US20040211561A1 - Methods and compositions for consolidating proppant in fractures - Google Patents

Methods and compositions for consolidating proppant in fractures Download PDF

Info

Publication number
US20040211561A1
US20040211561A1 US10/383,184 US38318403A US2004211561A1 US 20040211561 A1 US20040211561 A1 US 20040211561A1 US 38318403 A US38318403 A US 38318403A US 2004211561 A1 US2004211561 A1 US 2004211561A1
Authority
US
United States
Prior art keywords
proppant particles
composition
resin composition
hardenable resin
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/383,184
Inventor
Philip Nguyen
Johnny Barton
O. Marlene Isenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARTON, JOHNNY A., ISENBERG, O. MARLENE, NGUYEN, PHILIP D.
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US10/383,184 priority Critical patent/US20040211561A1/en
Priority to GB0515469A priority patent/GB2414755A/en
Priority to PCT/GB2004/000689 priority patent/WO2004079159A1/en
Priority to MXPA05009466A priority patent/MXPA05009466A/en
Priority to AU2004217783A priority patent/AU2004217783A1/en
Publication of US20040211561A1 publication Critical patent/US20040211561A1/en
Priority to US11/135,566 priority patent/US7264052B2/en
Priority to NO20053721A priority patent/NO20053721L/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/90Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/924Fracture fluid with specified propping feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to methods and storable hardenable resin compositions for forming one or more fractures in high temperature subterranean zones and consolidating proppant particles therein.
  • Hydrocarbon producing wells are often stimulated by hydraulic fracturing treatments.
  • hydraulic fracturing a viscous fracturing fluid which also functions as a carrier fluid is pumped into a subterranean zone to be fractured at a rate and pressure such that one or more fractures are formed in the zone.
  • Proppant particles e.g., graded sand, for propping the fractures open are suspended in the fracturing fluid so that the proppant particles are deposited in the fractures when the fracturing fluid is broken. That is, a viscosity breaker is included in the fracturing fluid whereby the fracturing fluid reverts to a thin fluid which is returned to the surface.
  • the proppant particles deposited in the fractures function to prevent the fractures from closing so that conductive channels are formed through which produced hydrocarbons can readily flow.
  • the proppant particles In order to prevent the subsequent flow-back of the proppant particles as well as loose or incompetent fines with fluids produced from the subterranean zone, the proppant particles have heretofore been coated with a hardenable resin composition which is caused to harden and consolidate the proppant particles in the zone into permeable packs.
  • a hardenable resin composition which is caused to harden and consolidate the proppant particles in the zone into permeable packs.
  • the hardened resin composition and the permeable proppant particle packs consolidated therewith rapidly deteriorate which allows proppant particles and formation fines to flow-back with produced formation fluids.
  • the flow-back of the proppant particles and formation fines is very detrimental in that it erodes metal goods, plugs piping and vessels and causes damage to valves, instruments and other production equipment.
  • the present invention provides improved methods and compositions for consolidating proppant in fractures formed in high production rate, high stress and/or high temperature subterranean zones which meet the needs described above and overcome the deficiencies of the prior art.
  • the hardenable resin compositions of this invention are hardened by heat and consolidate resin coated proppant particles at temperatures above about 200° F. into degradation resistant permeable packs which do not allow proppant flow-back and the production of formation fines with formation fluids.
  • An improved method of the present invention for forming one or more fractures in a subterranean zone having a temperature above about 200° F. penetrated by a well bore and consolidating proppant particles therein is comprised of the following steps. Proppant particles coated with a hardenable resin composition are provided.
  • the hardenable resin composition is comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide or dimethyl formamide solvent, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin composition to flow to the contact points between adjacent coated proppant particles.
  • a hydrolyzable ester for breaking gelled fracturing fluid films on the proppant particles can be included in the hardenable resin composition.
  • a high flash point diluent such as dipropylene glycol methyl ether can also optionally be included in the hardenable resin composition to reduce its viscosity to a desirable level for ease of pumping during use.
  • a gelled liquid fracturing fluid is also provided which is pumped into the subterranean zone to form one or more fractures and to deposit the proppant particles therein. The proppant particles coated with the hardenable resin composition are mixed with the fracturing fluid being pumped whereby the proppant particles coated with the hardenable resin composition are suspended therein.
  • the pumping of the fracturing fluid and the mixing of the proppant particles coated with the hardenable resin composition with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the resin composition coated proppant particles is allowed to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs.
  • Another improved method of this invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. is comprised of the following steps.
  • a liquid hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C 12 -C 22 alkyl phosphate surfactant, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate esters, and a dipropylene glycol methyl ether diluent.
  • a source of dry proppant particles and a gelled liquid fracturing fluid comprised of water and a gelling agent selected from the group consisting of guar gum, guar gum derivatives and cellulose derivatives are also provided.
  • the gelled liquid fracturing fluid is pumped into the subterranean zone to form the one or more fractures therein and to place the proppant particles therein.
  • the hardenable resin composition is coated onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles.
  • the hardenable resin composition coated proppant particles are mixed with the fracturing fluid pumped into the subterranean zone whereby the hardenable resin composition coated proppant particles are suspended therein.
  • the pumping of the gelled fracturing fluid, the coating of the hardenable resin composition onto the dry proppant particles and the mixing of the hardenable resin composition coated proppant particles formed with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the hardenable resin composition coated proppant particles is allowed to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs.
  • the present invention provides improved methods of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprising the following steps.
  • Proppant particles coated with a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide or dimethyl formamide solvent, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles are provided.
  • a hydrolyzable ester for breaking gelled fracturing fluid films on the proppant particles can be included in the hardenable resin composition.
  • a high flash point diluent such as dipropylene glycol methyl ether can also optionally be included in the hardenable resin composition to reduce its viscosity to a desirable level for ease of pumping during operation.
  • a gelled liquid fracturing fluid is also provided which is pumped into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein.
  • the proppant particles coated with the hardenable resin composition are mixed with the fracturing fluid being pumped into the subterranean zone whereby the proppant particles coated with the hardenable resin composition are suspended therein.
  • the pumping of the gelled liquid fracturing fluid and the mixing of the proppant particles coated with the hardenable resin composition with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the resin composition coated proppant particles are allowed to harden by heat and consolidate the proppant particles into one or more high production rate, high stress and/or high temperature degradation resistant permeable packs.
  • the proppant particles utilized in accordance with the present invention are generally of a size such that formation particulate solids that migrate with produced fluids are prevented from being produced from the subterranean zone.
  • Various kinds of proppant particles can be utilized including graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads and the like.
  • the proppant particles have a size in the range of from about 2 to about 400 mesh, U.S. Sieve Series.
  • the preferred proppant is graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series.
  • Preferred sand particle size distribution ranges are one or more of 10-20 mesh, 20-40 mesh, 40-60 mesh or 50-70 mesh, depending on the particular size and distribution of formation solids to be screened out by the consolidated proppant particles.
  • Liquid bisphenol A-epichlorohydrin resin is readily available from a number of commercial sources.
  • a suitable such resin is commercially available from the Resin Resolution Corporation of Houston, Tex.
  • the bisphenol A-epichlorohydrin resin forms an insoluble mass that is highly resistant to high production rate, high stress and/or high temperature degradation, e.g., the cured resin resists thermal degradation at temperatures up to 400° F.
  • the bisphenol A-epichlorohydrin resin is generally present in the hardenable resin composition in an amount in the range of from about 40% to about 65% by weight of the hardenable resin composition, and more preferably in an amount of about 50%.
  • the liquid hardening agent for hardening the bisphenol A-epichlorohydrin resin at temperatures above about 200° F. is comprised of 4,4′-diaminodiphenyl sulfone dissolved in dimethyl sulfoxide or dimethyl formamide solvent and is present in the hardenable resin composition in an amount in the range of from about 15% to about 50% by weight of the composition, and more preferably in an amount of about 25%.
  • the solvent contains the 4,4′-diaminodiphenyl sulfone in an amount of about 40% by weight of the solvent.
  • the silane coupling agent is included in the hardenable resin composition in an amount in the range of from about 0.1% to about 3% by weight of the composition and more preferably in an amount of about 1%.
  • Various surfactants for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles can be utilized in the hardenable resin composition.
  • the surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate ester surfactants, mixtures of one or more cationic surfactants and one or more non-ionic surfactants and a C 12 -C 22 alkyl phosphonate surfactant. Of these, a C 12 -C 22 alkyl phosphonate surfactant is preferred.
  • the surfactant is included in the hardenable resin composition in an amount in the range of from about 0.1% to about 10% by weight of the composition and more preferably in an amount of about 5%.
  • the hydrolyzable ester is included in the liquid hardenable resin composition in an amount in the range of from about 0.1% to about 53% by weight of the composition and more preferably in an amount of about 2%.
  • a high flash point diluent that can optionally be included in the hardenable resin composition is dipropylene glycol methyl ether. When used, the diluent is present in an amount of about 1% to about 40% by weight of the composition.
  • the liquid hardenable resin composition of this invention can be premixed and stored at atmospheric conditions, e.g., temperatures up to 120° F. without significant viscosity increase or deterioration.
  • the liquid hardenable resin composition hardens at temperatures above about 200° F. and can be utilized in wells having temperatures in the range of from about 200° F. to about 350° F. and higher.
  • the liquid hardenable resin composition has a safe high flash point above 170° F.
  • Another improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. is comprised of the following steps.
  • a liquid hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone dissolved in a dimethyl sulfoxide solvent, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C 12 -C 22 alkyl phosphate surfactant, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent.
  • a source of dry proppant particles and a gelled liquid fracturing fluid are also provided.
  • the gelled liquid fracturing fluid is comprised of water and a gelling agent selected from the group consisting of guar gum, guar gum derivatives and cellulose derivatives.
  • the gelled liquid fracturing fluid is pumped into the subterranean formation to form the one or more fractures therein and to place the proppant particles therein.
  • the hardenable resin composition is coated onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles.
  • the hardenable resin composition coated proppant particles are mixed with the fracturing fluid being pumped whereby the hardenable resin composition coated proppant particles are suspended therein.
  • the pumping of the fracturing fluid, the coating of the hardenable resin composition onto the dry proppant particles and the mixing of the hardenable resin composition coated proppant particles formed with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the hardenable resin composition coated proppant particles is allowed to harden by heat and consolidate the proppant particles into one or more high production rate, high stress and/or high temperature degradation resistant permeable packs.
  • the bisphenol A-epichlorohydrin resin, the 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, the silane coupling agent, the surfactant, the hydrolyzable esters and the dipropylene glycol methyl ether diluent are present in the hardenable resin composition in the same amounts as described above.
  • the water in the gelled liquid fracturing fluid is selected from the group consisting of fresh water and salt water.
  • salt water is used herein to mean unsaturated salt solutions and saturated salt solutions including brines and seawater.
  • the gelling agent in the fracturing fluid is generally present in an amount in the range of from about 0.01% to about 3% by weight of water therein and more preferably in an amount of about 0.1% to about 1%.
  • the gelled liquid fracturing fluid can include a cross-linking agent for increasing the viscosity of the fracturing fluid.
  • suitable cross-linking agents include, but are not limited to, alkali metal borates, borax, boric acid and compounds capable of releasing multivalent metal ions in aqueous solutions.
  • the cross-linking agent is included in the fracturing fluid in an amount in the range of from about 0.001% to about 5% by weight of water therein and more preferably in an amount of about 0.01% to about 1%.
  • the fracturing fluid generally also includes a delayed viscosity breaker which functions to reduce the viscosity of the fracturing fluid and cause the resin composition coated proppant particles suspended in the fracturing fluid to be deposited in the fractures.
  • delayed viscosity breakers which can be utilized include, but are not limited to, alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases the breaker, alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorite.
  • the delayed viscosity breaker is included in the fracturing fluid in an amount in the range of from about 1% to about 5% by weight of water therein.
  • a preferred method of this invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 225° F. comprises the steps of: (a) providing proppant particles coated with a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles; (b) providing a gelled liquid fracturing fluid; (c) pumping the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles there
  • Another improved method of the present invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 225° F. comprises the steps of: (a) providing a liquid hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C 12 -C 22 alkyl phosphate surfactant, a mixture of dimethyladipate and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent; (b) providing a source of dry
  • a hardenable resin composition of this invention for coating proppant particles comprises: a hardenable resin comprised of a liquid bisphenol A-epichlorohydrin resin; a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide; a silane coupling agent; and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles.
  • a hardenable resin composition was prepared comprised of a liquid bisphenol A-epichlorohydrin resin present in an amount of 49% by weight of the composition, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent present in an amount of about 35% by weight of the composition, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent present in an amount of about 1% by weight of the composition, a C 12 -C 22 alkyl phosphate surfactant present in an amount of about 4% by weight of the composition and a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate esters present in an amount of about 1% by weight of the composition, and a diluent of dipropylene glycol
  • Samples of the hardenable resin composition were exposed to room temperature for eleven days and were maintained in a water bath at a temperature of 120° F. for eleven days.
  • the samples had viscosities between 1, 100 and 1300 centipoises which is a desirable viscosity level for coating the resin onto proppant particles.
  • One of the hardenable resin composition samples described in Example 1 above was coated onto dry 20/40 mesh bauxite proppant particles in an amount of 3% by weight of the proppant.
  • the resin coated proppant was mixed with water gelled with carboxymethylhydroxypropyl guar and cross-linked with a zirconium cross-linker.
  • Two portions of the resulting viscous fluid containing hardenable resin composition coated proppant particles were stirred for 1 hour at 175° F. to simulate the effect of pumping and fluid suspension during a fracturing treatment.
  • the fluids were then transferred and packed into brass flow cells without stress simulating fracture closure pressure.
  • One of the resulting proppant particle packs was cured at a temperature of 325° F. for 3 hours and the other was cured at the same temperature for 72 hours. Consolidated cores were obtained from the proppant packs formed and the cores were tested for unconfined compressive strengths.
  • the consolidated core that was cured for 3 hours had an unconfined compressive strength of 1304 ⁇ 108 psi and the consolidated core that was cured for 72 hours had an unconfined compressive strength of 1230 ⁇ 47 psi.

Abstract

Improved methods and compositions for consolidating proppant in subterranean fractures are provided. In accordance with the methods of the invention, proppant particles coated with a hardenable bisphenol A-epichlorohydrin resin composition are mixed with a gelled liquid fracturing fluid and the fracturing fluid is pumped into a subterranean zone. The fracturing fluid forms one or more fractures in the subterranean zone and deposits the proppant particles coated with the resin composition therein. Thereafter, the hardenable resin composition on the proppant particles is allowed to harden by heat and consolidate the proppant particles into degradation resistant permeable packs. The hardenable bisphenol A-epichlorohydrin resin compositions of the invention are storable for long periods of time before use.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to methods and storable hardenable resin compositions for forming one or more fractures in high temperature subterranean zones and consolidating proppant particles therein. [0002]
  • 2. Description of the Prior Art [0003]
  • Hydrocarbon producing wells are often stimulated by hydraulic fracturing treatments. In hydraulic fracturing, a viscous fracturing fluid which also functions as a carrier fluid is pumped into a subterranean zone to be fractured at a rate and pressure such that one or more fractures are formed in the zone. Proppant particles, e.g., graded sand, for propping the fractures open are suspended in the fracturing fluid so that the proppant particles are deposited in the fractures when the fracturing fluid is broken. That is, a viscosity breaker is included in the fracturing fluid whereby the fracturing fluid reverts to a thin fluid which is returned to the surface. The proppant particles deposited in the fractures function to prevent the fractures from closing so that conductive channels are formed through which produced hydrocarbons can readily flow. [0004]
  • In order to prevent the subsequent flow-back of the proppant particles as well as loose or incompetent fines with fluids produced from the subterranean zone, the proppant particles have heretofore been coated with a hardenable resin composition which is caused to harden and consolidate the proppant particles in the zone into permeable packs. However, when the subterranean zone has a temperature above about 200° F., and it produces hydrocarbons at exceptionally high rates or undergoes reoccurring stresses due to frequent well shutoffs and openings, the hardened resin composition and the permeable proppant particle packs consolidated therewith rapidly deteriorate which allows proppant particles and formation fines to flow-back with produced formation fluids. The flow-back of the proppant particles and formation fines is very detrimental in that it erodes metal goods, plugs piping and vessels and causes damage to valves, instruments and other production equipment. [0005]
  • Another problem encountered in the use of prior hardenable resin compositions for coating proppant particles is that the hardenable resin composition or components thereof have had short shelf lives. In addition, the hardenable resin composition components have heretofore had low flash points making them dangerous to use. Also, when the prior hardenable resin compositions or components thereof have been stored at high ambient temperatures, the compositions or components have quickly hardened making them unsuitable for use. [0006]
  • Thus, there are needs for improved methods and storable hardenable resin compositions for consolidating proppant particles in subterranean fractures whereby the permeable packs of consolidated proppant particles formed are resistant to degradation by high production rates, stress cycling and/or thermal degradation. Further, there are needs for improved hardenable resin compositions that are premixed and have long shelf lives and high flash points. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention provides improved methods and compositions for consolidating proppant in fractures formed in high production rate, high stress and/or high temperature subterranean zones which meet the needs described above and overcome the deficiencies of the prior art. The hardenable resin compositions of this invention are hardened by heat and consolidate resin coated proppant particles at temperatures above about 200° F. into degradation resistant permeable packs which do not allow proppant flow-back and the production of formation fines with formation fluids. [0008]
  • An improved method of the present invention for forming one or more fractures in a subterranean zone having a temperature above about 200° F. penetrated by a well bore and consolidating proppant particles therein is comprised of the following steps. Proppant particles coated with a hardenable resin composition are provided. The hardenable resin composition is comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide or dimethyl formamide solvent, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin composition to flow to the contact points between adjacent coated proppant particles. Optionally, a hydrolyzable ester for breaking gelled fracturing fluid films on the proppant particles can be included in the hardenable resin composition. A high flash point diluent such as dipropylene glycol methyl ether can also optionally be included in the hardenable resin composition to reduce its viscosity to a desirable level for ease of pumping during use. A gelled liquid fracturing fluid is also provided which is pumped into the subterranean zone to form one or more fractures and to deposit the proppant particles therein. The proppant particles coated with the hardenable resin composition are mixed with the fracturing fluid being pumped whereby the proppant particles coated with the hardenable resin composition are suspended therein. When the proppant particles coated with the hardenable resin composition have been deposited in the one or more fractures formed, the pumping of the fracturing fluid and the mixing of the proppant particles coated with the hardenable resin composition with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the resin composition coated proppant particles is allowed to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs. [0009]
  • Another improved method of this invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. is comprised of the following steps. A liquid hardenable resin composition is provided comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C[0010] 12-C22 alkyl phosphate surfactant, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate esters, and a dipropylene glycol methyl ether diluent. A source of dry proppant particles and a gelled liquid fracturing fluid comprised of water and a gelling agent selected from the group consisting of guar gum, guar gum derivatives and cellulose derivatives are also provided. The gelled liquid fracturing fluid is pumped into the subterranean zone to form the one or more fractures therein and to place the proppant particles therein. The hardenable resin composition is coated onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles. The hardenable resin composition coated proppant particles are mixed with the fracturing fluid pumped into the subterranean zone whereby the hardenable resin composition coated proppant particles are suspended therein. When the hardenable resin composition coated proppant particles have been placed in the one or more fractures formed in the subterranean zone, the pumping of the gelled fracturing fluid, the coating of the hardenable resin composition onto the dry proppant particles and the mixing of the hardenable resin composition coated proppant particles formed with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the hardenable resin composition coated proppant particles is allowed to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs.
  • The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.[0011]
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention provides improved methods of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprising the following steps. Proppant particles coated with a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide or dimethyl formamide solvent, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles are provided. Optionally, a hydrolyzable ester for breaking gelled fracturing fluid films on the proppant particles can be included in the hardenable resin composition. A high flash point diluent such as dipropylene glycol methyl ether can also optionally be included in the hardenable resin composition to reduce its viscosity to a desirable level for ease of pumping during operation. A gelled liquid fracturing fluid is also provided which is pumped into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein. The proppant particles coated with the hardenable resin composition are mixed with the fracturing fluid being pumped into the subterranean zone whereby the proppant particles coated with the hardenable resin composition are suspended therein. When the proppant particles coated with the hardenable resin composition have been deposited in the one or more fractures, the pumping of the gelled liquid fracturing fluid and the mixing of the proppant particles coated with the hardenable resin composition with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the resin composition coated proppant particles are allowed to harden by heat and consolidate the proppant particles into one or more high production rate, high stress and/or high temperature degradation resistant permeable packs. [0012]
  • The proppant particles utilized in accordance with the present invention are generally of a size such that formation particulate solids that migrate with produced fluids are prevented from being produced from the subterranean zone. Various kinds of proppant particles can be utilized including graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads and the like. Generally, the proppant particles have a size in the range of from about 2 to about 400 mesh, U.S. Sieve Series. The preferred proppant is graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series. Preferred sand particle size distribution ranges are one or more of 10-20 mesh, 20-40 mesh, 40-60 mesh or 50-70 mesh, depending on the particular size and distribution of formation solids to be screened out by the consolidated proppant particles. [0013]
  • Liquid bisphenol A-epichlorohydrin resin is readily available from a number of commercial sources. For example, a suitable such resin is commercially available from the Resin Resolution Corporation of Houston, Tex. Upon curing by heat in a subterranean zone, the bisphenol A-epichlorohydrin resin forms an insoluble mass that is highly resistant to high production rate, high stress and/or high temperature degradation, e.g., the cured resin resists thermal degradation at temperatures up to 400° F. The bisphenol A-epichlorohydrin resin is generally present in the hardenable resin composition in an amount in the range of from about 40% to about 65% by weight of the hardenable resin composition, and more preferably in an amount of about 50%. [0014]
  • The liquid hardening agent for hardening the bisphenol A-epichlorohydrin resin at temperatures above about 200° F. is comprised of 4,4′-diaminodiphenyl sulfone dissolved in dimethyl sulfoxide or dimethyl formamide solvent and is present in the hardenable resin composition in an amount in the range of from about 15% to about 50% by weight of the composition, and more preferably in an amount of about 25%. The solvent contains the 4,4′-diaminodiphenyl sulfone in an amount of about 40% by weight of the solvent. [0015]
  • Examples of silane coupling agents which can be utilized in the hardenable resin composition include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane. Of these, n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane is preferred. The silane coupling agent is included in the hardenable resin composition in an amount in the range of from about 0.1% to about 3% by weight of the composition and more preferably in an amount of about 1%. [0016]
  • Various surfactants for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles can be utilized in the hardenable resin composition. Examples of the surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate ester surfactants, mixtures of one or more cationic surfactants and one or more non-ionic surfactants and a C[0017] 12-C22 alkyl phosphonate surfactant. Of these, a C12-C22 alkyl phosphonate surfactant is preferred. The surfactant is included in the hardenable resin composition in an amount in the range of from about 0.1% to about 10% by weight of the composition and more preferably in an amount of about 5%.
  • Examples of hydrolyzable esters which can optionally be included in the hardenable resin composition include, but are not limited to, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethylsuccinate and terbutylhydroperoxide. Of these, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate are preferred. When utilized, the hydrolyzable ester is included in the liquid hardenable resin composition in an amount in the range of from about 0.1% to about 53% by weight of the composition and more preferably in an amount of about 2%. [0018]
  • A high flash point diluent that can optionally be included in the hardenable resin composition is dipropylene glycol methyl ether. When used, the diluent is present in an amount of about 1% to about 40% by weight of the composition. [0019]
  • The liquid hardenable resin composition of this invention can be premixed and stored at atmospheric conditions, e.g., temperatures up to 120° F. without significant viscosity increase or deterioration. As mentioned above, the liquid hardenable resin composition hardens at temperatures above about 200° F. and can be utilized in wells having temperatures in the range of from about 200° F. to about 350° F. and higher. The liquid hardenable resin composition has a safe high flash point above 170° F. [0020]
  • Another improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. is comprised of the following steps. A liquid hardenable resin composition is provided comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone dissolved in a dimethyl sulfoxide solvent, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C[0021] 12-C22 alkyl phosphate surfactant, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent. A source of dry proppant particles and a gelled liquid fracturing fluid are also provided. The gelled liquid fracturing fluid is comprised of water and a gelling agent selected from the group consisting of guar gum, guar gum derivatives and cellulose derivatives. The gelled liquid fracturing fluid is pumped into the subterranean formation to form the one or more fractures therein and to place the proppant particles therein. The hardenable resin composition is coated onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles. The hardenable resin composition coated proppant particles are mixed with the fracturing fluid being pumped whereby the hardenable resin composition coated proppant particles are suspended therein. When the hardenable resin composition coated proppant particles have been placed in the one or more fractures by the fracturing fluid, the pumping of the fracturing fluid, the coating of the hardenable resin composition onto the dry proppant particles and the mixing of the hardenable resin composition coated proppant particles formed with the fracturing fluid are terminated. Thereafter, the hardenable resin composition on the hardenable resin composition coated proppant particles is allowed to harden by heat and consolidate the proppant particles into one or more high production rate, high stress and/or high temperature degradation resistant permeable packs.
  • The bisphenol A-epichlorohydrin resin, the 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, the silane coupling agent, the surfactant, the hydrolyzable esters and the dipropylene glycol methyl ether diluent are present in the hardenable resin composition in the same amounts as described above. [0022]
  • The water in the gelled liquid fracturing fluid is selected from the group consisting of fresh water and salt water. The term “salt water” is used herein to mean unsaturated salt solutions and saturated salt solutions including brines and seawater. [0023]
  • The gelling agent in the fracturing fluid is generally present in an amount in the range of from about 0.01% to about 3% by weight of water therein and more preferably in an amount of about 0.1% to about 1%. [0024]
  • The gelled liquid fracturing fluid can include a cross-linking agent for increasing the viscosity of the fracturing fluid. Examples of suitable cross-linking agents include, but are not limited to, alkali metal borates, borax, boric acid and compounds capable of releasing multivalent metal ions in aqueous solutions. When used, the cross-linking agent is included in the fracturing fluid in an amount in the range of from about 0.001% to about 5% by weight of water therein and more preferably in an amount of about 0.01% to about 1%. [0025]
  • The fracturing fluid generally also includes a delayed viscosity breaker which functions to reduce the viscosity of the fracturing fluid and cause the resin composition coated proppant particles suspended in the fracturing fluid to be deposited in the fractures. Examples of delayed viscosity breakers which can be utilized include, but are not limited to, alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases the breaker, alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorite. When used, the delayed viscosity breaker is included in the fracturing fluid in an amount in the range of from about 1% to about 5% by weight of water therein. [0026]
  • A preferred method of this invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 225° F. comprises the steps of: (a) providing proppant particles coated with a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles; (b) providing a gelled liquid fracturing fluid; (c) pumping the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; (d) mixing the proppant particles coated with the hardenable resin composition with the fracturing fluid pumped in accordance with step (c) whereby the proppant particles coated with the hardenable resin composition are suspended therein; (e) terminating steps (c) and (d) when the proppant particles coated with the hardenable resin composition have been deposited in the one or more fractures; and; (f) allowing the hardenable resin composition on the resin composition coated proppant particles to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs. [0027]
  • Another improved method of the present invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 225° F. comprises the steps of: (a) providing a liquid hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C[0028] 12-C22 alkyl phosphate surfactant, a mixture of dimethyladipate and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent; (b) providing a source of dry proppant particles; (c) providing a gelled liquid fracturing fluid comprised of water and a gelling agent selected from the group consisting of guar gum, guar gum derivatives and cellulose derivatives; (d) pumping the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures therein and to place the proppant particles therein; (e) coating the hardenable resin composition onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles; (f) mixing the hardenable resin composition coated proppant particles formed in step (e) with the fracturing fluid pumped in accordance with step (d) whereby the hardenable resin composition coated proppant particles are suspended therein; (g) terminating steps (d), (e) and (f) when the hardenable resin composition coated proppant particles have been placed in the one or more fractures; and (h) allowing the hardenable resin composition on the hardenable resin composition coated proppant particles to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs.
  • A hardenable resin composition of this invention for coating proppant particles comprises: a hardenable resin comprised of a liquid bisphenol A-epichlorohydrin resin; a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide; a silane coupling agent; and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles. [0029]
  • In order to further illustrate the methods and compositions of this invention, the following examples are given. [0030]
  • EXAMPLE 1
  • The effect of time and temperature on the viscosity of a hardenable resin composition of this invention was determined. A hardenable resin composition was prepared comprised of a liquid bisphenol A-epichlorohydrin resin present in an amount of 49% by weight of the composition, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent present in an amount of about 35% by weight of the composition, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent present in an amount of about 1% by weight of the composition, a C[0031] 12-C22 alkyl phosphate surfactant present in an amount of about 4% by weight of the composition and a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate esters present in an amount of about 1% by weight of the composition, and a diluent of dipropylene glycol methyl ether in an amount of about 10% by weight of the composition.
  • Samples of the hardenable resin composition were exposed to room temperature for eleven days and were maintained in a water bath at a temperature of 120° F. for eleven days. The samples had viscosities between 1, 100 and 1300 centipoises which is a desirable viscosity level for coating the resin onto proppant particles. [0032]
  • EXAMPLE 2
  • One of the hardenable resin composition samples described in Example 1 above was coated onto dry 20/40 mesh bauxite proppant particles in an amount of 3% by weight of the proppant. The resin coated proppant was mixed with water gelled with carboxymethylhydroxypropyl guar and cross-linked with a zirconium cross-linker. Two portions of the resulting viscous fluid containing hardenable resin composition coated proppant particles were stirred for 1 hour at 175° F. to simulate the effect of pumping and fluid suspension during a fracturing treatment. The fluids were then transferred and packed into brass flow cells without stress simulating fracture closure pressure. One of the resulting proppant particle packs was cured at a temperature of 325° F. for 3 hours and the other was cured at the same temperature for 72 hours. Consolidated cores were obtained from the proppant packs formed and the cores were tested for unconfined compressive strengths. [0033]
  • The consolidated core that was cured for 3 hours had an unconfined compressive strength of 1304±108 psi and the consolidated core that was cured for 72 hours had an unconfined compressive strength of 1230±47 psi. [0034]
  • Thus, the results of the tests described in Examples 1 and 2 above clearly show that the methods and hardenable resin compositions of the present invention meet the needs described above and overcome the deficiencies of the prior art. [0035]
  • Thus, the present invention is well adapted to attain the objects and advantages mentioned as well as those which are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.[0036]

Claims (45)

What is claimed is:
1. An improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 225° F. comprising the steps of:
(a) providing proppant particles coated with a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and a dimethyl formamide, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles;
(b) providing a gelled liquid fracturing fluid;
(c) pumping said gelled liquid fracturing fluid into said subterranean zone to form said one or more fractures and to deposit said proppant particles therein;
(d) mixing said proppant particles coated with said hardenable resin composition with said fracturing fluid pumped in accordance with step (c) whereby said proppant particles coated with said hardenable resin composition are suspended therein;
(e) terminating steps (c) and (d) when said proppant particles coated with said hardenable resin composition have been deposited in said one or more fractures; and
(f) allowing said hardenable resin composition on said resin composition coated proppant particles to harden by heat and consolidate said proppant particles into one or more degradation resistant permeable packs.
2. The method of claim 1 wherein said liquid bisphenol A-epichlorohydrin resin is present in said hardenable resin composition in an amount in the range of from about 40% to about 65% by weight of said composition.
3. The method of claim 1 wherein said 4,4′-diaminodiphenyl sulfone hardening agent is dissolved in said dimethyl sulfoxide or dimethyl formamide solvent in an amount of about 40% by weight of said solvent.
4. The method of claim 1 wherein said 4,4′-diaminodiphenyl sulfone hardening agent dissolved in said dimethyl sulfoxide or dimethyl formamide solvent is present in said hardenable resin composition in an amount in the range of from about 15% to about 50% by weight of said composition.
5. The method of claim 1 wherein said silane coupling agent in said hardenable resin composition is selected from the group consisting of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane.
6. The method of claim 1 wherein said silane coupling agent in said hardenable resin composition is n-beta-(aminoethyl)-gamma-aminopropyl-trimethoxysilane.
7. The method of claim 1 wherein said silane coupling agent is present in said hardenable resin composition in an amount in the range of from about 0.1% to about 3% by weight of said composition.
8. The method of claim 1 wherein said surfactant for facilitating the coating of said resin on said proppant particles and for causing said resin to flow to the contact points between adjacent resin coated proppant particles is selected from the group consisting of an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants and one or more non-ionic surfactants and a C12-C22 alkyl phosphonate surfactant.
9. The method of claim 1 wherein said surfactant is a C12-C22 alkyl phosphonate surfactant.
10. The method of claim 1 wherein said surfactant is present in said hardenable resin composition in an amount in the range of from about 0.1% to about 10% by weight of said composition.
11. The method of claim 1 which further comprises a hydrolyzable ester for breaking gelled fracturing fluid films on said proppant particles.
12. The method of claim 11 wherein said hydrolyzable ester is selected from the group consisting of a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethylsuccinate and terbutylhydroperoxide.
13. The method of claim 11 wherein said hydrolyzable ester is a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate.
14. The method of claim 11 wherein said hydrolyzable ester is present in said hardenable resin composition in an amount in the range of from about 0.1% to about 5%.
15. The method of claim 1 which further comprises a high flash point diluent for reducing the viscosity of said hardenable resin composition.
16. The method of claim 15 wherein said high flash point diluent is dipropylene glycol methyl ether.
17. The method of claim 15 wherein said high flash point diluent is present in said resin composition in an amount in the range of from about 1% to about 40% by weight of said composition.
18. An improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 225° F. comprising the steps of:
(a) providing a liquid hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C12-C22 alkyl phosphate surfactant, a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent;
(b) providing a source of dry proppant particles;
(c) providing a gelled liquid fracturing fluid comprised of water and a gelling agent selected from the group consisting of guar gum, guar gum derivatives and cellulose derivatives;
(d) pumping said gelled liquid fracturing fluid into said subterranean zone to form said one or more fractures therein and to place said proppant particles therein;
(e) coating said hardenable resin composition onto said dry proppant particles conveyed from said source thereof to form hardenable resin composition coated proppant particles;
(f) mixing said hardenable resin composition coated proppant particles formed in step (e) with said fracturing fluid pumped in accordance with step (d) whereby said hardenable resin composition coated proppant particles are suspended therein;
(g) terminating steps (d), (e) and (f) when said hardenable resin composition coated proppant particles have been placed in said one or more fractures; and
(h) allowing said hardenable resin composition on said hardenable resin composition coated proppant particles to harden by heat and consolidate said proppant particles into one or more degradation resistant permeable packs.
19. The method of claim 18 wherein said liquid bisphenol A-epichlorohydrin resin is present in said hardenable resin composition in an amount of about 50% by weight of said composition.
20. The method of claim 18 wherein said 4,4′-diaminodiphenyl sulfone hardening agent is dissolved in said dimethyl sulfoxide solvent in an amount of about 25% by weight of said solvent.
21. The method of claim 18 wherein said 4,4′-diaminodiphenyl sulfone hardening agent dissolved in said dimethyl sulfoxide solvent is present in said hardenable resin composition in an amount of about 25% by weight of said composition.
22. The method of claim 18 wherein said silane coupling agent is present in said hardenable resin composition in an amount of about 1% by weight of said composition.
23. The method of claim 18 wherein said surfactant is present in said hardenable resin composition in an amount of about 5% by weight of said composition.
24. The method of claim 18 wherein said hydrolyzable ester mixture is present in said hardenable resin composition in an amount in the range of from about 2% by weight of said composition
25. The method of claim 18 wherein said proppant particles are graded sand.
26. The method of claim 18 wherein said water in said gelled liquid fracturing fluid is selected from the group consisting of fresh water and salt water.
27. The method of claim 18 wherein said gelling agent is present in said fracturing fluid in an amount in the range of from about 0.1% to about 1% by weight of water therein.
28. The method of claim 18 wherein said gelled liquid fracturing fluid further comprises a cross-linking agent selected from the group consisting of alkali metal borates, borax, boric acid and compounds capable of releasing multivalent metal ions in aqueous solutions.
29. The method of claim 28 wherein said cross-linking agent is present in said fracturing fluid in an amount in the range of from about 0.01% to about 1% by weight of water therein.
30. The method of claim 18 wherein said gelled liquid fracturing fluid further comprises a delayed viscosity breaker selected from the group consisting of alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases said breaker, alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorites.
31. The method of claim 30 wherein said delayed viscosity breaker is present in said fracturing fluid in an amount in the range of from about 1% to about 5% by weight of water therein.
32. A hardenable resin composition for coating proppant particles comprising:
a hardenable resin comprised of a liquid bisphenol A-epichlorohydrin resin;
a 4,4-diaminodiphenyl sulfone hardening agent dissolved in a solvent selected from the group consisting of dimethyl sulfoxide and dimethyl formamide;
a silane coupling agent; and
a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles.
33. The composition of claim 32 wherein said liquid bisphenol A-epichlorohydrin resin is present in an amount in the range of from about 40% to about 65% by weight of said composition.
34. The composition of claim 32 wherein said 4,4′-diaminodiphenyl sulfone hardening agent is dissolved in said dimethyl sulfoxide or dimethyl formamide solvent in an amount of about 40% by weight of said solvent.
35. The composition of claim 32 wherein said 4,4′-diaminodiphenyl sulfone hardening agent dissolved in said dimethyl sulfoxide or dimethyl formamide solvent is present in an amount in the range of from about 15% to about 50% by weight of said composition.
36. The composition of claim 32 wherein said silane coupling agent is selected from the group consisting of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and n-beta-(aminoethyl)-gamma-aminopropyl-trimethoxysilane.
37. The composition of claim 32 wherein said silane coupling agent is n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane.
38. The composition of claim 32 wherein said silane coupling agent is present in an amount in the range of from about 0.1% to about 3% by weight of said composition.
39. The composition of claim 32 wherein said surfactant for facilitating the coating of said resin on said proppant particles and for causing said resin to flow to the contact points between adjacent resin coated proppant particles is selected from the group consisting of an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants and one or more non-ionic surfactants and a C12-C22 alkyl phosphonate surfactant.
40. The composition of claim 32 wherein said surfactant is comprised of a C12-C22 alkyl phosphonate surfactant.
41. The composition of claim 32 wherein said surfactant is present in an amount in the range of from about 0.1% to about 10% by weight of said composition.
42. The composition of claim 32 which further comprises a hydrolyzable ester for breaking gelled fracturing fluid films on said proppant particles.
43. The composition of claim 42 wherein said hydrolyzable ester is selected from the group consisting of a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethylsuccinate and terbutylhydroperoxide.
44. The composition of claim 42 wherein said hydrolyzable ester is a mixture of dimethylglutarate, dimethyladipate and dimethylsuccinate.
45. The composition of claim 42 wherein said hydrolyzable ester is present in said hardenable resin composition in an amount in the range of from about 0.1% to about 5%.
US10/383,184 2003-03-06 2003-03-06 Methods and compositions for consolidating proppant in fractures Abandoned US20040211561A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/383,184 US20040211561A1 (en) 2003-03-06 2003-03-06 Methods and compositions for consolidating proppant in fractures
GB0515469A GB2414755A (en) 2003-03-06 2004-02-23 Methods and compositions for consolidating proppant in fractures
PCT/GB2004/000689 WO2004079159A1 (en) 2003-03-06 2004-02-23 Methods and compositions for consolidating proppant in fractures
MXPA05009466A MXPA05009466A (en) 2003-03-06 2004-02-23 Methods and compositions for consolidating proppant in fractures.
AU2004217783A AU2004217783A1 (en) 2003-03-06 2004-02-23 Methods and compositions for consolidating proppant in fractures
US11/135,566 US7264052B2 (en) 2003-03-06 2005-05-23 Methods and compositions for consolidating proppant in fractures
NO20053721A NO20053721L (en) 2003-03-06 2005-08-03 Hardenable resin blend for proppant and method of popping underground zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/383,184 US20040211561A1 (en) 2003-03-06 2003-03-06 Methods and compositions for consolidating proppant in fractures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/135,566 Continuation-In-Part US7264052B2 (en) 2003-03-06 2005-05-23 Methods and compositions for consolidating proppant in fractures

Publications (1)

Publication Number Publication Date
US20040211561A1 true US20040211561A1 (en) 2004-10-28

Family

ID=32961294

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/383,184 Abandoned US20040211561A1 (en) 2003-03-06 2003-03-06 Methods and compositions for consolidating proppant in fractures
US11/135,566 Expired - Lifetime US7264052B2 (en) 2003-03-06 2005-05-23 Methods and compositions for consolidating proppant in fractures

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/135,566 Expired - Lifetime US7264052B2 (en) 2003-03-06 2005-05-23 Methods and compositions for consolidating proppant in fractures

Country Status (6)

Country Link
US (2) US20040211561A1 (en)
AU (1) AU2004217783A1 (en)
GB (1) GB2414755A (en)
MX (1) MXPA05009466A (en)
NO (1) NO20053721L (en)
WO (1) WO2004079159A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264052B2 (en) * 2003-03-06 2007-09-04 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in fractures
US20090301731A1 (en) * 2005-05-18 2009-12-10 Halliburton Energy Services, Inc. Methods to Increase Recovery of Treatment Fluid Following Stimulation of a Subterranean Formation Comprising Cationic Surfactant Coated Particles
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7712531B2 (en) 2004-06-08 2010-05-11 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US7963330B2 (en) 2004-02-10 2011-06-21 Halliburton Energy Services, Inc. Resin compositions and methods of using resin compositions to control proppant flow-back
US8017561B2 (en) 2004-03-03 2011-09-13 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US8354279B2 (en) 2002-04-18 2013-01-15 Halliburton Energy Services, Inc. Methods of tracking fluids produced from various zones in a subterranean well
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US8689872B2 (en) 2005-07-11 2014-04-08 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US20150315459A1 (en) * 2013-10-31 2015-11-05 Preferred Technology, Llc Flash Coating Treatments For Proppant Solids
WO2015195126A1 (en) * 2014-06-19 2015-12-23 Halliburton Energy Services, Inc. Methods and compositions for providing proppant suspension and consolidation in subterranean treatment operations
WO2017116413A1 (en) * 2015-12-29 2017-07-06 Halliburton Energy Services, Inc. Self-consolidating micro-proppant for hydraulic fracturing applications
US10087360B2 (en) 2011-09-02 2018-10-02 Preferred Technology, Llc Dual function proppants
US10100247B2 (en) 2013-05-17 2018-10-16 Preferred Technology, Llc Proppant with enhanced interparticle bonding
US10208242B2 (en) 2013-03-15 2019-02-19 Preferred Technology, Llc Proppant with polyurea-type coating
US10544358B2 (en) 2011-05-03 2020-01-28 Preferred Technology, Llc Coated and cured proppants
US10590337B2 (en) 2015-05-13 2020-03-17 Preferred Technology, Llc High performance proppants
US10696896B2 (en) 2016-11-28 2020-06-30 Prefferred Technology, Llc Durable coatings and uses thereof
US11208591B2 (en) 2016-11-16 2021-12-28 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167045B2 (en) 2003-08-26 2012-05-01 Halliburton Energy Services, Inc. Methods and compositions for stabilizing formation fines and sand
US7766099B2 (en) 2003-08-26 2010-08-03 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulates
US7730950B2 (en) 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US9004163B2 (en) 2009-04-03 2015-04-14 Statoil Petroleum As Equipment and method for reinforcing a borehole of a well while drilling
US9027648B2 (en) 2013-03-18 2015-05-12 Halliburton Engergy Services, Inc. Methods of treating a subterranean formation with one-step furan resin compositions
US9494026B2 (en) 2013-04-22 2016-11-15 Halliburton Energy Services, Inc. Methods and compositions of treating subterranean formations with a novel resin system
US9862876B2 (en) 2013-04-22 2018-01-09 Halliburton Energy Services, Inc. Methods and compositions of treating subterranean formations with a novel resin system
US9840656B2 (en) 2013-09-20 2017-12-12 Halliburton Energy Services, Inc. Latent curing agent compatible with low pH frac fluids
WO2015041673A1 (en) 2013-09-20 2015-03-26 Halliburton Energy Services, Inc. Compositions and methods for forming and utilizing stable, single-component resin mixture
US9321954B2 (en) 2013-11-06 2016-04-26 Halliburton Energy Services, Inc. Consolidation compositions for use in subterranean formation operations
US9499735B2 (en) 2014-07-09 2016-11-22 Halliburton Energy Services, Inc. Consolidating composition for treatment of a subterranean formation
WO2016018235A1 (en) 2014-07-28 2016-02-04 Halliburton Energy Services, Inc. Methods of simultaneously introducing a curable resin and curing agent with delayed curing
WO2016053346A1 (en) 2014-10-03 2016-04-07 Halliburton Energy Services, Inc. Delayed curing silane-based curable resin system
US10233381B2 (en) 2015-01-20 2019-03-19 Halliburton Energy Services, Inc. Methods and compositions for stabilizing fracture faces during hydraulic fracturing treatments
WO2017074432A1 (en) 2015-10-30 2017-05-04 Halliburton Energy Services, Inc. Proppant aggregate particulates for use in subterranean formation operations
WO2017074442A1 (en) 2015-10-30 2017-05-04 Halliburton Energy Services, Inc. Proppant aggregates for use in subterranean formation operations
EP3619282A1 (en) 2017-05-02 2020-03-11 Saudi Arabian Oil Company Consolidation of formation particulates

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525398A (en) * 1968-11-19 1970-08-25 Phillips Petroleum Co Sealing a permeable stratum with resin
US4042032A (en) * 1973-06-07 1977-08-16 Halliburton Company Methods of consolidating incompetent subterranean formations using aqueous treating solutions
US4070865A (en) * 1976-03-10 1978-01-31 Halliburton Company Method of consolidating porous formations using vinyl polymer sealer with divinylbenzene crosslinker
US4074760A (en) * 1976-11-01 1978-02-21 The Dow Chemical Company Method for forming a consolidated gravel pack
US4336842A (en) * 1981-01-05 1982-06-29 Graham John W Method of treating wells using resin-coated particles
US4829100A (en) * 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US5128390A (en) * 1991-01-22 1992-07-07 Halliburton Company Methods of forming consolidatable resin coated particulate materials in aqueous gels
US5381864A (en) * 1993-11-12 1995-01-17 Halliburton Company Well treating methods using particulate blends
US5393810A (en) * 1993-12-30 1995-02-28 Halliburton Company Method and composition for breaking crosslinked gels
US5529123A (en) * 1995-04-10 1996-06-25 Atlantic Richfield Company Method for controlling fluid loss from wells into high conductivity earth formations
US5582249A (en) * 1995-08-02 1996-12-10 Halliburton Company Control of particulate flowback in subterranean wells
US5609207A (en) * 1993-12-13 1997-03-11 Halliburton Company Epoxy resin composition and well treatment method
US5639806A (en) * 1995-03-28 1997-06-17 Borden Chemical, Inc. Bisphenol-containing resin coating articles and methods of using same
US5697440A (en) * 1996-01-04 1997-12-16 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5775425A (en) * 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US5787986A (en) * 1995-03-29 1998-08-04 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5791415A (en) * 1997-03-13 1998-08-11 Halliburton Energy Services, Inc. Stimulating wells in unconsolidated formations
US5833000A (en) * 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5839510A (en) * 1995-03-29 1998-11-24 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5921317A (en) * 1997-08-14 1999-07-13 Halliburton Energy Services, Inc. Coating well proppant with hardenable resin-fiber composites
US5924488A (en) * 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US5944105A (en) * 1997-11-11 1999-08-31 Halliburton Energy Services, Inc. Well stabilization methods
US5960880A (en) * 1996-08-27 1999-10-05 Halliburton Energy Services, Inc. Unconsolidated formation stimulation with sand filtration
US6003600A (en) * 1997-10-16 1999-12-21 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated subterranean zones
US6016870A (en) * 1998-06-11 2000-01-25 Halliburton Energy Services, Inc. Compositions and methods for consolidating unconsolidated subterranean zones
US6047772A (en) * 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US6192985B1 (en) * 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
US6209643B1 (en) * 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US6257335B1 (en) * 2000-03-02 2001-07-10 Halliburton Energy Services, Inc. Stimulating fluid production from unconsolidated formations
US6311773B1 (en) * 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
US6439309B1 (en) * 2000-12-13 2002-08-27 Bj Services Company Compositions and methods for controlling particulate movement in wellbores and subterranean formations
US6450260B1 (en) * 2000-07-07 2002-09-17 Schlumberger Technology Corporation Sand consolidation with flexible gel system
US20030188872A1 (en) * 2002-01-08 2003-10-09 Nguyen Philip D. Methods and compositions for consolidating proppant in subterranean fractures
US6668926B2 (en) * 2002-01-08 2003-12-30 Halliburton Energy Services, Inc. Methods of consolidating proppant in subterranean fractures
US20040048752A1 (en) * 2002-09-05 2004-03-11 Nguyen Philip D. Methods and compositions for consolidating proppant in subterranean fractures
US6705400B1 (en) * 2002-08-28 2004-03-16 Halliburton Energy Services, Inc. Methods and compositions for forming subterranean fractures containing resilient proppant packs
US6725931B2 (en) * 2002-06-26 2004-04-27 Halliburton Energy Services, Inc. Methods of consolidating proppant and controlling fines in wells
US6766858B2 (en) * 2002-12-04 2004-07-27 Halliburton Energy Services, Inc. Method for managing the production of a well
US20040149441A1 (en) * 2003-01-30 2004-08-05 Nguyen Philip D. Methods and compositions for preventing fracture proppant flowback
US6776236B1 (en) * 2002-10-16 2004-08-17 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated formations
US20040177961A1 (en) * 2003-02-12 2004-09-16 Nguyen Philip D. Methods of completing wells in unconsolidated subterranean zones
US20040194961A1 (en) * 2003-04-07 2004-10-07 Nguyen Philip D. Methods and compositions for stabilizing unconsolidated subterranean formations
US20040206499A1 (en) * 2002-09-11 2004-10-21 Nguyen Philip D. Methods of reducing or preventing particulate flow-back in wells
US20040221992A1 (en) * 2002-01-08 2004-11-11 Nguyen Philip D. Methods of coating resin and belending resin-coated proppant
US20040231847A1 (en) * 2003-05-23 2004-11-25 Nguyen Philip D. Methods for controlling water and particulate production
US20040256099A1 (en) * 2003-06-23 2004-12-23 Nguyen Philip D. Methods for enhancing treatment fluid placement in a subterranean formation
US20040261995A1 (en) * 2003-06-27 2004-12-30 Nguyen Philip D. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20040261997A1 (en) * 2003-06-25 2004-12-30 Nguyen Philip D. Compositions and methods for consolidating unconsolidated subterranean formations
US20050006096A1 (en) * 2003-07-09 2005-01-13 Nguyen Philip D. Methods of consolidating subterranean zones and compositions therefor
US20050006093A1 (en) * 2003-07-07 2005-01-13 Nguyen Philip D. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US20050006095A1 (en) * 2003-07-08 2005-01-13 Donald Justus Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US6851474B2 (en) * 2003-02-06 2005-02-08 Halliburton Energy Services, Inc. Methods of preventing gravel loss in through-tubing vent-screen well completions
US20050034862A1 (en) * 2003-08-14 2005-02-17 Nguyen Phillip D. Methods for fracturing stimulation

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123138A (en) 1964-03-03 robichaux
US2238671A (en) 1940-02-09 1941-04-15 Du Pont Method of treating wells
US2703316A (en) 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US3765804A (en) 1951-08-13 1973-10-16 Brandon O Apparatus for producing variable high frequency vibrations in a liquid medium
US2869642A (en) 1954-09-14 1959-01-20 Texas Co Method of treating subsurface formations
US3047067A (en) 1958-09-08 1962-07-31 Jersey Prod Res Co Sand consolidation method
US3297086A (en) 1962-03-30 1967-01-10 Exxon Production Research Co Sand consolidation method
US3272650A (en) 1963-02-21 1966-09-13 Union Carbide Corp Process for cleaning conduits
US3199590A (en) 1963-02-25 1965-08-10 Halliburton Co Method of consolidating incompetent sands and composition therefor
US3316965A (en) 1963-08-05 1967-05-02 Union Oil Co Material and process for treating subterranean formations
US3176768A (en) 1964-07-27 1965-04-06 California Research Corp Sand consolidation
US3492147A (en) 1964-10-22 1970-01-27 Halliburton Co Method of coating particulate solids with an infusible resin
US3375872A (en) 1965-12-02 1968-04-02 Halliburton Co Method of plugging or sealing formations with acidic silicic acid solution
US3308885A (en) 1965-12-28 1967-03-14 Union Oil Co Treatment of subsurface hydrocarbon fluid-bearing formations to reduce water production therefrom
US3404735A (en) 1966-11-01 1968-10-08 Halliburton Co Sand control method
US3415320A (en) 1967-02-09 1968-12-10 Halliburton Co Method of treating clay-containing earth formations
US3336980A (en) 1967-02-09 1967-08-22 Exxon Production Research Co Sand control in wells
US3659651A (en) 1970-08-17 1972-05-02 Exxon Production Research Co Hydraulic fracturing using reinforced resin pellets
US4305463A (en) 1979-10-31 1981-12-15 Oil Trieval Corporation Oil recovery method and apparatus
US3681287A (en) 1971-03-03 1972-08-01 Quaker Oats Co Siliceous materials bound with resin containing organosilane coupling agent
US3842911A (en) 1971-04-26 1974-10-22 Halliburton Co Method of fracture acidizing a well formation
US3768564A (en) 1971-04-26 1973-10-30 Halliburton Co Method of fracture acidizing a well formation
US3708013A (en) 1971-05-03 1973-01-02 Mobil Oil Corp Method and apparatus for obtaining an improved gravel pack
US3709298A (en) 1971-05-20 1973-01-09 Shell Oil Co Sand pack-aided formation sand consolidation
US3784585A (en) 1971-10-21 1974-01-08 American Cyanamid Co Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3754598A (en) 1971-11-08 1973-08-28 Phillips Petroleum Co Method for producing a hydrocarbon-containing formation
US3819525A (en) 1972-08-21 1974-06-25 Avon Prod Inc Cosmetic cleansing preparation
US3857444A (en) 1972-10-06 1974-12-31 Dow Chemical Co Method for forming a consolidated gravel pack in a subterranean formation
US3854533A (en) 1972-12-07 1974-12-17 Dow Chemical Co Method for forming a consolidated gravel pack in a subterranean formation
US3828854A (en) 1973-04-16 1974-08-13 Shell Oil Co Dissolving siliceous materials with self-acidifying liquid
US3912692A (en) 1973-05-03 1975-10-14 American Cyanamid Co Process for polymerizing a substantially pure glycolide composition
US3888311A (en) 1973-10-01 1975-06-10 Exxon Production Research Co Hydraulic fracturing method
US3863709A (en) 1973-12-20 1975-02-04 Mobil Oil Corp Method of recovering geothermal energy
US3955993A (en) 1973-12-28 1976-05-11 Texaco Inc. Method and composition for stabilizing incompetent oil-containing formations
US3948672A (en) 1973-12-28 1976-04-06 Texaco Inc. Permeable cement composition and method
US3868998A (en) 1974-05-15 1975-03-04 Shell Oil Co Self-acidifying treating fluid positioning process
US3960736A (en) 1974-06-03 1976-06-01 The Dow Chemical Company Self-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations
US4172066A (en) 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels
US4031958A (en) 1975-06-13 1977-06-28 Union Oil Company Of California Plugging of water-producing zones in a subterranean formation
US4008763A (en) 1976-05-20 1977-02-22 Atlantic Richfield Company Well treatment method
US4029148A (en) 1976-09-13 1977-06-14 Atlantic Richfield Company Well fracturing method
US4169798A (en) 1976-11-26 1979-10-02 Celanese Corporation Well-treating compositions
US4127173A (en) 1977-07-28 1978-11-28 Exxon Production Research Company Method of gravel packing a well
GB1569063A (en) 1978-05-22 1980-06-11 Shell Int Research Formation parts around a borehole method for forming channels of high fluid conductivity in
US4291766A (en) 1979-04-09 1981-09-29 Shell Oil Company Process for consolidating water-wet sands with an epoxy resin-forming solution
US4247430A (en) * 1979-04-11 1981-01-27 The Dow Chemical Company Aqueous based slurry and method of forming a consolidated gravel pack
US4273187A (en) 1979-07-30 1981-06-16 Texaco Inc. Petroleum recovery chemical retention prediction technique
US4443380A (en) 1979-08-31 1984-04-17 Asahi-Dow Limited Organic europlum salt phosphor
FR2473180A1 (en) 1980-01-08 1981-07-10 Petroles Cie Francaise METHOD OF TRACING THE DRILLING MUD BY DETERMINING THE CONCENTRATION OF A SOLUBLE ION
US4353806A (en) 1980-04-03 1982-10-12 Exxon Research And Engineering Company Polymer-microemulsion complexes for the enhanced recovery of oil
US4415805A (en) 1981-06-18 1983-11-15 Dresser Industries, Inc. Method and apparatus for evaluating multiple stage fracturing or earth formations surrounding a borehole
US4387769A (en) 1981-08-10 1983-06-14 Exxon Production Research Co. Method for reducing the permeability of subterranean formations
US4498995A (en) 1981-08-10 1985-02-12 Judith Gockel Lost circulation drilling fluid
US4460052A (en) 1981-08-10 1984-07-17 Judith Gockel Prevention of lost circulation of drilling muds
US4716964A (en) 1981-08-10 1988-01-05 Exxon Production Research Company Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4526695A (en) 1981-08-10 1985-07-02 Exxon Production Research Co. Composition for reducing the permeability of subterranean formations
US4564459A (en) 1981-12-03 1986-01-14 Baker Oil Tools, Inc. Proppant charge and method
US4664819A (en) 1981-12-03 1987-05-12 Baker Oil Tools, Inc. Proppant charge and method
US4443347A (en) 1981-12-03 1984-04-17 Baker Oil Tools, Inc. Proppant charge and method
US4494605A (en) 1981-12-11 1985-01-22 Texaco Inc. Sand control employing halogenated, oil soluble hydrocarbons
US4439489A (en) 1982-02-16 1984-03-27 Acme Resin Corporation Particles covered with a cured infusible thermoset film and process for their production
US4470915A (en) 1982-09-27 1984-09-11 Halliburton Company Method and compositions for fracturing subterranean formations
US4553596A (en) 1982-10-27 1985-11-19 Santrol Products, Inc. Well completion technique
US4501328A (en) 1983-03-14 1985-02-26 Mobil Oil Corporation Method of consolidation of oil bearing sands
US4527627A (en) 1983-07-28 1985-07-09 Santrol Products, Inc. Method of acidizing propped fractures
US4493875A (en) 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US4541489A (en) 1984-03-19 1985-09-17 Phillips Petroleum Company Method of removing flow-restricting materials from wells
US4546012A (en) 1984-04-26 1985-10-08 Carbomedics, Inc. Level control for a fluidized bed
KR920006865B1 (en) 1984-05-18 1992-08-21 워싱톤 유니버시티 테크놀러지 어소우시에이츠 인코오퍼레이티드 Method and apparatus for coating particles or liquid droplets
US4888240A (en) 1984-07-02 1989-12-19 Graham John W High strength particulates
US4715967A (en) 1985-12-27 1987-12-29 E. I. Du Pont De Nemours And Company Composition and method for temporarily reducing permeability of subterranean formations
US4665988A (en) * 1986-04-04 1987-05-19 Halliburton Company Method of preparation of variable permeability fill material for use in subterranean formations
EP0421980B1 (en) 1986-04-18 1993-08-25 Hosokawa Micron Corporation Particulate material treating apparatus
US4785884A (en) 1986-05-23 1988-11-22 Acme Resin Corporation Consolidation of partially cured resin coated particulate material
US4669543A (en) 1986-05-23 1987-06-02 Halliburton Company Methods and compositions for consolidating solids in subterranean zones
US4694905A (en) 1986-05-23 1987-09-22 Acme Resin Corporation Precured coated particulate material
US4693808A (en) 1986-06-16 1987-09-15 Shell Oil Company Downflow fluidized catalytic cranking reactor process and apparatus with quick catalyst separation means in the bottom thereof
US4649998A (en) 1986-07-02 1987-03-17 Texaco Inc. Sand consolidation method employing latex
US4683954A (en) 1986-09-05 1987-08-04 Halliburton Company Composition and method of stimulating subterranean formations
US4733729A (en) 1986-09-08 1988-03-29 Dowell Schlumberger Incorporated Matched particle/liquid density well packing technique
MX168601B (en) 1986-10-01 1993-06-01 Air Prod & Chem PROCEDURE FOR THE PREPARATION OF A HIGH MOLECULAR WEIGHT VINYLAMINE HOMOPOLYMER
US4787453A (en) 1986-10-30 1988-11-29 Union Oil Company Of California Permeability stabilization in subterranean formations containing particulate matter
FR2618846A2 (en) 1986-11-25 1989-02-03 Schlumberger Cie Dowell PROCESS FOR SEALING UNDERGROUND FORMATIONS, PARTICULARLY IN THE OIL DRILLING SECTOR AND CORRESPONDING COMPOSITIONS AND APPLICATIONS
US4739832A (en) 1986-12-24 1988-04-26 Mobil Oil Corporation Method for improving high impulse fracturing
US4850430A (en) 1987-02-04 1989-07-25 Dowell Schlumberger Incorporated Matched particle/liquid density well packing technique
US4796701A (en) 1987-07-30 1989-01-10 Dowell Schlumberger Incorporated Pyrolytic carbon coating of media improves gravel packing and fracturing capabilities
US4817721A (en) 1987-12-14 1989-04-04 Conoco Inc. Reducing the permeability of a rock formation
US4800960A (en) 1987-12-18 1989-01-31 Texaco Inc. Consolidatable gravel pack method
US4809783A (en) 1988-01-14 1989-03-07 Halliburton Services Method of dissolving organic filter cake
US4848467A (en) 1988-02-16 1989-07-18 Conoco Inc. Formation fracturing process
US4886354A (en) 1988-05-06 1989-12-12 Conoco Inc. Method and apparatus for measuring crystal formation
US4842072A (en) 1988-07-25 1989-06-27 Texaco Inc. Sand consolidation methods
US4903770A (en) 1988-09-01 1990-02-27 Texaco Inc. Sand consolidation methods
US4986354A (en) * 1988-09-14 1991-01-22 Conoco Inc. Composition and placement process for oil field chemicals
US4986353A (en) * 1988-09-14 1991-01-22 Conoco Inc. Placement process for oil field chemicals
US4848470A (en) 1988-11-21 1989-07-18 Acme Resin Corporation Process for removing flow-restricting materials from wells
US4895207A (en) 1988-12-19 1990-01-23 Texaco, Inc. Method and fluid for placing resin coated gravel or sand in a producing oil well
US4934456A (en) 1989-03-29 1990-06-19 Phillips Petroleum Company Method for altering high temperature subterranean formation permeability
US4986355A (en) * 1989-05-18 1991-01-22 Conoco Inc. Process for the preparation of fluid loss additive and gel breaker
US5182051A (en) * 1990-01-17 1993-01-26 Protechnics International, Inc. Raioactive tracing with particles
US6184311B1 (en) * 1990-03-26 2001-02-06 Courtaulds Coatings (Holdings) Limited Powder coating composition of semi-crystalline polyester and curing agent
US5082056A (en) * 1990-10-16 1992-01-21 Marathon Oil Company In situ reversible crosslinked polymer gel used in hydrocarbon recovery applications
US5178218A (en) * 1991-06-19 1993-01-12 Oryx Energy Company Method of sand consolidation with resin
CA2062395A1 (en) * 1991-06-21 1992-12-22 Robert H. Friedman Sand consolidation methods
US5232961A (en) * 1991-08-19 1993-08-03 Murphey Joseph R Hardenable resin compositions and methods
US5293939A (en) * 1992-07-31 1994-03-15 Texaco Chemical Company Formation treating methods
US5361856A (en) * 1992-09-29 1994-11-08 Halliburton Company Well jetting apparatus and met of modifying a well therewith
US5396957A (en) * 1992-09-29 1995-03-14 Halliburton Company Well completions with expandable casing portions
US5338822A (en) * 1992-10-02 1994-08-16 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
US5295542A (en) * 1992-10-05 1994-03-22 Halliburton Company Well gravel packing methods
CA2497728C (en) * 1993-04-05 2008-02-19 Roger J. Card Control of particulate flowback in subterranean wells
US5422183A (en) * 1993-06-01 1995-06-06 Santrol, Inc. Composite and reinforced coatings on proppants and particles
US5359026A (en) * 1993-07-30 1994-10-25 Cargill, Incorporated Poly(lactide) copolymer and process for manufacture thereof
US5368102A (en) * 1993-09-09 1994-11-29 Halliburton Company Consolidatable particulate material and well treatment method
US5388648A (en) * 1993-10-08 1995-02-14 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
US5386874A (en) * 1993-11-08 1995-02-07 Halliburton Company Perphosphate viscosity breakers in well fracture fluids
US5494178A (en) * 1994-07-25 1996-02-27 Alu Inc. Display and decorative fixture apparatus
US5499678A (en) * 1994-08-02 1996-03-19 Halliburton Company Coplanar angular jetting head for well perforating
US5498280A (en) * 1994-11-14 1996-03-12 Binney & Smith Inc. Phosphorescent and fluorescent marking composition
US5591700A (en) * 1994-12-22 1997-01-07 Halliburton Company Fracturing fluid with encapsulated breaker
US5649323A (en) * 1995-01-17 1997-07-15 Kalb; Paul D. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes
US5604186A (en) * 1995-02-15 1997-02-18 Halliburton Company Encapsulated enzyme breaker and method for use in treating subterranean formations
US5497830A (en) * 1995-04-06 1996-03-12 Bj Services Company Coated breaker for crosslinked acid
US5604184A (en) * 1995-04-10 1997-02-18 Texaco, Inc. Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells
US5595245A (en) * 1995-08-04 1997-01-21 Scott, Iii; George L. Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery
US6028113A (en) * 1995-09-27 2000-02-22 Sunburst Chemicals, Inc. Solid sanitizers and cleaner disinfectants
US5864003A (en) * 1996-07-23 1999-01-26 Georgia-Pacific Resins, Inc. Thermosetting phenolic resin composition
US5712314A (en) * 1996-08-09 1998-01-27 Texaco Inc. Formulation for creating a pliable resin plug
GB9619418D0 (en) * 1996-09-18 1996-10-30 Urlwin Smith Phillip L Oil and gas field chemicals
US5865936A (en) * 1997-03-28 1999-02-02 National Starch And Chemical Investment Holding Corporation Rapid curing structural acrylic adhesive
GB9708484D0 (en) * 1997-04-25 1997-06-18 Merck Sharp & Dohme Therapeutic agents
US6028534A (en) * 1997-06-02 2000-02-22 Schlumberger Technology Corporation Formation data sensing with deployed remote sensors during well drilling
US6169058B1 (en) * 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US5873413A (en) * 1997-08-18 1999-02-23 Halliburton Energy Services, Inc. Methods of modifying subterranean strata properties
US6177484B1 (en) * 1997-11-03 2001-01-23 Texaco Inc. Combination catalyst/coupling agent for furan resin
US6012524A (en) * 1998-04-14 2000-01-11 Halliburton Energy Services, Inc. Remedial well bore sealing methods and compositions
US6024170A (en) * 1998-06-03 2000-02-15 Halliburton Energy Services, Inc. Methods of treating subterranean formation using borate cross-linking compositions
US6686328B1 (en) * 1998-07-17 2004-02-03 The Procter & Gamble Company Detergent tablet
US6176315B1 (en) * 1998-12-04 2001-01-23 Halliburton Energy Services, Inc. Preventing flow through subterranean zones
US6189615B1 (en) * 1998-12-15 2001-02-20 Marathon Oil Company Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6328106B1 (en) * 1999-02-04 2001-12-11 Halliburton Energy Services, Inc. Sealing subterranean zones
US6244344B1 (en) * 1999-02-09 2001-06-12 Halliburton Energy Services, Inc. Methods and compositions for cementing pipe strings in well bores
US6187839B1 (en) * 1999-03-03 2001-02-13 Halliburton Energy Services, Inc. Methods of sealing compositions and methods
US6187834B1 (en) * 1999-09-08 2001-02-13 Dow Corning Corporation Radiation curable silicone compositions
CA2318703A1 (en) * 1999-09-16 2001-03-16 Bj Services Company Compositions and methods for cementing using elastic particles
US6659175B2 (en) * 2001-05-23 2003-12-09 Core Laboratories, Inc. Method for determining the extent of recovery of materials injected into oil wells during oil and gas exploration and production
US7049272B2 (en) * 2002-07-16 2006-05-23 Santrol, Inc. Downhole chemical delivery system for oil and gas wells
US6877560B2 (en) * 2002-07-19 2005-04-12 Halliburton Energy Services Methods of preventing the flow-back of particulates deposited in subterranean formations
US20040211561A1 (en) * 2003-03-06 2004-10-28 Nguyen Philip D. Methods and compositions for consolidating proppant in fractures
US6681856B1 (en) * 2003-05-16 2004-01-27 Halliburton Energy Services, Inc. Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants
US6981560B2 (en) * 2003-07-03 2006-01-03 Halliburton Energy Services, Inc. Method and apparatus for treating a productive zone while drilling
US7059406B2 (en) * 2003-08-26 2006-06-13 Halliburton Energy Services, Inc. Production-enhancing completion methods

Patent Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525398A (en) * 1968-11-19 1970-08-25 Phillips Petroleum Co Sealing a permeable stratum with resin
US4042032A (en) * 1973-06-07 1977-08-16 Halliburton Company Methods of consolidating incompetent subterranean formations using aqueous treating solutions
US4070865A (en) * 1976-03-10 1978-01-31 Halliburton Company Method of consolidating porous formations using vinyl polymer sealer with divinylbenzene crosslinker
US4074760A (en) * 1976-11-01 1978-02-21 The Dow Chemical Company Method for forming a consolidated gravel pack
US4336842A (en) * 1981-01-05 1982-06-29 Graham John W Method of treating wells using resin-coated particles
US4829100A (en) * 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US5128390A (en) * 1991-01-22 1992-07-07 Halliburton Company Methods of forming consolidatable resin coated particulate materials in aqueous gels
US5381864A (en) * 1993-11-12 1995-01-17 Halliburton Company Well treating methods using particulate blends
US5492178A (en) * 1993-11-12 1996-02-20 Halliburton Company Well treating methods and devices using particulate blends
US5609207A (en) * 1993-12-13 1997-03-11 Halliburton Company Epoxy resin composition and well treatment method
US5393810A (en) * 1993-12-30 1995-02-28 Halliburton Company Method and composition for breaking crosslinked gels
US5639806A (en) * 1995-03-28 1997-06-17 Borden Chemical, Inc. Bisphenol-containing resin coating articles and methods of using same
US5871049A (en) * 1995-03-29 1999-02-16 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US5775425A (en) * 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US5787986A (en) * 1995-03-29 1998-08-04 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US6047772A (en) * 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5833000A (en) * 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5839510A (en) * 1995-03-29 1998-11-24 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5853048A (en) * 1995-03-29 1998-12-29 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US6209643B1 (en) * 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US5529123A (en) * 1995-04-10 1996-06-25 Atlantic Richfield Company Method for controlling fluid loss from wells into high conductivity earth formations
US5582249A (en) * 1995-08-02 1996-12-10 Halliburton Company Control of particulate flowback in subterranean wells
US5697440A (en) * 1996-01-04 1997-12-16 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5960880A (en) * 1996-08-27 1999-10-05 Halliburton Energy Services, Inc. Unconsolidated formation stimulation with sand filtration
US5791415A (en) * 1997-03-13 1998-08-11 Halliburton Energy Services, Inc. Stimulating wells in unconsolidated formations
US5924488A (en) * 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US5921317A (en) * 1997-08-14 1999-07-13 Halliburton Energy Services, Inc. Coating well proppant with hardenable resin-fiber composites
US6003600A (en) * 1997-10-16 1999-12-21 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated subterranean zones
US5944105A (en) * 1997-11-11 1999-08-31 Halliburton Energy Services, Inc. Well stabilization methods
US6016870A (en) * 1998-06-11 2000-01-25 Halliburton Energy Services, Inc. Compositions and methods for consolidating unconsolidated subterranean zones
US6192985B1 (en) * 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
US6311773B1 (en) * 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
US6257335B1 (en) * 2000-03-02 2001-07-10 Halliburton Energy Services, Inc. Stimulating fluid production from unconsolidated formations
US6450260B1 (en) * 2000-07-07 2002-09-17 Schlumberger Technology Corporation Sand consolidation with flexible gel system
US6439309B1 (en) * 2000-12-13 2002-08-27 Bj Services Company Compositions and methods for controlling particulate movement in wellbores and subterranean formations
US6729404B2 (en) * 2002-01-08 2004-05-04 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in subterranean fractures
US20030188872A1 (en) * 2002-01-08 2003-10-09 Nguyen Philip D. Methods and compositions for consolidating proppant in subterranean fractures
US6668926B2 (en) * 2002-01-08 2003-12-30 Halliburton Energy Services, Inc. Methods of consolidating proppant in subterranean fractures
US20040221992A1 (en) * 2002-01-08 2004-11-11 Nguyen Philip D. Methods of coating resin and belending resin-coated proppant
US6725931B2 (en) * 2002-06-26 2004-04-27 Halliburton Energy Services, Inc. Methods of consolidating proppant and controlling fines in wells
US6705400B1 (en) * 2002-08-28 2004-03-16 Halliburton Energy Services, Inc. Methods and compositions for forming subterranean fractures containing resilient proppant packs
US20040048752A1 (en) * 2002-09-05 2004-03-11 Nguyen Philip D. Methods and compositions for consolidating proppant in subterranean fractures
US6832650B2 (en) * 2002-09-11 2004-12-21 Halliburton Energy Services, Inc. Methods of reducing or preventing particulate flow-back in wells
US20040206499A1 (en) * 2002-09-11 2004-10-21 Nguyen Philip D. Methods of reducing or preventing particulate flow-back in wells
US6776236B1 (en) * 2002-10-16 2004-08-17 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated formations
US6766858B2 (en) * 2002-12-04 2004-07-27 Halliburton Energy Services, Inc. Method for managing the production of a well
US20040149441A1 (en) * 2003-01-30 2004-08-05 Nguyen Philip D. Methods and compositions for preventing fracture proppant flowback
US6851474B2 (en) * 2003-02-06 2005-02-08 Halliburton Energy Services, Inc. Methods of preventing gravel loss in through-tubing vent-screen well completions
US20040177961A1 (en) * 2003-02-12 2004-09-16 Nguyen Philip D. Methods of completing wells in unconsolidated subterranean zones
US20040194961A1 (en) * 2003-04-07 2004-10-07 Nguyen Philip D. Methods and compositions for stabilizing unconsolidated subterranean formations
US20040231847A1 (en) * 2003-05-23 2004-11-25 Nguyen Philip D. Methods for controlling water and particulate production
US20040256099A1 (en) * 2003-06-23 2004-12-23 Nguyen Philip D. Methods for enhancing treatment fluid placement in a subterranean formation
US20040261997A1 (en) * 2003-06-25 2004-12-30 Nguyen Philip D. Compositions and methods for consolidating unconsolidated subterranean formations
US20040261995A1 (en) * 2003-06-27 2004-12-30 Nguyen Philip D. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050006093A1 (en) * 2003-07-07 2005-01-13 Nguyen Philip D. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US20050006095A1 (en) * 2003-07-08 2005-01-13 Donald Justus Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US20050006096A1 (en) * 2003-07-09 2005-01-13 Nguyen Philip D. Methods of consolidating subterranean zones and compositions therefor
US20050034862A1 (en) * 2003-08-14 2005-02-17 Nguyen Phillip D. Methods for fracturing stimulation

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354279B2 (en) 2002-04-18 2013-01-15 Halliburton Energy Services, Inc. Methods of tracking fluids produced from various zones in a subterranean well
US7264052B2 (en) * 2003-03-06 2007-09-04 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in fractures
US7963330B2 (en) 2004-02-10 2011-06-21 Halliburton Energy Services, Inc. Resin compositions and methods of using resin compositions to control proppant flow-back
US8017561B2 (en) 2004-03-03 2011-09-13 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7712531B2 (en) 2004-06-08 2010-05-11 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7938181B2 (en) 2004-10-08 2011-05-10 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US20090301731A1 (en) * 2005-05-18 2009-12-10 Halliburton Energy Services, Inc. Methods to Increase Recovery of Treatment Fluid Following Stimulation of a Subterranean Formation Comprising Cationic Surfactant Coated Particles
US7723264B2 (en) * 2005-05-18 2010-05-25 Halliburton Energy Services, Inc. Methods to increase recovery of treatment fluid following stimulation of a subterranean formation comprising cationic surfactant coated particles
US8689872B2 (en) 2005-07-11 2014-04-08 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US8443885B2 (en) 2006-02-10 2013-05-21 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US10544358B2 (en) 2011-05-03 2020-01-28 Preferred Technology, Llc Coated and cured proppants
US10087360B2 (en) 2011-09-02 2018-10-02 Preferred Technology, Llc Dual function proppants
US10208242B2 (en) 2013-03-15 2019-02-19 Preferred Technology, Llc Proppant with polyurea-type coating
US10100247B2 (en) 2013-05-17 2018-10-16 Preferred Technology, Llc Proppant with enhanced interparticle bonding
US11098242B2 (en) 2013-05-17 2021-08-24 Preferred Technology, Llc Proppant with enhanced interparticle bonding
US11760924B2 (en) 2013-05-17 2023-09-19 Preferred Technology, Llc Proppant with enhanced interparticle bonding
US20150315459A1 (en) * 2013-10-31 2015-11-05 Preferred Technology, Llc Flash Coating Treatments For Proppant Solids
US10106731B2 (en) 2014-06-19 2018-10-23 Halliburton Energy Services, Inc. Methods and compositions for providing proppant suspension and consolidation in subterranean treatment operations
WO2015195126A1 (en) * 2014-06-19 2015-12-23 Halliburton Energy Services, Inc. Methods and compositions for providing proppant suspension and consolidation in subterranean treatment operations
US10590337B2 (en) 2015-05-13 2020-03-17 Preferred Technology, Llc High performance proppants
WO2017116413A1 (en) * 2015-12-29 2017-07-06 Halliburton Energy Services, Inc. Self-consolidating micro-proppant for hydraulic fracturing applications
US11208591B2 (en) 2016-11-16 2021-12-28 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
US10696896B2 (en) 2016-11-28 2020-06-30 Prefferred Technology, Llc Durable coatings and uses thereof

Also Published As

Publication number Publication date
AU2004217783A1 (en) 2004-09-16
US20050230111A1 (en) 2005-10-20
NO20053721L (en) 2005-10-06
GB2414755A (en) 2005-12-07
MXPA05009466A (en) 2005-11-23
US7264052B2 (en) 2007-09-04
WO2004079159A1 (en) 2004-09-16
NO20053721D0 (en) 2005-08-03
GB0515469D0 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US20040211561A1 (en) Methods and compositions for consolidating proppant in fractures
US6887834B2 (en) Methods and compositions for consolidating proppant in subterranean fractures
US6668926B2 (en) Methods of consolidating proppant in subterranean fractures
US6725931B2 (en) Methods of consolidating proppant and controlling fines in wells
CA2462994C (en) Methods and compositions for consolidating proppant in subterranean fractures
US6892813B2 (en) Methods for preventing fracture proppant flowback
EP1394355B1 (en) Subterranean fractures containing resilient proppant packs
US7963330B2 (en) Resin compositions and methods of using resin compositions to control proppant flow-back
US8082994B2 (en) Methods for enhancing fracture conductivity in subterranean formations

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, PHILIP D.;BARTON, JOHNNY A.;ISENBERG, O. MARLENE;REEL/FRAME:013844/0739

Effective date: 20030304

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION