US20050005807A1 - Lead free, composite polymer based bullet and cartridge case, and method of manufacturing - Google Patents

Lead free, composite polymer based bullet and cartridge case, and method of manufacturing Download PDF

Info

Publication number
US20050005807A1
US20050005807A1 US10/695,158 US69515803A US2005005807A1 US 20050005807 A1 US20050005807 A1 US 20050005807A1 US 69515803 A US69515803 A US 69515803A US 2005005807 A1 US2005005807 A1 US 2005005807A1
Authority
US
United States
Prior art keywords
bullet
cartridge case
nylon
composite polymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/695,158
Inventor
Sy Wiley
William Rembert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytech Ammunition Co
Original Assignee
Polytech Ammunition Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytech Ammunition Co filed Critical Polytech Ammunition Co
Priority to US10/695,158 priority Critical patent/US20050005807A1/en
Assigned to POLYTECH AMMUNITION COMPANY reassignment POLYTECH AMMUNITION COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REMBERT, WILLIAM E., III, WILEY, SY
Publication of US20050005807A1 publication Critical patent/US20050005807A1/en
Priority to US11/059,499 priority patent/US20050188879A1/en
Priority to US11/256,687 priority patent/US7213519B2/en
Priority to US11/270,532 priority patent/US7204191B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • F42B12/745Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/025Cartridges, i.e. cases with charge and missile characterised by the dimension of the case or the missile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/36Cartridge cases modified for housing an integral firing-cap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0672Spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/777Weapons
    • B29L2031/7772Cartridges

Definitions

  • the present invention relates to bullets/projectiles (hereinafter referred to as bullets) and cartridge cases. More particularly, the present invention relates to lead free, composite polymer based bullets and cartridge cases, and a method of manufacturing the same.
  • Conventional ammunition typically includes four basic components, that is, the bullet, the cartridge case holding the bullet therein, a propellant used to push the bullet down the barrel at predetermined velocities, and a primer, which provides the spark needed to ignite the powder which sets the bullet in motion down the barrel.
  • the cartridge case is typically formed from brass and is configured to hold the bullet therein to create a predetermined resistance, which is known in the industry as bullet pull.
  • the cartridge case is also designed to contain the propellant media as well as the primer.
  • the bullet is configured to fit within an open end or mouth of the cartridge case and conventionally includes a groove (hereinafter referred to as a cannelure) formed in the mid section of the bullet to accept a crimping action imparted to the metallic cartridge case therein.
  • a bullet pull value is provided representing a predetermined tension at which the cartridge case holds the bullet. The bullet pull value, in effect, assists imparting a regulated pressure and velocity to the bullet when the bullet leaves the cartridge case and travels down the barrel of a gun.
  • the bullet is typically manufactured from a soft material, such as, for example only, lead, wherein the bullet accepts the mouth of the cartridge being crimped to any portion of the bullet to hold the bullet in place in the cartridge case, even though the cartridge case is crimped to the cannelure of the bullet.
  • a soft material such as, for example only, lead
  • the propellant is typically a solid chemical compound in powder form commonly referred to as smokeless powder.
  • Propellants are selected such that when confined within the cartridge case, the propellant burns at a known and predictably rapid rate to produce the desired expanding gases.
  • the expanding gases of the propellant provide the energy force which launches the bullet from the grasp of the cartridge case and propels the bullet down the barrel of the gun at a known and relatively high velocity.
  • the primer is the smallest of the four basic components used to form conventional ammunition. As discussed above, primers provide the spark needed to ignite the powder which sets the bullet in motion down the barrel.
  • the primer includes a relatively s mall metal cup which contains a priming mixture, foil paper, and relatively small metal post, commonly referred to as an anvil.
  • the primer mixture is an explosive lead styphnate blended with non-corrosive fuels and oxidizers which burns through a flash hole formed in the rear area of the cartridge case and ignites the propellant stored in the cartridge case.
  • the primer produces an initial pressure to support the burning propellant and seals the rear of the cartridge case to prevent high-pressure gases from escaping rearward. It should be noted that it is well known in the industry to manufacture primers in several different sizes and from different mixtures, each of which affects ignition differently.
  • the cartridge case which is typically metallic, acts as a payload delivery vessel and can have several body shapes and head configurations, depending on the caliber of the ammunition. Despite the different body shapes and head configurations, all cartridge cases have a feature used to guide the cartridge case, with a bullet held therein, into the chamber of the gun or firearm.
  • the primary objective of the cartridge case is to hold the bullet, primer, and propellant therein until the gun is fired.
  • the cartridge case Upon firing of the gun, the cartridge case seals the chamber to prevent the hot gases from escaping the chamber in a rearward direction and harming the shooter.
  • the empty cartridge case is extracted manually or with the assistance of gas or recoil from the chamber once the gun is fired.
  • a bottleneck cartridge case 10 shown in FIG. 1 is used with rifles.
  • a straight inner walled cartridge case 20 shown in FIG. 2 has inner walls of the cartridge case that are substantially parallel with a longitudinal axis of the case, which is commonly used with pistols.
  • a tapered straight inner walled cartridge case 30 shown in FIG. 3 has inner walls that are oblique or not parallel relative to the longitudinal axis of the case and is commonly used with revolvers.
  • the bottleneck cartridge case 10 has a body 11 formed with a shoulder 12 that tapers into a neck 13 having a mouth at a first end.
  • a primer holding chamber 15 is formed at a second end of the body opposite the first end.
  • a web area 16 separates a main cartridge case holding chamber 17 , which contains a propellant, from the primer holding chamber 15 , which communicate with each other via a flash hole channel 18 formed in the web area 16 .
  • An exterior circumferential region of the rear end of the cartridge case includes an extraction groove 19 a and a rim 19 b.
  • the straight inner walled cartridge case 20 does not include a shoulder that tapers to a neck 23 at the first end of the cartridge case 20 . Furthermore, the straight inner walled cartridge case 20 does not have a rim significantly larger than a case diameter D 20 and is commonly referred to as a rimless case in the industry. Likewise, the tapered straight wall cartridge case 30 shown in FIG. 3A differs from the cartridge case 20 shown in FIG. 2 as it has interior tapered walls and a rim 39 b larger than a case diameter D 30 .
  • FIG. 3B is an enlarged view of a lip lock 32 provided in the vicinity of the mouth 34 of the cartridge case 30 .
  • the lip lock 32 includes a first, generally straight portion 32 a , which is orthogonal to a longitudinal axis of the case 30 ; a second, generally straight portion 32 b , which is parallel to the longitudinal axis of the case 30 and orthogonal to the first straight portion 32 a ; and a slanted portion 32 c , which is oblique relative to the longitudinal axis of the cartridge case 30 and both straight portions 32 a and 32 b .
  • the lip lock 32 is used to securely grip a bullet (not shown).
  • manufacturers must take as many as twenty three ( 23 ) steps to manufacture a brass cartridge case from a rolled strip of brass material.
  • loading which is the step where the cartridge case is loaded with the powder and bullet, the brass cartridge case is crimped to the bullet so that the bullet is held therein. It is well understood that crimping is necessary to assist in creating the pressure needed for satisfactory ballistic performance.
  • Ballistic performance is a set of measurable events resulting from the combination of a particular bullet weight placed over a particular propellant charge to be ignited by a priming method of predetermined size that establishes the pressure build up needed to propel the bullet at a desired velocity.
  • case walls 41 a and 41 b of the brass cartridge cases 40 are typically crimped at a mouth 44 onto the bullet B to hold the bullet B in place.
  • the contact surface is the wall thickness of the brass cartridge case 40 at the point the cartridge case 40 is crimped.
  • the cartridge case 50 may be tapered from a rear end 51 to the mouth 54 , as shown in FIG. 5 , so as to create a press fit P at the mouth 54 of the case 50 , which causes the bullet B to be held in place over a larger bearing surface.
  • adhesives may be used to hold the cartridge case and bullet assembly together to assist in providing a desired pressure.
  • Some commercial, law enforcement, and military firearms ammunitions are assembled with adhesives to provide an increased pressure where a simple crimping step is not sufficient.
  • green bullets In the late 1990's it was reported that the military would begin the use of so-called green bullets. Supposedly, such green bullets would be made of high-density materials, such as tungsten, mixed with lighter materials, such as tin and zinc. It was also reported that tungsten-nylon cores could be used. However, no specific range of ingredients was ever provided. It should be noted that the green bullets were fabricated with copper jackets. See Mikko, Assoc. of Firearm and Tool Mark Exam. Journ., vol. 31, No. 4, Fall 1999; USA Today, “‘Green’ Army bullets to get the lead out,” and Environmental Update, Fall 1999.
  • WO 88/09476 to Booth discloses a bullet made of materials having a specific gravity of 3 to 7, a matrix of plastic material, such as nylon 6 or nylon 6/6, and a filler of a finely divided metal, such as copper, bronze or tungsten.
  • Nylon is incorporated in an amount of 8% or 11% by weight.
  • the filler material is present in essentially the remainder amount. Either one of the nylon 6/6 or nylon 6 is explained as being used in amounts of up to 20% by weight. Booth does not disclose using both nylon materials together in the same bullet.
  • U.S. Pat. No. 5,616,642 to West et al. discloses a bullet containing a high density powder, such as copper, tungsten, bismuth, ceramic or stainless steel, i n an amount of at least 85%, dispersed in a polyester matrix, such as polybutylene terephthalate or polyethylene terephthalate.
  • a high density powder such as copper, tungsten, bismuth, ceramic or stainless steel, i n an amount of at least 85%, dispersed in a polyester matrix, such as polybutylene terephthalate or polyethylene terephthalate.
  • U.S. Pat. No. 6,048,379 to Bray et al. discloses a bullet made of tungsten, a fiber, such as stainless steel, copper, aluminum, nylon, Kevlar, Spectra, nickel, glass or carbon, and a binder material, such as nylon 12 or a polyester elastomer.
  • Bray et al. indicate nylon 6/6 and nylon 6 are resins that are not suitable as binders. See column 10, lines 18-19.
  • U.S. Pat. No. 6,257,149 to Cesaroni discloses a bullet having a core made of a polymer, such as ethylene/methacrylic acid copolymer ionomers, polyetherester elastomers or polyamides, such as nylon 11 or nylon 12, and a jacket made of copper, nylon 6/6, nylon 6/12, nylon 4/12, flexible nylon, nylon 6 or nylon 11.
  • a polymer such as ethylene/methacrylic acid copolymer ionomers, polyetherester elastomers or polyamides, such as nylon 11 or nylon 12
  • a jacket made of copper, nylon 6/6, nylon 6/12, nylon 4/12, flexible nylon, nylon 6 or nylon 11.
  • the Sporting Arms and Ammunition Manufactures Institute (hereinafter referred to as “S.A.A.M.I.”) established a bullet pull for all calibers that creates a desired pressure to deliver the desired ballistics.
  • the United States Military has also established bullet pull specifications that achieve the products desired ballistic performance.
  • FIG. 1 is a cross sectional view of a conventional bottleneck cartridge case used with rifles
  • FIG. 2 is a cross sectional view of a straight walled rimless cartridge case used with pistols;
  • FIG. 3A is a cross sectional view of a tapered straight walled cartridge case having a rim and used with revolvers;
  • FIG. 3B is an enlarged view of a lip lock provided near a mouth of the cartridge case illustrated in FIG. 3 ;
  • FIG. 4 is a schematic diagram illustrating how a conventional cartridge case is bent in the mouth region to hold the bullet therein;
  • FIG. 5 is a schematic diagram illustrating how a conventional cartridge case is tapered from the base of the case to the mouth region to press fit the case onto the bullet;
  • FIG. 6 is a cross sectional view of a cartridge case according to a first embodiment of the present invention.
  • FIG. 7 is an enlarged view of the lip lock of the cartridge case shown in FIG. 6 ;
  • FIG. 8 is a cross sectional view of the cartridge case shown in FIG. 6 holding a corresponding caliber bullet;
  • FIG. 9 is a cross sectional view of a cartridge case according to a second embodiment of the present invention.
  • FIG. 10 is a an enlarged view of the lip lock o f t he cartridge case shown in FIG. 9 ;
  • FIG. 11 is a cross sectional view of the cartridge case shown in FIG. 9 holding a corresponding caliber bullet;
  • FIG. 12 is a table of a ballistic chart
  • FIGS. 13 A-C illustrate a method for producing an all-polymer injection molded cartridge case.
  • the present invention provides a cartridge case body strong enough to withstand gas pressures that equal or surpass the strength of brass cartridge cases under certain conditions. Furthermore, the present invention provides a lead free, composite polymer based bullet having a specific gravity high enough to perform as well as if not better than conventional lead based bullets.
  • FIG. 6 illustrates a first embodiment of the invention.
  • a cartridge case 60 for holding a 0.45 caliber bullet therein is shown.
  • the cartridge case satisfies S.A.A.M.I. requirements for 0.45 caliber ammunition.
  • the cartridge case 60 has a front end that holds the bullet (not shown) and a rear end that holds the primer.
  • a length I of the cartridge case 60 from a front end face 61 to a rear end face 62 ranges from about 0.888 in. to 0.898 in., and preferably is about 0.894 in.
  • An outer diameter D M of the cartridge case 60 at a mouth 63 is about 0.467 in. to 0.473 in., and preferably is about 0.470 in.
  • an outer diameter D P at a rear end 64 of the cartridge case 60 is about 0.469 in. to 0.476 in. and preferably is about 0.471 in.
  • the rear end 64 of the cartridge case 60 has a groove 65 formed therein with a thickness G T that ranges from about 0.036 in. to 0.39 in., and preferably is about 0.38 in. and a depth G D that ranges from about 0.037 in. to 0.043 in., and preferably is about 0.040 in. (see FIG. 8 )
  • the groove 65 defines a rim 66 at the most rearward point of the cartridge case 60 , wherein the rim 66 has an outer diameter D R that ranges between about 0.470 in. and 0.476 in., and preferably is about 0.474 in. and a width W R that ranges between about 0.039 in. and 0.049 in., and preferably is about 0.045 in.
  • a primer holding chamber 66 Radially inward relative to the groove 65 is a primer holding chamber 66 , which has an outer diameter D PC that ranges from about 0.203 in. to 0.210 in., and is preferably about 0.207 in. and a depth dpc that ranges from about 0.115 in. to 0.120 in., and preferably is about 0.117 in.
  • a bullet holding chamber 67 and the primer holding chamber 66 define a web 68 in the portion of a cartridge case body 69 therebetween, wherein the web 68 has a thickness W T that ranges between about 0.047 in. and 0.100 in., and preferably is about 0.050 in.
  • the primer holding chamber 66 communicates with the bullet holding chamber 67 via a flash hole 70 formed in the web 68 , wherein the flash hole 70 has an outer diameter D FH that ranges between about 0.077 in. to 0.83 in., and preferably is about 0.80 in.
  • the cartridge case 60 has a substantially cylindrical configuration with inner walls 71 , 71 that taper from a rear end 72 of the bullet chamber 67 toward the mouth 63 located at the front end of the bullet chamber 67 .
  • the taper of the cartridge case inner walls 71 , 71 transitions to walls 73 , 73 that are parallel relative to a longitudinal axis x-x of the cartridge case 60 .
  • the transition occurs at a region of the case that is intermediate relative to the rear and front ends of the bullet chamber 67 and is referred to as a blend point 74 .
  • a lip lock 75 is located at the most forward point of the cartridge case body 69 to define the mouth 63 of the cartridge case 60 .
  • the lip lock 75 holds the bullet (not shown) in the cartridge case 60 .
  • FIG. 7 shows an enlarged view of the lip lock 75 , which has a base portion 75 a that coincides with the outer surface of the cartridge case and is about 0.010 in. to 0.030 in. in length, and preferably is about 0.020 in. in length.
  • the lip lock 75 has a unique configuration which is variable from an asymmetrical shape having a tapered rearward portion (as shown) to various symmetrical configurations depending on the desired bullet holding requirements.
  • a taper portion 75 b of the lip lock 75 has a thickness that is about 0.010 in. and a width that ranges from about 0.020 in. at the widest portion to a width that corresponds to the length of the engaging portion.
  • An engaging portion 75 c of the lip lock 75 has a length leg ranging from about 0.008 in. to 0.012 in., and preferably is about 0.010 in.
  • the engaging portion 75 c of the lip lock 75 should have a length leg that does not exceed the overall width of a cannelure formed in the bullet (not shown), which will be described below, such that the engaging portion 75 c of the lip lock 75 is able to fit within the bullet lip lock cannelure.
  • the base portion 75 a of the lip lock 75 is parallel relative to the engaging portion 75 c , but it is within the scope of this invention to arrange the engaging portion 75 c to be oblique relative to the base portion 75 a.
  • the cartridge case 60 and bullet are manufactured by an injection molding process from a composite polymer by feeding the polymer through an injection molding apparatus. Because the cartridge case 60 is manufactured from a composite polymer, the walls of the cartridge case 60 from the mouth 63 to the blend 74 are able to be bent either radially inward toward the longitudinal axis x-x of the case or radially outward away from the longitudinal axis x-x. The flexibility of the case walls permit the mouth 63 to be temporarily expanded to receive the corresponding bullet, which is also manufactured from a composite polymer that may or may not be the same as the composite polymer used to manufacture the cartridge case. Properly prepared with the correct corresponding groove, conventional lead or jacketed bullets can be used with the polymer cartridge case design described herein.
  • the bullet B has an outer diameter D B that ranges between 0.450 in. to 0.453 in., and preferably is 0.451 in. (see FIG. 6 )
  • the bullet B ( FIG. 8 ) has a cannelure 80 formed on an outer circumferential surface at a location that permits the engaging portion 75 c of the lip lock 75 to be inserted therein and wherein the bullet B is not inserted beyond the blend 74 on the inner walls 71 , 71 of the case body 69 .
  • the bullet is inserted into the bullet holding chamber 67 of the cartridge case 60 by slightly expanding the mouth 63 until the bullet cannelure 80 coincides with the engaging portion 75 c of the lip lock 75 .
  • the lip lock 75 is then permitted to snap back to an original position wherein the engaging portion 75 c of the lip lock 75 matingly engages the cannelure 80 of the bullet B. See FIG. 8 .
  • the lip lock 75 provides enough resistance to provide the required bullet pull value of approximately 5 to 20 pounds, which is greatly reduced from conventional bullet pull values for brass cartridge cases, which are approximately 35 to 65 pounds.
  • U.S. Military Specifications require a higher bullet pull in some cases to assure that certain Legacy Weapons Systems will fully function properly. In these cases, the bullet pull of this invention can be increased to accommodate any U.S. Military Weapon Systems.
  • the lip lock 75 also prevents creeping of the bullet. Creep occurs when a bullet moves forward in its case due to recoil generated by the firing of adjacent cartridges. In a semi-automatic pistol, creep can cause cartridges to jam in the magazine and/or prevent proper feeding into the chamber due to excessive overall length, which would render the pistol inoperable.
  • the overall length l 60 of the cartridge case 60 and bullet B held therein ranges from about 1.190 in. to 1.270 in. and is preferably about 1.263 in. in length. Furthermore, when the firearm is fired, the lip lock 75 permits the smooth release of the bullet B, which enhances the accuracy of the firearm.
  • FIGS. 9-11 show a second embodiment of the invention, and in particular, a cartridge case 100 for holding a 38 special caliber bullet.
  • the cartridge case 100 satisfies S.A.A.M.I. requirements for 38 special caliber ammunition.
  • a length l′ of the cartridge case 100 from a front end face 161 to a rear end face 162 ranges from about 1.135 in. to 1.155 in., and preferably is about 1.154 in.
  • An outer diameter D 100 of the cartridge case 100 at a mouth 163 is about 0.372 in. to 0.379 in., and preferably is about 0.374 in.
  • an outer diameter D P2 at a primer end is about 0.372 in. to 0.376 in. and preferably is about 0.374 in.
  • a rear end 164 of the cartridge case 100 has a rim 166 formed thereon, wherein the rim 166 has an outer diameter D R2 that ranges between about 0.428 in. and 0.440 in., and preferably is about 0.433 in. and a width W R2 that ranges between about 0.048 in. and 0.059 in., and preferably is about 0.056 in.
  • a primer holding chamber 166 Radially inward relative to a groove 165 is a primer holding chamber 166 , which has an outer diameter D PC2 that ranges from about 0.168 in. to 0.175 in., and is preferably about 0.171 in. and a depth that ranges from about 0.115 in. to 0.120 in., and preferably is about 0.117 in.
  • a bullet holding chamber 167 and the primer holding chamber 166 define a web 168 in the portion of the cartridge case body therebetween, wherein the web 168 has a thickness that ranges between about 0.047 in. and 0.100 1 in, and preferably is about 0.050 in.
  • the primer holding chamber 166 communicates with the bullet holding chamber 167 via a flash hole 170 formed in the web 168 .
  • the flash hole 170 has an outer diameter D FH2 that ranges between about 0.077 in. to 0.83 in., and preferably is about 0.80 in. (see FIG. 11 )
  • the cartridge case 100 has a substantially cylindrical configuration with inner walls 171 that taper from a rear end 172 of the bullet holding chamber 167 toward the mouth 163 located at the front end of the case.
  • the taper of the cartridge case inner walls 171 transitions to walls that are parallel relative to the longitudinal axis of the cartridge case 100 . The transition occurs at a region of the case intermediate relative to the rear end 172 and mouth 163 of the case 100 and is referred to as a blend point 174 .
  • a lip lock 175 is located at the most forward point of the cartridge case body and defines the mouth 163 of the cartridge case 100 .
  • the lip lock 175 holds the bullets in the cartridge case 100 .
  • the lip lock 175 also prevents creeping of the bullets. Creep occurs when the bullet S moves forward in the case 100 due to recoil caused by firing of adjacent cartridges. In a revolver, creep will allow the bullet to protrude out of the cylinder, preventing its rotation (causing a jam), thus rendering the firearm inoperable.
  • FIG. 10 shows an enlarged view of the lip lock 175 , which has a base portion 175 a that coincides with the outer surface of the cartridge case 100 and is about 0.018 in. to 0.022 in. in length, and preferably is about 0.020 in. in length.
  • the lip lock 175 has a taper portion 175 b that tapers from the base portion 175 a to an engaging portion 175 c , wherein the taper portion 175 b has a thickness that is about 0.010 in. and a width that ranges from about 0.020 in. at the widest portion to a width that corresponds to the length of the engaging portion 175 c .
  • the engaging portion 175 c has a length ranging from about 0.008 in. to 0.012 in., and preferably is about 0.010 in.
  • the bullet S has an outer diameter that ranges between about 0.355 in. to 0.359 in., and preferably is about 0.357 in. Furthermore, the bullet S has a cannelure 180 formed on an outer circumferential surface at a location that permits the engaging portion 175 c of the lip lock 175 to be inserted therein.
  • the bullet S is inserted into the bullet holding chamber 167 until the bullet cannelure 180 coincides with the engaging portion 175 c of the lip lock 175 .
  • the lip lock 175 is then permitted to snap back to an original position wherein the engaging portion 175 c of the lip lock 175 matingly engages the bullet cannelure 180 .
  • the lip lock 175 provides enough resistance to provide a bullet pull of about 5 to 20 pounds which is greatly reduced from conventional bullet pull values for brass cartridge cases, which is about 35 pounds.
  • An overall length l 100 of the cartridge case 100 and bullet S held therein ranges from about 1.400 in. to 1.550 in. and is preferably about 1.531 in. in length.
  • the lip lock 175 permits the smooth release of the bullet S, which enhances the accuracy of the firearm.
  • the cartridge case and bullet are manufactured by feeding a composite polymer through an injection molding machine into molds configured to the particular geometric shapes of the case and caliber of bullet, respectively.
  • the entire and complete cartridge case is manufactured or molded in a single operation.
  • the entire and complete bullet is manufactured or molded in a single operation.
  • the dimensions for the molds are selected to allow the proper shrinkage of the composite polymer material to achieve the desired specifications and/or caliber.
  • the cartridge case is strong enough to provide the same pressure retention benefits as brass cartridge cases, and when the same propellant is used, the lead free, composite polymer cartridge case of the present invention delivers the same velocities as brass cartridge cases, but at a substantially lower pressure curve.
  • the lead free, composite polymer cartridge case of the present invention provides bullet pull values that are 700% to 1400% less.
  • a first embodiment of the lead free, composite polymer material is suitable for the bullet.
  • the polymer material includes, by weight, a tungsten metal powder in the range of about 50-96%, preferably about 60-95%, and most preferably about 70-90%, of the overall composition of the polymer material. It is most suitable that the tungsten metal powder be present in at least 70% by weight.
  • the polymer material also includes about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6/6, about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6, and about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of glass fibers. It is most suitable that each of these ingredients be included in amounts less than 10% by weight.
  • the polymer material according to the first embodiment preferably has a specific gravity of 3-10, more preferably 6-9, and most preferably 7.5-8.5.
  • the polymer material has a specific gravity which permits the molded bullet to provide a user with a point of aim that is comparable to that of the conventional lead products.
  • a bullet formed in accordance with the present invention is environmentally friendly as it does not have any lead, performs ballistically similar to conventional bullets, has a lower weight while using the same firearm hold characteristics, and can be produced at a substantially lower manufacturing cost.
  • the composite polymer material of the first embodiment preferably encapsulates the tungsten powder such that the composite polymer bullet does not wear down the barrel of the firearm, which results in a longer life for the firearm.
  • the properties of the selected polymer material provide several advantages over the conventionally used brass and lead materials used for cartridge cases and bullets, respectively.
  • the polymer material provides a way for the cartridge case to hold the bullet that replaces crimping and eliminates a need to use adhesives in cases where adhesives are required to provide the proper bullet pull properties when using brass cases.
  • the unique lip lock design permits the cartridge case to be snapped into the corresponding cannelure of the bullet.
  • Brass cartridge cases tend to form to the chamber walls when fired.
  • the composite polymer cartridge case of the present invention flexes during firing, but the material memory returns the cartridge case to its original dimensions. Accordingly, the combination of the composite polymer material returning to its original dimension after firing, the lubricity of the polymer aid extraction in contrast to brass, which ultimately inhibits extraction.
  • FIGS. 13 A-C illustrate a method for producing an all-polymer, injection molded bottleneck cartridge case 200 , wherein FIG. 13A illustrates a base 210 , FIG. 13B illustrates a case 230 , and FIG. 13C illustrates the case 200 after assembly.
  • the bottleneck shaped case is produced by molding two separate parts, i.e., a case body 231 having a bottleneck configuration, and a base 210 .
  • the base 210 includes a rim 211 defining an extractor groove 212 having a ramp 213 .
  • a web 214 defines a flash hole 215 therethrough, wherein the flash hole 215 leads to a primer holding chamber 216 .
  • the base 210 and case 230 are welded together in a secondary production operation.
  • the base 210 and case 230 must have a weld joint profile 216 and 232 , respectively, molded into each of the two parts.
  • the weld joint profiles are designed to accommodate a welding process, which can include ultrasonic, spin or laser welding. The welding procedure will be dictated by the choice of polymer material for the cartridge being manufactured.
  • An important design feature of the base 210 is the thickness of the web 214 . In some types of firearms, the chamber does not fully support the base end of the cartridge case. In order to maximize the strength of the base in this area, the flash hole channel of the present invention can be extended by making the web 214 relatively wider. Consequently, such a design allows the explosive force of the primer and gunpowder ignition to take place in the area of the chamber where the case is fully supported.

Abstract

A lead-free, composite polymer based bullet and cartridge case and methods of manufacturing the same, wherein the composite polymer material includes a tungsten metal powder, nylon 6/6, nylon 6, short glass fibers, as well as additives and stabilizers. The cartridge case includes a lip lock configured to matingly engage a cannelure formed along an outer circumferential surface of the bullet. The cartridge case also includes resilient walls wherein the case may snap fit onto the bullet. The bullet and cartridge case may be formed in a single step process by injection molding or a two step process including injection molding and a welding process.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This non-provisional application claims the benefit of U.S. Provisional patent application Ser. No. 60/421,782, filed Oct. 29, 2002.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to bullets/projectiles (hereinafter referred to as bullets) and cartridge cases. More particularly, the present invention relates to lead free, composite polymer based bullets and cartridge cases, and a method of manufacturing the same.
  • 2. Description of Related Art
  • It is well known in the industry to manufacture bullets and corresponding cartridge cases from either brass or steel. Typically, industry design calls for materials that are strong enough to withstand extreme operating pressures and which can be formed into a cartridge case to hold the bullet, while simultaneously resist rupturing during the firing process.
  • Conventional ammunition typically includes four basic components, that is, the bullet, the cartridge case holding the bullet therein, a propellant used to push the bullet down the barrel at predetermined velocities, and a primer, which provides the spark needed to ignite the powder which sets the bullet in motion down the barrel.
  • The cartridge case is typically formed from brass and is configured to hold the bullet therein to create a predetermined resistance, which is known in the industry as bullet pull. The cartridge case is also designed to contain the propellant media as well as the primer.
  • The bullet is configured to fit within an open end or mouth of the cartridge case and conventionally includes a groove (hereinafter referred to as a cannelure) formed in the mid section of the bullet to accept a crimping action imparted to the metallic cartridge case therein. When the crimped portion of the cartridge case holds the bullet by locking into the cannelure, a bullet pull value is provided representing a predetermined tension at which the cartridge case holds the bullet. The bullet pull value, in effect, assists imparting a regulated pressure and velocity to the bullet when the bullet leaves the cartridge case and travels down the barrel of a gun.
  • Furthermore, the bullet is typically manufactured from a soft material, such as, for example only, lead, wherein the bullet accepts the mouth of the cartridge being crimped to any portion of the bullet to hold the bullet in place in the cartridge case, even though the cartridge case is crimped to the cannelure of the bullet.
  • The propellant is typically a solid chemical compound in powder form commonly referred to as smokeless powder. Propellants are selected such that when confined within the cartridge case, the propellant burns at a known and predictably rapid rate to produce the desired expanding gases. As discussed above, the expanding gases of the propellant provide the energy force which launches the bullet from the grasp of the cartridge case and propels the bullet down the barrel of the gun at a known and relatively high velocity.
  • The primer is the smallest of the four basic components used to form conventional ammunition. As discussed above, primers provide the spark needed to ignite the powder which sets the bullet in motion down the barrel. The primer includes a relatively s mall metal cup which contains a priming mixture, foil paper, and relatively small metal post, commonly referred to as an anvil.
  • When a firing pin of a gun or firearm strikes a casing of the primer, the anvil is crushed to ignite the priming mixture contained in the metal cup of the primer. Typically, the primer mixture is an explosive lead styphnate blended with non-corrosive fuels and oxidizers which burns through a flash hole formed in the rear area of the cartridge case and ignites the propellant stored in the cartridge case. In addition to igniting the propellant, the primer produces an initial pressure to support the burning propellant and seals the rear of the cartridge case to prevent high-pressure gases from escaping rearward. It should be noted that it is well known in the industry to manufacture primers in several different sizes and from different mixtures, each of which affects ignition differently.
  • The cartridge case, which is typically metallic, acts as a payload delivery vessel and can have several body shapes and head configurations, depending on the caliber of the ammunition. Despite the different body shapes and head configurations, all cartridge cases have a feature used to guide the cartridge case, with a bullet held therein, into the chamber of the gun or firearm.
  • The primary objective of the cartridge case is to hold the bullet, primer, and propellant therein until the gun is fired. Upon firing of the gun, the cartridge case seals the chamber to prevent the hot gases from escaping the chamber in a rearward direction and harming the shooter. The empty cartridge case is extracted manually or with the assistance of gas or recoil from the chamber once the gun is fired.
  • There are three common cartridge case designs that are well known in the industry. In particular, a bottleneck cartridge case 10 shown in FIG. 1 is used with rifles. A straight inner walled cartridge case 20 shown in FIG. 2 has inner walls of the cartridge case that are substantially parallel with a longitudinal axis of the case, which is commonly used with pistols. A tapered straight inner walled cartridge case 30 shown in FIG. 3 has inner walls that are oblique or not parallel relative to the longitudinal axis of the case and is commonly used with revolvers.
  • As shown in FIG. 1, the bottleneck cartridge case 10 has a body 11 formed with a shoulder 12 that tapers into a neck 13 having a mouth at a first end. A primer holding chamber 15 is formed at a second end of the body opposite the first end. A web area 16 separates a main cartridge case holding chamber 17, which contains a propellant, from the primer holding chamber 15, which communicate with each other via a flash hole channel 18 formed in the web area 16. An exterior circumferential region of the rear end of the cartridge case includes an extraction groove 19 a and a rim 19 b.
  • As can be seen in FIG. 2, the straight inner walled cartridge case 20 does not include a shoulder that tapers to a neck 23 at the first end of the cartridge case 20. Furthermore, the straight inner walled cartridge case 20 does not have a rim significantly larger than a case diameter D20 and is commonly referred to as a rimless case in the industry. Likewise, the tapered straight wall cartridge case 30 shown in FIG. 3A differs from the cartridge case 20 shown in FIG. 2 as it has interior tapered walls and a rim 39 b larger than a case diameter D30.
  • FIG. 3B is an enlarged view of a lip lock 32 provided in the vicinity of the mouth 34 of the cartridge case 30. The lip lock 32 includes a first, generally straight portion 32 a, which is orthogonal to a longitudinal axis of the case 30; a second, generally straight portion 32 b, which is parallel to the longitudinal axis of the case 30 and orthogonal to the first straight portion 32 a; and a slanted portion 32 c, which is oblique relative to the longitudinal axis of the cartridge case 30 and both straight portions 32 a and 32 b. The lip lock 32 is used to securely grip a bullet (not shown).
  • Typically, manufacturers must take as many as twenty three (23) steps to manufacture a brass cartridge case from a rolled strip of brass material. During loading, which is the step where the cartridge case is loaded with the powder and bullet, the brass cartridge case is crimped to the bullet so that the bullet is held therein. It is well understood that crimping is necessary to assist in creating the pressure needed for satisfactory ballistic performance.
  • Ballistic performance is a set of measurable events resulting from the combination of a particular bullet weight placed over a particular propellant charge to be ignited by a priming method of predetermined size that establishes the pressure build up needed to propel the bullet at a desired velocity.
  • As shown in the schematic diagram of FIG. 4, case walls 41 a and 41 b of the brass cartridge cases 40 are typically crimped at a mouth 44 onto the bullet B to hold the bullet B in place. The contact surface is the wall thickness of the brass cartridge case 40 at the point the cartridge case 40 is crimped.
  • Alternatively, the cartridge case 50 may be tapered from a rear end 51 to the mouth 54, as shown in FIG. 5, so as to create a press fit P at the mouth 54 of the case 50, which causes the bullet B to be held in place over a larger bearing surface.
  • In yet another alternative, adhesives may be used to hold the cartridge case and bullet assembly together to assist in providing a desired pressure. Some commercial, law enforcement, and military firearms ammunitions are assembled with adhesives to provide an increased pressure where a simple crimping step is not sufficient.
  • In the late 1990's it was reported that the military would begin the use of so-called green bullets. Supposedly, such green bullets would be made of high-density materials, such as tungsten, mixed with lighter materials, such as tin and zinc. It was also reported that tungsten-nylon cores could be used. However, no specific range of ingredients was ever provided. It should be noted that the green bullets were fabricated with copper jackets. See Mikko, Assoc. of Firearm and Tool Mark Exam. Journ., vol. 31, No. 4, Fall 1999; USA Today, “‘Green’ Army bullets to get the lead out,” and Environmental Update, Fall 1999.
  • Several patents for green bullets have been issued.
  • For example, WO 88/09476 to Booth discloses a bullet made of materials having a specific gravity of 3 to 7, a matrix of plastic material, such as nylon 6 or nylon 6/6, and a filler of a finely divided metal, such as copper, bronze or tungsten. In the preferred compositions, Nylon is incorporated in an amount of 8% or 11% by weight. The filler material is present in essentially the remainder amount. Either one of the nylon 6/6 or nylon 6 is explained as being used in amounts of up to 20% by weight. Booth does not disclose using both nylon materials together in the same bullet.
  • U.S. Pat. No. 5,616,642 to West et al. discloses a bullet containing a high density powder, such as copper, tungsten, bismuth, ceramic or stainless steel, i n an amount of at least 85%, dispersed in a polyester matrix, such as polybutylene terephthalate or polyethylene terephthalate.
  • U.S. Pat. No. 6,048,379 to Bray et al. discloses a bullet made of tungsten, a fiber, such as stainless steel, copper, aluminum, nylon, Kevlar, Spectra, nickel, glass or carbon, and a binder material, such as nylon 12 or a polyester elastomer. Bray et al. indicate nylon 6/6 and nylon 6 are resins that are not suitable as binders. See column 10, lines 18-19.
  • U.S. Pat. No. 6,257,149 to Cesaroni discloses a bullet having a core made of a polymer, such as ethylene/methacrylic acid copolymer ionomers, polyetherester elastomers or polyamides, such as nylon 11 or nylon 12, and a jacket made of copper, nylon 6/6, nylon 6/12, nylon 4/12, flexible nylon, nylon 6 or nylon 11.
  • As stated above, the test for all methods of holding the bullet within a cartridge case is commonly known as bullet pull. The Sporting Arms and Ammunition Manufactures Institute (hereinafter referred to as “S.A.A.M.I.”) established a bullet pull for all calibers that creates a desired pressure to deliver the desired ballistics. The United States Military has also established bullet pull specifications that achieve the products desired ballistic performance.
  • SUMMARY OF THE INVENTION
  • It is an aspect of the present invention to provide a bullet, a cartridge case, and method of manufacturing the same that overcome the drawbacks of the conventional brass or lead bullets, cartridge case, and laborious, yet required, methods of manufacturing given the material compositions of the same.
  • In particular, it is an aspect of the present invention to provide a lead free, composite polymeric bullet and cartridge case, and method of manufacturing the same by injection molding requiring one or two steps, dependent on the cartridge caliber, to manufacture the cartridge case as opposed to the twenty three steps commonly needed to prepare the conventional brass cartridge cases. Furthermore, the present invention also manufactures bullets in a single step by injection molding, as opposed to as many as six (6) steps needed to manufacture the conventional lead based bullets.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other aspects and features of the present invention will be better understood from the following description, with reference to the accompanying drawings, wherein:
  • FIG. 1 is a cross sectional view of a conventional bottleneck cartridge case used with rifles;
  • FIG. 2 is a cross sectional view of a straight walled rimless cartridge case used with pistols;
  • FIG. 3A is a cross sectional view of a tapered straight walled cartridge case having a rim and used with revolvers;
  • FIG. 3B is an enlarged view of a lip lock provided near a mouth of the cartridge case illustrated in FIG. 3;
  • FIG. 4 is a schematic diagram illustrating how a conventional cartridge case is bent in the mouth region to hold the bullet therein;
  • FIG. 5 is a schematic diagram illustrating how a conventional cartridge case is tapered from the base of the case to the mouth region to press fit the case onto the bullet;
  • FIG. 6 is a cross sectional view of a cartridge case according to a first embodiment of the present invention;
  • FIG. 7 is an enlarged view of the lip lock of the cartridge case shown in FIG. 6;
  • FIG. 8 is a cross sectional view of the cartridge case shown in FIG. 6 holding a corresponding caliber bullet;
  • FIG. 9 is a cross sectional view of a cartridge case according to a second embodiment of the present invention;
  • FIG. 10 is a an enlarged view of the lip lock o f t he cartridge case shown in FIG. 9;
  • FIG. 11 is a cross sectional view of the cartridge case shown in FIG. 9 holding a corresponding caliber bullet;
  • FIG. 12 is a table of a ballistic chart; and
  • FIGS. 13A-C illustrate a method for producing an all-polymer injection molded cartridge case.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention provides a cartridge case body strong enough to withstand gas pressures that equal or surpass the strength of brass cartridge cases under certain conditions. Furthermore, the present invention provides a lead free, composite polymer based bullet having a specific gravity high enough to perform as well as if not better than conventional lead based bullets.
  • FIG. 6 illustrates a first embodiment of the invention. In particular, a cartridge case 60 for holding a 0.45 caliber bullet therein is shown. The cartridge case satisfies S.A.A.M.I. requirements for 0.45 caliber ammunition.
  • For example, the cartridge case 60 has a front end that holds the bullet (not shown) and a rear end that holds the primer. A length I of the cartridge case 60 from a front end face 61 to a rear end face 62 ranges from about 0.888 in. to 0.898 in., and preferably is about 0.894 in. An outer diameter DM of the cartridge case 60 at a mouth 63 is about 0.467 in. to 0.473 in., and preferably is about 0.470 in. and an outer diameter DP at a rear end 64 of the cartridge case 60 is about 0.469 in. to 0.476 in. and preferably is about 0.471 in.
  • The rear end 64 of the cartridge case 60 has a groove 65 formed therein with a thickness GT that ranges from about 0.036 in. to 0.39 in., and preferably is about 0.38 in. and a depth GD that ranges from about 0.037 in. to 0.043 in., and preferably is about 0.040 in. (see FIG. 8) The groove 65 defines a rim 66 at the most rearward point of the cartridge case 60, wherein the rim 66 has an outer diameter DR that ranges between about 0.470 in. and 0.476 in., and preferably is about 0.474 in. and a width WR that ranges between about 0.039 in. and 0.049 in., and preferably is about 0.045 in.
  • Radially inward relative to the groove 65 is a primer holding chamber 66, which has an outer diameter DPC that ranges from about 0.203 in. to 0.210 in., and is preferably about 0.207 in. and a depth dpc that ranges from about 0.115 in. to 0.120 in., and preferably is about 0.117 in.
  • A bullet holding chamber 67 and the primer holding chamber 66 define a web 68 in the portion of a cartridge case body 69 therebetween, wherein the web 68 has a thickness WT that ranges between about 0.047 in. and 0.100 in., and preferably is about 0.050 in. The primer holding chamber 66 communicates with the bullet holding chamber 67 via a flash hole 70 formed in the web 68, wherein the flash hole 70 has an outer diameter DFH that ranges between about 0.077 in. to 0.83 in., and preferably is about 0.80 in.
  • As shown in FIG. 6, the cartridge case 60 has a substantially cylindrical configuration with inner walls 71, 71 that taper from a rear end 72 of the bullet chamber 67 toward the mouth 63 located at the front end of the bullet chamber 67. The taper of the cartridge case inner walls 71, 71 transitions to walls 73, 73 that are parallel relative to a longitudinal axis x-x of the cartridge case 60. The transition occurs at a region of the case that is intermediate relative to the rear and front ends of the bullet chamber 67 and is referred to as a blend point 74.
  • As shown in FIG. 6, a lip lock 75 is located at the most forward point of the cartridge case body 69 to define the mouth 63 of the cartridge case 60. The lip lock 75 holds the bullet (not shown) in the cartridge case 60.
  • FIG. 7 shows an enlarged view of the lip lock 75, which has a base portion 75 a that coincides with the outer surface of the cartridge case and is about 0.010 in. to 0.030 in. in length, and preferably is about 0.020 in. in length. The lip lock 75 has a unique configuration which is variable from an asymmetrical shape having a tapered rearward portion (as shown) to various symmetrical configurations depending on the desired bullet holding requirements. A taper portion 75 b of the lip lock 75 has a thickness that is about 0.010 in. and a width that ranges from about 0.020 in. at the widest portion to a width that corresponds to the length of the engaging portion. An engaging portion 75 c of the lip lock 75 has a length leg ranging from about 0.008 in. to 0.012 in., and preferably is about 0.010 in.
  • It should be noted that the engaging portion 75 c of the lip lock 75 should have a length leg that does not exceed the overall width of a cannelure formed in the bullet (not shown), which will be described below, such that the engaging portion 75 c of the lip lock 75 is able to fit within the bullet lip lock cannelure. Furthermore, although not required, it is preferable that the base portion 75 a of the lip lock 75 is parallel relative to the engaging portion 75 c, but it is within the scope of this invention to arrange the engaging portion 75 c to be oblique relative to the base portion 75 a.
  • The cartridge case 60 and bullet are manufactured by an injection molding process from a composite polymer by feeding the polymer through an injection molding apparatus. Because the cartridge case 60 is manufactured from a composite polymer, the walls of the cartridge case 60 from the mouth 63 to the blend 74 are able to be bent either radially inward toward the longitudinal axis x-x of the case or radially outward away from the longitudinal axis x-x. The flexibility of the case walls permit the mouth 63 to be temporarily expanded to receive the corresponding bullet, which is also manufactured from a composite polymer that may or may not be the same as the composite polymer used to manufacture the cartridge case. Properly prepared with the correct corresponding groove, conventional lead or jacketed bullets can be used with the polymer cartridge case design described herein.
  • Once the mouth 63 is expanded, the corresponding bullet B is inserted therein. It should be noted that the bullet B has an outer diameter DB that ranges between 0.450 in. to 0.453 in., and preferably is 0.451 in. (see FIG. 6) Furthermore, the bullet B (FIG. 8) has a cannelure 80 formed on an outer circumferential surface at a location that permits the engaging portion 75 c of the lip lock 75 to be inserted therein and wherein the bullet B is not inserted beyond the blend 74 on the inner walls 71, 71 of the case body 69.
  • Accordingly, the bullet is inserted into the bullet holding chamber 67 of the cartridge case 60 by slightly expanding the mouth 63 until the bullet cannelure 80 coincides with the engaging portion 75 c of the lip lock 75. The lip lock 75 is then permitted to snap back to an original position wherein the engaging portion 75 c of the lip lock 75 matingly engages the cannelure 80 of the bullet B. See FIG. 8. The lip lock 75 provides enough resistance to provide the required bullet pull value of approximately 5 to 20 pounds, which is greatly reduced from conventional bullet pull values for brass cartridge cases, which are approximately 35 to 65 pounds. U.S. Military Specifications require a higher bullet pull in some cases to assure that certain Legacy Weapons Systems will fully function properly. In these cases, the bullet pull of this invention can be increased to accommodate any U.S. Military Weapon Systems.
  • The lip lock 75 also prevents creeping of the bullet. Creep occurs when a bullet moves forward in its case due to recoil generated by the firing of adjacent cartridges. In a semi-automatic pistol, creep can cause cartridges to jam in the magazine and/or prevent proper feeding into the chamber due to excessive overall length, which would render the pistol inoperable.
  • As shown in FIG. 8, the overall length l60 of the cartridge case 60 and bullet B held therein ranges from about 1.190 in. to 1.270 in. and is preferably about 1.263 in. in length. Furthermore, when the firearm is fired, the lip lock 75 permits the smooth release of the bullet B, which enhances the accuracy of the firearm.
  • The present invention is not limited to the above-described caliber and is believed to be applicable to other calibers as well. For example, FIGS. 9-11 show a second embodiment of the invention, and in particular, a cartridge case 100 for holding a 38 special caliber bullet. The cartridge case 100 satisfies S.A.A.M.I. requirements for 38 special caliber ammunition.
  • A length l′ of the cartridge case 100 from a front end face 161 to a rear end face 162 ranges from about 1.135 in. to 1.155 in., and preferably is about 1.154 in. An outer diameter D100 of the cartridge case 100 at a mouth 163 is about 0.372 in. to 0.379 in., and preferably is about 0.374 in. and an outer diameter DP2 at a primer end is about 0.372 in. to 0.376 in. and preferably is about 0.374 in.
  • A rear end 164 of the cartridge case 100 has a rim 166 formed thereon, wherein the rim 166 has an outer diameter DR2 that ranges between about 0.428 in. and 0.440 in., and preferably is about 0.433 in. and a width WR2 that ranges between about 0.048 in. and 0.059 in., and preferably is about 0.056 in.
  • Radially inward relative to a groove 165 is a primer holding chamber 166, which has an outer diameter DPC2 that ranges from about 0.168 in. to 0.175 in., and is preferably about 0.171 in. and a depth that ranges from about 0.115 in. to 0.120 in., and preferably is about 0.117 in.
  • A bullet holding chamber 167 and the primer holding chamber 166 define a web 168 in the portion of the cartridge case body therebetween, wherein the web 168 has a thickness that ranges between about 0.047 in. and 0.100 1 in, and preferably is about 0.050 in. The primer holding chamber 166 communicates with the bullet holding chamber 167 via a flash hole 170 formed in the web 168. The flash hole 170 has an outer diameter DFH2 that ranges between about 0.077 in. to 0.83 in., and preferably is about 0.80 in. (see FIG. 11)
  • As shown in FIG. 9, the cartridge case 100 has a substantially cylindrical configuration with inner walls 171 that taper from a rear end 172 of the bullet holding chamber 167 toward the mouth 163 located at the front end of the case. The taper of the cartridge case inner walls 171 transitions to walls that are parallel relative to the longitudinal axis of the cartridge case 100. The transition occurs at a region of the case intermediate relative to the rear end 172 and mouth 163 of the case 100 and is referred to as a blend point 174.
  • As shown in FIG. 9, a lip lock 175 is located at the most forward point of the cartridge case body and defines the mouth 163 of the cartridge case 100. The lip lock 175 holds the bullets in the cartridge case 100. The lip lock 175 also prevents creeping of the bullets. Creep occurs when the bullet S moves forward in the case 100 due to recoil caused by firing of adjacent cartridges. In a revolver, creep will allow the bullet to protrude out of the cylinder, preventing its rotation (causing a jam), thus rendering the firearm inoperable.
  • FIG. 10 shows an enlarged view of the lip lock 175, which has a base portion 175 a that coincides with the outer surface of the cartridge case 100 and is about 0.018 in. to 0.022 in. in length, and preferably is about 0.020 in. in length. The lip lock 175 has a taper portion 175 b that tapers from the base portion 175 a to an engaging portion 175 c, wherein the taper portion 175 b has a thickness that is about 0.010 in. and a width that ranges from about 0.020 in. at the widest portion to a width that corresponds to the length of the engaging portion 175 c. The engaging portion 175 c has a length ranging from about 0.008 in. to 0.012 in., and preferably is about 0.010 in.
  • Once the mouth 163 is expanded, the corresponding bullet S is inserted therein. It should be noted that the bullet S has an outer diameter that ranges between about 0.355 in. to 0.359 in., and preferably is about 0.357 in. Furthermore, the bullet S has a cannelure 180 formed on an outer circumferential surface at a location that permits the engaging portion 175 c of the lip lock 175 to be inserted therein.
  • Accordingly, the bullet S is inserted into the bullet holding chamber 167 until the bullet cannelure 180 coincides with the engaging portion 175 c of the lip lock 175. The lip lock 175 is then permitted to snap back to an original position wherein the engaging portion 175 c of the lip lock 175 matingly engages the bullet cannelure 180. (See FIG. 11) The lip lock 175 provides enough resistance to provide a bullet pull of about 5 to 20 pounds which is greatly reduced from conventional bullet pull values for brass cartridge cases, which is about 35 pounds. An overall length l100 of the cartridge case 100 and bullet S held therein ranges from about 1.400 in. to 1.550 in. and is preferably about 1.531 in. in length. Furthermore, when the firearm is fired, the lip lock 175 permits the smooth release of the bullet S, which enhances the accuracy of the firearm.
  • As stated above, the cartridge case and bullet are manufactured by feeding a composite polymer through an injection molding machine into molds configured to the particular geometric shapes of the case and caliber of bullet, respectively. In other words, the entire and complete cartridge case is manufactured or molded in a single operation. Furthermore, the entire and complete bullet is manufactured or molded in a single operation. The dimensions for the molds are selected to allow the proper shrinkage of the composite polymer material to achieve the desired specifications and/or caliber. As shown in the table of FIG. 12, the cartridge case is strong enough to provide the same pressure retention benefits as brass cartridge cases, and when the same propellant is used, the lead free, composite polymer cartridge case of the present invention delivers the same velocities as brass cartridge cases, but at a substantially lower pressure curve. Also, as stated above, compared to conventional brass case cartridges, the lead free, composite polymer cartridge case of the present invention provides bullet pull values that are 700% to 1400% less.
  • A first embodiment of the lead free, composite polymer material is suitable for the bullet. The polymer material includes, by weight, a tungsten metal powder in the range of about 50-96%, preferably about 60-95%, and most preferably about 70-90%, of the overall composition of the polymer material. It is most suitable that the tungsten metal powder be present in at least 70% by weight. The polymer material also includes about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6/6, about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6, and about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of glass fibers. It is most suitable that each of these ingredients be included in amounts less than 10% by weight.
  • The polymer material according to the first embodiment preferably has a specific gravity of 3-10, more preferably 6-9, and most preferably 7.5-8.5. Preferably, the polymer material has a specific gravity which permits the molded bullet to provide a user with a point of aim that is comparable to that of the conventional lead products. A bullet formed in accordance with the present invention is environmentally friendly as it does not have any lead, performs ballistically similar to conventional bullets, has a lower weight while using the same firearm hold characteristics, and can be produced at a substantially lower manufacturing cost. Furthermore, the composite polymer material of the first embodiment preferably encapsulates the tungsten powder such that the composite polymer bullet does not wear down the barrel of the firearm, which results in a longer life for the firearm.
  • The properties of the selected polymer material provide several advantages over the conventionally used brass and lead materials used for cartridge cases and bullets, respectively. For example, the polymer material provides a way for the cartridge case to hold the bullet that replaces crimping and eliminates a need to use adhesives in cases where adhesives are required to provide the proper bullet pull properties when using brass cases. The unique lip lock design permits the cartridge case to be snapped into the corresponding cannelure of the bullet.
  • Brass cartridge cases tend to form to the chamber walls when fired. In contrast, the composite polymer cartridge case of the present invention flexes during firing, but the material memory returns the cartridge case to its original dimensions. Accordingly, the combination of the composite polymer material returning to its original dimension after firing, the lubricity of the polymer aid extraction in contrast to brass, which ultimately inhibits extraction.
  • FIGS. 13A-C illustrate a method for producing an all-polymer, injection molded bottleneck cartridge case 200, wherein FIG. 13A illustrates a base 210, FIG. 13B illustrates a case 230, and FIG. 13C illustrates the case 200 after assembly. The bottleneck shaped case is produced by molding two separate parts, i.e., a case body 231 having a bottleneck configuration, and a base 210. The base 210 includes a rim 211 defining an extractor groove 212 having a ramp 213. A web 214 defines a flash hole 215 therethrough, wherein the flash hole 215 leads to a primer holding chamber 216.
  • The base 210 and case 230 are welded together in a secondary production operation. In order to achieve a strong weld, the base 210 and case 230 must have a weld joint profile 216 and 232, respectively, molded into each of the two parts. The weld joint profiles are designed to accommodate a welding process, which can include ultrasonic, spin or laser welding. The welding procedure will be dictated by the choice of polymer material for the cartridge being manufactured. An important design feature of the base 210 is the thickness of the web 214. In some types of firearms, the chamber does not fully support the base end of the cartridge case. In order to maximize the strength of the base in this area, the flash hole channel of the present invention can be extended by making the web 214 relatively wider. Consequently, such a design allows the explosive force of the primer and gunpowder ignition to take place in the area of the chamber where the case is fully supported.
  • Many modifications may be made to adapt the teachings of this invention to particular situations or materials without departing from the scope thereof. Therefore, this invention should not be limited to the particular embodiments disclosed herein, but includes all embodiments within the spirit and scope of the disclosure.

Claims (19)

1. A lead-free bullet, comprising:
a body made from a composite polymer material and having a front end and a rear end;
a cannelure formed on an outer circumferential surface of the body intermediate the front and rear ends of the body, wherein the composite polymer material includes a tungsten metal powder, nylon 6/6, nylon 6, and glass fibers; and
a specific gravity in a range of 3-10.
2. The bullet according to claim 1, wherein the tungsten metal powder is 50%-96% of a weight of the bullet body, the nylon 6/6 is 0.5%-15% of the weight of the bullet body, the nylon 6 is 0.5%-15% of the weight of the bullet body, and wherein the glass fibers are 0.5%-15% of the weight of the bullet body.
3. The bullet according to claim 2, wherein the tungsten metal powder is 60%-95% of the weight of the bullet body, the nylon 6/6 is 1.0%-12% of the weight of the bullet body, the nylon 6 is 1.0%-12% of the weight of the bullet body, and wherein the glass fibers are 1.0%-12% of the weight of the bullet body.
4. The bullet according to claim 3, wherein the tungsten metal powder is 70%-90% of the weight of the bullet body, the nylon 6/6 is 2.0%-9.0% of the weight of the bullet body, the nylon 6 is 2.0%-9.0% of the weight of the bullet body, and wherein the glass fibers are 2.0%-9.0% of the weight of the bullet body.
5. The bullet according to claim 1, wherein the specific gravity of the bullet is in the range of 6-9.
6. The bullet according to claim 5, wherein the specific gravity of the bullet is in the range of 7.5-8.5.
7. The bullet according to claim 1, wherein the tungsten metal power is encapsulated in the composite polymer material.
8. A lead-free cartridge case capable of holding a bullet having a cannelure formed along an outer circumferential surface of a body of the bullet, the cartridge case comprising:
a cylindrical body manufactured from a composite polymer and having a front end and a rear end opposite the front end;
a mouth defined by the front end of the body;
engaging means for engaging the bullet, the engaging means being disposed along a perimeter of the mouth;
a groove formed along an outer circumferential surface of the body in a vicinity of the rear end of the body;
a web extending radially inward relative to the body and disposed intermediate the groove and the mouth, wherein the web separates a bullet holding chamber located on a front end side of the web from a primer holding chamber located on a rear end side of the web; and
walls of the body which define the bullet holding chamber and are bendable in a direction toward and away from a longitudinal axis of the body, wherein the engaging means are configured to snap fit the cannelure of the bullet.
9. The cartridge case according to claim 10, wherein the walls defining the bullet holding cartridge include tapered walls arranged oblique relative to the longitudinal axis of the body and straight walls arranged parallel relative to the longitudinal axis of the body, wherein the tapered walls taper away from the longitudinal axis of the body in a direction from the rear end to the front end of the body and transition to the straight walls at a blend point.
10. The cartridge case according to claim 9, wherein the engaging means include a lip lock having either one of an asymmetrical configuration or a symmetrical configuration.
11. The cartridge case according to claim 10, wherein the lip lock includes a base portion parallel relative to the longitudinal axis of the body and coinciding with the outer surface of the body, a tapered portion arranged oblique relative to the longitudinal axis of the body, and an engaging portion, wherein the engaging portion is configured to fit within the cannelure of the bullet.
12. The cartridge case according to claim 11, wherein the engaging portion is either one of parallel or oblique relative to the base portion.
13. The cartridge case according to claim 8, wherein the groove defines a rim at the rear end of the body and wherein an outer diameter of the rim is equal to or less than an outer, diameter of the rear end of the body.
14. The cartridge case according to claim 8, wherein the groove defines a rim at the rear end of the body and where in an outer diameter of the rim is equal to or greater than an outer diameter of the rear end of the body.
15. The cartridge case according to claim 8, further comprising a flash hole provided in the web, wherein the bullet holding chamber communicates with the primer holding chamber through the flash hole.
16. The cartridge case according to claim 8, wherein the composite polymer includes a tungsten metal powder, nylon 6/6, nylon 6, glass fibers, and optionally additives and/or stabilizers.
17. A method for manufacturing a lead-free bullet having a body made from a composite polymer material including tungsten metal powder, nylon 6/6, nylon 6, and glass fibers, the method comprising the following steps:
providing a mold configured to a predetermined caliber bullet; and
feeding the composite polymer material through an injection molding apparatus into the mold.
18. A method for manufacturing a lead-free cartridge case having a body made from a composite polymer material including tungsten metal powder, nylon 6/6, nylon 6, and glass fibers, the method comprising the following steps:
providing a mold configured to a predetermined caliber cartridge case; and
feeding the composite polymer material through an injection molding apparatus into the mold.
19. A method for manufacturing a lead-free cartridge case having a body including a case portion and a base portion, each portion being made from a composite polymer material including tungsten metal powder, nylon 6/6, nylon 6, and glass fibers, the method comprising the following steps:
providing a mold configured to a predetermined caliber base portion;
providing a mold configured to a predetermined caliber case portion;
feeding the composite polymer material through an injection molding apparatus into the respective molds; and
welding the formed base portion to the formed case portion using any one of ultrasonic, spin, or laser welding.
US10/695,158 2002-10-29 2003-10-29 Lead free, composite polymer based bullet and cartridge case, and method of manufacturing Abandoned US20050005807A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/695,158 US20050005807A1 (en) 2002-10-29 2003-10-29 Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US11/059,499 US20050188879A1 (en) 2003-10-29 2005-02-17 Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US11/256,687 US7213519B2 (en) 2002-10-29 2005-10-24 Composite polymer based cartridge case having an overmolded metal cup, polymer plug base assembly
US11/270,532 US7204191B2 (en) 2002-10-29 2005-11-10 Lead free, composite polymer based bullet and method of manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42178202P 2002-10-29 2002-10-29
US10/695,158 US20050005807A1 (en) 2002-10-29 2003-10-29 Lead free, composite polymer based bullet and cartridge case, and method of manufacturing

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/059,499 Continuation-In-Part US20050188879A1 (en) 2003-10-29 2005-02-17 Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US11/256,687 Continuation-In-Part US7213519B2 (en) 2002-10-29 2005-10-24 Composite polymer based cartridge case having an overmolded metal cup, polymer plug base assembly
US11/270,532 Division US7204191B2 (en) 2002-10-29 2005-11-10 Lead free, composite polymer based bullet and method of manufacturing

Publications (1)

Publication Number Publication Date
US20050005807A1 true US20050005807A1 (en) 2005-01-13

Family

ID=33567217

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/695,158 Abandoned US20050005807A1 (en) 2002-10-29 2003-10-29 Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US11/270,532 Expired - Lifetime US7204191B2 (en) 2002-10-29 2005-11-10 Lead free, composite polymer based bullet and method of manufacturing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/270,532 Expired - Lifetime US7204191B2 (en) 2002-10-29 2005-11-10 Lead free, composite polymer based bullet and method of manufacturing

Country Status (1)

Country Link
US (2) US20050005807A1 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060055077A1 (en) * 2003-11-14 2006-03-16 Heikkila Kurt E Extrusion method forming an enhanced property metal polymer composite
US20060207473A1 (en) * 2005-03-17 2006-09-21 Sundar Vasudevan Ink formulations, print systems, and methods thereof
US20070261587A1 (en) * 2005-12-27 2007-11-15 Chung Sengshiu Lightweight polymer cased ammunition
US20090127801A1 (en) * 2003-11-14 2009-05-21 Wild River Consulting Group, Llc Enhanced property metal polymer composite
US20090217838A1 (en) * 2008-03-03 2009-09-03 Industrias El Gamo, S.A. Procedure for manufacturing a pellet for sporting rifle or sporting gun and pellet for sporting rifle or sporting gun thus obtained
US20090314482A1 (en) * 2006-02-09 2009-12-24 Wild River Consulting Group, Llc Metal polymer composite with enhanced viscoelastic and thermal properties
US20090315214A1 (en) * 2008-01-18 2009-12-24 Kurt Emil Heikkila Melt molding polymer composite and method of making and using the same
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite
US20100280164A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC. Inorganic Composite
US20110236699A1 (en) * 2003-11-14 2011-09-29 Tundra Composites, LLC Work piece comprising metal polymer composite with metal insert
US20140090284A1 (en) * 2012-09-28 2014-04-03 Alliant Techsystems Inc. Muzzleloader systems
US20140130698A1 (en) * 2011-06-08 2014-05-15 Real Federacion Espanola De Caza Ecological ammunition
US9105382B2 (en) 2003-11-14 2015-08-11 Tundra Composites, LLC Magnetic composite
WO2015130409A3 (en) * 2014-01-13 2015-11-26 Mac Llc Neck polymeric ammuniti0n casing geometry
US9335137B2 (en) 2011-07-28 2016-05-10 Mac, Llc Polymeric ammunition casing geometry
US9395165B2 (en) 2011-07-28 2016-07-19 Mac, Llc Subsonic ammunition casing
US9429407B2 (en) 2010-11-10 2016-08-30 True Velocity, Inc. Lightweight polymer ammunition
US9453714B2 (en) 2014-04-04 2016-09-27 Mac, Llc Method for producing subsonic ammunition casing
US9506735B1 (en) 2016-03-09 2016-11-29 True Velocity, Inc. Method of making polymer ammunition cartridges having a two-piece primer insert
US9518810B1 (en) 2016-03-09 2016-12-13 True Velocity, Inc. Polymer ammunition cartridge having a two-piece primer insert
US9523563B1 (en) 2016-03-09 2016-12-20 True Velocity, Inc. Method of making ammunition having a two-piece primer insert
US9551557B1 (en) 2016-03-09 2017-01-24 True Velocity, Inc. Polymer ammunition having a two-piece primer insert
USD778394S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD778393S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD778395S1 (en) 2015-08-11 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD778391S1 (en) 2015-04-28 2017-02-07 True Velocity, Inc. Notched cartridge base insert
USD779022S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD779024S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD779023S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD779021S1 (en) 2015-04-28 2017-02-14 True Velocity, Inc. Cylindrically square cartridge base insert
USD779624S1 (en) 2015-08-07 2017-02-21 True Velocity, Inc. Projectile aperture wicking pattern
USD780283S1 (en) 2015-06-05 2017-02-28 True Velocity, Inc. Primer diverter cup used in polymer ammunition
US9587918B1 (en) 2015-09-24 2017-03-07 True Velocity, Inc. Ammunition having a projectile made by metal injection molding
USD781393S1 (en) 2015-04-28 2017-03-14 True Velocity, Inc. Notched cartridge base insert
US20170082411A1 (en) * 2010-11-10 2017-03-23 True Velocity, Inc. Metal injection molded projectile
US20170089673A1 (en) * 2010-11-10 2017-03-30 True Velocity, Inc. Polymer ammunition having a projectile made by metal injection molding
US9644930B1 (en) 2010-11-10 2017-05-09 True Velocity, Inc. Method of making polymer ammunition having a primer diffuser
US9709368B2 (en) 2014-04-30 2017-07-18 G9 Holdings, Llc Projectile with enhanced ballistics
US20170328689A1 (en) * 2016-05-11 2017-11-16 U.S. Government As Represented By The Secretary Of The Army Lightweight Cartridge Case
US9835423B2 (en) 2010-11-10 2017-12-05 True Velocity, Inc. Polymer ammunition having a wicking texturing
US9835427B2 (en) 2016-03-09 2017-12-05 True Velocity, Inc. Two-piece primer insert for polymer ammunition
US9869536B2 (en) 2016-03-09 2018-01-16 True Velocity, Inc. Method of making a two-piece primer insert
US9885551B2 (en) 2010-11-10 2018-02-06 True Velocity, Inc. Subsonic polymeric ammunition
USD813975S1 (en) * 2015-08-05 2018-03-27 Mark White Low volume subsonic bullet cartridge case
US10030956B2 (en) 2012-09-28 2018-07-24 Vista Outdoor Operations Llc Muzzleloader systems
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US10048049B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Lightweight polymer ammunition cartridge having a primer diffuser
US10048052B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Method of making a polymeric subsonic ammunition cartridge
US10081057B2 (en) 2010-11-10 2018-09-25 True Velocity, Inc. Method of making a projectile by metal injection molding
US20180321022A1 (en) * 2012-09-28 2018-11-08 Vista Outdoor Operations Llc Muzzleloader systems
US10190857B2 (en) 2010-11-10 2019-01-29 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
USD849874S1 (en) 2018-01-21 2019-05-28 Vista Outdoor Operations Llc Muzzleloader propellant cartridge
USD861118S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Primer insert
US10429156B2 (en) 2010-11-10 2019-10-01 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US10876822B2 (en) 2017-11-09 2020-12-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11118875B1 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Color coded polymer ammunition cartridge
US11199384B2 (en) * 2018-02-04 2021-12-14 Advanced Material Engineering Pte Ltd Lightweight cartridge case
US20220049942A1 (en) * 2012-09-28 2022-02-17 Vista Outdoor Operations Llc Muzzleloader systems
US11340050B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11519702B1 (en) 2021-12-01 2022-12-06 General Dynamics Ordnance and Tactical Systems -Canada Inc. Cartridge and cartridge case
WO2022250755A3 (en) * 2021-05-22 2023-03-09 Shell Shock Technologies LLC Ammunition casing having a step within a deep cannelure
US11733010B2 (en) 2010-11-10 2023-08-22 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11821718B2 (en) 2021-09-07 2023-11-21 True Velocity Ip Holdings, Llc Method of producing plated powder-core projectile
US11859954B2 (en) 2021-09-07 2024-01-02 True Velocity Ip Holdings, Llc Vented hollow point projectile

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470485B1 (en) 2004-03-29 2016-10-18 Victor B. Kley Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control
DE102004017464B4 (en) * 2004-04-08 2006-05-18 Nico-Pyrotechnik Hanns-Jürgen Diederichs GmbH & Co. KG Patronized exercise ammunition
US8240252B2 (en) * 2005-03-07 2012-08-14 Nikica Maljkovic Ammunition casing
US20090042057A1 (en) * 2007-08-10 2009-02-12 Springfield Munitions Company, Llc Metal composite article and method of manufacturing
US8061274B1 (en) 2009-01-26 2011-11-22 Brejon Holdings (BVI), Ltd. Less than lethal projectile and a method for producing the same
US9103613B2 (en) 2009-01-26 2015-08-11 Brejon Holdings (BVI), Ltd. Multiple cartridge assembly for less than lethal cartridge
US8516729B2 (en) 2011-05-06 2013-08-27 Brejon Holdings (BVI), Ltd. Reduced lethality gun
US9021959B2 (en) 2009-01-26 2015-05-05 Brejon Holdings (BVI), Ltd. Less than lethal cartridge
US8573126B2 (en) 2010-07-30 2013-11-05 Pcp Tactical, Llc Cartridge base and plastic cartridge case assembly for ammunition cartridge
US8807008B2 (en) 2011-01-14 2014-08-19 Pcp Tactical, Llc Polymer-based machine gun belt links and cartridge casings and manufacturing method
US8763535B2 (en) 2011-01-14 2014-07-01 Pcp Tactical, Llc Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US10408592B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11047663B1 (en) * 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US10704876B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11215430B2 (en) 2010-11-10 2022-01-04 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10704877B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US8869702B2 (en) 2011-01-14 2014-10-28 Pcp Tactical, Llc Variable inside shoulder polymer cartridge
AU2012205378B2 (en) * 2011-01-14 2015-12-03 Pcp Tactical, Llc High strength polymer-based cartridge casing and manufacturing method
US10197366B2 (en) 2011-01-14 2019-02-05 Pcp Tactical, Llc Polymer-based cartridge casing for blank and subsonic ammunition
USD715888S1 (en) 2012-01-13 2014-10-21 Pcp Tactical, Llc Radiused insert
US20150241182A1 (en) * 2012-07-25 2015-08-27 Ward Kraft, Inc. Special Purpose Slugs For Use In Ammunition
US20140311373A1 (en) * 2012-07-25 2014-10-23 Ward Kraft, Inc. Special Purpose Slugs For Use In Ammunition
US9134102B2 (en) * 2012-08-06 2015-09-15 William Franklin Flowers Light weight projectiles
US9921017B1 (en) 2013-03-15 2018-03-20 Victor B. Kley User identification for weapons and site sensing fire control
WO2016040351A1 (en) * 2014-09-08 2016-03-17 Velocity Technologies LLC Design and method for the manufacture of polymer cartridge case rimfire small arms ammunition
US11118851B2 (en) 2016-03-25 2021-09-14 Vista Outdoor Operations Llc Reduced energy MSR system
EP3433561B1 (en) 2016-03-25 2021-03-17 Vista Outdoor Operations LLC Reduced energy msr system
USD882032S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882026S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882029S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903038S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882720S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD913403S1 (en) 2018-04-20 2021-03-16 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881323S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882024S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881324S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882025S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882033S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882020S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882723S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882023S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882721S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882031S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882028S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD884115S1 (en) 2018-04-20 2020-05-12 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881326S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882030S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882019S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882724S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882722S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882022S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881328S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881327S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882021S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882027S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903039S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881325S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886937S1 (en) 2017-12-19 2020-06-09 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886231S1 (en) 2017-12-19 2020-06-02 True Velocity Ip Holdings, Llc Ammunition cartridge
WO2019160742A2 (en) 2018-02-14 2019-08-22 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
AU2019299431B2 (en) 2018-07-06 2023-06-15 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
WO2020010096A1 (en) 2018-07-06 2020-01-09 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
WO2020028187A1 (en) 2018-07-30 2020-02-06 Pcp Tactical, Llc Polymer cartridge with enhanced snapfit metal insert and thickness ratios
US10928171B2 (en) 2019-01-16 2021-02-23 The United States Of America As Represented By The Secretary Of The Army Hybrid cast metallic polymer penetrator projectile
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
EP3942250A4 (en) 2019-03-19 2022-12-14 True Velocity IP Holdings, LLC Methods and devices metering and compacting explosive powders
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
AU2020340203A1 (en) 2019-07-16 2022-03-03 True Velocity Ip Holdings, Llc Polymer ammunition having an alignment aid, cartridge and method of making the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809612A (en) * 1981-12-11 1989-03-07 Dynamit Nobel Aktiengesellschaft Use of radiation-crosslinked polyethylene
US5259288A (en) * 1988-02-09 1993-11-09 Vatsvog Marlo K Pressure regulating composite cartridge
US5616642A (en) * 1995-04-14 1997-04-01 West; Harley L. Lead-free frangible ammunition
US5708231A (en) * 1996-10-17 1998-01-13 Sigma Research, Inc. Delayed release cartridge for a firearm
US6048379A (en) * 1996-06-28 2000-04-11 Ideas To Market, L.P. High density composite material
US6101949A (en) * 1997-05-23 2000-08-15 Societe Nationale Des Poudres Et Explosifs Non-toxic composite projectiles having a biodegradable polymeric matrix for hunting or shooting cartridges
US6257149B1 (en) * 1996-04-03 2001-07-10 Cesaroni Technology, Inc. Lead-free bullet
US6845716B2 (en) * 1999-01-15 2005-01-25 Natec, Inc. Ammunition articles with plastic components and method of making ammunition articles with plastic components

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2995090A (en) * 1954-07-02 1961-08-08 Remington Arms Co Inc Gallery bullet
US3123003A (en) * 1962-01-03 1964-03-03 lange
CA1109730A (en) * 1979-03-01 1981-09-29 Gilles Berube 2.75 inch plastic practice warhead
GB8712082D0 (en) 1987-05-21 1987-07-22 Sprintvale Ltd Training aids
US5237930A (en) * 1992-02-07 1993-08-24 Snc Industrial Technologies, Inc. Frangible practice ammunition
US6074454A (en) * 1996-07-11 2000-06-13 Delta Frangible Ammunition, Llc Lead-free frangible bullets and process for making same
ATE261577T1 (en) * 2000-11-23 2004-03-15 Contraves Pyrotec Ag SPLATING MIRROR BULLET WITH SHATTER PENETRATOR

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809612A (en) * 1981-12-11 1989-03-07 Dynamit Nobel Aktiengesellschaft Use of radiation-crosslinked polyethylene
US5259288A (en) * 1988-02-09 1993-11-09 Vatsvog Marlo K Pressure regulating composite cartridge
US5616642A (en) * 1995-04-14 1997-04-01 West; Harley L. Lead-free frangible ammunition
US6257149B1 (en) * 1996-04-03 2001-07-10 Cesaroni Technology, Inc. Lead-free bullet
US6048379A (en) * 1996-06-28 2000-04-11 Ideas To Market, L.P. High density composite material
US5708231A (en) * 1996-10-17 1998-01-13 Sigma Research, Inc. Delayed release cartridge for a firearm
US6101949A (en) * 1997-05-23 2000-08-15 Societe Nationale Des Poudres Et Explosifs Non-toxic composite projectiles having a biodegradable polymeric matrix for hunting or shooting cartridges
US6845716B2 (en) * 1999-01-15 2005-01-25 Natec, Inc. Ammunition articles with plastic components and method of making ammunition articles with plastic components

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite
US9105382B2 (en) 2003-11-14 2015-08-11 Tundra Composites, LLC Magnetic composite
US7491356B2 (en) 2003-11-14 2009-02-17 Tundra Composites Llc Extrusion method forming an enhanced property metal polymer composite
US20090127801A1 (en) * 2003-11-14 2009-05-21 Wild River Consulting Group, Llc Enhanced property metal polymer composite
US20060055077A1 (en) * 2003-11-14 2006-03-16 Heikkila Kurt E Extrusion method forming an enhanced property metal polymer composite
US20110236699A1 (en) * 2003-11-14 2011-09-29 Tundra Composites, LLC Work piece comprising metal polymer composite with metal insert
US20060207473A1 (en) * 2005-03-17 2006-09-21 Sundar Vasudevan Ink formulations, print systems, and methods thereof
US7610858B2 (en) * 2005-12-27 2009-11-03 Chung Sengshiu Lightweight polymer cased ammunition
US20070261587A1 (en) * 2005-12-27 2007-11-15 Chung Sengshiu Lightweight polymer cased ammunition
US20090314482A1 (en) * 2006-02-09 2009-12-24 Wild River Consulting Group, Llc Metal polymer composite with enhanced viscoelastic and thermal properties
US8487034B2 (en) 2008-01-18 2013-07-16 Tundra Composites, LLC Melt molding polymer composite and method of making and using the same
US9153377B2 (en) 2008-01-18 2015-10-06 Tundra Composites, LLC Magnetic polymer composite
US20090315214A1 (en) * 2008-01-18 2009-12-24 Kurt Emil Heikkila Melt molding polymer composite and method of making and using the same
US20090217838A1 (en) * 2008-03-03 2009-09-03 Industrias El Gamo, S.A. Procedure for manufacturing a pellet for sporting rifle or sporting gun and pellet for sporting rifle or sporting gun thus obtained
CN101981404A (en) * 2008-03-03 2011-02-23 加莫户外有限公司 Procedure for manufacturing a pellet for sporting rifle or sporting gun and pellet for sporting rifle or sporting gun thus obtained
US7975590B2 (en) * 2008-03-03 2011-07-12 Gamo Outdoor, Sl Procedure for manufacturing a pellet for sporting rifle or sporting gun and pellet for sporting rifle or sporting gun thus obtained
US8037796B2 (en) * 2008-03-03 2011-10-18 Francisco Casas Salva Procedure for manufacturing a pellet for sporting rifle or sporting gun and pellet for sporting rifle or sporting gun thus obtained
US20100224094A1 (en) * 2008-03-03 2010-09-09 Francisco Casas Salva Procedure for Manufacturing a Pellet for Sporting Rifle or Sporting Gun and Pellet for Sporting Rifle or Sporting Gun thus Obtained
US9376552B2 (en) 2009-04-29 2016-06-28 Tundra Composites, LLC Ceramic composite
US8841358B2 (en) 2009-04-29 2014-09-23 Tundra Composites, LLC Ceramic composite
US9771463B2 (en) 2009-04-29 2017-09-26 Tundra Composites, LLC Reduced density hollow glass microsphere polymer composite
US20100280164A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC. Inorganic Composite
US10508187B2 (en) 2009-04-29 2019-12-17 Tundra Composites, LLC Inorganic material composite
US9249283B2 (en) 2009-04-29 2016-02-02 Tundra Composites, LLC Reduced density glass bubble polymer composite
US11041060B2 (en) 2009-04-29 2021-06-22 Tundra Composites, LLC Inorganic material composite
US11767409B2 (en) 2009-04-29 2023-09-26 Tundra Composites, LLC Reduced density hollow glass microsphere polymer composite
US11118875B1 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Color coded polymer ammunition cartridge
US9927219B2 (en) 2010-11-10 2018-03-27 True Velocity, Inc. Primer insert for a polymer ammunition cartridge casing
US9429407B2 (en) 2010-11-10 2016-08-30 True Velocity, Inc. Lightweight polymer ammunition
US9441930B2 (en) 2010-11-10 2016-09-13 True Velocity, Inc. Method of making lightweight polymer ammunition
US10254096B2 (en) 2010-11-10 2019-04-09 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US10234253B2 (en) 2010-11-10 2019-03-19 True Velocity, Inc. Method of making a polymer ammunition cartridge having a metal injection molded primer insert
US9513096B2 (en) 2010-11-10 2016-12-06 True Velocity, Inc. Method of making a polymer ammunition cartridge casing
US11733010B2 (en) 2010-11-10 2023-08-22 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US10190857B2 (en) 2010-11-10 2019-01-29 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US10145662B2 (en) 2010-11-10 2018-12-04 True Velocity Ip Holdings, Llc Method of making polymer ammunition having a metal injection molded primer insert
US9546849B2 (en) 2010-11-10 2017-01-17 True Velocity, Inc. Lightweight polymer ammunition cartridge casings
US11340050B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US10081057B2 (en) 2010-11-10 2018-09-25 True Velocity, Inc. Method of making a projectile by metal injection molding
US10048052B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Method of making a polymeric subsonic ammunition cartridge
US10048049B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Lightweight polymer ammunition cartridge having a primer diffuser
US11092413B2 (en) 2010-11-10 2021-08-17 True Velocity Ip Holdings, Llc Metal injection molded primer insert for polymer ammunition
US11079209B2 (en) 2010-11-10 2021-08-03 True Velocity Ip Holdings, Llc Method of making polymer ammunition having a wicking texturing
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US11047661B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of making a metal primer insert by injection molding
US11047662B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of making a polymer ammunition cartridge having a wicking texturing
US9933241B2 (en) 2010-11-10 2018-04-03 True Velocity, Inc. Method of making a primer insert for use in polymer ammunition
US10352670B2 (en) 2010-11-10 2019-07-16 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US10591260B2 (en) * 2010-11-10 2020-03-17 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US9885551B2 (en) 2010-11-10 2018-02-06 True Velocity, Inc. Subsonic polymeric ammunition
US9835423B2 (en) 2010-11-10 2017-12-05 True Velocity, Inc. Polymer ammunition having a wicking texturing
US20170082411A1 (en) * 2010-11-10 2017-03-23 True Velocity, Inc. Metal injection molded projectile
US20170089673A1 (en) * 2010-11-10 2017-03-30 True Velocity, Inc. Polymer ammunition having a projectile made by metal injection molding
US9631907B2 (en) 2010-11-10 2017-04-25 True Velocity, Inc. Polymer ammunition cartridge having a wicking texturing
US9644930B1 (en) 2010-11-10 2017-05-09 True Velocity, Inc. Method of making polymer ammunition having a primer diffuser
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US10429156B2 (en) 2010-11-10 2019-10-01 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US20140130698A1 (en) * 2011-06-08 2014-05-15 Real Federacion Espanola De Caza Ecological ammunition
US9335137B2 (en) 2011-07-28 2016-05-10 Mac, Llc Polymeric ammunition casing geometry
US9395165B2 (en) 2011-07-28 2016-07-19 Mac, Llc Subsonic ammunition casing
USD849181S1 (en) 2011-11-09 2019-05-21 True Velocity Ip Holdings, Llc Cartridge primer insert
USD861119S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD861118S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Primer insert
USD836180S1 (en) 2011-11-09 2018-12-18 True Velocity Ip Holdings, Llc Ammunition cartridge with primer insert
USD828483S1 (en) 2011-11-09 2018-09-11 True Velocity Ip Holdings, Llc Cartridge base insert
US9562754B2 (en) 2012-09-28 2017-02-07 Vista Outdoor Operations Llc Muzzleloader systems
US11047660B2 (en) * 2012-09-28 2021-06-29 Vista Outdoor Operations Llc Muzzleloader systems
US20140090284A1 (en) * 2012-09-28 2014-04-03 Alliant Techsystems Inc. Muzzleloader systems
US10030956B2 (en) 2012-09-28 2018-07-24 Vista Outdoor Operations Llc Muzzleloader systems
US9329003B2 (en) * 2012-09-28 2016-05-03 Vista Outdoor Operations Llc Muzzleloader systems
US20220049942A1 (en) * 2012-09-28 2022-02-17 Vista Outdoor Operations Llc Muzzleloader systems
US20180321022A1 (en) * 2012-09-28 2018-11-08 Vista Outdoor Operations Llc Muzzleloader systems
US10605577B2 (en) * 2012-09-28 2020-03-31 Vista Outdoor Operations Llc Muzzleloader systems
US11668549B2 (en) * 2012-09-28 2023-06-06 Federal Cartridge Company Muzzleloader systems
US9528799B2 (en) 2014-01-13 2016-12-27 Mac Llc Neck polymeric ammunition casing geometry
WO2015130409A3 (en) * 2014-01-13 2015-11-26 Mac Llc Neck polymeric ammuniti0n casing geometry
US9453714B2 (en) 2014-04-04 2016-09-27 Mac, Llc Method for producing subsonic ammunition casing
US10502536B2 (en) 2014-04-30 2019-12-10 G9 Holdings, Llc Projectile with enhanced ballistics
US10578410B2 (en) 2014-04-30 2020-03-03 G9 Holdings, Llc Projectile with enhanced ballistics
US11041703B2 (en) 2014-04-30 2021-06-22 G9 Holdings, Llc Projectile with enhanced ballistics
US11808550B2 (en) 2014-04-30 2023-11-07 G9 Holdings, Llc Projectile with enhanced ballistics
USD980941S1 (en) 2014-04-30 2023-03-14 G9 Holdings, Llc Projectile
USD978277S1 (en) 2014-04-30 2023-02-14 G9 Holdings, Llc Projectile
USD863492S1 (en) 2014-04-30 2019-10-15 G9 Holdings, Llc Projectile
US9709368B2 (en) 2014-04-30 2017-07-18 G9 Holdings, Llc Projectile with enhanced ballistics
USD868199S1 (en) 2014-04-30 2019-11-26 G9 Holdings, Llc Projectile
US11181351B2 (en) 2014-04-30 2021-11-23 G9 Holdings, Llc Projectile with enhanced ballistics
USD778391S1 (en) 2015-04-28 2017-02-07 True Velocity, Inc. Notched cartridge base insert
USD781393S1 (en) 2015-04-28 2017-03-14 True Velocity, Inc. Notched cartridge base insert
USD779021S1 (en) 2015-04-28 2017-02-14 True Velocity, Inc. Cylindrically square cartridge base insert
USD780283S1 (en) 2015-06-05 2017-02-28 True Velocity, Inc. Primer diverter cup used in polymer ammunition
USD813975S1 (en) * 2015-08-05 2018-03-27 Mark White Low volume subsonic bullet cartridge case
USD778394S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD779624S1 (en) 2015-08-07 2017-02-21 True Velocity, Inc. Projectile aperture wicking pattern
USD778393S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD779023S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD779024S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD779022S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD778395S1 (en) 2015-08-11 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
US9587918B1 (en) 2015-09-24 2017-03-07 True Velocity, Inc. Ammunition having a projectile made by metal injection molding
US9523563B1 (en) 2016-03-09 2016-12-20 True Velocity, Inc. Method of making ammunition having a two-piece primer insert
US9869536B2 (en) 2016-03-09 2018-01-16 True Velocity, Inc. Method of making a two-piece primer insert
US9551557B1 (en) 2016-03-09 2017-01-24 True Velocity, Inc. Polymer ammunition having a two-piece primer insert
US9506735B1 (en) 2016-03-09 2016-11-29 True Velocity, Inc. Method of making polymer ammunition cartridges having a two-piece primer insert
US9518810B1 (en) 2016-03-09 2016-12-13 True Velocity, Inc. Polymer ammunition cartridge having a two-piece primer insert
US9835427B2 (en) 2016-03-09 2017-12-05 True Velocity, Inc. Two-piece primer insert for polymer ammunition
US10782107B1 (en) * 2016-05-11 2020-09-22 The United States Of America As Represented By The Secretary Of The Army Lightweight cartridge case and weapon system
US20170328689A1 (en) * 2016-05-11 2017-11-16 U.S. Government As Represented By The Secretary Of The Army Lightweight Cartridge Case
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US10876822B2 (en) 2017-11-09 2020-12-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
USD849874S1 (en) 2018-01-21 2019-05-28 Vista Outdoor Operations Llc Muzzleloader propellant cartridge
US11199384B2 (en) * 2018-02-04 2021-12-14 Advanced Material Engineering Pte Ltd Lightweight cartridge case
WO2022250755A3 (en) * 2021-05-22 2023-03-09 Shell Shock Technologies LLC Ammunition casing having a step within a deep cannelure
US11821718B2 (en) 2021-09-07 2023-11-21 True Velocity Ip Holdings, Llc Method of producing plated powder-core projectile
US11859954B2 (en) 2021-09-07 2024-01-02 True Velocity Ip Holdings, Llc Vented hollow point projectile
US11519702B1 (en) 2021-12-01 2022-12-06 General Dynamics Ordnance and Tactical Systems -Canada Inc. Cartridge and cartridge case

Also Published As

Publication number Publication date
US7204191B2 (en) 2007-04-17
US20060102041A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US7204191B2 (en) Lead free, composite polymer based bullet and method of manufacturing
US7213519B2 (en) Composite polymer based cartridge case having an overmolded metal cup, polymer plug base assembly
US20050188879A1 (en) Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US11913764B2 (en) Cartridge case having a neck with increased thickness
US11353299B2 (en) Polymer-based cartridge casing for subsonic ammunition
US20220307805A1 (en) Polymer cartridge with snapfit metal insert
EP2896928B1 (en) High strength polymer-based cartridge casing for blank and subsonic ammunition
US20150241183A1 (en) Overmolded high strength polymer-based cartridge casing for blank and subsonic ammunition
US20160146585A1 (en) Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition
AU2005201363A1 (en) A projectile
US8474380B2 (en) Projectile

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLYTECH AMMUNITION COMPANY, LOUISIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILEY, SY;REMBERT, WILLIAM E., III;REEL/FRAME:014659/0520

Effective date: 20031028

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION