US20050021123A1 - Variable speed self-expanding stent delivery system and luer locking connector - Google Patents

Variable speed self-expanding stent delivery system and luer locking connector Download PDF

Info

Publication number
US20050021123A1
US20050021123A1 US10/824,033 US82403304A US2005021123A1 US 20050021123 A1 US20050021123 A1 US 20050021123A1 US 82403304 A US82403304 A US 82403304A US 2005021123 A1 US2005021123 A1 US 2005021123A1
Authority
US
United States
Prior art keywords
medical device
delivery system
stent
housing
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/824,033
Inventor
Jurgen Dorn
Michael Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiomed GmbH and Co Medizentechnik KG
Original Assignee
Angiomed GmbH and Co Medizentechnik KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0110551.9A external-priority patent/GB0110551D0/en
Priority claimed from GBGB0114939.2A external-priority patent/GB0114939D0/en
Application filed by Angiomed GmbH and Co Medizentechnik KG filed Critical Angiomed GmbH and Co Medizentechnik KG
Assigned to ANGIOMED GMBH & CO., MEDIZINTECHNIK KG reassignment ANGIOMED GMBH & CO., MEDIZINTECHNIK KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DORN, JURGEN, VOGEL, MICHAEL
Publication of US20050021123A1 publication Critical patent/US20050021123A1/en
Priority to US12/640,956 priority Critical patent/US8062344B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9517Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M39/1011Locking means for securing connection; Additional tamper safeties

Definitions

  • This invention relates to stent delivery systems.
  • stents at a stenting site within a human or animal body requires careful handling of the stent delivery system to be used for deploying the stent. Exact positioning of the stent at the site of the stenosis prior to and during deployment is essential. The accuracy with which the stent can be deployed with respect to the occlusion inside the body lumen, as well as the skills of the surgeon in controlling the stent delivery system, will having an impact on the outcome of the operation.
  • a guidewire is used, to advance a stent delivery system containing the stent to be deployed into the body to the site of the stenosis. Once the distal end of the delivery system has reached the stenting site and the stent to be released is correctly located, the stent is released.
  • an outer sheath otherwise called sleeve
  • the stent is prevented by an inner catheter from moving proximally with the sleeve as it retreats proximally, and is held in a radially compressed state by a co-axially disposed outer sheath or sleeve enclosing the stent and the inner catheter.
  • the relative axial positions of the inner catheter and the outer sleeve are varied by manipulation of the delivery system.
  • the stent deployment procedure requires a visualization procedure, usually the injection of a radiopaque fluid, in order to visualize the location of the stent inside the body lumen.
  • the fluid is injected into an annular cavity between the inner catheter and the outer sheath.
  • the position of the stent as well as the location of the stenosis itself can then be monitored from outside the patient's body by using X-ray imaging machines showing the images of radiopaque marker rings on the distal end of the delivery system and a reduced intensity image corresponding to the constricted volume of radiopaque fluid through the occluded site. This allows the surgeon/radiologist to find the location of the stenosis and place the stent with sufficient accuracy.
  • the radially compressed stent is held axially at a fixed position by a pusher surface of the inner catheter, which typically abuts the proximal end of the stent inside the outer sheath of the delivery system.
  • the proximal, movement of the outer sheath to release the stent exerts a proximally directed force onto the stent which urges the stent to move in the same way.
  • the surgeon has to counteract this tendency of the stent to move proximally by applying an adequate, distally-directed force onto the pusher element in order to off-set the opposing forces and to thereby keep the position of the stent fixed.
  • the stent is mounted into the delivery system at a manufacturing site. Then, the entire assembly is sterilized and air-tightly packed in a specially designed sealed enclosure. During sterilization and packaging, there is always the risk that the co-axial components of the assembly might move so that the outer sheath may be displaced with respect to the inner catheter. Consequently, the position of the stent might be changed during these steps prior to its placement.
  • Some delivery devices are particularly applicable to the release into the body of a self-expanding stent, such as one made from nickel-titanium shape memory alloy.
  • Self-expanding stents usually have a basically cylindrical form prior to deployment and it is conventional to deploy these stents with a system having two components.
  • One of these components is a sleeve or sheath which surrounds the stent and constrains it to a radially compact disposition.
  • the other component is a so-called “pusher” which is located inside the constraining sleeve and bears against a surface of the stent. Deployment of the stent is then accomplished by proximal withdrawal of the sleeve relative to the pusher.
  • the pusher maintains the stent in a location relative to the target site of surgery.
  • the proximal withdrawal of the sleeve progressively releases the stent, first at its distal end and then progressively proximally along the length of the stent until, when the distal end of the sleeve is proximal of the proximal end of the stent cylinder, the stent is fully deployed.
  • the sleeve and pusher delivery system can be withdrawn proximally out of the body, leaving the stent, expanded, in the desired location.
  • Radiopaque markers on the stent delivery system are used to enable radiologists to visualize the location of the stent in the body. Furthermore, the stent delivery system is used as a conduit for filling the bodily lumen to be stented with radiopaque fluid, to enable the radiologist to pinpoint the location of the stenosis or other surgical site where the stent is to be placed. It is then the task of the medical practitioner performing the stenting procedure to bring the radiopaque stent markers into the desired relationship wit the site of surgery as indicated by the radiopaque fluid.
  • stent delivery systems are commonly of a length around 130 cm—such as when delivered by a Seldinger technique—so the medical practitioner is to some extent handicapped by having to work at considerable distance from the stent itself.
  • Stents come in many different lengths. However, for all but the shortest stent length, there are, to the knowledge of the present inventor, two phases in any self-expanding stent deployment sequence.
  • a first phase initial proximal withdrawal of the surrounding sleeve releases the distal end of the stent so that this part of the stent length begins to make contact with the bodily lumen which defines the site of surgery.
  • This first phase is characterized in that the stent is still bound to the delivery system and not to the bodily lumen. However, at the end of the first phase, enough of the length of the stent has expanded into contact with the lumen wall to fix the position of the stent relative to the lumen wall. At this point, the stent is bound to both the delivery system and the bodily lumen wall, so that any axial movement of the delivery system relative to the bodily lumen is liable to cause injury to the lumen wall.
  • the second phase of stent deployment is what follows thereafter, namely, the remainder of the proximal movement of the sheath to release the remaining length of the stent into the bodily lumen. It will be appreciated that any axial stress on the deployed portion of the length of the stent during deployment will transmit to axial stress on that part of the bodily lumen which is in binding engagement with the stent, with the consequence that lumen wall supported by the stent remains in tension and under stress after the stent has been fully deployed. This unwanted axial stress in the bodily tissue could be severely deleterious to the patient in one way or another and is normally to be avoided.
  • a stent delivery system which is characterized by an initial mechanical advantage for the initial stages of stent deployment, which is large enough to overcome static frictional forces between the stent and the surrounding sheath and to allow the initial part of the length of the stent to be deployed slowly and precisely.
  • WO 99/047208 offers the practitioner a knurled rotary actuation element whereas WO 00/18330, DE-A-44 20142 and WO 98/23241 are examples of pistol grip devices in which deployment is accomplished by a form of squeeze handle or trigger. See EP-A-747 021 and U.S. Pat. No. 5,433,723 for other examples of rotary stent release devices.
  • One aspect of this invention relates to a device for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system and held by a constraint in a constrained delivery disposition.
  • the device comprises a first abutment for the delivery system, a second abutment for an elongate element to connect the device to the prosthesis constraint, a track for the second abutment to advance along, from a starting point corresponding to constraint of the prosthesis, to a finishing point corresponding to separation of the prosthesis and constraint, and ratchet means to advance the second abutment progressively, from the starting point to the finishing point, in a plurality of actuation strokes.
  • a device for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system, of the form discussed above, and characterized by a full stroke actuator, to advance the second abutment all the way from an intermediate point on said track to said finishing point in one single stroke of the said actuator, the intermediate point being selectable by the user within a portion of the track which extends over at least half the length of the track.
  • a release device which embodies both a ratchet means and a full stroke actuator is one which allows a range of individual medical practitioners, all of whom have their own preferred techniques for precise stent deployment, to practice their skilled techniques in the way that suits them best, to lay down an initial part of the length of a stent in a precise location in a bodily lumen, and then to complete the deployment of the length of the stent in a way which is so accurately and precisely controlled that the practitioner can satisfactorily avoid imposing unacceptable axial stresses on the tissue being stented.
  • the device of the invention is realized in a device which offers the medical practitioner a trigger for successive pumping to withdraw the stent-surrounding sheath proximally stepwise, together with a slider which allows the operator to withdraw the sleeve in one stroke.
  • the trigger provides the ratchet means of the invention and the slider provides the full stroke actuator of the invention.
  • the inventor envisages that it will be convenient for many practitioners to utilize the trigger during the first phase of stent deployment and then, when satisfied that the stent is placed within the bodily lumen as desired, switch from the trigger to the slider in order to deploy the remaining length of the stent with as much fingertip sensitivity as possible, thereby to minimize the imposition of unwanted stresses on the bodily tissue.
  • a method for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system and held by a constraint in a constrained delivery system comprising
  • the presently preferred embodiment of the invention features a connection between the trigger and the slider which is collapsible, to allow the slider to approach the trigger from any position along its sliding length, without the need to actuate the trigger at any point during withdrawal of the stent sheath.
  • This is conveniently accomplished by the provision of a collapsible line having one end connected to the shaft of a windlass, and the other end pulling on the sheath, the windlass reeling in the line, this reeling in being accomplished by successive passes of a toothed ratchet segment over the toothed circumference of a windlass drive gear, each pass being achieved by a squeeze of the trigger.
  • the end of the line is connected to the slider. If the slider itself is gripped by the medical practitioner, and urged towards the windlass shaft, the line can collapse as the slider approaches the windlass.
  • This invention relates to a connector portion useful particularly, but not exclusively, as part of a device for passing fluid into an annular cavity between an inner elongate body and an outer elongate tubular body of a stent delivery system, and also relates to a stent delivery system making use of the same connector.
  • this invention relates to a connector which comprises the male portion of a luer connector.
  • a device having a housing with a distal end, a proximal end and an off-axis end, wherein the housing provides a seating at the distal end thereof for the proximal end of an outer elongate tubular body which extends distally from the housing along an axis of the housing extending between the proximal and the distal ends, and wherein the distal and off-axis ends define respective openings which are in fluid communication with each other, and wherein the proximal end has a lumen which enables an inner elongate body co-axially within the outer tubular body to extend from the housing both distally and proximally along the axis thereof. It relates as well to a stent delivery system using the above-mentioned connector and device.
  • Another aspect of the invention relates to a stent delivery system such as that described above and that enables the surgeon both to lock the position of the inner catheter with respect to the outer sleeve and to inject fluid into the annular cavity between the inner catheter and the outer sleeve.
  • This object has been achieved by a simplified delivery system using the same component both for locking the position of the inner catheter with respect to the outer sleeve and for injecting fluid such as radiopaque fluid into the cavity between the inner catheter and the outer sleeve.
  • FIG. 1 is a longitudinal mid-section through a hand-held device in accordance with the present invention
  • FIG. 2 is a schematic representation, seen from above, of the core components of the FIG. 1 device, enabling the interaction of the different components to be appreciated further;
  • FIG. 3 shows in cross-section a device having a locking and release device attached thereto
  • FIG. 4 is a longitudinal section through a stent delivery system using the locking and release device of FIG. 3 ;
  • FIG. 5 shows in cross-section another embodiment of the locking and release device.
  • FIG. 1 shows one half 12 of a molded housing of which the other half lies above the plane of the drawing.
  • the two housing halves define, in an assembled state, a track 14 in which can be laid the proximal end of a co-axial stent delivery device having an outer tube 6 .
  • Track 14 is formed by mating axial recesses in the two housing halves, resulting in a semi-circular channel open to the upper end in FIG. 1 of the housing.
  • the proximal end of the outer tube 16 carries a hub 18 which is received within a yoke 20 of a slider 24 which itself runs on a pair of rails 22 .
  • the rails 22 are not integral molded parts of the housing and are held in place by advancing a first one of the rails through a hole (not show in FIG. 1 ) and through fixing part 52 and feed hole in slider 24 at the distal end of the housing and into blind hole at fixing point 54 distal from the proximal end of the housing.
  • the distal end of the rail is then bonded to the housing or fixing part 52 using an ultrasonic fusion technique.
  • the two housing halves are then assembled and the other one of the rails is fed through another hole in the distal end of the other housing half, inserted through a feed hole in the slider 24 and pushed into another blind hole at fixing point 54 .
  • the distal end of the second rail is also bonded to the housing using an ultrasonic fusion technique. Instead of ultrasonically bonding the distal ends of the rails 22 to the housing, they may equally well be adhesively bonded thereto.
  • rails 22 may also be an integral part of the housing 12 .
  • the length of the rails 22 may extend along the entire length of the housing 12 , but is at least equal the axial length of the stent to be deployed.
  • the present inventors also contemplate to provide markers on the rails, provided the housing is made of a transparent material, and on the slider to indicate the length of proximal withdrawal of the outer tube 16 with respect to the position of the stent. If, for example, a marker on the slider 24 lines up with a proximal-most marker provided on one of the rails 22 , this gives the medical practitioner an indication that the stent has been fully released.
  • the slider 24 protrudes to the outside of the housing 12 at the lower end thereof in FIG. 1 , enabling a person to manually urge the slider 24 along the length of the rails 22 , when appropriate.
  • the protrusion length of the slider 24 may conveniently be sufficient to be grasped by the thumb and the index finger for optimum handling of the slider.
  • the inner element 26 of the co-axial delivery device is a rod, or hypo-tube, or like element which extends proximally along the track 14 to a proximal hub 28 which is captivated within the proximal end of the housing 12 and so cannot move proximally or distally once the co-axial delivery device is set within the track 14 . Since the opposite end of the rod 26 , that is, its distal end, is normally defining the proximal end of the stent to be delivered, the length of the rod 26 defines the distance separating the proximal end of the housing 12 , where the hub 28 is captivated, and the proximal end of the stent being delivered. Hub 28 is clipped into engagement with the housing at fixing point 29 . Other ways of attaching hub 28 to the proximal end of housing 12 are contemplated and are obvious to those skilled in the art, such as a yoke.
  • the body 12 contains actuating elements to draw the slider 24 in a controlled way from the distal end of the rails 22 towards their proximal ends. This proximal sliding movement draws hub 18 proximally, and so draws outer tube 16 of the delivery device proximally. Such a movement would be useful, for example, to release a self-expanding stent from within the distal portion of the tube 16 .
  • a collapsible line in the form of a pull wire 30 runs from the slider 24 to a windlass or take-up reel shaft 32 which is adjacent a trigger 34 mounted to the housing 12 .
  • the reel shaft 32 carries a toothed gear 35 , and the teeth engage with complementary teeth 36 on an elongate ratchet element 38 itself pivotably mounted at an axis 40 to the trigger 34 .
  • the trigger 34 is mounted in a recess within the housing 12 and is held in place as soon as the two housing halves are assembled.
  • Trigger 34 is biased to a rest position as shown in FIG. 1 by a leaf spring 46 which is pivotally mounted to the housing 12 at a mounting pin 48 .
  • One end 47 of the leaf spring 48 cooperates with the elongate ratchet means 38 and is movable thereon. The other end, beyond mounting point 48 bears against support 49 and is free to move thereon.
  • the wire used for the leaf spring is turned into a helical spring 56 .
  • the helical spring serves for optimizing the spring-characteristic forces bearing on the ratchet element 38 .
  • the leaf spring essentially follows the contour of the interior of the trigger until another helically turned portion follows, wrapping around the mounting pin 48 . At this point, the leaf spring is pivotally mounted to the housing.
  • the support 49 resists pressure from one end of the spring 46 , while the other end of leaf spring 46 making contact with ratchet element 38 is free to follow the movement of the trigger 34 .
  • leaf spring reaction on support 49 urges trigger 34 to its rest position while maintaining contact with the ratchet element 38 .
  • leaf spring 46 remote from its mounting point 48 urges the ratchet element 38 into contact with windlass gear wheel 35 , but nevertheless allows the ratchet element 38 to return to its start position with the downward movement of the trigger 34 .
  • the trigger 34 and ratchet element 38 are helped to return to their original dispositions by the bias spring 46 acting on the trigger 34 .
  • Helical spring portion 56 of leaf spring 46 rests on the interior surface of trigger 34 , as shown in FIG. 1 .
  • FIG. 1 also shows pivot axis of trigger 34 at pivot point 41 .
  • trigger By pushing trigger upwards, trigger slightly rotates around axis 41 , thereby moving ratchet element 38 connected with trigger 34 at mounting point 40 upwards and causing windlass gear 35 to rotate clockwise.
  • This clockwise rotation of windlass gear 35 causes pulling on line 30 moving hub 18 and therewith outer tube 16 proximally, resulting in deployment of the stent at the distal end of the coaxial stent delivery device.
  • a pawl 44 is mounted to the housing 12 , and engages successive teeth of the take-up gear 35 , to prevent any anti-clockwise return movement of the reel 32 as the ratchet element 38 returns to its initial position.
  • pumps on the trigger 34 are not the only way to bring the slider 24 proximally along the rails 22 .
  • the pull wire 30 becomes loose and meanders within the housing 12 (that is to say, it collapses), or else, by the provision of a suitable wind-up mechanism or spring (not shown) on the take-up reel 32 , any relief of tension in the wire 30 is met with a corresponding clockwise rotation of the reel 32 , to take up any slack in the wire 30 .
  • the person delivering the stent has the option of pumping on the trigger 34 , or pulling on the slider 24 .
  • the hub 18 is provided with a fluid inlet port 50 in the form of a luer lock. This is useful for injecting radiopaque fluid into the bodily lumen which is to be stented for the reason explained above.
  • the luer lock modified accordingly, is also used to fix the axial position of outer tube 16 in the event the medical practitioner needs to interrupt the release operation of the stent.
  • FIG. 2 is a schematic representation in plan of the device shown in FIG. 1 .
  • FIG. 2 shows how line 30 is wound around the windlass gear shaft 32 .
  • the winding of line 30 may be achieved by a spring-biased (not shown) reel which reels in any slack in line 30 automatically upon proximal movement of slider 24 .
  • the shaft 32 can be formed as a drum flanked at each end by a gear wheel 35 , each wheel having its own ratchet element 38 , both pivotally mounted to the trigger 34 . This assists management of the reeling in of the pull wire 30 .
  • the above description is of a device to fit at the proximal end of a coaxial catheter device for percutaneous transluminal stent delivery.
  • a hub at the proximal end of the two coaxial elements of the system.
  • the present device will engage with these two hubs, and allow the usual range of connections to be made to each of the hubs.
  • a guide wire will extend proximally from the hub at the proximal end of the inner element of the coaxial system, that the hub of the outer sheath will seal with the inner coaxial element and that it will also have a port arrangement for the admission or withdrawal of liquids from the annular space between the two coaxial elements of the system.
  • the housing would display identical left and right sides, a lower edge with the trigger in it, and an upper edge in which the track for receipt of the coaxial stent delivery element is open-topped, so that the stent delivery system can be laid into a recess in the top edge of the housing which extends all the way from one end of the housing to the other.
  • the stent delivery system can be laid into a recess in the top edge of the housing which extends all the way from one end of the housing to the other.
  • the trigger 34 By providing the trigger 34 with different bores, to mount it on the housing at several different locations relative to the ratchet element 38 , a choice of different strokes can be offered, to achieve a desired length of withdrawal of outer sleeve 16 for each stroke of the trigger.
  • the formation which receive hubs 18 and 28 can be made in the form of resilient clips, so that a variety of different delivery systems can be laid into the track 14 .
  • the device is designed with flexibility in mind, to enable its use with a range of delivery devices and a range of user characteristics.
  • the housing is deliberately designed symmetrical, that is, not “handed”, so it is equally suitable for left-handed and right-handed use.
  • a stopper may be provided on rails 22 as an indicator or reminder for the medical practitioner that a certain stent length has been deployed and to continue the deployment procedure by manually moving the slider 24 proximally on the rails 22 .
  • the stopper may be removed or it may be in the form of a discontinuity on the surface of the rails 22 , offering a resistance to slider travel that may easily be overcome manually when continuing the deployment procedure by moving the slider 24 proximally. This provides tactile feedback to the surgeon giving him/her assurance that the stent has been fully deployed.
  • the materials used for the manufacture of the stent delivery device are, but not limited to, polyoxymethylene (POM), polycarbonate (PC) and other polymer compositions conventionally used for molding medical devices.
  • POM polyoxymethylene
  • PC polycarbonate
  • Other components, such as the rails and the leaf spring, are made from metal suitable for medical instruments, such as stainless steel with designation 1.4310 or 1.4301.
  • Other materials will be known and readily available to those skilled in the art.
  • Line 30 is a multifilament polymer-based fiber which gives line 30 greater flexibility than a monofilament line is likely to deliver. This flexibility is important when slider is moved proximally releasing tension in the line which then meanders within the housing.
  • FIG. 3 shows a cross-sectional view of a device for passing fluid into an annular cavity 130 of a housing of the device (which takes the form of a T-piece 2 ) and also between an inner catheter 126 and an outer sleeve 128 .
  • the device has a housing in the shape of a T-piece 2 comprising a distal end 124 , a proximal end 112 and an off-axis end 136 .
  • a lumen 123 extends between the proximal and distal ends, and is in fluid communication with a lumen 131 in the side branch of the T-piece which leads to the off-axis end 136 . It is the distal 124 and the proximal 112 which define the axis of the device.
  • the outer sleeve 128 of a stent delivery system is attached to the threaded distal end 124 of the device via a threaded female collar 122 .
  • the female collar 122 comprises a central through-hole through which the outer sleeve 128 is inserted and thermally clamped to the female collar 122 .
  • thermal clamping is meant that the material of the proximal end of the outer sleeve 128 expands upon thermo-forming heat treatment and retains its expanded shape when it returns back to ambient temperature.
  • the radially-expanded proximal end of the outer sleeve 128 resists distal movement of the outer sleeve relative to the collar 122 when the process of thermal treatment is completed.
  • a seating 125 of the housing seals with a complementary seating 127 of the threaded collar 122 .
  • the proximal end 112 of the device exhibits a recess having two different diameters whereby the innermost recess 114 in an axial direction accommodates an O-ring 118 for providing a fluid-tight seal with an inner catheter 126 and a plug 120 press-fitted into the larger diameter recess 116 in order to prevent the O-ring from slipping out of the smaller recess upon proximal movement of the inner catheter 126 . It is also conceivable to screw the plug into the larger diameter recess or use an appropriate adhesive. Differently sized O-rings can be used to accommodate differently sized inner catheters for differently sized stents. This further enhances the versatility of the device.
  • the off-axis end 36 of the device shows a female luer-lock element 133 which connects to a male luer-lock assembly 132 thereby to serve as the locking and release device 11 .
  • the locking and release device 11 may also be recognized to be based on a luer-lock connector. It comprises a passage 138 therethrough for passing fluid down the inner bore of the luer connector.
  • the inner end of the male luer connector 132 which extends into the off-axis end of the T-piece 2 , comprises a spigot 6 which is coaxial with, and located within, the internal bore 138 of the luer connector. The spigot 6 is fixed inside the bore 138 of the luer connector.
  • the spigot 6 is fixed inside the bore 138 of the luer connector by means of an annular cutting edge which cuts itself into the material of the luer connector (in the manner of a self-tapping screw) and thereby fixedly fastens the spigot 6 to the luer connector 1 . It is also conceivable to screw or press-fit the spigot into the luer connector.
  • the spigot 6 comprises a cut-out portion 140 at the end extending into the T-piece for providing a continuous passage for the fluid to be injected that is to say, fluid communication between the bore 138 and the lumen 123 .
  • the lower in FIG.
  • end of the spigot 6 comprises a re-entrant surfaces onto which an elastically deformable elongate locking member 8 is attached.
  • the locking member 8 is made out of silicone rubber but other materials can be used.
  • the end surface of the locking member 8 remote from the spigot 6 , constitutes a pressure pad which bears on the inner catheter 126 when the locking member is in its locking disposition, as explained below.
  • a distinct feature of the luer connector is its quick and easy installation, since it requires only less than half a turn to fully engage the male luer-lock connector 132 with the female portion 133 of the mating luer-lock on the off-axis side branch of the T-piece.
  • the dimensions of the spigot 6 and the pressure pad 8 are such that, when bringing the male luer-lock connector 132 into full engagement with the female element 133 , the deformable locking member 8 extends sufficiently far enough beyond the end of the luer-lock connector so that it experiences a compressive force due to pressing down onto the inner catheter 126 .
  • a syringe can easily be attached to the upper end 139 of the male luer-lock element 132 , that is, the end opposite the one being connected to the T-piece of the luer connector via a luer-lock connection, which upper ends 139 for this purpose can exhibit the characteristic cone angle of a female luer-lock portion.
  • the luer connector optionally comprises a safety catch which prevents inadvertent release of the male luer connector 132 from the T-piece 2 .
  • the safety catch illustrated comprises two portions, namely a portion 134 located on the male luer connector 132 and preferably glued thereon and a portion 135 on the female luer portion 133 and preferably glued to it. Between the portions 134 , 135 is a frangible neck 137 , which prevents rotation of the luer connector until it is broken by relative rotation of the male and female luer-lock portions. To release the safety catch, the luer connector is rotated counter-clockwise thereby breaking the frangible neck 137 .
  • the safety catch is conveniently made of polymeric material.
  • the entire structure is conveniently made out of synthetic polymeric materials.
  • FIG. 4 shows a perspective view of the stent delivery system as described in connection with FIGS. 1 and 2 using the locking and release device as well as the T-piece of FIG. 3 in an assembled state.
  • the delivery system 170 is based on a trigger-principle for the proximal withdrawal of the outer sleeve with respect to the inner catheter.
  • the proximal and distal end of the T-piece connector are engaged with mating parts of the delivery system, whereby the proximal ends 150 of the inner catheter 126 is fixed in position by a mount 152 at the rear side of the trigger device.
  • the T-piece Upon actuation of the delivery system the T-piece is drawn rearwardly by a tension wire 172 and carriage 174 , with successive squeezes of a trigger 154 , that reel in the wire 172 on a capstan drum 176 which the trigger rotates through a rack 178 .
  • the carriage 174 carries the luer-lock housing 2 towards the rear mount 152 step-wise, with each squeeze of the trigger 154 , and thereby withdraws the outer sheath 128 to gradually release the stent.
  • the luer-lock connector During insertion of the stent into the delivery system, sterilization and transport, the luer-lock connector remains in its locking disposition, thereby preventing inadvertent sliding movement of the inner catheter with respect to the outer sleeve. It is only shortly before deploying the stent into the body lumen, that the luer-lock connector 1 is disengaged from the T-piece 2 .
  • the surgeon uses the trigger mechanism in order to proximally withdraw the outer sleeve and to release the stent.
  • the luer-lock connector ca be inserted back into the T-piece in order to fix the position of the inner catheter with respect to the outer sleeve.
  • FIG. 5 shows in cross-section another embodiment of the locking and release device 1 in FIG. 3 . It connects to the female luer-lock element 133 at the off-axis end 136 of the device shown in FIG. 1 and comprises a passage therethrough (not shown) for passing fluid down the inner bore of the luer connector 1 , into lumen 123 of the T-piece connector 2 .
  • the inner end of the locking and release device 1 which extends into the off-axis end of the T-piece 2 comprises a metal pin 180 which is coaxial with, and located within, the internal bore (not shown) of the luer connector.
  • the metal pin 180 is fixed inside the bore of the luer connector by means of a press-fit.
  • the end of the metal pin extending into the off-axis end of the T-piece is domed.
  • the end surface of metal pin curves radially inwardly, uniformly from all radial directions. This dome-shape of the axial end of metal pin 180 effects line contact the annular edge 182 of metal pin 180 with the inner catheter 126 .
  • the dome-shaped end of metal pin 180 is also more clearly shown in the blown-up part of FIG. 5 .
  • the upper portion of metal pin in FIG. 5 to be inserted into the off-axis end of T-piece is oblate.
  • a gap remains between the oblated portion 185 of metal pin and the end portion of the luer connector defining the inner bore. This way, fluid connection between inner bore 138 of luer connector 1 and inner lumen 123 of T-piece is established.
  • the press-fit of metal pin into male luer connector is ensured by the chamfered portion 184 of metal pin.
  • a flange 186 serving as a stopper is provided on the metal pin. The flange also takes up any compressive stresses caused by the pushing of the pin onto the inner catheter.
  • an integrally molded element is both attached to the luer connector and the off-axis end of the T-piece.
  • This element comprises portion 134 , which circumferentially surrounds the near end of the luer connector to the off-axis end of the T-piece, a frangible portion 137 and portion 135 circumferentially surrounding a section of the off-axis end of the T-piece. Arrows are provided on portion 134 indicating the medical practitioner what direction to turn the luer connector in order to release it from the T-piece.
  • frangible portion 137 breaks off portion 135 , thereby allowing the luer connector to be detached from the T-piece.
  • the frangible portion 137 is designed such that it resists inadvertent rotation of the luer connector prior to use of the luer connector/T-piece assembly. It also serves as an indicator for the surgeon to indicate that the device shown in FIG. 3 has not been previously used in a surgical procedure, and sterility is still maintained.
  • the circular edge 182 of dome-shaped end of metal pin 180 bites on the inner catheter 126 and prevents distal or proximal movement of the inner catheter with respect to the T-piece.
  • the inventor of the present application have found that it is the sharp edge of metal pin 180 that effectively prevents this movement of the inner catheter.
  • the diameter of the 360° circular edge equals the diameter of the inner catheter 126 .
  • the material used for the metal pin should be harder than the material used for the inner catheter.

Abstract

A stent delivery system that includes an inner member and an outer retractable sheath is operated by a handle that permits retraction of the sheath at more than one speed. The sheath may be retracted in small, incremental steps or in a single, more rapid stroke. Means also are provided for releasably locking the inner member and outer sheath in a fixed position as well as to facilitate admission of liquid into the device.

Description

    FIELD OF THE INVENTION
  • This invention relates to stent delivery systems.
  • BACKGROUND
  • The deployment of stents at a stenting site within a human or animal body requires careful handling of the stent delivery system to be used for deploying the stent. Exact positioning of the stent at the site of the stenosis prior to and during deployment is essential. The accuracy with which the stent can be deployed with respect to the occlusion inside the body lumen, as well as the skills of the surgeon in controlling the stent delivery system, will having an impact on the outcome of the operation.
  • Normally, a guidewire is used, to advance a stent delivery system containing the stent to be deployed into the body to the site of the stenosis. Once the distal end of the delivery system has reached the stenting site and the stent to be released is correctly located, the stent is released. To deploy a self-expanding stent it is known to gradually withdraw an outer sheath (otherwise called sleeve) holding the stent in a radially compressed configuration and thereby allow the stent to radially expand and to anchor itself inside the body lumen. In commercially available delivery systems, the stent is prevented by an inner catheter from moving proximally with the sleeve as it retreats proximally, and is held in a radially compressed state by a co-axially disposed outer sheath or sleeve enclosing the stent and the inner catheter. The relative axial positions of the inner catheter and the outer sleeve are varied by manipulation of the delivery system.
  • Since the stent as well as the stenosis are not directly visible to the surgeon performing the operation, the stent deployment procedure requires a visualization procedure, usually the injection of a radiopaque fluid, in order to visualize the location of the stent inside the body lumen. The fluid is injected into an annular cavity between the inner catheter and the outer sheath. The position of the stent as well as the location of the stenosis itself can then be monitored from outside the patient's body by using X-ray imaging machines showing the images of radiopaque marker rings on the distal end of the delivery system and a reduced intensity image corresponding to the constricted volume of radiopaque fluid through the occluded site. This allows the surgeon/radiologist to find the location of the stenosis and place the stent with sufficient accuracy.
  • During the course of the delivery procedure, the radially compressed stent is held axially at a fixed position by a pusher surface of the inner catheter, which typically abuts the proximal end of the stent inside the outer sheath of the delivery system. The proximal, movement of the outer sheath to release the stent exerts a proximally directed force onto the stent which urges the stent to move in the same way. The surgeon has to counteract this tendency of the stent to move proximally by applying an adequate, distally-directed force onto the pusher element in order to off-set the opposing forces and to thereby keep the position of the stent fixed.
  • Typically, the stent is mounted into the delivery system at a manufacturing site. Then, the entire assembly is sterilized and air-tightly packed in a specially designed sealed enclosure. During sterilization and packaging, there is always the risk that the co-axial components of the assembly might move so that the outer sheath may be displaced with respect to the inner catheter. Consequently, the position of the stent might be changed during these steps prior to its placement.
  • Therefore, it would be desirable to have a delivery system with a fluid injection port which is protected against inadvertent or premature movement of the outer sheath relative to the stent but is still simple to use and economical to manufacture.
  • Some delivery devices are particularly applicable to the release into the body of a self-expanding stent, such as one made from nickel-titanium shape memory alloy. Self-expanding stents usually have a basically cylindrical form prior to deployment and it is conventional to deploy these stents with a system having two components. One of these components is a sleeve or sheath which surrounds the stent and constrains it to a radially compact disposition. The other component is a so-called “pusher” which is located inside the constraining sleeve and bears against a surface of the stent. Deployment of the stent is then accomplished by proximal withdrawal of the sleeve relative to the pusher. The pusher maintains the stent in a location relative to the target site of surgery. The proximal withdrawal of the sleeve progressively releases the stent, first at its distal end and then progressively proximally along the length of the stent until, when the distal end of the sleeve is proximal of the proximal end of the stent cylinder, the stent is fully deployed. At this point, the sleeve and pusher delivery system can be withdrawn proximally out of the body, leaving the stent, expanded, in the desired location. An early disclosure of such a system can be found in Gianturco U.S. Pat. No. 4,580,568.
  • Radiopaque markers on the stent delivery system (sometimes supplemented by markers on the stent itself) are used to enable radiologists to visualize the location of the stent in the body. Furthermore, the stent delivery system is used as a conduit for filling the bodily lumen to be stented with radiopaque fluid, to enable the radiologist to pinpoint the location of the stenosis or other surgical site where the stent is to be placed. It is then the task of the medical practitioner performing the stenting procedure to bring the radiopaque stent markers into the desired relationship wit the site of surgery as indicated by the radiopaque fluid.
  • There continue to be difficulties for medical practitioners in placing the stent exactly as required. What has been needed now for many years is a delivery system which a medical practitioner can manipulate manually with enough precision to bring the stent reliably into the desired location relative to the surgical site. It will be appreciated that stent delivery systems are commonly of a length around 130 cm—such as when delivered by a Seldinger technique—so the medical practitioner is to some extent handicapped by having to work at considerable distance from the stent itself.
  • Stents come in many different lengths. However, for all but the shortest stent length, there are, to the knowledge of the present inventor, two phases in any self-expanding stent deployment sequence.
  • In a first phase, initial proximal withdrawal of the surrounding sleeve releases the distal end of the stent so that this part of the stent length begins to make contact with the bodily lumen which defines the site of surgery. This first phase is characterized in that the stent is still bound to the delivery system and not to the bodily lumen. However, at the end of the first phase, enough of the length of the stent has expanded into contact with the lumen wall to fix the position of the stent relative to the lumen wall. At this point, the stent is bound to both the delivery system and the bodily lumen wall, so that any axial movement of the delivery system relative to the bodily lumen is liable to cause injury to the lumen wall.
  • The second phase of stent deployment is what follows thereafter, namely, the remainder of the proximal movement of the sheath to release the remaining length of the stent into the bodily lumen. It will be appreciated that any axial stress on the deployed portion of the length of the stent during deployment will transmit to axial stress on that part of the bodily lumen which is in binding engagement with the stent, with the consequence that lumen wall supported by the stent remains in tension and under stress after the stent has been fully deployed. This unwanted axial stress in the bodily tissue could be severely deleterious to the patient in one way or another and is normally to be avoided.
  • There are proposals in the patent literature for placement of self-expanding stents by progressive distal advancement of a surrounding sheath, to release the stent, proximal end first, terminating at the distal end of the stent. It will be appreciated that this is possible because the radial expansion of the stent opens up a lumen big enough for proximal withdrawal of the sheath from a position distal of the expanded stent. The discussion of axial stresses can be applied, mutatis mutandis, to these configurations proposed in the patent literature, in which the proximal end of the stent is deployed first.
  • Also previously proposed are combinations of constraining sheaths which withdraw from the stent simultaneously proximally and distally, from a starting point intermediate the ends of the stent, in order to deploy the stent first from a mid part of its length, and terminating with deployment of both the proximal and distal ends of the stent. Even in such systems, the concerns about axial stresses still apply.
  • For a disclosure within the state of the art of a system which distinguishes between the initial phase of stent deployment and the subsequent phase in which the remainder of the length is deployed, reference is made to WO 99/04728. In this disclosure, it is proposed to use a stent delivery system which is characterized by an initial mechanical advantage for the initial stages of stent deployment, which is large enough to overcome static frictional forces between the stent and the surrounding sheath and to allow the initial part of the length of the stent to be deployed slowly and precisely. Once the sheath has begun sliding over the stent length, and an end of the stent has expanded to engage the surrounding luminal wall, a different and lower mechanical advantage is activated, to withdraw the sheath proximally at a rate more rapid than that characteristic of the initial phase of stent deployment.
  • It is the experience of the present inventor that individual medical practitioners have developed their own preferred techniques for precise deployment of stents. Looking at the proximal end of the stent delivery system, with the actuator which the practitioner actually handles during the stent deployment procedure, the state of the art offers various configurations and the individual practitioners select from these possibilities the actuators which fit their particular manual skills best.
  • WO 99/04728, mentioned above, offers the practitioner a knurled rotary actuation element whereas WO 00/18330, DE-A-44 20142 and WO 98/23241 are examples of pistol grip devices in which deployment is accomplished by a form of squeeze handle or trigger. See EP-A-747 021 and U.S. Pat. No. 5,433,723 for other examples of rotary stent release devices.
  • Another approach to the accomplishment of a controlled release of a self-expanding stent can be found in U.S. Pat. No. 5,683,451, the approach relying on so-called runners which lie between the stent and a surrounding sheath. At the proximal end of the delivery system, a follower receives a hub at the proximal end of the surrounding sheath and rotation of a handle causes rotation of a threaded shaft, along which the follower advances, to carry the proximal hub of the sheath in a proximal direction to release the stent.
  • SUMMARY OF THE INVENTION
  • One aspect of this invention relates to a device for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system and held by a constraint in a constrained delivery disposition. The device comprises a first abutment for the delivery system, a second abutment for an elongate element to connect the device to the prosthesis constraint, a track for the second abutment to advance along, from a starting point corresponding to constraint of the prosthesis, to a finishing point corresponding to separation of the prosthesis and constraint, and ratchet means to advance the second abutment progressively, from the starting point to the finishing point, in a plurality of actuation strokes.
  • According to one aspect of the present invention there is provided a device for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system, of the form discussed above, and characterized by a full stroke actuator, to advance the second abutment all the way from an intermediate point on said track to said finishing point in one single stroke of the said actuator, the intermediate point being selectable by the user within a portion of the track which extends over at least half the length of the track.
  • In short, what the present inventor has found is that a release device which embodies both a ratchet means and a full stroke actuator is one which allows a range of individual medical practitioners, all of whom have their own preferred techniques for precise stent deployment, to practice their skilled techniques in the way that suits them best, to lay down an initial part of the length of a stent in a precise location in a bodily lumen, and then to complete the deployment of the length of the stent in a way which is so accurately and precisely controlled that the practitioner can satisfactorily avoid imposing unacceptable axial stresses on the tissue being stented.
  • In presently preferred embodiment, the device of the invention is realized in a device which offers the medical practitioner a trigger for successive pumping to withdraw the stent-surrounding sheath proximally stepwise, together with a slider which allows the operator to withdraw the sleeve in one stroke. Thus, the trigger provides the ratchet means of the invention and the slider provides the full stroke actuator of the invention. The inventor envisages that it will be convenient for many practitioners to utilize the trigger during the first phase of stent deployment and then, when satisfied that the stent is placed within the bodily lumen as desired, switch from the trigger to the slider in order to deploy the remaining length of the stent with as much fingertip sensitivity as possible, thereby to minimize the imposition of unwanted stresses on the bodily tissue.
  • Accordingly, in another aspect of the invention, there is provided a method for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system and held by a constraint in a constrained delivery system, the method comprising
      • a first release phase characterized by stepwise release of a first portion of the prosthesis, by successive actuation strokes of a ratchet means, followed by
      • a second phase of release of the prosthesis, characterized by a single stroke of a full stroke prosthesis release actuator.
  • The presently preferred embodiment of the invention features a connection between the trigger and the slider which is collapsible, to allow the slider to approach the trigger from any position along its sliding length, without the need to actuate the trigger at any point during withdrawal of the stent sheath. This is conveniently accomplished by the provision of a collapsible line having one end connected to the shaft of a windlass, and the other end pulling on the sheath, the windlass reeling in the line, this reeling in being accomplished by successive passes of a toothed ratchet segment over the toothed circumference of a windlass drive gear, each pass being achieved by a squeeze of the trigger. Conveniently, the end of the line is connected to the slider. If the slider itself is gripped by the medical practitioner, and urged towards the windlass shaft, the line can collapse as the slider approaches the windlass.
  • This invention relates to a connector portion useful particularly, but not exclusively, as part of a device for passing fluid into an annular cavity between an inner elongate body and an outer elongate tubular body of a stent delivery system, and also relates to a stent delivery system making use of the same connector. In particular, but not exclusively, this invention relates to a connector which comprises the male portion of a luer connector. Furthermore, it relates to a device having a housing with a distal end, a proximal end and an off-axis end, wherein the housing provides a seating at the distal end thereof for the proximal end of an outer elongate tubular body which extends distally from the housing along an axis of the housing extending between the proximal and the distal ends, and wherein the distal and off-axis ends define respective openings which are in fluid communication with each other, and wherein the proximal end has a lumen which enables an inner elongate body co-axially within the outer tubular body to extend from the housing both distally and proximally along the axis thereof. It relates as well to a stent delivery system using the above-mentioned connector and device.
  • Another aspect of the invention relates to a stent delivery system such as that described above and that enables the surgeon both to lock the position of the inner catheter with respect to the outer sleeve and to inject fluid into the annular cavity between the inner catheter and the outer sleeve.
  • This object has been achieved by a simplified delivery system using the same component both for locking the position of the inner catheter with respect to the outer sleeve and for injecting fluid such as radiopaque fluid into the cavity between the inner catheter and the outer sleeve.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying figures, referred to herein and constituting a part hereof, illustrate preferred embodiments of the present invention, and together with the description serve to explain the principles of the invention.
  • FIG. 1 is a longitudinal mid-section through a hand-held device in accordance with the present invention;
  • FIG. 2 is a schematic representation, seen from above, of the core components of the FIG. 1 device, enabling the interaction of the different components to be appreciated further;
  • FIG. 3 shows in cross-section a device having a locking and release device attached thereto;
  • FIG. 4 is a longitudinal section through a stent delivery system using the locking and release device of FIG. 3; and
  • FIG. 5 shows in cross-section another embodiment of the locking and release device.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The drawings are of a preferred embodiment of the invention and FIG. 1 shows one half 12 of a molded housing of which the other half lies above the plane of the drawing.
  • The two housing halves define, in an assembled state, a track 14 in which can be laid the proximal end of a co-axial stent delivery device having an outer tube 6. Track 14 is formed by mating axial recesses in the two housing halves, resulting in a semi-circular channel open to the upper end in FIG. 1 of the housing.
  • The proximal end of the outer tube 16 carries a hub 18 which is received within a yoke 20 of a slider 24 which itself runs on a pair of rails 22. The rails 22 are not integral molded parts of the housing and are held in place by advancing a first one of the rails through a hole (not show in FIG. 1) and through fixing part 52 and feed hole in slider 24 at the distal end of the housing and into blind hole at fixing point 54 distal from the proximal end of the housing. The distal end of the rail is then bonded to the housing or fixing part 52 using an ultrasonic fusion technique. The two housing halves are then assembled and the other one of the rails is fed through another hole in the distal end of the other housing half, inserted through a feed hole in the slider 24 and pushed into another blind hole at fixing point 54. The distal end of the second rail is also bonded to the housing using an ultrasonic fusion technique. Instead of ultrasonically bonding the distal ends of the rails 22 to the housing, they may equally well be adhesively bonded thereto. Although not shown in FIG. 1, rails 22 may also be an integral part of the housing 12. The length of the rails 22 may extend along the entire length of the housing 12, but is at least equal the axial length of the stent to be deployed.
  • The present inventors also contemplate to provide markers on the rails, provided the housing is made of a transparent material, and on the slider to indicate the length of proximal withdrawal of the outer tube 16 with respect to the position of the stent. If, for example, a marker on the slider 24 lines up with a proximal-most marker provided on one of the rails 22, this gives the medical practitioner an indication that the stent has been fully released. The slider 24 protrudes to the outside of the housing 12 at the lower end thereof in FIG. 1, enabling a person to manually urge the slider 24 along the length of the rails 22, when appropriate. The protrusion length of the slider 24 may conveniently be sufficient to be grasped by the thumb and the index finger for optimum handling of the slider.
  • The inner element 26 of the co-axial delivery device is a rod, or hypo-tube, or like element which extends proximally along the track 14 to a proximal hub 28 which is captivated within the proximal end of the housing 12 and so cannot move proximally or distally once the co-axial delivery device is set within the track 14. Since the opposite end of the rod 26, that is, its distal end, is normally defining the proximal end of the stent to be delivered, the length of the rod 26 defines the distance separating the proximal end of the housing 12, where the hub 28 is captivated, and the proximal end of the stent being delivered. Hub 28 is clipped into engagement with the housing at fixing point 29. Other ways of attaching hub 28 to the proximal end of housing 12 are contemplated and are obvious to those skilled in the art, such as a yoke.
  • The body 12 contains actuating elements to draw the slider 24 in a controlled way from the distal end of the rails 22 towards their proximal ends. This proximal sliding movement draws hub 18 proximally, and so draws outer tube 16 of the delivery device proximally. Such a movement would be useful, for example, to release a self-expanding stent from within the distal portion of the tube 16.
  • To effect a controlled proximal movement of the slider 24, a collapsible line in the form of a pull wire 30 runs from the slider 24 to a windlass or take-up reel shaft 32 which is adjacent a trigger 34 mounted to the housing 12. The reel shaft 32 carries a toothed gear 35, and the teeth engage with complementary teeth 36 on an elongate ratchet element 38 itself pivotably mounted at an axis 40 to the trigger 34. The trigger 34 is mounted in a recess within the housing 12 and is held in place as soon as the two housing halves are assembled.
  • Trigger 34 is biased to a rest position as shown in FIG. 1 by a leaf spring 46 which is pivotally mounted to the housing 12 at a mounting pin 48. One end 47 of the leaf spring 48 cooperates with the elongate ratchet means 38 and is movable thereon. The other end, beyond mounting point 48 bears against support 49 and is free to move thereon. Between the pivot 48 and the distal end of leaf spring 46 making contact with the ratchet element 38, the wire used for the leaf spring is turned into a helical spring 56. The helical spring serves for optimizing the spring-characteristic forces bearing on the ratchet element 38. From portion 56 which establishes the helical spring, the leaf spring essentially follows the contour of the interior of the trigger until another helically turned portion follows, wrapping around the mounting pin 48. At this point, the leaf spring is pivotally mounted to the housing. Thus, when pushing the trigger 34 upwards, the support 49 resists pressure from one end of the spring 46, while the other end of leaf spring 46 making contact with ratchet element 38 is free to follow the movement of the trigger 34. Subsequent to actuation of the trigger, leaf spring reaction on support 49 urges trigger 34 to its rest position while maintaining contact with the ratchet element 38.
  • Successive pumps on the trigger 34 to move the trigger upwards in FIG. 1, against the bias of leaf spring 46, cause successive corresponding passes of the ratchet element 38 across the rotational axis 42 of the take-up reel shaft 32, causing the shaft 32 to rotate clockwise, as shown in FIG. 1. Movement of the trigger 34 upwards cause distal end 47 of leaf spring 46 to slide along the surface of ratchet means 38, never losing contact therewith. Thus, a force constantly applied on the ratchet element 38 by the leaf spring 46 urges ratchet element into engagement with the toothed gear 35, so that controlled proximal withdrawal of outer tube 16 if achieved without the risk of no-load operation of the trigger 34. Note how the end 47 of leaf spring 46 remote from its mounting point 48 urges the ratchet element 38 into contact with windlass gear wheel 35, but nevertheless allows the ratchet element 38 to return to its start position with the downward movement of the trigger 34. The trigger 34 and ratchet element 38 are helped to return to their original dispositions by the bias spring 46 acting on the trigger 34. Helical spring portion 56 of leaf spring 46 rests on the interior surface of trigger 34, as shown in FIG. 1.
  • FIG. 1 also shows pivot axis of trigger 34 at pivot point 41. By pushing trigger upwards, trigger slightly rotates around axis 41, thereby moving ratchet element 38 connected with trigger 34 at mounting point 40 upwards and causing windlass gear 35 to rotate clockwise. This clockwise rotation of windlass gear 35 causes pulling on line 30 moving hub 18 and therewith outer tube 16 proximally, resulting in deployment of the stent at the distal end of the coaxial stent delivery device.
  • A pawl 44 is mounted to the housing 12, and engages successive teeth of the take-up gear 35, to prevent any anti-clockwise return movement of the reel 32 as the ratchet element 38 returns to its initial position.
  • However, pumps on the trigger 34 are not the only way to bring the slider 24 proximally along the rails 22. As mentioned earlier, one can manually grip the slider 24 and urge it proximally along the rails 22, without any contact at all with the trigger 34. In this case, either the pull wire 30 becomes loose and meanders within the housing 12 (that is to say, it collapses), or else, by the provision of a suitable wind-up mechanism or spring (not shown) on the take-up reel 32, any relief of tension in the wire 30 is met with a corresponding clockwise rotation of the reel 32, to take up any slack in the wire 30. Either way, the person delivering the stent has the option of pumping on the trigger 34, or pulling on the slider 24.
  • The hub 18 is provided with a fluid inlet port 50 in the form of a luer lock. This is useful for injecting radiopaque fluid into the bodily lumen which is to be stented for the reason explained above. The luer lock, modified accordingly, is also used to fix the axial position of outer tube 16 in the event the medical practitioner needs to interrupt the release operation of the stent.
  • FIG. 2 is a schematic representation in plan of the device shown in FIG. 1. FIG. 2 shows how line 30 is wound around the windlass gear shaft 32. The winding of line 30 may be achieved by a spring-biased (not shown) reel which reels in any slack in line 30 automatically upon proximal movement of slider 24. According to FIG. 2, the shaft 32 can be formed as a drum flanked at each end by a gear wheel 35, each wheel having its own ratchet element 38, both pivotally mounted to the trigger 34. This assists management of the reeling in of the pull wire 30.
  • The above description is of a device to fit at the proximal end of a coaxial catheter device for percutaneous transluminal stent delivery. In such systems, it is customary to provide a hub at the proximal end of the two coaxial elements of the system. What is contemplated is that the present device will engage with these two hubs, and allow the usual range of connections to be made to each of the hubs. Thus, for example, it is to be expected that a guide wire will extend proximally from the hub at the proximal end of the inner element of the coaxial system, that the hub of the outer sheath will seal with the inner coaxial element and that it will also have a port arrangement for the admission or withdrawal of liquids from the annular space between the two coaxial elements of the system.
  • It is the intention that the above described system should have wide application to different stent delivery systems, this being facilitated by provision of easily exchangeable engagement formations in the housing for the respective hubs.
  • For ease of use, it is contemplated that the housing would display identical left and right sides, a lower edge with the trigger in it, and an upper edge in which the track for receipt of the coaxial stent delivery element is open-topped, so that the stent delivery system can be laid into a recess in the top edge of the housing which extends all the way from one end of the housing to the other. Those skilled in this art will be able to envisage other arrangements.
  • By providing the trigger 34 with different bores, to mount it on the housing at several different locations relative to the ratchet element 38, a choice of different strokes can be offered, to achieve a desired length of withdrawal of outer sleeve 16 for each stroke of the trigger.
  • The formation which receive hubs 18 and 28 can be made in the form of resilient clips, so that a variety of different delivery systems can be laid into the track 14.
  • In fact, the device is designed with flexibility in mind, to enable its use with a range of delivery devices and a range of user characteristics. The housing is deliberately designed symmetrical, that is, not “handed”, so it is equally suitable for left-handed and right-handed use.
  • A stopper may be provided on rails 22 as an indicator or reminder for the medical practitioner that a certain stent length has been deployed and to continue the deployment procedure by manually moving the slider 24 proximally on the rails 22. The stopper may be removed or it may be in the form of a discontinuity on the surface of the rails 22, offering a resistance to slider travel that may easily be overcome manually when continuing the deployment procedure by moving the slider 24 proximally. This provides tactile feedback to the surgeon giving him/her assurance that the stent has been fully deployed.
  • The materials used for the manufacture of the stent delivery device are, but not limited to, polyoxymethylene (POM), polycarbonate (PC) and other polymer compositions conventionally used for molding medical devices. Other components, such as the rails and the leaf spring, are made from metal suitable for medical instruments, such as stainless steel with designation 1.4310 or 1.4301. Other materials will be known and readily available to those skilled in the art.
  • Line 30 is a multifilament polymer-based fiber which gives line 30 greater flexibility than a monofilament line is likely to deliver. This flexibility is important when slider is moved proximally releasing tension in the line which then meanders within the housing.
  • FIG. 3 shows a cross-sectional view of a device for passing fluid into an annular cavity 130 of a housing of the device (which takes the form of a T-piece 2) and also between an inner catheter 126 and an outer sleeve 128.
  • The device has a housing in the shape of a T-piece 2 comprising a distal end 124, a proximal end 112 and an off-axis end 136. A lumen 123 extends between the proximal and distal ends, and is in fluid communication with a lumen 131 in the side branch of the T-piece which leads to the off-axis end 136. It is the distal 124 and the proximal 112 which define the axis of the device. The outer sleeve 128 of a stent delivery system is attached to the threaded distal end 124 of the device via a threaded female collar 122. The female collar 122 comprises a central through-hole through which the outer sleeve 128 is inserted and thermally clamped to the female collar 122. By “thermal clamping” is meant that the material of the proximal end of the outer sleeve 128 expands upon thermo-forming heat treatment and retains its expanded shape when it returns back to ambient temperature. Hence, the radially-expanded proximal end of the outer sleeve 128 resists distal movement of the outer sleeve relative to the collar 122 when the process of thermal treatment is completed. It is also conceivable to use other means to attach the outer sleeve 128 to the distal end of the device, such as a press-fitting using re-entrant surfaces, or suitable adhesives. A seating 125 of the housing seals with a complementary seating 127 of the threaded collar 122.
  • The proximal end 112 of the device, as shown in FIG. 3 exhibits a recess having two different diameters whereby the innermost recess 114 in an axial direction accommodates an O-ring 118 for providing a fluid-tight seal with an inner catheter 126 and a plug 120 press-fitted into the larger diameter recess 116 in order to prevent the O-ring from slipping out of the smaller recess upon proximal movement of the inner catheter 126. It is also conceivable to screw the plug into the larger diameter recess or use an appropriate adhesive. Differently sized O-rings can be used to accommodate differently sized inner catheters for differently sized stents. This further enhances the versatility of the device.
  • The off-axis end 36 of the device shows a female luer-lock element 133 which connects to a male luer-lock assembly 132 thereby to serve as the locking and release device 11. Thus, the locking and release device 11 may also be recognized to be based on a luer-lock connector. It comprises a passage 138 therethrough for passing fluid down the inner bore of the luer connector. The inner end of the male luer connector 132, which extends into the off-axis end of the T-piece 2, comprises a spigot 6 which is coaxial with, and located within, the internal bore 138 of the luer connector. The spigot 6 is fixed inside the bore 138 of the luer connector. The spigot 6 is fixed inside the bore 138 of the luer connector by means of an annular cutting edge which cuts itself into the material of the luer connector (in the manner of a self-tapping screw) and thereby fixedly fastens the spigot 6 to the luer connector 1. It is also conceivable to screw or press-fit the spigot into the luer connector. The spigot 6 comprises a cut-out portion 140 at the end extending into the T-piece for providing a continuous passage for the fluid to be injected that is to say, fluid communication between the bore 138 and the lumen 123. The lower (in FIG. 3) end of the spigot 6 comprises a re-entrant surfaces onto which an elastically deformable elongate locking member 8 is attached. The locking member 8 is made out of silicone rubber but other materials can be used. The end surface of the locking member 8, remote from the spigot 6, constitutes a pressure pad which bears on the inner catheter 126 when the locking member is in its locking disposition, as explained below.
  • A distinct feature of the luer connector is its quick and easy installation, since it requires only less than half a turn to fully engage the male luer-lock connector 132 with the female portion 133 of the mating luer-lock on the off-axis side branch of the T-piece. The dimensions of the spigot 6 and the pressure pad 8 are such that, when bringing the male luer-lock connector 132 into full engagement with the female element 133, the deformable locking member 8 extends sufficiently far enough beyond the end of the luer-lock connector so that it experiences a compressive force due to pressing down onto the inner catheter 126. This means that, in the absence of the inner catheter 126, the elastic member intersects the locus or line of presence of the inner catheter, so that it undergoes deformation when such inner body is present. It is this compression of the locking member which prevents axial sliding movement of the inner catheter within the device. In this locking disposition, fluid can still be injected through the luer-lock connector down into the T-piece lumen 123 and thereafter the annular cavity 130 between the inner catheter 126 and the outer sleeve 128. For ease of use, a syringe can easily be attached to the upper end 139 of the male luer-lock element 132, that is, the end opposite the one being connected to the T-piece of the luer connector via a luer-lock connection, which upper ends 139 for this purpose can exhibit the characteristic cone angle of a female luer-lock portion.
  • The luer connector optionally comprises a safety catch which prevents inadvertent release of the male luer connector 132 from the T-piece 2. The safety catch illustrated comprises two portions, namely a portion 134 located on the male luer connector 132 and preferably glued thereon and a portion 135 on the female luer portion 133 and preferably glued to it. Between the portions 134, 135 is a frangible neck 137, which prevents rotation of the luer connector until it is broken by relative rotation of the male and female luer-lock portions. To release the safety catch, the luer connector is rotated counter-clockwise thereby breaking the frangible neck 137. The safety catch is conveniently made of polymeric material. It is also conceivable to bring a pawl into engagement with a spring-biased toothed annulus on the housing 2 close to the off-axis end of the T-piece. To disengage the safety catch, the spring-biased toothed annulus is pushed towards the T-piece, thereby releasing the pawl and disengaging the luer connector. Also, a shear pin for blocking the rotation of the luer connector until it is broken in shear, or any other conventional locking mechanism that is suitable in size and weight can be used.
  • The entire structure is conveniently made out of synthetic polymeric materials.
  • FIG. 4 shows a perspective view of the stent delivery system as described in connection with FIGS. 1 and 2 using the locking and release device as well as the T-piece of FIG. 3 in an assembled state. The delivery system 170 is based on a trigger-principle for the proximal withdrawal of the outer sleeve with respect to the inner catheter. The proximal and distal end of the T-piece connector are engaged with mating parts of the delivery system, whereby the proximal ends 150 of the inner catheter 126 is fixed in position by a mount 152 at the rear side of the trigger device. Upon actuation of the delivery system the T-piece is drawn rearwardly by a tension wire 172 and carriage 174, with successive squeezes of a trigger 154, that reel in the wire 172 on a capstan drum 176 which the trigger rotates through a rack 178. The carriage 174 carries the luer-lock housing 2 towards the rear mount 152 step-wise, with each squeeze of the trigger 154, and thereby withdraws the outer sheath 128 to gradually release the stent.
  • During insertion of the stent into the delivery system, sterilization and transport, the luer-lock connector remains in its locking disposition, thereby preventing inadvertent sliding movement of the inner catheter with respect to the outer sleeve. It is only shortly before deploying the stent into the body lumen, that the luer-lock connector 1 is disengaged from the T-piece 2. Once the stent has been properly placed at the site of the stenosis, the surgeon uses the trigger mechanism in order to proximally withdraw the outer sleeve and to release the stent. In case the surgeon has to temporarily interrupt the procedure of stent placement, the luer-lock connector ca be inserted back into the T-piece in order to fix the position of the inner catheter with respect to the outer sleeve.
  • FIG. 5 shows in cross-section another embodiment of the locking and release device 1 in FIG. 3. It connects to the female luer-lock element 133 at the off-axis end 136 of the device shown in FIG. 1 and comprises a passage therethrough (not shown) for passing fluid down the inner bore of the luer connector 1, into lumen 123 of the T-piece connector 2.
  • The inner end of the locking and release device 1 which extends into the off-axis end of the T-piece 2 comprises a metal pin 180 which is coaxial with, and located within, the internal bore (not shown) of the luer connector. The metal pin 180 is fixed inside the bore of the luer connector by means of a press-fit. The end of the metal pin extending into the off-axis end of the T-piece is domed. The end surface of metal pin curves radially inwardly, uniformly from all radial directions. This dome-shape of the axial end of metal pin 180 effects line contact the annular edge 182 of metal pin 180 with the inner catheter 126. The dome-shaped end of metal pin 180 is also more clearly shown in the blown-up part of FIG. 5.
  • For providing fluid communication between the inner bore of the luer connector 1 and lumen 123 of T-piece 2, the upper portion of metal pin in FIG. 5 to be inserted into the off-axis end of T-piece is oblate. When the metal pin is inserted into the male Luer connector, a gap remains between the oblated portion 185 of metal pin and the end portion of the luer connector defining the inner bore. This way, fluid connection between inner bore 138 of luer connector 1 and inner lumen 123 of T-piece is established.
  • The press-fit of metal pin into male luer connector is ensured by the chamfered portion 184 of metal pin. A flange 186 serving as a stopper is provided on the metal pin. The flange also takes up any compressive stresses caused by the pushing of the pin onto the inner catheter.
  • To prevent inadvertent rotation of the male luer-lock connector 1 with respect to the T-piece, an integrally molded element is both attached to the luer connector and the off-axis end of the T-piece. This element comprises portion 134, which circumferentially surrounds the near end of the luer connector to the off-axis end of the T-piece, a frangible portion 137 and portion 135 circumferentially surrounding a section of the off-axis end of the T-piece. Arrows are provided on portion 134 indicating the medical practitioner what direction to turn the luer connector in order to release it from the T-piece.
  • Upon rotation of the luer male connector 1, frangible portion 137 breaks off portion 135, thereby allowing the luer connector to be detached from the T-piece. The frangible portion 137 is designed such that it resists inadvertent rotation of the luer connector prior to use of the luer connector/T-piece assembly. It also serves as an indicator for the surgeon to indicate that the device shown in FIG. 3 has not been previously used in a surgical procedure, and sterility is still maintained.
  • The circular edge 182 of dome-shaped end of metal pin 180, in an assembled state of the device shown in FIG. 1, bites on the inner catheter 126 and prevents distal or proximal movement of the inner catheter with respect to the T-piece. The inventor of the present application have found that it is the sharp edge of metal pin 180 that effectively prevents this movement of the inner catheter. Preferably, the diameter of the 360° circular edge equals the diameter of the inner catheter 126. It is also contemplated that the material used for the metal pin should be harder than the material used for the inner catheter.
  • Although the illustrated embodiment shows a single T-piece being used for both introduction of radiopaque marker fluid and for clamping the inner catheter relative to the outer sheath, and although this is a useful advantage of the invention, nevertheless, it will be appreciated that separate T-pieces could be used for these two separate functions. The advantage delivered by this invention, namely reliable and economical inner catheter clamping remains, even if radiopaque fluid is delivered elsewhere.

Claims (24)

1. A connector which comprises the male portion of a luer connector,
characterized in that
the male portion 132 is extended axially into a pressure paid (8) having a pressure surface.
2. A device for passing fluid into an annular cavity between an inner elongate body (126) and an outer elongate tubular body (128), the device having a housing (2) with a distal end (24), a proximal end (112) and an off-axis end (136), the housing providing a seating at the distal end thereof for the outer elongate tubular body along an axis of the housing extending between the proximal and the distal end, the distal and off-axis ends defining respective openings (130, 131) which are in fluid communication with each other, and the proximal end having a lumen (123) to enable the inner elongate body to extend from the housing both distally and proximally, along the axis thereof:
characterized by:
a pressure pad (8) mounted to the housing and extending into the cavity from the off-axis opening of the housing and movable between a locking disposition, in which the pad (8) bears on the locus of the inner elongate body (126) for preventing axial movement thereof with respect to the outer body (128), and simultaneously allows injection of fluid into the annular cavity (130), and a release disposition in which the pad is spaced from the locus of the inner elongate body for permitting axial movement of the inner body with respect to the outer body.
3. Stent delivery system comprising an inner elongate body (126) and an outer elongate tubular body (128) which are coaxially arranged, a pull-back device (170) enabling proximal displacement of the outer body with respect to the inner body for releasing a stent contained within an annular cavity formed between the inner and outer body, into a body lumen, a device (1) for passing fluid into the annular cavity having a housing (2) with a distal end (124), a proximal end (112) and an off-axis end (136), the housing provides a seating at the distal end thereof for the outer elongate tubular body along an axis of the housing extending between the proximal and the distal end, the distal and off-axis ends defining respective openings (30, 31) which are in fluid communication with each other, and the proximal end having a lumen (23) to enable the inner elongate body to extend from the housing both distally and proximally, along the axis thereof, the stent delivery system being characterized by
a locking and release device (1) mounted to the housing (2) and extending into the off-axis opening of the housing to bear, in a locking disposition, against the inner body to prevent axial movement thereof with respect to the outer body, and to simultaneously allow injection of fluid into the annular cavity and, in a released disposition, to be spaced from the inner body to permit axial movement of the inner body with respect to the outer body.
4. A device (1) for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system and held by a constraint (16) in a constrained delivery disposition, the device comprising:
a first abutment (28) for the delivery system;
a second abutment (18) for an elongate element (30) to connect the device to the prosthesis constraint;
a track (14) for the second abutment (18) to advance along, from a starting point corresponding to constraint of the prosthesis, to a finishing point corresponding to separation of the prosthesis and constraint (16);
ratchet means (38) to advance the second abutment (18) progressively, from the starting point to the finishing point, in a plurality of actuation strokes; and
characterized by:
a full stroke actuator (24), to advance the second abutment (18) all the way from an intermediate point on said track (14) to said finishing point in one single stroke of the said actuator (24), the intermediate point being selectable by the user within a portion of the track (14) which extends over at least half the length of the track.
5. A method for releasing into the body from a delivery system a medical prosthesis mounted on the delivery system and held by a constraint in a constrained delivery system, the method comprising
a first release phase characterized by stepwise release of a first portion of the prosthesis, by successive actuation strokes of a ratchet means, followed by
a second phase of release of the prosthesis, characterised by a single stroke of a full stroke prosthesis release actuator.
6. A medical device delivery system for therapeutically treating a patient, comprising:
an inner shaft, having proximal and distal ends;
a tubular outer sheath, at least a portion of which surrounds a portion of the inner shaft member;
a medical device within the outer sheath in an initial configuration;
a handle operatively coupled with the inner shaft and the outer sheath;
the handle having a first and second actuator for adjusting the relative positions of the inner shaft and the outer sheath, each of the first and second actuators providing a different amount of mechanical advantage between an input to one of the first and second actuators by a physician and a resulting relative position of the inner shaft and the outer sheath respectively.
7. The medical device delivery system of claim 6, wherein one of the first and second actuators provides a mechanical advantage of 1:1.
8 The medical device delivery system of claim 6, wherein the second actuator is adapted to slide along a longitudinal slot defined by the handle.
9. The medical device delivery system of claim 6, wherein one of the first and second actuators is formed as a lever.
10. The medical device delivery system of claim 6, wherein the first actuator provides a mechanical advantage greater than 1:1, to facilitate an operator to overcome initial resistance to changing the initial relative position of the inner shaft and the outer sheath.
11. A handle for manipulating a medical device delivery system for therapeutically treating a patient, comprising:
a housing;
inner and outer shaft members;
the inner shaft member being affixed to the housing;
the outer shaft member being movably coupled to the inner shaft member, such that the outer shaft member can be moved longitudinally with respect to the inner shaft member;
first and second means for selectively moving the outer shaft member with respect to the inner shaft member;
the first means being adapted for precise and sensitive adjustment of the position of the outer shaft member, and the second means being adapted for rapid and relatively large-scale movement of the outer shaft member.
12. A medical device delivery system for therapeutically treating a patient, comprising:
an inner shaft, having proximal and distal ends;
a tubular outer sheath, at least a portion of which surrounds a portion of the inner shaft member;
a medical device within the outer sheath in an initial configuration;
a handle operatively coupled with the inner shaft and the outer sheath;
the handle having a first and second actuator for adjusting the relative positions of the inner shaft and the outer sheath, each of the first and second actuators providing a different amount of mechanical advantage between an input to one of the first and second actuators by a physician and a resulting relative position of the inner shaft and the outer sheath respectively; and
a locking member that releasably holds the outer sheath relative to the inner shaft in an initial configuration, thereby holding the outer sheath in the initial configuration and tending to resist inadvertently uncovering the medical device.
13. The medical device delivery system of claim 12, wherein the first actuator provides a mechanical advantage of 1:1.
14. The medical device delivery system of claim 12, wherein the first actuator is adapted to slide along a longitudinal slot defined by the handle.
15. The medical device delivery system of claim 12, wherein the second actuator provides a mechanical advantage greater than 1:1, to facilitate an operator to overcome initial resistance to changing the initial relative position of the inner shaft and the outer sheath.
16. The medical device delivery system of claim 12, wherein one of the first and second actuators is formed as a lever.
17. The medical device delivery system of claim 12, further comprising a guidewire lumen for slidably receiving a flexible guidewire.
18. The medical device delivery system of claim 12, wherein the medical device is a stent.
19. The medical device delivery system of claim 18, wherein the stent is of the self-expanding type.
20. A handle for manipulating a medical device delivery system for therapeutically treating a patient, comprising:
a housing;
first and second shaft members;
the first shaft member being affixed to the housing;
the second shaft member being movably coupled to the first shaft member, such that the second shaft member can be moved longitudinally with respect to the first shaft member;
first and second means for selectively moving the second shaft member with respect to the first shaft member;
the first means being adapted for precise and sensitive adjustment of the position of the second shaft member, and the second means being adapted for rapid and relatively large-scale movement of the second shaft member;
and a locking member that releasably holds the first and second shafts in a constant initial relative position.
21. A method for therapeutically treating a patient, comprising the steps of:
(a) providing a medical device delivery system having proximal and distal ends; a handle near the proximal end; a medical device for delivery by the delivery system and for performing a therapeutic procedure at a desired site for treatment; a delivery mechanism for selectively and progressively releasing the medical device; and a locking member that holds the delivery mechanism in an initial configuration, the locking member tending to releasably resist inadvertent release of the medical device by the delivery mechanism;
wherein the medical device is positioned within the delivery mechanism; wherein the handle has a first and second actuator coupled to the delivery mechanism;
(b) inserting the medical device delivery system along a body passage until the distal end of the delivery system is positioned at or near the desired site for treatment;
(c) unlocking the locking member;
(d) moving the first actuator on the handle a first selected amount; such movement of the first actuator causing the delivery mechanism to move an amount at a first proportional rate in a precise manner, and causing the delivery mechanism to partially release the medical device;
(e) moving the second actuator on the handle, causing the delivery mechanism to move at a second greater proportional rate in a rapid manner, to fully release the medical device; and
(f) withdrawing and removing the medical device delivery system from the body passage, and allowing the medical device to remain at the desired site for treatment.
22. The method as set forth in claim 21, further comprising, between steps (d) and (e), the additional steps of: evaluating in greater detail the position of the medical device compared to the position of the desired site to be treated; and adjusting the position of the medical device delivery system based on the evaluation.
23. A method for therapeutically treating a patient, comprising the steps of:
(a) providing a medical device delivery system having proximal and distal ends; a handle near the proximal end; a medical device for delivery by the delivery system and for performing a therapeutic procedure at a desired site for treatment; a delivery mechanism for selectively and progressively releasing the medical device; and a locking member that holds the delivery mechanism in an initial configuration, the locking member tending to releasably resist inadvertent release of the medical device by the delivery mechanism;
wherein the medical device is positioned within the delivery mechanism; the handle has a first and second actuator coupled to the delivery mechanism; the first actuator is a rotatable knob; and the second actuator is a longitudinal slider;
(b) inserting the medical device delivery system along a body passage until the distal end of the delivery system is positioned at or near the desired site for treatment;
(c) unlocking the locking member;
(d) rotating the first actuator on the handle a selected amount; such rotation of the first actuator causing the delivery mechanism to move an amount in a precise manner, and causing the delivery mechanism to partially release the medical device;
(e) sliding the second actuator on the handle longitudinally, causing the delivery mechanism to move in a rapid manner, to fully release the medical device; and
(f) withdrawing and removing the medical device delivery system from the body passage, and allowing the medical device to remain at the desired site for treatment.
24. The method as set forth in claim 23, further comprising, between steps (d) and (e), the additional steps of: evaluating in greater detail the position of the medical device compared to the position of the desired site to be treated; and adjusting the position of the medical device delivery system based on the evaluation.
US10/824,033 2001-04-30 2004-04-14 Variable speed self-expanding stent delivery system and luer locking connector Abandoned US20050021123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/640,956 US8062344B2 (en) 2001-04-30 2009-12-17 Variable speed self-expanding stent delivery system and luer locking connector

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GBGB0110551.9A GB0110551D0 (en) 2001-04-30 2001-04-30 Self-expanding stent delivery service
GB0110551.9 2001-04-30
GBGB0114939.2A GB0114939D0 (en) 2001-06-19 2001-06-19 Luer connector portion
GB0114939.2 2001-06-19
PCT/EP2002/004727 WO2002087470A1 (en) 2001-04-30 2002-04-29 Self-expanding stent delivery device
WOPCT/EP02/04727 2002-04-29
WOPCT/EP02/06784 2002-06-19
PCT/EP2002/006784 WO2002102279A2 (en) 2001-06-19 2002-06-19 Luer connector portion, and stent delivery system including a connector portion

Related Parent Applications (6)

Application Number Title Priority Date Filing Date
US10476351 Continuation-In-Part 2002-04-29
US10/476,351 Continuation-In-Part US7550001B2 (en) 2001-04-30 2002-04-29 Stent delivery device and method for stent delivery
PCT/EP2002/004727 Continuation-In-Part WO2002087470A1 (en) 2001-04-30 2002-04-29 Self-expanding stent delivery device
US10/481,351 Continuation-In-Part US7553322B2 (en) 2001-04-30 2002-06-19 Luer connector portion, and stent delivery system including a connector portion
PCT/EP2002/006784 Continuation-In-Part WO2002102279A2 (en) 2001-04-30 2002-06-19 Luer connector portion, and stent delivery system including a connector portion
US10481351 Continuation-In-Part 2002-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/640,956 Division US8062344B2 (en) 2001-04-30 2009-12-17 Variable speed self-expanding stent delivery system and luer locking connector

Publications (1)

Publication Number Publication Date
US20050021123A1 true US20050021123A1 (en) 2005-01-27

Family

ID=49753717

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/824,033 Abandoned US20050021123A1 (en) 2001-04-30 2004-04-14 Variable speed self-expanding stent delivery system and luer locking connector
US12/640,956 Expired - Fee Related US8062344B2 (en) 2001-04-30 2009-12-17 Variable speed self-expanding stent delivery system and luer locking connector

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/640,956 Expired - Fee Related US8062344B2 (en) 2001-04-30 2009-12-17 Variable speed self-expanding stent delivery system and luer locking connector

Country Status (1)

Country Link
US (2) US20050021123A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050080476A1 (en) * 2003-10-09 2005-04-14 Gunderson Richard C. Medical device delivery system
US20070055340A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc., A Delaware Corporation Stent delivery system with multiple evenly spaced pullwires
US20070060999A1 (en) * 2005-08-17 2007-03-15 Michael Randall Variable speed stent delivery system
US20070088421A1 (en) * 2005-10-14 2007-04-19 Loewen John L Device for deploying an implantable medical device
US20070118079A1 (en) * 2005-11-21 2007-05-24 Moberg John R Medical devices and related systems and methods
US20070168014A1 (en) * 2006-01-13 2007-07-19 Jimenez Teodoro S Stent Delivery System
US20070219617A1 (en) * 2006-03-17 2007-09-20 Sean Saint Handle for Long Self Expanding Stent
US20080097572A1 (en) * 2006-10-22 2008-04-24 Idev Technologies, Inc. Devices and methods for stent advancement
EP2002808A2 (en) * 2006-03-31 2008-12-17 Zeon Corporation Stent delivery catheter
WO2009007432A1 (en) 2007-07-11 2009-01-15 Angiomed Gmbh & Co. Medizintechnik Kg Device for catheter sheath retraction
US20090024133A1 (en) * 2007-07-16 2009-01-22 Fionan Keady Delivery device
US20090171428A1 (en) * 2007-12-26 2009-07-02 William Cook Europe Aps Deployment handle for an implant deployment device
US20090171433A1 (en) * 2007-12-27 2009-07-02 Cook Incorporated Control handle
US20090287145A1 (en) * 2008-05-15 2009-11-19 Altura Interventional, Inc. Devices and methods for treatment of abdominal aortic aneurysms
US20100094399A1 (en) * 2001-04-30 2010-04-15 C. R. Bard, Inc. Variable speed self-expanding stent delivery system and luer locking connector
US20100168834A1 (en) * 2008-12-30 2010-07-01 Wilson-Cook Medical Inc. Delivery Device
US20100168756A1 (en) * 2006-08-07 2010-07-01 Dorn Juergen Hand-held actuator device
US20100305686A1 (en) * 2008-05-15 2010-12-02 Cragg Andrew H Low-profile modular abdominal aortic aneurysm graft
US20110130825A1 (en) * 2009-12-01 2011-06-02 Altura Medical, Inc. Modular endograft devices and associated systems and methods
US20110190865A1 (en) * 2010-01-29 2011-08-04 Cook Medical Technologies Llc Mechanically Expandable Delivery and Dilation Systems
US8025692B2 (en) 2001-10-02 2011-09-27 Angiomed Gmbh & Co. Medizintechnik Kg Stent delivery system
US8075606B2 (en) 2001-07-06 2011-12-13 Angiomed Gmbh & Co. Medizintechnik Kg Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8475515B2 (en) 2003-01-15 2013-07-02 Angiomed GmbH & Co., Medizinitechnik KG Trans-luminal surgical device
US8808350B2 (en) 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
US8858613B2 (en) 2010-09-20 2014-10-14 Altura Medical, Inc. Stent graft delivery systems and associated methods
US8932342B2 (en) 2010-07-30 2015-01-13 Cook Medical Technologies Llc Controlled release and recapture prosthetic deployment device
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9308108B2 (en) 2013-03-13 2016-04-12 Cook Medical Technologies Llc Controlled release and recapture stent-deployment device
US9700701B2 (en) 2008-07-01 2017-07-11 Endologix, Inc. Catheter system and methods of using same
US9737426B2 (en) 2013-03-15 2017-08-22 Altura Medical, Inc. Endograft device delivery systems and associated methods
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US10022255B2 (en) 2016-04-11 2018-07-17 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
US20180235638A1 (en) * 2017-02-21 2018-08-23 Cook Medical Technologies Llc Medical device for temporary deployment into a bodily lumen
US20180280173A1 (en) * 2006-01-13 2018-10-04 C. R. Bard, Inc. Stent Delivery System
US10245167B2 (en) 2015-01-29 2019-04-02 Intact Vascular, Inc. Delivery device and method of delivery
US10285833B2 (en) 2012-08-10 2019-05-14 Lombard Medical Limited Stent delivery systems and associated methods
US20190177290A1 (en) * 2016-02-17 2019-06-13 Toray Industries, Inc. Method of producing sugar alcohol
US10610392B2 (en) 2015-01-29 2020-04-07 Intact Vascular, Inc. Delivery device and method of delivery
US10898356B2 (en) 2015-01-29 2021-01-26 Intact Vascular, Inc. Delivery device and method of delivery
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
CN116585084A (en) * 2023-07-17 2023-08-15 四川国屹医疗科技有限公司 Support conveying device
US11931276B2 (en) 2008-06-11 2024-03-19 C. R. Bard, Inc. Catheter delivery device

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447669A (en) 2000-08-18 2003-10-08 阿特里泰克公司 Expandable implant devices for filtering blood flow from atrial appendages
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8951299B2 (en) 2003-12-23 2015-02-10 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US8252036B2 (en) 2006-07-31 2012-08-28 Syntheon Cardiology, Llc Sealable endovascular implants and methods for their use
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
CN103002833B (en) 2010-05-25 2016-05-11 耶拿阀门科技公司 Artificial heart valve and comprise artificial heart valve and support through conduit carry interior prosthese
US8714984B2 (en) * 2010-07-16 2014-05-06 One World Design and Manufacturing Group, LTD Injection simulator
CN106073946B (en) 2010-09-10 2022-01-04 西美蒂斯股份公司 Valve replacement device, delivery device for a valve replacement device and method of producing a valve replacement device
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10357295B1 (en) * 2013-11-13 2019-07-23 Mohammed A. Hajianpour Apparatus and method for connecting opposite ends of a surgical wire wrapped around an internal body structure
US9820876B2 (en) * 2014-09-15 2017-11-21 Cook Medical Technologies Llc Pivot operated vascular intervention device delivery system
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
JP6767388B2 (en) 2015-05-01 2020-10-14 イェーナヴァルヴ テクノロジー インコーポレイテッド Devices and methods to reduce the proportion of pacemakers in heart valve replacement
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
CA3046087A1 (en) * 2016-12-09 2018-06-14 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
EP3706644A4 (en) 2017-11-09 2021-07-07 Inceptus Medical, LLC Interlocking loop coupling/decoupling system for deploying vascular implant devices
WO2019144069A2 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US10441449B1 (en) 2018-05-30 2019-10-15 Vesper Medical, Inc. Rotary handle stent delivery system and method
WO2019241477A1 (en) 2018-06-13 2019-12-19 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US10449073B1 (en) 2018-09-18 2019-10-22 Vesper Medical, Inc. Rotary handle stent delivery system and method
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11219541B2 (en) 2020-05-21 2022-01-11 Vesper Medical, Inc. Wheel lock for thumbwheel actuated device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871382A (en) * 1973-02-15 1975-03-18 Pacesetter Syst Heart stimulator system for rapid implantation and removal with improved integrity
US5242423A (en) * 1992-03-09 1993-09-07 American Home Products Corporation Needleless syringe
US5810768A (en) * 1995-06-07 1998-09-22 Icu Medical, Inc. Medical connector
US5843088A (en) * 1991-12-23 1998-12-01 Ela Medical Sa Tool and method for installation of a ventricular cannulation device
US7553322B2 (en) * 2001-06-19 2009-06-30 C.R.Bard, Inc. Luer connector portion, and stent delivery system including a connector portion

Family Cites Families (346)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB346708A (en) 1929-01-31 1931-04-15 Barmag Barmer Maschf Improvements in or relating to winding, twisting or doubling machines producing cross-wound conical bobbins
US2939680A (en) 1952-01-02 1960-06-07 Gen Motors Corp Balancer lowering assist
US2934211A (en) 1957-12-06 1960-04-26 Serv O Lift Corp Dispensing apparatus
US3070057A (en) 1959-07-13 1962-12-25 Dezzani John Feeder for filamentous material
US3585707A (en) 1966-04-13 1971-06-22 Cordis Corp Method of making tubular products
GB1201477A (en) 1966-11-17 1970-08-05 Matsushita Electric Ind Co Ltd Rotation control device
US3881423A (en) 1972-11-17 1975-05-06 Goodyear Tire & Rubber Variable speed vehicle
US4256113A (en) 1977-12-08 1981-03-17 Chamness Dale L Surgical apparatus
DE3132323C2 (en) 1981-08-17 1983-07-21 B. Braun Melsungen Ag, 3508 Melsungen Injection part for infusion devices
AU8954282A (en) 1981-09-16 1983-04-08 Wallsten, H.I. Device for application in blood vessels or other difficultly accessible locations and its use
US5275622A (en) 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4616648A (en) 1985-01-08 1986-10-14 Devices For Vascular Intervention Device facilitating the exchange of dilatation catheters during an angioplasty procedure
US4723547A (en) 1985-05-07 1988-02-09 C. R. Bard, Inc. Anti-obesity balloon placement system
SE447061B (en) 1985-06-10 1986-10-27 Medinvent Sa INFO DEVICE, SPEC FOR IMPLEMENTATION IN A LIVE ORGANISM
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4665918A (en) 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
US4760622A (en) 1986-07-31 1988-08-02 Schlegel Corporation Compound winding apparatus and counterbalance systems
US4889112A (en) 1987-01-23 1989-12-26 Waltap Ltd. Apparatus for performing a tracheostomy operation
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4913683A (en) 1988-07-05 1990-04-03 Medical Engineering Corporation Infusion stent system
US4913414A (en) * 1988-08-16 1990-04-03 Xerox Corporation Damped sheet registration drive
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
SE8803444D0 (en) 1988-09-28 1988-09-28 Medinvent Sa A DEVICE FOR TRANSLUMINAL IMPLANTATION OR EXTRACTION
US4913141A (en) 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US5697936A (en) 1988-11-10 1997-12-16 Cook Pacemaker Corporation Device for removing an elongated structure implanted in biological tissue
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5045072A (en) 1989-06-13 1991-09-03 Cordis Corporation Catheter having highly radiopaque, flexible tip
EP0408245B1 (en) 1989-07-13 1994-03-02 American Medical Systems, Inc. Stent placement instrument
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
US5674278A (en) 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
EP0436303A1 (en) 1989-12-01 1991-07-10 C.R. Bard, Inc. Guidewire with member for tracking along an indwelling device, and catheter exchange system
IE63252B1 (en) 1990-01-30 1995-04-05 Bard Connaught A device for use with a catheter
US5049128A (en) 1990-02-06 1991-09-17 Duquette Irene A Valved infusion port
US5279596A (en) 1990-07-27 1994-01-18 Cordis Corporation Intravascular catheter with kink resistant tip
US6224608B1 (en) 1990-08-10 2001-05-01 United States Surgical Corporation Tissue holding device and method
US5054162A (en) 1990-08-17 1991-10-08 Schlegel Corporation Constant force compensation for power spring weight balance
CA2052981C (en) 1990-10-09 1995-08-01 Cesare Gianturco Percutaneous stent assembly
US5161547A (en) 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5135536A (en) 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5116365A (en) 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5254107A (en) 1991-03-06 1993-10-19 Cordis Corporation Catheter having extended braid reinforced transitional tip
US5163941A (en) 1991-05-07 1992-11-17 California Medical Products Intubation device
SE503249C2 (en) 1991-06-14 1996-04-29 Ams Medinvent Sa Apparatus for transluminal implantation of a substantially tubular, radially expandable stent
US5591172A (en) 1991-06-14 1997-01-07 Ams Medinvent S.A. Transluminal implantation device
US5795325A (en) 1991-07-16 1998-08-18 Heartport, Inc. Methods and apparatus for anchoring an occluding member
US5649906A (en) 1991-07-17 1997-07-22 Gory; Pierre Method for implanting a removable medical apparatus in a human body
US5645076A (en) 1991-08-14 1997-07-08 Yoon; Inbae Automatic retractable safety penetrating instrument
US5230774A (en) * 1991-09-03 1993-07-27 Nalco Chemical Company Synergistic pitch control process utilizing ammonium zirconium and cationic polymers
EP0536610B1 (en) 1991-10-11 1997-09-03 Angiomed GmbH & Co. Medizintechnik KG Stenosis dilatation device
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
AU669338B2 (en) 1991-10-25 1996-06-06 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5720776A (en) 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5346498A (en) 1991-11-06 1994-09-13 Imagyn Medical, Inc. Controller for manipulation of instruments within a catheter
FR2683449A1 (en) 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5336192A (en) 1991-11-27 1994-08-09 Palestrant Aubrey M Self-sealing valve device for angiographic catheters
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5190552A (en) 1992-02-04 1993-03-02 Kelman Charles D Slotted tube injector for an intraocular lens
US5228452A (en) 1992-02-19 1993-07-20 Target Therapeutics Inc. Proximal end fitting with an improved seal for use in a catheter guidewire assembly
US5509900A (en) 1992-03-02 1996-04-23 Kirkman; Thomas R. Apparatus and method for retaining a catheter in a blood vessel in a fixed position
US5407432A (en) 1992-03-30 1995-04-18 Pameda N.V. Method of positioning a stent
US5209754A (en) 1992-04-02 1993-05-11 Ahluwalia Prabhat K Vaginal cervical retractor elevator
US5201757A (en) 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5536248A (en) 1992-05-11 1996-07-16 Arrow Precision Products, Inc. Method and apparatus for electrosurgically obtaining access to the biliary tree and placing a stent therein
US5224939A (en) 1992-05-22 1993-07-06 Scimed Life Systems, Inc. Self locking guide catheter
US5290295A (en) 1992-07-15 1994-03-01 Querals & Fine, Inc. Insertion tool for an intraluminal graft procedure
US5466221A (en) 1992-08-03 1995-11-14 Zadini; Filiberto P. Percutaneous cardiac pump for cardiopulmonary resuscitation
US5707376A (en) 1992-08-06 1998-01-13 William Cook Europe A/S Stent introducer and method of use
US5531690A (en) 1992-10-30 1996-07-02 Cordis Corporation Rapid exchange catheter
US5315747A (en) 1992-10-30 1994-05-31 Pameda N.V. Method of preparing a balloon dilatation catheter
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
ES2059202T3 (en) 1992-12-16 1994-11-01 Schneider Europ Ag DEVICE TO IMPLEMENT A SELF-EXPANDABLE ENDOPROTESIS IN A VESSEL.
CA2149887A1 (en) 1992-12-30 1994-07-21 Steven J. Healy Apparatus for deploying body implantable stents
DE4300285A1 (en) 1993-01-08 1994-07-14 Wolf Gmbh Richard Instrument for implanting and extracting stents
US5312351A (en) 1993-01-29 1994-05-17 Gerrone Carmen J Combined pneumo-needle and trocar apparatus
DE4303181A1 (en) 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
US5360401A (en) 1993-02-18 1994-11-01 Advanced Cardiovascular Systems, Inc. Catheter for stent delivery
US5334147A (en) 1993-04-28 1994-08-02 Cordis Corporation Rapid exchange type dilatation catheter
US5603801A (en) 1993-04-30 1997-02-18 Defriese; John M. Infinite universal sealing assembly
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5391172A (en) 1993-05-24 1995-02-21 Advanced Cardiovascular Systems, Inc. Stent delivery system with coaxial catheter handle
DE4320962C2 (en) 1993-06-24 1997-04-17 Osypka Peter Catheter made of a flexible plastic tube
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5312363A (en) 1993-07-13 1994-05-17 Symbiosis Corporation Low friction slit valve
US5913897A (en) 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
FR2710833B1 (en) 1993-10-05 1995-11-24 Celsa Lg Device for implanting a medical prosthesis in a conduit of a human or animal body and method for centering such a device.
US5538510A (en) 1994-01-31 1996-07-23 Cordis Corporation Catheter having coextruded tubing
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US5591196A (en) 1994-02-10 1997-01-07 Endovascular Systems, Inc. Method for deployment of radially expandable stents
US5417708A (en) 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6461381B2 (en) 1994-03-17 2002-10-08 Medinol, Ltd. Flexible expandable stent
US5843120A (en) 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5556389A (en) 1994-03-31 1996-09-17 Liprie; Samuel F. Method and apparatus for treating stenosis or other constriction in a bodily conduit
US5840064A (en) 1994-03-31 1998-11-24 United States Surgical Corporation Method and apparatus for treating stenosis or other constriction in a bodily conduit
FR2718345B1 (en) 1994-04-11 1997-04-04 Braun Celsa Sa Handle for controlled relative sliding of a sheath and a rod and apparatus for implanting a medical device, such as a filter, using such a handle.
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
DE4418336A1 (en) 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
DE29522101U1 (en) 1994-06-08 1999-12-09 Cardiovascular Concepts Inc Endoluminal prosthesis
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
DE4420142C2 (en) 1994-06-09 2002-06-20 Angiomed Ag Device for expanding a stenosis
DE69528216T2 (en) 1994-06-17 2003-04-17 Terumo Corp Process for the production of a permanent stent
US5817496A (en) 1994-07-07 1998-10-06 Pharmacia & Upjohn S.P.A. Recombinant kat enzyme from rat
US5571172A (en) 1994-08-15 1996-11-05 Origin Medsystems, Inc. Method and apparatus for endoscopic grafting
US5743874A (en) 1994-08-29 1998-04-28 Fischell; Robert E. Integrated catheter for balloon angioplasty and stent delivery
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
CA2201128C (en) 1994-10-27 2000-10-24 Jeffrey A. Helgerson Stent delivery device
US5683345A (en) 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
DE69517153T2 (en) 1994-11-02 2001-02-01 Olympus Optical Co INSTRUMENT WORKING WITH ENDOSCOPE
US5681322A (en) 1994-11-14 1997-10-28 Meadox Medicals, Inc. Gas sterilizable intraluminal delivery system
AU3783195A (en) 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
CA2163824C (en) 1994-11-28 2000-06-20 Richard J. Saunders Method and apparatus for direct laser cutting of metal stents
US5628755A (en) 1995-02-20 1997-05-13 Schneider (Europe) A.G. Balloon catheter and stent delivery system
US5573530A (en) 1994-12-15 1996-11-12 Cabot Technology Corporation Handle for a surgical instrument including a manually actuated brake
US5578074A (en) 1994-12-22 1996-11-26 Target Therapeutics, Inc. Implant delivery method and assembly
US5814062A (en) 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
DK175166B1 (en) 1995-01-03 2004-06-21 Cook William Europ Method of manufacturing an assembly for placing an embolization coil in the vascular system and such assembly as well as an apparatus for advancing the assembly
DE69622231T2 (en) 1995-03-01 2002-12-05 Scimed Life Systems Inc LENGTHFLEXIBLE AND EXPANDABLE STENT
WO1996028116A1 (en) 1995-03-10 1996-09-19 Cardiovascular Concepts, Inc. Tubular endoluminar prosthesis having oblique ends
US5605530A (en) 1995-03-23 1997-02-25 Fischell; Robert E. System for safe implantation of radioisotope stents
US5741298A (en) 1995-04-28 1998-04-21 Macleod; Cathel Method and devices for video-assisted surgical techniques
US5666970A (en) 1995-05-02 1997-09-16 Heart Rhythm Technologies, Inc. Locking mechanism for catheters
FR2733682B1 (en) 1995-05-04 1997-10-31 Dibie Alain ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
US5681347A (en) 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
EP0773754B1 (en) 1995-05-25 2004-09-01 Medtronic, Inc. Stent assembly
US6312407B1 (en) 1995-06-05 2001-11-06 Medtronic Percusurge, Inc. Occlusion of a vessel
JPH11503056A (en) 1995-06-06 1999-03-23 コルヴィタ コーポレーション Intravascular measurement device and introduction / placement means
US5788707A (en) 1995-06-07 1998-08-04 Scimed Life Systems, Inc. Pull back sleeve system with compression resistant inner shaft
US5713948A (en) 1995-07-19 1998-02-03 Uflacker; Renan Adjustable and retrievable graft and graft delivery system for stent-graft system
US5776141A (en) 1995-08-28 1998-07-07 Localmed, Inc. Method and apparatus for intraluminal prosthesis delivery
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
DE29516712U1 (en) 1995-10-23 1995-12-21 Meyer Kobbe Clemens Dr Pipe with a lattice structure
DE19539449A1 (en) 1995-10-24 1997-04-30 Biotronik Mess & Therapieg Process for the production of intraluminal stents from bioresorbable polymer material
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
DE69508592T2 (en) 1995-11-14 1999-09-16 Schneider Europ Gmbh Stent implantation device
US5769871A (en) 1995-11-17 1998-06-23 Louisville Laboratories, Inc. Embolectomy catheter
US6090063A (en) 1995-12-01 2000-07-18 C. R. Bard, Inc. Device, system and method for implantation of filaments and particles in the body
US6287322B1 (en) 1995-12-07 2001-09-11 Loma Linda University Medical Center Tissue opening locator and everter and method
US5807327A (en) 1995-12-08 1998-09-15 Ethicon, Inc. Catheter assembly
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5749921A (en) 1996-02-20 1998-05-12 Medtronic, Inc. Apparatus and methods for compression of endoluminal prostheses
US5704914A (en) 1996-02-23 1998-01-06 Stocking; John E. Catheter placement assembly
US5695498A (en) 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US6629981B2 (en) 2000-07-06 2003-10-07 Endocare, Inc. Stent delivery system
US6413269B1 (en) 2000-07-06 2002-07-02 Endocare, Inc. Stent delivery system
US5788710A (en) 1996-04-30 1998-08-04 Boston Scientific Corporation Calculus removal
US5843244A (en) 1996-06-13 1998-12-01 Nitinol Devices And Components Shape memory alloy treatment
US6077295A (en) 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5904147A (en) 1996-08-16 1999-05-18 University Of Massachusetts Intravascular catheter and method of controlling hemorrhage during minimally invasive surgery
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
US5968069A (en) 1996-08-23 1999-10-19 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US6096009A (en) 1996-09-13 2000-08-01 Boston Scientific Corporation Guidewire and catheter locking device and method
US6027509A (en) 1996-10-03 2000-02-22 Scimed Life Systems, Inc. Stent retrieval device
US5976178A (en) 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US5810869A (en) 1996-11-18 1998-09-22 Localmed, Inc. Methods for loading coaxial catheters
US5860998A (en) 1996-11-25 1999-01-19 C. R. Bard, Inc. Deployment device for tubular expandable prosthesis
US5968052A (en) 1996-11-27 1999-10-19 Scimed Life Systems Inc. Pull back stent delivery system with pistol grip retraction handle
US5776142A (en) 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5868755A (en) 1997-01-16 1999-02-09 Atrion Medical Products, Inc. Sheath retractor mechanism and method
US5968053A (en) 1997-01-31 1999-10-19 Cardiac Assist Technologies, Inc. Method and apparatus for implanting a graft in a vessel of a patient
US6071286A (en) 1997-02-19 2000-06-06 Mawad; Michel E. Combination angioplasty balloon/stent deployment device
US6090128A (en) 1997-02-20 2000-07-18 Endologix, Inc. Bifurcated vascular graft deployment device
FR2760351B1 (en) 1997-03-04 1999-05-28 Bernard Glatt HELICAL STENT FORMING DEVICE AND MANUFACTURING METHOD THEREOF
US5810872A (en) 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5851210A (en) 1997-03-21 1998-12-22 Torossian; Richard Stent delivery system and method
US6136007A (en) 1997-04-17 2000-10-24 St. Jude Medical Cardiovascular Group, Inc, Apparatus for handling tubing used in medical procedures
US5891154A (en) 1997-05-06 1999-04-06 Advanced Cardiovascular System, Inc. Passive perfusion stent delivery system
US6159228A (en) 1997-05-20 2000-12-12 Frid; Noureddine Applicator for luminal endoprostheses
EP0890346A1 (en) 1997-06-13 1999-01-13 Gary J. Becker Expandable intraluminal endoprosthesis
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US5997562A (en) 1997-06-13 1999-12-07 Percusurge, Inc. Medical wire introducer and balloon protective sheath
US6004328A (en) 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6316522B1 (en) 1997-08-18 2001-11-13 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US6254608B1 (en) 1997-08-22 2001-07-03 Ronald J. Solar Sheathless delivery catheter for radially expandable intraluminal stents and stented grafts
DE29717110U1 (en) 1997-09-24 1997-11-13 Optimed Medizinische Instr Gmb Device for inserting a stent, a drainage tube or the like. in hollow organs
US5961536A (en) 1997-10-14 1999-10-05 Scimed Life Systems, Inc. Catheter having a variable length balloon and method of using the same
US5928246A (en) 1997-10-15 1999-07-27 Bsc Northwest Technology Center, Inc. Stent securing catheter
US5992000A (en) 1997-10-16 1999-11-30 Scimed Life Systems, Inc. Stent crimper
US5980515A (en) 1997-12-19 1999-11-09 Irvine Biomedical, Inc. Devices and methods for lead extraction
FR2772592B1 (en) 1997-12-19 2000-04-07 Braun Celsa Sa ASSEMBLY FOR THE PLACEMENT OF AN IMPLANT IN AN INTERNAL CONDUIT OF A BODY
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6342067B1 (en) 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6174327B1 (en) 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
ATE471132T1 (en) 1998-03-04 2010-07-15 Boston Scient Ltd STENT WITH IMPROVED CELL CONFIGURATION
US6019778A (en) 1998-03-13 2000-02-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US6425898B1 (en) 1998-03-13 2002-07-30 Cordis Corporation Delivery apparatus for a self-expanding stent
US20020065394A1 (en) * 1998-03-18 2002-05-30 Kenneth Jacobs Secreted proteins and polynucleotides encoding them
US6132460A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6102942A (en) 1998-03-30 2000-08-15 Endovascular Technologies, Inc. Stent/graft deployment catheter with a stent/graft attachment mechanism
US6264689B1 (en) 1998-03-31 2001-07-24 Scimed Life Systems, Incorporated Low profile medical stent
US6520983B1 (en) 1998-03-31 2003-02-18 Scimed Life Systems, Inc. Stent delivery system
US6221065B1 (en) 1998-04-03 2001-04-24 Filtertek Inc. Self-priming needle-free “Y”-adapter
US6156053A (en) 1998-05-01 2000-12-05 Intella Interventional Systems, Inc. Dual catheter assembly
WO1999062428A1 (en) 1998-06-04 1999-12-09 Scimed Life Systems, Inc. Stent loading tool
US5984225A (en) 1998-06-23 1999-11-16 General Motors Corporation Compensating tensioning mechanism for film valve
US6117140A (en) 1998-06-26 2000-09-12 Scimed Life Systems, Inc. Stent delivery device
US6143021A (en) 1998-07-10 2000-11-07 American Medical Systems, Inc. Stent placement instrument and method of assembly
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US5944727A (en) 1998-09-02 1999-08-31 Datascope Investment Corp. Stent/graft catheter handle
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US6093194A (en) 1998-09-14 2000-07-25 Endocare, Inc. Insertion device for stents and methods for use
DE29816878U1 (en) 1998-09-21 1998-12-24 Schmitz Rode Thomas Dipl Ing D Helix stent that can be manufactured using the cutting process
US6203550B1 (en) 1998-09-30 2001-03-20 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
ES2237168T3 (en) 1998-09-30 2005-07-16 Bard Peripheral Vascular, Inc. SUPPLY MECHANISM FOR IMPLANTABLE STENT.
US6241692B1 (en) 1998-10-06 2001-06-05 Irvine Biomedical, Inc. Ultrasonic ablation device and methods for lead extraction
US6500248B1 (en) 1998-10-15 2002-12-31 Seiko Epson Corporation Ink composition for ink-jet recording and method of ink-jet recording
US6042597A (en) 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6080140A (en) 1998-11-04 2000-06-27 Iowa-India Investments Company, Ltd. Integral cerebro-vascular access system
US7025773B2 (en) 1999-01-15 2006-04-11 Medtronic, Inc. Methods and devices for placing a conduit in fluid communication with a target vessel
DE19901530C2 (en) 1999-01-16 2001-07-26 Biotronik Mess & Therapieg Device for laser beam structuring of bioresorbable, intraluminal vascular wall supports
US6045536A (en) 1999-02-24 2000-04-04 Sherwood Services, A.G. Securing device for a low profile gastrostomy tube
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
US6096056A (en) 1999-03-04 2000-08-01 Scimed Life Systems, Inc. Fugitive stent securement means
US6090035A (en) 1999-03-19 2000-07-18 Isostent, Inc. Stent loading assembly for a self-expanding stent
US6190393B1 (en) 1999-03-29 2001-02-20 Cordis Corporation Direct stent delivery catheter system
US6167315A (en) 1999-04-05 2000-12-26 Spectranetics Corporation Lead locking device and method
US6190360B1 (en) 1999-04-09 2001-02-20 Endotex Interventional System Stent delivery handle
US6146415A (en) 1999-05-07 2000-11-14 Advanced Cardiovascular Systems, Inc. Stent delivery system
SE517737C2 (en) 1999-05-11 2002-07-09 Tzn Forschung & Entwicklung Cartridge with electrothermal ignition device
US6726712B1 (en) 1999-05-14 2004-04-27 Boston Scientific Scimed Prosthesis deployment device with translucent distal end
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6270521B1 (en) 1999-05-21 2001-08-07 Cordis Corporation Stent delivery catheter system for primary stenting
US6168617B1 (en) 1999-06-14 2001-01-02 Scimed Life Systems, Inc. Stent delivery system
DE19936059A1 (en) 1999-07-30 2001-02-01 J Peter Guggenbichler Production of antimicrobial plastic articles, especially catheters, involves pretreatment with colloidal metal, especially colloidal silver, before the final moulding process
US6709667B1 (en) 1999-08-23 2004-03-23 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
FR2797761B1 (en) 1999-08-24 2002-03-22 Novatech Inc DEVICE FOR PROVIDING RELEASE IN A HUMAN OR ANIMAL CONDUIT OF AN OBJECT, IN PARTICULAR A PROSTHESIS, AND IMPLANTATION SYSTEM COMPRISING A CATHETER AND SUCH A DEVICE
FR2797781B1 (en) 1999-08-27 2002-11-08 Patrick Duhaut SEMI-PERMEABLE MEMBRANE DRYING PROCESS
EP1235522B1 (en) 1999-09-09 2007-05-30 Tuebingen Scientific Medical GmbH Surgical instrument for minimally invasive surgical interventions
US6613075B1 (en) 1999-10-27 2003-09-02 Cordis Corporation Rapid exchange self-expanding stent delivery catheter system
US6443979B1 (en) 1999-12-20 2002-09-03 Advanced Cardiovascular Systems, Inc. Expandable stent delivery sheath and method of use
DE20000659U1 (en) 2000-01-14 2001-05-23 Pfm Prod Fuer Die Med Ag Device for the targeted and controlled placement of an implant in a body cavity
US6245100B1 (en) 2000-02-01 2001-06-12 Cordis Corporation Method for making a self-expanding stent-graft
US6391050B1 (en) 2000-02-29 2002-05-21 Scimed Life Systems, Inc. Self-expanding stent delivery system
EP1132058A1 (en) 2000-03-06 2001-09-12 Advanced Laser Applications Holding S.A. Intravascular prothesis
US6716190B1 (en) 2000-04-19 2004-04-06 Scimed Life Systems, Inc. Device and methods for the delivery and injection of therapeutic and diagnostic agents to a target site within a body
US6423091B1 (en) 2000-05-16 2002-07-23 Cordis Corporation Helical stent having flat ends
ATE519454T1 (en) 2000-05-22 2011-08-15 Orbusneich Medical Inc SELF-EXPANDABLE STENT
US6613014B1 (en) 2000-06-09 2003-09-02 Advanced Cardiovascular Systems, Inc. Catheter hub with detachable push device
US6527779B1 (en) 2000-07-10 2003-03-04 Endotex Interventional Systems, Inc. Stent delivery device
US6572643B1 (en) 2000-07-19 2003-06-03 Vascular Architects, Inc. Endoprosthesis delivery catheter assembly and method
US6773446B1 (en) 2000-08-02 2004-08-10 Cordis Corporation Delivery apparatus for a self-expanding stent
US6786918B1 (en) 2000-10-17 2004-09-07 Medtronic Vascular, Inc. Stent delivery system
US6749627B2 (en) 2001-01-18 2004-06-15 Ev3 Peripheral, Inc. Grip for stent delivery system
US6660031B2 (en) 2001-04-11 2003-12-09 Scimed Life Systems, Inc. Multi-length delivery system
US20050021123A1 (en) 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
GB0110551D0 (en) 2001-04-30 2001-06-20 Angiomed Ag Self-expanding stent delivery service
US6652506B2 (en) 2001-05-04 2003-11-25 Cardiac Pacemakers, Inc. Self-locking handle for steering a single or multiple-profile catheter
US6716238B2 (en) 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
US6926732B2 (en) 2001-06-01 2005-08-09 Ams Research Corporation Stent delivery device and method
WO2003003944A2 (en) 2001-07-06 2003-01-16 Angiomed Gmbh & Co. Medizintechnik Kg Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration
US6645238B2 (en) 2001-07-09 2003-11-11 Scimed Life Systems, Inc. Skids stent delivery system
US6599296B1 (en) 2001-07-27 2003-07-29 Advanced Cardiovascular Systems, Inc. Ratcheting handle for intraluminal catheter systems
US6755854B2 (en) 2001-07-31 2004-06-29 Advanced Cardiovascular Systems, Inc. Control device and mechanism for deploying a self-expanding medical device
US6939352B2 (en) 2001-10-12 2005-09-06 Cordis Corporation Handle deployment mechanism for medical device and method
US6866669B2 (en) 2001-10-12 2005-03-15 Cordis Corporation Locking handle deployment mechanism for medical device and method
US7823267B2 (en) 2001-11-28 2010-11-02 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation, including the use of a fastener tool
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
EP1471844A2 (en) 2002-01-16 2004-11-03 Eva Corporation Catheter hand-piece apparatus and method of using the same
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US6911039B2 (en) 2002-04-23 2005-06-28 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US6679836B2 (en) 2002-06-21 2004-01-20 Scimed Life Systems, Inc. Universal programmable guide catheter
ATE533436T1 (en) 2002-06-28 2011-12-15 Cook Medical Technologies Llc BREAST INSERTION DEVICE
US20040006380A1 (en) 2002-07-05 2004-01-08 Buck Jerrick C. Stent delivery system
US20050004515A1 (en) 2002-11-15 2005-01-06 Hart Charles C. Steerable kink resistant sheath
GB0327306D0 (en) 2003-11-24 2003-12-24 Angiomed Gmbh & Co Catheter device
US20060058866A1 (en) 2003-01-17 2006-03-16 Cully Edward H Deployment system for an expandable device
US7753945B2 (en) 2003-01-17 2010-07-13 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
ITTO20030037A1 (en) 2003-01-24 2004-07-25 Sorin Biomedica Cardio S P A Ora S Orin Biomedica CATHETER DRIVE DEVICE.
EP1596761B1 (en) 2003-02-14 2015-06-17 Salviac Limited Stent delivery and deployment system
US7294135B2 (en) 2003-03-20 2007-11-13 Medtronic Vascular, Inc Control handle for intraluminal devices
US20050209672A1 (en) 2004-03-02 2005-09-22 Cardiomind, Inc. Sliding restraint stent delivery systems
US6929663B2 (en) 2003-03-26 2005-08-16 Boston Scientific Scimed, Inc. Longitudinally expanding medical device
DE60331480D1 (en) 2003-06-27 2010-04-08 Pirelli & C Spa METHOD FOR CONFIGURING A COMMUNICATION NETWORK, THE SAME NETWORK ARCHITECTURE AND COMPUTER PROGRAM PRODUCT THEREFOR
US7794489B2 (en) 2003-09-02 2010-09-14 Abbott Laboratories Delivery system for a medical device
AU2004268620B2 (en) 2003-09-02 2010-12-02 Abbott Laboratories Delivery system for a medical device
US7780716B2 (en) 2003-09-02 2010-08-24 Abbott Laboratories Delivery system for a medical device
US20050209674A1 (en) 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US7993384B2 (en) 2003-09-12 2011-08-09 Abbott Cardiovascular Systems Inc. Delivery system for medical devices
US7758625B2 (en) 2003-09-12 2010-07-20 Abbott Vascular Solutions Inc. Delivery system for medical devices
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US7931670B2 (en) 2003-10-15 2011-04-26 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with automatic tamping
JP4451124B2 (en) 2003-11-28 2010-04-14 オリンパス株式会社 Endoscope treatment instrument insertion / extraction system
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
EP2529699B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US20050209670A1 (en) 2004-03-02 2005-09-22 Cardiomind, Inc. Stent delivery system with diameter adaptive restraint
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US7285130B2 (en) 2004-04-27 2007-10-23 Boston Scientific Scimed, Inc. Stent delivery system
WO2005112824A1 (en) 2004-05-14 2005-12-01 Boston Scientific Scimed, Inc Stent delivery handle and assembly formed therewith
US20050273151A1 (en) 2004-06-04 2005-12-08 John Fulkerson Stent delivery system
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US20060074477A1 (en) 2004-09-29 2006-04-06 Medtronic Vascular, Inc. Self-expanding stent delivery system
US20060085057A1 (en) 2004-10-14 2006-04-20 Cardiomind Delivery guide member based stent anti-jumping technologies
WO2006104143A1 (en) 2005-03-28 2006-10-05 Terumo Kabushiki Kaisha Body organ expansion instrument
JP4481880B2 (en) 2005-06-03 2010-06-16 オリンパスメディカルシステムズ株式会社 Stent placement device
US20070073379A1 (en) 2005-09-29 2007-03-29 Chang Jean C Stent delivery system
US7465288B2 (en) 2005-06-28 2008-12-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Actuation handle for a catheter
EP1981432B1 (en) 2005-06-30 2012-10-03 Abbott Laboratories Delivery system for a medical device
JP2009504345A (en) 2005-08-17 2009-02-05 シー・アール・バード・インコーポレーテッド Variable speed stent delivery system
US20070055339A1 (en) 2005-08-23 2007-03-08 George William R Staged stent delivery systems
US20070050006A1 (en) 2005-08-31 2007-03-01 Cook Ireland Limited Coaxial dilatation method for stent implantation
IL170698A (en) 2005-09-06 2011-11-30 Allium Ltd System for delivering a medical device to a body location
EP1933778B1 (en) 2005-10-14 2010-01-06 Gore Enterprise Holdings, Inc. Device for deploying an implantable medical device
US20070100420A1 (en) 2005-11-02 2007-05-03 Kavanagh Joseph T Guided stent delivery systems of minimal diameter
WO2007084370A1 (en) 2006-01-13 2007-07-26 C.R. Bard, Inc. Stent delivery system
JP5283824B2 (en) 2006-01-18 2013-09-04 東京応化工業株式会社 Film-forming composition
US8518098B2 (en) 2006-02-21 2013-08-27 Cook Medical Technologies Llc Split sheath deployment system
US9211206B2 (en) 2006-04-13 2015-12-15 Medtronic Vascular, Inc. Short handle for a long stent
US7780717B2 (en) 2006-04-27 2010-08-24 Med Institute, Inc. Rotary handle for controlled sequential deployment device
USD578216S1 (en) 2006-06-12 2008-10-07 Angiomed Gmby & Co. Medizintechnik Kg Handle for a medical delivery device
USD598543S1 (en) 2006-06-13 2009-08-18 Angiomed Gmbh & Co. Medizintechnik Kg Handle for a medical delivery device
GB0615658D0 (en) 2006-08-07 2006-09-13 Angiomed Ag Hand-held actuator device
GB0618516D0 (en) 2006-09-20 2006-11-01 Angiomed Ag Hand-held actuator device
USD578643S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
USD576725S1 (en) 2007-06-20 2008-09-09 Abbot Laboratories, Inc. Medical device delivery handle
USD578644S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
USD578645S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
GB0713497D0 (en) 2007-07-11 2007-08-22 Angiomed Ag Device for catheter sheath retraction
US9149379B2 (en) 2007-07-16 2015-10-06 Cook Medical Technologies Llc Delivery device
US20090099638A1 (en) 2007-10-11 2009-04-16 Med Institute, Inc. Motorized deployment system
EP2328524B1 (en) 2008-07-02 2019-01-16 Cook Medical Technologies LLC Deployment assembly
US7976574B2 (en) 2008-08-08 2011-07-12 Advanced Cardiovascular Systems, Inc. Delivery system with variable delivery rate for deploying a medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871382A (en) * 1973-02-15 1975-03-18 Pacesetter Syst Heart stimulator system for rapid implantation and removal with improved integrity
US5843088A (en) * 1991-12-23 1998-12-01 Ela Medical Sa Tool and method for installation of a ventricular cannulation device
US5242423A (en) * 1992-03-09 1993-09-07 American Home Products Corporation Needleless syringe
US5810768A (en) * 1995-06-07 1998-09-22 Icu Medical, Inc. Medical connector
US7553322B2 (en) * 2001-06-19 2009-06-30 C.R.Bard, Inc. Luer connector portion, and stent delivery system including a connector portion

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US20100094399A1 (en) * 2001-04-30 2010-04-15 C. R. Bard, Inc. Variable speed self-expanding stent delivery system and luer locking connector
US8062344B2 (en) 2001-04-30 2011-11-22 Angiomed Gmbh & Co. Medizintechnik Kg Variable speed self-expanding stent delivery system and luer locking connector
US8075606B2 (en) 2001-07-06 2011-12-13 Angiomed Gmbh & Co. Medizintechnik Kg Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration
US8025692B2 (en) 2001-10-02 2011-09-27 Angiomed Gmbh & Co. Medizintechnik Kg Stent delivery system
US8475515B2 (en) 2003-01-15 2013-07-02 Angiomed GmbH & Co., Medizinitechnik KG Trans-luminal surgical device
US8568467B2 (en) 2003-01-15 2013-10-29 Angiomed Gmbh & Co. Medizintechnik Kg Trans-luminal surgical device
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US20050080476A1 (en) * 2003-10-09 2005-04-14 Gunderson Richard C. Medical device delivery system
US20070060999A1 (en) * 2005-08-17 2007-03-15 Michael Randall Variable speed stent delivery system
US7935141B2 (en) * 2005-08-17 2011-05-03 C. R. Bard, Inc. Variable speed stent delivery system
US8968379B2 (en) * 2005-09-02 2015-03-03 Medtronic Vascular, Inc. Stent delivery system with multiple evenly spaced pullwires
US20070055340A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc., A Delaware Corporation Stent delivery system with multiple evenly spaced pullwires
US8702778B2 (en) * 2005-10-14 2014-04-22 W. L. Gore & Associates, Inc. Device for deploying an implantable medical device
US20070088421A1 (en) * 2005-10-14 2007-04-19 Loewen John L Device for deploying an implantable medical device
US20070118079A1 (en) * 2005-11-21 2007-05-24 Moberg John R Medical devices and related systems and methods
US11026822B2 (en) * 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US20070168014A1 (en) * 2006-01-13 2007-07-19 Jimenez Teodoro S Stent Delivery System
US8808346B2 (en) 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US20180280173A1 (en) * 2006-01-13 2018-10-04 C. R. Bard, Inc. Stent Delivery System
US9675486B2 (en) 2006-01-13 2017-06-13 C.R. Bard, Inc. Stent delivery system
US20070219617A1 (en) * 2006-03-17 2007-09-20 Sean Saint Handle for Long Self Expanding Stent
EP2002808A4 (en) * 2006-03-31 2014-08-13 Zeon Corp Stent delivery catheter
EP2002808A2 (en) * 2006-03-31 2008-12-17 Zeon Corporation Stent delivery catheter
US20180177621A1 (en) * 2006-08-07 2018-06-28 C. R. Bard, Inc. Hand-held actuator device
US9078779B2 (en) 2006-08-07 2015-07-14 C. R. Bard, Inc. Hand-held actuator device
US20100168756A1 (en) * 2006-08-07 2010-07-01 Dorn Juergen Hand-held actuator device
US10993822B2 (en) * 2006-08-07 2021-05-04 C. R. Bard, Inc. Hand-held actuator device
WO2008051941A2 (en) 2006-10-22 2008-05-02 Idev Technologies, Inc. Devices and methods for stent advancement
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US20080097572A1 (en) * 2006-10-22 2008-04-24 Idev Technologies, Inc. Devices and methods for stent advancement
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8739382B2 (en) 2006-10-22 2014-06-03 Idev Technologies, Inc. Secured strand end devices
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
EP3494937A1 (en) 2006-10-22 2019-06-12 IDEV Technologies, INC. Devices for stent advancement
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US20130317592A1 (en) * 2007-07-11 2013-11-28 C. R. Bard, Inc. Device for Catheter Sheath Retraction
WO2009007432A1 (en) 2007-07-11 2009-01-15 Angiomed Gmbh & Co. Medizintechnik Kg Device for catheter sheath retraction
EP3120813A1 (en) * 2007-07-11 2017-01-25 Angiomed GmbH & Co. Medizintechnik KG Device for catheter sheath retraction
US20100174290A1 (en) * 2007-07-11 2010-07-08 C.R. Bard, Inc. Device for catheter sheath retraction
US10206800B2 (en) 2007-07-11 2019-02-19 C.R. Bard, Inc. Device for catheter sheath retraction
US9421115B2 (en) * 2007-07-11 2016-08-23 C. R. Bard, Inc. Device for catheter sheath retraction
US8500789B2 (en) 2007-07-11 2013-08-06 C. R. Bard, Inc. Device for catheter sheath retraction
US11026821B2 (en) * 2007-07-11 2021-06-08 C. R. Bard, Inc. Device for catheter sheath retraction
US20090024133A1 (en) * 2007-07-16 2009-01-22 Fionan Keady Delivery device
US9149379B2 (en) 2007-07-16 2015-10-06 Cook Medical Technologies Llc Delivery device
US8092468B2 (en) 2007-12-26 2012-01-10 Cook Medical Technologies Llc Deployment handle for an implant deployment device
US20090171428A1 (en) * 2007-12-26 2009-07-02 William Cook Europe Aps Deployment handle for an implant deployment device
US20090171433A1 (en) * 2007-12-27 2009-07-02 Cook Incorporated Control handle
US8075607B2 (en) 2007-12-27 2011-12-13 Cook Medical Technologies Llc Control handle
US20100305686A1 (en) * 2008-05-15 2010-12-02 Cragg Andrew H Low-profile modular abdominal aortic aneurysm graft
US20090287145A1 (en) * 2008-05-15 2009-11-19 Altura Interventional, Inc. Devices and methods for treatment of abdominal aortic aneurysms
US11109990B2 (en) 2008-06-11 2021-09-07 C. R. Bard, Inc. Catheter delivery device
US11931276B2 (en) 2008-06-11 2024-03-19 C. R. Bard, Inc. Catheter delivery device
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
US9700701B2 (en) 2008-07-01 2017-07-11 Endologix, Inc. Catheter system and methods of using same
US10512758B2 (en) 2008-07-01 2019-12-24 Endologix, Inc. Catheter system and methods of using same
US9615949B2 (en) 2008-12-30 2017-04-11 Cook Medical Technologies Llc Delivery device
US20100168834A1 (en) * 2008-12-30 2010-07-01 Wilson-Cook Medical Inc. Delivery Device
US20110130825A1 (en) * 2009-12-01 2011-06-02 Altura Medical, Inc. Modular endograft devices and associated systems and methods
US9572652B2 (en) 2009-12-01 2017-02-21 Altura Medical, Inc. Modular endograft devices and associated systems and methods
US20110130824A1 (en) * 2009-12-01 2011-06-02 Altura Medical, Inc. Modular endograft devices and associated systems and methods
US20110130819A1 (en) * 2009-12-01 2011-06-02 Altura Medical, Inc. Modular endograft devices and associated systems and methods
US20110130826A1 (en) * 2009-12-01 2011-06-02 Altura Medical, Inc. Modular endograft devices and associated systems and methods
US9314356B2 (en) 2010-01-29 2016-04-19 Cook Medical Technologies Llc Mechanically expandable delivery and dilation systems
US20110190865A1 (en) * 2010-01-29 2011-08-04 Cook Medical Technologies Llc Mechanically Expandable Delivery and Dilation Systems
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US8932342B2 (en) 2010-07-30 2015-01-13 Cook Medical Technologies Llc Controlled release and recapture prosthetic deployment device
US8858613B2 (en) 2010-09-20 2014-10-14 Altura Medical, Inc. Stent graft delivery systems and associated methods
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US10952879B2 (en) 2010-10-21 2021-03-23 C. R. Bard, Inc. System to deliver a bodily implant
US9549835B2 (en) 2011-03-01 2017-01-24 Endologix, Inc. Catheter system and methods of using same
US9687374B2 (en) 2011-03-01 2017-06-27 Endologix, Inc. Catheter system and methods of using same
US8808350B2 (en) 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
US10285833B2 (en) 2012-08-10 2019-05-14 Lombard Medical Limited Stent delivery systems and associated methods
US9308108B2 (en) 2013-03-13 2016-04-12 Cook Medical Technologies Llc Controlled release and recapture stent-deployment device
US9737426B2 (en) 2013-03-15 2017-08-22 Altura Medical, Inc. Endograft device delivery systems and associated methods
US10610392B2 (en) 2015-01-29 2020-04-07 Intact Vascular, Inc. Delivery device and method of delivery
US10898356B2 (en) 2015-01-29 2021-01-26 Intact Vascular, Inc. Delivery device and method of delivery
US10245167B2 (en) 2015-01-29 2019-04-02 Intact Vascular, Inc. Delivery device and method of delivery
US11304836B2 (en) 2015-01-29 2022-04-19 Intact Vascular, Inc. Delivery device and method of delivery
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US20190177290A1 (en) * 2016-02-17 2019-06-13 Toray Industries, Inc. Method of producing sugar alcohol
US10022255B2 (en) 2016-04-11 2018-07-17 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
US10751062B2 (en) * 2017-02-21 2020-08-25 Cook Medical Technologies Llc Medical device for temporary deployment into a bodily lumen
US20180235638A1 (en) * 2017-02-21 2018-08-23 Cook Medical Technologies Llc Medical device for temporary deployment into a bodily lumen
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
CN116585084A (en) * 2023-07-17 2023-08-15 四川国屹医疗科技有限公司 Support conveying device

Also Published As

Publication number Publication date
US8062344B2 (en) 2011-11-22
US20100094399A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US8062344B2 (en) Variable speed self-expanding stent delivery system and luer locking connector
US7550001B2 (en) Stent delivery device and method for stent delivery
CA2612914C (en) Single peel stent introducer apparatus
US11147562B2 (en) Systems and methods for embolic implant detachment
US8298276B2 (en) Stent delivery system, stent placement method, and stent attachment method
AU654633B2 (en) Catheter with a vascular support
US5243679A (en) Optical fiber advancement, retraction and storage system
CA2621504C (en) System and method for delivering a medical device to a body location
EP3017794B1 (en) Deployment handle for a prosthesis delivery device
EP1339330B1 (en) Ligating band delivery apparatus
US20210196281A1 (en) Systems and methods for embolic implant detachment
EP2489396B1 (en) Introducer and deployment handle for splittable sheath
WO2011008538A1 (en) Slotted pusher rod for flexible delivery system
TW201630574A (en) Reconstrainable stent delivery system with a slider and knob for actuation and method
EP1266626B1 (en) Tamping mechanism
EP3040058A1 (en) Deployment handle for a delivery device with mechanism for quick release of a prosthesis and re-sheathing of device tip
CN115243602A (en) Devices and methods for deploying expandable implants
EP3714831B1 (en) Medical device holding and delivery assembly and kit therefor
EP4059446A1 (en) Systems and methods for embolic implant detachment
US20090105713A1 (en) Deployment handle for an implant deployment device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANGIOMED GMBH & CO., MEDIZINTECHNIK KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DORN, JURGEN;VOGEL, MICHAEL;REEL/FRAME:015847/0371;SIGNING DATES FROM 20040906 TO 20040909

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION