Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040215192 A1
Publication typeApplication
Application numberUS 10/848,691
Publication date28 Oct 2004
Filing date19 May 2004
Priority date1 Mar 2000
Also published asCA2400751A1, DE60124871D1, DE60124871T2, EP1259179A2, EP1259179B1, US6293949, US6761719, US20020013586, WO2001064144A2, WO2001064144A3
Publication number10848691, 848691, US 2004/0215192 A1, US 2004/215192 A1, US 20040215192 A1, US 20040215192A1, US 2004215192 A1, US 2004215192A1, US-A1-20040215192, US-A1-2004215192, US2004/0215192A1, US2004/215192A1, US20040215192 A1, US20040215192A1, US2004215192 A1, US2004215192A1
InventorsJeff Justis, Michael Sherman
Original AssigneeJustis Jeff R, Sherman Michael C
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Superelastic spinal stabilization system and method
US 20040215192 A1
Abstract
An apparatus for treatment of the spine including a stabilization device at least partially formed of a material capable of exhibiting superelastic characteristics at about body temperature. The stabilization device includes a longitudinal portion positionable across at least one intervertebral space, a first anchor portion engagable with a first vertebral body, and a second anchor portion engagable with a second vertebral body. The stabilization device is reformed from an initial configuration to a different configuration in response to an imposition of stress caused by relative displacement between the first and second vertebral bodies.
Images(10)
Previous page
Next page
Claims(30)
What is claimed is:
1. An apparatus for treatment of the spine, comprising:
a stabilization device at least partially formed of a material capable of exhibiting superelastic characteristics at about body temperature, said stabilization device comprising:
a longitudinal portion positionable across at least one intervertebral space;
a first anchor portion engagable with a first vertebral body; and
a second anchor portion engagable with a second vertebral body; and
wherein said stabilization device is reformed from an initial configuration to a different configuration in response to an imposition of stress caused by relative displacement between the first and second vertebral bodies.
2. The apparatus of claim 1 wherein said material comprises a shape-memory material.
3. The apparatus of claim 2 wherein said shape-memory material comprises a polymer.
4. The apparatus of claim 2 wherein said shape-memory material comprises a metallic alloy.
5. The apparatus of claim 1 wherein said imposition of stress causes at least a portion of said material to form reversible stress-induced martensite, and wherein a reduction of said stress causes at least a portion of said material to reform into austenite.
6. The apparatus of claim 5 wherein said stabilization device is reformed from said different configuration back toward said initial configuration in response to said reduction in said stress.
7. The apparatus of claim 1 wherein said material is in an austenitic state when said stabilization device is in said initial configuration and in a stress-induced martensitic state when said stabilization device is in said different configuration.
8. The apparatus of claim 1 wherein said longitudinal portion has an initial length corresponding to said initial configuration and a different length corresponding to said different configuration.
9. The apparatus of claim 1 wherein said stabilization device has an initial shape corresponding to said initial configuration and a different shape corresponding to said different configuration.
10. The apparatus of claim 1 wherein said first and second anchor portions extend transversely from said longitudinal portion.
11. The apparatus of claim 1 wherein said longitudinal portion comprises a rod.
12. The apparatus of claim 1 wherein said longitudinal portion comprises a plate.
13. The apparatus of claim 1 wherein said first and second anchor portions comprise screws.
14. The apparatus of claim 1 wherein said first and second anchor portions comprise hooks.
15. An apparatus for treatment of the spine, comprising:
a plurality of stabilization devices at least partially formed of a material capable of exhibiting superelastic characteristics at about body temperature, each of said stabilization devices comprising:
a longitudinal portion positionable across at least one intervertebral space;
a first anchor portion engagable with a first vertebral body; and
a second anchor portion engagable with a second vertebral body; and
wherein each of said stabilization devices is reformed from an initial configuration to a different configuration in response to an imposition of stress caused by relative displacement between corresponding ones of the first and second vertebral bodies.
16. The apparatus of claim 15 wherein said material comprises a shape-memory material.
17. The apparatus of claim 15 wherein said imposition of stress causes at least a portion of said material to form reversible stress-induced martensite, and wherein a reduction of said stress causes at least a portion of said material to reform into austenite.
18. The apparatus of claim 15 wherein said material is in an austenitic state when said stabilization device is in said initial configuration and in a stress-induced martensitic state when said stabilization device is in said different configuration.
19. The apparatus of claim 15 wherein each of said stabilization devices has an initial shape corresponding to said initial configuration and a different shape corresponding to said different configuration.
20. A method for treatment of the spine, comprising:
providing a plurality of stabilization devices at least partially formed of a material exhibiting superelastic characteristics at about body temperature; and
engaging each of the plurality of stabilization devices to a corresponding pair of vertebral bodies.
21. The method of claim 20 further comprising transforming at least a portion of the material into reversible stress-induced martensite as a result of imposition of stress caused by relative movement between the corresponding pair of vertebral bodies.
22. The method of claim 21 wherein the relative movement between the corresponding pair of vertebral bodies comprises at least one of flexional and extensional movement.
23. The method of claim 21 wherein the relative movement between the corresponding pair of vertebral bodies comprises torsional movement.
24. The method of claim 21 wherein the transforming is accompanied by a corresponding change in length of the stabilization device.
25. The method of claim 21 wherein the transforming is accompanied by a corresponding change in shape of the stabilization device.
26. The method of claim 21 further comprising reforming at least a portion of the reversible stress-induced martensite into austenite by reducing the stress.
27. The method of claim 20 wherein the engaging comprises anchoring the plurality of stabilization devices across multiple vertebral levels.
28. The method of claim 20 wherein the engaging comprises anchoring the plurality of stabilization devices to a cervical region of the spine.
29. The method of claim 20 wherein the material comprises a shape-memory material having a stress-induced martensitic state and an unstressed austenitic state, the engaging occurring while the shape-memory material is in the unstressed austenitic state.
30. The method of claim 20 wherein the plurality of stabilization devices stabilize the portion of the spine being treated while providing substantially normal biomechanical motion thereto.
Description
  • [0001]
    The present application is a continuation of pending U.S. patent application Ser. No. 09/960,770, filed Sep. 21, 2001, which is a continuation of U.S. patent application Ser. No. 09/516,946, filed Mar. 1, 2000 and issued as U.S. Pat. No. 6,293,949, the contents of each patent application hereby being incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to the field of instrumentation and systems for treatment of the spine, and more particularly to a device for flexibly stabilizing the cervical spine.
  • BACKGROUND OF THE INVENTION
  • [0003]
    As with any bony structure, the spine is subject to various pathologies that compromise its load bearing and support capabilities. Such pathologies of the spine include, for example, degenerative diseases, the effects of tumors and, of course, fractures and dislocations attributable to physical trauma. In the treatment of diseases, malformations or injuries affecting spinal motion segments (which include two adjacent vertebrae and the disc tissue or disc space therebetween), and especially those affecting disc tissue, it has long been known to remove some or all of a degenerated, ruptured or otherwise failing disc. In cases in which intervertebral disc tissue is removed or is otherwise absent from a spinal motion segment, corrective measures are indicated to insure the proper spacing of adjacent vertebrae formerly separated by the removed disc tissue.
  • [0004]
    Commonly, the adjacent vertebrae are fused together using a graft structure formed of transplanted bone tissue, an artificial fusion element, or other suitable compositions. Elongated rigid plates have been helpful in the stabilization and fixation of the spine when used alone or in conjunction with a grafting procedure, especially in the thoracic and lumbar regions of the spine. These plating systems also have the potential advantage of increasing union rates, decreasing graft collapse, minimizing subsequent kyphotic deformity, and decreasing the need for bulky or rigid postoperative immobilization. Additionally, rigid internal fixation systems may improve the overall quality of life of the patient and may provide the opportunity for earlier rehabilitation.
  • [0005]
    The plating techniques described above have also found some level of acceptance by surgeons specializing in the treatment of the cervical spine. The cervical spine can be approached either anteriorly or posteriorly, depending upon the spinal disorder or pathology to be treated. Many well-known surgical exposure and fusion techniques of the cervical spine are described in the publication entitled Spinal Instrumentation, edited by Drs. Howard An and Jerome Cotler. The primary focus of cervical plating systems has been to restore stability and increase the stiffness of an unstable spinal motion segment. During the development of cervical plating systems, various needs have been recognized. For example, the system should provide strong mechanical fixation that can control movement of the vertebral segments. The system should also be able to maintain stress levels below the endurance limits of the plate material, while at the same time exceeding the strength of the anatomic structures or vertebrae to which the plating system is engaged. Additionally, the system should preferably be capable of accommodating for the natural movement of the vertebrae relative to one another, including torsional movement during rotation of the spine and translational movement during flexion or extension of the spine.
  • [0006]
    There is increased concern in the spinal medical community that anterior or posterior plating systems may place excessive loads on the vertebrae or graft structure in response to small degrees of spinal motion. See, e.g., K. T. Foley, D. J. DiAngelo, Y. R. Rampersaud, K. A. Vossel and T. H. Jansen, The In Vitro Effects of Instrumentation on Multi-level Cervical Strut-Graft Mechanics, 26th Proceeding of the Cervical Spine Research Society, 1998. If the plating system is used in conjunction with grafting, these loads may promote pistoning, which can ultimately lead to degradation or failure of the graft construct. Additionally, even small degrees of spinal motion can cause significant forces to be placed on the spinal plate and the bone anchor devices which attach the plate to the vertebrae, whether they be bone screws, hooks, etc. These forces may lead to failure of the plate or loosening of the points of attachment between the bone anchors and the vertebrae, thus resulting in the potential loss of support by the plate.
  • [0007]
    Thus, there is a general need in the industry to provide an apparatus and method for treatment of the spine. The present invention meets this need and provides other benefits and advantages in a novel and unobvious manner.
  • SUMMARY OF THE INVENTION
  • [0008]
    The present invention relates generally to an apparatus and method for treatment of the spine. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain forms of the invention that are characteristic of the preferred embodiments disclosed herein are described briefly as follows.
  • [0009]
    In one form of the present invention, an apparatus is provided for treatment of the spine including a stabilization device at least partially formed of a material exhibiting superelastic characteristics at about body temperature. The stabilization device includes a longitudinal portion positionable across at least one intervertebral space, a first anchor portion engagable with a first vertebral body, and a second anchor portion engagable with a second vertebral body. The stabilization device is reformed from an initial configuration to a different configuration in response to an imposition of stress caused by relative displacement between the first and second vertebral bodies.
  • [0010]
    In another form of the present invention, an apparatus is provided for treatment of the spine including a plurality of stabilization devices at least partially formed of a material exhibiting superelastic characteristics at about body temperature. The stabilization devices each include a longitudinal portion positionable across at least one intervertebral space, a first anchor portion engagable with a first vertebral body, and a second anchor portion engagable with a second vertebral body. Each of the stabilization devices is reformed from an initial configuration to a different configuration in response to an imposition of stress caused by relative displacement between corresponding ones of the first and second vertebral bodies.
  • [0011]
    In another form of the present invention, a method is provided for treatment of the spine, including providing a plurality of stabilization devices at least partially formed of a material exhibiting superelastic characteristics at about body temperature, and engaging each of the plurality of stabilization devices to a corresponding pair of vertebral bodies.
  • [0012]
    It is one object of the present invention to provide an apparatus and method for treatment of the spine.
  • [0013]
    Further objects, features, advantages, benefits, and aspects of the present invention will become apparent from the drawings and description contained herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    [0014]FIG. 1 is an anterior view of the cervical region of the spine showing a spinal stabilization system according to one embodiment of the present invention attached to two cervical vertebrae.
  • [0015]
    [0015]FIG. 2 is a partial cross-sectional view of the spinal stabilization system depicted in FIG. 1, with the screws disposed through holes in the stabilization plate and engaged to a cervical vertebra.
  • [0016]
    [0016]FIG. 3 is a side perspective view of the spinal stabilization system depicted in FIG. 1.
  • [0017]
    [0017]FIG. 4a is a top view of a stabilization plate according to an embodiment of the present invention, shown in an unstressed configuration.
  • [0018]
    [0018]FIG. 4b is a top view of the stabilization plate depicted in FIG. 4a, shown in a stressed configuration.
  • [0019]
    [0019]FIG. 5 is a side elevation view of the stabilization plate depicted in FIG. 4a.
  • [0020]
    [0020]FIG. 6 is an end elevation view of the stabilization plate depicted in FIG. 4a.
  • [0021]
    [0021]FIG. 7 is an angled cross-sectional view of the stabilization plate depicted in FIG. 4a, taken along line 77 of FIG. 4a.
  • [0022]
    [0022]FIG. 8 is a side elevation view of a bone screw according to one aspect of the present invention.
  • [0023]
    [0023]FIG. 9 is a side elevation view of a locking fastener according to another aspect of the present invention.
  • [0024]
    [0024]FIG. 10 is a top view of a stabilization plate according to another embodiment of the present invention.
  • [0025]
    [0025]FIG. 11a is a side elevation view of the stabilization plate depicted in FIG. 10, shown in an unstressed configuration.
  • [0026]
    [0026]FIG. 11b is a side elevation view of the stabilization plate depicted in FIG. 10, shown in a stressed configuration.
  • [0027]
    [0027]FIG. 12 is a posterior view of the thoracic region of the spine showing a spinal stabilization system according to another embodiment of the present invention attached to three vertebrae.
  • [0028]
    [0028]FIG. 13a is a side elevation view of the stabilization rod depicted in FIG. 12, shown in an unstressed configuration.
  • [0029]
    [0029]FIG. 13b is a side elevation view of the stabilization rod depicted in FIG. 12, shown in a stressed configuration.
  • DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • [0030]
    For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended, such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein being contemplated as would normally occur to one skilled in the art to which the invention relates.
  • [0031]
    [0031]FIGS. 1-2 depict a spinal stabilization system 20 according to one embodiment of the present invention for stabilizing at least a portion of the vertebral column. Stabilization system 20 is shown attached to the cervical region of the vertebral column, extending across a plurality of spinal motion segments, such as cervical vertebrae V. However, it should be understood that system 20 may also be utilized in other areas of the spine, such as the thoracic, lumbar, lumbo sacral and sacral regions of the spine. It should also be understood that system 20 can extend across any number of vertebrae V, including two adjacent vertebrae V. Additionally, although system 20 is shown as having application in an anterior approach, system 20 may alternatively be applied in other surgical approaches, such as, for example, a posterior approach.
  • [0032]
    In a typical grafting procedure, one or more adjacent pairs of vertebra V may be fused together by way of a graft or implant (not shown) positioned in the disc space between the adjacent vertebrae V. The implant may be a bone graft, an artificial fusion device, or any other type of interbody device that is insertable into the disc space to promote fusion between the adjacent vertebrae V. One purpose of the stabilization system 20 is to prevent excessive loads from being placed on the graft structures in response to even small degrees of spinal motion. However, it should be understood that stabilization system 20 can be used in conjunction with fusion or non-fusion treatment of the spine.
  • [0033]
    In accordance with the present invention, stabilization system 20 includes an elongate member 22 positioned along a portion of the vertebral column. In the illustrated embodiment, the longitudinal member is an elongated stabilization plate sized to span a distance between at least two vertebrae V. Although elongate member 22 has been illustrated and described as a spinal plate, it should be understood that elongate member 22 can also be configured as a spinal rod 302 (FIG. 12) or any other type of longitudinal element for use in conjunction with a spinal fixation system. It should also be understood that any number of plates 22 or rods 302, including a pair of plates 22 or a pair of rods 302 positioned on opposite sides of the spine, could be used to provide stabilization to the vertebral column. Stabilization plate 22 is secured to the upper and lower vertebrae VU, VL (FIG. 1) by a plurality of bone anchors, shown in the form of bone screws 24. However, other types of bone anchors are also contemplated, such as, for example, spinal hooks 304 (FIG. 12). A locking device 26 engages the adjacent bone screws 24 to prevent bone screws 24 from loosening and backing out. In the illustrated embodiment, the locking device 26 is a screw extending through each end portion of the plate 22 and into engagement with the heads of adjacent bone screws 24. However, other types of locking devices are also contemplated, such as, for example, a pop rivet, a retainer fabricated from a shape-memory alloy configured to change shape in response to a change in temperature or the release of stress, a locking washer rotatably displaceable between an unlocked position and a locked position, or any other type of locking mechanisms known to those of skill in the art. An example of a locking washer for use with the present invention is disclosed in U.S. patent application Ser. No. 09/399,525 entitled “Anterior Cervical Plating System” filed on Sep. 20, 1999, the contents of which are hereby incorporated by reference. Further details regarding spinal stabilization system 20 are described more fully below.
  • [0034]
    Referring to FIGS. 3-7, shown therein are various details regarding the stabilization plate 22. Plate 22 has a longitudinal axis L extending along its length and includes an elongated central portion 30 and a pair of connection portions 32 disposed at opposite ends of central portion 30. In the illustrated embodiment, central portion 30 and connection portions 32 are formed integral to plate 22, thus forming a unitary structure or construct. However, it should be understood that connection portions 32 can be formed separate from central portion 30 and attached thereto by any method known to one of ordinary skill in the art, such as, for example, by fastening or welding. Plate 22 is at least partially formed of a shape-memory material that exhibits pseudoelastic characteristics or behavior at about human body temperature, the details of which will be discussed below. It should be understood that the terms “pseudoelastic” and “superelastic” have identical meanings and are used interchangeably throughout this document. In one embodiment of the present invention, the entire plate 22 is formed of the shape-memory material. However, it should be understood that only central portion 30 need be at least partially formed of the shape-memory material, with the connection portion 32 being formed of any suitable biocompatible material, such as, for example, stainless steel or titanium.
  • [0035]
    SMAs exhibit a “shape-memory” characteristic or behavior in which a particular component formed of a shape-memory alloy (“SMA”) is capable of being deformed from an initial “memorized” shape or configuration to a different shape or configuration, and then reformed back toward its initial shape or configuration. The ability to possess shape-memory is a result of the fact that the SMA undergoes a reversible transformation from an austenitic state to a martensitic state. If this transformation occurs due to a change in temperature, the shape-memory phenomena is commonly referred to as thermoelastic martensitic transformation. However, if the martensitic transformation occurs due to the imposition of stress, the shape-memory phenomena is commonly referred to as stress-induced martensitic transformation. The present invention is primarily concerned with stress-induced martensitic transformation.
  • [0036]
    SMAs are known to display a superelastic phenomena or rubber-like behavior in which a strain attained beyond the elastic limit of the SMA material during loading is recovered during unloading. This superelastic phenomena occurs when stress is applied to an SMA article at a temperature slightly higher than the temperature at which the SMA begins to transform into austenite (sometimes referred to as the transformation temperature or As). When stressed, the article first deforms elastically up to the yield point of the SMA material (sometimes referred to as the critical stress). However, upon the further imposition of stress, the SMA material begins to transform into stress-induced martensite or “SIM”. This transformation takes place at essentially constant stress, up to the point where the SMA material is completely transformed into martensite. When the stress is removed, the SMA material will revert back into austenite and the article will return to its original, pre-programmed or memorized shape. This phenomena is sometimes referred to as superelasticity or pseudoelasticity. It should be understood that this phenomena can occur without a corresponding change in temperature of the SMA material. Further details regarding the superelastic phenomena and additional characteristics of SIM are more fully described by Yuichi Suzuki in an article entitled Shape Memory Effect and Super-Elasticity in Ni—Ti Alloys, Titanium and Zirconium, Vol. 30, No. 4, October 1982, the contents of which are hereby incorporated by reference.
  • [0037]
    There is a wide variety of shape-memory materials suitable for use with the present invention, including shape-memory metal alloys (e.g., alloys of known metals, such as, for example, copper and zinc, nickel and titanium, and silver and cadmium) and shape-memory polymers. While there are many alloys which exhibit shape-memory characteristics, one of the more common SMAs is an alloy of nickel and titanium. One such alloy is nitinol, a bio-compatible SMA formed of nickel and titanium. Nitinol is well suited for the particular application of the present invention because it can be programmed to undergo a stress-induced martensitic transformation at about normal human body temperature (i.e., at about 35-40 degrees Celsius). Moreover, nitinol has a very low corrosion rate and excellent wear resistance, thereby providing an advantage when used as a support structure within the human body. Additionally, implant studies in animals have shown minimal elevations of nickel in the tissues in contact with the nitinol material. It should be understood, however, that other SMA materials that exhibit superelastic characteristics are contemplated as being within the scope of the invention.
  • [0038]
    The central portion 30 of plate 22 is at least partially formed of an SMA material and has an initial or “memorized” shape or configuration (see FIG. 4a), and a different shape or configuration (FIG. 4b) when deformed through the imposition of stress onto plate 22. If the central portion 30 is reshaped or deformed while at a temperature above the transformation temperature As, the central portion 30 will automatically recover toward its initial shape or configuration when the stress is removed from plate 22. In one embodiment of the present invention, the plate 22 is secured to the upper and lower vertebrae Vu, Vl while in a substantially unstressed initial configuration where virtually all of the SMA material is in an austenitic state. Upon the imposition of stress onto plate 22, caused by relative movement between the upper and lower vertebrae Vu, Vl, at least a portion of the SMA material is transformed into reversible stress-induced martensite. Upon the reduction or removal of stress, at least a portion of the SMA material is transformed back into austenite. It should be understood that the plate 22 may be pre-stressed prior to being secured to the upper and lower vertebrae Vu, Vl, thus initially transforming a portion of the SMA material from austentite into SIM. In this case, the SMA material will never attain an entirely austenitic state when the stress imposed onto plate 22 by the upper and lower vertebrae Vu, Vl is removed.
  • [0039]
    Referring specifically to FIG. 4a, central portion 30 is shown in an initial, unstressed configuration. Central portion 30 has an accordion-like shape, defining a series of alternating ridges 34 and grooves 36 extending along longitudinal axis L and facing laterally outward relative to longitudinal axis L. When in its initial configuration, central portion 30 has an initial, unstressed length l1. Preferably, each of the alternating ridges 34 and grooves 36 has a substantially triangular shape, with the outermost tip 35 of ridges 34 being rounded to avoid trauma to adjacent tissue, and the innermost portion of grooves 36 defining a partially cylindrical surface 37. However, it should be understood that ridges 34 and grooves 36 can take on other shapes as well, such as, for example, an arcuate shape, an undulating curve shape, or a square or rectangular shape. When central portion 30 is in its initial configuration, each of the ridges 34 and grooves 36 have an initial amplitude al, as measured from base line B to the outermost tip 35 and the innermost point of cylindrical surface 37. Preferably, the partially cylindrical surface 37 has a diameter somewhat larger than the minimum distance between adjacent ridges 34.
  • [0040]
    In the illustrated embodiment, a number of the alternating ridges 34 and grooves 36 are defined along each of the laterally facing sides 38 a, 38 b of central portion 30, with the ridges and grooves defined along side 38 a being disposed laterally opposite respective ones of the ridges and grooves defined along side 38 b, thereby defining laterally opposing pairs of ridges 34 p and laterally opposing pairs of grooves 36 p. A number of openings or slots 40 extend through central portion 30 intermediate the laterally opposing pairs of ridges 34 p. Preferably, slots 40 have a substantially oval shape, with each of the slots 40 having laterally extending side walls defining opposing concave surface 42 and an initial slot width w1 when central portion 30 is in its initial, unstressed configuration. However, it should be understood that slots 40 can take on other shapes as well, such as, for example, circular, elliptical, diamond or other geometric shapes as would occur to one of ordinary skill in the art. Slots 40 span virtually the entire distance between the opposing pairs of ridges 34 p, having opposing ends 44 positioned proximately adjacent the outermost tips 35 of opposing pairs of ridges 34 p. In a preferred embodiment, the opposing ends 44 of slots 40 each define a partially cylindrical surface 45. Preferably, the partially cylindrical surface 45 has a diameter somewhat larger than the minimum distance between the opposing concave surfaces 42. The configuration of central portion 30 can alternatively be described as having a pair of laterally opposing thin strips of material 46 extending along longitudinal axis L, each having a zig-zag or corrugated shape and being linked together by a number of laterally extending linking portions 48.
  • [0041]
    Referring now to FIG. 4b, central portion 30 is shown reformed from the initial shape or configuration illustrated in FIG. 4a to a different, stressed shape or configuration, such reformation occurring in response to the imposition of stress caused by relative displacement between the upper and lower vertebrae Vu, Vl (FIG. 1). This relative displacement can arise through translational movement of upper and lower vertebrae Vu, Vl, as occurring during either flexion or extension of the spinal column, or through torsional movement, as occurring during rotation of the spinal column. The imposition of stress onto central portion 30 causes at least a portion of the shape-memory material to transform into reversible stress-induced martensite. When deformed into its different configuration, central portion 30 has a different, stressed length l2, ridges 34 and grooves 36 have a different amplitude a2, and slots 40 are reshaped to define a different slot width w2. In the illustrated embodiment, central portion 30 is elongated or lengthened when stressed, thus increasing length l2 and slot width w2 while decreasing the amplitude a2. However, it should be understood that central portion 30 could alternatively be compressed or shortened when stressed, thus decreasing length l2 and slot width w2 while increasing the amplitude a2.
  • [0042]
    Referring collectively to FIGS. 4a and 7, shown therein are various details regarding the connection portions 32. Each of the connection portions 32 has an inner surface 50 and an oppositely facing outer surface 52. When plate 22 is secured to the spinal column (FIGS. 1 and 2), the inner surface 50 abuts the upper and lower vertebrae Vu, Vl. Inner surface 50 defines a concave lateral curvature C (FIG. 6) extending along the longitudinal axis L. Lateral curvature C preferably corresponds to the anatomical curvature of the anterior, outer surfaces of upper and lower vertebrae Vu, Vl. Outer surface 52 preferably defines a convex surface extending along longitudinal axis L to reduce the amount of trauma to the adjacent soft tissue when plate 22 is secured to the spinal column. Preferably, the central portion 30 of plate 22 defines a corresponding concave lateral curvature C along inner surface 51 and a corresponding convex outer surface 53. However, it should be understood that the central portion 30 and the connection portions 32 can be individually configured to accommodate the specific spinal anatomy and vertebral pathology involved in any particular application of stabilization system 20.
  • [0043]
    Each of the connection portions 32 includes a pair of openings 54 extending between the inner and outer surfaces 50, 52 along an axis 56 and configured to receive a respective one of the bone screws 24 therein. In the illustrated embodiment, the axis 56 of openings 54 extends inwardly toward transverse axis T at an angle α1 (FIG. 7) and outwardly toward the end of connection portion 32 at an angle α2 (FIG. 5). In one specific embodiment, angle a1 is approximately 6 degrees and angle α2 is approximately 12 degrees; however, other angles α1, α2 are also contemplated as being within the scope of the present invention. Preferably, openings 54 are identical in size and configuration, and are located symmetrically about longitudinal axis L. However, it should be understood that other sizes and configurations of openings 54 are also contemplated and that a single opening 54 could alternatively be defined in each of the connection portions 32. Each of the openings 54 includes a cylindrical bore 58, extending through connection portion 32 along axis 56 and opening onto the inner surface 50. Openings 54 also include a partially spherical recess 60, extending from cylindrical bore 58 toward outer surface 52 along axis 56. Openings 54 additionally include a conical portion 62, extending between spherical recess 60 and outer surface 52 along axis 56. Preferably, conical portion 62 is flared outwardly at approximately 45 degrees relative to axis 56.
  • [0044]
    Each of the connection portions 32 also includes a fastener bore 66 extending between the inner and outer surfaces 50, 52 along transverse axis T and preferably intersecting the longitudinal axis L to thereby position fastener bore 66 intermediate and laterally adjacent bone screw openings 54. Fastener bore 66 is adapted to receive a respective one of the locking fasteners 26 therein. Specifically, fastener bore 66 includes a threaded portion 68 opening onto the inner surface 50 and a conical portion 70 extending between the threaded portion 68 and the outer surface 52. However, it should be understood that other configurations of fastener bore 66 are also contemplated. For example, fastener bore 66 need not necessarily extend entirely through connection portion 32 in that threaded portion 68 can stop short of inner surface 50.
  • [0045]
    Referring to FIG. 8, shown therein are various details regarding bone screw 24. Bone screw 24 includes a head portion 80 connected to a threaded shank portion 82 by an intermediate portion 84. Threaded shank portion 82 defines a number of threads 86 configured to engage vertebral bone and sized to pass through the cylindrical bore 58 in connection portion 32. Threads 86 are preferably cancellous threads, configured for engagement in the cervical region of the spinal column. Additionally, threads 86 may be configured to be self-tapping. Further, threads 86 preferably define a constant outer diameter along the length of threaded portion 82 approximately equal to the outer diameter of intermediate portion 84, and a root diameter that tapers inwardly toward the intermediate portion 84. However, it should be understood that other configurations of threaded portion 82 are also contemplated as would occur to one of ordinary skill in the art.
  • [0046]
    The threads 86 gradually transition into intermediate portion 84 by way of a thread run out 88. Intermediate portion 84 has an outer diameter sized somewhat larger than the diameter of the cylindrical bore 58 in connection portion 32. Intermediate portion 84 transitions into head portion 80 by way of a chamfer 90. Head portion 80 includes a lower, partially spherical surface 92 configured to be substantially complementary to the partially spherical recess 60 of opening 54. Head portion 80 also includes an upper conical surface 94, connected to spherical surface 92 by a flattened shoulder 96. In one embodiment, conical surface 94 is flared inwardly relative to shoulder 96 at approximately 45 degrees. Head portion 80 further includes a truncated or flattened upper surface 98, through which extends a tool receiving recess 100 configured to receive a driving tool therein (not shown). In one embodiment, the tool recess 100 is a hexagonal recess; however, other shapes are also contemplated as would occur to those skilled in the art.
  • [0047]
    Referring to FIG. 9, shown therein are various details regarding locking fastener 26. Locking fastener 26 includes a head portion 110 and a threaded shank portion 112 extending therefrom. Threaded shank portion 112 defines a number of machine threads 114, configured to engage the threaded portion 68 of fastener bore 66 in connection portion 32. Threaded shank portion 112 terminates in a sharp point 116 to facilitate insertion of locking fastener 26 into fastener bore 66 and to permit easier penetration into the upper and lower vertebrae Vu, Vl. Threaded shank portion 112 transitions into head portion 110 by way of an outward taper 118. Head portion 110 includes a lower, conical surface 120 configured substantially complementary to the upper conical surface 94 of bone screw 24. In one embodiment, conical surface 120 is flared outwardly at approximately 45 degrees. Head portion 110 further includes an upper surface 122, through which extends a tool receiving recess 124 configured to receive a driving tool therein (not shown). In one embodiment, the tool recess 124 is a Phillips-type recess; however, other types are also contemplated as would occur to those skilled in the art.
  • [0048]
    Referring once again to FIGS. 1 and 2, shown therein is spinal stabilization system 20 securely attached to the upper and lower vertebrae Vu, Vl. Initially, plate 22 is positioned across at least two vertebrae V, with the inner surface 50 of the connection portions 32 placed in abutment against an outer surface of the upper and lower vertebrae Vu, Vl. The connection portions 32 are then secured to the upper and lower vertebrae Vu, Vl by passing bone screws 24 through openings 54 and driving threaded portion 82 into vertebral bone by way of a driver (not shown) inserted in tool receiving recess 100. The bone screws 24 continue to be driven into vertebral bone until the lower spherical surface 92 of the head portion 80 is placed in abutment against the upwardly facing spherical recess 60 of opening 54.
  • [0049]
    Conical portion 62 of openings 54 serves to facilitate the insertion of bone screws 24 into openings 54. Further, the interaction between spherical surface 92 and spherical recess 60 allows the bone screw 24 to be oriented relative to axis 56 within a range of angles, limited by the interference between the intermediate portion 84 of bone screw 24 and the cylindrical bore 58 in connection portion 32. Openings 54 act as a countersink for the head portion 80 of bone screws 24, allowing a significant portion of head portion 80 to be disposed beneath the upper surface 52 of connection portion 32 to thereby minimize the overall height or profile of plate 22.
  • [0050]
    After the bone screws 24 are driven into the upper and lower vertebrae Vu, Vl, thereby securely attaching plate 22 thereto, the locking fasteners 26 are then installed to prevent the bone screws 24 from loosening and backing out. Specifically, the threaded shank portion 112 of fastener 26 is engaged within the threaded portion 68 of fastener bore 66 and threaded therethrough by way of a driver (not shown) inserted in tool receiving recess 124. As the locking fastener 26 is driven through fastener bore 66, point 116 pierces the vertebrae and the threaded portion 68 is driven into vertebral bone, thereby further securing plate 22 to upper and lower vertebrae Vu, Vl. Additionally, by embedding threaded portion 68 in vertebral bone, the locking fastener 26 is less likely to loosen and back out of fastener bore 66. The locking fastener 26 continues to be driven through the fastener bore 66 until the lower conical surface 120 of head portion 110 engages the upper conical surfaces 94 of the bone screws 24. The abutment of locking fastener 26 against bone screws 24 serves to retain bone screws 24 within openings 54, thereby preventing bone screws 24 from loosening and backing out. In an alternative embodiment of the invention, a washer having a lower conical surface may be disposed between the head portion 10 of locking fastener 26 and the head portion 80 of bone screw 24. Tightening the locking fastener 26 would cause the lower conical surface of the washer to engage the upper conical surface 94 of bone screws 24 to retain the bone screws 24 within the openings 54. An example of such a washer is disclosed in U.S. patent application Ser. No. 09/399,525 entitled “Anterior Cervical Plating System” filed on Sep. 20, 1999, the contents of which have been incorporated by reference.
  • [0051]
    Referring now to FIG. 10, therein is illustrated a stabilization plate 200 according to another embodiment of the present invention. Stabilization plate 200 extends along a longitudinal axis L. Similar to plate 22, stabilization plate 200 is attached to upper and lower vertebrae VU, VL by way of a plurality of bone screws 24, and a locking screw 26 that engages the heads of adjacent bone screws 24 to prevent bone screws 24 from loosening and backing out. Further details regarding plate 200 are described more fully below. It should be understood that stabilization plate 200 may be used in any application in which the stabilization plate 22 is used, including those specific applications discussed above.
  • [0052]
    Stabilization plate 200 includes an elongated central portion 202 and a pair of connecting end portions 32 operably attached to opposite ends of central portion 202, such as by welding, fastening, or by any other method known to one of ordinary skill in the art. However, it should be understood that central portion 202 and connection portions 32 can be formed integral to plate 200, thus forming a unitary structure or construct. Central portion 202 is at least partially formed of a shape-memory material that exhibits pseudoelastic characteristics or behavior at about human body temperature. In one embodiment of the invention, the entire plate 200 is formed of the shape-memory material. However, it should be understood that only central portion 202 need be at least partially formed of the shape-memory material, with the connection portion 32 being formed of any suitable biocompatible material, such as, for example, stainless steel or titanium.
  • [0053]
    The central portion 202 is at least partially formed of an SMA, such as the SMA described above with regard to plate 22, and has an initial or “memorized” shape or configuration (FIG. 11a), and a different shape or configuration (FIG. 11b) when deformed through the imposition of stress onto plate 200. If the central portion 202 is reshaped or deformed while at a temperature above the transformation temperature As, the central portion 202 will automatically recover toward its initial shape or configuration when the stress is removed from plate 200. In one embodiment of the present invention, the plate 200 is secured to the upper and lower vertebrae Vu, Vl while in a substantially unstressed, initial configuration where virtually all of the SMA material is in an austenitic state. Upon the imposition of stress onto plate 200, caused by relative movement between the upper and lower vertebrae Vu, Vl, at least a portion of the SMA material is transformed into reversible stress-induced martensite. Upon the reduction or removal of stress, at least a portion of the SMA material is transformed back into austenite. It should be understood that the plate 200 may be pre-stressed prior to being secured to the upper and lower vertebrae Vu, Vl, thus initially transforming a portion of the SMA material from austenite into SIM. In this case, the SMA material will never attain an entirely austenitic state when the stress imposed onto plate 200 by the upper and lower vertebrae Vu, Vl is removed.
  • [0054]
    Referring specifically to FIG. 11a, central portion 202 is shown in an initial, unstressed configuration. Central portion 202 has a wavy, corrugated shape, defining a series of alternating ridges 204 and grooves 206 extending along longitudinal axis L. Preferably, each of the alternating ridges 204 and grooves 206 is arcuate-shaped so as to form a series of undulating curves extending along longitudinal axis L. Preferably, the ridges 204 and grooves 206 form a sinusoidal pattern relative to the base line B. However, it should be understood that the ridges 204 and grooves 206 can take on other shapes as well, such as, for example, a triangular shape, thus forming a zig-zag pattern, or a square or rectangular shape. When in its initial configuration, central portion 202 has an initial, unstressed length l1, and each of the ridges 204 and grooves 206 defines an initial amplitude a1, as measured from base line B.
  • [0055]
    Referring now to FIG. 11b, central portion 202 is shown reformed from the initial shape or configuration illustrated in FIG. 11a to a different, stressed shape or configuration, such reformation occurring in response to the imposition of stress caused by relative displacement between the upper and lower vertebrae Vu, Vl. This relative displacement can arise through translational movement of upper and lower vertebrae Vu, Vl, as occurring during either flexion or extension of the spinal column, or through torsional movement, as occurring during rotation of the spinal column. The imposition of stress onto central portion 202 causes at least a portion of the shape-memory material to transform into reversible stress-induced martensite. When deformed into its different configuration, central portion 202 has a different, stressed length l2, and the ridges 204 and grooves 206 have a different amplitude a2. In the illustrated embodiment, central portion 202 is elongated or lengthened when stressed, thus increasing length l2 while decreasing the amplitude a2. However, it should be understood that the central portion 202 could alternatively be compressed or shortened when stressed, thus decreasing length l2 while increasing the amplitude α2.
  • [0056]
    Referring to FIG. 12, there is illustrated a stabilization system 300 including a pair of spinal rods 302, each extending along a longitudinal axis L and positioned along a portion of the vertebral column on opposite sides of the spine. In the illustrated embodiment, the spinal rods 302 are sized to span a distance between at least two vertebrae V, such as upper and lower vertebrae Vu, Vl. However, as discussed above with regard to system 20, it should be understood that stabilization system 300 may extend across any number of vertebrae V, including two adjacent vertebrae V. Additionally, although stabilization system 300 is shown attached to the thoracic region of the spine, it should be understood that system 300 may also be utilized in other areas of the spine, such as the cervical, lumbar, lumbo sacral and sacral regions of the spine. Furthermore, although system 300 is shown as having application in a posterior approach, system 300 may alternatively be applied in other surgical approaches, such as, for example, an anterior approach.
  • [0057]
    Rods 302 are secured to the vertebrae V by a plurality of bone anchors, shown in the form of spinal hooks 304. However, as discussed above with regard to stabilization system 20, other types of bone anchors are also contemplated, such as, for example, bone screws. Anchoring of the hooks 304 to the vertebrae V and connection of the hooks 304 to the spinal rods 302 are well known to those of skill in the art, and therefore need not be discussed in detail. Although rod 302 is illustrated as having a generally circular configuration, it should be understood that other shapes and configurations are also contemplated, such as, for example, an elliptical, square, rectangular or polygonal configuration. Additionally, although rods 302 are illustrated as having a generally straight configuration, it should be understood that rods 302 may take on a curved configuration corresponding to the anatomy of the spinal column.
  • [0058]
    Spinal rod 302 is at least partially formed of a shape-memory material that exhibits pseudoelastic characteristics or behavior at about human body temperature. In one embodiment of the invention, the entire rod 302 is formed of a shape-memory material. However, it should be understood that only a portion of rod 302 need be at least partially formed of the shape-memory material, with the remainder of rod 302 being formed of any suitable biocompatible material. In one embodiment of the invention, rod 302 is at least partially formed of an SMA, such as, for example, nitinol. However, as discussed above with regard to plate 22, other types of SMA materials are also contemplated as falling within the scope of the invention, such as, for example, other types of shape-memory metal alloys or shape-memory polymers.
  • [0059]
    Each of the rods 302 has an initial or “memorized” shape or configuration (FIG. 13a), and a different shape or configuration (FIG. 13b) when deformed through the imposition of stress onto rod 302. If the rod 302 is reshaped or deformed while at a temperature above the transformation temperature As, the rod 302 will automatically recover toward its initial shape or configuration when the stress is removed. In one embodiment of the present invention, the rod 302 is secured to the vertebrae V while in a substantially unstressed, initial configuration, where virtually all of the shape-memory material is in an austenitic state. Upon the imposition of stress onto rod 302, caused by relative movement between the vertebrae V at least a portion of the shape-memory material will be transformed into reversible stress-induced martensite. Upon the reduction or removal of stress, at least a portion of the shape-memory material is transformed back into austenite. It should be understood that rod 302 may be pre-stressed prior to being secured to the vertebrae V, thus initially transforming a portion of the shape-memory material from austenite into SIM. In this case, the shape-memory material will never attain an entirely austenitic state when the stress imposed onto rod 302 by the vertebrae V is removed.
  • [0060]
    Referring to FIG. 13a, rod 302 is shown in an initial, unstressed configuration. When in its initial configuration, rod 302 has an initial, unstressed length l1. Referring to FIG. 13b, rod 302 is shown reformed from the initial shape or configuration illustrated in FIG. 13a to a different, stressed shape or configuration, such reformation occurring in response to the imposition of stress caused by relative displacement between the vertebrae V This relative displacement can arise through translational movement of the vertebrae V, as occurring during either flexion or extension of the spinal column, or through torsional movement, as occurring during rotation of the spinal column. The imposition of stress onto rod 302 causes at least a portion of the shape-memory material to transform into reversible stress-induced martensite. When deformed into its different configuration, rod 302 has a different, stressed length l2. In the illustrated embodiment, rod 302 is elongated or lengthened when stressed, thus increasing the overall length of rod 302 from length l1 to length l2. However, it should be understood that rod 302 could alternatively be compressed or shortened when stressed, thus decreasing the overall length of rod 302.
  • [0061]
    When secured to at least two vertebrae V, stabilization plates 22 and 200 and rods 302 serve to stabilize at least a portion of the spinal column, while allowing at least limited relative displacement or movement between the vertebrae V to restore substantially normal biomechanical function thereto. When secured to the upper and lower vertebrae Vu, Vl and stressed in response to relative movement between the upper and lower vertebrae Vu, Vl, the plates 22, 200 and rods 302 will be reformed from their initial shape or configuration to a different shape or configuration, and at least a portion of the shape-memory material will be transformed from austenite to stress-induced martensite. When in a stress-induced martensitic state, the plates 22, 200 and rods 302 exert a substantially constant restorative force onto the upper and lower vertebrae Vu, Vl, thereby providing flexible stabilization to the vertebral column, and in particular the cervical region of the spine. Because the plates 22, 200 and rods 302 are at least partially formed of a shape-memory material displaying superelastic or pseudoelastic characteristics, when the stress exerted on plates 22, 200 and rods 302 is reduced or removed, at least a portion of the shape-memory material will transform back into austenite, and the plates 22, 200 and rods 302 will recover toward their initial, memorized shape or configuration. Plates 22, 200 and rods 302 are therefore compliant, capable of being repeatedly transformed between an initial configuration and a different configuration through the imposition and release of stress.
  • [0062]
    Because the central portions 30, 202 of plates 22, 200 and at least a portion of rod 302 are at least partially formed of a shape-memory material exhibiting pseudoelastic behavior, they are capable of providing a relatively constant restorative forces to the spinal column for correction of various spinal deformities. This pseudoelastic behavior of the shape-memory material allows for a relatively large degree of recoverable deflection or strain of central portion 30, 202 of plates 20, 200 and at least a portion of rod 302 than would be possible with conventional materials, such as stainless steel or titanium. For instance, most conventional materials are capable of being elastically deformed over a relatively small range of deflection or strain, and when further stressed begin to deform plastically. However, shape-memory materials are capable of recovering up to about 8% of deflection or strain, well beyond the yield point of conventional materials.
  • [0063]
    Moreover, because central portions 30, 202 are each configured to define a number of alternating ridges and grooves along the longitudinal axis L of plates 22, 200, when stress is applied, a greater degree of flexation or deflection is possible than with conventional plates having a flat or rectilinear configuration. The spring-like configuration of central portions 30, 202 allows for this added degree of flexibility or compliability. When central portions 30, 202 are in an initial configuration, each has an initial length and the alternating ridges and grooves have an initial amplitude. However, when stress is applied to plates 22, 200 along the longitudinal axis L, central portions 30, 202 will each be reformed to a different configuration defining a different length and amplitude. When the stress is removed, the spring-like action of the central portions 30, 202 will cause each of central portions 30, 202 to recover toward their initial configuration, length and amplitude. By combining the pseudoelastic characteristics of the shape-memory material with the spring-like configuration of central portions 30, 202, greater degrees of flexation or deflection are possible with stabilization system 20 than are currently possible through existing systems.
  • [0064]
    While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. For example, although the systems 20, 300 have been illustrated and described as a spinal stabilization system, it should be understood that plates 22, 200 and rods 302 can also be used as a connector for connecting a first member to a second member, and need not necessarily be used in conjunction with treatment of the spinal column.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3786806 *22 Nov 197222 Jan 1974F AlicandriThermoconstrictive surgical appliance
US4665906 *21 May 198619 May 1987Raychem CorporationMedical devices incorporating sim alloy elements
US4743260 *10 Jun 198510 May 1988Burton Charles VMethod for a flexible stabilization system for a vertebral column
US5041113 *16 Jul 199020 Aug 1991Lutz BiedermannStabilization member for stabilizing bones
US5092866 *2 Feb 19903 Mar 1992Breard Francis HFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5180381 *24 Sep 199119 Jan 1993Aust Gilbert MAnterior lumbar/cervical bicortical compression plate
US5387213 *20 Aug 19937 Feb 1995Safir S.A.R.L.Osseous surgical implant particularly for an intervertebral stabilizer
US5415661 *24 Mar 199316 May 1995University Of MiamiImplantable spinal assist device
US5540689 *21 Mar 199430 Jul 1996Sanders; Albert E.Apparatus for securing a rod adjacent to a bone
US5551871 *20 May 19933 Sep 1996Besselink; Petrus A.Temperature-sensitive medical/dental apparatus
US5597378 *2 Oct 199228 Jan 1997Raychem CorporationMedical devices incorporating SIM alloy elements
US5616144 *6 Jun 19951 Apr 1997Codman & Shurtleff, Inc.Osteosynthesis plate system
US5658286 *5 Feb 199619 Aug 1997Sava; Garard A.Fabrication of implantable bone fixation elements
US5672175 *5 Feb 199630 Sep 1997Martin; Jean RaymondDynamic implanted spinal orthosis and operative procedure for fitting
US5728098 *7 Nov 199617 Mar 1998Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US5779707 *3 Oct 199514 Jul 1998Bertholet; MauriceLink piece for bony elements
US5954725 *17 Mar 199821 Sep 1999Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape memory technology
US6132434 *17 May 199917 Oct 2000Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US6210413 *29 Sep 19993 Apr 2001Sdgi Holdings, Inc.Connecting apparatus using shape-memory technology
US6254602 *29 Sep 19993 Jul 2001Sdgi Holdings, Inc.Advanced coupling device using shape-memory technology
US6273888 *29 Sep 199914 Aug 2001Sdgi Holdings, Inc.Device and method for selectively preventing the locking of a shape-memory alloy coupling system
US6287311 *12 Jun 200011 Sep 2001Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US6293949 *1 Mar 200025 Sep 2001Sdgi Holdings, Inc.Superelastic spinal stabilization system and method
US6296643 *20 Oct 19992 Oct 2001Sdgi Holdings, Inc.Device for the correction of spinal deformities through vertebral body tethering without fusion
US6299613 *20 Oct 19999 Oct 2001Sdgi Holdings, Inc.Method for the correction of spinal deformities through vertebral body tethering without fusion
US6325805 *20 Oct 19994 Dec 2001Sdgi Holdings, Inc.Shape memory alloy staple
US6342055 *28 May 199929 Jan 2002Theken Surgical LlcBone fixation system
US6436099 *20 Oct 199920 Aug 2002Sdgi Holdings, Inc.Adjustable spinal tether
US6454773 *31 Aug 200124 Sep 2002Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US20050240182 *29 Mar 200527 Oct 2005St. Francis Medical Technologies, Inc.Supplemental spine fixation device and method
USRE36221 *15 May 19961 Jun 1999Breard; Francis HenriFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US776694114 May 20043 Aug 2010Paul Kamaljit SSpinal support, stabilization
US77853508 May 200631 Aug 2010Warsaw Orthopedic, Inc.Load bearing flexible spinal connecting element
US77944768 Aug 200314 Sep 2010Warsaw Orthopedic, Inc.Implants formed of shape memory polymeric material for spinal fixation
US781566327 Jan 200619 Oct 2010Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US782882520 Jun 20059 Nov 2010Warsaw Orthopedic, Inc.Multi-level multi-functional spinal stabilization systems and methods
US79429001 Aug 200717 May 2011Spartek Medical, Inc.Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method
US796397830 May 200821 Jun 2011Spartek Medical, Inc.Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US798524330 May 200826 Jul 2011Spartek Medical, Inc.Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method
US799337230 May 20089 Aug 2011Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US80028001 Aug 200723 Aug 2011Spartek Medical, Inc.Horizontal rod with a mounting platform for a dynamic stabilization and motion preservation spinal implantation system and method
US800280330 May 200823 Aug 2011Spartek Medical, Inc.Deflection rod system for a spine implant including an inner rod and an outer shell and method
US800751824 Sep 200930 Aug 2011Spartek Medical, Inc.Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US80121751 Aug 20076 Sep 2011Spartek Medical, Inc.Multi-directional deflection profile for a dynamic stabilization and motion preservation spinal implantation system and method
US80121798 May 20066 Sep 2011Warsaw Orthopedic, Inc.Dynamic spinal stabilization members and methods
US801218124 Sep 20096 Sep 2011Spartek Medical, Inc.Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
US801686124 Sep 200913 Sep 2011Spartek Medical, Inc.Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US802139624 Sep 200920 Sep 2011Spartek Medical, Inc.Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US804333711 Jun 200725 Oct 2011Spartek Medical, Inc.Implant system and method to treat degenerative disorders of the spine
US804811330 May 20081 Nov 2011Spartek Medical, Inc.Deflection rod system with a non-linear deflection to load characteristic for a dynamic stabilization and motion preservation spinal implantation system and method
US804811524 Sep 20091 Nov 2011Spartek Medical, Inc.Surgical tool and method for implantation of a dynamic bone anchor
US804812130 May 20081 Nov 2011Spartek Medical, Inc.Spine implant with a defelction rod system anchored to a bone anchor and method
US804812230 May 20081 Nov 2011Spartek Medical, Inc.Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method
US804812330 May 20081 Nov 2011Spartek Medical, Inc.Spine implant with a deflection rod system and connecting linkages and method
US804812524 Sep 20091 Nov 2011Spartek Medical, Inc.Versatile offset polyaxial connector and method for dynamic stabilization of the spine
US80481281 Aug 20071 Nov 2011Spartek Medical, Inc.Revision system and method for a dynamic stabilization and motion preservation spinal implantation system and method
US80527211 Aug 20078 Nov 2011Spartek Medical, Inc.Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method
US805272230 May 20088 Nov 2011Spartek Medical, Inc.Dual deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US805751430 May 200815 Nov 2011Spartek Medical, Inc.Deflection rod system dimensioned for deflection to a load characteristic for dynamic stabilization and motion preservation spinal implantation system and method
US805751524 Sep 200915 Nov 2011Spartek Medical, Inc.Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US805751724 Sep 200915 Nov 2011Spartek Medical, Inc.Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine
US80667471 Aug 200729 Nov 2011Spartek Medical, Inc.Implantation method for a dynamic stabilization and motion preservation spinal implantation system and method
US80707741 Aug 20076 Dec 2011Spartek Medical, Inc.Reinforced bone anchor for a dynamic stabilization and motion preservation spinal implantation system and method
US807077530 May 20086 Dec 2011Spartek Medical, Inc.Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US807077630 May 20086 Dec 2011Spartek Medical, Inc.Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method
US80707801 Aug 20076 Dec 2011Spartek Medical, Inc.Bone anchor with a yoke-shaped anchor head for a dynamic stabilization and motion preservation spinal implantation system and method
US80800391 Aug 200720 Dec 2011Spartek Medical, Inc.Anchor system for a spine implantation system that can move about three axes
US808377224 Sep 200927 Dec 2011Spartek Medical, Inc.Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US808377524 Sep 200927 Dec 2011Spartek Medical, Inc.Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US809250124 Sep 200910 Jan 2012Spartek Medical, Inc.Dynamic spinal rod and method for dynamic stabilization of the spine
US809702424 Sep 200917 Jan 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US81053561 Aug 200731 Jan 2012Spartek Medical, Inc.Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method
US810535930 May 200831 Jan 2012Spartek Medical, Inc.Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US810997030 May 20087 Feb 2012Spartek Medical, Inc.Deflection rod system with a deflection contouring shield for a spine implant and method
US811413030 May 200814 Feb 2012Spartek Medical, Inc.Deflection rod system for spine implant with end connectors and method
US811413424 Sep 200914 Feb 2012Spartek Medical, Inc.Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US811884027 Feb 200921 Feb 2012Warsaw Orthopedic, Inc.Vertebral rod and related method of manufacture
US81188421 Aug 200721 Feb 2012Spartek Medical, Inc.Multi-level dynamic stabilization and motion preservation spinal implantation system and method
US81424801 Aug 200727 Mar 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system with horizontal deflection rod and articulating vertical rods
US81475201 Aug 20073 Apr 2012Spartek Medical, Inc.Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method
US81629871 Aug 200724 Apr 2012Spartek Medical, Inc.Modular spine treatment kit for dynamic stabilization and motion preservation of the spine
US81728811 Aug 20078 May 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod mounted in close proximity to a mounting rod
US817288211 Jun 20078 May 2012Spartek Medical, Inc.Implant system and method to treat degenerative disorders of the spine
US81778151 Aug 200715 May 2012Spartek Medical, Inc.Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method
US81825151 Aug 200722 May 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method
US81825161 Aug 200722 May 2012Spartek Medical, Inc.Rod capture mechanism for dynamic stabilization and motion preservation spinal implantation system and method
US81924691 Aug 20075 Jun 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod
US82111501 Aug 20073 Jul 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method
US821115524 Sep 20093 Jul 2012Spartek Medical, Inc.Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US82162812 Dec 200910 Jul 2012Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US82316579 Aug 201031 Jul 2012Warsaw OrthopedicLoad bearing flexible spinal connecting element
US8246664 *24 Feb 200921 Aug 2012Osteomed LlcMultiple bone fusion plate
US825202819 Dec 200728 Aug 2012Depuy Spine, Inc.Posterior dynamic stabilization device
US82573972 Dec 20104 Sep 2012Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US826271024 Oct 200611 Sep 2012Aesculap Implant Systems, LlcDynamic stabilization device for anterior lower lumbar vertebral fusion
US826797924 Sep 200918 Sep 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US829826730 May 200830 Oct 2012Spartek Medical, Inc.Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method
US831783610 Nov 200927 Nov 2012Spartek Medical, Inc.Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US833379224 Sep 200918 Dec 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US833753624 Sep 200925 Dec 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US837212229 Apr 201112 Feb 2013Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US839412727 Jun 201212 Mar 2013Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US84146194 Oct 20109 Apr 2013Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US84197728 Jun 201016 Apr 2013Reduction Technologies, Inc.Systems, methods and devices for correcting spinal deformities
US84309167 Feb 201230 Apr 2013Spartek Medical, Inc.Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US843526823 Jul 20087 May 2013Reduction Technologies, Inc.Systems, devices and methods for the correction of spinal deformities
US851808527 Jan 201127 Aug 2013Spartek Medical, Inc.Adaptive spinal rod and methods for stabilization of the spine
US856845110 Nov 200929 Oct 2013Spartek Medical, Inc.Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US864173429 Apr 20094 Feb 2014DePuy Synthes Products, LLCDual spring posterior dynamic stabilization device with elongation limiting elastomers
US865785630 Aug 201025 Feb 2014Pioneer Surgical Technology, Inc.Size transition spinal rod
US866872319 Jul 201111 Mar 2014Neurostructures, Inc.Anterior cervical plate
US884569210 Jun 201030 Sep 2014Warsaw Orthopedic, Inc.Implants formed of a shape memory polymeric material for spinal fixation
US894002630 Mar 201027 Jan 2015Merete Medical GmbhApparatus for the constant-angle fixation and compression of a fracture or osteotomy of a bone
US901149424 Sep 200921 Apr 2015Warsaw Orthopedic, Inc.Composite vertebral rod system and methods of use
US90667577 Sep 201130 Jun 2015Virak Orthopedic Research LlcOrthopedic external fixator and method of use
US910140720 Jan 201411 Aug 2015Howmedica Osteonics Corp.Anterior cervical plate
US91139646 Aug 201425 Aug 2015Howmedica Osteonics Corp.Anterior cervical plate
US914443926 Mar 201329 Sep 2015Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US916179521 Dec 201020 Oct 2015Merete Medical GmbhBone plate system for osteosynthesis
US923296819 Sep 200812 Jan 2016DePuy Synthes Products, Inc.Polymeric pedicle rods and methods of manufacturing
US932054327 Oct 200926 Apr 2016DePuy Synthes Products, Inc.Posterior dynamic stabilization device having a mobile anchor
US942749313 Sep 201330 Aug 2016The Regents Of The University Of ColoradoShape memory polymer intraocular lenses
US944584424 Mar 201020 Sep 2016DePuy Synthes Products, Inc.Composite material posterior dynamic stabilization spring rod
US948625020 Feb 20148 Nov 2016Mastros Innovations, LLC.Lateral plate
US9492214 *18 Dec 200815 Nov 2016Michel H. MalekFlexible spinal stabilization system
US20050033295 *8 Aug 200310 Feb 2005Paul WisnewskiImplants formed of shape memory polymeric material for spinal fixation
US20050261686 *14 May 200424 Nov 2005Paul Kamaljit SSpinal support, stabilization
US20060184171 *15 Nov 200517 Aug 2006Lutz BiedermannFlexible element for use in a stabilization device for bones or vertebrae
US20070005063 *20 Jun 20054 Jan 2007Sdgi Holdings, Inc.Multi-level multi-functional spinal stabilization systems and methods
US20070162007 *7 Feb 200712 Jul 2007Mazor Surgical Technologies, Ltd.Minimally invasive spinal fusion
US20070270836 *8 May 200622 Nov 2007Sdgi Holdings, Inc.Dynamic spinal stabilization members and methods
US20070270837 *8 May 200622 Nov 2007Sdgi Holdings, Inc.Load bearing flexible spinal connecting element
US20070270838 *8 May 200622 Nov 2007Sdgi Holdings, Inc.Dynamic spinal stabilization device with dampener
US20090043341 *9 Aug 200712 Feb 2009Aesculap, Inc.Dynamic extension plate for anterior cervical fusion and method of installation
US20090088782 *28 Sep 20072 Apr 2009Missoum MoumeneFlexible Spinal Rod With Elastomeric Jacket
US20090105766 *23 Jul 200823 Apr 2009Matthew ThompsonSystems, Devices and Methods for the Correction of Spinal Deformities
US20090240287 *21 May 200724 Sep 2009Mark Richard CunliffeBone fixation device
US20100160964 *18 Dec 200824 Jun 2010Malek Michel HFlexible spinal stabilization system
US20100256687 *17 Mar 20107 Oct 2010Merete Medical GmbhFixation Device and Method of Use for a Ludloff Osteotomy Procedure
US20100298883 *9 Aug 201025 Nov 2010Warsaw Orthopedic, Inc.Load Bearing Flexible Spinal Connecting Element
US20110054535 *30 Aug 20103 Mar 2011Gephart Matthew PSize Transition Spinal Rod
US20110077687 *8 Jun 201031 Mar 2011Matthew ThompsonSystems, Methods And Devices For Correcting Spinal Deformities
US20120203284 *11 Dec 20119 Aug 2012Neurovention, LLCDevice and Method for Performing a Decompressive Craniotomy
US20120277748 *28 Apr 20111 Nov 2012Warsaw Orthopedic, Inc.Bone plate
US20120290013 *23 Mar 201215 Nov 2012Peter Melott SimonsonTapered spinal rod
USD7409431 Aug 201413 Oct 2015Merete Medical GmbhBone plate
USD74516222 Sep 20148 Dec 2015Merete Medical GmbhBone plate
DE102004055454A1 *17 Nov 200424 May 2006Biedermann Motech GmbhFlexible element for setting of bones e.g. spinal cord has loop-shaped staff which runs along the connecting axle from one end to another end on two opposite sides of axle
EP2486858A1 *23 Jan 201215 Aug 2012Jorge Abel GroisoMethod of making an elongated wire for an orthopaedics implant
WO2007121080A2 *3 Apr 200725 Oct 2007Warsaw Orthopedic, Inc.Elastic plates for spinal fixation or stabilization
WO2007121080A3 *3 Apr 200724 Apr 2008Michael C ShermanElastic plates for spinal fixation or stabilization
WO2011076205A1 *21 Dec 201030 Jun 2011Merete Medical GmbhBone plate system for osteosynthesis
Classifications
U.S. Classification606/257, 606/283, 606/911, 606/299, 606/264, 606/279, 606/907, 606/277, 606/910, 606/298
International ClassificationA61B17/58, A61F5/01, A61F2/44, A61B17/00, A61F2/00, A61B17/70, A61B17/80
Cooperative ClassificationY10S606/911, Y10S606/91, A61B17/70, A61B2017/00867, A61B17/7059, A61F2002/449, A61F2210/0014, A61F2002/30092, A61B17/7011, A61B17/8042
European ClassificationA61B17/70K, A61B17/70B1G
Legal Events
DateCodeEventDescription
19 Feb 2007ASAssignment
Owner name: SDGI HOLDINGS, INC., DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUSTIS, JEFF R.;SHERMAN, MICHAEL C.;REEL/FRAME:018898/0712
Effective date: 20000214
26 Feb 2007ASAssignment
Owner name: WARSAW ORTHOPEDIC, INC., INDIANA
Free format text: MERGER;ASSIGNOR:SDGI HOLDINGS, INC.;REEL/FRAME:018923/0481
Effective date: 20060428