US20050018106A1 - Liquid crystal display viewable under all lighting conditions - Google Patents

Liquid crystal display viewable under all lighting conditions Download PDF

Info

Publication number
US20050018106A1
US20050018106A1 US10/900,565 US90056504A US2005018106A1 US 20050018106 A1 US20050018106 A1 US 20050018106A1 US 90056504 A US90056504 A US 90056504A US 2005018106 A1 US2005018106 A1 US 2005018106A1
Authority
US
United States
Prior art keywords
liquid crystal
crystal display
dichroic polarizer
polarizer
diffusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/900,565
Inventor
Ran-Hong Wang
Min-Shine Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/900,565 priority Critical patent/US20050018106A1/en
Publication of US20050018106A1 publication Critical patent/US20050018106A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers

Definitions

  • This invention relates to a liquid crystal display device, and more particularly, to an improved transflective liquid crystal display viewable under all lighting conditions, such as total dark, indoor lighting, in shade, medium sunlight, strong sunlight, and direct sunlight, without excessive power consumption.
  • LCDs liquid crystal displays
  • These applications include digital cameras, palm PCs, notebook computers, tablet PCs, workstations, and navigation systems in automobiles, marine vessels, and airplanes. Most of these applications are portable and can be transited between indoor and outdoor. Thus, there is a need to develop a display to accommodate both indoor and outdoor environments and perform regardless of different lighting conditions.
  • Various types of LCDs have evolved around this need.
  • the LCD includes a liquid crystal cell 100 comprising a front transparent electrode with color filters 101 , a rear transparent electrode (pixel portions) 102 , and a layer of liquid crystals 103 between the front and rear transparent electrodes.
  • the liquid crystal cell 100 is usually sandwiched by a front glass substrate 104 and a rear glass substrate 105 .
  • a first dichroic polarizer 106 adheres to the front surface of the front glass 104 .
  • a rear dichroic polarizer 107 adheres to the rear surface of the rear glass 105 .
  • the transmissive display further includes a backlight cell assembly 108 .
  • a regular LCD contains 1 to 4 lamps that provide between 100 and 300 nits of illumination 110 at the surface of LCD. This level of brightness enables this type of LCD to perform beautifully indoors.
  • the anti-glare surface of the first polarizer 106 reflects and diffuses about 3% to 5% of the ambient sunlight A to a viewer's eyes.
  • the amount of background reflection 109 is strong, overwhelming the illumination 110 from the backlight 108 and obscuring the image generated by the LCD.
  • One approach used to improve the performance of this type of LCD under sunlight is to apply an anti-reflection coating on the front surface. Although providing some improvement, the anti-reflection coating alone is not sufficient to provide an LCD viewable under direct sunlight. Further improvement is necessary.
  • a reflective LCD does not have problems with power consumption since ambient light A is used for illumination.
  • a reflector 201 is positioned behind a liquid crystal display assembly 204 .
  • the reflector 201 is an opaque surface of highly reflective material (such as aluminum or silver) with 90% to 98% reflection.
  • the LCD display assembly 204 may also contain a second dichroic polarizer (not shown).
  • a portion of ambient light 202 passes the liquid crystal display assembly and reaches the reflective surface of reflector 201 .
  • the reflector 201 reflects ambient light portion 202 and uses it as the display's illumination 203 . Because the display's illumination is tied to the amount of ambient light provided, the visibility of reflective LCD is highly surrounding-sensitive. Under strong ambient light, the LCD has good illumination. However, LCD brightness diminishes as ambient light decreases. This disadvantage of the reflective LCD strongly limits its applications.
  • a “transflective LCD” is shown.
  • the transflective LCD was developed to overcome the shortcomings of the reflective LCD.
  • a major element of the transflective LCD is the “transflector”, which is partially transmissive and partially reflective.
  • the transflector uses ambient light and/or a backlight to illuminate the LCD.
  • One type of transflective LCD implements the transflector as a series of electrodes 301 , where the electrodes 301 are imbedded within the compartment of pixel portions 102 of the liquid crystal cell 100 .
  • FIG. 3A shows the structure of a transflective LCD with transflective electrodes 301 .
  • FIG. 3B the cropped partial area of the pixel portions 102 with transflective electrodes 301 is shown.
  • the transflective electrodes 301 have highly reflective regions 301 r and transmissive portions 301 t contacting the transparent electrodes of pixel portions 102 .
  • the transmissive portions 301 t allow the transmission of light B from backlight cell 108 as the illumination 302 of LCD.
  • the reflective portions 301 r reflect ambient light 303 entering the liquid crystal panel 100 , and send it back out as illumination 304 of LCD.
  • the visibility of the LCD is excellent when the ambient light A is strong.
  • the combination of reflective portions 301 r and transmissive portions 301 t within the same domain (pixel portions 102 ) imposes undesirable features on the LCD.
  • the problems are more noticeable when the LCD is used indoors, and include low brightness, loss of color, low contrast and a narrow viewing angle.
  • pixel size of the LCD is limited by the need to accommodate both transmissive and reflective electrodes. The limited pixel size results in increased manufacturing difficulties and costs for higher resolutions.
  • transflective LCD comprises a transflective plastic film as the transflector, positioned in the rear of liquid crystal panel (not shown). Although easy to construct, this type of transflective LCD has inefficient illumination. The commonly used transflective films normally have 20% to 40% transmission efficiency and 50% to 70% reflection efficiency. Thus, this type of transflective LCD is not as bright as either purely reflective or purely transmissive LCD types.
  • a regular liquid crystal display can have satisfactory performance either indoors or outdoors.
  • a high bright LCD though acceptable for both indoor and outdoor applications, consumes high power and demands various complimentary re-designs of the device system to accommodate the excessive heat.
  • Reflective LCDs do not perform well indoors.
  • Transflective LCDs are limited by pixel size and do not perform optimally under certain ambient light. Thus, there is a great need to develop a liquid crystal display assembly that consumes low power without excessive heat generation, and has good color, adequate brightness and sufficient contrast under all lighting conditions.
  • one object of the invention is to provide a liquid crystal display with good color, adequate brightness and sufficient contrast for outdoor applications.
  • a second object of the invention is to provide a liquid crystal display with good color, adequate brightness and sufficient contrast for indoor applications.
  • a third object of the invention is to provide a liquid crystal display that is viewable in direct sunlight with no alteration of the viewing angle.
  • a fourth object of the invention is to provide a liquid crystal display that is viewable under direct sunlight and does not consume high power to cause excessive heat generation.
  • the invention provides a liquid crystal display viewable under all lighting conditions without excessive power consumption.
  • the LCD comprises a first dichroic polarizer, a second dichroic polarizer, an anti-reflection layer positioned in front of the first dichroic polarizer and a liquid crystal panel positioned between the first dichroic polarizer and the second dichroic polarizer.
  • the LCD comprises a backlight assembly positioned behind the second dichroic polarizer.
  • the LCD comprises a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer.
  • the diffusing transflector comprises a selective diffusing element and a selective transflective element.
  • FIG. 1 is a diagram of the structure of a conventional transmissive liquid crystal display (related art).
  • FIG. 2 is a diagram of a common structure of a reflective LCD (related art).
  • FIG. 3 a is a diagram of the structure of a transflective LCD with transflective electrodes (related art).
  • FIG. 3 b is a diagram of an enlarged cropped section of the pixel portions containing the transflective electrodes of FIG. 3 a (related art).
  • FIG. 4 is a diagram of one embodiment of the present invention.
  • FIG. 5 is a diagram of the spectrum measurements of a selective reflective polarizer in the visible region.
  • FIG. 6 is a diagram of the propagations of the reflective lights through the diffusing transflector.
  • FIG. 7 is a diagram of an alternative embodiment of the present invention.
  • FIG. 8 is a diagram of the structure of a 15′′ desktop monitor TFT LCD (related art).
  • FIG. 9 is a diagram of an embodiment of the present invention modifying a 15′′ desktop monitor TFT LCD.
  • FIG. 10 is a diagram of a comparison of temperature measurements between the monitor of FIG. 8 and the monitor of FIG. 9 .
  • FIG. 11 is a diagram of the structure of a 14.2′′ notebook computer TFT LCD (related art).
  • FIG. 12 is a diagram of an embodiment of the present invention modifying a 14.2′′ notebook computer TFT LCD.
  • FIG. 13 is a diagram of the structure of a 10.4′′ Tablet TFT LCD (related art).
  • FIG. 14 is a diagram of an embodiment of the present invention modifying a 10.4′′ Tablet TFT LCD.
  • FIG. 15 is a diagram of the structure of a 12.1′′ open frame high bright TFT LCD (related art).
  • FIG. 16 is a diagram of an embodiment of the present invention modifying a 12.1′′ open frame high bright TFT LCD.
  • FIG. 17 is a diagram of the structure of a 1.5′′ TFT LCD (related art).
  • FIG. 18 is a diagram of an embodiment of the present invention modifying a 1.5′′ TFT LCD.
  • FIG. 19 is a diagram of the structure of a 12.1′′ TFT LCD (related art).
  • FIG. 20 is a diagram of an embodiment of the present invention modifying a 12.1′′ TFT LCD.
  • FIG. 21 is a diagram of the structure of a 19′′ TFT LCD (related art).
  • FIG. 22 is a diagram of an embodiment of the present invention modifying a 19′′ TFT LCD.
  • Transflective LCD 400 includes a conventional liquid crystal display panel 409 .
  • the transflective LCD 400 also includes a low reflection first polarizer 410 .
  • the rear side of low reflection first polarizer 410 is bonded to the front side of LCD panel 409 using optical bonding material.
  • the low reflection first polarizer 410 is composed of an anti-reflection (AR) layer 401 and a dichroic polarizer 402 .
  • the anti-reflection layer 401 can be a high efficiency multi-layer anti-reflection coating applied directly on the front surface of the dichroic polarizer 402 .
  • the anti-reflection layer 401 can also be a separate transmissive substrate, glass or plastic, with an AR coating on the front side.
  • the rear side of the transmissive substrate is bonded to the front side of dichroic polarizer 402 with an index-matched optical bonding material to lower the reflection.
  • the low reflection front surface 401 preferably is a low haze surface (less than 15% haze, haze being the surface scattering luminescence over the luminescence of an object) with high efficient multi-layer AR coating, which provides an anti-reflection surface with reflection less than 1%.
  • the low reflection front surface 401 produces less background reflection 415 than the regular LCD front surface 106 described in FIG. 1 (by 5 to 8 folds).
  • the transflective LCD 400 also includes a second dichroic polarizer 403 optionally bonded to the rear of liquid crystal panel 409 .
  • the transmission directions of the two dichroic polarizers 402 and 403 are preferably in parallel.
  • Such an arrangement of 402 and 403 provides a transflective LCD that is direct sunlight readable without backlight.
  • the transmission directions of 402 and 403 can also vary from 0 to 90 degrees.
  • AR coating is applied to the rear surface of the second dichroic polarizer 403 (not shown). The AR coating maximizes entry of light beam 406 for reflective illumination.
  • the transflective LCD 400 further comprises a diffusing transflector 411 positioned to the rear side of second dichroic polarizer 403 .
  • the diffusing transflector 411 comprises a diffusing element 404 and a selected reflective polarizer 405 .
  • the reflective polarizer 405 preferably has absorption of incident energy less than 10%.
  • the reflective polarizer also has an extinction coefficient, defined as the transmission of p state polarization over the transmission of s state polarization, ranging from 1.5 to 9.
  • the transmission axis of the reflective polarizer 405 is parallel to or within (+/ ⁇ ) 60 degrees of the transmission direction of the second dichroic polarizer 403 .
  • Reflective polarizer 405 can be formed with multiple sheets of a selective reflective polarizer with optimized transmission directions.
  • Reflective polarizer 405 can also be a diffuser laminated selective reflective polarizer, which has improved mechanical and thermal properties.
  • the diffusing element 404 is a transmissive substrate having a corrugated diffusing surface with haze in the range of 10% to 85%.
  • the corrugated diffusing surface can be the front surface of the diffusing element 404 facing the second dichroic polarizer 403 or the rear surface of the diffusing element 404 facing the reflective polarizer 405 .
  • the diffusing element 404 can be constituted from one or more sheets of lose-packed or optionally bonded transmissive substrate with at least the corrugated surface.
  • the material of the transmissive substrate can be glass, PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate), for example.
  • the diffusing element 404 can be optionally bonded to the rear surface of the second dichroic polarizer 403 and/or to the front surface of the reflective polarizer 405 .
  • the diffusing element 404 may simply refer to a corrugated diffusing surface with haze in the range of 10% to 85%.
  • either the front surface or the rear surface of the second dichroic polarizer 403 or the front surface of the reflective polarizer 405 is the corrugated diffusing surface (i.e. the diffusing element 404 ).
  • the corrugated surface can be a roughened surface of the transmissive substrate, of the second dichroic polarizer 403 or of the reflective polarizer 405 .
  • the material of the transmissive substrate preferably is PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate), for example.
  • the corrugated surface also can be obtained by depositing a dielectric material on the transmissive substrate, on the rear surface of the second dichroic polarizer 403 or on the front surface of the reflective polarizer 405 .
  • the dielectric material can be, for example, TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al 2 O 3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium) or Si (Silicon).
  • the corrugated surface may comprise a single layer or multiple layers of the dielectric material.
  • the corrugated surface can further be obtained by depositing small metal particles, ranging in size from 10 nm to 10000 nm, on the transmissive substrate, on the rear surface of the second dichroic polarizer 403 or on the front surface of the reflective polarizer 405 .
  • Choices of metal for the metal particles include silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
  • the transflective LCD 400 further includes a high efficiency backlight cell assembly 420 .
  • Backlight assembly 420 preferably contains one or two orthogonal sheets of brightness enhancement films and other multiple polymeric films for enhancing transmission and optical performances.
  • any conventional backlight cell or high bright backlight cell with edge lamps or backside lamps can be used.
  • the transflective LCD 400 has a maximized transmission 407 with backlight transmitted by a recovery effect from the reflective polarizer 405 and the backlight cell 420 .
  • This transmission illumination coupled with the incorporation of the low reflection front surface 401 creates good optical performance for all indoor and some outdoor conditions, such as outdoor in shade.
  • diffusing transflector 411 optimizes the total reflective illumination 408 .
  • a diffusing element with a corrugated surface to randomize light input further optimizes the reflection efficiency of the transflector, thus providing sufficient reflective illumination.
  • FIG. 5 a diagram of the spectrum measurements of a selective reflective polarizer in the visible region is shown.
  • the diagram displays the extinction coefficients (the transmission of p state polarization over the transmission of s state polarization) for different wavelength values.
  • the average extinction coefficient is 3, or 75% over 25%.
  • the light 406 entering the LCD consists mainly of transmissive p polarization 601 and also has s polarization 602 .
  • the p polarization and s polarization components are slightly randomized when they pass the diffusing element 404 .
  • the p polarization 601 yields mainly p polarization 601 t and also has s polarization 603 .
  • 601 t reaches the reflective surface 405 (with extinction coefficient 3.0), approximately 25% reflects as reflective illumination 601 t R.
  • approximately 75% reflects as reflective illumination 603 R.
  • reflective illuminations 602 t R and 602 R are produced by s polarization 602 .
  • the transmissions of the reflected beams 604 , 605 , 606 , and 607 additively generate the total reflective illumination 408 .
  • the reflective illumination 408 is sufficient to overcome the front surface background reflection 415 ( FIG. 4 ), and to facilitate the viewing of the images under the most challenging conditions.
  • the transflective LCD 700 comprises a conventional liquid crystal display panel 409 .
  • the transflective LCD 700 further comprises a low reflection first polarizer 410 .
  • the rear side of low reflection first polarizer 410 is bonded to the front side of LCD panel 409 using optical bonding material.
  • the low reflection first polarizer 410 is composed of an anti-reflection (AR) layer 401 and a dichroic polarizer 402 .
  • the anti-reflection layer 401 can be a high efficiency multi-layer anti-reflection coating applied directly on the front surface of the dichroic polarizer 402 .
  • the anti-reflection layer 401 can also be a separate transmissive substrate, glass or plastic, with an AR coating on the front side.
  • the rear side of the transmissive substrate is bonded to the front side of dichroic polarizer 402 with an index-matched optical bonding material to lower the reflection.
  • the low reflection front surface 401 preferably is a low haze surface (less than 15% haze) with high efficient multi-layer AR coating, which provides an anti-reflection efficiency of less than 1%.
  • the low reflection front surface 401 produces less background reflection 415 than the regular LCD front surface 106 described in FIG. 1 (by 5 to 8 folds).
  • the low reflection surface 401 allows more efficient transmission of ambient light A and provides a stronger light beam 406 to be used as the reflective illumination 408 .
  • the transflective LCD 700 also includes a second dichroic polarizer 403 optionally bonded to the rear of liquid crystal panel 409 .
  • the transmission directions of the two dichroic polarizers 402 and 403 are preferably in parallel.
  • Such an arrangement of 402 and 403 provides a transflective LCD that is direct sunlight readable without backlight.
  • the transmission directions of 402 and 403 can also vary from 0 to 90 degrees.
  • AR coating is applied to the rear surface of the rear dichroic polarizer 403 (not shown). The AR coating maximizes entry of light beam 406 for reflective illumination.
  • the transflective LCD 700 further comprises a diffusing transflector 711 positioned to the rear side of second dichroic polarizer 403 .
  • the diffusing transflector 711 is composed of a diffusing element 404 and a selective beam splitter 705 .
  • the transmission of the beam splitter 705 ranges from 30% to 85%. It is preferred the beam splitter 705 is a multi-layer coating of dielectric material directly deposited to the rear surface of the diffusing element 404 .
  • the beam splitter 705 can also be a multi-layer dielectric coating deposited on the front surface of a separate transmissive substrate and the coated, separate transmissive substrate is positioned on the rear side of diffusing element 404 .
  • the diffusing element 404 preferably is a transmissive substrate having a corrugated surface with haze in the range of 10% to 85%.
  • the corrugated surface can be the front surface of the diffusing element 404 facing the second dichroic polarizer 403 or the rear surface of the diffusing element 404 facing the beam splitter 705 .
  • the beam splitter 705 is a multi-layer coating of dielectric material directly deposited to the rear surface of the diffusing element 404
  • the corrugated surface is the front surface of the diffusing element 404 .
  • the diffusing element 404 can be constituted from one or more sheets of lose-packed or optionally bonded transmissive substrate with at least the corrugated surface.
  • the material of the transmissive substrate can be PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate), for example.
  • the diffusing element 404 can be optionally bonded to the rear surface of the second dichroic polarizer 403 and/or to the front surface of the beam splitter 705 .
  • Diffusing element 404 can be optionally bonded to the front surface of the beam splitter 705 , provided that the beam splitter 705 is a separate substrate, as described above, to form the diffusing transflector 711 .
  • the diffusing transflector 711 can be optionally bonded to the rear side of the second dichroic polarizer 403 , as shown in FIG.
  • the corrugated surface can be a roughened surface of the transmissive substrate of the diffusing element 404 .
  • the corrugated surface also can be obtained by depositing a single layer or multiple layers of a dielectric material, such as TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al 2 O 3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium) or Si (Silicon) on a transmissive substrate.
  • a dielectric material such as TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide),
  • the corrugated surface can further be obtained by depositing small metal particles, ranging in size from 10 nm to 10000 nm, on a separate transmissive substrate.
  • Choices of metal for the metal particles include silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
  • the diffusing element 404 may simply refer to a corrugated diffusing surface with haze in the range of 10% to 85%, provided that the beam splitter 705 is a separate substrate.
  • the front surface or the rear surface of the second dichroic polarizer 403 or the front surface of the beam splitter 705 is the corrugated surface.
  • the second dichroic polarizer 403 can be directly bonded to the beam splitter 705 .
  • the corrugated surface can be a roughened surface of the second dichroic polarizer 403 (the rear surface) or of the beam splitter 705 (the front surface).
  • the corrugated surface also can be obtained by depositing a single layer or multiple layers of a dielectric material on the rear surface of the second dichroic polarizer 403 or on the front surface of the beam splitter 705 .
  • the dielectric material can be, for example, TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al 2 O 3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium) or Si (Silicon).
  • the corrugated surface can further be obtained by depositing small metal particles, ranging in size from 10 nm to 10000 nm, on the rear surface of the second dichroic polarizer 403 or on the front surface of the beam splitter 705 .
  • Choices of metal for the metal particles include silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
  • the transflective LCD 700 further includes a high efficiency backlight cell assembly 420 .
  • Backlight assembly 420 preferably contains one or two orthogonal sheets of brightness enhancement films and other multiple polymeric films for enhancing transmission and optical performances.
  • any conventional backlight cell or high bright backlight cell, with edge lamps or backside lamps, can be used.
  • TFT LCDs of various sizes and structures can easily be modified in accordance with the teachings of the present invention to generate LCDs viewable under direct sunlight.
  • Optimal viewing performances are obtained by adjusting proper orientations of the diffusing element and the reflective polarizer according to the polarization transmission characteristics of the existing liquid crystal display panel.
  • the following examples illustrate how different commercial TFT LCDs can be modified in accordance with the teachings of the present invention to generate transflective LCDs.
  • the LCD 800 comprises a display unit 801 with a liquid crystal panel sandwiched between a pair of dichroic polarizers.
  • the dichroic polarizers have off-axis transmission directions.
  • the backlight cell 810 includes a diffusive reflector 805 , a wave guide plate with four lamps 804 , a rear diffuser 803 positioned in front of wave guide plate 804 , a sheet of brightness enhancement film 802 positioned in the front side of rear diffuser 803 and a front diffuser 806 positioned in front of the brightness enhancement film 802 .
  • the TFT LCD illuminates about 250 to 275 nits. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • the transflective TFT LCD 900 constructed in accordance to the present invention includes the major components of the low reflection liquid crystal display unit 920 , the diffusing transflector 930 , and the high efficient backlight cell 910 .
  • Applying an anti-reflection coating 901 on the front surface of 801 generates the low reflection display unit 920 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 901 is a plastic film bound to the front surface 801 .
  • the diffusing transflector 930 comprises a sheet of diffuser, 902 , and a diffuser laminated selective reflective polarizer 903 .
  • This diffusing transflector 930 is positioned on the rear side of the display unit 920 in accordance to the teaching of the present invention.
  • the transflective LCD 900 has an enhanced transmissive illumination between 350 and 400 nits. Indoor and outdoor performance is greatly enhanced without altering the viewing angle or resolution. Under direct sunlight, the transflective illumination effectively dominates the lighting of the display and renders the display images viewable.
  • FIG. 10 a diagram of a comparison of temperature measurements between the regular LCD 800 and the modified LCD 900 is shown.
  • Thermal couples are adhered to the center of the rear side of the display units in 800 and 900 , as shown by 850 and 950 in FIG. 8 and FIG. 9 , respectively.
  • the displays were provided with the same operating conditions and voltage supplies.
  • Curve 1003 shows the outdoor air temperatures ranging from 30° C. to 40° C.
  • Curve 1001 shows the temperature measurements of the transflective LCD 900
  • curve 1002 shows the temperature measurements of the regular LCD 800 .
  • Both regular LCD 800 and transflective LCD 900 reach an equilibrium operating temperature between 76° C. and 78° C.
  • the transflective LCD 900 does not generate any excessive heat in the system when compared to the regular LCD 800 .
  • the LCD 1100 comprises a display unit 1101 with a liquid crystal panel sandwiched between a pair of dichroic polarizers with parallel transmission directions.
  • the backlight cell 1110 is composed of a diffusely reflector 1105 , a wave guide plate coupled with one lamp 1104 , a sheet of diffuser 1103 positioned on the front side of wave guide plate 1104 , two sheets of brightness enhancement film 1102 positioned in the front side of diffuser 1103 , and another diffuser 1106 in front of enhancement film 1102 .
  • the above-described unit illuminates between 120 and 140 nits. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • the transflective TFT LCD 1200 comprises the major components of the low reflection liquid crystal display unit 1220 , the diffusing transflector 1230 , and the high efficient backlight cell 1210 .
  • Applying an anti-reflection coating 1201 on the front surface of 1101 generates the low reflection liquid crystal display unit 1220 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 1201 is a plastic film bound to the front surface 1101 .
  • the diffusing transflector 1230 is composed of one sheet of diffuser 1202 and a reflective polarizer 1203 .
  • This diffusing transflector 1230 is positioned on the rear side of the display unit 1220 in accordance to the teaching of the present invention.
  • the transflective LCD 1200 has an enhanced transmissive illumination of between 175 and 185 nits, yielding better indoor performances.
  • the display is visible under all outdoor lighting conditions including direct sunlight regardless of its transmissive illumination.
  • the LCD 1300 comprises a display unit 1301 with a liquid crystal panel sandwiched between a pair of dichroic polarizers with parallel transmission directions.
  • the backlight cell 1310 is composed of a diffusive reflector 1305 , a wave guide plate coupled with one edge lamp 1304 , a sheet of diffuser 1303 positioned in the front side of wave guide plate 1304 , a sheet of brightness enhancement film 1302 positioned in front of diffuser 1303 , and a reflective polarizer 1306 in front of enhancement film 1302 .
  • the above-described unit illuminates approximately 200 nits. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • the transflective TFT LCD 1400 includes the major components of the low reflection liquid crystal display unit 1420 , the diffusing transflector 1430 , and the high efficient backlight cell 1410 .
  • Applying an anti-reflection coating 1401 on the front surface of 1301 generates the low reflection liquid crystal display unit 1420 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 1401 is a plastic film bound to the front surface 1301 .
  • the diffusing transflector 1430 is composed of one sheet of diffuser 1402 and a reflective polarizer 1306 .
  • the diffusing transflector 1430 is positioned on the rear side of the display unit 1420 in accordance to the teaching in the present invention.
  • the transflective LCD 1400 has about the same transmissive illumination as LCD 1300 and is visible under all outdoor lighting conditions, including direct sunlight.
  • the LCD 1500 comprises a display unit 1501 with a liquid crystal panel sandwiched between a pair of dichroic polarizers with off-axis transmission directions.
  • the backlight cell 1510 comprises a diffusive reflector 1505 , a wave guide plate with ten back side lamps 1504 , a sheet of diffuser 1503 positioned in the front side of wave guide plate 1504 , a sheet of brightness enhancement film 1502 positioned in front of diffuser 1503 , and another diffuser 1506 in front of enhancement film 1502 .
  • the above-described unit illuminates approximately 700 to 800 nits.
  • the display gives very good optical performances indoors with partial transmission illumination.
  • the display With full transmission illumination (i.e. 800 nits), the display provides good visibilities under moderate ambient light. However, the display generates excessive heat and therefore reaches its clearing temperature in approximately 30 minutes, a short amount of time. Upon reaching its clearing temperature, the display turns black. Under very strong ambient light or direct sunlight, the display is difficult to view even when provided with full transmission illumination by its backlight.
  • the transflective TFT LCD 1600 comprises the major components of the low reflection liquid crystal display unit 1620 , the diffusing transflector 1630 , and the high efficient backlight cell 1610 .
  • Applying an anti-reflection coating 1601 on the front surface of 1501 generates the low reflection liquid crystal display unit 1620 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 1601 is a plastic film bound to the front surface 1501 .
  • the diffusing transflector 1630 is composed of one sheet of diffuser 1602 and a reflective polarizer 1603 .
  • This diffusing transflector 1630 is positioned on the rear side of the display unit 1620 in accordance to the teaching of the present invention.
  • the transflective LCD 1600 has approximately the same transmissive illumination as 1500 , yielding the same satisfactory indoor performances. Unlike TFT LCD 1500 , however, transflective TFT LCD 1600 is visible under all outdoor lighting conditions, including direct sunlight, regardless of the amount of transmissive illumination.
  • the LCD 1700 comprises a display unit 1701 with a liquid crystal cell, a first dichroic polarizer, and a circular polarization-generating element (not shown).
  • the backlight cell 1710 comprises a diffusely reflector 1705 , a wave guide plate with four edge LED 1704 , a sheet of diffuser 1703 positioned in the front side of wave guide plate 1705 , two sheets of brightness enhancement film 1702 and 1707 positioned in front of diffuser 1703 , and another diffuser 1706 in front of the brightness enhancement film sheets 1702 and 1707 .
  • the above-described unit illuminates approximately 150 to 200 nits in the camera system. The viewing of the display is acceptable indoors, and is poor under outdoor conditions.
  • the transflective TFT LCD 1800 comprises the major components of the low reflection liquid crystal display unit 1820 , the diffusing transflector 1830 , and the high efficient backlight cell 1810 .
  • Applying an anti-reflection coating 1801 on the front surface of 1701 generates the low reflection liquid crystal display unit 1820 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 1801 is a plastic film bound to the front surface 1701 .
  • a quarter wave plate 1804 is positioned on the rear of the display unit 1820 to generate a linear polarization from the circular polarization output of the display unit 1820 .
  • the second dichroic polarizer 1805 is then placed at the rear side of the quarter wave plate 1804 .
  • the transmission direction for the second dichroic polarizer 1805 is parallel to the direction of the linear polarization output of the quarter wave plate 1804 .
  • the diffusing transflector 1830 is composed of one sheet of diffuser 1802 and a reflective polarizer 1803 . This diffusing transflector 1830 is positioned on the rear side of the dichroic polarizer 1805 in accordance to the teaching in the present invention.
  • the transflective LCD 1800 has less transmission illumination than TFT LCD 1700 , with values between 100 nits and 150 nits. However, the display 1800 is more visible under all lighting conditions, including direct sunlight, due to its transflective property and enhanced contrast.
  • a 12.1′′ TFT LCD is commonly used as a display in a Tablet PC.
  • the LCD 1900 comprises a display unit 1901 with a liquid crystal cell, a first dichroic polarizer, and a second dichroic polarizer having a corrugated diffusing surface 1902 on its rear side.
  • the backlight cell 1910 comprises a diffusely reflector 1906 , a wave guide plate with edge light 1905 , a sheet of diffuser 1904 positioned in the front side of wave guide plate 1905 , two sheets of brightness enhancement films 1903 positioned in front of diffuser 1904 .
  • the above-described unit illuminates approximately 150 to 200 nits in the system. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • the transflective TFT LCD 2000 comprise the major components of the low reflection liquid crystal display unit 2020 , the diffusing transflector 2030 , and the high efficient backlight cell 2010 .
  • Applying an anti-reflection coating 2001 on the front surface of the display unit 1901 generates the low reflection liquid crystal display unit 2020 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 2001 is a plastic film bound to the front surface of the display unit 1901 .
  • the diffusing transflector 2030 is composed of the corrugated surface 1902 of the rear side of the second dichroic polarizer and a reflective polarizer 2003 .
  • This diffusing transflector 2030 is positioned on the rear side of the display unit 2020 in accordance to the teaching of the present invention.
  • the transflective LCD 2000 has an enhanced transmissive illumination of between 250 and 300 nits, yielding better indoor performances.
  • the display is visible under all outdoor lighting conditions including direct sunlight regardless of its transmissive illumination.
  • a 19′′ TFT LCD is commonly used as a display in a Kiosk.
  • the LCD 2100 comprises a display unit 2101 with a liquid crystal cell, a first dichroic polarizer, and a second dichroic polarizer.
  • the backlight cell 2110 comprises a diffusely reflector 2107 , a wave guide plate with four edge lights 2106 , a sheet of diffuser 2105 positioned in the front side of wave guide plate 2106 , one sheet of brightness enhancement film 2104 positioned in front of diffuser 2105 , and a reflective polarizer 2103 having a corrugated diffusing front surface 2102 and positioned in front of the brightness enhancement film 2104 .
  • the above-described unit illuminates approximately 300 to 400 nits in the system. The viewing of the display is acceptable indoors, but rather poor under any outdoor conditions.
  • FIG. 22 a diagram of an embodiment of the present invention modifying the 19′′ TFT LCD 2200 is shown.
  • the major components of the transflective TFT LCD 2200 comprise the low reflection liquid crystal display unit 2220 , the diffusing transflector 2230 , and the high efficient backlight cell 2210 .
  • Applying an anti-reflection coating 2201 on the front surface of 2101 generates the low reflection liquid crystal display unit 2220 , preferably with less than 15% haze and an anti-reflection efficiency less than 1%.
  • the anti-reflection coating 2201 is a plastic film bound to the front surface 2101 .
  • the diffusing transflector 2230 is composed of the corrugated diffusing surface 2102 of the front side of the reflective polarizer 2103 and the reflective polarizer 2103 . This diffusing transflector 2230 is positioned on the rear side of the display unit 2220 in accordance to the teaching of the present invention.
  • the transflective LCD 2200 has same level of transmissive illumination and is visible under all outdoor lighting conditions including direct sunlight regardless of its transmissive illumination.
  • the present invention resolves and considers the reflection and transmission properties of the transflector to provide a transflective LCD with optical properties tailored for indoor and outdoor applications.
  • a high efficiency multi-layer anti-reflection coating (AR coating) not only reduces the background reflection of the LCD front surface, but also allows the liquid crystal display unit to transmit more energy of incident light, thus providing more reflective illumination. Before, incident light was partially reflected on the surface of the substrate.
  • the low reflection and high transmission properties of the AR coating and the diffusing transflector cooperatively provide the display with optimal illuminations.

Abstract

A liquid crystal display (LCD) viewable under all lighting conditions without excessive power consumption is described. The LCD comprises a first dichroic polarizer, a second dichroic polarizer, an anti-reflection layer positioned in front of the first dichroic polarizer and a liquid crystal cell positioned between the first dichroic polarizer and the second dichroic polarizer. In addition, the LCD comprises a backlight assembly positioned behind the second dichroic polarizer. Finally, the LCD comprises a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer. The diffusing transflector comprises a diffusing element and a transflective element.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a liquid crystal display device, and more particularly, to an improved transflective liquid crystal display viewable under all lighting conditions, such as total dark, indoor lighting, in shade, medium sunlight, strong sunlight, and direct sunlight, without excessive power consumption.
  • 2. Description of the Related Art
  • Many features of liquid crystal displays (LCDs), such as light weight and size, low power consumption and high resolution, make LCDs a popular choice in various electronic applications. These applications include digital cameras, palm PCs, notebook computers, tablet PCs, workstations, and navigation systems in automobiles, marine vessels, and airplanes. Most of these applications are portable and can be transited between indoor and outdoor. Thus, there is a need to develop a display to accommodate both indoor and outdoor environments and perform regardless of different lighting conditions. Various types of LCDs have evolved around this need.
  • With reference to FIG. 1, a conventional transmissive liquid crystal display (LCD) is shown. The LCD includes a liquid crystal cell 100 comprising a front transparent electrode with color filters 101, a rear transparent electrode (pixel portions) 102, and a layer of liquid crystals 103 between the front and rear transparent electrodes. The liquid crystal cell 100 is usually sandwiched by a front glass substrate 104 and a rear glass substrate 105. A first dichroic polarizer 106 adheres to the front surface of the front glass 104. Likewise, a rear dichroic polarizer 107 adheres to the rear surface of the rear glass 105. The transmissive display further includes a backlight cell assembly 108. A regular LCD contains 1 to 4 lamps that provide between 100 and 300 nits of illumination 110 at the surface of LCD. This level of brightness enables this type of LCD to perform beautifully indoors. In an outdoor setting, the anti-glare surface of the first polarizer 106 reflects and diffuses about 3% to 5% of the ambient sunlight A to a viewer's eyes. The amount of background reflection 109 is strong, overwhelming the illumination 110 from the backlight 108 and obscuring the image generated by the LCD.
  • One approach used to improve the performance of this type of LCD under sunlight is to apply an anti-reflection coating on the front surface. Although providing some improvement, the anti-reflection coating alone is not sufficient to provide an LCD viewable under direct sunlight. Further improvement is necessary.
  • Another solution commonly adopted is to increase the illumination of transmissive LCDs for outdoor application by adding more lamps to the backlight cell. The term “high-bright LCD” describes this modified transmissive LCD. In general, an LCD requires at least 1000 nits of illumination to be viewable under sunlight. To reach this level of brightness, an LCD requires 10 to 12 lamps. The additional lamps consume more power, generate excessive heat, experience contrast washout and require dimension and circuit alterations. Alterations of the LCD's dimensions and circuits are costly. Thus, high bright LCDs generally create more problems than they solve.
  • Referring now to FIG. 2, a common construction of a reflective LCD is shown. A reflective LCD does not have problems with power consumption since ambient light A is used for illumination. A reflector 201 is positioned behind a liquid crystal display assembly 204. Generally, the reflector 201 is an opaque surface of highly reflective material (such as aluminum or silver) with 90% to 98% reflection. The LCD display assembly 204 may also contain a second dichroic polarizer (not shown). A portion of ambient light 202 passes the liquid crystal display assembly and reaches the reflective surface of reflector 201. The reflector 201 reflects ambient light portion 202 and uses it as the display's illumination 203. Because the display's illumination is tied to the amount of ambient light provided, the visibility of reflective LCD is highly surrounding-sensitive. Under strong ambient light, the LCD has good illumination. However, LCD brightness diminishes as ambient light decreases. This disadvantage of the reflective LCD strongly limits its applications.
  • With reference to FIGS. 3A and 3B, a “transflective LCD” is shown. The transflective LCD was developed to overcome the shortcomings of the reflective LCD. A major element of the transflective LCD is the “transflector”, which is partially transmissive and partially reflective. The transflector uses ambient light and/or a backlight to illuminate the LCD. One type of transflective LCD implements the transflector as a series of electrodes 301, where the electrodes 301 are imbedded within the compartment of pixel portions 102 of the liquid crystal cell 100. FIG. 3A shows the structure of a transflective LCD with transflective electrodes 301. In FIG. 3B, the cropped partial area of the pixel portions 102 with transflective electrodes 301 is shown. The transflective electrodes 301 have highly reflective regions 301 r and transmissive portions 301 t contacting the transparent electrodes of pixel portions 102. When ambient light A is not strong, the transmissive portions 301 t allow the transmission of light B from backlight cell 108 as the illumination 302 of LCD. When ambient light A is strong, the reflective portions 301 r reflect ambient light 303 entering the liquid crystal panel 100, and send it back out as illumination 304 of LCD.
  • Still referring to FIGS. 3A and 3B, the visibility of the LCD is excellent when the ambient light A is strong. However, the combination of reflective portions 301 r and transmissive portions 301 t within the same domain (pixel portions 102) imposes undesirable features on the LCD. The problems are more noticeable when the LCD is used indoors, and include low brightness, loss of color, low contrast and a narrow viewing angle. In addition, pixel size of the LCD is limited by the need to accommodate both transmissive and reflective electrodes. The limited pixel size results in increased manufacturing difficulties and costs for higher resolutions.
  • Another type of transflective LCD comprises a transflective plastic film as the transflector, positioned in the rear of liquid crystal panel (not shown). Although easy to construct, this type of transflective LCD has inefficient illumination. The commonly used transflective films normally have 20% to 40% transmission efficiency and 50% to 70% reflection efficiency. Thus, this type of transflective LCD is not as bright as either purely reflective or purely transmissive LCD types.
  • In summary, a regular liquid crystal display can have satisfactory performance either indoors or outdoors. A high bright LCD, though acceptable for both indoor and outdoor applications, consumes high power and demands various complimentary re-designs of the device system to accommodate the excessive heat. Reflective LCDs do not perform well indoors. Transflective LCDs are limited by pixel size and do not perform optimally under certain ambient light. Thus, there is a great need to develop a liquid crystal display assembly that consumes low power without excessive heat generation, and has good color, adequate brightness and sufficient contrast under all lighting conditions.
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the invention is to provide a liquid crystal display with good color, adequate brightness and sufficient contrast for outdoor applications.
  • A second object of the invention is to provide a liquid crystal display with good color, adequate brightness and sufficient contrast for indoor applications.
  • A third object of the invention is to provide a liquid crystal display that is viewable in direct sunlight with no alteration of the viewing angle.
  • A fourth object of the invention is to provide a liquid crystal display that is viewable under direct sunlight and does not consume high power to cause excessive heat generation.
  • To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention provides a liquid crystal display viewable under all lighting conditions without excessive power consumption. The LCD comprises a first dichroic polarizer, a second dichroic polarizer, an anti-reflection layer positioned in front of the first dichroic polarizer and a liquid crystal panel positioned between the first dichroic polarizer and the second dichroic polarizer. In addition, the LCD comprises a backlight assembly positioned behind the second dichroic polarizer. Finally, the LCD comprises a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer. The diffusing transflector comprises a selective diffusing element and a selective transflective element.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of the structure of a conventional transmissive liquid crystal display (related art).
  • FIG. 2 is a diagram of a common structure of a reflective LCD (related art).
  • FIG. 3 a is a diagram of the structure of a transflective LCD with transflective electrodes (related art).
  • FIG. 3 b is a diagram of an enlarged cropped section of the pixel portions containing the transflective electrodes of FIG. 3 a (related art).
  • FIG. 4 is a diagram of one embodiment of the present invention.
  • FIG. 5 is a diagram of the spectrum measurements of a selective reflective polarizer in the visible region.
  • FIG. 6 is a diagram of the propagations of the reflective lights through the diffusing transflector.
  • FIG. 7 is a diagram of an alternative embodiment of the present invention.
  • FIG. 8 is a diagram of the structure of a 15″ desktop monitor TFT LCD (related art).
  • FIG. 9 is a diagram of an embodiment of the present invention modifying a 15″ desktop monitor TFT LCD.
  • FIG. 10 is a diagram of a comparison of temperature measurements between the monitor of FIG. 8 and the monitor of FIG. 9.
  • FIG. 11 is a diagram of the structure of a 14.2″ notebook computer TFT LCD (related art).
  • FIG. 12 is a diagram of an embodiment of the present invention modifying a 14.2″ notebook computer TFT LCD.
  • FIG. 13 is a diagram of the structure of a 10.4″ Tablet TFT LCD (related art).
  • FIG. 14 is a diagram of an embodiment of the present invention modifying a 10.4″ Tablet TFT LCD.
  • FIG. 15 is a diagram of the structure of a 12.1″ open frame high bright TFT LCD (related art).
  • FIG. 16 is a diagram of an embodiment of the present invention modifying a 12.1″ open frame high bright TFT LCD.
  • FIG. 17 is a diagram of the structure of a 1.5″ TFT LCD (related art).
  • FIG. 18 is a diagram of an embodiment of the present invention modifying a 1.5″ TFT LCD.
  • FIG. 19 is a diagram of the structure of a 12.1″ TFT LCD (related art).
  • FIG. 20 is a diagram of an embodiment of the present invention modifying a 12.1″ TFT LCD.
  • FIG. 21 is a diagram of the structure of a 19″ TFT LCD (related art).
  • FIG. 22 is a diagram of an embodiment of the present invention modifying a 19″ TFT LCD.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 4, an illustration of one embodiment of the present invention is shown. Transflective LCD 400 includes a conventional liquid crystal display panel 409. The transflective LCD 400 also includes a low reflection first polarizer 410. The rear side of low reflection first polarizer 410 is bonded to the front side of LCD panel 409 using optical bonding material. The low reflection first polarizer 410 is composed of an anti-reflection (AR) layer 401 and a dichroic polarizer 402. The anti-reflection layer 401 can be a high efficiency multi-layer anti-reflection coating applied directly on the front surface of the dichroic polarizer 402. The anti-reflection layer 401 can also be a separate transmissive substrate, glass or plastic, with an AR coating on the front side. The rear side of the transmissive substrate is bonded to the front side of dichroic polarizer 402 with an index-matched optical bonding material to lower the reflection. The low reflection front surface 401 preferably is a low haze surface (less than 15% haze, haze being the surface scattering luminescence over the luminescence of an object) with high efficient multi-layer AR coating, which provides an anti-reflection surface with reflection less than 1%. The low reflection front surface 401 produces less background reflection 415 than the regular LCD front surface 106 described in FIG. 1 (by 5 to 8 folds). In addition, the low reflection surface 401 allows more efficient transmission of ambient light A and provides a stronger light beam 406 to be used as the reflective illumination 408. The transflective LCD 400 also includes a second dichroic polarizer 403 optionally bonded to the rear of liquid crystal panel 409. In this embodiment, the transmission directions of the two dichroic polarizers 402 and 403 are preferably in parallel. Such an arrangement of 402 and 403 provides a transflective LCD that is direct sunlight readable without backlight. However, the transmission directions of 402 and 403 can also vary from 0 to 90 degrees. It is also preferred that AR coating is applied to the rear surface of the second dichroic polarizer 403 (not shown). The AR coating maximizes entry of light beam 406 for reflective illumination.
  • Still referring to FIG. 4, the transflective LCD 400 further comprises a diffusing transflector 411 positioned to the rear side of second dichroic polarizer 403. The diffusing transflector 411 comprises a diffusing element 404 and a selected reflective polarizer 405. The reflective polarizer 405 preferably has absorption of incident energy less than 10%. The reflective polarizer also has an extinction coefficient, defined as the transmission of p state polarization over the transmission of s state polarization, ranging from 1.5 to 9. In addition, the transmission axis of the reflective polarizer 405 is parallel to or within (+/−) 60 degrees of the transmission direction of the second dichroic polarizer 403. Reflective polarizer 405 can be formed with multiple sheets of a selective reflective polarizer with optimized transmission directions. Reflective polarizer 405 can also be a diffuser laminated selective reflective polarizer, which has improved mechanical and thermal properties.
  • With reference to FIG. 4, the diffusing element 404 is a transmissive substrate having a corrugated diffusing surface with haze in the range of 10% to 85%. The corrugated diffusing surface can be the front surface of the diffusing element 404 facing the second dichroic polarizer 403 or the rear surface of the diffusing element 404 facing the reflective polarizer 405. The diffusing element 404 can be constituted from one or more sheets of lose-packed or optionally bonded transmissive substrate with at least the corrugated surface. The material of the transmissive substrate can be glass, PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate), for example. The diffusing element 404 can be optionally bonded to the rear surface of the second dichroic polarizer 403 and/or to the front surface of the reflective polarizer 405. Alternatively, the diffusing element 404 may simply refer to a corrugated diffusing surface with haze in the range of 10% to 85%. In such case, either the front surface or the rear surface of the second dichroic polarizer 403 or the front surface of the reflective polarizer 405 is the corrugated diffusing surface (i.e. the diffusing element 404).
  • The corrugated surface can be a roughened surface of the transmissive substrate, of the second dichroic polarizer 403 or of the reflective polarizer 405. In case of the corrugated surface being a roughened surface, the material of the transmissive substrate preferably is PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate), for example. The corrugated surface also can be obtained by depositing a dielectric material on the transmissive substrate, on the rear surface of the second dichroic polarizer 403 or on the front surface of the reflective polarizer 405. The dielectric material can be, for example, TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium) or Si (Silicon). The corrugated surface may comprise a single layer or multiple layers of the dielectric material. The corrugated surface can further be obtained by depositing small metal particles, ranging in size from 10 nm to 10000 nm, on the transmissive substrate, on the rear surface of the second dichroic polarizer 403 or on the front surface of the reflective polarizer 405. Choices of metal for the metal particles include silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
  • Still referring to FIG. 4, the transflective LCD 400 further includes a high efficiency backlight cell assembly 420. Backlight assembly 420 preferably contains one or two orthogonal sheets of brightness enhancement films and other multiple polymeric films for enhancing transmission and optical performances. However, any conventional backlight cell or high bright backlight cell with edge lamps or backside lamps can be used.
  • With reference to FIG. 4, the transflective LCD 400 has a maximized transmission 407 with backlight transmitted by a recovery effect from the reflective polarizer 405 and the backlight cell 420. This transmission illumination coupled with the incorporation of the low reflection front surface 401 creates good optical performance for all indoor and some outdoor conditions, such as outdoor in shade. In addition, diffusing transflector 411 optimizes the total reflective illumination 408. A diffusing element with a corrugated surface to randomize light input further optimizes the reflection efficiency of the transflector, thus providing sufficient reflective illumination.
  • Referring now to FIG. 5, a diagram of the spectrum measurements of a selective reflective polarizer in the visible region is shown. The diagram displays the extinction coefficients (the transmission of p state polarization over the transmission of s state polarization) for different wavelength values. The average extinction coefficient is 3, or 75% over 25%.
  • With reference to FIG. 6, a diagram of the propagations of the reflective lights through the diffusing transflector is shown. The light 406 entering the LCD consists mainly of transmissive p polarization 601 and also has s polarization 602. The p polarization and s polarization components are slightly randomized when they pass the diffusing element 404. The p polarization 601 yields mainly p polarization 601 t and also has s polarization 603. When 601 t reaches the reflective surface 405 (with extinction coefficient 3.0), approximately 25% reflects as reflective illumination 601 tR. When s polarization 603 reaches the reflective surface of 405, approximately 75% reflects as reflective illumination 603R. By the similar propagation mechanisms, reflective illuminations 602 tR and 602R are produced by s polarization 602. The transmissions of the reflected beams 604, 605, 606, and 607, additively generate the total reflective illumination 408. Under a very strong ambient light, the reflective illumination 408 is sufficient to overcome the front surface background reflection 415 (FIG. 4), and to facilitate the viewing of the images under the most challenging conditions.
  • Referring now to FIG. 7, an illustration of an alternative embodiment of the present invention is shown. The transflective LCD 700 comprises a conventional liquid crystal display panel 409. The transflective LCD 700 further comprises a low reflection first polarizer 410. The rear side of low reflection first polarizer 410 is bonded to the front side of LCD panel 409 using optical bonding material. The low reflection first polarizer 410 is composed of an anti-reflection (AR) layer 401 and a dichroic polarizer 402. The anti-reflection layer 401 can be a high efficiency multi-layer anti-reflection coating applied directly on the front surface of the dichroic polarizer 402. The anti-reflection layer 401 can also be a separate transmissive substrate, glass or plastic, with an AR coating on the front side. The rear side of the transmissive substrate is bonded to the front side of dichroic polarizer 402 with an index-matched optical bonding material to lower the reflection. The low reflection front surface 401 preferably is a low haze surface (less than 15% haze) with high efficient multi-layer AR coating, which provides an anti-reflection efficiency of less than 1%. The low reflection front surface 401 produces less background reflection 415 than the regular LCD front surface 106 described in FIG. 1 (by 5 to 8 folds). In addition, the low reflection surface 401 allows more efficient transmission of ambient light A and provides a stronger light beam 406 to be used as the reflective illumination 408. The transflective LCD 700 also includes a second dichroic polarizer 403 optionally bonded to the rear of liquid crystal panel 409. In this embodiment, the transmission directions of the two dichroic polarizers 402 and 403 are preferably in parallel. Such an arrangement of 402 and 403 provides a transflective LCD that is direct sunlight readable without backlight. However, the transmission directions of 402 and 403 can also vary from 0 to 90 degrees. It is also preferred that AR coating is applied to the rear surface of the rear dichroic polarizer 403 (not shown). The AR coating maximizes entry of light beam 406 for reflective illumination.
  • Still referring to FIG. 7, the transflective LCD 700 further comprises a diffusing transflector 711 positioned to the rear side of second dichroic polarizer 403. The diffusing transflector 711 is composed of a diffusing element 404 and a selective beam splitter 705. The transmission of the beam splitter 705 ranges from 30% to 85%. It is preferred the beam splitter 705 is a multi-layer coating of dielectric material directly deposited to the rear surface of the diffusing element 404. However, the beam splitter 705 can also be a multi-layer dielectric coating deposited on the front surface of a separate transmissive substrate and the coated, separate transmissive substrate is positioned on the rear side of diffusing element 404.
  • With reference to FIG. 7, the diffusing element 404 preferably is a transmissive substrate having a corrugated surface with haze in the range of 10% to 85%. The corrugated surface can be the front surface of the diffusing element 404 facing the second dichroic polarizer 403 or the rear surface of the diffusing element 404 facing the beam splitter 705. However, if the beam splitter 705 is a multi-layer coating of dielectric material directly deposited to the rear surface of the diffusing element 404, the corrugated surface is the front surface of the diffusing element 404. The diffusing element 404 can be constituted from one or more sheets of lose-packed or optionally bonded transmissive substrate with at least the corrugated surface. The material of the transmissive substrate can be PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate), for example. The diffusing element 404 can be optionally bonded to the rear surface of the second dichroic polarizer 403 and/or to the front surface of the beam splitter 705. Diffusing element 404 can be optionally bonded to the front surface of the beam splitter 705, provided that the beam splitter 705 is a separate substrate, as described above, to form the diffusing transflector 711. The diffusing transflector 711 can be optionally bonded to the rear side of the second dichroic polarizer 403, as shown in FIG. 7, or to the front side of the second dichroic polarizer 403, not shown. The corrugated surface can be a roughened surface of the transmissive substrate of the diffusing element 404. The corrugated surface also can be obtained by depositing a single layer or multiple layers of a dielectric material, such as TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium) or Si (Silicon) on a transmissive substrate. The corrugated surface can further be obtained by depositing small metal particles, ranging in size from 10 nm to 10000 nm, on a separate transmissive substrate. Choices of metal for the metal particles include silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
  • Alternatively, the diffusing element 404 may simply refer to a corrugated diffusing surface with haze in the range of 10% to 85%, provided that the beam splitter 705 is a separate substrate. In such case, either the front surface or the rear surface of the second dichroic polarizer 403 or the front surface of the beam splitter 705 is the corrugated surface. Optionally, the second dichroic polarizer 403 can be directly bonded to the beam splitter 705.
  • The corrugated surface can be a roughened surface of the second dichroic polarizer 403 (the rear surface) or of the beam splitter 705 (the front surface). The corrugated surface also can be obtained by depositing a single layer or multiple layers of a dielectric material on the rear surface of the second dichroic polarizer 403 or on the front surface of the beam splitter 705. The dielectric material can be, for example, TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium) or Si (Silicon). The corrugated surface can further be obtained by depositing small metal particles, ranging in size from 10 nm to 10000 nm, on the rear surface of the second dichroic polarizer 403 or on the front surface of the beam splitter 705. Choices of metal for the metal particles include silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
  • Still referring to FIG. 7, the transflective LCD 700 further includes a high efficiency backlight cell assembly 420. Backlight assembly 420 preferably contains one or two orthogonal sheets of brightness enhancement films and other multiple polymeric films for enhancing transmission and optical performances. However, any conventional backlight cell or high bright backlight cell, with edge lamps or backside lamps, can be used.
  • Commercial TFT LCDs of various sizes and structures can easily be modified in accordance with the teachings of the present invention to generate LCDs viewable under direct sunlight. Optimal viewing performances are obtained by adjusting proper orientations of the diffusing element and the reflective polarizer according to the polarization transmission characteristics of the existing liquid crystal display panel. The following examples illustrate how different commercial TFT LCDs can be modified in accordance with the teachings of the present invention to generate transflective LCDs.
  • EXAMPLE 1 A Direct Sunlight Readable 15″ TFT LCD
  • Referring now to FIG. 8, a diagram of the structure of a 15″ desktop monitor Thin Film Transistor Liquid Crystal Display (TFT LCD) is shown (related art). The LCD 800 comprises a display unit 801 with a liquid crystal panel sandwiched between a pair of dichroic polarizers. The dichroic polarizers have off-axis transmission directions. The backlight cell 810 includes a diffusive reflector 805, a wave guide plate with four lamps 804, a rear diffuser 803 positioned in front of wave guide plate 804, a sheet of brightness enhancement film 802 positioned in the front side of rear diffuser 803 and a front diffuser 806 positioned in front of the brightness enhancement film 802. The TFT LCD illuminates about 250 to 275 nits. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • With reference to FIG. 9, a diagram of an embodiment of the present invention modifying the 15″ desktop monitor TFT LCD 800 is shown. The transflective TFT LCD 900 constructed in accordance to the present invention includes the major components of the low reflection liquid crystal display unit 920, the diffusing transflector 930, and the high efficient backlight cell 910. Applying an anti-reflection coating 901 on the front surface of 801 generates the low reflection display unit 920, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 901 is a plastic film bound to the front surface 801. The diffusing transflector 930 comprises a sheet of diffuser, 902, and a diffuser laminated selective reflective polarizer 903. This diffusing transflector 930 is positioned on the rear side of the display unit 920 in accordance to the teaching of the present invention. The transflective LCD 900 has an enhanced transmissive illumination between 350 and 400 nits. Indoor and outdoor performance is greatly enhanced without altering the viewing angle or resolution. Under direct sunlight, the transflective illumination effectively dominates the lighting of the display and renders the display images viewable.
  • Referring now to FIG. 10, a diagram of a comparison of temperature measurements between the regular LCD 800 and the modified LCD 900 is shown. Thermal couples are adhered to the center of the rear side of the display units in 800 and 900, as shown by 850 and 950 in FIG. 8 and FIG. 9, respectively. The displays were provided with the same operating conditions and voltage supplies. Curve 1003 shows the outdoor air temperatures ranging from 30° C. to 40° C. Curve 1001 shows the temperature measurements of the transflective LCD 900, and curve 1002 shows the temperature measurements of the regular LCD 800. Both regular LCD 800 and transflective LCD 900 reach an equilibrium operating temperature between 76° C. and 78° C. The transflective LCD 900 does not generate any excessive heat in the system when compared to the regular LCD 800.
  • EXAMPLE 2 A Direct Sunlight Readable 14.2″ Notebook Computer TFT LCD
  • With reference to FIG. 11, a diagram of the structure of a 14.2″ notebook computer TFT LCD is shown (related art). The LCD 1100 comprises a display unit 1101 with a liquid crystal panel sandwiched between a pair of dichroic polarizers with parallel transmission directions. The backlight cell 1110 is composed of a diffusely reflector 1105, a wave guide plate coupled with one lamp 1104, a sheet of diffuser 1103 positioned on the front side of wave guide plate 1104, two sheets of brightness enhancement film 1102 positioned in the front side of diffuser 1103, and another diffuser 1106 in front of enhancement film 1102. The above-described unit illuminates between 120 and 140 nits. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • Referring now to FIG. 12, a diagram of an embodiment of the present invention modifying the 14.2″ notebook computer TFT LCD 1100 is shown. The transflective TFT LCD 1200 comprises the major components of the low reflection liquid crystal display unit 1220, the diffusing transflector 1230, and the high efficient backlight cell 1210. Applying an anti-reflection coating 1201 on the front surface of 1101 generates the low reflection liquid crystal display unit 1220, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 1201 is a plastic film bound to the front surface 1101. The diffusing transflector 1230 is composed of one sheet of diffuser 1202 and a reflective polarizer 1203. This diffusing transflector 1230 is positioned on the rear side of the display unit 1220 in accordance to the teaching of the present invention. The transflective LCD 1200 has an enhanced transmissive illumination of between 175 and 185 nits, yielding better indoor performances. In addition, the display is visible under all outdoor lighting conditions including direct sunlight regardless of its transmissive illumination.
  • EXAMPLE 3 A Direct Sunlight Readable 10.4″ Tablet TFT LCD
  • With reference to FIG. 13, a diagram of the structure of a 10.4″ Tablet TFT LCD is shown (related art). The LCD 1300 comprises a display unit 1301 with a liquid crystal panel sandwiched between a pair of dichroic polarizers with parallel transmission directions. The backlight cell 1310 is composed of a diffusive reflector 1305, a wave guide plate coupled with one edge lamp 1304, a sheet of diffuser 1303 positioned in the front side of wave guide plate 1304, a sheet of brightness enhancement film 1302 positioned in front of diffuser 1303, and a reflective polarizer 1306 in front of enhancement film 1302. The above-described unit illuminates approximately 200 nits. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • With reference to FIG. 14, a diagram of an embodiment of the present invention modifying the 10.4″ Tablet TFT LCD 1300 is shown. The transflective TFT LCD 1400 includes the major components of the low reflection liquid crystal display unit 1420, the diffusing transflector 1430, and the high efficient backlight cell 1410. Applying an anti-reflection coating 1401 on the front surface of 1301 generates the low reflection liquid crystal display unit 1420, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 1401 is a plastic film bound to the front surface 1301. The diffusing transflector 1430 is composed of one sheet of diffuser 1402 and a reflective polarizer 1306. The diffusing transflector 1430 is positioned on the rear side of the display unit 1420 in accordance to the teaching in the present invention. The transflective LCD 1400 has about the same transmissive illumination as LCD 1300 and is visible under all outdoor lighting conditions, including direct sunlight.
  • EXAMPLE 4 A Direct Sunlight Readable Open Frame 12.1″ TFT LCD
  • With reference to FIG. 15, a diagram of the structure of a 12.1″ open frame high bright TFT LCD is shown (related art). The LCD 1500 comprises a display unit 1501 with a liquid crystal panel sandwiched between a pair of dichroic polarizers with off-axis transmission directions. The backlight cell 1510 comprises a diffusive reflector 1505, a wave guide plate with ten back side lamps 1504, a sheet of diffuser 1503 positioned in the front side of wave guide plate 1504, a sheet of brightness enhancement film 1502 positioned in front of diffuser 1503, and another diffuser 1506 in front of enhancement film 1502. The above-described unit illuminates approximately 700 to 800 nits. The display gives very good optical performances indoors with partial transmission illumination. With full transmission illumination (i.e. 800 nits), the display provides good visibilities under moderate ambient light. However, the display generates excessive heat and therefore reaches its clearing temperature in approximately 30 minutes, a short amount of time. Upon reaching its clearing temperature, the display turns black. Under very strong ambient light or direct sunlight, the display is difficult to view even when provided with full transmission illumination by its backlight.
  • With reference to FIG. 16, a diagram of an embodiment of the present invention modifying the 12.1″ open frame high bright TFT LCD 1500 is shown. The transflective TFT LCD 1600 comprises the major components of the low reflection liquid crystal display unit 1620, the diffusing transflector 1630, and the high efficient backlight cell 1610. Applying an anti-reflection coating 1601 on the front surface of 1501 generates the low reflection liquid crystal display unit 1620, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 1601 is a plastic film bound to the front surface 1501. The diffusing transflector 1630 is composed of one sheet of diffuser 1602 and a reflective polarizer 1603. This diffusing transflector 1630 is positioned on the rear side of the display unit 1620 in accordance to the teaching of the present invention. The transflective LCD 1600 has approximately the same transmissive illumination as 1500, yielding the same satisfactory indoor performances. Unlike TFT LCD 1500, however, transflective TFT LCD 1600 is visible under all outdoor lighting conditions, including direct sunlight, regardless of the amount of transmissive illumination.
  • EXAMPLE 5 A Direct Sunlight Readable 1.5″ TFT LCD
  • With reference to FIG. 17, a diagram of the structure of a 1.5″ TFT LCD is shown (related art). A 1.5″ TFT LCD is commonly used as a monitor on a digital camera. The LCD 1700 comprises a display unit 1701 with a liquid crystal cell, a first dichroic polarizer, and a circular polarization-generating element (not shown). The backlight cell 1710 comprises a diffusely reflector 1705, a wave guide plate with four edge LED 1704, a sheet of diffuser 1703 positioned in the front side of wave guide plate 1705, two sheets of brightness enhancement film 1702 and 1707 positioned in front of diffuser 1703, and another diffuser 1706 in front of the brightness enhancement film sheets 1702 and 1707. The above-described unit illuminates approximately 150 to 200 nits in the camera system. The viewing of the display is acceptable indoors, and is poor under outdoor conditions.
  • With reference to FIG. 18, a diagram of an embodiment of the present invention modifying the 1.5″ TFT LCD 1700 is shown. The transflective TFT LCD 1800 comprises the major components of the low reflection liquid crystal display unit 1820, the diffusing transflector 1830, and the high efficient backlight cell 1810. Applying an anti-reflection coating 1801 on the front surface of 1701 generates the low reflection liquid crystal display unit 1820, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 1801 is a plastic film bound to the front surface 1701. A quarter wave plate 1804 is positioned on the rear of the display unit 1820 to generate a linear polarization from the circular polarization output of the display unit 1820. The second dichroic polarizer 1805 is then placed at the rear side of the quarter wave plate 1804. The transmission direction for the second dichroic polarizer 1805 is parallel to the direction of the linear polarization output of the quarter wave plate 1804. The diffusing transflector 1830 is composed of one sheet of diffuser 1802 and a reflective polarizer 1803. This diffusing transflector 1830 is positioned on the rear side of the dichroic polarizer 1805 in accordance to the teaching in the present invention. The transflective LCD 1800 has less transmission illumination than TFT LCD 1700, with values between 100 nits and 150 nits. However, the display 1800 is more visible under all lighting conditions, including direct sunlight, due to its transflective property and enhanced contrast.
  • EXAMPLE 6 A Direct Sunlight Readable 12.1″ TFT LCD
  • With reference to FIG. 19, a diagram of the structure of a 12.1″ TFT LCD is shown (related art). A 12.1″ TFT LCD is commonly used as a display in a Tablet PC. The LCD 1900 comprises a display unit 1901 with a liquid crystal cell, a first dichroic polarizer, and a second dichroic polarizer having a corrugated diffusing surface 1902 on its rear side. The backlight cell 1910 comprises a diffusely reflector 1906, a wave guide plate with edge light 1905, a sheet of diffuser 1904 positioned in the front side of wave guide plate 1905, two sheets of brightness enhancement films 1903 positioned in front of diffuser 1904. The above-described unit illuminates approximately 150 to 200 nits in the system. The viewing of the display is acceptable indoors, but rather poor under outdoor conditions.
  • With reference to FIG. 20, a diagram of an embodiment of the present invention modifying the 12.1″ TFT LCD 1900 is shown. The transflective TFT LCD 2000 comprise the major components of the low reflection liquid crystal display unit 2020, the diffusing transflector 2030, and the high efficient backlight cell 2010. Applying an anti-reflection coating 2001 on the front surface of the display unit 1901 generates the low reflection liquid crystal display unit 2020, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 2001 is a plastic film bound to the front surface of the display unit 1901. The diffusing transflector 2030 is composed of the corrugated surface 1902 of the rear side of the second dichroic polarizer and a reflective polarizer 2003. This diffusing transflector 2030 is positioned on the rear side of the display unit 2020 in accordance to the teaching of the present invention. The transflective LCD 2000 has an enhanced transmissive illumination of between 250 and 300 nits, yielding better indoor performances. In addition, the display is visible under all outdoor lighting conditions including direct sunlight regardless of its transmissive illumination.
  • EXAMPLE 7 A Direct Sunlight Readable 19″ TFT LCD
  • With reference to FIG. 21, a diagram of the structure of a 19″ TFT LCD is shown (related art). A 19″ TFT LCD is commonly used as a display in a Kiosk. The LCD 2100 comprises a display unit 2101 with a liquid crystal cell, a first dichroic polarizer, and a second dichroic polarizer. The backlight cell 2110 comprises a diffusely reflector 2107, a wave guide plate with four edge lights 2106, a sheet of diffuser 2105 positioned in the front side of wave guide plate 2106, one sheet of brightness enhancement film 2104 positioned in front of diffuser 2105, and a reflective polarizer 2103 having a corrugated diffusing front surface 2102 and positioned in front of the brightness enhancement film 2104. The above-described unit illuminates approximately 300 to 400 nits in the system. The viewing of the display is acceptable indoors, but rather poor under any outdoor conditions.
  • With reference to FIG. 22, a diagram of an embodiment of the present invention modifying the 19″ TFT LCD 2200 is shown. The major components of the transflective TFT LCD 2200 comprise the low reflection liquid crystal display unit 2220, the diffusing transflector 2230, and the high efficient backlight cell 2210. Applying an anti-reflection coating 2201 on the front surface of 2101 generates the low reflection liquid crystal display unit 2220, preferably with less than 15% haze and an anti-reflection efficiency less than 1%. The anti-reflection coating 2201 is a plastic film bound to the front surface 2101. The diffusing transflector 2230 is composed of the corrugated diffusing surface 2102 of the front side of the reflective polarizer 2103 and the reflective polarizer 2103. This diffusing transflector 2230 is positioned on the rear side of the display unit 2220 in accordance to the teaching of the present invention. The transflective LCD 2200 has same level of transmissive illumination and is visible under all outdoor lighting conditions including direct sunlight regardless of its transmissive illumination.
  • In summary, the present invention resolves and considers the reflection and transmission properties of the transflector to provide a transflective LCD with optical properties tailored for indoor and outdoor applications. A high efficiency multi-layer anti-reflection coating (AR coating) not only reduces the background reflection of the LCD front surface, but also allows the liquid crystal display unit to transmit more energy of incident light, thus providing more reflective illumination. Before, incident light was partially reflected on the surface of the substrate. With the present invention, the low reflection and high transmission properties of the AR coating and the diffusing transflector cooperatively provide the display with optimal illuminations.
  • Other embodiments of the invention will appear to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples to be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (33)

1. A liquid crystal display comprising:
(a) a first dichroic polarizer having a front side and a rear side;
(b) a second dichroic polarizer;
(c) an anti-reflection layer positioned in front of the first dichroic polarizer;
(d) a liquid crystal cell positioned between the first dichroic polarizer and the second dichroic polarizer;
(e) a backlight assembly positioned behind the second dichroic polarizer; and
(f) a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer, the diffusing transflector comprising a diffusing element and a transflective element.
2. The liquid crystal display of claim 1 wherein the anti-reflection layer has reflection energy less than 1% over a visible spectrum range.
3. The liquid crystal display of claim 1 wherein the anti-reflection layer is a high efficiency multi-layer coating applied directly on the front side of the first dichroic polarizer.
4. The liquid crystal display of claim 3 wherein the front side of the first dichroic polarizer has a haze value less than 15%.
5. The liquid crystal display of claim 1 wherein the anti-reflection layer is a separate glass or plastic transmissive substrate with a first side of haze less than 15% and a second side, the first side having a high efficiency multi-layer anti-reflection coating, and the second side adhered to a front side of the first dichroic polarizer.
6. The liquid crystal display of claim 1 wherein the diffusing element is a transmissive substrate having a corrugated surface with a haze value of 10% to 85%.
7. The liquid crystal display of claim 6 wherein the transmissive substrate is one single sheet or multiple sheets loosely packed or bonded together, the material of the transmissive substrate being glass, PEN (polyethylene naphthalate), PC (polycarbonate), or PET (polyethylene terephthalate).
8. The liquid crystal display of claim 7 wherein the corrugated surface of the transmissive substrate is a roughened surface.
9. The liquid crystal display of claim 7 wherein the corrugated surface is a deposited layer of a dielectric material on a front surface or a rear surface of the transmissive substrate.
10. The liquid crystal display of claim 9 wherein the dielectric material is TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS. (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium), or Si (Silicon).
11. The liquid crystal display of claim 7 wherein the corrugated surface is a deposited multi-layered structure of a dielectric material on a front surface or a rear surface of the transmissive substrate.
12. The liquid crystal display of claim 11 wherein the dielectric material includes at least one of TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium), and Si (Silicon).
13. The liquid crystal display of claim 7 wherein particles of a metal, ranging in size from 10 nm to 10000 nm, are deposited on the transmissive substrate to form the corrugated surface, the metal being silver, gold, aluminium, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
14. The liquid crystal display of claim 6 wherein the transmissive substrate is bonded to a rear side of the second dichroic polarizer.
15. The liquid crystal display of claim 6 wherein the transmissive substrate is bonded to a front side of the transflective element.
16. The liquid crystal display of claim 7 wherein the transmissive substrate is bonded to a rear side of the second dichroic polarizer and a front side of the transflective element.
17. The liquid crystal display of claim 1, wherein the diffusing element is a corrugated surface with a haze value of 10% to 85%, of the second dichroic polarizer or of the transflective element.
18. The liquid crystal display of claim 17 wherein the corrugated surface is a roughened rear surface or a roughen front surface of the second dichroic polarizer or a roughened front surface of the transflective element.
19. The liquid crystal display of claim 17 wherein the corrugated surface is a deposited layer of a dielectric material on a rear surface or a front surface of the second dichroic polarizer or a front surface of the transflective element.
20. The liquid crystal display of claim 19 wherein the dielectric material is TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium), or Si (Silicon).
21. The liquid crystal display of claim 17 wherein the corrugated surface is a deposited multi-layered structure of a dielectric material on a rear surface or a front surface of the second dichroic polarizer or a front surface of the transflective element.
22. The liquid crystal display of claim 21 wherein the dielectric material includes at least one of TiO2 (Titanium dioxide), Ta2O5 (Tantalum oxide), SiO2 (Silicon dioxide), SiN (Silicon nitride), ITO (Indium tin oxide), ZnS (Zinc sulphide), Al2O3 (Aluminum oxide), LaF3 (Lanthanum fluoride), MgF2 (Magnesium fluoride), Ge (Germanium), and Si (Silicon).
23. The liquid crystal display of claim 17 wherein particles of a metal, ranging in size from 10 nm to 10000 nm, are deposited on a rear side or the front side of the second dichroic polarizer or a front side of the transflective element to form the corrugated surface, the metal being silver, gold, aluminium, copper, titanium, tantalum, chromium, nickel or an alloy thereof.
24. The liquid crystal display of claim 1 wherein the transflective element is a selective reflective polarizer, multiple sheets of selective reflective polarizers, or a diffuser laminated selective reflective polarizer, the transflective element having an extinction coefficient of 1.5 to 9 and an absorption of incident energy value less than 10%.
25. The liquid crystal display of claim 1 wherein a transmission direction of the transflective element and a transmission direction of the second dichroic polarizer form an angle of 0 degrees, between 0 and 60 degrees or between −60 and 0 degrees for optimal transmission and reflection.
26. The liquid crystal display of claim 1 wherein the transflective element is a multi-layer dielectric material coating beam splitter with a transmission of 30% to 85%, the multi-layer dielectric material coating beam splitter being either applied directly on a rear side of the diffusing element or on a front side of a separate transmissive substrate.
27. The liquid crystal display of claim 1 wherein a second anti-reflection layer is applied on a rear side of the second dichroic polarizer.
28. The liquid crystal display of claim 27 wherein the second anti-reflection layer is on the rear side of a separate transmissive substrate with a first side and a second side, the second side having a high efficiency multi-layer anti-reflection coating, and the first side adhered to a rear side of the second dichroic polarizer.
29. The liquid crystal display of claim 1 wherein the backlight assembly comprises 1 to 12 lamps and multiple polymeric films having enhanced light transmission and optical performances, the lamps being edged or back-sided, and the polymeric film being brightness enhancement film and diffuser.
30. The liquid crystal display of claim 1 wherein the first dichroic polarizer has a first transmission direction and the second dichroic polarizer has a second transmission direction, the first transmission direction forming an angle of 0 degrees, or between 0 and 90 degrees, relative to the second transmission direction.
31. The liquid crystal display of claim 1 further comprising a quarter wave plate positioned between the liquid crystal cell and the second dichroic polarizer, the quarter wave plate generating a linear polarization from a circular polarization output of the liquid crystal cell, the linear polarization being parallel to a transmission direction of the second dichroic polarizer.
32. A liquid crystal display comprising:
(a) a first dichroic polarizer with a first transmission direction;
(b) a second dichroic polarizer with a second transmission direction, the second transmission direction forming an angle between 0 and 90 degrees relative to the first transmission direction;
(c) an anti-reflection layer positioned in front of the first dichroic polarizer with reflection energy less than 1% and a surface with a haze value less than 15%;
(d) a liquid crystal cell positioned between the first dichroic polarizer and the second dichroic polarizer;
(e) a backlight assembly positioned behind the second dichroic polarizer, the backlight assembly having 1 to 12 lamps and multiple polymeric films enhancing light transmission and optical performances, the lamps being edged or back-sided; and
(f) a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer, the diffusing transflector comprising a diffusing element and a transflective element, the diffusing element having a corrugated surface with a haze value of 10% to 85%, and the transflective element being either a selective reflective polarizer with an extinction coefficient of 1.5 to 9 and an absorption of incident energy value less than 10%, or a beam splitter with a transmission value of 30% to 85%.
33. A liquid crystal display comprising:
(a) a first dichroic polarizer with a first transmission direction;
(b) a second dichroic polarizer with a second transmission direction, the second transmission direction forming an angle between 0 and 90 degrees relative to the first transmission direction;
(c) an anti-reflection layer positioned in front of the first dichroic polarizer with reflection energy less than 1% and a surface with a haze value less than 15%;
(d) a liquid crystal cell positioned between the first dichroic polarizer and the second dichroic polarizer;
(e) a backlight assembly positioned behind the second dichroic polarizer, the backlight assembly having 1 to 12 lamps and multiple polymeric films enhancing light transmission and optical performances, the lamps being edged or back-sided; and
(f) a diffusing transflector positioned between the liquid crystal cell and the second dichroic polarizer, the diffusing transflector comprising a diffusing element and a transflective element, the diffusing element having a corrugated surface with a haze value of 10% to 85%, and the transflective element being a beam splitter with a transmission value of 30% to 85%.
US10/900,565 2003-02-18 2004-07-28 Liquid crystal display viewable under all lighting conditions Abandoned US20050018106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/900,565 US20050018106A1 (en) 2003-02-18 2004-07-28 Liquid crystal display viewable under all lighting conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/370,360 US6909486B2 (en) 2003-02-18 2003-02-18 Liquid crystal display viewable under all lighting conditions
US10/900,565 US20050018106A1 (en) 2003-02-18 2004-07-28 Liquid crystal display viewable under all lighting conditions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/370,360 Continuation-In-Part US6909486B2 (en) 2003-02-18 2003-02-18 Liquid crystal display viewable under all lighting conditions

Publications (1)

Publication Number Publication Date
US20050018106A1 true US20050018106A1 (en) 2005-01-27

Family

ID=32736441

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/370,360 Expired - Lifetime US6909486B2 (en) 2003-02-18 2003-02-18 Liquid crystal display viewable under all lighting conditions
US10/892,867 Expired - Fee Related US6961108B2 (en) 2003-02-18 2004-07-16 Liquid crystal display viewable under all lighting conditions
US10/900,565 Abandoned US20050018106A1 (en) 2003-02-18 2004-07-28 Liquid crystal display viewable under all lighting conditions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/370,360 Expired - Lifetime US6909486B2 (en) 2003-02-18 2003-02-18 Liquid crystal display viewable under all lighting conditions
US10/892,867 Expired - Fee Related US6961108B2 (en) 2003-02-18 2004-07-16 Liquid crystal display viewable under all lighting conditions

Country Status (3)

Country Link
US (3) US6909486B2 (en)
EP (1) EP1450202A3 (en)
TW (1) TWI246619B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203513A1 (en) * 2005-03-08 2006-09-14 Tomio Aoki Backlight device and liquid crystal display
US20060262255A1 (en) * 2005-05-23 2006-11-23 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20070008471A1 (en) * 2005-05-23 2007-01-11 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20090040431A1 (en) * 2004-03-26 2009-02-12 Nitto Denko Corporation Liquid crystal display panel with improved image contrast
WO2009100055A2 (en) * 2008-02-08 2009-08-13 Motorola, Inc. Electronic device and lc shutter with diffusive reflective polarizer
US20090201446A1 (en) * 2008-02-08 2009-08-13 Motorola, Inc. Electronic device and lc shutter for polarization-sensitive switching between transparent and diffusive states
US20090321723A1 (en) * 2006-07-19 2009-12-31 Yousuke Hoshi Organic electronic material, organic electronic device, and organic electroluminescent device
US7733443B2 (en) 2004-03-09 2010-06-08 Nitto Denko Corporation LCD comprising backlight and reflective polarizer on front panel
US20100141869A1 (en) * 2008-12-08 2010-06-10 3M Innovative Properties Company Passive and hybrid daylight-coupled backlights for sunlight viewable displays
US20100328578A1 (en) * 2009-06-26 2010-12-30 Biernath Rolf W Passive and hybrid daylight-coupled n-stack and collapsible backlights for sunlight viewable displays
US7876288B1 (en) * 2010-08-11 2011-01-25 Chumby Industries, Inc. Touchscreen with a light modulator
US20110116012A1 (en) * 2009-11-18 2011-05-19 3M Innovative Properties Company Passive daylight-coupled backlight with turning film having prisms with chaos for sunlight viewable displays
CN1866103B (en) * 2005-05-18 2012-10-10 株式会社日立制作所 Optical element and projection type image display apparatus having optical element therein
US8384852B2 (en) 2010-11-22 2013-02-26 3M Innovative Properties Company Hybrid daylight-coupled backlights for sunlight viewable displays
US20150261077A1 (en) * 2014-03-17 2015-09-17 Casio Computer Co., Ltd. Light source unit having optical device having diffusing layer and dichroic layer, projector, optical device, and optical device manufacturing method
US20160217750A1 (en) * 2015-01-23 2016-07-28 Samsung Display Co. Ltd. Display apparatus
US20160282663A1 (en) * 2015-03-26 2016-09-29 Samsung Display Co., Ltd. Display apparatus
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10520782B2 (en) 2017-02-02 2019-12-31 James David Busch Display devices, systems and methods capable of single-sided, dual-sided, and transparent mixed reality applications
US10544362B2 (en) 2008-12-30 2020-01-28 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) * 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) * 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US6326613B1 (en) 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US6445287B1 (en) * 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6477464B2 (en) * 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
EP1263626A2 (en) 2000-03-02 2002-12-11 Donnelly Corporation Video mirror systems incorporating an accessory module
US7855755B2 (en) 2005-11-01 2010-12-21 Donnelly Corporation Interior rearview mirror assembly with display
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
WO2006124682A2 (en) 2005-05-16 2006-11-23 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
ES2287266T3 (en) 2001-01-23 2007-12-16 Donnelly Corporation IMPROVED VEHICLE LIGHTING SYSTEM.
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
US6918674B2 (en) * 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
AU2003237424A1 (en) 2002-06-06 2003-12-22 Donnelly Corporation Interior rearview mirror system with compass
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
US20040022071A1 (en) * 2002-08-02 2004-02-05 Delta Electronic, Inc. Optical energy collection system to provide economical light source
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
WO2004103772A2 (en) 2003-05-19 2004-12-02 Donnelly Corporation Mirror assembly for vehicle
AU2003278863A1 (en) 2002-09-20 2004-04-08 Donnelly Corporation Mirror reflective element assembly
US6909486B2 (en) * 2003-02-18 2005-06-21 Ran-Hong Raymond Wang Liquid crystal display viewable under all lighting conditions
US20040239849A1 (en) * 2003-06-02 2004-12-02 Wang Po Hsien Liquid crystal display with mirror face function
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
TW200525214A (en) * 2004-01-16 2005-08-01 Innolux Display Corp Liquid crystal display device
KR101146521B1 (en) * 2004-07-19 2012-05-25 삼성전자주식회사 Phase delay element, method for manufacturing thereof, substrate having the same and method for manufacturing thereof, and light providing method and liquid crystal display using the same
JP2008511043A (en) * 2004-08-25 2008-04-10 ムーンドギー テクノロジーズ インコーポレイテッド Liquid crystal display method and apparatus
KR20060032480A (en) * 2004-10-12 2006-04-17 삼성전자주식회사 Display device for outdoors
US20060093809A1 (en) * 2004-10-29 2006-05-04 Hebrink Timothy J Optical bodies and methods for making optical bodies
US20060109753A1 (en) * 2004-11-23 2006-05-25 Fergason James L Monitor for showing high-resolution and three-dimensional images and method
KR101114854B1 (en) * 2004-12-24 2012-03-07 엘지디스플레이 주식회사 A backlight unit
TW200622357A (en) * 2004-12-28 2006-07-01 Hon Hai Prec Ind Co Ltd Display panel and liquid crystal display device
US7843422B1 (en) 2005-11-29 2010-11-30 National Semiconductor Corporation Apparatus and method for ambient light compensation for backlight control in small format displays
US20070151296A1 (en) * 2005-12-22 2007-07-05 Photon Dynamics, Inc. Method and apparatus for handling and aligning glass substrates
US20070222922A1 (en) * 2006-03-22 2007-09-27 Eastman Kodak Company Graded contrast enhancing layer for use in displays
US7782191B2 (en) * 2007-07-25 2010-08-24 Tomas Flores Portable alarm apparatus for warning persons
US8854595B2 (en) 2008-03-03 2014-10-07 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US8767165B2 (en) * 2007-11-16 2014-07-01 Manufacturing Resources International, Inc. Isolated gas cooling system for an electronic display
US8879042B2 (en) * 2007-11-16 2014-11-04 Manufacturing Resources International, Inc. Isolated cooling system having an insulator gap and front polarizer
US8711321B2 (en) * 2007-11-16 2014-04-29 Manufacturing Resources International, Inc. System for thermally controlling displays
US8562770B2 (en) 2008-05-21 2013-10-22 Manufacturing Resources International, Inc. Frame seal methods for LCD
US9173325B2 (en) 2008-03-26 2015-10-27 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
US8351014B2 (en) * 2008-03-03 2013-01-08 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
US8274622B2 (en) * 2008-03-03 2012-09-25 Manufacturing Resources International, Inc. System for using constricted convection with closed loop plenum as the convection plate
US8773633B2 (en) 2008-03-03 2014-07-08 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US8654302B2 (en) 2008-03-03 2014-02-18 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US8497972B2 (en) 2009-11-13 2013-07-30 Manufacturing Resources International, Inc. Thermal plate with optional cooling loop in electronic display
US8693185B2 (en) 2008-03-26 2014-04-08 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
TWI378276B (en) * 2008-05-02 2012-12-01 Au Optronics Corp Polarizing plate, manufacturing method thereof and display device using the same
US9573346B2 (en) 2008-05-21 2017-02-21 Manufacturing Resources International, Inc. Photoinitiated optical adhesive and method for using same
US8189134B2 (en) * 2008-09-19 2012-05-29 Manufacturing Resources International, Inc. Durable display panel with impact resistance
US8749749B2 (en) 2008-12-18 2014-06-10 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with manifolds and ambient gas
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US9291752B2 (en) 2013-08-19 2016-03-22 3M Innovative Properties Company Retroreflecting optical construction
EP2419771B1 (en) 2009-04-15 2020-09-23 3M Innovative Properties Company Lightguide with optical film containing voids
JP5727460B2 (en) 2009-04-15 2015-06-03 スリーエム イノベイティブ プロパティズ カンパニー Optical film for preventing optical coupling
WO2010121019A1 (en) 2009-04-15 2010-10-21 3M Innovative Properties Company Retroreflecting optical construction
TWI605276B (en) * 2009-04-15 2017-11-11 3M新設資產公司 Optical construction and display system incorporating same
DE102009031039B4 (en) 2009-06-30 2015-12-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Liquid crystal display with several drive segments
TW201106057A (en) * 2009-08-14 2011-02-16 Coretronic Corp Lighting condensing film, backlight module and liquid crystal display
TWI392930B (en) * 2009-09-21 2013-04-11 Coretronic Corp Backlight module and liquid crystal display apparatus
JP2013508923A (en) 2009-10-24 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー Light source and display system incorporating the light source
EP3258167A3 (en) 2009-12-08 2018-04-18 3M Innovative Properties Co. Optical constructions incorporating a light guide and low refractive index films
MX341289B (en) 2010-04-15 2016-08-12 3M Innovative Properties Co Retroreflective articles including optically active areas and optically inactive areas.
CN102834254A (en) 2010-04-15 2012-12-19 3M创新有限公司 Retroreflective articles including optically active areas and optically inactive areas
EP2558290B1 (en) 2010-04-15 2019-01-23 3M Innovative Properties Company Retroreflective articles including optically active areas and optically inactive areas
US9176365B2 (en) 2010-09-08 2015-11-03 Dai Nippon Printing Co., Ltd. Illumination device, projection device, and projection-type image display device
US8703280B2 (en) * 2010-10-22 2014-04-22 Extend Optronics Corp. Apparatus and high-shielding reflective film and method for manufacturing the same
WO2013085527A1 (en) * 2011-12-08 2013-06-13 Hewlett-Packard Development Company, L.P. Reflective color display with luminescence and backlighting
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
CN102929034A (en) * 2012-11-12 2013-02-13 京东方科技集团股份有限公司 Display panel and display device
US9025100B2 (en) * 2012-11-30 2015-05-05 Apple Inc. Display with shielding antireflection layer
WO2014150036A1 (en) 2013-03-15 2014-09-25 Manufacturing Resources International, Inc. Cooling system for an electronic display
WO2014149773A1 (en) 2013-03-15 2014-09-25 Manufacturing Resources International, Inc. Heat exchange assembly for an electronic display
US10705404B2 (en) 2013-07-08 2020-07-07 Concord (Hk) International Education Limited TIR-modulated wide viewing angle display
US9470924B2 (en) 2013-07-08 2016-10-18 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
EP3117693B1 (en) 2014-03-11 2019-08-07 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for eletronic display
CN103969882B (en) * 2014-04-23 2016-07-06 京东方科技集团股份有限公司 A kind of liquid crystal panel and display device
ES2733122T3 (en) 2014-04-30 2019-11-27 Mri Inc Terraced electronic display set
US9723765B2 (en) 2015-02-17 2017-08-01 Manufacturing Resources International, Inc. Perimeter ventilation system for electronic display
TWI540362B (en) * 2015-05-21 2016-07-01 王仁宏 Double-sided display module with optically functional film
US10386691B2 (en) 2015-06-24 2019-08-20 CLEARink Display, Inc. Method and apparatus for a dry particle totally internally reflective image display
DE202015104666U1 (en) 2015-09-02 2015-10-09 RayShine Photonics Corp. Double-sided display module with optical functional film
US10386547B2 (en) 2015-12-06 2019-08-20 Clearink Displays, Inc. Textured high refractive index surface for reflective image displays
KR102104342B1 (en) 2016-03-04 2020-04-24 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 Cooling system for double-sided display assembly
CN107045221A (en) * 2016-12-28 2017-08-15 深圳市华星光电技术有限公司 Liquid crystal display panel and liquid crystal display
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
KR102262912B1 (en) 2017-04-27 2021-06-10 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 A system and method for preventing warping of a display device
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
WO2019071267A1 (en) * 2017-10-06 2019-04-11 Clearink Displays, Inc. Method, apparatus and system for totally internally reflected high gain liquid crystal display
TWI690748B (en) 2018-07-23 2020-04-11 財團法人工業技術研究院 Transparent display system and operation method thereof
US10602626B2 (en) 2018-07-30 2020-03-24 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
JP2022505364A (en) 2018-10-17 2022-01-14 コーニング インコーポレイテッド Display devices Methods for reducing energy consumption and devices that reduce energy consumption
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
CN113567709A (en) * 2021-05-31 2021-10-29 中国科学院上海硅酸盐研究所 Transmission type nanoscale infrared absorbance spectrum in-situ characterization device
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756953A (en) * 1985-12-09 1988-07-12 Diafoil Company, Limited Uniaxially high-oriented polyethylene naphthalate film for polarizing plates
US4764840A (en) * 1986-09-26 1988-08-16 Motorola, Inc. Dual limit solenoid driver control circuit
US5759643A (en) * 1987-01-16 1998-06-02 Seiko Epson Corporation Polarizing plate and method of production
US5986737A (en) * 1995-06-27 1999-11-16 Silicon Graphics, Inc. Multi-layer flat panel display screen apparatus
US6025897A (en) * 1993-12-21 2000-02-15 3M Innovative Properties Co. Display with reflective polarizer and randomizing cavity
US6080467A (en) * 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
US6262842B1 (en) * 1995-06-26 2001-07-17 3M Innovative Properties Company Transflective displays with reflective polarizing transflector
US6285425B1 (en) * 1998-06-29 2001-09-04 Motorola, Inc. Ridged reflector for an optical display having a curved and a planar facet for each ridge
US20010022997A1 (en) * 2000-02-07 2001-09-20 Masaru Honda Transflective polarizer
US6411344B2 (en) * 1998-06-18 2002-06-25 Kaneka Corporation Transparent touch panel and liquid crystal display device equipped with transparent touch panel
US6456346B1 (en) * 1999-10-13 2002-09-24 Citizen Watch Co., Ltd. Color liquid crystal display device including super twisted nematic liquid crystal with molecular major axis directions parallel to a display screen horizontal axis
US20030001987A1 (en) * 2001-07-02 2003-01-02 Giorgio Trapani Polarizers for use with liquid crystal displays
US6512512B1 (en) * 1999-07-31 2003-01-28 Litton Systems, Inc. Touch panel with improved optical performance
US20030020856A1 (en) * 2001-07-27 2003-01-30 Chi Mei Optoelectronics Corp. Liquid crystal display
US6559834B1 (en) * 1999-09-03 2003-05-06 Gunze Limited Glare-resistant touch panel
US6611299B1 (en) * 1998-08-04 2003-08-26 Kaneka Corporation Liquid crystal display apparatus with touch-panel, and touch-panel
US6717641B2 (en) * 2000-01-21 2004-04-06 Citizen Watch Co., Ltd. Liquid crystal display device
US6738115B1 (en) * 1999-11-02 2004-05-18 Seiko Epson Corporation Reflective LCD, semitransmitting reflective LCD and electronic device
US6909486B2 (en) * 2003-02-18 2005-06-21 Ran-Hong Raymond Wang Liquid crystal display viewable under all lighting conditions
US6972813B1 (en) * 1999-06-09 2005-12-06 3M Innovative Properties Company Optical laminated bodies, lighting equipment and area luminescence equipment
US20060262258A1 (en) * 2005-05-23 2006-11-23 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20070008471A1 (en) * 2005-05-23 2007-01-11 Wang Ran-Hong R Controlling polarization for liquid crystal displays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975455B1 (en) * 2000-04-18 2005-12-13 3M Innovative Properties Company Transflective layer for displays
JP2002090730A (en) * 2000-09-18 2002-03-27 Alps Electric Co Ltd Liquid crystal display device and semitransmissive reflection body

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756953A (en) * 1985-12-09 1988-07-12 Diafoil Company, Limited Uniaxially high-oriented polyethylene naphthalate film for polarizing plates
US4764840A (en) * 1986-09-26 1988-08-16 Motorola, Inc. Dual limit solenoid driver control circuit
US5759643A (en) * 1987-01-16 1998-06-02 Seiko Epson Corporation Polarizing plate and method of production
US6025897A (en) * 1993-12-21 2000-02-15 3M Innovative Properties Co. Display with reflective polarizer and randomizing cavity
US6262842B1 (en) * 1995-06-26 2001-07-17 3M Innovative Properties Company Transflective displays with reflective polarizing transflector
US6080467A (en) * 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
US5986737A (en) * 1995-06-27 1999-11-16 Silicon Graphics, Inc. Multi-layer flat panel display screen apparatus
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
US6411344B2 (en) * 1998-06-18 2002-06-25 Kaneka Corporation Transparent touch panel and liquid crystal display device equipped with transparent touch panel
US6285425B1 (en) * 1998-06-29 2001-09-04 Motorola, Inc. Ridged reflector for an optical display having a curved and a planar facet for each ridge
US6611299B1 (en) * 1998-08-04 2003-08-26 Kaneka Corporation Liquid crystal display apparatus with touch-panel, and touch-panel
US6972813B1 (en) * 1999-06-09 2005-12-06 3M Innovative Properties Company Optical laminated bodies, lighting equipment and area luminescence equipment
US6512512B1 (en) * 1999-07-31 2003-01-28 Litton Systems, Inc. Touch panel with improved optical performance
US6559834B1 (en) * 1999-09-03 2003-05-06 Gunze Limited Glare-resistant touch panel
US6456346B1 (en) * 1999-10-13 2002-09-24 Citizen Watch Co., Ltd. Color liquid crystal display device including super twisted nematic liquid crystal with molecular major axis directions parallel to a display screen horizontal axis
US6738115B1 (en) * 1999-11-02 2004-05-18 Seiko Epson Corporation Reflective LCD, semitransmitting reflective LCD and electronic device
US6717641B2 (en) * 2000-01-21 2004-04-06 Citizen Watch Co., Ltd. Liquid crystal display device
US20010022997A1 (en) * 2000-02-07 2001-09-20 Masaru Honda Transflective polarizer
US20030001987A1 (en) * 2001-07-02 2003-01-02 Giorgio Trapani Polarizers for use with liquid crystal displays
US20030020856A1 (en) * 2001-07-27 2003-01-30 Chi Mei Optoelectronics Corp. Liquid crystal display
US6909486B2 (en) * 2003-02-18 2005-06-21 Ran-Hong Raymond Wang Liquid crystal display viewable under all lighting conditions
US6961108B2 (en) * 2003-02-18 2005-11-01 Ran-Hong Raymond Wang Liquid crystal display viewable under all lighting conditions
US20060262258A1 (en) * 2005-05-23 2006-11-23 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20060262255A1 (en) * 2005-05-23 2006-11-23 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20070008471A1 (en) * 2005-05-23 2007-01-11 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20070279556A1 (en) * 2005-05-23 2007-12-06 Wang Ran-Hong R Controlling polarization for liquid crystal displays

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733443B2 (en) 2004-03-09 2010-06-08 Nitto Denko Corporation LCD comprising backlight and reflective polarizer on front panel
US7911557B2 (en) 2004-03-26 2011-03-22 Nitto Denko Corporation Liquid crystal display panel
US20090040431A1 (en) * 2004-03-26 2009-02-12 Nitto Denko Corporation Liquid crystal display panel with improved image contrast
US8334942B2 (en) * 2005-03-08 2012-12-18 Sony Corporation Backlight device and liquid crystal display
US20060203513A1 (en) * 2005-03-08 2006-09-14 Tomio Aoki Backlight device and liquid crystal display
CN1866103B (en) * 2005-05-18 2012-10-10 株式会社日立制作所 Optical element and projection type image display apparatus having optical element therein
US8848114B2 (en) 2005-05-23 2014-09-30 Ran-Hong Raymond Wang Controlling polarization for liquid crystal displays
US7633583B2 (en) 2005-05-23 2009-12-15 Ran-Hong Raymond Wang Controlling polarization for liquid crystal displays
US8274631B2 (en) 2005-05-23 2012-09-25 Ran-Hong Raymond Wang Controlling polarization for liquid crystal displays
US20070008471A1 (en) * 2005-05-23 2007-01-11 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20060262255A1 (en) * 2005-05-23 2006-11-23 Wang Ran-Hong R Controlling polarization for liquid crystal displays
US20110205471A1 (en) * 2005-05-23 2011-08-25 Ran-Hong Raymond Wang Controlling polarization for liquid crystal displays
US20090321723A1 (en) * 2006-07-19 2009-12-31 Yousuke Hoshi Organic electronic material, organic electronic device, and organic electroluminescent device
WO2009100055A3 (en) * 2008-02-08 2009-10-22 Motorola, Inc. Electronic device and lc shutter with diffusive reflective polarizer
US20090201446A1 (en) * 2008-02-08 2009-08-13 Motorola, Inc. Electronic device and lc shutter for polarization-sensitive switching between transparent and diffusive states
US20090201447A1 (en) * 2008-02-08 2009-08-13 Motorola, Inc. Electronic device and lc shutter with diffusive reflective polarizer
US7864270B2 (en) 2008-02-08 2011-01-04 Motorola, Inc. Electronic device and LC shutter with diffusive reflective polarizer
WO2009100055A2 (en) * 2008-02-08 2009-08-13 Motorola, Inc. Electronic device and lc shutter with diffusive reflective polarizer
US8059232B2 (en) 2008-02-08 2011-11-15 Motorola Mobility, Inc. Electronic device and LC shutter for polarization-sensitive switching between transparent and diffusive states
US20100141869A1 (en) * 2008-12-08 2010-06-10 3M Innovative Properties Company Passive and hybrid daylight-coupled backlights for sunlight viewable displays
US8149351B2 (en) 2008-12-08 2012-04-03 3M Innovative Properties Company Passive and hybrid daylight-coupled backlights for sunlight viewable displays
US10899105B2 (en) 2008-12-30 2021-01-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11420412B2 (en) 2008-12-30 2022-08-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11396158B2 (en) 2008-12-30 2022-07-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10544362B2 (en) 2008-12-30 2020-01-28 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10444423B2 (en) 2008-12-30 2019-10-15 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10302845B2 (en) 2008-12-30 2019-05-28 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US8339542B2 (en) 2009-06-26 2012-12-25 3M Innovative Properties Company Passive and hybrid daylight-coupled N-stack and collapsible backlights for sunlight viewable displays
US20100328578A1 (en) * 2009-06-26 2010-12-30 Biernath Rolf W Passive and hybrid daylight-coupled n-stack and collapsible backlights for sunlight viewable displays
US20110116012A1 (en) * 2009-11-18 2011-05-19 3M Innovative Properties Company Passive daylight-coupled backlight with turning film having prisms with chaos for sunlight viewable displays
US8228463B2 (en) 2009-11-18 2012-07-24 3M Innovative Properties Company Passive daylight-coupled backlight with turning film having prisms with chaos for sunlight viewable displays
US8411069B1 (en) 2010-05-05 2013-04-02 Bby Solutions, Inc. Touchscreen with a light modulator
US9244555B2 (en) 2010-05-05 2016-01-26 Bby Solutions, Inc. Touchscreen with a light modulator
US8736569B2 (en) 2010-05-05 2014-05-27 Bby Solutions, Inc. Touchscreen with a light modulator
US7876288B1 (en) * 2010-08-11 2011-01-25 Chumby Industries, Inc. Touchscreen with a light modulator
US8384852B2 (en) 2010-11-22 2013-02-26 3M Innovative Properties Company Hybrid daylight-coupled backlights for sunlight viewable displays
US9817304B2 (en) * 2014-03-17 2017-11-14 Casio Computer Co., Ltd. Light source unit having optical device having diffusing layer and dichroic layer, projector, optical device, and optical device manufacturing method
US20150261077A1 (en) * 2014-03-17 2015-09-17 Casio Computer Co., Ltd. Light source unit having optical device having diffusing layer and dichroic layer, projector, optical device, and optical device manufacturing method
US9881562B2 (en) * 2015-01-23 2018-01-30 Samsung Display Co., Ltd. Display apparatus
CN105824147A (en) * 2015-01-23 2016-08-03 三星显示有限公司 Display apparatus
US20160217750A1 (en) * 2015-01-23 2016-07-28 Samsung Display Co. Ltd. Display apparatus
US9904093B2 (en) * 2015-03-26 2018-02-27 Samsung Display Co., Ltd. Display apparatus
US20160282663A1 (en) * 2015-03-26 2016-09-29 Samsung Display Co., Ltd. Display apparatus
US10520782B2 (en) 2017-02-02 2019-12-31 James David Busch Display devices, systems and methods capable of single-sided, dual-sided, and transparent mixed reality applications

Also Published As

Publication number Publication date
TW200419223A (en) 2004-10-01
US6909486B2 (en) 2005-06-21
US20040160551A1 (en) 2004-08-19
TWI246619B (en) 2006-01-01
EP1450202A3 (en) 2005-07-20
US6961108B2 (en) 2005-11-01
US20040263720A1 (en) 2004-12-30
EP1450202A2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US6909486B2 (en) Liquid crystal display viewable under all lighting conditions
US7633583B2 (en) Controlling polarization for liquid crystal displays
US8848114B2 (en) Controlling polarization for liquid crystal displays
CN100385309C (en) Liquid crystal display device using dual light units
US20090015761A1 (en) Combination transparent touch panel liquid crystal display stack and methods of manufacturing same
US20080030656A1 (en) Transflective lc display with internal reflector and reflective polarizer
US6806934B2 (en) Transflective liquid crystal display having dielectric multilayer in LCD cells
US20130002994A1 (en) Integrating emi shiel in liquid crystal display devices
JP2002534712A (en) Reflection-polarized reduction display
WO1997004350A1 (en) Reflection type color liquid crystal device and electronic appliance using the same
US6507380B1 (en) Display device and electronic apparatus using the same
US20050088593A1 (en) Liquid crystal display device
JP2003279988A (en) Liquid crystal display device and electronic appliance
US20060077325A1 (en) Cholesteric liquid crystal light control film
JP2006501516A (en) Liquid crystal display
JP3233649B2 (en) Liquid crystal display device and electronic device using the same
JP3187385B2 (en) Liquid crystal display
JP2003172931A (en) Liquid crystal display device and electronic appliance
CN212031897U (en) Display panel and display device
TW564323B (en) Liquid crystal display device and electronic appliance
WO2017197595A1 (en) Display device
JP2006221050A (en) Liquid crystal display
US6734933B2 (en) Reflection liquid crystal display capable of displaying pictures in improved color purity
WO2000057240A1 (en) Liquid crystal display
JP2002107714A (en) Liquid crystal display device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION