US20050029673A1 - Multi-chip semiconductor device with specific chip arrangement - Google Patents

Multi-chip semiconductor device with specific chip arrangement Download PDF

Info

Publication number
US20050029673A1
US20050029673A1 US10/941,570 US94157004A US2005029673A1 US 20050029673 A1 US20050029673 A1 US 20050029673A1 US 94157004 A US94157004 A US 94157004A US 2005029673 A1 US2005029673 A1 US 2005029673A1
Authority
US
United States
Prior art keywords
semiconductor element
substrate
synthetic resin
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/941,570
Inventor
Yasuhiro Naka
Naotaka Tanaka
Ikuo Yoshida
Satoshi Imasu
Takahiro Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US10/941,570 priority Critical patent/US20050029673A1/en
Publication of US20050029673A1 publication Critical patent/US20050029673A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a multi-chip-module (MCM) type semiconductor device.
  • MCM multi-chip-module
  • JP-A-11-220077 discloses that a thermal expansion coefficient of a substrate is adjusted to restrain a crack of a semiconductor element or a under-fill layer.
  • JP-A-2000-40775 discloses that a shape of an oblique surface of the under-fill layer is adjusted to restrain the crack of the semiconductor element.
  • JP-A-6-244238 discloses that the semiconductor elements are mounted one by one onto a substrate sequentially in order of semiconductor element thickness from a minimum semiconductor element thickness.
  • An object of the present invention is to provide a multi-chip-module (MCM) type semiconductor device of high-reliability against a bending deformation of the MCM type semiconductor device caused by an environment temperature variation during actual operation thereof, a mounting treatment of semiconductor element onto a substrate, a heat generation thereof during actual operation thereof or the like, with a difference in linear expansion coefficient between the semiconductor element and a substrate, a difference in temperature therebetween, an external force applied to the semiconductor device.
  • MCM multi-chip-module
  • a multi-chip-module type semiconductor device comprises, first and second semiconductor elements, a main component of each of the semiconductor elements being semiconductor material to form a semiconductor electric circuit in each of the semiconductor elements, and a substrate adapted to be mounted onto a mother board and to be electrically connected to the mother board, on which substrate the first and second semiconductor elements are mounted to be electrically connected to the substrate, so that the first and second semiconductor elements are electrically connected to the mother board through the substrate.
  • a thickness of the second semiconductor element is less than a thickness of the first semiconductor element when an area of the second semiconductor element is more than an area of the first semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked and/or a length of a side of the second semiconductor element whose length is maximum in comparison with lengths of the other sides of the second semiconductor element as seen in the stacking direction is more than a length of a side of the first semiconductor element whose length is maximum in comparison with lengths of the other sides of the first semiconductor element as seen in the stacking direction, since a stress on a connecting member (for example, bumps) between the substrate and each of the semiconductor elements increases in accordance with an increase of the area and/or the length of the side whose length is maximum in comparison with lengths of the other sides while the stress on the connecting member (for example, bumps) between the substrate and each of the semiconductor elements decreases in accordance with a decrease of the thickness of each of the semiconductor elements, a crack on the connecting point or separation between the
  • the multi-chip-module type semiconductor device may further comprise a synthetic resin (corresponding to an under-fill) adhering to the substrate and each of the first and second semiconductor elements, and/or a wiring layer between the substrate and at least one of the first and second semiconductor elements, the wiring layer including a synthetic resin layer and an electrically conductive member (connecting electrically therethrough the substrate to the at least one of the first and second semiconductor elements) extending in a transverse direction transversing the stacking direction, in such a manner that an electrical connecting point between the semiconductor element and the electrically conductive member is distant away from an electrical connecting point between the electrically conductive member and the substrate in the transverse direction.
  • a synthetic resin corresponding to an under-fill
  • each of the first and second semiconductor elements includes a first surface facing to the substrate and a second surface as a reverse surface with respect to the first surface in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked, and the thickness of the second semiconductor element is smaller than the thickness of the first semiconductor element, it is preferable that the second surface of the first semiconductor element is prevented from being a grinder-finished surface while the second surface of the second semiconductor element is the grinder-finished surface.
  • the multi-chip-module type semiconductor device further comprises a synthetic resin member (corresponding to the under-fill) adhering to the first semiconductor element and the substrate at the inside of the first semiconductor element as seen in the stacking direction, while a synthetic resin (for example, corresponding to the under-fill) whose Young's modulus is not less than Young's modulus of the synthetic resin member is prevented from adhering to the second semiconductor element and the substrate at the inside of the second semiconductor element as seen in the stacking direction, since a connecting rigidity between the first semiconductor element and the substrate connected to each other through bumps is made more than a connecting rigidity between the second semiconductor element and the substrate connected to each other through bumps, by reinforcing the connecting rigidity between the first semiconductor element and the substrate with the synthetic resin member, the stress on the semiconductor element increases in accordance with an increase of the connecting rigidity between the semiconductor element and the substrate, and the stress on the semiconductor element decreases in accordance with the decrease the thickness thereof on the substrate
  • the multi-chip-module type semiconductor device further comprises a first synthetic resin through which the substrate and the first semiconductor element are connected to each other and a second synthetic resin through which the substrate and the second semiconductor element are connected to each other, and Young's modulus of the first synthetic resin (for example, corresponding to the under-fill) is larger than Young's modulus of the second synthetic resin (for example, corresponding to an elastomer stress or deformation absorbing layer 13 ), since the connecting rigidity between the first semiconductor element and the substrate connected to each other through bumps is made more than the connecting rigidity between the second semiconductor element and the substrate connected to each other through bumps, by relatively more effectively reinforcing the connecting rigidity between the first semiconductor element and the substrate with a difference in Young's modulus between the first synthetic resin and the second synthetic resin, the stress on the semiconductor element increases in accordance with the increase of the connecting rigidity between the semiconductor element and the substrate, and the stress on the semiconductor element decreases in accordance with the
  • the multi-chip-module type semiconductor device further comprises the first synthetic resin (for example, corresponding to the under-fill) adhering to the substrate and the first semiconductor element at the inside of the first semiconductor element as seen in the stacking direction, and a second synthetic resin (for example, corresponding to the sealing resin 10 and/or support plate 12 ) through which the second semiconductor element is connected to the substrate at the outside of the second semiconductor element as seen in the stacking direction while a synthetic resin (for example, corresponding to the under-fill) whose Young's modulus is not less than Young's modulus of the first synthetic resin is prevented from adhering to the second semiconductor element and the substrate at the inside of the second semiconductor element as seen in the stacking direction, since the connecting rigidity between the first semiconductor element and the substrate connected to each other through bumps with the first synthetic resin (for example, corresponding to the under-fill) adhering to the substrate and the first semiconductor element at the inside of the first semiconductor element as seen in the stacking direction, since the connecting rigidity between the first semiconductor element and the substrate connected to each
  • the thickness of the second semiconductor element is smaller than the thickness of the first semiconductor element when a main component of the first semiconductor element is Si, a main component of the second semiconductor element is GaAs, since Young's modulus of GaAs is more than Young's modulus of Si, a rigidity against bending of the semiconductor element increases in accordance with an increase in Young's modulus of the semiconductor element, the stress on the semiconductor element increases in accordance with an increase of the rigidity against bending of the semiconductor element, and the stress on the semiconductor element decreases in accordance with the decrease in thickness thereof on the substrate, the crack or excessive stress on the second semiconductor element whose rigidity against bending is made more than the rigidity against bending of the first semiconductor element by a difference in Young's modulus between the first and second semiconductor elements is effectively prevented.
  • each of the first and second semiconductor elements includes a first surface facing to the substrate and a second surface as a reverse surface with respect to the first surface in the stacking direction, and the second surface of the first semiconductor element is prevented from being a grinder-finished surface while the second surface of the second semiconductor element is the grinder-finished surface
  • an efficiency in heat discharge from each of the semiconductor elements can be adjusted desirably, because the efficiency in heat discharge from the semiconductor element changes in accordance with a thickness between the second surface and the electric circuit which is formed or treated from the first surface and the thickness between the second surface and the electric circuit can be adjusted by the grinder-finishing.
  • a thickness of the second semiconductor element is less than a thickness of the first semiconductor element when an area of the second semiconductor element is less than an area of the first semiconductor element as seen in the stacking direction in which each of the first and second semiconductor elements and the substrate are stacked and/or a length of a side of the second semiconductor element whose length is minimum in comparison with lengths of the other sides of the second semiconductor element as seen in the stacking direction is less than a length of a side of the first semiconductor element whose length is minimum in comparison with lengths of the other sides of the first semiconductor element as seen in the stacking direction, since a stress on a side surface of each of the semiconductor elements (particularly, a connecting point between the side surface and a terminating end of an exposed surface of an under-fill adhering to the substrate and the semiconductor element) increases in accordance with a decrease of the area and/or the length of the side whose length is minimum in comparison with lengths of the other sides as shown in FIG.
  • FIG. 1 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a first embodiment of the invention.
  • MCM multi-chip-module
  • FIG. 1 b is a schematic cross sectional side view taken along a line A-A′ in FIG. 1 a and showing the multi-chip-module (MCM) type semiconductor device as the first embodiment.
  • MCM multi-chip-module
  • FIG. 2 is a schematic side view of an imaginary multi-chip-module (MCM) type semiconductor device to be analyzed theoretically.
  • MCM multi-chip-module
  • FIG. 3 is a table showing relationships among numbers of semiconductor elements, positional relationships between the semiconductor elements, stresses on the semiconductor elements and stresses on under-fills.
  • FIG. 4 is a diagram showing relationships between a substrate width and a principal stress.
  • FIG. 5 is a schematic side view of a combination of an imaginary multi-chip-module (MCM) type semiconductor device and an imaginary under-fill to be analyzed theoretically.
  • MCM multi-chip-module
  • FIG. 6 is a table showing relationships among under-fill heights, under-fill widths, principal stresses at semiconductor element central portion, and principal stresses at under-fill oblique surface end portion.
  • FIG. 7 is a table showing relationships among under-fill oblique surface shapes, the principal stresses at semiconductor element central portion, and the principal stresses at under-fill oblique surface end portion.
  • FIG. 8 is a table showing the other relationships among the under-fill oblique surface shapes, the principal stresses at semiconductor element central portion, and the principal stresses at under-fill oblique surface end portion.
  • FIG. 9 is a diagram showing relationships between a semiconductor element width and a principal stress.
  • FIG. 10 a is a diagram showing relationships among a rate of semiconductor element thickness to a substrate thickness, a rate of principal stress to critical principal stress, substrate thickness and substrate linear expansion coefficient, at the semiconductor element central portion.
  • FIG. 10 b is a diagram showing relationships among the rate of semiconductor element thickness to a substrate thickness, the rate of principal stress to critical principal stress, the substrate thickness and the substrate linear expansion coefficient, at the under-fill oblique surface end portion.
  • FIG. 11 a is a diagram showing relationships among a rate of semiconductor element thickness to a substrate thickness, a rate of principal stress to critical principal stress, substrate thickness, an under-fill Young's modulus and an under-fill linear expansion coefficient, at the semiconductor element central portion.
  • FIG. 11 b is a diagram showing relationships among the rate of semiconductor element thickness to a substrate thickness, the rate of principal stress to critical principal stress, the substrate thickness, the under-fill Young's modulus and the under-fill linear expansion coefficient, at the under-fill oblique surface end portion.
  • FIG. 12 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a second embodiment of the invention.
  • MCM multi-chip-module
  • FIG. 12 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the second embodiment.
  • MCM multi-chip-module
  • FIG. 13 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a third embodiment of the invention.
  • MCM multi-chip-module
  • FIG. 13 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the third embodiment.
  • MCM multi-chip-module
  • FIG. 14 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a fourth embodiment of the invention.
  • MCM multi-chip-module
  • FIG. 14 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the fourth embodiment.
  • MCM multi-chip-module
  • FIG. 15 including schematic side views showing a semiconductor element producing process.
  • FIG. 16 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a fifth embodiment of the invention.
  • MCM multi-chip-module
  • FIG. 16 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the fifth embodiment.
  • MCM multi-chip-module
  • FIG. 17 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a sixth embodiment of the invention.
  • MCM multi-chip-module
  • FIG. 17 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the sixth embodiment.
  • MCM multi-chip-module
  • FIG. 18 is a schematic cross sectional side view showing a multi-chip-module (MCM) type semiconductor device as a seventh embodiment.
  • MCM multi-chip-module
  • MCM multi-chip-module
  • semiconductor elements or chips are electrically connected to a substrate through solder or bumps of, for example, Au, and an under-fill of organic synthetic resin (for example, epoxy resin) of adhesive may be inserted between the semiconductor elements and the substrate to protect the solder or bumps.
  • the substrate is made of a material having linear expansion coefficient of, for example, 10-20 ⁇ 10 ⁇ 6 K ⁇ 1 , so that a difference in linear expansion coefficient between the substrate and a mother board on which the substrate is mounted is decreased to maintain securely an electrical connection therebetween.
  • a difference in linear expansion coefficient between the substrate and the semiconductor element including, for example, Si or another semiconductor material as a main component thereof is great.
  • the under-fill It is difficult for the under-fill to have a correctly formed shape.
  • a tape shaped synthetic resin for example, anisotropic electrically conductive resin (ACF)
  • ACF anisotropic electrically conductive resin
  • a difference in number of semiconductor elements and a difference in distance between the semiconductor elements do not cause a significant change in principal stress at the semiconductor element central portion A and at the under-fill oblique surface end portion B.
  • a difference in size of the substrate does not cause the significant change in principal stress at the semiconductor element central portion A and at the under-fill oblique surface end portion B.
  • a difference in shape between the under-fill oblique surfaces on one of the semiconductor elements does not cause a significant change of the principal stress at the semiconductor element central portion A and each of the under-fill oblique surface end portions B on the one of the semiconductor elements, while the principal stress at the under-fill oblique surface end portion B is determined or varies in accordance with a position of the under-fill oblique surface end portion B and the angle between the under-fill oblique surface and the lower surface of the semiconductor element.
  • the principal stresses at the semiconductor element central portion A and at the under-fill oblique surface end portion B do not change significantly in accordance with a distance between the semiconductor elements and a shape of the under-fill between the semiconductor elements.
  • the principal stresses do not vary significantly when the size of the semiconductor element is about 7-15 mm, but vary significantly when the size of the semiconductor element is less than 7 mm.
  • the principal stress at the semiconductor element central portion A decreases, and the principal stress at the under-fill oblique surface end portion B increases.
  • a width of the substrate is 25 mm
  • a width of the semiconductor element is 7 mm.
  • a main component of the semiconductor element is Si
  • Young's modulus of the semiconductor element is 190 GPa
  • a linear expansion coefficient of the semiconductor element is 3 ⁇ 10 ⁇ 6 K ⁇ 1
  • Young's modulus of the substrate is 20 GPa.
  • a critical principal stress is a boundary stress value determining whether or not a crack occurs
  • Young's modulus of the under-fill is 10 GPa
  • a linear expansion coefficient of the under-fill is 35 ⁇ 10 ⁇ 6 K ⁇ 1
  • a linear expansion coefficient of the substrate is changed within a range of 10-20 ⁇ 10 ⁇ 6 K ⁇ 1 corresponding to the linear expansion coefficient of a synthetic resin substrate
  • the smaller a ratio of a semiconductor element thickness to a substrate thickness is, the smaller the principal stress at the semiconductor element central portion A is, while the smaller the ratio of the semiconductor element thickness to the substrate thickness is, the smaller the principal stress at the under-fill oblique surface end portion B is.
  • the semiconductor element thickness is less than the substrate thickness and as small as possible, and the linear expansion coefficient of the substrate, the linear expansion coefficient of the under-fill and Young's modulus of the under-fill are as small as possible.
  • the crack is restrained from occurring, by making the thickness of a first semiconductor element smaller than the thickness of a second semiconductor element whose area is smaller than an area of the first semiconductor element as seen in the semiconductor and substrate stacking direction.
  • the crack is restrained from occurring, by making the thickness of the first semiconductor element smaller than the thickness of the second semiconductor element whose area is smaller than the area of the first semiconductor element as seen in the semiconductor and substrate stacking direction, because the larger the area of the semiconductor element is, the larger a possibility of occurrence of the crack is.
  • semiconductor elements 1 of bare chips are mounted onto and electrically connected to a substrate 4 .
  • Other electric parts 5 of, for example, capacitor may be arranged on the substrate 4 .
  • a thickness t 1 of the semiconductor element 1 having relatively large area or minimum side length as seen in a substrate and semiconductor element staking direction or thickness direction is smaller than a thickness t 2 of the semiconductor element 1 having relatively small area or minimum side length as seen in the thickness direction.
  • the thickness of the semiconductor element 1 is a thickness of a residual wafer between, for example, a gate insulating layer and a reverse surface (other than an oxidized layer).
  • a difference between a stress at a connecting portion, for example, bumps 14 , between the substrate 4 and a mother board 15 under the semiconductor element 1 having the relatively large area and the relatively small thickness t 1 and a stress at the connecting portion between the substrate 4 and the mother board 15 under the semiconductor element 1 having the relatively small area and the relatively large thickness t 2 is decreased, so that a stress distribution over all of the bumps 14 can be made relatively constant.
  • the semiconductor elements 1 of bare chips are made by dicing a semiconductor wafer of thickness tw (for example, about 0.75 mm).
  • a main component of the semiconductor elements 1 may be Si or GaAs.
  • tw thickness of the semiconductor element 1
  • tc for example, a grinder-finishing on the reverse surface (not the surface facing to the substrate) as shown in FIG. 15 , is performed before being mounted on the substrate 4 .
  • Electrically conductive bumps 3 for connecting electrically the semiconductor elements 1 to the substrate 4 are attached to the semiconductor element 1 before being mounted on the substrate 4 .
  • a main component of the bumps 3 may be Pb—Sn solder for general use, Pb-free solder preferable for the environment or Au preferable for small bump distance and/or diameter.
  • the main component of the bumps 3 may be Cu rather than Au.
  • the substrate 4 is usually formed by an organic synthetic resin, for example, glass-epoxy or the like, having a linear expansion coefficient of small difference from a linear expansion coefficient of the mother board, but may be formed by a ceramic of small difference from a linear expansion coefficient of the semiconductor element 1 so that a thermal stress of the semiconductor element 1 is decreased. It is preferable for a thickness of the substrate 4 is larger than the thickness tc of the semiconductor element 1 .
  • Each of the semiconductor elements 1 and the substrate 4 is connected by reflow-heating of the bumps 3 of solder.
  • the bumps 3 is made of Au
  • the semiconductor elements 1 are fixed to the substrate 4 while being pressed against the substrate 4 and generating an ultrasonic vibration for heating therebetween.
  • An organic synthetic resin for example, epoxy resin
  • a tape-shaped thermoplastic synthetic resin (for example, anisotropic electrically conductive resin (ACF)) may be inserted into the space between the each of the semiconductor elements 1 and the substrate 4 before heating the bumps 3 , to form the under-fill 2 therebetween.
  • ACF anisotropic electrically conductive resin
  • a thickness t 4 of the semiconductor element 1 having relatively small area or minimum side length as seen in the substrate and semiconductor element staking direction or thickness direction is smaller than a thickness t 3 of the semiconductor element 1 having relatively large area or minimum side length as seen in the thickness direction.
  • the thickness of the semiconductor element 1 may be decreased to t 4 by the grinder-finishing on the reverse surface of the semiconductor element 1 (not the surface facing to the substrate).
  • a thickness t 5 of the semiconductor element 1 having relatively high thermal conductivity of the main component, for example, Si is larger than a thickness t 6 of the semiconductor element 1 having relatively low thermal conductivity of the main component, for example, GaAs, so that a heat energy is effectively discharged from the semiconductor element 1 having relatively low thermal conductivity to restrain a thermal concentration on the substrate 4 and/or the semiconductor element 1 .
  • a thickness of the wiring layer 9 may be 0.01-0.05 mm.
  • each of the semiconductor elements 1 is adjusted as shown in the above embodiments.
  • the wiring layer 9 may be attached on the semiconductor element 1 after the thickness of the wafer is decreased by the grinder-finishing on the reverse surface.
  • the bumps 3 are connected to the semiconductor element 1 through the wiring layer 9 , in other words, the substrate 4 , the bumps 3 , the wiring layer 9 and the semiconductor elements 1 are connected in series.
  • the under-fill 2 connects the semiconductor element 1 to the substrate 4 in parallel to the bumps 3 .
  • a tape-shaped chip-size package (CSP) and the wafer process package (WPP) are mounted on the substrate 4 .
  • the CSP may be a fan-out CSP, as shown in FIGS.
  • 16 a and 16 b including a tape-shaped support plate 12 made of, for example, polyimide and connected to the substrate 4 through the bumps 3 arranged at the outside of the semiconductor element 1 as seen in the stacking or thickness direction, a reinforcing plate 11 of, for example, Cu for reinforcing the support plate 12 , the semiconductor element 1 whose main component is Si or GaAs, and a sealing resin 10 extending outward from the semiconductor element 1 to the support plate 12 extending at the outside of the semiconductor element 1 as seen in the stacking or thickness direction while the semiconductor element 1 is prevented from being connected to the substrate 4 through the sealing resin 10 , support plate 12 and bumps 3 at the inside of the semiconductor element 1 as seen in the stacking or thickness direction so that a connecting rigidity between the semiconductor element 1 and the support plate 12 is decreased by the sealing resin 10 .
  • a tape-shaped support plate 12 made of, for example, polyimide and connected to the substrate 4 through the bumps 3 arranged at the outside of the semiconductor element 1 as seen in the stacking or thickness
  • the CSP may be a fan-in CSP, as shown in FIGS. 17 a and 17 b , including the tape-shaped support plate 12 connected to the substrate 4 through the bumps 3 arranged at the inside of the semiconductor element 1 as seen in the stacking or thickness direction, and a stress absorbing layer 13 made of an elastomer, for example, silicone rubber and connecting the tape-shaped support plate 12 to the semiconductor element 1 .
  • a stress absorbing layer 13 made of an elastomer, for example, silicone rubber
  • the thickness of the semiconductor element 1 with the under-fill 2 between the semiconductor element 1 and the substrate 4 is smaller than a thickness of the semiconductor element 1 of CSP, because a connecting rigidity through the under-fill 2 between the semiconductor element 1 and the substrate 4 is larger than a connecting rigidity through the sealing resin 10 or the stress absorbing layer 13 (for example, without the under-fill 2 ) between the semiconductor element 1 and the substrate 4 .
  • Electrically conductive members (not shown) of extremely low rigidity extends through and/or along the sealing resin 10 to electrically connect the semiconductor element 1 to the bumps under the support plate 12 .
  • a heat-radiating or light-shielding plate 7 is attached onto the semiconductor elements 1 through an adhesive. Since Young's modulus of the adhesive (1-10 GPa) is significantly smaller than those of the semiconductor element and the substrate, the heat-radiating or light-shielding plate does not affect the stress distribution on the semiconductor element. The heat-radiating or light-shielding plate 7 is effective to decrease the stress on the semiconductor element.

Abstract

In a multi-chip-module type semiconductor device, first and second semiconductor elements, a main component of each of the semiconductor elements being semiconductor material to form a semiconductor electric circuit in each of the semiconductor elements, are mounted on and electrically connected to a substrate adapted to be mounted onto a mother board and to be electrically connected to the mother board so that the each of the semiconductor elements is electrically connected to the mother board through the substrate.

Description

    BACKGROUND OF THE INVENTION AND RELATED ART STATEMENT
  • The present invention relates to a multi-chip-module (MCM) type semiconductor device.
  • JP-A-11-220077 discloses that a thermal expansion coefficient of a substrate is adjusted to restrain a crack of a semiconductor element or a under-fill layer. JP-A-2000-40775 discloses that a shape of an oblique surface of the under-fill layer is adjusted to restrain the crack of the semiconductor element. JP-A-6-244238 discloses that the semiconductor elements are mounted one by one onto a substrate sequentially in order of semiconductor element thickness from a minimum semiconductor element thickness.
  • OBJECT AND SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a multi-chip-module (MCM) type semiconductor device of high-reliability against a bending deformation of the MCM type semiconductor device caused by an environment temperature variation during actual operation thereof, a mounting treatment of semiconductor element onto a substrate, a heat generation thereof during actual operation thereof or the like, with a difference in linear expansion coefficient between the semiconductor element and a substrate, a difference in temperature therebetween, an external force applied to the semiconductor device.
  • According to the invention, a multi-chip-module type semiconductor device comprises, first and second semiconductor elements, a main component of each of the semiconductor elements being semiconductor material to form a semiconductor electric circuit in each of the semiconductor elements, and a substrate adapted to be mounted onto a mother board and to be electrically connected to the mother board, on which substrate the first and second semiconductor elements are mounted to be electrically connected to the substrate, so that the first and second semiconductor elements are electrically connected to the mother board through the substrate.
  • If a thickness of the second semiconductor element is less than a thickness of the first semiconductor element when an area of the second semiconductor element is more than an area of the first semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked and/or a length of a side of the second semiconductor element whose length is maximum in comparison with lengths of the other sides of the second semiconductor element as seen in the stacking direction is more than a length of a side of the first semiconductor element whose length is maximum in comparison with lengths of the other sides of the first semiconductor element as seen in the stacking direction, since a stress on a connecting member (for example, bumps) between the substrate and each of the semiconductor elements increases in accordance with an increase of the area and/or the length of the side whose length is maximum in comparison with lengths of the other sides while the stress on the connecting member (for example, bumps) between the substrate and each of the semiconductor elements decreases in accordance with a decrease of the thickness of each of the semiconductor elements, a crack on the connecting point or separation between the semiconductor element and the substrate at the connecting point is effectively prevented by decreasing the thickness of the second semiconductor element. It is preferable for the thickness of each of all semiconductor elements on the substrate to be not more than 0.4 mm.
  • The multi-chip-module type semiconductor device may further comprise a synthetic resin (corresponding to an under-fill) adhering to the substrate and each of the first and second semiconductor elements, and/or a wiring layer between the substrate and at least one of the first and second semiconductor elements, the wiring layer including a synthetic resin layer and an electrically conductive member (connecting electrically therethrough the substrate to the at least one of the first and second semiconductor elements) extending in a transverse direction transversing the stacking direction, in such a manner that an electrical connecting point between the semiconductor element and the electrically conductive member is distant away from an electrical connecting point between the electrically conductive member and the substrate in the transverse direction. When each of the first and second semiconductor elements includes a first surface facing to the substrate and a second surface as a reverse surface with respect to the first surface in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked, and the thickness of the second semiconductor element is smaller than the thickness of the first semiconductor element, it is preferable that the second surface of the first semiconductor element is prevented from being a grinder-finished surface while the second surface of the second semiconductor element is the grinder-finished surface.
  • If the thickness of the first semiconductor element is smaller than the thickness of the second semiconductor element when the multi-chip-module type semiconductor device further comprises a synthetic resin member (corresponding to the under-fill) adhering to the first semiconductor element and the substrate at the inside of the first semiconductor element as seen in the stacking direction, while a synthetic resin (for example, corresponding to the under-fill) whose Young's modulus is not less than Young's modulus of the synthetic resin member is prevented from adhering to the second semiconductor element and the substrate at the inside of the second semiconductor element as seen in the stacking direction, since a connecting rigidity between the first semiconductor element and the substrate connected to each other through bumps is made more than a connecting rigidity between the second semiconductor element and the substrate connected to each other through bumps, by reinforcing the connecting rigidity between the first semiconductor element and the substrate with the synthetic resin member, the stress on the semiconductor element increases in accordance with an increase of the connecting rigidity between the semiconductor element and the substrate, and the stress on the semiconductor element decreases in accordance with the decrease the thickness thereof on the substrate, the crack or excessive stress on the first semiconductor element whose connecting rigidity is reinforced by the synthetic resin member is effectively prevented.
  • If the thickness of the first semiconductor element is smaller than the thickness of the second semiconductor element when the multi-chip-module type semiconductor device further comprises a first synthetic resin through which the substrate and the first semiconductor element are connected to each other and a second synthetic resin through which the substrate and the second semiconductor element are connected to each other, and Young's modulus of the first synthetic resin (for example, corresponding to the under-fill) is larger than Young's modulus of the second synthetic resin (for example, corresponding to an elastomer stress or deformation absorbing layer 13), since the connecting rigidity between the first semiconductor element and the substrate connected to each other through bumps is made more than the connecting rigidity between the second semiconductor element and the substrate connected to each other through bumps, by relatively more effectively reinforcing the connecting rigidity between the first semiconductor element and the substrate with a difference in Young's modulus between the first synthetic resin and the second synthetic resin, the stress on the semiconductor element increases in accordance with the increase of the connecting rigidity between the semiconductor element and the substrate, and the stress on the semiconductor element decreases in accordance with the decrease of the thickness thereof on the substrate, the crack or excessive stress on the first semiconductor element whose connecting rigidity is reinforced relatively more effectively by the difference in Young's modulus between the first synthetic resin and the second synthetic resin is effectively prevented.
  • If the thickness of the first semiconductor element is smaller than the thickness of the second semiconductor element when the multi-chip-module type semiconductor device further comprises the first synthetic resin (for example, corresponding to the under-fill) adhering to the substrate and the first semiconductor element at the inside of the first semiconductor element as seen in the stacking direction, and a second synthetic resin (for example, corresponding to the sealing resin 10 and/or support plate 12) through which the second semiconductor element is connected to the substrate at the outside of the second semiconductor element as seen in the stacking direction while a synthetic resin (for example, corresponding to the under-fill) whose Young's modulus is not less than Young's modulus of the first synthetic resin is prevented from adhering to the second semiconductor element and the substrate at the inside of the second semiconductor element as seen in the stacking direction, since the connecting rigidity between the first semiconductor element and the substrate connected to each other through bumps with the first synthetic resin (for example, corresponding to the under-fill) adhering to the substrate and the first semiconductor element at the inside of the first semiconductor element as seen in the stacking direction is made more than the connecting rigidity between the second semiconductor element and the substrate through the second synthetic resin at the outside of the second semiconductor element as seen in the stacking direction without the synthetic resin whose Young's modulus is not less than Young's modulus of the first synthetic resin at the inside of the second semiconductor element as seen in the stacking direction so that the connecting rigidity between the second semiconductor element and the substrate is substantially formed by a bending low rigidity of the second synthetic resin, the stress on the semiconductor element increases in accordance with the increase of the connecting rigidity between the semiconductor element and the substrate, and the stress on the semiconductor element decreases in accordance with the decrease of the thickness thereof on the substrate, the crack or excessive stress on the first semiconductor element whose connecting rigidity is made more than the connecting rigidity between the second semiconductor element and the substrate is effectively prevented.
  • If the thickness of the second semiconductor element is smaller than the thickness of the first semiconductor element when a main component of the first semiconductor element is Si, a main component of the second semiconductor element is GaAs, since Young's modulus of GaAs is more than Young's modulus of Si, a rigidity against bending of the semiconductor element increases in accordance with an increase in Young's modulus of the semiconductor element, the stress on the semiconductor element increases in accordance with an increase of the rigidity against bending of the semiconductor element, and the stress on the semiconductor element decreases in accordance with the decrease in thickness thereof on the substrate, the crack or excessive stress on the second semiconductor element whose rigidity against bending is made more than the rigidity against bending of the first semiconductor element by a difference in Young's modulus between the first and second semiconductor elements is effectively prevented.
  • When each of the first and second semiconductor elements includes a first surface facing to the substrate and a second surface as a reverse surface with respect to the first surface in the stacking direction, and the second surface of the first semiconductor element is prevented from being a grinder-finished surface while the second surface of the second semiconductor element is the grinder-finished surface, an efficiency in heat discharge from each of the semiconductor elements can be adjusted desirably, because the efficiency in heat discharge from the semiconductor element changes in accordance with a thickness between the second surface and the electric circuit which is formed or treated from the first surface and the thickness between the second surface and the electric circuit can be adjusted by the grinder-finishing.
  • If a thickness of the second semiconductor element is less than a thickness of the first semiconductor element when an area of the second semiconductor element is less than an area of the first semiconductor element as seen in the stacking direction in which each of the first and second semiconductor elements and the substrate are stacked and/or a length of a side of the second semiconductor element whose length is minimum in comparison with lengths of the other sides of the second semiconductor element as seen in the stacking direction is less than a length of a side of the first semiconductor element whose length is minimum in comparison with lengths of the other sides of the first semiconductor element as seen in the stacking direction, since a stress on a side surface of each of the semiconductor elements (particularly, a connecting point between the side surface and a terminating end of an exposed surface of an under-fill adhering to the substrate and the semiconductor element) increases in accordance with a decrease of the area and/or the length of the side whose length is minimum in comparison with lengths of the other sides as shown in FIG. 9 (a possibility of crack occurrence on the second semiconductor element is more than that on the first semiconductor element when the thickness of the second semiconductor element is substantially equal to that of the first semiconductor element), it is difficult for the side surface to be correctly formed through dicing process for dividing a semiconductor wafer to the semiconductor elements sufficiently for securely preventing a stress concentration on the side surface, and the stress on the semiconductor element decreases in accordance with a decrease of the thickness thereof on the substrate, the crack on the side surface of the second semiconductor element is effectively prevented by decreasing the thickness of the second semiconductor element without excessive treatment of the side surface of the second semiconductor element.
  • Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a first embodiment of the invention.
  • FIG. 1 b is a schematic cross sectional side view taken along a line A-A′ in FIG. 1 a and showing the multi-chip-module (MCM) type semiconductor device as the first embodiment.
  • FIG. 2 is a schematic side view of an imaginary multi-chip-module (MCM) type semiconductor device to be analyzed theoretically.
  • FIG. 3 is a table showing relationships among numbers of semiconductor elements, positional relationships between the semiconductor elements, stresses on the semiconductor elements and stresses on under-fills.
  • FIG. 4 is a diagram showing relationships between a substrate width and a principal stress.
  • FIG. 5 is a schematic side view of a combination of an imaginary multi-chip-module (MCM) type semiconductor device and an imaginary under-fill to be analyzed theoretically.
  • FIG. 6 is a table showing relationships among under-fill heights, under-fill widths, principal stresses at semiconductor element central portion, and principal stresses at under-fill oblique surface end portion.
  • FIG. 7 is a table showing relationships among under-fill oblique surface shapes, the principal stresses at semiconductor element central portion, and the principal stresses at under-fill oblique surface end portion.
  • FIG. 8 is a table showing the other relationships among the under-fill oblique surface shapes, the principal stresses at semiconductor element central portion, and the principal stresses at under-fill oblique surface end portion.
  • FIG. 9 is a diagram showing relationships between a semiconductor element width and a principal stress.
  • FIG. 10 a is a diagram showing relationships among a rate of semiconductor element thickness to a substrate thickness, a rate of principal stress to critical principal stress, substrate thickness and substrate linear expansion coefficient, at the semiconductor element central portion.
  • FIG. 10 b is a diagram showing relationships among the rate of semiconductor element thickness to a substrate thickness, the rate of principal stress to critical principal stress, the substrate thickness and the substrate linear expansion coefficient, at the under-fill oblique surface end portion.
  • FIG. 11 a is a diagram showing relationships among a rate of semiconductor element thickness to a substrate thickness, a rate of principal stress to critical principal stress, substrate thickness, an under-fill Young's modulus and an under-fill linear expansion coefficient, at the semiconductor element central portion.
  • FIG. 11 b is a diagram showing relationships among the rate of semiconductor element thickness to a substrate thickness, the rate of principal stress to critical principal stress, the substrate thickness, the under-fill Young's modulus and the under-fill linear expansion coefficient, at the under-fill oblique surface end portion.
  • FIG. 12 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a second embodiment of the invention.
  • FIG. 12 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the second embodiment.
  • FIG. 13 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a third embodiment of the invention.
  • FIG. 13 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the third embodiment.
  • FIG. 14 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a fourth embodiment of the invention.
  • FIG. 14 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the fourth embodiment.
  • FIG. 15 including schematic side views showing a semiconductor element producing process.
  • FIG. 16 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a fifth embodiment of the invention.
  • FIG. 16 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the fifth embodiment.
  • FIG. 17 a is a schematic front view showing a multi-chip-module (MCM) type semiconductor device as a sixth embodiment of the invention.
  • FIG. 17 b is a schematic cross sectional side view showing the multi-chip-module (MCM) type semiconductor device as the sixth embodiment.
  • FIG. 18 is a schematic cross sectional side view showing a multi-chip-module (MCM) type semiconductor device as a seventh embodiment.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In a multi-chip-module (MCM) type semiconductor device, semiconductor elements or chips are electrically connected to a substrate through solder or bumps of, for example, Au, and an under-fill of organic synthetic resin (for example, epoxy resin) of adhesive may be inserted between the semiconductor elements and the substrate to protect the solder or bumps. The substrate is made of a material having linear expansion coefficient of, for example, 10-20×10−6K−1 , so that a difference in linear expansion coefficient between the substrate and a mother board on which the substrate is mounted is decreased to maintain securely an electrical connection therebetween. On the other hand, in this case, a difference in linear expansion coefficient between the substrate and the semiconductor element including, for example, Si or another semiconductor material as a main component thereof is great.
  • It is difficult for the under-fill to have a correctly formed shape. Particularly, when a tape shaped synthetic resin (for example, anisotropic electrically conductive resin (ACF)) is heated and cooled under a compression between the substrate and the semiconductor element after being inserted therebetween to form the under-fill, it is extremely difficult for the under-fill to have the correctly formed shape.
  • A principal stress at a front surface central portion A of an imaginary semiconductor element (size: 0.1 mm×0.05 mm) and a principal stress at a cross point of stress concentration between the semiconductor element and an oblique surface of the under-fill (an under-fill oblique surface end portion B) finite element as shown in FIG. 2 within a temperature range between −55-125° C. was calculated through a two-dimension elasticity finite-element analysis method. As shown in FIG. 3, a difference in number of semiconductor elements and a difference in distance between the semiconductor elements do not cause a significant change in principal stress at the semiconductor element central portion A and at the under-fill oblique surface end portion B. As shown in FIG. 4, a difference in size of the substrate does not cause the significant change in principal stress at the semiconductor element central portion A and at the under-fill oblique surface end portion B.
  • When a height h and width l of the under-fill as shown in FIG. 5 vary, the principal stresses at the semiconductor element central portion A and at the under-fill oblique surface end portion B vary as follows. As shown in FIG. 6, the principal stress at the under-fill oblique surface end portion B becomes maximum, but the principal stress at the semiconductor element central portion A does not change significantly, when the under-fill oblique surface end portion B is on a lower surface of the semiconductor element and an angle between the under-fill oblique surface and the lower surface of the semiconductor element is 45 degrees (h=l). As shown in FIG. 7, a difference in shape between the under-fill oblique surfaces on one of the semiconductor elements does not cause a significant change of the principal stress at the semiconductor element central portion A and each of the under-fill oblique surface end portions B on the one of the semiconductor elements, while the principal stress at the under-fill oblique surface end portion B is determined or varies in accordance with a position of the under-fill oblique surface end portion B and the angle between the under-fill oblique surface and the lower surface of the semiconductor element. As shown in FIG. 8, the principal stresses at the semiconductor element central portion A and at the under-fill oblique surface end portion B do not change significantly in accordance with a distance between the semiconductor elements and a shape of the under-fill between the semiconductor elements. As shown in FIG. 9, the principal stresses do not vary significantly when the size of the semiconductor element is about 7-15 mm, but vary significantly when the size of the semiconductor element is less than 7 mm. In accordance with a decrease of the size of the semiconductor element, the principal stress at the semiconductor element central portion A decreases, and the principal stress at the under-fill oblique surface end portion B increases.
  • Therefore, the following analysis, it is imaginarily set that a width of the substrate is 25 mm, the under-fill oblique surface end portion B is on the lower surface of the semiconductor element while the angle between the under-fill oblique surface and the lower surface of the semiconductor element is 45 degrees (h=l), and a width of the semiconductor element is 7 mm. Further, it is imaginarily set that a main component of the semiconductor element is Si, Young's modulus of the semiconductor element is 190 GPa, a linear expansion coefficient of the semiconductor element is 3×10−6K−1, and Young's modulus of the substrate is 20 GPa.
  • As shown in FIGS. 10 a and 10 b wherein a critical principal stress is a boundary stress value determining whether or not a crack occurs, Young's modulus of the under-fill is 10 GPa, a linear expansion coefficient of the under-fill is 35×10−6K−1, and a linear expansion coefficient of the substrate is changed within a range of 10-20×10−6K−1 corresponding to the linear expansion coefficient of a synthetic resin substrate, the smaller a ratio of a semiconductor element thickness to a substrate thickness is, the smaller the principal stress at the semiconductor element central portion A is, while the smaller the ratio of the semiconductor element thickness to the substrate thickness is, the smaller the principal stress at the under-fill oblique surface end portion B is.
  • As shown in FIGS. 11 a and 11 b wherein Young's modulus of the under-fill is 10 GPa and 6 GPa, the linear expansion coefficient of the under-fill is 35×10−6K−1 and 30×10−6K−1, and the linear expansion coefficient of the substrate is 15×10−6K−1, the principal stress at the semiconductor element central portion A is not changed in accordance with the linear expansion coefficient and Young's modulus of the under-fill, while the smaller the principal stress at the under-fill oblique surface end portion B is, the smaller the linear expansion coefficient and/or Young's modulus of the under-fill is.
  • As readable from FIGS. 10 a, 10 b, 11 a and 11 b, it is preferable for preventing the crack that the semiconductor element thickness is less than the substrate thickness and as small as possible, and the linear expansion coefficient of the substrate, the linear expansion coefficient of the under-fill and Young's modulus of the under-fill are as small as possible.
  • When the size of the semiconductor element is less than 7 mm, since in accordance with the decrease of the size of the semiconductor element, the principal stress at the semiconductor element central portion A decreases while the principal stress at the under-fill oblique surface end portion B increases, the crack is restrained from occurring, by making the thickness of a first semiconductor element smaller than the thickness of a second semiconductor element whose area is smaller than an area of the first semiconductor element as seen in the semiconductor and substrate stacking direction. Further, when a strength of an upper surface (a reverse surface with respect to the lower surface facing to the substrate) is smaller than the strength of the lower surface or significantly small, the crack is restrained from occurring, by making the thickness of the first semiconductor element smaller than the thickness of the second semiconductor element whose area is smaller than the area of the first semiconductor element as seen in the semiconductor and substrate stacking direction, because the larger the area of the semiconductor element is, the larger a possibility of occurrence of the crack is.
  • In a first embodiment as shown in FIGS. 1 a and 1 b, semiconductor elements 1 of bare chips are mounted onto and electrically connected to a substrate 4. Other electric parts 5 of, for example, capacitor may be arranged on the substrate 4. A thickness t1 of the semiconductor element 1 having relatively large area or minimum side length as seen in a substrate and semiconductor element staking direction or thickness direction is smaller than a thickness t2 of the semiconductor element 1 having relatively small area or minimum side length as seen in the thickness direction. The thickness of the semiconductor element 1 is a thickness of a residual wafer between, for example, a gate insulating layer and a reverse surface (other than an oxidized layer).
  • By this embodiment, a difference between a stress at a connecting portion, for example, bumps 14, between the substrate 4 and a mother board 15 under the semiconductor element 1 having the relatively large area and the relatively small thickness t1 and a stress at the connecting portion between the substrate 4 and the mother board 15 under the semiconductor element 1 having the relatively small area and the relatively large thickness t2 is decreased, so that a stress distribution over all of the bumps 14 can be made relatively constant. In this embodiment, it is preferable for at least the semiconductor element 1 having the relatively small area and the relatively large thickness t2 to have a width not more than 7 mm as understood from FIG. 9.
  • As shown in FIG. 15, the semiconductor elements 1 of bare chips are made by dicing a semiconductor wafer of thickness tw (for example, about 0.75 mm). A main component of the semiconductor elements 1 may be Si or GaAs. When the thickness of the semiconductor element 1 is decreased from tw to tc, for example, a grinder-finishing on the reverse surface (not the surface facing to the substrate) as shown in FIG. 15, is performed before being mounted on the substrate 4. Electrically conductive bumps 3 for connecting electrically the semiconductor elements 1 to the substrate 4 are attached to the semiconductor element 1 before being mounted on the substrate 4. A main component of the bumps 3 may be Pb—Sn solder for general use, Pb-free solder preferable for the environment or Au preferable for small bump distance and/or diameter. When Cu rather than Al is used for wiring on the semiconductor element 1, the main component of the bumps 3 may be Cu rather than Au. The substrate 4 is usually formed by an organic synthetic resin, for example, glass-epoxy or the like, having a linear expansion coefficient of small difference from a linear expansion coefficient of the mother board, but may be formed by a ceramic of small difference from a linear expansion coefficient of the semiconductor element 1 so that a thermal stress of the semiconductor element 1 is decreased. It is preferable for a thickness of the substrate 4 is larger than the thickness tc of the semiconductor element 1. Each of the semiconductor elements 1 and the substrate 4 is connected by reflow-heating of the bumps 3 of solder. When the bumps 3 is made of Au, the semiconductor elements 1 are fixed to the substrate 4 while being pressed against the substrate 4 and generating an ultrasonic vibration for heating therebetween. An organic synthetic resin, for example, epoxy resin, is inserted into a space (distance of 0.01-0.1 mm) to be cured between the each of the semiconductor elements 1 and the substrate 4 to form an under-fill 2 therebetween. A tape-shaped thermoplastic synthetic resin (for example, anisotropic electrically conductive resin (ACF)) may be inserted into the space between the each of the semiconductor elements 1 and the substrate 4 before heating the bumps 3, to form the under-fill 2 therebetween.
  • In a second embodiment as shown in FIGS. 12 a and 12 b, a thickness t4 of the semiconductor element 1 having relatively small area or minimum side length as seen in the substrate and semiconductor element staking direction or thickness direction is smaller than a thickness t3 of the semiconductor element 1 having relatively large area or minimum side length as seen in the thickness direction. The thickness of the semiconductor element 1 may be decreased to t4 by the grinder-finishing on the reverse surface of the semiconductor element 1 (not the surface facing to the substrate). When the crack occurs on a side surface of the semiconductor element 1 because of a low strength of the side surface, the smaller a length of a minimum side of rectangular shape of the reverse surface is, the smaller the thickness tc of the semiconductor element 1 is.
  • In a third embodiment as shown in FIGS. 13 a and 13 b, a thickness t5 of the semiconductor element 1 having relatively high thermal conductivity of the main component, for example, Si is larger than a thickness t6 of the semiconductor element 1 having relatively low thermal conductivity of the main component, for example, GaAs, so that a heat energy is effectively discharged from the semiconductor element 1 having relatively low thermal conductivity to restrain a thermal concentration on the substrate 4 and/or the semiconductor element 1.
  • In a fourth embodiment of wafer process package (WPP) as shown in FIGS. 14 a and 14 b, on each of the semiconductor elements 1, the semiconductor element 1 is connected to the bumps 3 through a wiring layer 9 including an organic synthetic resin (for example, polyimide) insulating layer 9 a and an electrically conductive member 9 b (whose main component is, for example, Cu or Au, and whose rigidity is extremely small) extending a direction transversing the stacking or thickness direction so that a distance between the bumps 3 and/or a diameter of the bump 3 is increased in comparison with a distance between terminal gates of the semiconductor element and/or a diameter of terminal gates of the semiconductor element. A thickness of the wiring layer 9 may be 0.01-0.05 mm. The thickness of each of the semiconductor elements 1 is adjusted as shown in the above embodiments. The wiring layer 9 may be attached on the semiconductor element 1 after the thickness of the wafer is decreased by the grinder-finishing on the reverse surface. The bumps 3 are connected to the semiconductor element 1 through the wiring layer 9, in other words, the substrate 4, the bumps 3, the wiring layer 9 and the semiconductor elements 1 are connected in series. On the other hand, the under-fill 2 connects the semiconductor element 1 to the substrate 4 in parallel to the bumps 3.
  • In a fifth embodiment as shown in FIGS. 16 a, 16 b, 17 a and 17 b, a tape-shaped chip-size package (CSP) and the wafer process package (WPP) are mounted on the substrate 4. The CSP may be a fan-out CSP, as shown in FIGS. 16 a and 16 b, including a tape-shaped support plate 12 made of, for example, polyimide and connected to the substrate 4 through the bumps 3 arranged at the outside of the semiconductor element 1 as seen in the stacking or thickness direction, a reinforcing plate 11 of, for example, Cu for reinforcing the support plate 12, the semiconductor element 1 whose main component is Si or GaAs, and a sealing resin 10 extending outward from the semiconductor element 1 to the support plate 12 extending at the outside of the semiconductor element 1 as seen in the stacking or thickness direction while the semiconductor element 1 is prevented from being connected to the substrate 4 through the sealing resin 10, support plate 12 and bumps 3 at the inside of the semiconductor element 1 as seen in the stacking or thickness direction so that a connecting rigidity between the semiconductor element 1 and the support plate 12 is decreased by the sealing resin 10. The CSP may be a fan-in CSP, as shown in FIGS. 17 a and 17 b, including the tape-shaped support plate 12 connected to the substrate 4 through the bumps 3 arranged at the inside of the semiconductor element 1 as seen in the stacking or thickness direction, and a stress absorbing layer 13 made of an elastomer, for example, silicone rubber and connecting the tape-shaped support plate 12 to the semiconductor element 1. Through the tape-shaped support plate 12, electrically conductive members of extremely low rigidity for electrically connecting the semiconductor element 1 to the bumps 3 extends. In this case, the thickness of the semiconductor element 1 with the under-fill 2 between the semiconductor element 1 and the substrate 4 is smaller than a thickness of the semiconductor element 1 of CSP, because a connecting rigidity through the under-fill 2 between the semiconductor element 1 and the substrate 4 is larger than a connecting rigidity through the sealing resin 10 or the stress absorbing layer 13 (for example, without the under-fill 2) between the semiconductor element 1 and the substrate 4. Electrically conductive members (not shown) of extremely low rigidity extends through and/or along the sealing resin 10 to electrically connect the semiconductor element 1 to the bumps under the support plate 12.
  • In a sixth embodiment as shown in FIG. 18, a heat-radiating or light-shielding plate 7 is attached onto the semiconductor elements 1 through an adhesive. Since Young's modulus of the adhesive (1-10 GPa) is significantly smaller than those of the semiconductor element and the substrate, the heat-radiating or light-shielding plate does not affect the stress distribution on the semiconductor element. The heat-radiating or light-shielding plate 7 is effective to decrease the stress on the semiconductor element.
  • It should be further understood by those skilled in the art that the foregoing description has been made on embodiments of the invention and that various changes and modifications may be made in the invention without departing from the spirit of the invention and the scope of the appended claims.

Claims (14)

1-19. (Canceled)
20. A multi-chip-module type semiconductor device comprising:
first and second semiconductor elements, a main component of each of the semiconductor elements being semiconductor material to form a semiconductor electric circuit; and
a substrate adapted to be mounted onto a motherboard and to be electrically connected to the motherboard, to which the first and second semiconductor elements are electrically connected.
21. A multi-chip-module type semiconductor device according to claim 20, further comprising a wiring layer disposed between the substrate and at least one of the first and second semiconductor elements, the wiring layer including a synthetic resin layer and an electrically conductive member extending in a transverse direction with respect to a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked in such a manner that an electrical connecting point between the electrically conductive member and each semiconductor element is distal an electrical connecting point between the electrically conductive member and the substrate in the transverse direction.
22. A multi-chip-module type semiconductor device according to claim 20, further comprising a synthetic resin member adhering to the first semiconductor element and the substrate at the inside of the first semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked, while a synthetic resin whose Young's modulus is not less than Young's modulus of the synthetic resin member is prevented from adhering to the second semiconductor element and the substrate at the inside of the second semiconductor element as seen in the stacking direction, and a thickness of the first semiconductor element is smaller than a thickness of the second semiconductor element.
23. A multi-chip-module type semiconductor device according to claim 20, further comprising a first synthetic resin through which the substrate and the first semiconductor element are connected to each other, and a second synthetic resin through which the substrate and the second semiconductor element are connected to each other, Young's modulus of the first synthetic resin is larger than Young's modulus of the second synthetic resin, and a thickness of the first semiconductor element is smaller than a thickness of the second semiconductor element.
24. A multi-chip-module type semiconductor device according to claim 20, further comprising a first synthetic resin adhering to the substrate and the first semiconductor element at the inside of the first semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked, and a second synthetic resin through which the second semiconductor element is connected to the substrate at the outside of the second semiconductor element as seen in the stacking direction while a synthetic resin whose Young's modulus is not less than Young's modulus of the first synthetic resin is prevented from adhering to the second semiconductor element and the substrate at the inside of the second semiconductor element as seen in the stacking direction, and a thickness of the first semiconductor element is smaller than a thickness of the second semiconductor element.
25. A multi-chip-module type semiconductor device according to claim 20, wherein a main component of the first semiconductor element is Si, a main component of the second semiconductor element is GaAs, and a thickness of the second semiconductor element is smaller than a thickness of the first semiconductor element.
26. A multi-chip-module type semiconductor device according to claim 20, wherein an area of the second semiconductor element is less than an area of the first semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked, and a thickness of the second semiconductor element is less than a thickness of the first semiconductor element.
27. A multi-chip-module type semiconductor device according to claim 20, wherein a length of a side of the second semiconductor element whose length is minimum in comparison with lengths of the other sides of the second semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked is less than a length of a side of the first semiconductor element whose length is minimum in comparison with lengths of the other sides of the first semiconductor element as seen in the stacking direction, and a thickness of the second semiconductor element is less than a thickness of the first semiconductor element.
28. A multi-chip-module type semiconductor device according to claim 20, further comprising a first synthetic resin through which the first semiconductor element is connected to the substrate, a second synthetic resin on which the second semiconductor element is supported, a first electrically conductive bump extending through the first synthetic resin to electrically connect the first semiconductor element to the substrate, and second electrically conductive bumps which support the second synthetic resin on the substrate and provide an electrical connection between the second semiconductor element and the substrate thereby defining a space that is bounded by two of the second electrically conductive bumps and by the second synthetic resin and the substrate, wherein a thickness of the first semiconductor element is smaller than a thickness of the second semiconductor element.
29. A multi-chip-module type semiconductor device according to claim 28, wherein Young's modulus of the second synthetic resin is greater than Young's modulus of the first synthetic resin.
30. A multi-chip-module type semiconductor device according to claim 21, wherein an area of the second semiconductor element is greater than an area of the first semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked.
31. A multi-chip-module type semiconductor device according to claim 20, further comprising a first synthetic resin element connecting the first semiconductor element to the substrate, a second synthetic resin element a first end of which supports the second semiconductor element and a second end of which is supported on the substrate at the outside of the second semiconductor element as seen in a stacking direction in which each of the first and second semiconductor elements and the substrate are stacked, a first electrically conductive bump extending though the first synthetic resin to electrically connect the first semiconductor element to the substrate, and second electrically conductive bumps which support the second end of the second synthetic resin element on the substrate and which provide an electrical connection between the second semiconductor element and the substrate, wherein a space is bounded by two of the second electrically conductive bumps and by the second end of the second synthetic resin element and the substrate, wherein a thickness of the first semiconductor element is smaller than a thickness of the second semiconductor element.
32. A multi-chip-module type semiconductor device according to claim 31, wherein Young's modulus of the second synthetic resin is more than Young's modulus of the first synthetic resin.
US10/941,570 2001-04-06 2004-09-14 Multi-chip semiconductor device with specific chip arrangement Abandoned US20050029673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/941,570 US20050029673A1 (en) 2001-04-06 2004-09-14 Multi-chip semiconductor device with specific chip arrangement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-107915 2001-04-06
JP2001107915A JP3878430B2 (en) 2001-04-06 2001-04-06 Semiconductor device
US10/117,845 US6800945B2 (en) 2001-04-06 2002-04-05 Multi-chip semiconductor device with specific chip arrangement
US10/941,570 US20050029673A1 (en) 2001-04-06 2004-09-14 Multi-chip semiconductor device with specific chip arrangement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/117,845 Division US6800945B2 (en) 2001-04-06 2002-04-05 Multi-chip semiconductor device with specific chip arrangement

Publications (1)

Publication Number Publication Date
US20050029673A1 true US20050029673A1 (en) 2005-02-10

Family

ID=18960155

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/117,845 Expired - Fee Related US6800945B2 (en) 2001-04-06 2002-04-05 Multi-chip semiconductor device with specific chip arrangement
US10/941,570 Abandoned US20050029673A1 (en) 2001-04-06 2004-09-14 Multi-chip semiconductor device with specific chip arrangement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/117,845 Expired - Fee Related US6800945B2 (en) 2001-04-06 2002-04-05 Multi-chip semiconductor device with specific chip arrangement

Country Status (4)

Country Link
US (2) US6800945B2 (en)
JP (1) JP3878430B2 (en)
KR (1) KR20020079477A (en)
TW (1) TW565874B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060264022A1 (en) * 2005-05-17 2006-11-23 Takahiro Sugimura Semiconductor device
EP1840953A1 (en) * 2005-03-14 2007-10-03 Sumitomo Bakelite Co., Ltd. Semiconductor device
US20080036083A1 (en) * 2006-08-09 2008-02-14 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US20080237838A1 (en) * 2007-03-29 2008-10-02 Sharp Kabushiki Kaisha Semiconductor device
US20090194852A1 (en) * 2008-02-05 2009-08-06 Chi-Tsung Chiu Semiconductor device packages with electromagnetic interference shielding
US20090194851A1 (en) * 2008-02-05 2009-08-06 Chi-Tsung Chiu Semiconductor device packages with electromagnetic interference shielding
US20090256244A1 (en) * 2008-02-05 2009-10-15 Kuo-Hsien Liao Semiconductor device packages with electromagnetic interference shielding
US20100032815A1 (en) * 2008-08-08 2010-02-11 An Jaeseon Semiconductor device packages with electromagnetic interference shielding
US20100109132A1 (en) * 2008-10-31 2010-05-06 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20100207257A1 (en) * 2009-02-17 2010-08-19 Advanced Semiconductor Engineering, Inc. Semiconductor package and manufacturing method thereof
US20110115066A1 (en) * 2009-11-19 2011-05-19 Seokbong Kim Semiconductor device packages with electromagnetic interference shielding
US20110115060A1 (en) * 2009-11-19 2011-05-19 Advanced Semiconductor Engineering, Inc. Wafer-Level Semiconductor Device Packages with Electromagnetic Interference Shielding
US8110902B2 (en) 2009-02-19 2012-02-07 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8212340B2 (en) 2009-07-13 2012-07-03 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8212339B2 (en) 2008-02-05 2012-07-03 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US8368185B2 (en) 2009-11-19 2013-02-05 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US8541883B2 (en) 2011-11-29 2013-09-24 Advanced Semiconductor Engineering, Inc. Semiconductor device having shielded conductive vias
US8653634B2 (en) 2012-06-11 2014-02-18 Advanced Semiconductor Engineering, Inc. EMI-shielded semiconductor devices and methods of making
US8704341B2 (en) 2012-05-15 2014-04-22 Advanced Semiconductor Engineering, Inc. Semiconductor packages with thermal dissipation structures and EMI shielding
US8786060B2 (en) 2012-05-04 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US8884424B2 (en) 2010-01-13 2014-11-11 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
US8907503B2 (en) 2012-07-27 2014-12-09 International Business Machines Corporation Manufacturing an underfill in a semiconductor chip package
US8937376B2 (en) 2012-04-16 2015-01-20 Advanced Semiconductor Engineering, Inc. Semiconductor packages with heat dissipation structures and related methods
US9007273B2 (en) 2010-09-09 2015-04-14 Advances Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US9070793B2 (en) 2010-08-02 2015-06-30 Advanced Semiconductor Engineering, Inc. Semiconductor device packages having electromagnetic interference shielding and related methods
US9129954B2 (en) 2013-03-07 2015-09-08 Advanced Semiconductor Engineering, Inc. Semiconductor package including antenna layer and manufacturing method thereof
US9153542B2 (en) 2012-08-01 2015-10-06 Advanced Semiconductor Engineering, Inc. Semiconductor package having an antenna and manufacturing method thereof
US9172131B2 (en) 2013-03-15 2015-10-27 Advanced Semiconductor Engineering, Inc. Semiconductor structure having aperture antenna
US9236356B2 (en) 2013-07-31 2016-01-12 Advanced Semiconductor Engineering, Inc. Semiconductor package with grounding and shielding layers
US9349611B2 (en) 2010-03-22 2016-05-24 Advanced Semiconductor Engineering, Inc. Stackable semiconductor package and manufacturing method thereof
US9406658B2 (en) 2010-12-17 2016-08-02 Advanced Semiconductor Engineering, Inc. Embedded component device and manufacturing methods thereof
US9837701B2 (en) 2013-03-04 2017-12-05 Advanced Semiconductor Engineering, Inc. Semiconductor package including antenna substrate and manufacturing method thereof
US9978688B2 (en) 2013-02-28 2018-05-22 Advanced Semiconductor Engineering, Inc. Semiconductor package having a waveguide antenna and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241302B2 (en) 2003-09-30 2009-03-18 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP4828202B2 (en) * 2005-10-20 2011-11-30 ルネサスエレクトロニクス株式会社 Module semiconductor device
US7554198B2 (en) * 2006-06-29 2009-06-30 Intel Corporation Flexible joint methodology to attach a die on an organic substrate
US8535989B2 (en) 2010-04-02 2013-09-17 Intel Corporation Embedded semiconductive chips in reconstituted wafers, and systems containing same
US8937382B2 (en) * 2011-06-27 2015-01-20 Intel Corporation Secondary device integration into coreless microelectronic device packages
US8848380B2 (en) 2011-06-30 2014-09-30 Intel Corporation Bumpless build-up layer package warpage reduction
WO2013172814A1 (en) 2012-05-14 2013-11-21 Intel Corporation Microelectronic package utilizing multiple bumpless build-up structures and through-silicon vias
JP5995598B2 (en) * 2012-08-06 2016-09-21 株式会社ディスコ Wafer processing method
US9213797B2 (en) * 2013-11-15 2015-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method, system and computer program product for designing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986636B2 (en) 1993-02-17 1999-12-06 松下電器産業株式会社 How to mount a multi-chip module
JPH11220077A (en) * 1997-10-15 1999-08-10 Toshiba Corp Semiconductor device and manufacture of the semiconductor device
JP3168987B2 (en) * 1998-07-09 2001-05-21 日本電気株式会社 Mounting structure of surface mount type semiconductor device
JP3432749B2 (en) * 1998-07-23 2003-08-04 富士通株式会社 Semiconductor device and manufacturing method thereof
JP2000260912A (en) * 1999-03-05 2000-09-22 Fujitsu Ltd Method and structure for mounting semiconductor device
US6356453B1 (en) * 2000-06-29 2002-03-12 Amkor Technology, Inc. Electronic package having flip chip integrated circuit and passive chip component

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840953A1 (en) * 2005-03-14 2007-10-03 Sumitomo Bakelite Co., Ltd. Semiconductor device
EP1840953A4 (en) * 2005-03-14 2011-09-21 Sumitomo Bakelite Co Semiconductor device
US7834455B2 (en) 2005-05-17 2010-11-16 Renesas Electronics Corporation Semiconductor device
US7547968B2 (en) 2005-05-17 2009-06-16 Renesas Technology Corp. Semiconductor device
US20060264022A1 (en) * 2005-05-17 2006-11-23 Takahiro Sugimura Semiconductor device
US8101468B2 (en) 2005-05-17 2012-01-24 Renesas Electronics Corporation Method of manufacturing a semiconductor device
US20090230551A1 (en) * 2005-05-17 2009-09-17 Renesas Technology Corp. Semiconductor device
US20110033983A1 (en) * 2005-05-17 2011-02-10 Renesas Electronics Corporation Semiconductor device
US20080036083A1 (en) * 2006-08-09 2008-02-14 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US20080237838A1 (en) * 2007-03-29 2008-10-02 Sharp Kabushiki Kaisha Semiconductor device
US8018048B2 (en) 2007-03-29 2011-09-13 Sharp Kabushiki Kaisha Semiconductor device
US8350367B2 (en) * 2008-02-05 2013-01-08 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20090194851A1 (en) * 2008-02-05 2009-08-06 Chi-Tsung Chiu Semiconductor device packages with electromagnetic interference shielding
US8653633B2 (en) 2008-02-05 2014-02-18 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20090194852A1 (en) * 2008-02-05 2009-08-06 Chi-Tsung Chiu Semiconductor device packages with electromagnetic interference shielding
US8212339B2 (en) 2008-02-05 2012-07-03 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US7989928B2 (en) * 2008-02-05 2011-08-02 Advanced Semiconductor Engineering Inc. Semiconductor device packages with electromagnetic interference shielding
US8022511B2 (en) 2008-02-05 2011-09-20 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20090256244A1 (en) * 2008-02-05 2009-10-15 Kuo-Hsien Liao Semiconductor device packages with electromagnetic interference shielding
US8410584B2 (en) 2008-08-08 2013-04-02 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20100032815A1 (en) * 2008-08-08 2010-02-11 An Jaeseon Semiconductor device packages with electromagnetic interference shielding
US8592958B2 (en) 2008-10-31 2013-11-26 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20100109132A1 (en) * 2008-10-31 2010-05-06 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8093690B2 (en) 2008-10-31 2012-01-10 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20100110656A1 (en) * 2008-10-31 2010-05-06 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20100207257A1 (en) * 2009-02-17 2010-08-19 Advanced Semiconductor Engineering, Inc. Semiconductor package and manufacturing method thereof
US8110902B2 (en) 2009-02-19 2012-02-07 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8212340B2 (en) 2009-07-13 2012-07-03 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20110115060A1 (en) * 2009-11-19 2011-05-19 Advanced Semiconductor Engineering, Inc. Wafer-Level Semiconductor Device Packages with Electromagnetic Interference Shielding
US8378466B2 (en) 2009-11-19 2013-02-19 Advanced Semiconductor Engineering, Inc. Wafer-level semiconductor device packages with electromagnetic interference shielding
US8368185B2 (en) 2009-11-19 2013-02-05 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20110115066A1 (en) * 2009-11-19 2011-05-19 Seokbong Kim Semiconductor device packages with electromagnetic interference shielding
US8030750B2 (en) 2009-11-19 2011-10-04 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US8884424B2 (en) 2010-01-13 2014-11-11 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
US9196597B2 (en) 2010-01-13 2015-11-24 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
US9349611B2 (en) 2010-03-22 2016-05-24 Advanced Semiconductor Engineering, Inc. Stackable semiconductor package and manufacturing method thereof
US9070793B2 (en) 2010-08-02 2015-06-30 Advanced Semiconductor Engineering, Inc. Semiconductor device packages having electromagnetic interference shielding and related methods
US9007273B2 (en) 2010-09-09 2015-04-14 Advances Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US9406658B2 (en) 2010-12-17 2016-08-02 Advanced Semiconductor Engineering, Inc. Embedded component device and manufacturing methods thereof
US8541883B2 (en) 2011-11-29 2013-09-24 Advanced Semiconductor Engineering, Inc. Semiconductor device having shielded conductive vias
US8937376B2 (en) 2012-04-16 2015-01-20 Advanced Semiconductor Engineering, Inc. Semiconductor packages with heat dissipation structures and related methods
US8786060B2 (en) 2012-05-04 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US8704341B2 (en) 2012-05-15 2014-04-22 Advanced Semiconductor Engineering, Inc. Semiconductor packages with thermal dissipation structures and EMI shielding
US8653634B2 (en) 2012-06-11 2014-02-18 Advanced Semiconductor Engineering, Inc. EMI-shielded semiconductor devices and methods of making
US8907503B2 (en) 2012-07-27 2014-12-09 International Business Machines Corporation Manufacturing an underfill in a semiconductor chip package
US9153542B2 (en) 2012-08-01 2015-10-06 Advanced Semiconductor Engineering, Inc. Semiconductor package having an antenna and manufacturing method thereof
US9978688B2 (en) 2013-02-28 2018-05-22 Advanced Semiconductor Engineering, Inc. Semiconductor package having a waveguide antenna and manufacturing method thereof
US9837701B2 (en) 2013-03-04 2017-12-05 Advanced Semiconductor Engineering, Inc. Semiconductor package including antenna substrate and manufacturing method thereof
US11664580B2 (en) 2013-03-04 2023-05-30 Advanced Semiconductor Engineering, Inc. Semiconductor package including antenna substrate and manufacturing method thereof
US9129954B2 (en) 2013-03-07 2015-09-08 Advanced Semiconductor Engineering, Inc. Semiconductor package including antenna layer and manufacturing method thereof
US9172131B2 (en) 2013-03-15 2015-10-27 Advanced Semiconductor Engineering, Inc. Semiconductor structure having aperture antenna
US9236356B2 (en) 2013-07-31 2016-01-12 Advanced Semiconductor Engineering, Inc. Semiconductor package with grounding and shielding layers

Also Published As

Publication number Publication date
TW565874B (en) 2003-12-11
KR20020079477A (en) 2002-10-19
JP3878430B2 (en) 2007-02-07
US20020145204A1 (en) 2002-10-10
US6800945B2 (en) 2004-10-05
JP2002305285A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
US6800945B2 (en) Multi-chip semiconductor device with specific chip arrangement
US7365426B2 (en) Semiconductor device
US6410988B1 (en) Thermally enhanced and mechanically balanced flip chip package and method of forming
EP1588407B1 (en) Area array package with non-electrically connected solder balls
KR100401020B1 (en) Stacking structure of semiconductor chip and semiconductor package using it
US7300822B2 (en) Low warpage flip chip package solution-channel heat spreader
US6753613B2 (en) Stacked dice standoffs
US8614517B2 (en) Semiconductor device and method of manufacturing the same
US20050062167A1 (en) Package assembly for electronic device and method of making same
US20110074037A1 (en) Semiconductor device
US20160113127A1 (en) Electronic module having an electrically insulating structure with material having a low modulus of elasticity
US6441499B1 (en) Thin form factor flip chip ball grid array
US7190082B2 (en) Low stress flip-chip package for low-K silicon technology
US11211262B2 (en) Electronic apparatus having inter-chip stiffener
US20210111093A1 (en) Heterogeneous Lid Seal Band for Structural Stability in Multiple Integrated Circuit (IC) Device Modules
JP2007250712A (en) Semiconductor device and method of manufacturing same
US20060180944A1 (en) Flip chip ball grid array package with constraint plate
US20190385956A1 (en) Semiconductor chip
JP2004047758A (en) Semiconductor device
JP2002289735A (en) Semiconductor device
US20070235872A1 (en) Semiconductor package structure
JPH11121525A (en) Semiconductor device
JPH0831872A (en) Semiconductor device
JP2000058716A (en) Semiconductor device
JP2008130794A (en) Semiconductor device and mounting structure thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION