US20050019705A1 - Thick film photoresists and methods for use thereof - Google Patents

Thick film photoresists and methods for use thereof Download PDF

Info

Publication number
US20050019705A1
US20050019705A1 US10/924,351 US92435104A US2005019705A1 US 20050019705 A1 US20050019705 A1 US 20050019705A1 US 92435104 A US92435104 A US 92435104A US 2005019705 A1 US2005019705 A1 US 2005019705A1
Authority
US
United States
Prior art keywords
photoresist
coating layer
resist
groups
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/924,351
Inventor
James Thackeray
James Mori
Gary Teng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials LLC
Original Assignee
Shipley Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shipley Co LLC filed Critical Shipley Co LLC
Priority to US10/924,351 priority Critical patent/US20050019705A1/en
Publication of US20050019705A1 publication Critical patent/US20050019705A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the invention relates to new photoresists, particularly photoresists that can be applied and imaged as thick coating layers.
  • Preferred resists of the invention are chemically-amplified positive-acting resists that contain one or more photoacid generator compounds and a resin component.
  • Photoresists are photosensitive films used for transfer of images to a substrate.
  • a coating layer of a photoresist is formed on a substrate and the photoresist layer is then exposed through a photomask to a source of activating radiation.
  • the photomask has areas that are opaque to activating radiation and other areas that are transparent to activating radiation. Exposure to activating radiation provides a photoinduced chemical transformation of the photoresist coating to thereby transfer the pattern of the photomask to the photoresist-coated substrate.
  • the photoresist is developed to provide a relief image that permits selective processing of a substrate.
  • a photoresist can be either positive-acting or negative-acting.
  • those coating layer portions that are exposed to activating radiation polymerize or crosslink in a reaction between a photoactive compound and polymerizable reagents of the photoresist composition. Consequently, the exposed coating portions are rendered less soluble in a developer solution than unexposed portions.
  • exposed portions are rendered more soluble in a developer solution while areas not exposed remain comparatively less developer soluble.
  • photoresists that can be photoimaged with short wavelength radiation, including exposure radiation of about 300 nm or less, or even about 200 nm or less, such as wavelengths of about 248 nm or 193 nm. Use of such short exposure wavelengths can potentially enable formation of smaller features.
  • Resists can be imaged at short wavelengths in accordance with the invention, including 248 nm, to provide highly resolved thick layer relief images. See, for instance, the results set forth in the examples which follow.
  • a resist is applied to a substrate as a thick coating layer, e.g. a thickness of from a range of about 1.5 to 5 microns, imaged to patterned activating radiation, and then thermally treated (post-exposure bake or “PEB”) at a relatively low temperature, particularly at a temperature that is at least about 10° C., 15° C., 20° C., or 25° C. less than standard post-exposure bake processing of current chemically-amplified positive resists.
  • PEB post-exposure bake
  • resists are suitably post-exposure baked at a temperature of about 105° C. or 100° C., more typically about 95° C. or 90° C.
  • the pre-exposure soft-bake (solvent carrier removal) is conducted at a maximum temperature of at least about 15° C. or 20° C. greater than the subsequent post-exposure thermal treatment, more preferably the pre-exposure soft-bake is conducted at a maximum temperature of at least about 25° C. or 30° C. more than the maximum temperature of a subsequent post-exposure thermal treatment.
  • the maximum temperature of the pre-exposure soft-bake is conducted at a temperature of from about 15° C. to 35° C., particularly about 25° C. more than the maximum temperature of the subsequent post-exposure thermal treatment.
  • References herein to a maximum temperature of a thermal treatment e.g. i) pre-exposure bake or ii) post-exposure, pre-development bake refers to the maximum temperature reached and retained (e.g. retained for at least about 5, 10 or 15 seconds) during the specified thermal treatment.
  • resist compositions are provided that can facilitate and enhance the deposited thick film coating layer.
  • resists of the invention may suitably contain a plasticizer compound or composition to promote formation of a thick coating layer.
  • the resin component also may contain polymers that have a low glass transition temperature, e.g. polymers that have a molecular weight (Mw) of about 30,000 or 20,000 or less, or a molecular weight (Mw) 10,000 or less or 5,000 or less.
  • Mw molecular weight
  • the photoacid generator component also may generate relatively large photoacids, e.g. a photoacid having a volume of at least about 155 or 160 ⁇ 3 , more preferably a volume of at least 170, 180 or 190 ⁇ 3 . Even larger photoacids will be suitable, including photoacids having a volume of at least about 200, 220, 250, 280 or 300 ⁇ 3 . Such large photoacids will be less prone to undesired diffusion through a thick resist coating layer.
  • relatively large photoacids e.g. a photoacid having a volume of at least about 155 or 160 ⁇ 3 , more preferably a volume of at least 170, 180 or 190 ⁇ 3 . Even larger photoacids will be suitable, including photoacids having a volume of at least about 200, 220, 250, 280 or 300 ⁇ 3 . Such large photoacids will be less prone to undesired diffusion through a thick resist coating layer.
  • photoresists for use in the methods of the invention comprise a polymer having phenolic groups.
  • photoresists that comprise polymers that have polymerized phenolic units and acrylate units with acid labile groups such as polymerized tert-butyl acrylate, tert-butyl methacrylate, methyladmantyl acrylate, methyladamantyl methacrylate, and the like.
  • Such polymers may be higher order polymers (e.g. terpolymers, tetrapolymers and the like) and contain additional repeat units beyond phenolic units and photoacid-labile alkyl acrylate units.
  • preferred additional units are relatively inert units such as polymerized styrene or alpha-methylstyrene units.
  • References herein to acrylates are inclusive of substituted acrylates such as methacrylates.
  • the invention further comprises articles of manufacture comprising substrates such as a microelectronic wafer having coated thereon the photoresists and relief images of the invention.
  • the invention also includes methods to manufacture microelectronic wafers and other articles. Other aspects of the invention are disclosed infra.
  • a temperature differential is employed between a i) pre-exposure thermal treatment of a photoresist composition coating layer where solvent carrier is removed and ii) a post-exposure thermal treatment prior to development.
  • the pre-exposure thermal treatment is conducted at a temperature higher than the post-exposure thermal treatment.
  • the temperature differential between the maximum pre-exposure treatment temperature and the maximum post-exposure thermal treatment is at least about 5° C., more preferably at least or up to about a 10° C., 15° C., 20° C., 25° C., 30° C. or 40° C. temperature differential.
  • the temperature differential between the maximum pre-exposure thermal treatment temperature and the maximum post-exposure thermal treatment is from 10° C. to 40° C., more preferably a temperature differential of from about 10° C. to 30° C., still more preferably a temperature differential of from about 15° C. to 25° C.
  • a variety of polymers may be employed as the resin component of a resist of the invention.
  • Preferred resins are phenolic polymers that contain one or more deblocking groups, such as photoacid-labile ester groups or acetal groups.
  • Photoacid-labile ester groups may be suitably provided by polymerization of an alkyl acrylate (which includes substituted acrylates such as methacrylates), such as provided by polymerization of tert-butyl acrylate or tert-butyl methacrylate.
  • Polymerization of other acrylates that have photoacid-labile groups also will be suitable such as a methyladamantyl acrylate and the like.
  • Preferred phenolic resins that can be employed treated in accordance with the invention include novolak and poly(vinylphenol) resins. Preparation of such phenolic resins is known. Poly(vinylphenols) and phenolic copolymers are generally preferred.
  • Poly(vinylphenols) may be prepared, e.g., as disclosed in U.S. Pat. No. 4,439,516.
  • Preferred phenolic copolymers are disclosed e.g. in U.S. Pat. Nos. 6,090,526; 6,077,643; 6,057,083; and 5,861,231. Additional suitable polymers are disclosed in and U.S. Pat. Nos. 4,968,581; 4,883,740; 4,810,613; 4,491,628; 5,258,257 and 5,492,793.
  • Poly(vinylphenols) may be formed by block polymerization, emulsion polymerization or solution polymerization of the corresponding monomers in the presence of a catalyst.
  • Vinylphenols useful for the production of polyvinyl phenol resins may be prepared, for example, by hydrolysis of commercially available coumarin or substituted coumarin, followed by decarboxylation of the resulting hydroxy cinnamic acids.
  • Useful vinylphenols may also be prepared by dehydration of the corresponding hydroxy alkyl phenols or by decarboxylation of hydroxy cinnamic acids resulting from the reaction of substituted or nonsubstituted hydroxybenzaldehydes with malonic acid.
  • Preferred polyvinylphenol resins prepared from such vinylphenols have a molecular weight range of from about 2,000 to about 60,000 daltons.
  • Copolymers containing phenol and nonaromatic cyclic alcohol units also are preferred resins treated in accordance with the invention and may be suitably prepared by partial hydrogenation of a novolak or poly(vinylphenol) resin.
  • Such copolymers and the use thereof in photoresist compositions are disclosed in U.S. Pat. No. 5,128,232 to Thackeray et al.
  • Acetate groups are preferred acid labile groups to functionalize phenolic OH moieties of a phenolic resin.
  • a phenolic resin binder precursor may be condensed with a suitable addition compound such as a compound of the formula L-CR 1 R 2 C( ⁇ O)—O—R 3 , where L is a leaving group such as bromide or chloride, R 1 and R 2 are each independently hydrogen, an electron withdrawing group such as halogen (particularly F, Cl or Br), or substituted or unsubstituted C 1-10 alkyl; and R 3 is substituted or unsubstituted C 1-10 alkyl, or substituted or unsubstituted aryl such as phenyl or aryalkyl such as benzyl.
  • L is a leaving group such as bromide or chloride
  • R 1 and R 2 are each independently hydrogen, an electron withdrawing group such as halogen (particularly F, Cl or Br), or substituted or unsubstituted C 1-10 alkyl
  • Phenolic polymers of resists of the invention also may contain inert blocking groups. Such groups are linked to phenolic OH moieties of a phenolic resin as disclosed in U.S. Pat. No. 5,514,520 to Thackeray et al. As specified in that patent, and referred to herein, an inert blocking group is a group pendant to a resin and that is chemically unreactive in the presence of acid or base generated during exposure and baking of the photoresist composition.
  • Preferred inert blocking groups grafted onto available hydroxyl groups of a resin binder include alkyl (to provide —O-alkyl pendant groups) such as methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, etc.; alkanoyl group (to provide RCOO— pendant groups where R is preferably C 1-4 alkyl); a sulfonyl acid ester such as methanesulfonyl, ethanesulfonyl, propanesulfonyl, benzensulfonyl, toluenesulfonylesters, etc.
  • alkyl to provide —O-alkyl pendant groups
  • alkanoyl group to provide RCOO— pendant groups where R is preferably C 1-4 alkyl
  • a sulfonyl acid ester such as methanesulfonyl, ethanesulfonyl, propanes
  • Such groups may be grafted onto a suitable resin binder precursor such as a phenolic resin by an alkaline or acidic condensation reaction with a suitable addition compound, e.g. reaction of a sulfonic acid halide or other compound with suitable leaving group with a phenolic polymer in the presence of a suitable catalyst such as sodium hydroxide in the Is case of an alkaline condensation. See also the procedures disclosed in U.S. Pat. No. 5,514,520.
  • Particularly preferred deblocking resins for use in the resists of the invention include polymers that contain both phenolic and non-phenolic units.
  • one preferred group of such polymers has acid labile groups substantially, essentially or completely only on non-phenolic units of the polymer.
  • One preferred polymer binder has repeating units x and y of the following formula: wherein the hydroxyl group be present at either the ortho, meta or para positions throughout the polymer, and R′ is substituted or unsubstituted alkyl having 1 to about 18 carbon atoms, more typically 1 to about 6 to 8 carbon atoms.
  • Tert-butyl is a generally preferred R′ group.
  • An R′ group may be optionally substituted by e.g.
  • halogen particularly F, Cl or Br
  • C 1-8 alkoxy particularly C 2-8 alkenyl, etc.
  • the depicted phenolic units of the polymer also may be optionally substituted by such groups.
  • the units x and y may be regularly alternating in the polymer, or may be randomly interspersed through the polymer.
  • Such copolymers can be readily formed.
  • vinyl phenols and a substituted or unsubstituted alkyl acrylate such as t-butylacrylate and the like may be condensed under free radical conditions as known in the art.
  • the substituted ester moiety i.e.
  • R′—O—C( ⁇ O)— of the acrylate units serves as the acid labile groups of the resin and will undergo photoacid induced cleavage upon exposure of a coating layer of a photoresist containing the resin.
  • the copolymer will have a Mw of from about 3,000 to about 50,000, more preferably about 10,000 to about 30,000 with a molecular weight distribution of about 3 or less, more preferably a molecular weight distribution of about 2 or less.
  • Such copolymers also may be prepared by such free radical polymerization or other known procedures and suitably will have a Mw of from about 3,000 to about 50,000, and a molecular weight distribution of about 3 or less, more preferably a molecular weight distribution of about 2 or less.
  • Additional preferred deblocking resins have acid labile groups on both phenolic and non-phenolic units of the polymer.
  • One preferred polymer binder has repeating units a, b and c of the following formula: wherein R′ group is a photoacid labile group as defined above for the other preferred polymer; X is another repeat unit which may or may not contain a photoacid labile group; and each Y is independently hydrogen or C 1-6 alkyl, preferably hydrogen or methyl.
  • the values a, b and c designate the molar amount of the polymer units. Those polymer units may be regularly alternating in the polymer, or may be randomly interspersed through the polymer.
  • Suitable X groups may be aliphatic or aromatic groups such as phenyl, cyclohexyl, adamantyl, isobornylacrylate, methacrylate, isobornymethacrylate, and the like.
  • Such polymers may be formed in the same manner as described for the polymer above, and wherein the formed copolymer is reacted to provide the phenolic acid labile groups.
  • Additional preferred deblocking resins include at least three distinct repeating units of 1) units that contain acid-labile groups; 2) units that are free of reactive groups as well as hydroxy groups; and 3) aromatic or other units that contribute to aqueous developability of a photoresist containing the polymer as a resin binder.
  • Particularly preferred deblocking polymers of this type correspond to the following formula: wherein R of units 1) is substituted or unsubstituted alkyl preferably having 1 to about 10 carbon atoms, more typically 1 to about 6 carbons. Branched alkyl such as tert-butyl are generally preferred R groups.
  • the polymer may comprise a mixture of different R groups, e.g., by using a variety of acrylate monomers during the polymer synthesis.
  • R 1 groups of units 2) of the above formula each independently may be e.g. halogen (particularly F, Cl and Br), substituted or unsubstituted alkyl preferably having 1 to about 8 carbons, substituted or unsubstituted alkoxy preferably having 1 to about 8 carbon atoms, substituted or unsubstituted alkenyl preferably having 2 to about 8 carbon atoms, substituted or unsubstituted alkynyl preferably having 2 to about 8 carbons, substituted or unsubstituted alkylthio preferably having 1 to about 8 carbons, cyano, nitro, etc.; and m is an integer of from 0 (where the phenyl ring is fully hydrogen-substituted) to 5, and preferably is 0, 1 or 2.
  • two R 1 groups on adjacent carbons may be taken together to form (with ring carbons to which they are attached) one, two or more fused aromatic or alicyclic rings having from 4 to about 8 ring members per ring.
  • R 1 groups can be taken together to form (together with the depicted phenyl) a naphthyl or acenaphthyl ring.
  • R 2 groups of units 3) of the above formula each independently may be e.g. halogen (particularly F, Cl and Br), substituted or unsubstituted alkyl preferably having 1 to about 8 carbons, substituted or unsubstituted alkoxy preferably having 1 to about 8 carbon atoms, substituted or unsubstituted alkenyl preferably having 2 to about 8 carbon atoms, substituted or unsubstituted sulfonyl preferably having 1 to about to about 8 carbon atoms such as mesyl (CH 3 SO 2 O—), substituted or unsubstituted alkyl esters such as those represented by RCOO— where R is preferably an alkyl group preferably having 1 to about 10 carbon atoms, substituted or unsubstituted alkenyl preferably having 2 to about 8 carbons, substituted or unsubstituted alkylthio preferably having 1 to about 8 carbons, cyano, nitro, etc.; and p is an integer of
  • two R 2 groups on adjacent carbons may be taken together to form (with ring carbons to which they are attached) one, two or more fused aromatic or alicyclic rings having from 4 to about 8 ring members per ring.
  • two R 2 groups can be taken together to form (together with the phenol depicted in the above formula) a naphthyl or acenaphthyl ring.
  • the hydroxyl group of units 3) may be either at the ortho, meta or para positions throughout the copolymer. Para or meta substitution is generally preferred.
  • Each R 3 , R 4 and R 5 substituent independently may be hydrogen or substituted or unsubstituted alkyl preferably having 1 to about 8 carbon atoms, more typically 1 to about 6 carbons, or more preferably 1 to about 3 carbons.
  • substituted groups may be substituted at one or more available positions by one or more suitable groups such as halogen (particularly F, Cl or Br); C 1-8 alkyl; C 1-8 alkoxy; C 2-8 alkenyl; C 2-8 alkynyl; aryl such as phenyl; alkanoyl such as a C 1-6 alkanoyl of acyl and the like; etc.
  • suitable groups such as halogen (particularly F, Cl or Br); C 1-8 alkyl; C 1-8 alkoxy; C 2-8 alkenyl; C 2-8 alkynyl; aryl such as phenyl; alkanoyl such as a C 1-6 alkanoyl of acyl and the like; etc.
  • a substituted moiety is substituted at one, two or three available positions.
  • x, y and z are the mole fractions or percents of units 3), 2) and 1) respectively in the copolymer.
  • These mole fractions may suitably vary over rather wide values, e.g., x may be suitably from about 10 to 90 percent, more preferably about 20 to 90 percent; y may be suitably from about 1 to 75 percent, more preferably about 2 to 60 percent; and z may be 1 to 75 percent, more preferably about 2 to 60 percent.
  • Preferred copolymers of the above formula include those where the only polymer units correspond to the general structures of units 1), 2) and 3) above and the sum of the mole percents x, y and z equals one hundred.
  • preferred polymers also may comprise additional units wherein the sum of x; y and z would be less than one hundred, although preferably those units 1), 2) and 3) would still constitute a major portion of the copolymer, e.g. where the sum of x, y and z would be at least about 50 percent (i.e.
  • At least 50 molar percent of the polymer consists of units 1), 2) and 3)), more preferably the sum of x, y and z is at least 70 percent, and still more preferably the sum of x, y and z is at least 80 or 90 percent.
  • EP 0813113A1 for detailed disclosure of free radical synthesis of copolymers of the above Formula 1.
  • resins may be employed in a photoresist employed in accordance with the invention.
  • resins can be employed that contain repeat units that comprise an acetal or ketal moiety that will react with photogenerated acid, and optionally aromatic repeat units such as phenyl or phenolic groups, such as polymers as described in U.S. Pat. Nos. 5,929,176 and 6,090,526, both incorporated herein by reference.
  • the resin component may be present as a sole resin component, or as a component of a blend of resins.
  • the resin component of a resist composition of the invention should be present in an amount sufficient to providing acceptable film-forming characteristics. See the example which follows for preferred amounts of a resin component.
  • photoacid generators are preferred photoactive components.
  • the term photoacid generator compound as used herein is not inclusive of the diazonaphoquinone photoactive compounds used at relatively higher wavelengths such as 365 nm and where a deblocking reaction of resin or other resist component does not occur.
  • Particularly preferred PAGs for use in resists of the invention include include onium salt compounds including iodonium and sulfonium compounds; and non-ionic PAGs such as imidosulfonate compounds, N-sulfonyloxyimide compounds; diazosulfonyl compounds and other sulfone PAGS including ⁇ , ⁇ -methylenedisulfones and disulfonehydrazines, nitrobenzyl compounds, halogenated particularly fluorinated non-ionic PAGS.
  • onium salt compounds including iodonium and sulfonium compounds
  • non-ionic PAGs such as imidosulfonate compounds, N-sulfonyloxyimide compounds; diazosulfonyl compounds and other sulfone PAGS including ⁇ , ⁇ -methylenedisulfones and disulfonehydrazines, nitrobenzyl compounds, halogenated particularly fluorinated non-ionic PAGS.
  • preferred iodonium PAGs include those of the following Formula 1: wherein in Formula I, R 1 and R 2 are each independently optionally substituted alkyl such as C 1-20 alkyl including alicyclics such as cyclohexyl, adamantly, isobornyl, norbornyl, fencyl, dodecanyl, and the like; optionally substituted carbocyclic aryl such as phenyl, naphthyl and the like; and optionally substituted heteroaromatic or heteroalicyclic such as groups having 1 to 3 separate or fused rings and 1-3 hetero atoms (N, O or S) as ring members; and
  • X is a counter anion such as a carboxylate or sulfonate counter anion, preferably a a sulfonate (—SO 3 ) or carboxylate(—COO ⁇ ) substituted with one or more moieties such as optionally substituted alkyl preferably C 1-20 alkyl, particularly C 1-10 alkyl substituted with one or more electron-withdrawing groups e.g.
  • perfluoruoalkyl particularly C 1-10 perfluoroalkyl being preferred
  • perfluoruoalkyl particularly C 1-10 perfluoroalkyl being preferred
  • optionally substituted carbocyclic aryl such as phenyl or naphthyl
  • optionally substituted heteroaromatic or heteroalicyclic such as groups having 1 to 3 separate or fused rings and 1-3 hetero atoms (N, O or S) as ring members.
  • Preferred imidosulfonate PAGs include compounds of the following Formula II: wherein in Formula II, R is suitably by optionally substituted alkyl preferably C 1-20 alkyl, particularly C 1-10 alkyl substituted with one or more electron-withdrawing groups e.g. F or other halo, nitro, cyano, etc., with perfluoruoalkyl, particularly C 1-10 perfluoroalkyl being preferred; optionally substituted carbocyclic aryl such as phenyl or naphthyl; optionally substituted heteroaromatic or heteroalicyclic such as groups having 1 to 3 separate or fused rings and 1-3 hetero atoms (N, O or S) as ring members;
  • R is suitably by optionally substituted alkyl preferably C 1-20 alkyl, particularly C 1-10 alkyl substituted with one or more electron-withdrawing groups e.g. F or other halo, nitro, cyano, etc., with perfluoruoalkyl, particularly
  • n 1, 2; 3 or 4, preferably 1 or 2.
  • Preferred PAGs of Formula II include those with a fused alicyclic ring structure, such as PAGs of the following Formula IIa: wherein in Formula IIa, R is the same as defined in Formula II above, and preferably R is fluorinated C 1-12 alkyl, particularly perfluoroC 1-12 alkyl such as —CF 3 .
  • Sulfonium PAGS also will be suitable for use in resists of the invention, although perhaps less preferred than the iodonium salts and imidosulfonate compounds.
  • preferred sulfonium PAGs include compounds of the following Formula III: wherein R 1 , R 2 and R 3 are each independently selected from the same group as defined for R 1 and R 2 in Formula I above; and X is the same as defined for Formula I above.
  • ring sulfonium PAGs such as those of the following Formula IV: wherein R 1 and X are the same as defined in Formula III above; the dotted lines designate a ring structure that includes the depicted sulfur cation as a ring member, the ring suitably having 5 to about 8 ring members, and one, two or more endocyclic multiple bonds, and one or more optional ring substituents.
  • the dotted lines form a non-aromatic ring, such as thienyl, or a completely saturated ring (no endocyclic double bonds).
  • preferred counter anions X are perfluoroalkyl and perfluoroalkoxy groups such as C 1-15 perfluoroalkyl and C 1-15 perfluoroalkoxy, e.g. triflate, perfluorobutanesulfonate, perfluorohexanesulfonate, perfluoroctanesulfonate, and perfluoroethoxyethylsulfonate.
  • PAGs may be used in resists of the invention, including non-ionic PAGs such as substituted disulfone compounds; sulfonate compounds including N-oxyimino sulfonate compounds, -cyano N-oxyimino sulfonate compounds; sidulfone hydrazine compounds; diazomethanedisulfone compounds; nitrobenzyl compounds; substituted acylsulfonium compounds; and oxime sulfonate compounds including bis-N-oxyimidosulfonate compounds.
  • non-ionic PAGs such as substituted disulfone compounds; sulfonate compounds including N-oxyimino sulfonate compounds, -cyano N-oxyimino sulfonate compounds; sidulfone hydrazine compounds; diazomethanedisulfone compounds; nitrobenzyl compounds; substituted acylsulfonium compounds; and oxime sulfonate compounds including bis
  • preferred disulfone PAGs for use in resists of the invention include compounds of the following Formula V: wherein R 1 and R 2 are the same as defined for Formula I above.
  • Preferred oxime sulfonate PAGs for use in resists of the invention include those of the following Formula VI: R 1 R 2 C ⁇ NOS(O) 2 Y VI wherein R 1 and R 2 may be the same as defined above for Formula I, and/or where at least one of R 1 and R 2 is an electron-withdrawing moiety such as cyano, nitro, haloalkyl particularly C 1-12 haloalkyl especially C 1-12 perfluoroalkyl such as —CF 3 , —CF 2 CF 3 and other perfluoroalkyl, alkanoyl, and the like;
  • Preferred diazosulfone PAGS for use in resists of the invention include those of the following Formula VII: wherein R 1 and R 2 are the same as defined in Formula I above.
  • Preferred ⁇ , ⁇ -methylenedisulfone PAGs for use in resists of the invention include those of the following Formula VIII: wherein R 1 and R 2 are the same or different and are other than hydrogen and are suitably the same as defined above in Formula I;
  • disulfonehydrazine PAGS i.e. hydrazine moiety interposed between the two sulfone moieties
  • the hydrazine moiety e.g. N(R 3 )—N(R 4 )— of Formula IX below
  • Preferred disulfonehydrazine PAGS for use in resits of the invention include compounds of the following Formula IX: wherein R 1 and R Z are the same or different and are other than hydrogen, and suitably are the same as defined in Formula I;
  • PAGs for use in resists of the invention include disulfonylamine (i.e. —SO 2 —N—SO 2 —) salts, such as compounds of the following Formula X: wherein R 1 and R 2 are the same or different and are other than hydrogen, and suitably are the same as defined in Formula 1; and X is a counter ion.
  • disulfonylamine i.e. —SO 2 —N—SO 2 —
  • Formula X wherein R 1 and R 2 are the same or different and are other than hydrogen, and suitably are the same as defined in Formula 1; and X is a counter ion.
  • One or more PAGS should be employed in a resist in an amount sufficient to provide a developable image upon exposure to activating radiation, such as 248 nm radiation.
  • one or more PAGs are employed in an amount of 1 to 15 weight percent based on total solids of the resist (i.e. all components except solvent), more typically about 2 to 12 weight percent of total solids.
  • PAGs for use in resists of the invention can be made by generally known procedures. For instance, see U.S. Pat. Nos. 4,442,197 and 4,642,912 and European Application 0708368A1 for synthesis of iodonium PAGs. See WO 94/10608 for synthesis of N-sulfonyloxyimide PAGs. Diazosulfone PAGs can be made, e.g., by procedures disclosed in European Patent Application 0708368A1 and U.S. Pat. No. 5,558,976. See also WO 00/10056.
  • preferred PAGs of the invention generate relatively large photoacids to inhibit undesired diffusion of the photoacid into unexposed of the thick resist layer.
  • preferred photoacids may have a volume of at least about 155 or 160 ⁇ 3 , more preferably a volume of at least 170, 180 or 190 A 3 .
  • Even larger photoacids will be suitable, including photoacids having a volume of at least about 200, 220, 250, 280 or 300 ⁇ 3 .
  • Such large photoacids will be less prone to undesired diffusion through a thick resist coating layer.
  • references herein to sizes of photoacids designate volumetric size as determined by standard computer modeling, which provides optimized chemical bond lengths and angles.
  • a preferred computer program for determining photoacid size is Alchemy 2000, available from Tripos.
  • Exemplary preferred large photoacids include the following, with volumetric size values ( ⁇ 3 ) listed immediately below the acid.
  • preferred resists of the invention are distinguished from resists that contain a so-called photoactive compound (PAC) rather than a photacid generator.
  • PAC photoactive compound
  • Typical PACs are diazonaphthoquinones and function as dissolution inhibitors rather than an acid that promotes a deblocking reaction.
  • Such PAC-containing resists are imaged with radiation of relatively long wavelengths such as I-line (365 nm).
  • resists of the invention also may contain one or more plasticizer materials, which can promote formation of a thick resist layer.
  • Preferred plasticizers for use in resists of the invention include e.g. materials having one or more hetero atoms (particularly S or O), and preferably materials having a molecular weight of about 20 to 1000, more typically about 20 to about 50, 60, 70, 80, 90; 100, 150, 200, 250, 300, 400 or 500, e.g.
  • adipates, sebacates and phthalates such as bis(2-butoxyethyl)adipate; bis(2-butoxyethyl)sebacate; bis-(2-butoxyethyl)phthalate; 2-butoxyethyl oleate; diisodecyl adipate; diisodecyl glutarate; and poly(ethylene glycols) such as poly(ethyleneglycol)acrylate, poly(ethylene glycol)bis(2-ethylhexanoate), poly(ethylene glycol)dibenzoate, poly(ethylene glycol)dioleate, poly(ethylene glycol)monooleate, tri(ethylene glycol)bis(2-ethylhexanoate), and the like.
  • poly(ethylene glycols) such as poly(ethyleneglycol)acrylate, poly(ethylene glycol)bis(2-ethylhexanoate), poly(ethylene glycol)dibenzoate, poly(ethylene glycol)dioleate,
  • One or more plasticizer compounds may be suitably present in a resist composition in an amount of from about 0.5 to 10 or more weight percent based on total solids (all components except solvent), more preferably 0.5 to 3 weight percent of total solids of a resist.
  • moieties of resin units, PAGS, plasticizers and other components of resists of the invention may be optionally substituted, typically 1, 2, or 3 positions by one or more suitable groups such as e.g. halogen (particularly F, Cl or Br); C 1-8 alkyl; C 1-8 alkoxy; C 2-8 alkenyl; C 2-8 alkynyl; hydroxyl; alkanoyl such as a C 1-6 alkanoyl e.g. acyl; carbocyclic aryl such as phenyl; and the like, although multiple carbon-carbon bonds and aromatic groups will be less preferred due to excessive absorbance of exposure radiation.
  • suitable groups such as e.g. halogen (particularly F, Cl or Br); C 1-8 alkyl; C 1-8 alkoxy; C 2-8 alkenyl; C 2-8 alkynyl; hydroxyl; alkanoyl such as a C 1-6 alkanoyl e.g. acyl; carbocyclic aryl such as phen
  • Preferred substituent groups of substituted groups of resins, PAGs, plasticizers, and other components of resists of the invention include or consist of at least one halogen atom, preferably fluorine such as fluorinated C 1-12 alkyl, perfluoroC 1-12 alkyl, and perfluoroC 1-12 alkylene, fluorinated C 3-8 cycloalkyl, and fluorinated ethers (including C 1-12 alkoxy) and esters (including C 1-12 esters) including fluorinated cyclic ethers and fluorinated cyclic esters.
  • fluorine such as fluorinated C 1-12 alkyl, perfluoroC 1-12 alkyl, and perfluoroC 1-12 alkylene, fluorinated C 3-8 cycloalkyl, and fluorinated ethers (including C 1-12 alkoxy) and esters (including C 1-12 esters) including fluorinated cyclic ethers and fluorinated cyclic esters.
  • alkyl, alkynyl and alkynyl refers to both cyclic groups, although of course cyclic groups will comprise at least three carbon ring members.
  • Alkoxy groups of resist components suitably have 1 to about 16 carbons and 1, 2, 3 or 4 alkoxy linkages.
  • Suitable alkanoyl groups have 1 to about 16 carbons and one or more carbonyl groups, typically 1, 2 or 3 carbonyl groups.
  • Carbocyclic aryl as used herein refers to non-hetero aromatic groups that have 1 to 3 separate or fused rings and 6 to about 18 carbon ring members and may include phenyl, naphthyl, biphenyl, acenaphthyl, phenanthracyl and the like. Phenyl and naphthyl are often preferred.
  • Suitable heteroaromatic or heteroaryl groups will have 1 to 3 rings, 3 to 8 ring members in each ring and from 1 to about 3 hetero atoms (N, O or S).
  • suitable heteroaromatic or heteroaryl groups include e.g.
  • a photoresist composition of the invention can be prepared by dissolving the components of the photoresist in a suitable solvent such as, for example, ethyl lactate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether; propylene glycol monomethyl ether acetate and 3-ethoxyethyl propionate; 2-heptanone and cyclohexanone.
  • the solids content of the composition varies between about 5 and 35 percent by weight of the total weight of the photoresist composition.
  • the resin binder and, photoactive components should be present in amounts sufficient to provide a film coating layer and formation of good quality latent and relief images. See the example which follows for exemplary preferred amounts of resist components.
  • compositions of the invention are used in accordance with generally known procedures.
  • the liquid coating compositions of the invention are applied to a substrate such as by spinning, dipping, roller coating or other conventional coating technique.
  • spin coating the solids content of the coating solution can be adjusted to provide a desired film thickness based upon the specific spinning equipment utilized, the viscosity of the solution, the speed of the spinner and the amount of time allowed for spinning.
  • the resist compositions of the invention are suitably applied to substrates conventionally used in processes involving coating with photoresists.
  • the composition may be applied over silicon wafers or silicon wafers coated with silicon dioxide for the production of microprocessors and other integrated circuit components.
  • Aluminum-aluminum oxide, gallium arsenide, ceramic, quartz, copper, glass substrates and the like are also suitably employed.
  • the resists and methods of the invention are particularly use in e.g. the manufacture of thin film heads (eg. 3 to 5 ⁇ m), magnetic disks, CD masks, and back-end implants.
  • thin film heads e.g. 3 to 5 ⁇ m
  • magnetic disks e.g. 3 to 5 ⁇ m
  • CD masks e.g. 3 to 5 ⁇ m
  • back-end implants e.g. 3 to 5 ⁇ m
  • the photoresist Following coating of the photoresist onto a surface, it is dried by heating to remove the solvent until preferably the photoresist coating is tack free. Thereafter, it is imaged through a mask in conventional manner.
  • the exposure is sufficient to effectively activate the photoactive component of the photoresist system to produce a patterned image in the resist coating layer and, more specifically, the exposure energy typically ranges from about 1 to 100 mJ/cm 2 , dependent-upon the exposure tool and the components of the photoresist composition.
  • coating layers of the resist compositions of the invention are preferably photoactivated by a short exposure wavelength, particularly a sub-300 and sub-200 nm such as 248 nm, 193 nm and 157 nm. 248 nm imaging is particularly preferred.
  • the film layer of the composition is preferably baked under relatively mild conditions, particularly a post-exposure bake not exceeding about 110° C., more preferably not exceeding about 105° C., 100° C., 95° C. or 90° C.
  • the post-exposure bake also is relatively short in duration, e.g. the imaged coating is heated under such mild conditions for no more than about 3 minutes, more preferably no more than about 2, 1.5, 1, 0.75 or 0.5 minutes.
  • the resist layer may be developed to provide a relief image, e.g. by treating the coating layer with an aqueous alkaline solution such as a tetra-alkyl ammonium hydroxide solution; various amine solutions preferably a 0.26 N tetramethylammonium hydroxide, such as ethyl amine, n-propyl amine, diethyl amine, di-n-propyl amine, triethyl amine, or methyldiethyl amine; alcohol amines such as diethanol amine or triethanol amine; cyclic amines such as pyrrole, pyridine, etc.
  • Plasma development also may be employed. In general, development is in accordance with procedures recognized in the art.
  • the developed substrate may be selectively processed on those areas bared of resist, for example by chemically etching or plating substrate areas bared of resist in accordance with procedures known in the art.
  • suitable etchants include a gas etchant, e.g. a halogen plasma etchant such as a chlorine or fluorine-based etchant such a Cl 2 or CF 4 /CHF 3 etchant applied as a plasma stream.
  • a gas etchant e.g. a halogen plasma etchant such as a chlorine or fluorine-based etchant such a Cl 2 or CF 4 /CHF 3 etchant applied as a plasma stream.
  • resist may be removed from the processed substrate using known stripping procedures.
  • a resist (referred to below as “Resist 1”) was prepared by admixing the following components where amounts are expressed as weight percent of total weight of the resist.
  • Resist 1 the resin is a polyhdroxystyrene-tert-butylacrylate copolymer; the PAG is a di-(4-t-butylphenyl)iodonium-trifluoromethylbenzenesulfonate; the basic additive is tetrabutylammonium lactate; the leveling agent is FC-430 (available from 3M). As shown above, Resist 1 was formulated at 27.4 percent solids.
  • the formulated Resist 1 was filtered through a 0.2 micrometer Teflon filter and spin coated onto 6 inch silicon wafers (pre-treated with hexamethylenedisiloxane at 120° C. for 30 seconds) on a TEL Mark 8 track (from Tokyo Electron Limited) to a thickness of about 3.0 micrometer (3000 angstroms) and baked at 130° C. for 60 seconds.
  • the coated wafers were exposed on an GCA XLS 7800 deep UV stepper equipped with a KrF laser (248 nm) for a lines/spaces test pattern using 0.53 NA and 0.74 ⁇ stepper settings, followed by post exposure bake at 100° C. (130° C. for comparison samples) for 90 seconds and development with an aqueous alkaline developer (CD-26 available from the Shipley Company).
  • Comparative Processed Resist 1 A sample of the same Resist I (this processed resist sample referred to herein as Comparative Processed Resist 1) was then processed in the same manner as described immediately above, except the higher (130° C.) post-exposure bake was employed for the Comparative Processed Resist 1.
  • Resist 1 and Comparative Processed Resist 1 were imaged and developed for 600 nm 1:1 lines/spaces and 800 nm trenches. Resist 1 processed at the lower PEB (110° C.) showed excellent resist relief image profiles, while the Comparative Processed Resist 1 processed at conventional, higher PEB (130° C.) showed very poor relief image profiles.

Abstract

New methods and compositions are provided that enable application and processing of photoresist as thick coating layers, e.g. at dried layer (post soft-bake) thicknesses of in excess of 2 microns. Resists can be imaged at short wavelengths in accordance with the invention, including 248 nm.

Description

  • The present application claims the benefit of U.S. provisional application No. 60/290,445 filed May 11, 2001, which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to new photoresists, particularly photoresists that can be applied and imaged as thick coating layers. Preferred resists of the invention are chemically-amplified positive-acting resists that contain one or more photoacid generator compounds and a resin component.
  • 2. Background
  • Photoresists are photosensitive films used for transfer of images to a substrate. A coating layer of a photoresist is formed on a substrate and the photoresist layer is then exposed through a photomask to a source of activating radiation. The photomask has areas that are opaque to activating radiation and other areas that are transparent to activating radiation. Exposure to activating radiation provides a photoinduced chemical transformation of the photoresist coating to thereby transfer the pattern of the photomask to the photoresist-coated substrate. Following exposure, the photoresist is developed to provide a relief image that permits selective processing of a substrate.
  • A photoresist can be either positive-acting or negative-acting. For most negative-acting photoresists, those coating layer portions that are exposed to activating radiation polymerize or crosslink in a reaction between a photoactive compound and polymerizable reagents of the photoresist composition. Consequently, the exposed coating portions are rendered less soluble in a developer solution than unexposed portions. For a positive-acting photoresist, exposed portions are rendered more soluble in a developer solution while areas not exposed remain comparatively less developer soluble. Photoresist compositions are described in Deforest, Photoresist Materials and Processes, McGraw Hill Book Company, New York, ch. 2, 1975 and by Moreau, Semiconductor Lithography, Principles, Practices and Materials, Plenum Press, New York, ch. 2 and 4. While currently available photoresists are suitable for many applications, current resists also can exhibit significant shortcomings, particularly in high performance applications such as formation of highly resolved sub-half micron and sub-quarter micron features.
  • Consequently, interest has increased in photoresists that can be photoimaged with short wavelength radiation, including exposure radiation of about 300 nm or less, or even about 200 nm or less, such as wavelengths of about 248 nm or 193 nm. Use of such short exposure wavelengths can potentially enable formation of smaller features.
  • It thus would be desirable to have new photoresists and methods for processing photoresists to enable formation of smaller, highly resolved features. It would be particularly desirable to have such photoresists that could be processed at short wavelengths such as sub-300 nm, especially 248 nm.
  • SUMMARY OF THE INVENTION
  • We have now found new methods and compositions that enable application and processing of photoresist as thick coating layers, e.g. at dried layer (post soft-bake) thicknesses of in excess of 1 micron, in excess of about 1.5, 2, 3, 4 or even 5 microns.
  • Resists can be imaged at short wavelengths in accordance with the invention, including 248 nm, to provide highly resolved thick layer relief images. See, for instance, the results set forth in the examples which follow.
  • In a first aspect, a resist is applied to a substrate as a thick coating layer, e.g. a thickness of from a range of about 1.5 to 5 microns, imaged to patterned activating radiation, and then thermally treated (post-exposure bake or “PEB”) at a relatively low temperature, particularly at a temperature that is at least about 10° C., 15° C., 20° C., or 25° C. less than standard post-exposure bake processing of current chemically-amplified positive resists. In particular, in the methods of the invention resists are suitably post-exposure baked at a temperature of about 105° C. or 100° C., more typically about 95° C. or 90° C.
  • We have surprisingly found that such mild post-exposure bake treatment can provide highly resolved relief images of the thick coating layers upon development. In contrast, the same or comparable resists coated as thinner layers (e.g. 0.5 microns or less) provide relief images of significantly reduced resolution upon such mild PEB treatment.
  • Also preferred is where the pre-exposure soft-bake (solvent carrier removal) is conducted at a maximum temperature of at least about 15° C. or 20° C. greater than the subsequent post-exposure thermal treatment, more preferably the pre-exposure soft-bake is conducted at a maximum temperature of at least about 25° C. or 30° C. more than the maximum temperature of a subsequent post-exposure thermal treatment. Generally preferred is where is the maximum temperature of the pre-exposure soft-bake is conducted at a temperature of from about 15° C. to 35° C., particularly about 25° C. more than the maximum temperature of the subsequent post-exposure thermal treatment. References herein to a maximum temperature of a thermal treatment (e.g. i) pre-exposure bake or ii) post-exposure, pre-development bake) refers to the maximum temperature reached and retained (e.g. retained for at least about 5, 10 or 15 seconds) during the specified thermal treatment.
  • In additional aspects of the invention, resist compositions are provided that can facilitate and enhance the deposited thick film coating layer. In particular, resists of the invention may suitably contain a plasticizer compound or composition to promote formation of a thick coating layer.
  • The resin component also may contain polymers that have a low glass transition temperature, e.g. polymers that have a molecular weight (Mw) of about 30,000 or 20,000 or less, or a molecular weight (Mw) 10,000 or less or 5,000 or less.
  • The photoacid generator component also may generate relatively large photoacids, e.g. a photoacid having a volume of at least about 155 or 160 Å3, more preferably a volume of at least 170, 180 or 190 Å3. Even larger photoacids will be suitable, including photoacids having a volume of at least about 200, 220, 250, 280 or 300 Å3. Such large photoacids will be less prone to undesired diffusion through a thick resist coating layer.
  • Particularly preferred photoresists for use in the methods of the invention comprise a polymer having phenolic groups. Even more preferred are photoresists that comprise polymers that have polymerized phenolic units and acrylate units with acid labile groups such as polymerized tert-butyl acrylate, tert-butyl methacrylate, methyladmantyl acrylate, methyladamantyl methacrylate, and the like. Such polymers may be higher order polymers (e.g. terpolymers, tetrapolymers and the like) and contain additional repeat units beyond phenolic units and photoacid-labile alkyl acrylate units. For instance, preferred additional units are relatively inert units such as polymerized styrene or alpha-methylstyrene units. References herein to acrylates are inclusive of substituted acrylates such as methacrylates.
  • The invention further comprises articles of manufacture comprising substrates such as a microelectronic wafer having coated thereon the photoresists and relief images of the invention. The invention also includes methods to manufacture microelectronic wafers and other articles. Other aspects of the invention are disclosed infra.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As discussed above, we have now found new methods and compositions that enable application and processing of photoresists as thick coating layers, e.g. at dried layer (post soft-bake, pre-exposure measurement) thicknesses of in excess of 1 micron, more typically a dried layer thickness in excess of about 1.5, 2, 3, 4, 5 or even 6 microns. Resist layers can be employed that have very significant dried layer thicknesses, although it generally not necessary to apply and process resist layers that are in excess of about 7, 8, 9 or 10 microns.
  • In the methods of the invention, preferably a temperature differential is employed between a i) pre-exposure thermal treatment of a photoresist composition coating layer where solvent carrier is removed and ii) a post-exposure thermal treatment prior to development. Preferably, the pre-exposure thermal treatment is conducted at a temperature higher than the post-exposure thermal treatment. Preferably, the temperature differential between the maximum pre-exposure treatment temperature and the maximum post-exposure thermal treatment is at least about 5° C., more preferably at least or up to about a 10° C., 15° C., 20° C., 25° C., 30° C. or 40° C. temperature differential. Particularly preferred is where the temperature differential between the maximum pre-exposure thermal treatment temperature and the maximum post-exposure thermal treatment is from 10° C. to 40° C., more preferably a temperature differential of from about 10° C. to 30° C., still more preferably a temperature differential of from about 15° C. to 25° C.
  • As discussed above, a variety of polymers may be employed as the resin component of a resist of the invention. Preferred resins are phenolic polymers that contain one or more deblocking groups, such as photoacid-labile ester groups or acetal groups. Photoacid-labile ester groups may be suitably provided by polymerization of an alkyl acrylate (which includes substituted acrylates such as methacrylates), such as provided by polymerization of tert-butyl acrylate or tert-butyl methacrylate. Polymerization of other acrylates that have photoacid-labile groups also will be suitable such as a methyladamantyl acrylate and the like.
  • Preferred phenolic resins that can be employed treated in accordance with the invention include novolak and poly(vinylphenol) resins. Preparation of such phenolic resins is known. Poly(vinylphenols) and phenolic copolymers are generally preferred.
  • Poly(vinylphenols) may be prepared, e.g., as disclosed in U.S. Pat. No. 4,439,516. Preferred phenolic copolymers are disclosed e.g. in U.S. Pat. Nos. 6,090,526; 6,077,643; 6,057,083; and 5,861,231. Additional suitable polymers are disclosed in and U.S. Pat. Nos. 4,968,581; 4,883,740; 4,810,613; 4,491,628; 5,258,257 and 5,492,793. Poly(vinylphenols) may be formed by block polymerization, emulsion polymerization or solution polymerization of the corresponding monomers in the presence of a catalyst. Vinylphenols useful for the production of polyvinyl phenol resins may be prepared, for example, by hydrolysis of commercially available coumarin or substituted coumarin, followed by decarboxylation of the resulting hydroxy cinnamic acids. Useful vinylphenols may also be prepared by dehydration of the corresponding hydroxy alkyl phenols or by decarboxylation of hydroxy cinnamic acids resulting from the reaction of substituted or nonsubstituted hydroxybenzaldehydes with malonic acid. Preferred polyvinylphenol resins prepared from such vinylphenols have a molecular weight range of from about 2,000 to about 60,000 daltons.
  • Copolymers containing phenol and nonaromatic cyclic alcohol units also are preferred resins treated in accordance with the invention and may be suitably prepared by partial hydrogenation of a novolak or poly(vinylphenol) resin. Such copolymers and the use thereof in photoresist compositions are disclosed in U.S. Pat. No. 5,128,232 to Thackeray et al.
  • Acetate groups are preferred acid labile groups to functionalize phenolic OH moieties of a phenolic resin. To provide such groups, a phenolic resin binder precursor may be condensed with a suitable addition compound such as a compound of the formula L-CR1R2C(═O)—O—R3, where L is a leaving group such as bromide or chloride, R1 and R2 are each independently hydrogen, an electron withdrawing group such as halogen (particularly F, Cl or Br), or substituted or unsubstituted C1-10 alkyl; and R3 is substituted or unsubstituted C1-10 alkyl, or substituted or unsubstituted aryl such as phenyl or aryalkyl such as benzyl. Condensation of such addition compound provides the groups of the formula —R1R2C(═O)—O—R3 pendant to the resin binder backbone and grafted onto the resin's available hydroxyl groups. Photoacid degradation of those groups during exposure and/or post-exposure heating provides the polar acetic acid ether moiety pendant to the resin binder backbone. Other preferred acid labile groups pendant to a resin binder backbone include oxycarbonyl groups such as those of the formula —C(═O)OR3 where R3 is as defined above and preferably is 1-butyl or benzyl. Such groups are provided by reaction of a resin binder precursor with a suitable addition compound such as a di-alkyl-dicarbonate, e.g. di-t-butyl-dicarbonate. See U.S. Pat. No. 5,258,257 to Sinta et al. and other documents cited therein for discussions of acid labile groups.
  • Phenolic polymers of resists of the invention also may contain inert blocking groups. Such groups are linked to phenolic OH moieties of a phenolic resin as disclosed in U.S. Pat. No. 5,514,520 to Thackeray et al. As specified in that patent, and referred to herein, an inert blocking group is a group pendant to a resin and that is chemically unreactive in the presence of acid or base generated during exposure and baking of the photoresist composition. Preferred inert blocking groups grafted onto available hydroxyl groups of a resin binder include alkyl (to provide —O-alkyl pendant groups) such as methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, etc.; alkanoyl group (to provide RCOO— pendant groups where R is preferably C1-4 alkyl); a sulfonyl acid ester such as methanesulfonyl, ethanesulfonyl, propanesulfonyl, benzensulfonyl, toluenesulfonylesters, etc. Such groups may be grafted onto a suitable resin binder precursor such as a phenolic resin by an alkaline or acidic condensation reaction with a suitable addition compound, e.g. reaction of a sulfonic acid halide or other compound with suitable leaving group with a phenolic polymer in the presence of a suitable catalyst such as sodium hydroxide in the Is case of an alkaline condensation. See also the procedures disclosed in U.S. Pat. No. 5,514,520.
  • Particularly preferred deblocking resins for use in the resists of the invention include polymers that contain both phenolic and non-phenolic units. For example, one preferred group of such polymers has acid labile groups substantially, essentially or completely only on non-phenolic units of the polymer. One preferred polymer binder has repeating units x and y of the following formula:
    Figure US20050019705A1-20050127-C00001

    wherein the hydroxyl group be present at either the ortho, meta or para positions throughout the polymer, and R′ is substituted or unsubstituted alkyl having 1 to about 18 carbon atoms, more typically 1 to about 6 to 8 carbon atoms. Tert-butyl is a generally preferred R′ group. An R′ group may be optionally substituted by e.g. one or more halogen (particularly F, Cl or Br), C1-8 alkoxy, C2-8 alkenyl, etc. The depicted phenolic units of the polymer also may be optionally substituted by such groups. The units x and y may be regularly alternating in the polymer, or may be randomly interspersed through the polymer. Such copolymers can be readily formed. For example, for resins of the above formula, vinyl phenols and a substituted or unsubstituted alkyl acrylate such as t-butylacrylate and the like may be condensed under free radical conditions as known in the art. The substituted ester moiety, i.e. R′—O—C(═O)—, of the acrylate units serves as the acid labile groups of the resin and will undergo photoacid induced cleavage upon exposure of a coating layer of a photoresist containing the resin. Preferably the copolymer will have a Mw of from about 3,000 to about 50,000, more preferably about 10,000 to about 30,000 with a molecular weight distribution of about 3 or less, more preferably a molecular weight distribution of about 2 or less. Such copolymers also may be prepared by such free radical polymerization or other known procedures and suitably will have a Mw of from about 3,000 to about 50,000, and a molecular weight distribution of about 3 or less, more preferably a molecular weight distribution of about 2 or less.
  • Additional preferred deblocking resins have acid labile groups on both phenolic and non-phenolic units of the polymer. One preferred polymer binder has repeating units a, b and c of the following formula:
    Figure US20050019705A1-20050127-C00002

    wherein R′ group is a photoacid labile group as defined above for the other preferred polymer; X is another repeat unit which may or may not contain a photoacid labile group; and each Y is independently hydrogen or C1-6 alkyl, preferably hydrogen or methyl. The values a, b and c designate the molar amount of the polymer units. Those polymer units may be regularly alternating in the polymer, or may be randomly interspersed through the polymer. Suitable X groups may be aliphatic or aromatic groups such as phenyl, cyclohexyl, adamantyl, isobornylacrylate, methacrylate, isobornymethacrylate, and the like. Such polymers may be formed in the same manner as described for the polymer above, and wherein the formed copolymer is reacted to provide the phenolic acid labile groups.
  • Additional preferred deblocking resins include at least three distinct repeating units of 1) units that contain acid-labile groups; 2) units that are free of reactive groups as well as hydroxy groups; and 3) aromatic or other units that contribute to aqueous developability of a photoresist containing the polymer as a resin binder. Particularly preferred deblocking polymers of this type correspond to the following formula:
    Figure US20050019705A1-20050127-C00003

    wherein R of units 1) is substituted or unsubstituted alkyl preferably having 1 to about 10 carbon atoms, more typically 1 to about 6 carbons. Branched alkyl such as tert-butyl are generally preferred R groups. Also, the polymer may comprise a mixture of different R groups, e.g., by using a variety of acrylate monomers during the polymer synthesis.
  • R1 groups of units 2) of the above formula each independently may be e.g. halogen (particularly F, Cl and Br), substituted or unsubstituted alkyl preferably having 1 to about 8 carbons, substituted or unsubstituted alkoxy preferably having 1 to about 8 carbon atoms, substituted or unsubstituted alkenyl preferably having 2 to about 8 carbon atoms, substituted or unsubstituted alkynyl preferably having 2 to about 8 carbons, substituted or unsubstituted alkylthio preferably having 1 to about 8 carbons, cyano, nitro, etc.; and m is an integer of from 0 (where the phenyl ring is fully hydrogen-substituted) to 5, and preferably is 0, 1 or 2. Also, two R1 groups on adjacent carbons may be taken together to form (with ring carbons to which they are attached) one, two or more fused aromatic or alicyclic rings having from 4 to about 8 ring members per ring.
  • For example, two R1 groups can be taken together to form (together with the depicted phenyl) a naphthyl or acenaphthyl ring. As with units 1), the polymer may comprise a mixture of different units 2) with differing R1 groups or no R1 groups (i.e. m=1) by using a variety of substituted or unsubstituted vinylphenyl monomers during the polymer synthesis.
  • R2 groups of units 3) of the above formula each independently may be e.g. halogen (particularly F, Cl and Br), substituted or unsubstituted alkyl preferably having 1 to about 8 carbons, substituted or unsubstituted alkoxy preferably having 1 to about 8 carbon atoms, substituted or unsubstituted alkenyl preferably having 2 to about 8 carbon atoms, substituted or unsubstituted sulfonyl preferably having 1 to about to about 8 carbon atoms such as mesyl (CH3SO2O—), substituted or unsubstituted alkyl esters such as those represented by RCOO— where R is preferably an alkyl group preferably having 1 to about 10 carbon atoms, substituted or unsubstituted alkenyl preferably having 2 to about 8 carbons, substituted or unsubstituted alkylthio preferably having 1 to about 8 carbons, cyano, nitro, etc.; and p is an integer of from 0 (where the phenyl ring has a single hydroxy substituent) to 4, and preferably is 0, 1 or 2. Also, two R2 groups on adjacent carbons may be taken together to form (with ring carbons to which they are attached) one, two or more fused aromatic or alicyclic rings having from 4 to about 8 ring members per ring. For example, two R2groups can be taken together to form (together with the phenol depicted in the above formula) a naphthyl or acenaphthyl ring. As with units 1), the polymer may comprise a mixture of different units 3) with differing R2 groups or no R2groups (i.e. p=0) by using a variety of substituted or unsubstituted vinylphenyl monomers during the polymer synthesis. As shown in the formula above, the hydroxyl group of units 3) may be either at the ortho, meta or para positions throughout the copolymer. Para or meta substitution is generally preferred.
  • Each R3, R4 and R5 substituent independently may be hydrogen or substituted or unsubstituted alkyl preferably having 1 to about 8 carbon atoms, more typically 1 to about 6 carbons, or more preferably 1 to about 3 carbons.
  • The above-mentioned substituted groups (i.e. substituted groups R and R1 through R5 of the formula above) may be substituted at one or more available positions by one or more suitable groups such as halogen (particularly F, Cl or Br); C1-8 alkyl; C1-8 alkoxy; C2-8 alkenyl; C2-8 alkynyl; aryl such as phenyl; alkanoyl such as a C1-6 alkanoyl of acyl and the like; etc.
  • Typically a substituted moiety is substituted at one, two or three available positions.
  • In the above formula, x, y and z are the mole fractions or percents of units 3), 2) and 1) respectively in the copolymer. These mole fractions may suitably vary over rather wide values, e.g., x may be suitably from about 10 to 90 percent, more preferably about 20 to 90 percent; y may be suitably from about 1 to 75 percent, more preferably about 2 to 60 percent; and z may be 1 to 75 percent, more preferably about 2 to 60 percent.
  • Preferred copolymers of the above formula include those where the only polymer units correspond to the general structures of units 1), 2) and 3) above and the sum of the mole percents x, y and z equals one hundred. However, preferred polymers also may comprise additional units wherein the sum of x; y and z would be less than one hundred, although preferably those units 1), 2) and 3) would still constitute a major portion of the copolymer, e.g. where the sum of x, y and z would be at least about 50 percent (i.e. at least 50 molar percent of the polymer consists of units 1), 2) and 3)), more preferably the sum of x, y and z is at least 70 percent, and still more preferably the sum of x, y and z is at least 80 or 90 percent. See European Published Patent Application EP 0813113A1 for detailed disclosure of free radical synthesis of copolymers of the above Formula 1.
  • Other resin systems may be employed in a photoresist employed in accordance with the invention. For instance, resins can be employed that contain repeat units that comprise an acetal or ketal moiety that will react with photogenerated acid, and optionally aromatic repeat units such as phenyl or phenolic groups, such as polymers as described in U.S. Pat. Nos. 5,929,176 and 6,090,526, both incorporated herein by reference.
  • The resin component may be present as a sole resin component, or as a component of a blend of resins. The resin component of a resist composition of the invention should be present in an amount sufficient to providing acceptable film-forming characteristics. See the example which follows for preferred amounts of a resin component.
  • As discussed above, photoacid generators are preferred photoactive components. The term photoacid generator compound as used herein is not inclusive of the diazonaphoquinone photoactive compounds used at relatively higher wavelengths such as 365 nm and where a deblocking reaction of resin or other resist component does not occur.
  • Particularly preferred PAGs for use in resists of the invention include include onium salt compounds including iodonium and sulfonium compounds; and non-ionic PAGs such as imidosulfonate compounds, N-sulfonyloxyimide compounds; diazosulfonyl compounds and other sulfone PAGS including α,α-methylenedisulfones and disulfonehydrazines, nitrobenzyl compounds, halogenated particularly fluorinated non-ionic PAGS.
  • More specifically, preferred iodonium PAGs include those of the following Formula 1:
    Figure US20050019705A1-20050127-C00004

    wherein in Formula I, R1 and R2 are each independently optionally substituted alkyl such as C1-20alkyl including alicyclics such as cyclohexyl, adamantly, isobornyl, norbornyl, fencyl, dodecanyl, and the like; optionally substituted carbocyclic aryl such as phenyl, naphthyl and the like; and optionally substituted heteroaromatic or heteroalicyclic such as groups having 1 to 3 separate or fused rings and 1-3 hetero atoms (N, O or S) as ring members; and
  • X is a counter anion such as a carboxylate or sulfonate counter anion, preferably a a sulfonate (—SO3) or carboxylate(—COO) substituted with one or more moieties such as optionally substituted alkyl preferably C1-20alkyl, particularly C1-10alkyl substituted with one or more electron-withdrawing groups e.g. F or other halo, nitro, cyano, etc., with perfluoruoalkyl, particularly C1-10perfluoroalkyl being preferred; optionally substituted carbocyclic aryl such as phenyl or naphthyl; optionally substituted heteroaromatic or heteroalicyclic such as groups having 1 to 3 separate or fused rings and 1-3 hetero atoms (N, O or S) as ring members.
  • Preferred imidosulfonate PAGs include compounds of the following Formula II:
    Figure US20050019705A1-20050127-C00005

    wherein in Formula II, R is suitably by optionally substituted alkyl preferably C1-20alkyl, particularly C1-10alkyl substituted with one or more electron-withdrawing groups e.g. F or other halo, nitro, cyano, etc., with perfluoruoalkyl, particularly C1-10perfluoroalkyl being preferred; optionally substituted carbocyclic aryl such as phenyl or naphthyl; optionally substituted heteroaromatic or heteroalicyclic such as groups having 1 to 3 separate or fused rings and 1-3 hetero atoms (N, O or S) as ring members;
      • R1, R2, R3 and R4 each independently being hydrogen or a group as defined for R, or where R2 and R3 are taken together and/or R1 and R4 are taken together to form a ring, preferably an alicyclic ring, e.g. having from 4 to about 8 ring members; and
  • n is 1, 2; 3 or 4, preferably 1 or 2.
  • Preferred PAGs of Formula II include those with a fused alicyclic ring structure, such as PAGs of the following Formula IIa:
    Figure US20050019705A1-20050127-C00006

    wherein in Formula IIa, R is the same as defined in Formula II above, and preferably R is fluorinated C1-12alkyl, particularly perfluoroC1-12alkyl such as —CF3.
  • Sulfonium PAGS also will be suitable for use in resists of the invention, although perhaps less preferred than the iodonium salts and imidosulfonate compounds. For instance, preferred sulfonium PAGs include compounds of the following Formula III:
    Figure US20050019705A1-20050127-C00007

    wherein R1, R2 and R3 are each independently selected from the same group as defined for R1 and R2 in Formula I above; and X is the same as defined for Formula I above.
  • Also preferred are ring sulfonium PAGs such as those of the following Formula IV:
    Figure US20050019705A1-20050127-C00008

    wherein R1 and X are the same as defined in Formula III above; the dotted lines designate a ring structure that includes the depicted sulfur cation as a ring member, the ring suitably having 5 to about 8 ring members, and one, two or more endocyclic multiple bonds, and one or more optional ring substituents. Preferably the dotted lines form a non-aromatic ring, such as thienyl, or a completely saturated ring (no endocyclic double bonds).
  • In the above Formulae I, III and IV, preferred counter anions X are perfluoroalkyl and perfluoroalkoxy groups such as C1-15perfluoroalkyl and C1-15perfluoroalkoxy, e.g. triflate, perfluorobutanesulfonate, perfluorohexanesulfonate, perfluoroctanesulfonate, and perfluoroethoxyethylsulfonate.
  • A variety of other PAGs may be used in resists of the invention, including non-ionic PAGs such as substituted disulfone compounds; sulfonate compounds including N-oxyimino sulfonate compounds, -cyano N-oxyimino sulfonate compounds; sidulfone hydrazine compounds; diazomethanedisulfone compounds; nitrobenzyl compounds; substituted acylsulfonium compounds; and oxime sulfonate compounds including bis-N-oxyimidosulfonate compounds.
  • More particularly, preferred disulfone PAGs for use in resists of the invention include compounds of the following Formula V:
    Figure US20050019705A1-20050127-C00009

    wherein R1 and R2 are the same as defined for Formula I above.
  • Preferred oxime sulfonate PAGs for use in resists of the invention include those of the following Formula VI:
    R1R2C═NOS(O)2Y   VI
    wherein R1 and R2 may be the same as defined above for Formula I, and/or where at least one of R1 and R2 is an electron-withdrawing moiety such as cyano, nitro, haloalkyl particularly C1-12haloalkyl especially C1-12perfluoroalkyl such as —CF3, —CF2CF3 and other perfluoroalkyl, alkanoyl, and the like;
      • Y is a non-hydrogen substituent and is suitably the same as defined for R in Formula II above.
  • Preferred diazosulfone PAGS for use in resists of the invention include those of the following Formula VII:
    Figure US20050019705A1-20050127-C00010

    wherein R1 and R2 are the same as defined in Formula I above.
  • Preferred α,α-methylenedisulfone PAGs for use in resists of the invention include those of the following Formula VIII:
    Figure US20050019705A1-20050127-C00011

    wherein R1 and R2 are the same or different and are other than hydrogen and are suitably the same as defined above in Formula I;
      • R3 and R4 are the same or different and may be hydrogen or a non-hydrogen substituent such as defined for R1 in Formula I above, and preferably at least one of R3 and R4 is other than hydrogen, more preferably both R3 and R4 are other than hydrogen.
  • As mentioned above, disulfonehydrazine PAGS (i.e. hydrazine moiety interposed between the two sulfone moieties) also are suitable, preferably where the hydrazine moiety (e.g. N(R3)—N(R4)— of Formula IX below) interposed between the two sulfone moieties is mono- or di-substituted with non-hydrogen substituents. Preferred disulfonehydrazine PAGS for use in resits of the invention include compounds of the following Formula IX:
    Figure US20050019705A1-20050127-C00012

    wherein R1 and RZ are the same or different and are other than hydrogen, and suitably are the same as defined in Formula I;
      • R3 and R4 are the same or different and may be hydrogen or a non-hydrogen substituent such as defined for R1 in Formula I above, and preferably at least one of R3 and R4 is other than hydrogen, more preferably both R3 and R4 are other than hydrogen.
  • Further suitable PAGs for use in resists of the invention include disulfonylamine (i.e. —SO2—N—SO2—) salts, such as compounds of the following Formula X:
    Figure US20050019705A1-20050127-C00013

    wherein R1 and R2 are the same or different and are other than hydrogen, and suitably are the same as defined in Formula 1; and X is a counter ion.
  • One or more PAGS should be employed in a resist in an amount sufficient to provide a developable image upon exposure to activating radiation, such as 248 nm radiation. Suitably one or more PAGs are employed in an amount of 1 to 15 weight percent based on total solids of the resist (i.e. all components except solvent), more typically about 2 to 12 weight percent of total solids.
  • PAGs for use in resists of the invention can be made by generally known procedures. For instance, see U.S. Pat. Nos. 4,442,197 and 4,642,912 and European Application 0708368A1 for synthesis of iodonium PAGs. See WO 94/10608 for synthesis of N-sulfonyloxyimide PAGs. Diazosulfone PAGs can be made, e.g., by procedures disclosed in European Patent Application 0708368A1 and U.S. Pat. No. 5,558,976. See also WO 00/10056.
  • As discussed above, preferred PAGs of the invention generate relatively large photoacids to inhibit undesired diffusion of the photoacid into unexposed of the thick resist layer. For example, preferred photoacids may have a volume of at least about 155 or 160 Å3, more preferably a volume of at least 170, 180 or 190 A3. Even larger photoacids will be suitable, including photoacids having a volume of at least about 200, 220, 250, 280 or 300 Å3. Such large photoacids will be less prone to undesired diffusion through a thick resist coating layer.
  • References herein to sizes of photoacids designate volumetric size as determined by standard computer modeling, which provides optimized chemical bond lengths and angles. A preferred computer program for determining photoacid size is Alchemy 2000, available from Tripos. For a further discussion of computer-based determination of photoacid size, see T. Omte et al., Polymers for Advanced Technologies, “Photoreactive Fluorinated Polyimide Protected by a Tetrahydropyranyl Group Based on Photo-induced Acidolysis”, volume 4, pages 277-287.
  • Exemplary preferred large photoacids include the following, with volumetric size values (Å3) listed immediately below the acid.
    Figure US20050019705A1-20050127-C00014
  • It also should be appreciated that preferred resists of the invention are distinguished from resists that contain a so-called photoactive compound (PAC) rather than a photacid generator. Typical PACs are diazonaphthoquinones and function as dissolution inhibitors rather than an acid that promotes a deblocking reaction. Such PAC-containing resists are imaged with radiation of relatively long wavelengths such as I-line (365 nm).
  • As discussed above, resists of the invention also may contain one or more plasticizer materials, which can promote formation of a thick resist layer. Preferred plasticizers for use in resists of the invention include e.g. materials having one or more hetero atoms (particularly S or O), and preferably materials having a molecular weight of about 20 to 1000, more typically about 20 to about 50, 60, 70, 80, 90; 100, 150, 200, 250, 300, 400 or 500, e.g. adipates, sebacates and phthalates such as bis(2-butoxyethyl)adipate; bis(2-butoxyethyl)sebacate; bis-(2-butoxyethyl)phthalate; 2-butoxyethyl oleate; diisodecyl adipate; diisodecyl glutarate; and poly(ethylene glycols) such as poly(ethyleneglycol)acrylate, poly(ethylene glycol)bis(2-ethylhexanoate), poly(ethylene glycol)dibenzoate, poly(ethylene glycol)dioleate, poly(ethylene glycol)monooleate, tri(ethylene glycol)bis(2-ethylhexanoate), and the like.
  • One or more plasticizer compounds may be suitably present in a resist composition in an amount of from about 0.5 to 10 or more weight percent based on total solids (all components except solvent), more preferably 0.5 to 3 weight percent of total solids of a resist.
  • As discussed, various moieties of resin units, PAGS, plasticizers and other components of resists of the invention may be optionally substituted, typically 1, 2, or 3 positions by one or more suitable groups such as e.g. halogen (particularly F, Cl or Br); C1-8 alkyl; C1-8 alkoxy; C2-8 alkenyl; C2-8 alkynyl; hydroxyl; alkanoyl such as a C1-6 alkanoyl e.g. acyl; carbocyclic aryl such as phenyl; and the like, although multiple carbon-carbon bonds and aromatic groups will be less preferred due to excessive absorbance of exposure radiation.
  • Preferred substituent groups of substituted groups of resins, PAGs, plasticizers, and other components of resists of the invention include or consist of at least one halogen atom, preferably fluorine such as fluorinated C1-12alkyl, perfluoroC1-12alkyl, and perfluoroC1-12alkylene, fluorinated C3-8cycloalkyl, and fluorinated ethers (including C1-12 alkoxy) and esters (including C1-12 esters) including fluorinated cyclic ethers and fluorinated cyclic esters.
  • As used herein, the term alkyl, alkynyl and alkynyl unless otherwise modified refers to both cyclic groups, although of course cyclic groups will comprise at least three carbon ring members. Alkoxy groups of resist components suitably have 1 to about 16 carbons and 1, 2, 3 or 4 alkoxy linkages. Suitable alkanoyl groups have 1 to about 16 carbons and one or more carbonyl groups, typically 1, 2 or 3 carbonyl groups. Carbocyclic aryl as used herein refers to non-hetero aromatic groups that have 1 to 3 separate or fused rings and 6 to about 18 carbon ring members and may include phenyl, naphthyl, biphenyl, acenaphthyl, phenanthracyl and the like. Phenyl and naphthyl are often preferred. Suitable heteroaromatic or heteroaryl groups will have 1 to 3 rings, 3 to 8 ring members in each ring and from 1 to about 3 hetero atoms (N, O or S). Specifically suitable heteroaromatic or heteroaryl groups include e.g. courmarinyl, quinolinyl, pyridyl, pyrimdinyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl and benzothiazole.
  • The resists of the invention can be readily prepared by those skilled in the art. For example, a photoresist composition of the invention can be prepared by dissolving the components of the photoresist in a suitable solvent such as, for example, ethyl lactate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether; propylene glycol monomethyl ether acetate and 3-ethoxyethyl propionate; 2-heptanone and cyclohexanone. Typically, the solids content of the composition varies between about 5 and 35 percent by weight of the total weight of the photoresist composition. The resin binder and, photoactive components should be present in amounts sufficient to provide a film coating layer and formation of good quality latent and relief images. See the example which follows for exemplary preferred amounts of resist components.
  • The compositions of the invention are used in accordance with generally known procedures. The liquid coating compositions of the invention are applied to a substrate such as by spinning, dipping, roller coating or other conventional coating technique. When spin coating, the solids content of the coating solution can be adjusted to provide a desired film thickness based upon the specific spinning equipment utilized, the viscosity of the solution, the speed of the spinner and the amount of time allowed for spinning.
  • The resist compositions of the invention are suitably applied to substrates conventionally used in processes involving coating with photoresists. For example, the composition may be applied over silicon wafers or silicon wafers coated with silicon dioxide for the production of microprocessors and other integrated circuit components. Aluminum-aluminum oxide, gallium arsenide, ceramic, quartz, copper, glass substrates and the like are also suitably employed.
  • The resists and methods of the invention are particularly use in e.g. the manufacture of thin film heads (eg. 3 to 5 μm), magnetic disks, CD masks, and back-end implants.
  • Following coating of the photoresist onto a surface, it is dried by heating to remove the solvent until preferably the photoresist coating is tack free. Thereafter, it is imaged through a mask in conventional manner. The exposure is sufficient to effectively activate the photoactive component of the photoresist system to produce a patterned image in the resist coating layer and, more specifically, the exposure energy typically ranges from about 1 to 100 mJ/cm2, dependent-upon the exposure tool and the components of the photoresist composition.
  • As discussed above, coating layers of the resist compositions of the invention are preferably photoactivated by a short exposure wavelength, particularly a sub-300 and sub-200 nm such as 248 nm, 193 nm and 157 nm. 248 nm imaging is particularly preferred.
  • Following exposure, the film layer of the composition is preferably baked under relatively mild conditions, particularly a post-exposure bake not exceeding about 110° C., more preferably not exceeding about 105° C., 100° C., 95° C. or 90° C.
  • The post-exposure bake also is relatively short in duration, e.g. the imaged coating is heated under such mild conditions for no more than about 3 minutes, more preferably no more than about 2, 1.5, 1, 0.75 or 0.5 minutes.
  • After the post-exposure bake, the resist layer may be developed to provide a relief image, e.g. by treating the coating layer with an aqueous alkaline solution such as a tetra-alkyl ammonium hydroxide solution; various amine solutions preferably a 0.26 N tetramethylammonium hydroxide, such as ethyl amine, n-propyl amine, diethyl amine, di-n-propyl amine, triethyl amine, or methyldiethyl amine; alcohol amines such as diethanol amine or triethanol amine; cyclic amines such as pyrrole, pyridine, etc. Plasma development also may be employed. In general, development is in accordance with procedures recognized in the art.
  • Following development of the photoresist coating over the substrate, the developed substrate may be selectively processed on those areas bared of resist, for example by chemically etching or plating substrate areas bared of resist in accordance with procedures known in the art. For the manufacture of microelectronic substrates, e.g., the manufacture of silicon dioxide wafers, suitable etchants include a gas etchant, e.g. a halogen plasma etchant such as a chlorine or fluorine-based etchant such a Cl2 or CF4/CHF3 etchant applied as a plasma stream. After such processing, resist may be removed from the processed substrate using known stripping procedures.
  • All documents mentioned herein are incorporated herein by reference. The following non-limiting example is illustrative of the invention.
  • EXAMPLE 1 Resist Preparation and Processing with Comparative Results
  • A resist (referred to below as “Resist 1”) was prepared by admixing the following components where amounts are expressed as weight percent of total weight of the resist.
    Component Amount
    Resin. 26.830
    PAG 0.537
    Basic Additive 0.034
    Leveling agent 0.027
    Ethyl lactate solvent 72.573
  • In Resist 1, the resin is a polyhdroxystyrene-tert-butylacrylate copolymer; the PAG is a di-(4-t-butylphenyl)iodonium-trifluoromethylbenzenesulfonate; the basic additive is tetrabutylammonium lactate; the leveling agent is FC-430 (available from 3M). As shown above, Resist 1 was formulated at 27.4 percent solids.
  • The formulated Resist 1 was filtered through a 0.2 micrometer Teflon filter and spin coated onto 6 inch silicon wafers (pre-treated with hexamethylenedisiloxane at 120° C. for 30 seconds) on a TEL Mark 8 track (from Tokyo Electron Limited) to a thickness of about 3.0 micrometer (3000 angstroms) and baked at 130° C. for 60 seconds. The coated wafers were exposed on an GCA XLS 7800 deep UV stepper equipped with a KrF laser (248 nm) for a lines/spaces test pattern using 0.53 NA and 0.74 σstepper settings, followed by post exposure bake at 100° C. (130° C. for comparison samples) for 90 seconds and development with an aqueous alkaline developer (CD-26 available from the Shipley Company).
  • A sample of the same Resist I (this processed resist sample referred to herein as Comparative Processed Resist 1) was then processed in the same manner as described immediately above, except the higher (130° C.) post-exposure bake was employed for the Comparative Processed Resist 1.
  • The Resist 1 and Comparative Processed Resist 1 were imaged and developed for 600 nm 1:1 lines/spaces and 800 nm trenches. Resist 1 processed at the lower PEB (110° C.) showed excellent resist relief image profiles, while the Comparative Processed Resist 1 processed at conventional, higher PEB (130° C.) showed very poor relief image profiles.
  • The foregoing description of the invention is merely illustrative thereof, and it is understood that variations and modifications can be effected without departing from the spirit or scope of the invention as set forth in the following claims.

Claims (27)

1. A method for providing a resist relief image comprising:
applying a liquid coating layer of a positive-acting photoresist on a substrate surface, the photoresist comprising a photoacid generator compound and a resin having photoacid-labile groups;
removing solvent from the photoresist coating layer to provide a layer thickness of at least about 1.5 microns;
exposing the photoresist coating layer to patterned activating radiation; heating the exposed photoresist coating layer to a temperature not exceeding about 115° C.; and
developing the photoresist coating layer to provide a resist relief image.
2. The method of claim 1 wherein the exposed photoresist relief image is heated at a temperature of about 105° C. or less after exposure.
3. The method of claim 1 wherein the exposed photoresist relief image is heated at about 100° C. or less after exposure.
4. The method of claim 1 wherein solvent is removed to provide a resist layer thickness of at least about 2 microns.
5-13. (cancelled)
14. The method of claim 1 wherein the photoresist resin has an Mw molecular weight of about 20,000 or less.
15. The method of claim 1 wherein the photoresist composition comprises a diazomethanesulfone photoacid generator compound.
16. The method of claim 1 wherein the photoresist composition comprises an onium salt photoacid generator compound.
17. The method of claim 1 wherein the photoresist composition comprises a photoacid generator compound that generates a sulfonic acid upon exposure to activating radiation.
18. The method of claim 1 wherein the photoresist composition comprises a plasticizer compound.
19. The method of claim 18 wherein the plasticizer is a non-polymeric compound.
20. The method of claim 18 wherein the plasticizer is an aromatic compound.
21. (cancelled)
22. The method of claim 1 wherein the photoresist coating layer is exposed to radiation having a wavelength of about 248 nm.
23-28. (cancelled)
29. A method for providing a resist relief image comprising:
applying a liquid coating layer of a positive-acting photoresist on a substrate surface, the photoresist comprising a photoacid generator compound and a resin having phenolic groups and polymerized alkyl acrylate groups that having photoacid-labile moieties;
removing solvent from the photoresist coating layer to provide a layer thickness of at least about 1.5 microns;
exposing the photoresist coating layer to patterned activating radiation;
heating the exposed photoresist coating layer to a temperature not exceeding about 120° C.; and
developing the photoresist coating layer to provide a resist relief image.
30. The method of claim 29 wherein the temperature differential between the maximum pre-exposure treatment temperature and the maximum post-exposure thermal treatment is from 10° C. to 30° C.
31. (cancelled)
32. A substrate having a positive-acting photoresist coating layer thereon, the photoresist comprising a photoacid generator compound and a resin having photoacid-labile groups, the coating layer having a thickness of at least about 1.5 microns and substantially free of resist solvent.
33-35. (cancelled)
36. The substrate of claim 32 wherein the resist coating layer has a thickness of at least about 6 microns.
37. The substrate of claim 32 wherein the photoresist resin comprises phenolic units.
38. The substrate of claim 32 wherein the photoresist resin comprises phenolic and acrylate units.
39. (cancelled)
40. The substrate of claim 32 wherein the photoresist resin has an Mw molecular weight of about 5,000 or less.
41. The substrate of claim 32 wherein the photoresist resin has a Tg of about 100° C. or less.
42-50. (cancelled)
US10/924,351 2001-05-11 2004-08-23 Thick film photoresists and methods for use thereof Abandoned US20050019705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/924,351 US20050019705A1 (en) 2001-05-11 2004-08-23 Thick film photoresists and methods for use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29044501P 2001-05-11 2001-05-11
US10/142,732 US6800422B2 (en) 2001-05-11 2002-05-10 Thick film photoresists and methods for use thereof
US10/924,351 US20050019705A1 (en) 2001-05-11 2004-08-23 Thick film photoresists and methods for use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/142,732 Continuation US6800422B2 (en) 2001-05-11 2002-05-10 Thick film photoresists and methods for use thereof

Publications (1)

Publication Number Publication Date
US20050019705A1 true US20050019705A1 (en) 2005-01-27

Family

ID=23116028

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/142,732 Expired - Lifetime US6800422B2 (en) 2001-05-11 2002-05-10 Thick film photoresists and methods for use thereof
US10/924,351 Abandoned US20050019705A1 (en) 2001-05-11 2004-08-23 Thick film photoresists and methods for use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/142,732 Expired - Lifetime US6800422B2 (en) 2001-05-11 2002-05-10 Thick film photoresists and methods for use thereof

Country Status (6)

Country Link
US (2) US6800422B2 (en)
EP (1) EP1393131A4 (en)
JP (1) JP4297408B2 (en)
KR (2) KR20040029977A (en)
CN (1) CN100409101C (en)
WO (1) WO2002093262A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032373A1 (en) * 2003-04-09 2005-02-10 Cameron James F. Photoresists and methods for use thereof
US20070015080A1 (en) * 2005-07-12 2007-01-18 Toukhy Medhat A Photoresist composition for imaging thick films
US20070231735A1 (en) * 2006-03-28 2007-10-04 Georg Pawlowski Negative photoresist compositions
US20100151118A1 (en) * 2008-12-17 2010-06-17 Eastman Chemical Company Carrier solvent compositions, coatings compositions, and methods to produce thick polymer coatings
US8906594B2 (en) 2012-06-15 2014-12-09 Az Electronic Materials (Luxembourg) S.A.R.L. Negative-working thick film photoresist
US9012126B2 (en) 2012-06-15 2015-04-21 Az Electronic Materials (Luxembourg) S.A.R.L. Positive photosensitive material
US10976662B2 (en) 2016-04-19 2021-04-13 Merck Patent Gmbh Positive working photosensitive material

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740464B2 (en) * 2000-01-14 2004-05-25 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
KR20040029977A (en) * 2001-05-11 2004-04-08 쉬플리 캄파니, 엘.엘.씨. Thick film photoresists and methods for use thereof
JP4318945B2 (en) * 2003-04-07 2009-08-26 東京応化工業株式会社 Chemical amplification type positive photoresist composition for thick film, thick film photoresist laminate, method for producing thick film resist pattern, and method for producing connection terminal
US7927778B2 (en) 2004-12-29 2011-04-19 Tokyo Ohka Kogyo Co., Ltd. Chemically amplified positive photoresist composition for thick film, thick-film photoresist laminated product, manufacturing method for thick-film resist pattern, and manufacturing method for connection terminal
US7951522B2 (en) 2004-12-29 2011-05-31 Tokyo Ohka Kogyo Co., Ltd. Chemically amplified positive photoresist composition for thick film, thick-film photoresist laminated product, manufacturing method for thick-film resist pattern, and manufacturing method for connection terminal
JP4499591B2 (en) 2005-03-23 2010-07-07 東京応化工業株式会社 Chemically amplified positive photoresist composition for thick film formation
US20070105040A1 (en) * 2005-11-10 2007-05-10 Toukhy Medhat A Developable undercoating composition for thick photoresist layers
US20070166640A1 (en) * 2006-01-19 2007-07-19 Yayi Wei Defect reduction in immersion lithography
US7479463B2 (en) * 2007-03-09 2009-01-20 Tokyo Electron Limited Method for heating a chemically amplified resist layer carried on a rotating substrate
JP5783687B2 (en) * 2009-06-23 2015-09-24 住友化学株式会社 Resin and resist composition
US10295910B2 (en) * 2009-12-15 2019-05-21 Rohm And Haas Electronic Materials Llc Photoresists and methods of use thereof
KR101007039B1 (en) * 2010-07-27 2011-01-12 한국기계연구원 Tailstock giving freedom to spindle and roll-shaped mold working machine with the same
TWI499581B (en) * 2010-07-28 2015-09-11 Sumitomo Chemical Co Photoresist composition
KR101776320B1 (en) 2010-08-30 2017-09-07 스미또모 가가꾸 가부시키가이샤 Resist composition and method for producing resist pattern
JP6034026B2 (en) 2011-02-25 2016-11-30 住友化学株式会社 Resist composition and method for producing resist pattern
JP5947053B2 (en) 2011-02-25 2016-07-06 住友化学株式会社 Resist composition and method for producing resist pattern
JP5947051B2 (en) 2011-02-25 2016-07-06 住友化学株式会社 Resist composition and method for producing resist pattern
JP5898521B2 (en) 2011-02-25 2016-04-06 住友化学株式会社 Resist composition and method for producing resist pattern
JP5898520B2 (en) 2011-02-25 2016-04-06 住友化学株式会社 Resist composition and method for producing resist pattern
JP6034025B2 (en) 2011-02-25 2016-11-30 住友化学株式会社 Resist composition and method for producing resist pattern
JP5829940B2 (en) 2011-02-25 2015-12-09 住友化学株式会社 Resist composition and method for producing resist pattern
JP5829941B2 (en) 2011-02-25 2015-12-09 住友化学株式会社 Resist composition and method for producing resist pattern
JP5829939B2 (en) 2011-02-25 2015-12-09 住友化学株式会社 Resist composition and method for producing resist pattern
JP5886696B2 (en) 2011-07-19 2016-03-16 住友化学株式会社 Resist composition and method for producing resist pattern
JP6013799B2 (en) 2011-07-19 2016-10-25 住友化学株式会社 Resist composition and method for producing resist pattern
JP6189020B2 (en) 2011-07-19 2017-08-30 住友化学株式会社 Resist composition and method for producing resist pattern
JP5912912B2 (en) 2011-07-19 2016-04-27 住友化学株式会社 Resist composition and method for producing resist pattern
JP6013797B2 (en) 2011-07-19 2016-10-25 住友化学株式会社 Resist composition and method for producing resist pattern
CN109934744B (en) 2012-02-20 2023-09-05 株式会社诺瑞韩国 Method, system and computer readable recording medium for providing educational service based on knowledge unit
JP6292059B2 (en) 2013-08-13 2018-03-14 Jsr株式会社 Substrate processing method
US9354390B2 (en) * 2013-12-11 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacturing
CN107664921B (en) * 2016-07-29 2019-12-24 上海微电子装备(集团)股份有限公司 Leveling type plate library equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978419A (en) * 1986-10-09 1990-12-18 International Business Machines Corporation Process for defining vias through silicon nitride and polyamide
US5248582A (en) * 1988-09-07 1993-09-28 Fuji Photo Film Co., Ltd. Positive-type photoresist composition
US5302490A (en) * 1991-10-21 1994-04-12 Shipley Company Inc. Radiation sensitive compositions comprising blends of an aliphatic novolak resin and an aromatic novolak resin
US5861231A (en) * 1996-06-11 1999-01-19 Shipley Company, L.L.C. Copolymers and photoresist compositions comprising copolymer resin binder component
US5879856A (en) * 1995-12-05 1999-03-09 Shipley Company, L.L.C. Chemically amplified positive photoresists
US5882844A (en) * 1996-04-02 1999-03-16 Shin-Etsu Chemical Co., Ltd. Chemically amplified positive resist composition
US5964951A (en) * 1996-12-26 1999-10-12 Clariant International Ltd. Rinsing solution
US6620576B2 (en) * 1998-06-09 2003-09-16 Corning Incorporated Methods of making structures from photosensitive coatings having profile heights exceeding fifteen microns
US6800422B2 (en) * 2001-05-11 2004-10-05 Shipley Company, L.L.C. Thick film photoresists and methods for use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688168B2 (en) * 1992-11-03 1997-12-08 インターナショナル・ビジネス・マシーンズ・コーポレイション Photoresist image forming process
JPH06186754A (en) * 1992-12-17 1994-07-08 Mitsubishi Electric Corp Formation of fine resist pattern
US5691101A (en) * 1994-03-15 1997-11-25 Kabushiki Kaisha Toshiba Photosensitive composition
DE19546140C2 (en) * 1995-11-28 1998-08-06 Atotech Deutschland Gmbh Photosensitive composition
US6187504B1 (en) * 1996-12-19 2001-02-13 Jsr Corporation Radiation sensitive resin composition
US6103445A (en) * 1997-03-07 2000-08-15 Board Of Regents, The University Of Texas System Photoresist compositions comprising norbornene derivative polymers with acid labile groups
JP3993692B2 (en) * 1997-11-28 2007-10-17 関西ペイント株式会社 Resist pattern forming method
JP4144957B2 (en) * 1999-01-22 2008-09-03 富士通株式会社 Resist composition and method for forming resist pattern
TWI277830B (en) * 1999-01-28 2007-04-01 Sumitomo Chemical Co Resist composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978419A (en) * 1986-10-09 1990-12-18 International Business Machines Corporation Process for defining vias through silicon nitride and polyamide
US5248582A (en) * 1988-09-07 1993-09-28 Fuji Photo Film Co., Ltd. Positive-type photoresist composition
US5302490A (en) * 1991-10-21 1994-04-12 Shipley Company Inc. Radiation sensitive compositions comprising blends of an aliphatic novolak resin and an aromatic novolak resin
US5879856A (en) * 1995-12-05 1999-03-09 Shipley Company, L.L.C. Chemically amplified positive photoresists
US5882844A (en) * 1996-04-02 1999-03-16 Shin-Etsu Chemical Co., Ltd. Chemically amplified positive resist composition
US5861231A (en) * 1996-06-11 1999-01-19 Shipley Company, L.L.C. Copolymers and photoresist compositions comprising copolymer resin binder component
US5964951A (en) * 1996-12-26 1999-10-12 Clariant International Ltd. Rinsing solution
US6620576B2 (en) * 1998-06-09 2003-09-16 Corning Incorporated Methods of making structures from photosensitive coatings having profile heights exceeding fifteen microns
US6800422B2 (en) * 2001-05-11 2004-10-05 Shipley Company, L.L.C. Thick film photoresists and methods for use thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032373A1 (en) * 2003-04-09 2005-02-10 Cameron James F. Photoresists and methods for use thereof
US7297616B2 (en) * 2003-04-09 2007-11-20 Rohm And Haas Electronic Materials Llc Methods, photoresists and substrates for ion-implant lithography
US20070015080A1 (en) * 2005-07-12 2007-01-18 Toukhy Medhat A Photoresist composition for imaging thick films
US7255970B2 (en) 2005-07-12 2007-08-14 Az Electronic Materials Usa Corp. Photoresist composition for imaging thick films
US20070231735A1 (en) * 2006-03-28 2007-10-04 Georg Pawlowski Negative photoresist compositions
US7601482B2 (en) 2006-03-28 2009-10-13 Az Electronic Materials Usa Corp. Negative photoresist compositions
US20100151118A1 (en) * 2008-12-17 2010-06-17 Eastman Chemical Company Carrier solvent compositions, coatings compositions, and methods to produce thick polymer coatings
US20110165772A1 (en) * 2008-12-17 2011-07-07 Eastman Chemical Company Carrier solvent compositions, coatings compositions, and methods to produce thick polymer coatings
US8906594B2 (en) 2012-06-15 2014-12-09 Az Electronic Materials (Luxembourg) S.A.R.L. Negative-working thick film photoresist
US9012126B2 (en) 2012-06-15 2015-04-21 Az Electronic Materials (Luxembourg) S.A.R.L. Positive photosensitive material
US10976662B2 (en) 2016-04-19 2021-04-13 Merck Patent Gmbh Positive working photosensitive material

Also Published As

Publication number Publication date
EP1393131A1 (en) 2004-03-03
WO2002093262A1 (en) 2002-11-21
US6800422B2 (en) 2004-10-05
EP1393131A4 (en) 2006-08-09
CN100409101C (en) 2008-08-06
US20030027086A1 (en) 2003-02-06
JP2004526212A (en) 2004-08-26
KR20090036153A (en) 2009-04-13
CN1514956A (en) 2004-07-21
KR20040029977A (en) 2004-04-08
JP4297408B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US6800422B2 (en) Thick film photoresists and methods for use thereof
EP1720072B1 (en) Compositons and processes for immersion lithography
EP1918778B1 (en) Compositions and processes for immersion lithography
TWI443457B (en) Compositions comprising base-reactive component and processes for photolithography
US7297616B2 (en) Methods, photoresists and substrates for ion-implant lithography
TWI402623B (en) Photosensitive composition, compound for use in the photosensitive composition, and pattern-forming method using the photosensitive composition
EP0938029A2 (en) Methods using photoresist compositions and articles produced therewith
EP2189845B1 (en) Compositions and processes for photolithography
JP6525390B2 (en) Composition comprising a base reactive component and method for photolithography
JP2009516207A (en) Developable undercoat composition for thick photoresist layers
EP1806621A1 (en) Coating compositions for photoresists
KR101967196B1 (en) Compositions comprising sugar component and processes for photolithography
EP2189844A2 (en) Compositions comprising sulfonamide material and processes for photolithography
EP1035436B1 (en) Resist pattern formation method
JP3936492B2 (en) Positive photosensitive composition
EP2189847A2 (en) Compositions comprising hetero-substituted carbocyclic aryl component and processes for photolithography
US6492087B1 (en) Polymers and photoresist compositions comprising same
US7205087B2 (en) Solvents and photoresist compositions for 193 nm imaging
JP2004126302A (en) Positive resist composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE