2000-05-09 Com-Pac International, Inc. Evacuable storage bag with integral zipper seal
US6045264A (en) * 1998-01-29 2000-04-04 Miniea; Stephen H. Self-sealing, disposable storage bag
USD425786S (en) * 1998-05-04 2000-05-30 Voller Ronald L Multi ply reinforced dunnage bag and valve therefor
US6231234B1 (en) * 1998-05-13 2001-05-15 Tc Manufacturing Co., Inc. One piece snap closure for a plastic bag
US6231236B1 (en) * 1998-07-28 2001-05-15 Reynolds Consumer Products, Inc. Resealable package having venting structure and methods
US6039182A (en) * 1998-08-13 2000-03-21 Light; Barry Bag
US6220702B1 (en) * 1998-12-24 2001-04-24 Seiko Epson Corporation Ink bag for ink jet type recording apparatus and package suitable for packing such ink bag
US6520071B1 (en) * 1999-05-21 2003-02-18 Aracaria B. . Hand-held suction pump
US6202849B1 (en) * 1999-07-07 2001-03-20 David B. Graham Evacuatable rigid storage unit for storing compressible articles therein
US6357915B2 (en) * 1999-08-13 2002-03-19 New West Products, Inc. Storage bag with one-way air valve
US6227706B1 (en) * 2000-06-26 2001-05-08 Thoai S. Tran Two piece, compressible storage satchel for compressible articles
US20040000501A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with secondary closure members
US20040000503A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with porous evacuation portal
US20040000502A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with user-deformable air vent
US20040007494A1 (en) * 2002-07-15 2004-01-15 Popeil Ronald M. Apparatus and method to more effectively vacuum package foods and other objects

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726880B2 (en) 2004-06-29 2010-06-01 The Glad Products Company Flexible storage bag
US7578320B2 (en) 2004-06-29 2009-08-25 The Glad Products Company Flexible storage bag
US20060193540A1 (en) * 2004-06-29 2006-08-31 Borchardt Michael G Flexible Storage Bag
US20060280389A1 (en) * 2004-06-29 2006-12-14 The Glad Products Company Flexible storage bag
US20060280388A1 (en) * 2004-06-29 2006-12-14 The Glad Products Company Flexible storage bag
US20060283148A1 (en) * 2004-06-29 2006-12-21 The Glad Products Company Flexible storage bag
US20070292055A1 (en) * 2004-06-29 2007-12-20 Reuhs Rebecca S Bag with Valve
US20050286808A1 (en) * 2004-06-29 2005-12-29 Zimmerman Dean A Flexible storage bag
US8419279B2 (en) 2004-06-29 2013-04-16 The Glad Products Company Flexible storage bag
US20090290817A1 (en) * 2004-06-29 2009-11-26 Borchardt Michael G Flexible Storage Bag
US20070101685A1 (en) * 2004-07-23 2007-05-10 Tilman Paul A Storage system having a disposable vacuum bag
US20070101682A1 (en) * 2004-07-23 2007-05-10 Tilman Paul A Storage system having a disposable vacuum bag
US20070172157A1 (en) * 2004-07-23 2007-07-26 Alcoa Inc. Polymeric package with resealable closure and valve and methods relating thereto
US20110041466A1 (en) * 2004-07-23 2011-02-24 Closure Systems International Inc. Storage system having a disposable vacuum bag
US20060048483A1 (en) * 2004-07-23 2006-03-09 Tilman Paul A Storage system having a disposable vacuum bag
US20090003736A1 (en) * 2005-01-12 2009-01-01 Unovo, Inc. Method and apparatus for evacuating and sealing containers
US7805913B2 (en) 2005-01-12 2010-10-05 Unovo, Inc. Method and apparatus for evacuating and sealing containers
US20090007523A1 (en) * 2005-01-12 2009-01-08 Unovo, Inc. Method and apparatus for evacuating and sealing containers
US7490452B2 (en) 2005-01-12 2009-02-17 Unovo, Inc. Method and apparatus for evacuating and sealing containers
US20080256901A1 (en) * 2005-10-24 2008-10-23 Reynolds Foil Inc, D/B/A Reynolds Consumer Products Company Polymeric package with resealable closure and valve, and methods
US20070286534A1 (en) * 2005-10-24 2007-12-13 Alcoa Inc. Polymeric package with resealable closure and valve, and methods
US20070092167A1 (en) * 2005-10-24 2007-04-26 Paul Tilman Polymeric Package With Resealable Closure And Valve, And Methods
US20070110340A1 (en) * 2005-11-17 2007-05-17 Buchman James E Tamper evident polymeric package with zipper closure and valve, and methods
US20070125498A1 (en) * 2005-12-01 2007-06-07 Yuichiro Kataoka Heat sealer
US7647747B2 (en) * 2005-12-01 2010-01-19 Fujiimpulse Co., Ltd. Heat sealer
US20070132876A1 (en) * 2005-12-14 2007-06-14 Tsuyoshi Ohno Solid-state image pickup device, color separation image pickup optical system and image pickup apparatus
US20110169614A1 (en) * 2006-09-20 2011-07-14 Binforma Group Limited Liability Company Packaging closures integrated with disposable rfid devices
US20080069736A1 (en) * 2006-09-20 2008-03-20 Kimberly-Clark Worldwide, Inc. Packaging closures integrated with disposable RFID devices
US7887755B2 (en) 2006-09-20 2011-02-15 Binforma Group Limited Liability Company Packaging closures integrated with disposable RFID devices
US8318111B2 (en) 2006-09-20 2012-11-27 Binforma Group Limited Liability Company Packaging closures integrated with disposable RFID devices
US7857514B2 (en) 2006-12-12 2010-12-28 Reynolds Foil Inc. Resealable closures, polymeric packages and systems and methods relating thereto
US20080307614A1 (en) * 2007-06-15 2008-12-18 Dais Brian C Closure mechanism for a reclosable pouch
US7874731B2 (en) 2007-06-15 2011-01-25 S.C. Johnson Home Storage, Inc. Valve for a recloseable container
US8196269B2 (en) 2007-06-15 2012-06-12 S.C. Johnson & Son, Inc. Closure mechanism for a recloseable pouch
US7967509B2 (en) 2007-06-15 2011-06-28 S.C. Johnson & Son, Inc. Pouch with a valve
US20100177990A1 (en) * 2007-07-17 2010-07-15 Neltner Andrew E Storage bag
US8820591B2 (en) 2010-08-05 2014-09-02 Ds Smith Plastics Limited Closure valve assembly for a container
US8397958B2 (en) 2010-08-05 2013-03-19 Ds Smith Plastics Limited Closure valve assembly for a container
US8973789B2 (en) 2010-08-05 2015-03-10 Ds Smith Plastics Limited Closure valve assembly for a container
GB2503248A (en) * 2012-06-20 2013-12-25 Fernco Environmental Ltd A method and apparatus for repairing a pipe.
GB2503248B (en) * 2012-06-20 2014-10-22 Source One Environmental Ltd Repair of pipes and pipelines
USD794470S1 (en) 2015-11-30 2017-08-15 Cryovac, Inc. Notebook with sheets for packaged products
AT520362A2 (en) * 2017-08-25 2019-03-15 Paul Leitner Plastic clip
US11907897B2 (en) * 2017-09-28 2024-02-20 Amosense Co., Ltd. Transportation data logging device and item transportation system including the same
CN112673515A (en) * 2018-09-04 2021-04-16 哈钦森技术股份有限公司 Sensing type battery bag

Similar Documents

Publication Publication Date Title
US20050037163A1 (en) Sealable bag having an integrated timer/sensor for use in vacuum packaging
US20050036719A1 (en) Sealable bag having an indicia for use in vacuum packaging
US7625459B2 (en) Method for manufacturing liquid-trapping bag for use in vacuum packaging
US20050036718A1 (en) Sealable bag having an integrated valve structure for use in vacuum packaging
US4911304A (en) Sandwich blister package for tablets and similar articles
US20050037164A1 (en) Liquid-trapping bag for use in vacuum packaging
US20050036717A1 (en) Sealable bag having an integrated zipper for use in vacuum packaging
US20050065007A1 (en) Method for manufacturing a sealable bag having an integrated valve structure for use in vacuum packaging
US7870960B2 (en) Disaster pack
US7087130B2 (en) Method for manufacturing a sealable bag having an integrated zipper for use in vacuum packaging
US20050035020A1 (en) Sealable bag having an integrated tray for use in vacuum packaging
US7138025B2 (en) Method for manufacturing a sealable bag having an integrated tray for use in vacuum packaging
US20050029704A1 (en) Method for manufacturing a sealable bag having an indicia for use in vacuum packaging
US20050043158A1 (en) Method for manufacturing a sealable bag having an integrated timer/sensor for use in vacuum packaging
US20050220942A1 (en) Easy to peal vacuum packaging bags
WO2004078590A2 (en) System and method for forming an integrated timer/sensor for use in vacuum packaging
WO2004078592A2 (en) System and method for forming an indicia for use in vacuum packaging
CA1142895A (en) Package and method of making same
KR20050107602A (en) System and method for forming an integrated tray for use in vacuum packaging
EP2969480B2 (en) Method of sealing pet food bags
US20060283757A1 (en) System and method for forming an integrated tray for use in vacuum packaging
JPH0245359A (en) Container with plastic net and its manufacture
JPH04121277U (en) Encapsulation film
JPH0563833U (en) Pouch film for inclusion
WO2004078609A1 (en) Liquid-trapping bag and method of making it

Legal Events

Date Code Title Description
AS Assignment

Owner name: TILIA INTERNATIONAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, HONGYU;ALBRITTON, CHARLES WADE;BRAKES, DAVID;REEL/FRAME:015940/0700

Effective date: 20041013

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION