US20050026544A1 - Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces - Google Patents

Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces Download PDF

Info

Publication number
US20050026544A1
US20050026544A1 US10/925,599 US92559904A US2005026544A1 US 20050026544 A1 US20050026544 A1 US 20050026544A1 US 92559904 A US92559904 A US 92559904A US 2005026544 A1 US2005026544 A1 US 2005026544A1
Authority
US
United States
Prior art keywords
magnetic field
micro
chamber
fluid
device workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/925,599
Other versions
US7033251B2 (en
Inventor
Jason Elledge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/925,599 priority Critical patent/US7033251B2/en
Publication of US20050026544A1 publication Critical patent/US20050026544A1/en
Priority to US11/187,280 priority patent/US7255630B2/en
Application granted granted Critical
Publication of US7033251B2 publication Critical patent/US7033251B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces

Definitions

  • the present invention relates to carrier assemblies, polishing machines including carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces.
  • FIG. 1 schematically illustrates a rotary CMP machine 10 with a platen 20 , a carrier head 30 , and a planarizing pad 40 .
  • the CMP machine 10 may also have an under-pad 25 between an upper surface 22 of the platen 20 and a lower surface of the planarizing pad 40 .
  • a drive assembly 26 rotates the platen 20 (indicated by arrow F) and/or reciprocates the platen 20 back and forth (indicated by arrow G). Since the planarizing pad 40 is attached to the under-pad 25 , the planarizing pad 40 moves with the platen 20 during planarization.
  • the carrier head 30 has a lower surface 32 to which a micro-device workpiece 12 may be attached, or the workpiece 12 may be attached to a resilient pad 34 under the lower surface 32 .
  • the carrier head 30 may be a weighted, free-floating wafer carrier, or an actuator assembly 36 may be attached to the carrier head 30 to impart rotational motion to the micro-device workpiece 12 (indicated by arrow J) and/or reciprocate the workpiece 12 back and forth (indicated by arrow I).
  • the planarizing pad 40 and a planarizing solution 44 define a planarizing medium that mechanically and/or chemically-mechanically removes material from the surface of the micro-device workpiece 12 .
  • the planarizing solution 44 may be a conventional CMP slurry with abrasive particles and chemicals that etch and/or oxidize the surface of the micro-device workpiece 12 , or the planarizing solution 44 may be a “clean” nonabrasive planarizing solution without abrasive particles. In most CMP applications, abrasive slurries with abrasive particles are used on non-abrasive polishing pads, and clean non-abrasive solutions without abrasive particles are used on fixed-abrasive polishing pads.
  • the carrier head 30 presses the workpiece 12 facedown against the planarizing pad 40 . More specifically, the carrier head 30 generally presses the micro-device workpiece 12 against the planarizing solution 44 on a planarizing surface 42 of the planarizing pad 40 , and the platen 20 and/or the carrier head 30 moves to rub the workpiece 12 against the planarizing surface 42 . As the micro-device workpiece 12 rubs against the planarizing surface 42 , the planarizing medium removes material from the face of the workpiece 12 .
  • carrier heads have been developed with expandable interior and exterior bladders that exert downward forces on selected areas of the workpiece.
  • the typical bladder has a curved edge that makes it difficult to exert a uniform downward force at the perimeter.
  • conventional bladders cover a fairly broad area of the workpiece, thus limiting the ability to localize the downward force on the workpiece.
  • conventional bladders are often filled with compressible air that inhibits precise control of the downward force.
  • carrier heads with multiple bladders form a complex system that is subject to significant downtime for repair and/or maintenance, causing a concomitant reduction in throughput.
  • the present invention is directed toward carrier assemblies, polishing machines with carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces.
  • One aspect of the invention is directed to a carrier assembly for retaining a micro-device workpiece during mechanical or chemical-mechanical polishing.
  • the carrier assembly includes a head having a chamber, a magnetic field source carried by the head, and a magnetic fluid in the chamber.
  • the magnetic field source is configured to generate a magnetic field in the head.
  • the magnetic fluid changes viscosity within the chamber under the influence of the magnetic field to exert a force against at least a portion of the micro-device workpiece.
  • the magnetic fluid is a magnetorheological fluid.
  • the magnetic field source can include an electrically conductive coil and/or a magnet, such as an electromagnet.
  • the magnet can be one of a plurality of magnets arranged concentrically, in quadrants, in a grid, or in other configurations.
  • the electrically conductive coil can also be one of a plurality of coils.
  • the carrier assembly can include a bladder with a cavity to receive the magnetic fluid.
  • the carrier assembly can also include a plurality of bladders that are arranged concentrically, in quadrants, in a grid, or in other configurations.
  • the machine includes a table having a support surface, a polishing pad carried by the support surface of the table, and a workpiece carrier assembly having a carrier head configured to retain a workpiece and a drive system coupled to the carrier head.
  • the carrier head can include a chamber, a magnetic field source, a fluid cell in the chamber, and a magnetic fluid in the fluid cell.
  • the magnetic field source can selectively generate a magnetic field in the chamber causing the viscosity of the magnetic fluid to increase and exert a desired force against at least a portion of the micro-device workpiece.
  • the drive system is configured to move the carrier head to engage the workpiece with the polishing pad.
  • FIG. 2 is a schematic cross-sectional side view of a carrier assembly in accordance with one embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional top view taken substantially along line A-A of FIG. 2 .
  • FIG. 4 is a schematic cross-sectional side view of the carrier assembly of FIG. 2 with a magnetic field applied in the first bladder.
  • FIG. 5A is a schematic top view of a single circular bladder in accordance with another embodiment of the invention.
  • FIG. 5B is a schematic top view of a plurality of bladders arranged in quadrants in accordance with another embodiment of the invention.
  • FIG. 5C is a schematic top view of a plurality of bladders arranged in a grid in accordance with another embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional side view of a carrier assembly in accordance with another embodiment of the invention.
  • FIG. 7A is a schematic top view of a single circular magnetic field source in accordance with one embodiment of the invention.
  • FIG. 7B is a schematic top view of a plurality of magnetic field sources arranged in quadrants in accordance with another embodiment of the invention.
  • FIG. 7C is a schematic top view of a plurality of magnetic field sources arranged in a grid in accordance with another embodiment of the invention.
  • FIG. 7D is a schematic isometric view of a magnetic field source including an electrical coil in accordance with another embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional side view of a carrier assembly 130 in accordance with one embodiment of the invention.
  • the carrier assembly 130 can be coupled to an actuator assembly 131 to move the workpiece 12 across the planarizing surface 42 of the planarizing pad 40 .
  • the carrier assembly 130 includes a head 132 having a support member 134 and a retaining ring 136 coupled to the support member 134 .
  • the support member 134 can be an annular housing having an upper plate coupled to the actuator assembly 131 .
  • the retaining ring 136 extends around the support member 134 and projects toward the workpiece 12 below a bottom rim of the support member 134 .
  • the carrier assembly 130 includes a chamber 114 in the head 132 , a first bladder 160 a in the chamber 114 , and a second bladder 160 b in the chamber 114 .
  • the bladders 160 are fluid cells or fluid compartments that are suitable for containing fluid in discrete compartments within the head 132 .
  • FIG. 3 is a schematic cross-sectional top view taken substantially along line A-A of FIG. 2 .
  • the first and second bladders 160 a - b each have an annular shape and are arranged concentrically with the first bladder 160 a surrounding the second bladder 160 b .
  • the chamber 114 may contain a different number and/or configuration of bladders.
  • the chamber 114 may not contain a bladder.
  • the carrier assembly 130 includes a first magnetic field source 100 a and a second magnetic field source 100 b that are each configured to generate magnetic fields in one of the cavities 170 .
  • the first magnetic field source 100 a can be carried by the first bladder 160 a or the head 132 to selectively generate a magnetic field in the first cavity 170 a
  • the second magnetic field source 100 b can be carried by the second bladder 160 b or the head 132 to selectively generate a magnetic field in the second cavity 170 b
  • the magnetic field sources 100 each include a first electrically conductive coil embedded in the top surface 162 of the bladder 160 and a second electrically conductive coil embedded in the bottom surface 164 of the bladder 160 .
  • a first side surface 166 and/or a second side surface 168 of each bladder 160 can carry the coils.
  • the magnetic field sources 100 can include a different number of coils.
  • the carrier assembly 130 can include other magnetic field sources 100 to generate magnetic fields in the cavities 170 .
  • a controller 180 is operatively coupled to the magnetic field sources 100 to selectively control the timing and strength of the magnetic fields in the cavities 170 .
  • the controller 180 can be an automatic process controller that adjusts the location and strength of the magnetic fields in real time based on the condition of the workpiece.
  • the controller 180 can include an IC controller chip and a telematics controller.
  • the carrier assembly 130 can further include a flexible plate 190 and a flexible member 198 coupled to the flexible plate 190 .
  • the flexible plate 190 sealably encloses the bladders 160 in the chamber 114 .
  • the flexible plate 190 includes holes 192 and a vacuum line 194 coupled to the holes 192 .
  • the vacuum line 194 can be coupled to a vacuum source (not shown) to draw portions of the flexible member 198 into the holes 192 , creating small suction cups across the back side of the workpiece 12 that hold the workpiece 12 to the flexible member 198 .
  • the flexible plate 190 may not include the vacuum line 194 and the workpiece 12 can be secured to the carrier assembly 130 by another device.
  • the flexible member 198 is a flexible membrane. In other embodiments, the flexible member 198 can be a bladder or another device that prevents planarizing solution (not shown) from entering the chamber 114 . In additional embodiments, the carrier assembly 130 may not include the flexible plate 190 and/or the flexible member 198 .
  • FIG. 4 is a schematic cross-sectional side view of the carrier assembly 130 of FIG. 2 with a magnetic field applied in the first bladder 160 a .
  • the magnetic field sources 100 can selectively generate magnetic fields in the cavities 170 to exert discrete downward forces F on different areas of the workpiece 12 .
  • the first magnetic field source 100 a generates a magnetic field in the first cavity 170 a .
  • the viscosity of the magnetic fluid 110 in the first bladder 160 a increases in response to the magnetic field.
  • the increased viscosity of the magnetic fluid 110 transmits a downward force F on the flexible plate 190 adjacent to the first bladder 160 a .
  • the force F flexes the flexible plate 190 and the flexible member 198 downward and is accordingly applied to a perimeter region of the workpiece 12 .
  • the magnitude of the force F is determined by the strength of the magnetic field, the type of magnetic fluid 110 , the amount of magnetic fluid 110 in the bladder 160 , and other factors. The greater the magnetic field strength, the greater the magnitude of the force F.
  • the location of the force F and the area over which the force F is applied to the workpiece 12 are determined by the location and size of the magnetic field and the bladder 160 . In other embodiments, a plurality of discrete forces can be applied concurrently to the workpiece 12 .
  • the magnetic field sources 100 can generate magnetic fields and the associated forces in real time based on the profile of the workpiece. Furthermore, if previously polished workpieces have areas with consistent high points, the carrier assembly 130 can exert a greater downward force in those areas compared to low points to create a more uniformly planar surface on the workpiece.
  • FIGS. 5A-5C are schematic top views of various bladders for use with carrier assemblies in accordance with additional embodiments of the invention.
  • FIG. 5A illustrates a single circular bladder 260 having a cavity to receive a magnetic fluid.
  • FIG. 5B is a schematic top view of a plurality of bladders 360 (identified individually as 360 a - d ) in accordance with another embodiment of the invention.
  • the bladders 360 include a first bladder 360 a , a second bladder 360 b , a third bladder 360 c , and a fourth bladder 360 d forming quadrants of a circle.
  • Each bladder 360 has a separate cavity to receive a magnetic fluid.
  • FIG. 5C is a schematic top view of a plurality of bladders 460 in accordance with another embodiment of the invention.
  • the bladders 460 are arranged in a grid with columns 506 and rows 508 .
  • Each bladder 460 has a first side 466 , a second side 467 , a third side 468 , and a fourth side 469 , and each bladder 460 has a cavity to receive a magnetic fluid.
  • the first side 466 of one bladder 460 can contact or be spaced apart from the third side 468 of an adjacent bladder 460 .
  • the bladders 460 proximate to the perimeter have a curved side 463 corresponding to the curvature of the chamber 114 ( FIG. 2 ) in the carrier assembly 130 ( FIG. 2 ).
  • the bladders can have other configurations, such as a hexagonal or pentagonal shape.
  • FIG. 6 is a schematic cross-sectional side view of a carrier assembly 530 in accordance with another embodiment of the invention.
  • the carrier assembly 530 is similar to the carrier assembly 130 described above with reference to FIG. 2 .
  • the carrier assembly 530 includes a head 532 , a chamber 514 in the head 532 , a first bladder 560 a in the chamber 514 , and a second bladder 560 b in the chamber 514 .
  • the first and second bladders 560 a - b each include a cavity 570 containing the magnetic fluid 110 .
  • the carrier assembly 530 also includes a first magnetic field source 500 a carried by the first bladder 560 a and a second magnetic field source 500 b carried by the second bladder 560 b .
  • the first magnetic field source 500 a has an annular shape and surrounds the second magnetic field source 500 b .
  • Each magnetic field source 500 can be a permanent magnet, an electromagnet, an electrical coil, or any other device that creates a magnetic field in the cavities 570 .
  • the magnetic field sources can be a single source or a plurality of sources with various configurations, such as those discussed below with reference to FIGS. 7A-7D .
  • the magnetic field sources can be external to the chamber 514 , such as being positioned in or above the head 532 .
  • FIGS. 7A-7D are schematic views of various magnetic field sources for use with carrier assemblies in accordance with additional embodiments of the invention.
  • FIG. 7A illustrates a single circular magnetic field source 600 , such as a permanent magnet or electromagnet.
  • FIG. 7B is a schematic top view of four magnetic field sources (identified individually as 700 a - d ) arranged in quadrants. Each magnetic field source 700 can selectively generate a magnetic field.
  • FIG. 7C is a schematic top view of a plurality of magnetic field sources 800 arranged in a grid with columns 806 and rows 808 . In other embodiments, the size of each magnetic field source 800 can be decreased to increase the resolution of the magnetic fields.
  • FIG. 7A illustrates a single circular magnetic field source 600 , such as a permanent magnet or electromagnet.
  • FIG. 7B is a schematic top view of four magnetic field sources (identified individually as 700 a - d ) arranged in quadrants. Each magnetic field source 700 can selectively generate a magnetic
  • FIG. 7D is a schematic isometric view of a magnetic field source 900 including an electrically conductive coil 901 .
  • the magnetic field source 900 can have an air core, or the coil 901 can be wound around an inductive core 902 to form a magnetic field having a higher flux density.
  • magnetic field sources can have other configurations.
  • One advantage of the illustrated embodiments is the ability to apply highly localized forces to the workpiece with a quick response time.
  • This highly localized force control enables the CMP process to consistently and accurately produce a uniformly planar surface on the workpiece.
  • the localized forces can be changed in situ during a CMP cycle.
  • a polishing machine having one of the illustrated carrier assemblies can monitor the planarizing rates and/or the surface of the workpiece and adjust accordingly the magnitude and position of the forces applied to the workpiece to produce a planar surface.
  • Another advantage of the illustrated carrier assemblies is that they are simpler than existing systems and, consequently, reduce downtime for maintenance and/or repair and create greater throughput.

Abstract

Carrier assemblies, polishing machines with carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces are disclosed herein. In one embodiment, a carrier assembly includes a head having a chamber, a magnetic field source carried by the head, and a magnetic fluid in the chamber. The magnetic field source is configured to generate a magnetic field in the head. The magnetic fluid changes viscosity within the chamber under the influence of the magnetic field to exert a force against at least a portion of the micro-device workpiece. The magnetic fluid can be a magnetorheological fluid. The magnetic field source can include an electrically conductive coil and/or a magnet, such as an electromagnet. The carrier assembly can also include a fluid cell with a cavity to receive the magnetic fluid.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application relates to co-pending U.S. patent application Ser. No. 10/226,571 (attorney docket 108298668US), filed on Aug. 23, 2002, which is herein incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to carrier assemblies, polishing machines including carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces.
  • BACKGROUND
  • Mechanical and chemical-mechanical planarization processes (collectively, “CMP”) remove material from the surface of micro-device workpieces in the production of microelectronic devices and other products. FIG. 1 schematically illustrates a rotary CMP machine 10 with a platen 20, a carrier head 30, and a planarizing pad 40. The CMP machine 10 may also have an under-pad 25 between an upper surface 22 of the platen 20 and a lower surface of the planarizing pad 40. A drive assembly 26 rotates the platen 20 (indicated by arrow F) and/or reciprocates the platen 20 back and forth (indicated by arrow G). Since the planarizing pad 40 is attached to the under-pad 25, the planarizing pad 40 moves with the platen 20 during planarization.
  • The carrier head 30 has a lower surface 32 to which a micro-device workpiece 12 may be attached, or the workpiece 12 may be attached to a resilient pad 34 under the lower surface 32. The carrier head 30 may be a weighted, free-floating wafer carrier, or an actuator assembly 36 may be attached to the carrier head 30 to impart rotational motion to the micro-device workpiece 12 (indicated by arrow J) and/or reciprocate the workpiece 12 back and forth (indicated by arrow I).
  • The planarizing pad 40 and a planarizing solution 44 define a planarizing medium that mechanically and/or chemically-mechanically removes material from the surface of the micro-device workpiece 12. The planarizing solution 44 may be a conventional CMP slurry with abrasive particles and chemicals that etch and/or oxidize the surface of the micro-device workpiece 12, or the planarizing solution 44 may be a “clean” nonabrasive planarizing solution without abrasive particles. In most CMP applications, abrasive slurries with abrasive particles are used on non-abrasive polishing pads, and clean non-abrasive solutions without abrasive particles are used on fixed-abrasive polishing pads.
  • To planarize the micro-device workpiece 12 with the CMP machine 10, the carrier head 30 presses the workpiece 12 facedown against the planarizing pad 40. More specifically, the carrier head 30 generally presses the micro-device workpiece 12 against the planarizing solution 44 on a planarizing surface 42 of the planarizing pad 40, and the platen 20 and/or the carrier head 30 moves to rub the workpiece 12 against the planarizing surface 42. As the micro-device workpiece 12 rubs against the planarizing surface 42, the planarizing medium removes material from the face of the workpiece 12.
  • The CMP process must consistently and accurately produce a uniformly planar surface on the workpiece to enable precise fabrication of circuits and photo-patterns. A nonuniform surface can result, for example, when material from one area of the workpiece is removed more quickly than material from another area during CMP processing. To compensate for the nonuniform removal of material, carrier heads have been developed with expandable interior and exterior bladders that exert downward forces on selected areas of the workpiece. These carrier heads, however, have several drawbacks. For example, the typical bladder has a curved edge that makes it difficult to exert a uniform downward force at the perimeter. Moreover, conventional bladders cover a fairly broad area of the workpiece, thus limiting the ability to localize the downward force on the workpiece. Furthermore, conventional bladders are often filled with compressible air that inhibits precise control of the downward force. In addition, carrier heads with multiple bladders form a complex system that is subject to significant downtime for repair and/or maintenance, causing a concomitant reduction in throughput.
  • SUMMARY
  • The present invention is directed toward carrier assemblies, polishing machines with carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces. One aspect of the invention is directed to a carrier assembly for retaining a micro-device workpiece during mechanical or chemical-mechanical polishing. In one embodiment, the carrier assembly includes a head having a chamber, a magnetic field source carried by the head, and a magnetic fluid in the chamber. The magnetic field source is configured to generate a magnetic field in the head. The magnetic fluid changes viscosity within the chamber under the influence of the magnetic field to exert a force against at least a portion of the micro-device workpiece. In one aspect of this embodiment, the magnetic fluid is a magnetorheological fluid. In another aspect of this embodiment, the magnetic field source can include an electrically conductive coil and/or a magnet, such as an electromagnet. The magnet can be one of a plurality of magnets arranged concentrically, in quadrants, in a grid, or in other configurations. The electrically conductive coil can also be one of a plurality of coils. In another aspect of this embodiment, the carrier assembly can include a bladder with a cavity to receive the magnetic fluid. The carrier assembly can also include a plurality of bladders that are arranged concentrically, in quadrants, in a grid, or in other configurations.
  • Another aspect of the invention is directed to polishing machines for mechanical or chemical-mechanical polishing of micro-device workpieces. In one embodiment, the machine includes a table having a support surface, a polishing pad carried by the support surface of the table, and a workpiece carrier assembly having a carrier head configured to retain a workpiece and a drive system coupled to the carrier head. The carrier head can include a chamber, a magnetic field source, a fluid cell in the chamber, and a magnetic fluid in the fluid cell. The magnetic field source can selectively generate a magnetic field in the chamber causing the viscosity of the magnetic fluid to increase and exert a desired force against at least a portion of the micro-device workpiece. The drive system is configured to move the carrier head to engage the workpiece with the polishing pad.
  • Another aspect of the invention is directed to a method for polishing a micro-device workpiece with a polishing machine having a carrier head and a polishing pad. In one embodiment, the method includes moving at least one of the carrier head and the polishing pad relative to the other to rub the micro-device workpiece against the polishing pad. The carrier head includes a chamber and a magnetorheological fluid in the chamber. The method further includes exerting a force against a back side of the workpiece by generating a magnetic field in the carrier head that changes the viscosity of the magnetorheological fluid in the chamber of the carrier head.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-sectional side view of a portion of a rotary planarizing machine in accordance with the prior art.
  • FIG. 2 is a schematic cross-sectional side view of a carrier assembly in accordance with one embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional top view taken substantially along line A-A of FIG. 2.
  • FIG. 4 is a schematic cross-sectional side view of the carrier assembly of FIG. 2 with a magnetic field applied in the first bladder.
  • FIG. 5A is a schematic top view of a single circular bladder in accordance with another embodiment of the invention.
  • FIG. 5B is a schematic top view of a plurality of bladders arranged in quadrants in accordance with another embodiment of the invention.
  • FIG. 5C is a schematic top view of a plurality of bladders arranged in a grid in accordance with another embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional side view of a carrier assembly in accordance with another embodiment of the invention.
  • FIG. 7A is a schematic top view of a single circular magnetic field source in accordance with one embodiment of the invention.
  • FIG. 7B is a schematic top view of a plurality of magnetic field sources arranged in quadrants in accordance with another embodiment of the invention.
  • FIG. 7C is a schematic top view of a plurality of magnetic field sources arranged in a grid in accordance with another embodiment of the invention.
  • FIG. 7D is a schematic isometric view of a magnetic field source including an electrical coil in accordance with another embodiment of the invention.
  • DETAILED DESCRIPTION
  • The present invention is directed to carrier assemblies, polishing machines including carrier assemblies, and methods for mechanical and/or chemical-mechanical polishing of micro-device workpieces. The term “micro-device workpiece” is used throughout to include substrates in or on which microelectronic devices, micro-mechanical devices, data storage elements, and other features are fabricated. For example, micro-device workpieces can be semiconductor wafers, glass substrates, insulated substrates, or many other types of substrates. Furthermore, the terms “planarization” and “planarizing” mean either forming a planar surface and/or forming a smooth surface (e.g., “polishing”). Several specific details of the invention are set forth in the following description and in FIGS. 2-7D to provide a thorough understanding of certain embodiments of the invention. One skilled in the art, however, will understand that the present invention may have additional embodiments, or that other embodiments of the invention may be practiced without several of the specific features explained in the following description.
  • FIG. 2 is a schematic cross-sectional side view of a carrier assembly 130 in accordance with one embodiment of the invention. The carrier assembly 130 can be coupled to an actuator assembly 131 to move the workpiece 12 across the planarizing surface 42 of the planarizing pad 40. In the illustrated embodiment, the carrier assembly 130 includes a head 132 having a support member 134 and a retaining ring 136 coupled to the support member 134. The support member 134 can be an annular housing having an upper plate coupled to the actuator assembly 131. The retaining ring 136 extends around the support member 134 and projects toward the workpiece 12 below a bottom rim of the support member 134.
  • In one aspect of this embodiment, the carrier assembly 130 includes a chamber 114 in the head 132, a first bladder 160 a in the chamber 114, and a second bladder 160 b in the chamber 114. The bladders 160 are fluid cells or fluid compartments that are suitable for containing fluid in discrete compartments within the head 132. FIG. 3 is a schematic cross-sectional top view taken substantially along line A-A of FIG. 2. The first and second bladders 160 a-b each have an annular shape and are arranged concentrically with the first bladder 160 a surrounding the second bladder 160 b. In other embodiments, such as those described below with reference to FIGS. 5A-5C, the chamber 114 may contain a different number and/or configuration of bladders. In additional embodiments, the chamber 114 may not contain a bladder.
  • Referring to FIG. 2, each bladder 160 includes a membrane 161 and a cavity 170 (identified individually as 170 a-b) defined by the membrane 161. The cavities 170 can contain a magnetic fluid 110, such as a magnetorheological fluid, that changes viscosity in response to a magnetic field. For example, in one embodiment, the viscosity of the magnetic fluid 110 can increase from a viscosity similar to that of motor oil to a viscosity of a nearly solid material depending upon the polarity and magnitude of a magnetic field applied to the magnetic fluid 110. In additional embodiments, the magnetic fluid 110 may experience a smaller change in viscosity in response to the magnetic field. In other embodiments, the viscosity of the magnetic fluid 110 may decrease in response to the magnetic field.
  • In another aspect of this embodiment, the carrier assembly 130 includes a first magnetic field source 100 a and a second magnetic field source 100 b that are each configured to generate magnetic fields in one of the cavities 170. For example, the first magnetic field source 100 a can be carried by the first bladder 160 a or the head 132 to selectively generate a magnetic field in the first cavity 170 a, and the second magnetic field source 100 b can be carried by the second bladder 160 b or the head 132 to selectively generate a magnetic field in the second cavity 170 b. In the illustrated embodiment, the magnetic field sources 100 each include a first electrically conductive coil embedded in the top surface 162 of the bladder 160 and a second electrically conductive coil embedded in the bottom surface 164 of the bladder 160. In other embodiments, a first side surface 166 and/or a second side surface 168 of each bladder 160 can carry the coils. In additional embodiments, the magnetic field sources 100 can include a different number of coils. In other embodiments, such as those described below with reference to FIGS. 6-7D, the carrier assembly 130 can include other magnetic field sources 100 to generate magnetic fields in the cavities 170.
  • In one aspect of the embodiment, a controller 180 is operatively coupled to the magnetic field sources 100 to selectively control the timing and strength of the magnetic fields in the cavities 170. The controller 180 can be an automatic process controller that adjusts the location and strength of the magnetic fields in real time based on the condition of the workpiece. The controller 180 can include an IC controller chip and a telematics controller.
  • The carrier assembly 130 can further include a flexible plate 190 and a flexible member 198 coupled to the flexible plate 190. The flexible plate 190 sealably encloses the bladders 160 in the chamber 114. In one aspect of this embodiment, the flexible plate 190 includes holes 192 and a vacuum line 194 coupled to the holes 192. The vacuum line 194 can be coupled to a vacuum source (not shown) to draw portions of the flexible member 198 into the holes 192, creating small suction cups across the back side of the workpiece 12 that hold the workpiece 12 to the flexible member 198. In other embodiments, the flexible plate 190 may not include the vacuum line 194 and the workpiece 12 can be secured to the carrier assembly 130 by another device. In the illustrated embodiment, the flexible member 198 is a flexible membrane. In other embodiments, the flexible member 198 can be a bladder or another device that prevents planarizing solution (not shown) from entering the chamber 114. In additional embodiments, the carrier assembly 130 may not include the flexible plate 190 and/or the flexible member 198.
  • FIG. 4 is a schematic cross-sectional side view of the carrier assembly 130 of FIG. 2 with a magnetic field applied in the first bladder 160 a. In operation, the magnetic field sources 100 can selectively generate magnetic fields in the cavities 170 to exert discrete downward forces F on different areas of the workpiece 12. For example, in the illustrated embodiment, the first magnetic field source 100 a generates a magnetic field in the first cavity 170 a. The viscosity of the magnetic fluid 110 in the first bladder 160 a increases in response to the magnetic field. The increased viscosity of the magnetic fluid 110 transmits a downward force F on the flexible plate 190 adjacent to the first bladder 160 a. The force F flexes the flexible plate 190 and the flexible member 198 downward and is accordingly applied to a perimeter region of the workpiece 12.
  • The magnitude of the force F is determined by the strength of the magnetic field, the type of magnetic fluid 110, the amount of magnetic fluid 110 in the bladder 160, and other factors. The greater the magnetic field strength, the greater the magnitude of the force F. The location of the force F and the area over which the force F is applied to the workpiece 12 are determined by the location and size of the magnetic field and the bladder 160. In other embodiments, a plurality of discrete forces can be applied concurrently to the workpiece 12. As discussed above, the magnetic field sources 100 can generate magnetic fields and the associated forces in real time based on the profile of the workpiece. Furthermore, if previously polished workpieces have areas with consistent high points, the carrier assembly 130 can exert a greater downward force in those areas compared to low points to create a more uniformly planar surface on the workpiece.
  • FIGS. 5A-5C are schematic top views of various bladders for use with carrier assemblies in accordance with additional embodiments of the invention. For example, FIG. 5A illustrates a single circular bladder 260 having a cavity to receive a magnetic fluid. FIG. 5B is a schematic top view of a plurality of bladders 360 (identified individually as 360 a-d) in accordance with another embodiment of the invention. The bladders 360 include a first bladder 360 a, a second bladder 360 b, a third bladder 360 c, and a fourth bladder 360 d forming quadrants of a circle. Each bladder 360 has a separate cavity to receive a magnetic fluid.
  • FIG. 5C is a schematic top view of a plurality of bladders 460 in accordance with another embodiment of the invention. The bladders 460 are arranged in a grid with columns 506 and rows 508. Each bladder 460 has a first side 466, a second side 467, a third side 468, and a fourth side 469, and each bladder 460 has a cavity to receive a magnetic fluid. The first side 466 of one bladder 460 can contact or be spaced apart from the third side 468 of an adjacent bladder 460. In the illustrated embodiment, the bladders 460 proximate to the perimeter have a curved side 463 corresponding to the curvature of the chamber 114 (FIG. 2) in the carrier assembly 130 (FIG. 2). In other embodiments, the bladders can have other configurations, such as a hexagonal or pentagonal shape.
  • FIG. 6 is a schematic cross-sectional side view of a carrier assembly 530 in accordance with another embodiment of the invention. The carrier assembly 530 is similar to the carrier assembly 130 described above with reference to FIG. 2. For example, the carrier assembly 530 includes a head 532, a chamber 514 in the head 532, a first bladder 560 a in the chamber 514, and a second bladder 560 b in the chamber 514. The first and second bladders 560 a-b each include a cavity 570 containing the magnetic fluid 110. The carrier assembly 530 also includes a first magnetic field source 500 a carried by the first bladder 560 a and a second magnetic field source 500 b carried by the second bladder 560 b. In one aspect of this embodiment, the first magnetic field source 500 a has an annular shape and surrounds the second magnetic field source 500 b. Each magnetic field source 500 can be a permanent magnet, an electromagnet, an electrical coil, or any other device that creates a magnetic field in the cavities 570. In additional embodiments, the magnetic field sources can be a single source or a plurality of sources with various configurations, such as those discussed below with reference to FIGS. 7A-7D. In other embodiments, the magnetic field sources can be external to the chamber 514, such as being positioned in or above the head 532.
  • FIGS. 7A-7D are schematic views of various magnetic field sources for use with carrier assemblies in accordance with additional embodiments of the invention. For example, FIG. 7A illustrates a single circular magnetic field source 600, such as a permanent magnet or electromagnet. FIG. 7B is a schematic top view of four magnetic field sources (identified individually as 700 a-d) arranged in quadrants. Each magnetic field source 700 can selectively generate a magnetic field. FIG. 7C is a schematic top view of a plurality of magnetic field sources 800 arranged in a grid with columns 806 and rows 808. In other embodiments, the size of each magnetic field source 800 can be decreased to increase the resolution of the magnetic fields. FIG. 7D is a schematic isometric view of a magnetic field source 900 including an electrically conductive coil 901. The magnetic field source 900 can have an air core, or the coil 901 can be wound around an inductive core 902 to form a magnetic field having a higher flux density. In other embodiments, magnetic field sources can have other configurations.
  • One advantage of the illustrated embodiments is the ability to apply highly localized forces to the workpiece with a quick response time. This highly localized force control enables the CMP process to consistently and accurately produce a uniformly planar surface on the workpiece. Moreover, the localized forces can be changed in situ during a CMP cycle. For example, a polishing machine having one of the illustrated carrier assemblies can monitor the planarizing rates and/or the surface of the workpiece and adjust accordingly the magnitude and position of the forces applied to the workpiece to produce a planar surface. Another advantage of the illustrated carrier assemblies is that they are simpler than existing systems and, consequently, reduce downtime for maintenance and/or repair and create greater throughput.
  • From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims (15)

1-61. (Canceled)
62. A method for polishing a micro-device workpiece with a polishing machine having a carrier head and a polishing pad, the method comprising:
moving at least one of the carrier head and the polishing pad relative to the other to rub the micro-device workpiece against the polishing pad, wherein the carrier head comprises a chamber and a magnetorheological fluid in the chamber; and
exerting a force against a back side of the micro-device workpiece by generating a magnetic field in the carrier head that changes the viscosity of the magnetorheological fluid in the chamber of the carrier head.
63. The method of claim 62 wherein exerting the force against the back side of the micro-device workpiece comprises providing power to an electrically conductive coil to generate the magnetic field.
64. The method of claim 62 wherein exerting the force against the back side of the micro-device workpiece comprises generating the magnetic field with a magnet.
65. The method of claim 62 wherein exerting the force against the back side of the micro-device workpiece comprises increasing the viscosity of the magnetorheological fluid in a fluid cell within the chamber in response to the magnetic field.
66. The method of claim 62 wherein exerting the force against the back side of the micro-device workpiece comprises generating the magnetic field in a fluid cell within the chamber of the carrier head to exert the force against a portion of the back side of the micro-device workpiece adjacent to the fluid cell.
67. A method for polishing a micro-device workpiece, comprising:
moving at least one of a carrier head and a polishing pad relative to the other to rub the micro-device workpiece against the polishing pad, wherein the carrier head comprises a magnetic field source, a chamber, a fluid in the chamber, and a flexible member positioned proximate to the micro-device workpiece; and
applying pressure against a back side of the micro-device workpiece by causing the magnetic field source to generate a magnetic field that increases the viscosity of the fluid in the chamber.
68. The method of claim 67 wherein applying pressure against the back side of the micro-device workpiece comprises increasing the viscosity of a magnetorheological fluid in the chamber.
69. The method of claim 67 wherein applying pressure against the back side of the micro-device workpiece comprises providing power to an electrically conductive coil to generate the magnetic field.
70. The method of claim 67 wherein applying pressure against the back side of the micro-device workpiece comprises generating the magnetic field with a magnet.
71. The method of claim 67 wherein applying pressure against the back side of the micro-device workpiece comprises generating the magnetic field in a fluid cell within the chamber of the carrier head to exert the force against a portion of the back side of the micro-device workpiece adjacent to the fluid cell.
72. A method for manufacturing a carrier head for use on a polishing machine to retain a micro-device workpiece during mechanical or chemical-mechanical polishing, comprising:
coupling a magnetic field source configured to generate a magnetic field to the carrier head; and
disposing a magnetorheological fluid within a chamber in the carrier head.
73. The method of claim 72 wherein disposing the magnetorheological fluid comprises depositing the magnetorheological fluid into first and second fluid cells arranged concentrically within the chamber.
74. The method of claim 72 wherein disposing the magnetorheological fluid comprises depositing the magnetorheological fluid into first and second fluid cells arranged in a grid within the chamber.
75. The method of claim 72 wherein coupling the magnetic field source comprises coupling an electrically conductive coil to the carrier head.
US10/925,599 2003-01-16 2004-08-23 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces Expired - Fee Related US7033251B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/925,599 US7033251B2 (en) 2003-01-16 2004-08-23 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces
US11/187,280 US7255630B2 (en) 2003-01-16 2005-07-22 Methods of manufacturing carrier heads for polishing micro-device workpieces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/346,233 US7074114B2 (en) 2003-01-16 2003-01-16 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces
US10/925,599 US7033251B2 (en) 2003-01-16 2004-08-23 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/346,233 Division US7074114B2 (en) 2003-01-16 2003-01-16 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/187,280 Division US7255630B2 (en) 2003-01-16 2005-07-22 Methods of manufacturing carrier heads for polishing micro-device workpieces

Publications (2)

Publication Number Publication Date
US20050026544A1 true US20050026544A1 (en) 2005-02-03
US7033251B2 US7033251B2 (en) 2006-04-25

Family

ID=32712092

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/346,233 Expired - Lifetime US7074114B2 (en) 2003-01-16 2003-01-16 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces
US10/925,599 Expired - Fee Related US7033251B2 (en) 2003-01-16 2004-08-23 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces
US11/187,280 Expired - Fee Related US7255630B2 (en) 2003-01-16 2005-07-22 Methods of manufacturing carrier heads for polishing micro-device workpieces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/346,233 Expired - Lifetime US7074114B2 (en) 2003-01-16 2003-01-16 Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/187,280 Expired - Fee Related US7255630B2 (en) 2003-01-16 2005-07-22 Methods of manufacturing carrier heads for polishing micro-device workpieces

Country Status (1)

Country Link
US (3) US7074114B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118930A1 (en) * 2002-08-23 2005-06-02 Nagasubramaniyan Chandrasekaran Carrier assemblies, planarizing apparatuses including carrier assemblies, and methods for planarizing micro-device workpieces
CN105014484A (en) * 2015-08-17 2015-11-04 宇环数控机床股份有限公司 Magnetic field generation device of magnetorheological polishing equipment
US20160330453A1 (en) * 2015-05-05 2016-11-10 Cisco Technology, Inc. Parameter Set Header
WO2017028824A1 (en) * 2015-08-17 2017-02-23 宇环数控机床股份有限公司 Magnetic field generation apparatus of magnetorheological finishing device
CN109048506A (en) * 2018-08-10 2018-12-21 太原理工大学 A kind of magneto liquid-magnetic abrasive tool surface finishing device and method
WO2021035971A1 (en) * 2019-08-29 2021-03-04 广东工业大学 Electromagnetic coupling device, polishing device having same, and electromagnetic rheological property measuring device
CN113263438A (en) * 2021-05-20 2021-08-17 湘潭大学 Bearing head for controlling polishing pressure and using method thereof
CN113752098A (en) * 2021-09-29 2021-12-07 哈尔滨工业大学 Water-bath heating-assisted small ball head magnetorheological polishing method

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062098B2 (en) * 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
US7074114B2 (en) * 2003-01-16 2006-07-11 Micron Technology, Inc. Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces
US7108591B1 (en) * 2004-03-31 2006-09-19 Lam Research Corporation Compliant wafer chuck
US7252736B1 (en) * 2004-03-31 2007-08-07 Lam Research Corporation Compliant grinding wheel
US20060189257A1 (en) * 2005-02-22 2006-08-24 Lsi Logic Corporation Systems and methods for wafer polishing
US7201633B2 (en) * 2005-02-22 2007-04-10 Lsi Logic Corporation Systems and methods for wafer polishing
US7537511B2 (en) * 2006-03-14 2009-05-26 Micron Technology, Inc. Embedded fiber acoustic sensor for CMP process endpoint
JP5392483B2 (en) * 2009-08-31 2014-01-22 不二越機械工業株式会社 Polishing equipment
US20110151114A1 (en) * 2009-12-18 2011-06-23 Cooledge Lighting, Inc. Composite patterning device and method for removing elements from host substrate by establishing conformal contact between device and a contact surface
US8758088B2 (en) 2011-10-06 2014-06-24 Wayne O. Duescher Floating abrading platen configuration
US8500515B2 (en) * 2010-03-12 2013-08-06 Wayne O. Duescher Fixed-spindle and floating-platen abrasive system using spherical mounts
US8740668B2 (en) * 2010-03-12 2014-06-03 Wayne O. Duescher Three-point spindle-supported floating abrasive platen
US8602842B2 (en) * 2010-03-12 2013-12-10 Wayne O. Duescher Three-point fixed-spindle floating-platen abrasive system
US8696405B2 (en) 2010-03-12 2014-04-15 Wayne O. Duescher Pivot-balanced floating platen lapping machine
US8647172B2 (en) 2010-03-12 2014-02-11 Wayne O. Duescher Wafer pads for fixed-spindle floating-platen lapping
US8641476B2 (en) 2011-10-06 2014-02-04 Wayne O. Duescher Coplanar alignment apparatus for rotary spindles
US8647171B2 (en) * 2010-03-12 2014-02-11 Wayne O. Duescher Fixed-spindle floating-platen workpiece loader apparatus
US8647170B2 (en) 2011-10-06 2014-02-11 Wayne O. Duescher Laser alignment apparatus for rotary spindles
WO2011162893A2 (en) * 2010-06-23 2011-12-29 University Of Florida Research Foundation, Inc. Finishing technique
US8337280B2 (en) 2010-09-14 2012-12-25 Duescher Wayne O High speed platen abrading wire-driven rotary workholder
US8430717B2 (en) 2010-10-12 2013-04-30 Wayne O. Duescher Dynamic action abrasive lapping workholder
US9011207B2 (en) 2012-10-29 2015-04-21 Wayne O. Duescher Flexible diaphragm combination floating and rigid abrading workholder
US8998678B2 (en) 2012-10-29 2015-04-07 Wayne O. Duescher Spider arm driven flexible chamber abrading workholder
US8998677B2 (en) 2012-10-29 2015-04-07 Wayne O. Duescher Bellows driven floatation-type abrading workholder
US9199354B2 (en) 2012-10-29 2015-12-01 Wayne O. Duescher Flexible diaphragm post-type floating and rigid abrading workholder
US9233452B2 (en) 2012-10-29 2016-01-12 Wayne O. Duescher Vacuum-grooved membrane abrasive polishing wafer workholder
US9604339B2 (en) 2012-10-29 2017-03-28 Wayne O. Duescher Vacuum-grooved membrane wafer polishing workholder
US8845394B2 (en) 2012-10-29 2014-09-30 Wayne O. Duescher Bellows driven air floatation abrading workholder
US9039488B2 (en) 2012-10-29 2015-05-26 Wayne O. Duescher Pin driven flexible chamber abrading workholder
JP5538601B1 (en) * 2013-08-22 2014-07-02 ミクロ技研株式会社 Polishing head and polishing processing apparatus
US9272386B2 (en) 2013-10-18 2016-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Polishing head, and chemical-mechanical polishing system for polishing substrate
US9962805B2 (en) * 2016-04-22 2018-05-08 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing apparatus and method
WO2018080764A1 (en) * 2016-10-28 2018-05-03 Applied Materials, Inc. Core configuration with alternating posts for in-situ electromagnetic induction monitoring system
US10926378B2 (en) 2017-07-08 2021-02-23 Wayne O. Duescher Abrasive coated disk islands using magnetic font sheet
KR101994029B1 (en) * 2018-01-02 2019-09-30 인하대학교 산학협력단 Flat surface grinding apparatus
CN108381334B (en) * 2018-06-06 2023-05-05 广东工业大学 Polishing device for cylindrical mirror arc surface
US11571779B2 (en) * 2018-06-21 2023-02-07 University Of Florida Research Foundation, Incorporated Magnetic-field-guidance system
CN110170887B (en) * 2019-06-19 2023-11-14 河北工业大学 Laser and magnetorheological fluid coupling polishing device
US11691241B1 (en) * 2019-08-05 2023-07-04 Keltech Engineering, Inc. Abrasive lapping head with floating and rigid workpiece carrier
JP2021041485A (en) * 2019-09-10 2021-03-18 キオクシア株式会社 Polishing device
CN110722428B (en) * 2019-10-23 2021-09-07 中国科学院光电技术研究所 Magnetorheological sub-aperture polishing device suitable for large-aperture optical element
CN113977437A (en) * 2021-10-09 2022-01-28 广东工业大学 Polishing device and gold finger surface polishing method using same
CN115946032B (en) * 2022-12-07 2023-09-15 长春工业大学 Small grinding head type magnetorheological polishing device and polishing method

Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036015A (en) * 1990-09-24 1991-07-30 Micron Technology, Inc. Method of endpoint detection during chemical/mechanical planarization of semiconductor wafers
US5081796A (en) * 1990-08-06 1992-01-21 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US5222875A (en) * 1991-05-31 1993-06-29 Praxair Technology, Inc. Variable speed hydraulic pump system for liquid trailer
US5232875A (en) * 1992-10-15 1993-08-03 Micron Technology, Inc. Method and apparatus for improving planarity of chemical-mechanical planarization operations
US5234867A (en) * 1992-05-27 1993-08-10 Micron Technology, Inc. Method for planarizing semiconductor wafers with a non-circular polishing pad
US5240552A (en) * 1991-12-11 1993-08-31 Micron Technology, Inc. Chemical mechanical planarization (CMP) of a semiconductor wafer using acoustical waves for in-situ end point detection
US5413941A (en) * 1994-01-06 1995-05-09 Micron Technology, Inc. Optical end point detection methods in semiconductor planarizing polishing processes
US5433651A (en) * 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
US5439551A (en) * 1994-03-02 1995-08-08 Micron Technology, Inc. Chemical-mechanical polishing techniques and methods of end point detection in chemical-mechanical polishing processes
US5486129A (en) * 1993-08-25 1996-01-23 Micron Technology, Inc. System and method for real-time control of semiconductor a wafer polishing, and a polishing head
US5514245A (en) * 1992-01-27 1996-05-07 Micron Technology, Inc. Method for chemical planarization (CMP) of a semiconductor wafer to provide a planar surface free of microscratches
US5533924A (en) * 1994-09-01 1996-07-09 Micron Technology, Inc. Polishing apparatus, a polishing wafer carrier apparatus, a replacable component for a particular polishing apparatus and a process of polishing wafers
US5540810A (en) * 1992-12-11 1996-07-30 Micron Technology Inc. IC mechanical planarization process incorporating two slurry compositions for faster material removal times
US5609718A (en) * 1995-09-29 1997-03-11 Micron Technology, Inc. Method and apparatus for measuring a change in the thickness of polishing pads used in chemical-mechanical planarization of semiconductor wafers
US5618381A (en) * 1992-01-24 1997-04-08 Micron Technology, Inc. Multiple step method of chemical-mechanical polishing which minimizes dishing
US5618447A (en) * 1996-02-13 1997-04-08 Micron Technology, Inc. Polishing pad counter meter and method for real-time control of the polishing rate in chemical-mechanical polishing of semiconductor wafers
US5643053A (en) * 1993-12-27 1997-07-01 Applied Materials, Inc. Chemical mechanical polishing apparatus with improved polishing control
US5643060A (en) * 1993-08-25 1997-07-01 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including heater
US5643048A (en) * 1996-02-13 1997-07-01 Micron Technology, Inc. Endpoint regulator and method for regulating a change in wafer thickness in chemical-mechanical planarization of semiconductor wafers
US5658190A (en) * 1995-12-15 1997-08-19 Micron Technology, Inc. Apparatus for separating wafers from polishing pads used in chemical-mechanical planarization of semiconductor wafers
US5658183A (en) * 1993-08-25 1997-08-19 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical monitoring
US5738562A (en) * 1996-01-24 1998-04-14 Micron Technology, Inc. Apparatus and method for planar end-point detection during chemical-mechanical polishing
US5747386A (en) * 1996-10-03 1998-05-05 Micron Technology, Inc. Rotary coupling
US5777739A (en) * 1996-02-16 1998-07-07 Micron Technology, Inc. Endpoint detector and method for measuring a change in wafer thickness in chemical-mechanical polishing of semiconductor wafers
US5792709A (en) * 1995-12-19 1998-08-11 Micron Technology, Inc. High-speed planarizing apparatus and method for chemical mechanical planarization of semiconductor wafers
US5855804A (en) * 1996-12-06 1999-01-05 Micron Technology, Inc. Method and apparatus for stopping mechanical and chemical-mechanical planarization of substrates at desired endpoints
US5868896A (en) * 1996-11-06 1999-02-09 Micron Technology, Inc. Chemical-mechanical planarization machine and method for uniformly planarizing semiconductor wafers
US5893550A (en) * 1997-06-03 1999-04-13 Precision Sports, Inc. Portable snowboard and ski fixture
US5910846A (en) * 1996-05-16 1999-06-08 Micron Technology, Inc. Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers
US5916012A (en) * 1996-04-26 1999-06-29 Lam Research Corporation Control of chemical-mechanical polishing rate across a substrate surface for a linear polisher
US5930699A (en) * 1996-11-12 1999-07-27 Ericsson Inc. Address retrieval system
US6039633A (en) * 1998-10-01 2000-03-21 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies
US6046111A (en) * 1998-09-02 2000-04-04 Micron Technology, Inc. Method and apparatus for endpointing mechanical and chemical-mechanical planarization of microelectronic substrates
US6054015A (en) * 1996-10-31 2000-04-25 Micron Technology, Inc. Apparatus for loading and unloading substrates to a chemical-mechanical planarization machine
US6057602A (en) * 1996-02-28 2000-05-02 Micron Technology, Inc. Low friction polish-stop stratum for endpointing chemical-mechanical planarization processing of semiconductor wafers
US6059638A (en) * 1999-01-25 2000-05-09 Lucent Technologies Inc. Magnetic force carrier and ring for a polishing apparatus
US6066030A (en) * 1999-03-04 2000-05-23 International Business Machines Corporation Electroetch and chemical mechanical polishing equipment
US6074286A (en) * 1998-01-05 2000-06-13 Micron Technology, Inc. Wafer processing apparatus and method of processing a wafer utilizing a processing slurry
US6083085A (en) * 1997-12-22 2000-07-04 Micron Technology, Inc. Method and apparatus for planarizing microelectronic substrates and conditioning planarizing media
US6176992B1 (en) * 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
US6180525B1 (en) * 1998-08-19 2001-01-30 Micron Technology, Inc. Method of minimizing repetitive chemical-mechanical polishing scratch marks and of processing a semiconductor wafer outer surface
US6184571B1 (en) * 1998-10-27 2001-02-06 Micron Technology, Inc. Method and apparatus for endpointing planarization of a microelectronic substrate
US6187681B1 (en) * 1998-10-14 2001-02-13 Micron Technology, Inc. Method and apparatus for planarization of a substrate
US6191037B1 (en) * 1998-09-03 2001-02-20 Micron Technology, Inc. Methods, apparatuses and substrate assembly structures for fabricating microelectronic components using mechanical and chemical-mechanical planarization processes
US6190494B1 (en) * 1998-07-29 2001-02-20 Micron Technology, Inc. Method and apparatus for electrically endpointing a chemical-mechanical planarization process
US6193588B1 (en) * 1998-09-02 2001-02-27 Micron Technology, Inc. Method and apparatus for planarizing and cleaning microelectronic substrates
US6200901B1 (en) * 1998-06-10 2001-03-13 Micron Technology, Inc. Polishing polymer surfaces on non-porous CMP pads
US6203413B1 (en) * 1999-01-13 2001-03-20 Micron Technology, Inc. Apparatus and methods for conditioning polishing pads in mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6203404B1 (en) * 1999-06-03 2001-03-20 Micron Technology, Inc. Chemical mechanical polishing methods
US6203407B1 (en) * 1998-09-03 2001-03-20 Micron Technology, Inc. Method and apparatus for increasing-chemical-polishing selectivity
US6206754B1 (en) * 1999-08-31 2001-03-27 Micron Technology, Inc. Endpoint detection apparatus, planarizing machines with endpointing apparatus, and endpointing methods for mechanical or chemical-mechanical planarization of microelectronic substrate assemblies
US6206756B1 (en) * 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6210257B1 (en) * 1998-05-29 2001-04-03 Micron Technology, Inc. Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
US6213845B1 (en) * 1999-04-26 2001-04-10 Micron Technology, Inc. Apparatus for in-situ optical endpointing on web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies and methods for making and using same
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6224466B1 (en) * 1998-02-02 2001-05-01 Micron Technology, Inc. Methods of polishing materials, methods of slowing a rate of material removal of a polishing process
US6227955B1 (en) * 1999-04-20 2001-05-08 Micron Technology, Inc. Carrier heads, planarizing machines and methods for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6234868B1 (en) * 1999-04-30 2001-05-22 Lucent Technologies Inc. Apparatus and method for conditioning a polishing pad
US6234877B1 (en) * 1997-06-09 2001-05-22 Micron Technology, Inc. Method of chemical mechanical polishing
US6237483B1 (en) * 1995-11-17 2001-05-29 Micron Technology, Inc. Global planarization method and apparatus
US6251785B1 (en) * 1995-06-02 2001-06-26 Micron Technology, Inc. Apparatus and method for polishing a semiconductor wafer in an overhanging position
US6250994B1 (en) * 1998-10-01 2001-06-26 Micron Technology, Inc. Methods and apparatuses for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies on planarizing pads
US6261163B1 (en) * 1999-08-30 2001-07-17 Micron Technology, Inc. Web-format planarizing machines and methods for planarizing microelectronic substrate assemblies
US6261151B1 (en) * 1993-08-25 2001-07-17 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6267650B1 (en) * 1999-08-09 2001-07-31 Micron Technology, Inc. Apparatus and methods for substantial planarization of solder bumps
US6350180B2 (en) * 1999-08-31 2002-02-26 Micron Technology, Inc. Methods for predicting polishing parameters of polishing pads, and methods and machines for planarizing microelectronic substrate assemblies in mechanical or chemical-mechanical planarization
US6352466B1 (en) * 1998-08-31 2002-03-05 Micron Technology, Inc. Method and apparatus for wireless transfer of chemical-mechanical planarization measurements
US6354930B1 (en) * 1997-12-30 2002-03-12 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6354928B1 (en) * 2000-04-21 2002-03-12 Agere Systems Guardian Corp. Polishing apparatus with carrier ring and carrier head employing like polarities
US6358129B2 (en) * 1998-11-11 2002-03-19 Micron Technology, Inc. Backing members and planarizing machines for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies, and methods of making and using such backing members
US6358122B1 (en) * 1999-08-31 2002-03-19 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates with metal compound abrasives
US6361417B2 (en) * 1999-08-31 2002-03-26 Micron Technology, Inc. Method and apparatus for supporting a polishing pad during chemical-mechanical planarization of microelectronic substrates
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
US6368194B1 (en) * 1998-07-23 2002-04-09 Micron Technology, Inc. Apparatus for controlling PH during planarization and cleaning of microelectronic substrates
US6368197B2 (en) * 1999-08-31 2002-04-09 Micron Technology, Inc. Method and apparatus for supporting and cleaning a polishing pad for chemical-mechanical planarization of microelectronic substrates
US6376381B1 (en) * 1999-08-31 2002-04-23 Micron Technology, Inc. Planarizing solutions, planarizing machines, and methods for mechanical and/or chemical-mechanical planarization of microelectronic substrate assemblies
US6387289B1 (en) * 2000-05-04 2002-05-14 Micron Technology, Inc. Planarizing machines and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6402884B1 (en) * 1999-04-09 2002-06-11 Micron Technology, Inc. Planarizing solutions, planarizing machines and methods for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6402978B1 (en) * 1999-05-06 2002-06-11 Mpm Ltd. Magnetic polishing fluids for polishing metal substrates
US6579799B2 (en) * 2000-04-26 2003-06-17 Micron Technology, Inc. Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US20040038625A1 (en) * 2002-08-23 2004-02-26 Nagasubramaniyan Chandrasekaran Carrier assemblies, planarizing apparatuses including carrier assemblies, and methods for planarizing micro-device workpieces
US20040077292A1 (en) * 2002-10-21 2004-04-22 Kim Andrew Tae Real-time polishing pad stiffness control using magnetically controllable fluid
US20040142635A1 (en) * 2003-01-16 2004-07-22 Elledge Jason B. Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34425E (en) 1990-08-06 1993-11-02 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US5069002A (en) 1991-04-17 1991-12-03 Micron Technology, Inc. Apparatus for endpoint detection during mechanical planarization of semiconductor wafers
US5244534A (en) 1992-01-24 1993-09-14 Micron Technology, Inc. Two-step chemical mechanical polishing process for producing flush and protruding tungsten plugs
US5245790A (en) 1992-02-14 1993-09-21 Lsi Logic Corporation Ultrasonic energy enhanced chemi-mechanical polishing of silicon wafers
US5222329A (en) 1992-03-26 1993-06-29 Micron Technology, Inc. Acoustical method and system for detecting and controlling chemical-mechanical polishing (CMP) depths into layers of conductors, semiconductors, and dielectric materials
US5245796A (en) 1992-04-02 1993-09-21 At&T Bell Laboratories Slurry polisher using ultrasonic agitation
US5449314A (en) 1994-04-25 1995-09-12 Micron Technology, Inc. Method of chimical mechanical polishing for dielectric layers
US5795495A (en) 1994-04-25 1998-08-18 Micron Technology, Inc. Method of chemical mechanical polishing for dielectric layers
US5607341A (en) * 1994-08-08 1997-03-04 Leach; Michael A. Method and structure for polishing a wafer during manufacture of integrated circuits
US6110820A (en) 1995-06-07 2000-08-29 Micron Technology, Inc. Low scratch density chemical mechanical planarization process
US5681215A (en) * 1995-10-27 1997-10-28 Applied Materials, Inc. Carrier head design for a chemical mechanical polishing apparatus
US5668061A (en) 1995-08-16 1997-09-16 Xerox Corporation Method of back cutting silicon wafers during a dicing procedure
US6135856A (en) 1996-01-19 2000-10-24 Micron Technology, Inc. Apparatus and method for semiconductor planarization
US5679065A (en) 1996-02-23 1997-10-21 Micron Technology, Inc. Wafer carrier having carrier ring adapted for uniform chemical-mechanical planarization of semiconductor wafers
US5663797A (en) 1996-05-16 1997-09-02 Micron Technology, Inc. Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers
US5893754A (en) 1996-05-21 1999-04-13 Micron Technology, Inc. Method for chemical-mechanical planarization of stop-on-feature semiconductor wafers
US5871392A (en) 1996-06-13 1999-02-16 Micron Technology, Inc. Under-pad for chemical-mechanical planarization of semiconductor wafers
US5658186A (en) 1996-07-16 1997-08-19 Sterling Diagnostic Imaging, Inc. Jig for polishing the edge of a thin solid state array panel
US5830806A (en) 1996-10-18 1998-11-03 Micron Technology, Inc. Wafer backing member for mechanical and chemical-mechanical planarization of substrates
US5972792A (en) 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5895550A (en) 1996-12-16 1999-04-20 Micron Technology, Inc. Ultrasonic processing of chemical mechanical polishing slurries
US5807165A (en) 1997-03-26 1998-09-15 International Business Machines Corporation Method of electrochemical mechanical planarization
US6007408A (en) 1997-08-21 1999-12-28 Micron Technology, Inc. Method and apparatus for endpointing mechanical and chemical-mechanical polishing of substrates
US5931719A (en) * 1997-08-25 1999-08-03 Lsi Logic Corporation Method and apparatus for using pressure differentials through a polishing pad to improve performance in chemical mechanical polishing
US5931718A (en) 1997-09-30 1999-08-03 The Board Of Regents Of Oklahoma State University Magnetic float polishing processes and materials therefor
US5997384A (en) 1997-12-22 1999-12-07 Micron Technology, Inc. Method and apparatus for controlling planarizing characteristics in mechanical and chemical-mechanical planarization of microelectronic substrates
JPH11291165A (en) * 1998-04-10 1999-10-26 Toshiba Corp Polishing device and polishing method
US6143155A (en) 1998-06-11 2000-11-07 Speedfam Ipec Corp. Method for simultaneous non-contact electrochemical plating and planarizing of semiconductor wafers using a bipiolar electrode assembly
US6152808A (en) 1998-08-25 2000-11-28 Micron Technology, Inc. Microelectronic substrate polishing systems, semiconductor wafer polishing systems, methods of polishing microelectronic substrates, and methods of polishing wafers
US6602380B1 (en) * 1998-10-28 2003-08-05 Micron Technology, Inc. Method and apparatus for releasably attaching a polishing pad to a chemical-mechanical planarization machine
US6297159B1 (en) * 1999-07-07 2001-10-02 Advanced Micro Devices, Inc. Method and apparatus for chemical polishing using field responsive materials
US6436828B1 (en) * 2000-05-04 2002-08-20 Applied Materials, Inc. Chemical mechanical polishing using magnetic force
US6358118B1 (en) * 2000-06-30 2002-03-19 Lam Research Corporation Field controlled polishing apparatus and method
US6609947B1 (en) * 2000-08-30 2003-08-26 Micron Technology, Inc. Planarizing machines and control systems for mechanical and/or chemical-mechanical planarization of micro electronic substrates
US6447369B1 (en) * 2000-08-30 2002-09-10 Micron Technology, Inc. Planarizing machines and alignment systems for mechanical and/or chemical-mechanical planarization of microelectronic substrates

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421769A (en) * 1990-01-22 1995-06-06 Micron Technology, Inc. Apparatus for planarizing semiconductor wafers, and a polishing pad for a planarization apparatus
US5081796A (en) * 1990-08-06 1992-01-21 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US5036015A (en) * 1990-09-24 1991-07-30 Micron Technology, Inc. Method of endpoint detection during chemical/mechanical planarization of semiconductor wafers
US5222875A (en) * 1991-05-31 1993-06-29 Praxair Technology, Inc. Variable speed hydraulic pump system for liquid trailer
US5240552A (en) * 1991-12-11 1993-08-31 Micron Technology, Inc. Chemical mechanical planarization (CMP) of a semiconductor wafer using acoustical waves for in-situ end point detection
US5618381A (en) * 1992-01-24 1997-04-08 Micron Technology, Inc. Multiple step method of chemical-mechanical polishing which minimizes dishing
US5514245A (en) * 1992-01-27 1996-05-07 Micron Technology, Inc. Method for chemical planarization (CMP) of a semiconductor wafer to provide a planar surface free of microscratches
US5234867A (en) * 1992-05-27 1993-08-10 Micron Technology, Inc. Method for planarizing semiconductor wafers with a non-circular polishing pad
US5232875A (en) * 1992-10-15 1993-08-03 Micron Technology, Inc. Method and apparatus for improving planarity of chemical-mechanical planarization operations
US6040245A (en) * 1992-12-11 2000-03-21 Micron Technology, Inc. IC mechanical planarization process incorporating two slurry compositions for faster material removal times
US5540810A (en) * 1992-12-11 1996-07-30 Micron Technology Inc. IC mechanical planarization process incorporating two slurry compositions for faster material removal times
US5658183A (en) * 1993-08-25 1997-08-19 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical monitoring
US5643060A (en) * 1993-08-25 1997-07-01 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including heater
US5486129A (en) * 1993-08-25 1996-01-23 Micron Technology, Inc. System and method for real-time control of semiconductor a wafer polishing, and a polishing head
US6338667B2 (en) * 1993-08-25 2002-01-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6261151B1 (en) * 1993-08-25 2001-07-17 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5730642A (en) * 1993-08-25 1998-03-24 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical montoring
US5433651A (en) * 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
US5643053A (en) * 1993-12-27 1997-07-01 Applied Materials, Inc. Chemical mechanical polishing apparatus with improved polishing control
US5413941A (en) * 1994-01-06 1995-05-09 Micron Technology, Inc. Optical end point detection methods in semiconductor planarizing polishing processes
US5439551A (en) * 1994-03-02 1995-08-08 Micron Technology, Inc. Chemical-mechanical polishing techniques and methods of end point detection in chemical-mechanical polishing processes
US5533924A (en) * 1994-09-01 1996-07-09 Micron Technology, Inc. Polishing apparatus, a polishing wafer carrier apparatus, a replacable component for a particular polishing apparatus and a process of polishing wafers
US6251785B1 (en) * 1995-06-02 2001-06-26 Micron Technology, Inc. Apparatus and method for polishing a semiconductor wafer in an overhanging position
US5609718A (en) * 1995-09-29 1997-03-11 Micron Technology, Inc. Method and apparatus for measuring a change in the thickness of polishing pads used in chemical-mechanical planarization of semiconductor wafers
US6237483B1 (en) * 1995-11-17 2001-05-29 Micron Technology, Inc. Global planarization method and apparatus
US5658190A (en) * 1995-12-15 1997-08-19 Micron Technology, Inc. Apparatus for separating wafers from polishing pads used in chemical-mechanical planarization of semiconductor wafers
US5882248A (en) * 1995-12-15 1999-03-16 Micron Technology, Inc. Apparatus for separating wafers from polishing pads used in chemical-mechanical planarization of semiconductor wafers
US5792709A (en) * 1995-12-19 1998-08-11 Micron Technology, Inc. High-speed planarizing apparatus and method for chemical mechanical planarization of semiconductor wafers
US5738562A (en) * 1996-01-24 1998-04-14 Micron Technology, Inc. Apparatus and method for planar end-point detection during chemical-mechanical polishing
US5643048A (en) * 1996-02-13 1997-07-01 Micron Technology, Inc. Endpoint regulator and method for regulating a change in wafer thickness in chemical-mechanical planarization of semiconductor wafers
US5618447A (en) * 1996-02-13 1997-04-08 Micron Technology, Inc. Polishing pad counter meter and method for real-time control of the polishing rate in chemical-mechanical polishing of semiconductor wafers
US5777739A (en) * 1996-02-16 1998-07-07 Micron Technology, Inc. Endpoint detector and method for measuring a change in wafer thickness in chemical-mechanical polishing of semiconductor wafers
US6208425B1 (en) * 1996-02-16 2001-03-27 Micron Technology, Inc. Endpoint detector and method for measuring a change in wafer thickness in chemical-mechanical polishing of semiconductor wafers
US6057602A (en) * 1996-02-28 2000-05-02 Micron Technology, Inc. Low friction polish-stop stratum for endpointing chemical-mechanical planarization processing of semiconductor wafers
US5916012A (en) * 1996-04-26 1999-06-29 Lam Research Corporation Control of chemical-mechanical polishing rate across a substrate surface for a linear polisher
US5910846A (en) * 1996-05-16 1999-06-08 Micron Technology, Inc. Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers
US6191864B1 (en) * 1996-05-16 2001-02-20 Micron Technology, Inc. Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers
US5747386A (en) * 1996-10-03 1998-05-05 Micron Technology, Inc. Rotary coupling
US6054015A (en) * 1996-10-31 2000-04-25 Micron Technology, Inc. Apparatus for loading and unloading substrates to a chemical-mechanical planarization machine
US5868896A (en) * 1996-11-06 1999-02-09 Micron Technology, Inc. Chemical-mechanical planarization machine and method for uniformly planarizing semiconductor wafers
US5930699A (en) * 1996-11-12 1999-07-27 Ericsson Inc. Address retrieval system
US5855804A (en) * 1996-12-06 1999-01-05 Micron Technology, Inc. Method and apparatus for stopping mechanical and chemical-mechanical planarization of substrates at desired endpoints
US6206769B1 (en) * 1996-12-06 2001-03-27 Micron Technology, Inc. Method and apparatus for stopping mechanical and chemical mechanical planarization of substrates at desired endpoints
US5893550A (en) * 1997-06-03 1999-04-13 Precision Sports, Inc. Portable snowboard and ski fixture
US6234877B1 (en) * 1997-06-09 2001-05-22 Micron Technology, Inc. Method of chemical mechanical polishing
US6083085A (en) * 1997-12-22 2000-07-04 Micron Technology, Inc. Method and apparatus for planarizing microelectronic substrates and conditioning planarizing media
US6354923B1 (en) * 1997-12-22 2002-03-12 Micron Technology, Inc. Apparatus for planarizing microelectronic substrates and conditioning planarizing media
US6350691B1 (en) * 1997-12-22 2002-02-26 Micron Technology, Inc. Method and apparatus for planarizing microelectronic substrates and conditioning planarizing media
US6364757B2 (en) * 1997-12-30 2002-04-02 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6354930B1 (en) * 1997-12-30 2002-03-12 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6074286A (en) * 1998-01-05 2000-06-13 Micron Technology, Inc. Wafer processing apparatus and method of processing a wafer utilizing a processing slurry
US6234874B1 (en) * 1998-01-05 2001-05-22 Micron Technology, Inc. Wafer processing apparatus
US6224466B1 (en) * 1998-02-02 2001-05-01 Micron Technology, Inc. Methods of polishing materials, methods of slowing a rate of material removal of a polishing process
US6210257B1 (en) * 1998-05-29 2001-04-03 Micron Technology, Inc. Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
US6200901B1 (en) * 1998-06-10 2001-03-13 Micron Technology, Inc. Polishing polymer surfaces on non-porous CMP pads
US6368194B1 (en) * 1998-07-23 2002-04-09 Micron Technology, Inc. Apparatus for controlling PH during planarization and cleaning of microelectronic substrates
US6190494B1 (en) * 1998-07-29 2001-02-20 Micron Technology, Inc. Method and apparatus for electrically endpointing a chemical-mechanical planarization process
US6180525B1 (en) * 1998-08-19 2001-01-30 Micron Technology, Inc. Method of minimizing repetitive chemical-mechanical polishing scratch marks and of processing a semiconductor wafer outer surface
US6352466B1 (en) * 1998-08-31 2002-03-05 Micron Technology, Inc. Method and apparatus for wireless transfer of chemical-mechanical planarization measurements
US6368193B1 (en) * 1998-09-02 2002-04-09 Micron Technology, Inc. Method and apparatus for planarizing and cleaning microelectronic substrates
US6358127B1 (en) * 1998-09-02 2002-03-19 Micron Technology, Inc. Method and apparatus for planarizing and cleaning microelectronic substrates
US6046111A (en) * 1998-09-02 2000-04-04 Micron Technology, Inc. Method and apparatus for endpointing mechanical and chemical-mechanical planarization of microelectronic substrates
US6193588B1 (en) * 1998-09-02 2001-02-27 Micron Technology, Inc. Method and apparatus for planarizing and cleaning microelectronic substrates
US6191037B1 (en) * 1998-09-03 2001-02-20 Micron Technology, Inc. Methods, apparatuses and substrate assembly structures for fabricating microelectronic components using mechanical and chemical-mechanical planarization processes
US6203407B1 (en) * 1998-09-03 2001-03-20 Micron Technology, Inc. Method and apparatus for increasing-chemical-polishing selectivity
US6250994B1 (en) * 1998-10-01 2001-06-26 Micron Technology, Inc. Methods and apparatuses for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies on planarizing pads
US6039633A (en) * 1998-10-01 2000-03-21 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies
US6187681B1 (en) * 1998-10-14 2001-02-13 Micron Technology, Inc. Method and apparatus for planarization of a substrate
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6362105B1 (en) * 1998-10-27 2002-03-26 Micron Technology, Inc. Method and apparatus for endpointing planarization of a microelectronic substrate
US6184571B1 (en) * 1998-10-27 2001-02-06 Micron Technology, Inc. Method and apparatus for endpointing planarization of a microelectronic substrate
US6176992B1 (en) * 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
US6206756B1 (en) * 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6358129B2 (en) * 1998-11-11 2002-03-19 Micron Technology, Inc. Backing members and planarizing machines for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies, and methods of making and using such backing members
US6203413B1 (en) * 1999-01-13 2001-03-20 Micron Technology, Inc. Apparatus and methods for conditioning polishing pads in mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6059638A (en) * 1999-01-25 2000-05-09 Lucent Technologies Inc. Magnetic force carrier and ring for a polishing apparatus
US6066030A (en) * 1999-03-04 2000-05-23 International Business Machines Corporation Electroetch and chemical mechanical polishing equipment
US6402884B1 (en) * 1999-04-09 2002-06-11 Micron Technology, Inc. Planarizing solutions, planarizing machines and methods for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6227955B1 (en) * 1999-04-20 2001-05-08 Micron Technology, Inc. Carrier heads, planarizing machines and methods for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6213845B1 (en) * 1999-04-26 2001-04-10 Micron Technology, Inc. Apparatus for in-situ optical endpointing on web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies and methods for making and using same
US6234868B1 (en) * 1999-04-30 2001-05-22 Lucent Technologies Inc. Apparatus and method for conditioning a polishing pad
US6402978B1 (en) * 1999-05-06 2002-06-11 Mpm Ltd. Magnetic polishing fluids for polishing metal substrates
US6203404B1 (en) * 1999-06-03 2001-03-20 Micron Technology, Inc. Chemical mechanical polishing methods
US6267650B1 (en) * 1999-08-09 2001-07-31 Micron Technology, Inc. Apparatus and methods for substantial planarization of solder bumps
US6261163B1 (en) * 1999-08-30 2001-07-17 Micron Technology, Inc. Web-format planarizing machines and methods for planarizing microelectronic substrate assemblies
US6361417B2 (en) * 1999-08-31 2002-03-26 Micron Technology, Inc. Method and apparatus for supporting a polishing pad during chemical-mechanical planarization of microelectronic substrates
US6206754B1 (en) * 1999-08-31 2001-03-27 Micron Technology, Inc. Endpoint detection apparatus, planarizing machines with endpointing apparatus, and endpointing methods for mechanical or chemical-mechanical planarization of microelectronic substrate assemblies
US6364746B2 (en) * 1999-08-31 2002-04-02 Micron Technology, Inc. Endpoint detection apparatus, planarizing machines with endpointing apparatus, and endpointing methods for mechanical or chemical-mechanical planarization of microelectronic-substrate assemblies
US6350180B2 (en) * 1999-08-31 2002-02-26 Micron Technology, Inc. Methods for predicting polishing parameters of polishing pads, and methods and machines for planarizing microelectronic substrate assemblies in mechanical or chemical-mechanical planarization
US6368197B2 (en) * 1999-08-31 2002-04-09 Micron Technology, Inc. Method and apparatus for supporting and cleaning a polishing pad for chemical-mechanical planarization of microelectronic substrates
US6376381B1 (en) * 1999-08-31 2002-04-23 Micron Technology, Inc. Planarizing solutions, planarizing machines, and methods for mechanical and/or chemical-mechanical planarization of microelectronic substrate assemblies
US6358122B1 (en) * 1999-08-31 2002-03-19 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates with metal compound abrasives
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
US6354928B1 (en) * 2000-04-21 2002-03-12 Agere Systems Guardian Corp. Polishing apparatus with carrier ring and carrier head employing like polarities
US6579799B2 (en) * 2000-04-26 2003-06-17 Micron Technology, Inc. Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6387289B1 (en) * 2000-05-04 2002-05-14 Micron Technology, Inc. Planarizing machines and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US20040038625A1 (en) * 2002-08-23 2004-02-26 Nagasubramaniyan Chandrasekaran Carrier assemblies, planarizing apparatuses including carrier assemblies, and methods for planarizing micro-device workpieces
US20040077292A1 (en) * 2002-10-21 2004-04-22 Kim Andrew Tae Real-time polishing pad stiffness control using magnetically controllable fluid
US20040142635A1 (en) * 2003-01-16 2004-07-22 Elledge Jason B. Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118930A1 (en) * 2002-08-23 2005-06-02 Nagasubramaniyan Chandrasekaran Carrier assemblies, planarizing apparatuses including carrier assemblies, and methods for planarizing micro-device workpieces
US20160330453A1 (en) * 2015-05-05 2016-11-10 Cisco Technology, Inc. Parameter Set Header
CN105014484A (en) * 2015-08-17 2015-11-04 宇环数控机床股份有限公司 Magnetic field generation device of magnetorheological polishing equipment
WO2017028824A1 (en) * 2015-08-17 2017-02-23 宇环数控机床股份有限公司 Magnetic field generation apparatus of magnetorheological finishing device
CN109048506A (en) * 2018-08-10 2018-12-21 太原理工大学 A kind of magneto liquid-magnetic abrasive tool surface finishing device and method
WO2021035971A1 (en) * 2019-08-29 2021-03-04 广东工业大学 Electromagnetic coupling device, polishing device having same, and electromagnetic rheological property measuring device
CN113263438A (en) * 2021-05-20 2021-08-17 湘潭大学 Bearing head for controlling polishing pressure and using method thereof
CN113752098A (en) * 2021-09-29 2021-12-07 哈尔滨工业大学 Water-bath heating-assisted small ball head magnetorheological polishing method

Also Published As

Publication number Publication date
US20050255792A1 (en) 2005-11-17
US7033251B2 (en) 2006-04-25
US7074114B2 (en) 2006-07-11
US20040142635A1 (en) 2004-07-22
US7255630B2 (en) 2007-08-14

Similar Documents

Publication Publication Date Title
US7033251B2 (en) Carrier assemblies, polishing machines including carrier assemblies, and methods for polishing micro-device workpieces
US7147543B2 (en) Carrier assemblies, planarizing apparatuses including carrier assemblies, and methods for planarizing micro-device workpieces
US6935929B2 (en) Polishing machines including under-pads and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
US7357695B2 (en) Systems and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
US6050882A (en) Carrier head to apply pressure to and retain a substrate
USRE39194E1 (en) Method and apparatus for controlling planarizing characteristics in mechanical and chemical-mechanical planarization of microelectronic substrates
US7326105B2 (en) Retaining rings, and associated planarizing apparatuses, and related methods for planarizing micro-device workpieces
US7597608B2 (en) Pad conditioning device with flexible media mount
US6869345B2 (en) Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
KR20210126784A (en) Chemical mechanical polishing using time-division control
CN114536211A (en) Chemical mechanical polishing apparatus and methods of making and operating the same
CN113263438A (en) Bearing head for controlling polishing pressure and using method thereof
KR20200079533A (en) Method for substrate processing system and planarized membrane
WO2015050642A1 (en) Cmp equipment using magnet responsive composites
JP2006303274A (en) Polishing apparatus, semiconductor-device manufacturing method using same apparatus, and semiconductor device manufactured by same manufacturing method
JP2006237600A (en) Wafer carrier having pressing film and holding ring actuator

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140425