US20040207362A1 - Mobile type power supply, connection device, and carried type electronic equipment - Google Patents

Mobile type power supply, connection device, and carried type electronic equipment Download PDF

Info

Publication number
US20040207362A1
US20040207362A1 US10/804,122 US80412204A US2004207362A1 US 20040207362 A1 US20040207362 A1 US 20040207362A1 US 80412204 A US80412204 A US 80412204A US 2004207362 A1 US2004207362 A1 US 2004207362A1
Authority
US
United States
Prior art keywords
output voltage
power supply
load
connection
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US10/804,122
Inventor
Akihiko Kanouda
Yasuaki Norimatsu
Fumio Murabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Assigned to HITACHI, LTD. reassignment HITACHI, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANOUDA, AKIHIKO, MURABAYASHI, FUMIO, NORIMATSU, YASUAKI
Publication of US20040207362A1 publication Critical patent/US20040207362A1/en
Priority to US11/849,261 priority Critical patent/US7692400B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1632External expansion units, e.g. docking stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Definitions

  • the present invention relates to a mobile type power supply, particularly to a mobile type power supply suitable for supplying the electric energy generated by a fuel cell, of the type which oxidizes methanol directly, to a load.
  • a fuel cell which comprises a fuel tank for storing fuel and a power generation part for generating DC power from the fuel and supplies the power, generated in the power generation part, to a load.
  • a system which comprises a fuel pack that can be attached/detached freely, a power generation module that generates specific electric energy by means of electrochemical reaction or fuel reaction, a code reader part that reads an attestation code assigned to the fuel pack, an attestation judgment part that attests and judges, based on the obtained attestation code, whether the fuel pack attached to the system is adequate or not, and an output control part that controls the generation of electric energy at the power generation part according to the result of the judgment.
  • a code reader part that reads an attestation code assigned to the fuel pack
  • an attestation judgment part that attests and judges, based on the obtained attestation code, whether the fuel pack attached to the system is adequate or not
  • an output control part that controls the generation of electric energy at the power generation part according to the result of the judgment.
  • An object of the present invention is to supply such voltage to a load that corresponds to the load.
  • a mobile type power supply which comprises a battery pack containing a battery and an output voltage conversion means that converts the output voltage of the battery according to an output voltage reference value, and a connection means that is connected to both battery pack and a load and supplies DC power, outputted by the output voltage conversion means, to the load; of which connection means comprises an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the output voltage conversion means. It is permissible that the above is provided with an output voltage reference value output means that outputs an output voltage reference values, which, among multiple output voltage reference values, corresponds to the power supply voltage of the load, to the output voltage conversion means.
  • connection means comprises an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the AC-to-DC converter.
  • FIG. 1 is a block diagram of a mobile type power supply according to the first embodiment of the invention.
  • FIG. 2 is a block diagram of a mobile type power supply according to the second embodiment of the invention.
  • FIG. 3 shows an oblique view of the mobile type power supply in the second embodiment.
  • FIG. 4 is a figure showing the construction of the connection cable of a mobile type power supply according to the third embodiment of the invention.
  • FIG. 5 is a circuit diagram of the DC-to-DC converter of a mobile type power supply according to the fourth embodiment of the invention.
  • FIG. 6 is a circuit diagram of the start-stop circuit of a mobile type power supply according to the fifth embodiment of the invention.
  • FIG. 7 is a logical diagram for explaining the relationship between the start-stop circuit and valve of a mobile type power supply according to the fifth embodiment of the invention.
  • FIG. 8 is a block diagram of a mobile type power supply according to the sixth embodiment of the invention
  • FIG. 9 is a block diagram of a mobile type power supply according to the seventh embodiment of the invention.
  • FIG. 10 shows an oblique view for explaining the relationship between the mobile type power supply and lithium ion battery pack according to the seventh embodiment of the invention.
  • FIG. 11 shows a characteristic curve showing the relationship between the lithium ion battery terminal voltage and operating time.
  • FIG. 12 shows a characteristic curve showing the relationship between the remaining capacity of the fuel tank and the output voltage of the DC-to-DC converter in the seventh embodiment of the invention.
  • FIG. 13 is a block diagram of a mobile type power supply according to the eighth embodiment of the invention.
  • FIG. 14 is a figure for explaining the operation of the switching circuit of the mobile type power supply in the eighth embodiment of the invention.
  • FIG. 15 is a figure for explaining the terminal shape of a mobile type power supply according to the ninth embodiment of the invention.
  • FIG. 16 is a block diagram of a mobile type power supply in the ninth embodiment of the invention.
  • FIG. 1 is a block diagram of the mobile type power supply according to the first embodiment of the invention.
  • the mobile type power supply comprises a battery pack 53 and a connector 9 , and the connector 9 is made connectable to both the battery pack 53 and a load 15 .
  • the battery pack 53 containing a battery 52 and a DC-to-DC converter 7 , is connected to a connector 9 .
  • the connector 9 contains an output voltage reference value output means 10 , which outputs an output reference value, and an output voltage line 19 as well.
  • the output voltage line 19 is connected to the DC-to-DC converter and to the load 15 .
  • the DC-to-DC converter is provided as an output voltage conversion means that converts the output voltage of the battery 52 according to the output voltage reference value. That is, when an output voltage reference value is inputted from the output voltage reference value output means 10 , the DC-to-DC converter 7 converts the output voltage of the battery 52 to a voltage corresponding to the power supply voltage of the load 15 and supplies it to the load 15 .
  • the load 15 is a general mobile type equipment, and a connector 9 is needed as a connection means suitable for the load 15 .
  • the output voltage reference value output means 10 is connected to the DC-to-DC converter 7 and the output voltage of the DC-to-DC converter 7 is determined by the output voltage reference value. Because of this, the output voltage of the battery 52 can be stably supplied to the load 15 .
  • This embodiment produces a merit that a new energy source can be provided without any modification to the load 15 . Because of this merit, any load already existing in the market, office and home can apply. Further, by providing multiple connectors 9 suitable for different loads 15 , only a single battery pack 53 becomes applicable to multiple loads. Since the required lineup of the battery pack 53 can be as small as the variety of the output voltage such as 10 W, 20 W and 40 W, its applicability improves and hence tremendous cost reduction can be expected.
  • primary battery including alkaline battery and manganese battery, rechargeable battery including lead battery, nickel hydride battery and lithium battery, or other types batteries including fuel cell and solar cell is applicable.
  • Available shape of the connector 9 which may differ by the type of connection with the load 15 , can be a cable-like flexible piece, a solid piece such as a connection plug, and so on.
  • a fuel cell pack 1 contains a fuel tank 2 , valve 3 , power generation part 6 , start-stop circuit 5 , remaining capacity detector 4 , DC-to-DC converter 7 , and control power supply 18 , and the fuel cell pack 1 is connected to a load 15 via a connector 9 , cable 13 and DC plug 14 .
  • the connector 9 , cable 13 and DC plug 14 are provided as the connection means; where one end of the connector 9 is connected to the fuel cell pack 1 and the DC plug 14 on the end of the cable 13 is connected to the load 15 .
  • the connector 9 contains an output voltage reference value output means 10 and a light emitting diode 11 and switch 12 are provided as a remaining capacity display means at a position near the load 15 on the cable 13 .
  • the light emitting diode 11 is connected to the remaining capacity detector 4 by the cable 13 and the switch 12 is connected to the start-stop circuit 5 by the cable 13 .
  • the fuel tank 2 is provided as the fuel storage means that stores fuel for the fuel cell
  • the valve 3 is provided as the control valve that opens/closes the fuel passage between the fuel tank 2 and the power generation part 6 .
  • the start-stop circuit 5 is provided as an element of the connection condition detection means that detects the condition of the connection between the fuel cell pack 1 and the connector 9 .
  • the remaining capacity detector 4 is provided as the remaining capacity detection means that receives signals from multiple sensors, installed vertically in the fuel tank 2 , and detects the remaining capacity in the fuel tank 2 based on the signals from each sensor. The detector is designed to send a signal, corresponding to the remaining capacity in the fuel tank 2 , to the light emitting diode 11 . Multiple vent holes 16 are made around the fuel cell pack 1 .
  • the fuel cell pack 1 is a direct methanol type fuel cell (DMFC) but it can be any other type of fuel cell provided the shape and size fit for mobile application.
  • the output power depends upon the equipment connected as a load, and approximately 20 to 40 W is required for a mobile type personal computer.
  • the connector 9 on the end of the cable 13 is connected to the fuel cell pack 1 and a DC plug 14 is connected to a DC-IN terminal of the load 15 so as to connect the fuel cell pack 1 to the load 15 via the connector 9 , cable 13 and DC plug 14 .
  • the start-stop circuit 5 sets the valve 3 open and the fuel is supplied from the fuel tank 2 to the power generation part 6 .
  • the power generation part 6 then begins to generate power and the voltage generated by the fuel cell is applied to the DC-to-DC converter 7 .
  • the output voltage reference value output means 10 located inside the connector 9 , is connected to the DC-to-DC converter 7 , the output voltage of the DC-to-DC converter is controlled according to the output voltage reference value. Consequently, a voltage set in the output voltage reference value output means 10 is outputted to the output voltage line 19 , and this voltage is supplied to the load 15 .
  • the remaining capacity of the fuel in the fuel tank 2 is detected by the remaining capacity detector 4 , and the emission pattern of the light emitting diode 11 changes according to the detection result. For example, in the case of using three light emitting diodes 11 , the number of diodes that emit light changes according to the remaining capacity of the fuel in the fuel tank 2 . In the case of using a single light emitting diode 11 , it is possible to display the remaining capacity by changing the color of the light, for example, from green to red, or by either emitting or flickering the light depending upon the remaining capacity.
  • Providing the switch 12 close to the load 15 can improve the user's operability of the power supply. Besides, by interlocking one of the three light emitting diodes with the switch 12 , power generation/halt mode can be easily displayed. This further improves the visibility.
  • the fuel cell pack 1 can be so designed as to be able to generate power most efficiently, for example, by providing the vent holes 16 all round so as to increase the surface area. Consequently, the volume of the fuel cell pack 1 can be minimized.
  • Applicable equipments to the load 15 are not limited to the information equipments such as notebook type personal computers and terminal devices, but can be a wide variety of equipments, including those for mobile use and those of carried type for outdoor use.
  • FIG. 4 This embodiment is a modification to the cable 13 described in the second embodiment, and so the construction is the same as in the second embodiment except for the components shown in the figure.
  • the load 15 is a notebook type personal computer and a DC-IN plug is provided on the rear of the computer.
  • the cable 13 is provided with a liquid crystal display 17 as the remaining capacity display means and a switch 12 is provided adjacent to the liquid crystal display 17 .
  • the liquid crystal display 17 is so designed to be able to be clipped on the side edge of the liquid crystal display screen of the computer.
  • the power generation/halt mode and remaining capacity of the fuel cell pack 1 are displayed on the liquid crystal display 17 .
  • FIG. 5 is a block diagram showing a concrete construction of a DC-to-DC boost converter 7 of a mobile type power supply, which constitutes the circuit for determining the output voltage of the fuel cell pack 1 .
  • a power generation part 6 DC-to-DC converter 7 and control power supply 18 inside the fuel cell pack 1 , and they are connected to each other.
  • the control power supply 18 receives the output voltage of the power generation part 6 and outputs the voltage as Vcc 31 to a reference voltage circuit 25 .
  • the DC-to-DC converter comprises a coil 20 , diode 22 , power MOSFET 21 , smoothing capacitor 23 , drive circuit 24 , reference voltage circuit 25 , multiple dividing resistors 26 , multiple FETs 27 , error amplifier 28 , triangular wave oscillator 29 , and PWM comparator 30 .
  • the coil 20 connected to the power generation part 6 is connected to the connection point between the anode of the diode 22 and drain of the MOSFET 21 , and the cathode of the diode 22 , along with the high potential side of the smoothing capacitor 23 , is connected to an output power line 19 .
  • the low potential side of the smoothing capacitor 23 along with the source of the power MOSFET 21 , is connected to the power generation part 6 and also to a ground line 8 . These constitute a boost converter circuit.
  • the output voltage line 19 and ground line 8 are connected to a load 15 (not shown) via a connector 9 and cable 13 .
  • the connection with the load is the same as in FIG. 2.
  • the output of the reference voltage circuit 25 is applied as Vref to a number of paired dividing resistors 26 a to 26 d .
  • each pair of the dividing resistors 26 a to 26 d have different dividing ratio to generate a reference voltage corresponding to 20V, 19V, 16V and 15V.
  • FETs 27 a to 27 d are connected to the connection point between each of the paired dividing resistors 26 a to 26 d .
  • Each gate of the FETs 27 a to 27 d is connected to the connection terminal 7 a to 7 d , respectively.
  • Each connection terminal 7 a to 7 d is so designed to be able to be connected to the pin insertion terminals 10 a to 10 d inside the connector 9 , respectively.
  • a pin insertion terminal 10 e in addition to the pin insertion terminals 10 a to 10 d .
  • the pin insertion terminal 10 e is so designed to be able to be connected to a connection terminal 7 e inside the fuel cell pack 1 , and the connection terminal 7 e is connected to Vcc 31 .
  • a pin 10 f for 16V, conductive pin for shorting two pin insertion terminals are inserted between the pin insertion terminals 10 b and 10 e .
  • the multiple pin insertion terminals 10 a to 10 e and the pin 10 f constitute the output voltage reference value output means 10 , which is so designed that, by inserting the pin 10 f for 16V between the pin insertion terminals 10 b and 10 e , an output voltage reference value of 16V is set for the DC-to-DC converter 7 .
  • a pin 10 f for 15V, 19V and 20V is also available.
  • the pin for 15V is so designed to be inserted between the pin insertion terminals 10 a and 10 e ;
  • the pin for 19V is so designed to be inserted between the pin insertion terminals 10 c and 10 e ;
  • the pin for 20V is so designed to be inserted between the pin insertion terminals 10 d and 10 e .
  • an output voltage reference value of 15V, 19V or 20V is set for the DC-to-DC converter 7 .
  • each FET 27 a to 27 d is inputted altogether to the non-reversed input terminal of the error amplifier 28 .
  • a voltage which is the voltage of the output voltage line 19 divided by the paired dividing resistors 26 e , is inputted to the reversed input terminal of the error amplifier 28 .
  • the output of the error amplifier 28 is inputted to the non-reversed input terminal of the PWM comparator 30 .
  • the output of the triangular wave oscillator 29 is inputted to the reversed input terminal of the PWM comparator 30 .
  • the output of the PWM comparator 30 is inputted to the gate of the power MOSFET 21 via the drive circuit 24 .
  • Vcc 31 is electrically connected to the output voltage reference value output means 10 via the pin.
  • Vcc is connected to the pin according to the output voltage specification of the cable 13 , that is, the power supply voltage specification of the load.
  • the output voltage specification of the cable 13 shown in the figure is 16V and accordingly, of the FETs 27 a to 27 d inside the DC-to-DC converter 7 , only FET 27 b that corresponds to 16V is set on.
  • a voltage of 16V is applied to the error amplifier 28 as the reference voltage.
  • the error amplifier 28 performs a feedback control so that the voltage of the output voltage line 19 turns to 16V.
  • the output of the fuel cell outputted from the power generation part 6 is boosted to stable 16V by the boost converter, and then supplied to the load via the cable 13 .
  • FIG. 6 is a circuit diagram showing the start-stop circuit of a mobile type power supply.
  • FIG. 7 is a chart explaining the relationship between the operation of the start-stop circuit 5 and the condition of the valve 3 .
  • FIG. 6 is a circuit diagram showing the start-stop circuit of a mobile type power supply.
  • the start-stop circuit 5 comprises a diode 32 , electric double-layer capacitor 33 , two pairs of dividing resistors 34 a and 34 b , control power supply 35 , valve drive circuit 36 , hysteresis comparator 37 , AND circuit 38 , and resistor 39 , wherein the anode of the diode 32 is connected to the power generation part 6 and the cathode is connected to the electric double-layer capacitor 33 .
  • the dividing resistors 34 a in series are connected in parallel to the electric double-layer capacitor 33 .
  • the control power supply 35 is connected to the electric double-layer capacitor 33 , and the dividing resistors 34 b in series, power supply terminal of the hysteresis comparator 37 , power supply terminal of the AND circuit 38 , and resistor 39 are connected to the output side of the control power supply 35 .
  • the connection point between each of the two paired dividing resistors 34 a and 34 b in series is connected to the hysteresis comparator 37 .
  • the output of the hysteresis comparator 37 which is output A, is inputted to the AND circuit 38 .
  • One end of the resistor 38 which is B, is inputted to the AND circuit 38 and also connected to the switch 12 via the connector 9 and cable 13 .
  • One end of the switch 12 is connected to the ground line 8 .
  • the output of the AND circuit 38 is inputted to the valve drive circuit 36 , and the output of the valve drive circuit 36 is connected to the valve 3 .
  • the voltage of the fuel cell outputted from the power generation part 6 is transmitted to the DC-to-DC converter 7 and also applied to the electric double-layer capacitor 33 via the diode 32 to charge the capacitor 33 .
  • the electric double-layer capacitor 33 functions as the power source, and the voltage of the electric double-layer capacitor 33 is divided by the dividing resistor 34 a and inputted to the hysteresis comparator 37 .
  • the voltage of the electric double-layer capacitor 33 is stabilized by the control power supply 35 and the stabilized voltage is also divided by the dividing resistor 34 b and inputted to the hysteresis comparator 37 .
  • the logic of the output A of the hysteresis comparator 37 becomes as shown in the column in FIG. 7. That is, when the voltage is lower than a specified value, A becomes L (low level) and, when the voltage is higher than a specified value, A becomes H (high level).
  • B becomes as shown in the row in FIG. 7.
  • valve 3 when the voltage of the electric double-layer capacitor 33 decreases, and if the switch 12 is on, the valve 3 is opened to supply the fuel from the fuel tank 2 to the power generation part 6 .
  • the valve 3 only when the voltage condition of the electric double-layer capacitor 33 is favorable and the switch 12 is off or the cable 13 is disconnected, the valve 3 is closed to stop power generation.
  • the valve 3 shall favorably be of a type that requires power only upon a change in the condition, but can be a normally-on type that closes when voltage is applied.
  • any other large-capacity capacitor or rechargeable battery such as lithium ion battery and nickel hydride battery, can substitute.
  • FIG. 8 This embodiment employs an AC adaptor 50 in place of the fuel cell pack 1 and uses a connector 9 , cable 13 and DC plug 14 as the connection means. Other components are the same as shown in FIG. 2.
  • the AC adaptor 50 comprises an AC-to-DC converter 49 , start-stop circuit 5 , and display control circuit 52 , and DC power is supplied to the AC-to-DC converter 49 from a commercial power source 51 .
  • the AC-to-DC converter 49 converts the DC power of the commercial power source 51 into DC power according to the output voltage reference value, and supplies the DC power to the load 15 via the output voltage line 19 .
  • the start-stop circuit 5 constitutes a conversion control means that controls the conversion by the AC-to-DC converter 49 .
  • the circuit has a function of a connection condition detection means that detects the connection condition between the connector 9 and AC adaptor 50 , and stops the conversion of the AC-to-DC converter 49 when disconnection between the connector 9 and AC adaptor 50 is detected.
  • the display control circuit 52 constitutes an output condition detection means that detect the output condition of the AC-to-DC converter 49 , and displays the output condition of the AC-to-DC converter on a light emitting diode 11 . That is, the light emitting diode 11 constitutes an output condition display means that displays the output condition of the AC-to-DC converter 49 .
  • the operation is described hereunder.
  • the output voltage reference value output means 10 contained in the connector 9 is connected to the AC-to-DC converter 49 . Accordingly, the output voltage of the AC-to-DC converter 49 is determined.
  • the start-stop circuit 5 operates in the same way as in the afore-mentioned embodiments, that is, it stops output when the switch 12 is off or the connector 9 is disconnected from the AC adaptor 50 .
  • the display control circuit 52 displays the condition of the AC-to-DC converter 49 on the light emitting diode 11 .
  • the seventh embodiment of the invention is described hereunder, using FIGS. 9, 10, 11 , and 12 .
  • the output of the remaining capacity detector 4 inside the fuel cell pack 1 is connected to the reference voltage circuit 25 inside the DC-to-DC converter 7 , and a lithium battery compatible plug 40 is provided, instead of the DC plug 14 , on the end of the cable 13 .
  • Other components are the same as shown in FIG. 2.
  • the remaining capacity detector 4 alters the output voltage of the reference voltage circuit 25 inside the fuel cell pack 1 forcibly according to the remaining capacity of the fuel in the fuel tank 2 , and forcibly alters (decreases) the output voltage reference value for the DC-to-DC converter 7 according to the remaining capacity in the fuel tank 2 .
  • the lithium battery compatible plug 40 has the same shape as the lithium ion battery pack 41 shown in FIG. 10, and is exchangeable with the lithium ion battery pack 41 .
  • the lithium battery compatible plug 40 contains a switch 12 for tuning on/off the fuel cell and also contains multiple (three) resistors 43 and multiple (three) terminals 42 a .
  • Each terminal 42 a is connected to each lithium battery condition detection terminal 44 a , respectively, and the paired power supply terminals 42 b of the lithium battery compatible plug 40 are provided for connection to the paired lithium battery power supply terminals 44 b on the load side.
  • the terminal 42 a connected to the output voltage line 19 and ground line 8 constitutes a power supply voltage detection means that detects the output voltage of the DC-to-DC converter 7 as the power supply voltage of the load 15 .
  • Each resistor 43 divides the output voltage of the DC-to-DC converter 7 and outputs the divided voltage from the terminal 42 a to the load 15 via the lithium battery condition detection terminal 44 a.
  • the output voltage of the fuel cell pack 1 is supplied from the lithium batter power supply terminal 44 b to the load 15 through the output voltage line 19 and ground line 8 and via the connector 9 , cable 13 and lithium battery compatible plug 40 .
  • the terminal voltage of the lithium ion battery varies as shown in FIG. 11 because the capacity (SOC) of the battery decreases as the time elapses.
  • the reference voltage of the DC-to-DC converter 7 that is, the output voltage of the reference voltage circuit 25
  • the characteristic in FIG. 12 shall correspond to the number of lithium ion cells in series and the remaining capacity. It is naturally necessary that the output voltage reference value of the output voltage reference value output means 10 must consider the number of cells in series in the lithium ion battery pack 41 suitable for the load 15 .
  • This construction makes the load 15 recognize as if a lithium ion battery is installed. Because of this, when the remaining capacity of the fuel tank 2 decreases, the remaining capacity detection function of the lithium battery installed on the notebook type personal computer is actuated, and so the user, taking the battery remaining capacity displayed on the computer as the display of the fuel capacity of the fuel cell, can be aware of fuel shortage well in advance.
  • a charge and supply control circuit 45 is provided in the fuel cell pack 1 , the output of the remaining capacity detector 4 is connected to the reference voltage circuit 25 of the DC-to-DC converter 7 via the charge and supply control circuit 45 , a connector 46 is provided on the end of the cable 13 , the connector 46 is connected to the lithium battery compatible plug 40 , and a lithium ion battery 54 is contained in the lithium battery compatible plug 40 ; and besides a switching circuit 47 is provided on the switch 12 , the lithium ion battery 54 is connected three lithium battery condition detection terminals 44 a and also to the paired lithium battery power supply terminals 44 b , and a switch 48 is provided between the output voltage line 19 and lithium ion battery 54 .
  • Other components are the same as in FIG. 9.
  • this embodiment is characteristic in that the lithium ion battery 54 is provided in the lithium battery compatible plug and so the lithium ion battery pack 1 has a function of charging the lithium ion battery 54 .
  • Conditions of the switch 12 , connector 46 , switch 48 and valve 3 are as shown in FIG. 14. The switch circuit 47 changes over each condition.
  • the switch 48 When the switch 12 is on and the connector 46 is disconnected, the switch 48 is set on in the switching circuit 47 but the valve 3 is closed by the start-stop circuit 5 , and so power generation of the fuel cell is stopped. When this is caused, power is supplied from the lithium ion battery 54 to the load 15 . If an AC adaptor is additionally connected to the load 15 , it is also possible to charge the lithium ion battery 40 from the load 15 side. When this applies, the condition of the lithium battery 54 is sent to the load 15 by the lithium battery condition detection terminal 42 for proper charging. This embodiment is very much reliable because the supply source switches automatically to the lithium battery 54 as above if the connector 46 is unexpectedly disconnected. Even in the case that the connector 9 is disconnected from the fuel cell pack 1 , the equipment is similarly protected from a failure due to connector disconnection because the supply source switches from the lithium battery 54 to the power generation for the load 15 .
  • the valve 3 is always closed when the switch 48 is turned on, irrespective of the connection of the connector 46 .
  • waste of fuel in the fuel cell pack 1 can be prevented.
  • the switch 12 in no way acts upon the lithium ion battery 54 , and so the lithium ion battery pack can be used as an ordinary one.
  • the ninth embodiment of the invention is described hereunder, using FIG. 15 and FIG. 16.
  • the shape of the connection with the connector 1 is modified according to the power supply voltage of the load or the output voltage specification of the cable 13 , and there are provided connector insertion port 55 a to 55 d for each 15V, 16V, 19V and 20V at the connection.
  • the connector insertion port 55 a for 15V fits with the connector 9 having a round shape; the connector insertion port 55 b for 16V fits with the connector 9 having a rectangular shape; the connector insertion port 55 c for 19V fits with the connector 9 having a triangular shape; and the connector insertion port 55 d for 20V fits with the connector 9 having a hexagonal shape.
  • the fuel cell pack 1 of this embodiment is equipped with multiple connector insertion ports 55 a to 55 d in accordance with the power supply voltage of the load or the output voltage specification of the cable 13 as above, and each connector insertion port 55 a to 55 d has a different shape. If, for example, the connector 9 for 16V is used for the cable 13 , the connector 9 is connected only to the connector insertion port 55 b , and so the output voltage reference value for the DC-to-DC converter 7 is always set to 16V.
  • any protection circuit for a case where two or more connectors 9 are inserted at the same time is not shown in this embodiment.
  • the equipment connected as load can be protected from a failure resulting from improper operation.
  • connection means in each embodiment can be constructed into a connection device.
  • mobile type power supply in each embodiment and an electronic equipment connected as load can together be constructed into a mobile type electronic equipment.
  • the battery pack cost can be reduced as a result of common utilization.

Abstract

(Object) An object of the present invention is to supply such voltage to a load that corresponds to the load.
(Means of Solving the Problems) A battery 52 and a DC-to-DC converter 7 are contained in a battery pack 53, and when the battery pack 53 is connected to a load 15 by means of a connector 9 and an output voltage reference value, corresponding to the power supply voltage of the load 15, is set by an output voltage reference value output means 10 in the connector 9, the output voltage of the battery 52 is converted according to the output voltage reference value by the DC-to-DC converter 7 and the converted voltage is supplied to the load 15 via an output voltage line 19.

Description

    BACKGROUND OF THE INVENTION
  • 1. (Field of the Invention) [0001]
  • The present invention relates to a mobile type power supply, particularly to a mobile type power supply suitable for supplying the electric energy generated by a fuel cell, of the type which oxidizes methanol directly, to a load. [0002]
  • 2. (Prior Art) [0003]
  • There have been offered various types of power supply system using fuel cell, which comprises a fuel tank for storing fuel and a power generation part for generating DC power from the fuel and supplies the power, generated in the power generation part, to a load. For example, there has been disclosed a system which comprises a fuel pack that can be attached/detached freely, a power generation module that generates specific electric energy by means of electrochemical reaction or fuel reaction, a code reader part that reads an attestation code assigned to the fuel pack, an attestation judgment part that attests and judges, based on the obtained attestation code, whether the fuel pack attached to the system is adequate or not, and an output control part that controls the generation of electric energy at the power generation part according to the result of the judgment. (See Cited Patent Document 1) [0004]
  • (Cited Patent Document 1) [0005]
  • Japanese Application Patent Laid-open Publication No. 2002-280044 (pages 5-11, FIG. 1) [0006]
  • SUMMARY OF THE INVENTION
  • (Problems to be Solved by the Invention) [0007]
  • In a prior art, there is provided an interface between the fuel and the power generation part as explained above but the interface with the load is not taken into account. The power supply voltage of mobile type information equipments, including notebook type personal computers, which are expected to be very much promising as a load to the power supply system using fuel cell, generally differs from one computer manufacturer to another and, even within the same manufacture, the voltage differs by model of the computer. Besides, even if the same voltage applies, there are quite a few different types of DC plug for supplying the power. [0008]
  • For the above reason, even if a fuel cell very much suitable for mobile application is developed, it must be offered in various types with different terminal specification and/or different output voltage specification for those various loads. In addition, if the fuel cell is designed for every different load, the design, development and manufacturing cost increases, resulting in a very costly power supply system. [0009]
  • An object of the present invention is to supply such voltage to a load that corresponds to the load. [0010]
  • (Means for Solving the Problems) [0011]
  • In order to realize the above object, according to the present invention, there is provided a mobile type power supply which comprises a battery pack containing a battery and an output voltage conversion means that converts the output voltage of the battery according to an output voltage reference value, and a connection means that is connected to both battery pack and a load and supplies DC power, outputted by the output voltage conversion means, to the load; of which connection means comprises an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the output voltage conversion means. It is permissible that the above is provided with an output voltage reference value output means that outputs an output voltage reference values, which, among multiple output voltage reference values, corresponds to the power supply voltage of the load, to the output voltage conversion means. It is also permissible to provide, instead of the battery pack, an AC adaptor containing an AC-to-DC converter that converts AC power from an AC power supply to DC power according to an output voltage reference value. In the above case, the connection means comprises an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the AC-to-DC converter. [0012]
  • With the afore-mentioned means, voltage corresponding to the load can be supplied to the load simply by outputting an output voltage reference value, corresponding to the power supply voltage of the load, to the output voltage conversion means as soon as the battery pack is connected to the connection means, and hence the battery pack cost can be reduced as a result of common utilization.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a mobile type power supply according to the first embodiment of the invention. [0014]
  • FIG. 2 is a block diagram of a mobile type power supply according to the second embodiment of the invention. [0015]
  • FIG. 3 shows an oblique view of the mobile type power supply in the second embodiment. [0016]
  • FIG. 4 is a figure showing the construction of the connection cable of a mobile type power supply according to the third embodiment of the invention. [0017]
  • FIG. 5 is a circuit diagram of the DC-to-DC converter of a mobile type power supply according to the fourth embodiment of the invention. [0018]
  • FIG. 6 is a circuit diagram of the start-stop circuit of a mobile type power supply according to the fifth embodiment of the invention. [0019]
  • FIG. 7 is a logical diagram for explaining the relationship between the start-stop circuit and valve of a mobile type power supply according to the fifth embodiment of the invention. [0020]
  • FIG. 8 is a block diagram of a mobile type power supply according to the sixth embodiment of the invention FIG. 9 is a block diagram of a mobile type power supply according to the seventh embodiment of the invention. [0021]
  • FIG. 10 shows an oblique view for explaining the relationship between the mobile type power supply and lithium ion battery pack according to the seventh embodiment of the invention. [0022]
  • FIG. 11 shows a characteristic curve showing the relationship between the lithium ion battery terminal voltage and operating time. [0023]
  • FIG. 12 shows a characteristic curve showing the relationship between the remaining capacity of the fuel tank and the output voltage of the DC-to-DC converter in the seventh embodiment of the invention. [0024]
  • FIG. 13 is a block diagram of a mobile type power supply according to the eighth embodiment of the invention. [0025]
  • FIG. 14 is a figure for explaining the operation of the switching circuit of the mobile type power supply in the eighth embodiment of the invention. [0026]
  • FIG. 15 is a figure for explaining the terminal shape of a mobile type power supply according to the ninth embodiment of the invention. [0027]
  • FIG. 16 is a block diagram of a mobile type power supply in the ninth embodiment of the invention.[0028]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention are described hereunder, using drawing figures. FIG. 1 is a block diagram of the mobile type power supply according to the first embodiment of the invention. In FIG. 1, the mobile type power supply comprises a [0029] battery pack 53 and a connector 9, and the connector 9 is made connectable to both the battery pack 53 and a load 15. The battery pack 53, containing a battery 52 and a DC-to-DC converter 7, is connected to a connector 9. The connector 9 contains an output voltage reference value output means 10, which outputs an output reference value, and an output voltage line 19 as well. The output voltage line 19 is connected to the DC-to-DC converter and to the load 15. The DC-to-DC converter is provided as an output voltage conversion means that converts the output voltage of the battery 52 according to the output voltage reference value. That is, when an output voltage reference value is inputted from the output voltage reference value output means 10, the DC-to-DC converter 7 converts the output voltage of the battery 52 to a voltage corresponding to the power supply voltage of the load 15 and supplies it to the load 15.
  • Next, the operation of the embodiment is described hereunder. The [0030] load 15 is a general mobile type equipment, and a connector 9 is needed as a connection means suitable for the load 15. As one end of the connector 9 is connected to the battery pack 53 and the other end to the load 15, the output voltage reference value output means 10 is connected to the DC-to-DC converter 7 and the output voltage of the DC-to-DC converter 7 is determined by the output voltage reference value. Because of this, the output voltage of the battery 52 can be stably supplied to the load 15.
  • This embodiment produces a merit that a new energy source can be provided without any modification to the [0031] load 15. Because of this merit, any load already existing in the market, office and home can apply. Further, by providing multiple connectors 9 suitable for different loads 15, only a single battery pack 53 becomes applicable to multiple loads. Since the required lineup of the battery pack 53 can be as small as the variety of the output voltage such as 10 W, 20 W and 40 W, its applicability improves and hence tremendous cost reduction can be expected.
  • For the [0032] battery 53 of this embodiment, primary battery including alkaline battery and manganese battery, rechargeable battery including lead battery, nickel hydride battery and lithium battery, or other types batteries including fuel cell and solar cell is applicable.
  • Available shape of the [0033] connector 9, which may differ by the type of connection with the load 15, can be a cable-like flexible piece, a solid piece such as a connection plug, and so on.
  • The second embodiment of the invention is described hereunder, using FIG. 2 and FIG. 3. A [0034] fuel cell pack 1 contains a fuel tank 2, valve 3, power generation part 6, start-stop circuit 5, remaining capacity detector 4, DC-to-DC converter 7, and control power supply 18, and the fuel cell pack 1 is connected to a load 15 via a connector 9, cable 13 and DC plug 14. The connector 9, cable 13 and DC plug 14 are provided as the connection means; where one end of the connector 9 is connected to the fuel cell pack 1 and the DC plug 14 on the end of the cable 13 is connected to the load 15. The connector 9 contains an output voltage reference value output means 10 and a light emitting diode 11 and switch 12 are provided as a remaining capacity display means at a position near the load 15 on the cable 13. The light emitting diode 11 is connected to the remaining capacity detector 4 by the cable 13 and the switch 12 is connected to the start-stop circuit 5 by the cable 13.
  • The [0035] fuel tank 2 is provided as the fuel storage means that stores fuel for the fuel cell, and the valve 3 is provided as the control valve that opens/closes the fuel passage between the fuel tank 2 and the power generation part 6. The start-stop circuit 5 is provided as an element of the connection condition detection means that detects the condition of the connection between the fuel cell pack 1 and the connector 9. The remaining capacity detector 4 is provided as the remaining capacity detection means that receives signals from multiple sensors, installed vertically in the fuel tank 2, and detects the remaining capacity in the fuel tank 2 based on the signals from each sensor. The detector is designed to send a signal, corresponding to the remaining capacity in the fuel tank 2, to the light emitting diode 11. Multiple vent holes 16 are made around the fuel cell pack 1.
  • The operation of this embodiment is described hereunder. The [0036] fuel cell pack 1 is a direct methanol type fuel cell (DMFC) but it can be any other type of fuel cell provided the shape and size fit for mobile application. The output power depends upon the equipment connected as a load, and approximately 20 to 40 W is required for a mobile type personal computer.
  • The [0037] connector 9 on the end of the cable 13 is connected to the fuel cell pack 1 and a DC plug 14 is connected to a DC-IN terminal of the load 15 so as to connect the fuel cell pack 1 to the load 15 via the connector 9, cable 13 and DC plug 14. Thus, when the switch 12 is turned on, the start-stop circuit 5 sets the valve 3 open and the fuel is supplied from the fuel tank 2 to the power generation part 6. The power generation part 6 then begins to generate power and the voltage generated by the fuel cell is applied to the DC-to-DC converter 7. In this operation, because the output voltage reference value output means 10, located inside the connector 9, is connected to the DC-to-DC converter 7, the output voltage of the DC-to-DC converter is controlled according to the output voltage reference value. Consequently, a voltage set in the output voltage reference value output means 10 is outputted to the output voltage line 19, and this voltage is supplied to the load 15. During the operation, the remaining capacity of the fuel in the fuel tank 2 is detected by the remaining capacity detector 4, and the emission pattern of the light emitting diode 11 changes according to the detection result. For example, in the case of using three light emitting diodes 11, the number of diodes that emit light changes according to the remaining capacity of the fuel in the fuel tank 2. In the case of using a single light emitting diode 11, it is possible to display the remaining capacity by changing the color of the light, for example, from green to red, or by either emitting or flickering the light depending upon the remaining capacity.
  • When the [0038] switch 12 is turned off, a closed circuit of the start-stop circuit 5switch 12ground line 8→start-stop circuit 5 is opened, the start-stop circuit 5 recognizes the operation is on a halt and so the valve 3 is set closed. Thus, the fuel supply from the fuel tank 2 to the power generation part 6 is stopped and power generation is stopped.
  • When the connector of the [0039] cable 13 is disconnected from the fuel cell pack 1, the closed circuit of the start-stop circuit 5switch 12ground line 8→start-stop circuit 5 is opened like the above, and so power generation is stopped.
  • With this embodiment, as described above, by employing a power generation stop function that is actuated by the [0040] switch 12 operation or cable 13 disconnection, fuel consumption of the power supply while not in use can be eliminated and hence the fuel consumption rate be improved.
  • Providing the [0041] switch 12 close to the load 15 can improve the user's operability of the power supply. Besides, by interlocking one of the three light emitting diodes with the switch 12, power generation/halt mode can be easily displayed. This further improves the visibility.
  • According to this embodiment, even if the [0042] fuel cell pack 1 is located apart from a notebook type personal computer, which constitutes the load 15, the remaining capacity of the fuel in the fuel tank 2 can be easily displayed and the power generation can be turned on/off easily. With this construction, the fuel cell pack 1 can be so designed as to be able to generate power most efficiently, for example, by providing the vent holes 16 all round so as to increase the surface area. Consequently, the volume of the fuel cell pack 1 can be minimized.
  • Applicable equipments to the [0043] load 15 are not limited to the information equipments such as notebook type personal computers and terminal devices, but can be a wide variety of equipments, including those for mobile use and those of carried type for outdoor use.
  • Next, the third embodiment of the invention is described hereunder, using FIG. 4. This embodiment is a modification to the [0044] cable 13 described in the second embodiment, and so the construction is the same as in the second embodiment except for the components shown in the figure. In FIG. 4, the load 15 is a notebook type personal computer and a DC-IN plug is provided on the rear of the computer. The cable 13 is provided with a liquid crystal display 17 as the remaining capacity display means and a switch 12 is provided adjacent to the liquid crystal display 17. The liquid crystal display 17 is so designed to be able to be clipped on the side edge of the liquid crystal display screen of the computer. The power generation/halt mode and remaining capacity of the fuel cell pack 1 are displayed on the liquid crystal display 17.
  • With the above construction, even in the case of a notebook type personal computer, which constitutes the [0045] load 15, equipped with a DC-IN plug on its rear, the fuel cell pack 1 is easily applicable. Thus, the user's visibility improves and an environment with high operability of the equipment can be offered.
  • Next, the fourth embodiment of the invention is described hereunder, using FIG. 5. FIG. 5 is a block diagram showing a concrete construction of a DC-to-[0046] DC boost converter 7 of a mobile type power supply, which constitutes the circuit for determining the output voltage of the fuel cell pack 1. In FIG. 5, there are provided a power generation part 6, DC-to-DC converter 7 and control power supply 18 inside the fuel cell pack 1, and they are connected to each other. The control power supply 18 receives the output voltage of the power generation part 6 and outputs the voltage as Vcc 31 to a reference voltage circuit 25. The DC-to-DC converter comprises a coil 20, diode 22, power MOSFET 21, smoothing capacitor 23, drive circuit 24, reference voltage circuit 25, multiple dividing resistors 26, multiple FETs 27, error amplifier 28, triangular wave oscillator 29, and PWM comparator 30. The coil 20 connected to the power generation part 6 is connected to the connection point between the anode of the diode 22 and drain of the MOSFET 21, and the cathode of the diode 22, along with the high potential side of the smoothing capacitor 23, is connected to an output power line 19. The low potential side of the smoothing capacitor 23, along with the source of the power MOSFET 21, is connected to the power generation part 6 and also to a ground line 8. These constitute a boost converter circuit. The output voltage line 19 and ground line 8 are connected to a load 15 (not shown) via a connector 9 and cable 13. The connection with the load is the same as in FIG. 2. The output of the reference voltage circuit 25 is applied as Vref to a number of paired dividing resistors 26 a to 26 d. In FIG. 5, there are provided four pairs of the dividing resistors 26 a to 26 d and each pair of the dividing resistors 26 a to 26 d have different dividing ratio to generate a reference voltage corresponding to 20V, 19V, 16V and 15V. FETs 27 a to 27 d are connected to the connection point between each of the paired dividing resistors 26 a to 26 d. Each gate of the FETs 27 a to 27 d is connected to the connection terminal 7 a to 7 d, respectively. Each connection terminal 7 a to 7 d is so designed to be able to be connected to the pin insertion terminals 10 a to 10 d inside the connector 9, respectively.
  • In the [0047] connector 9, there are provided a pin insertion terminal 10 e in addition to the pin insertion terminals 10 a to 10 d. The pin insertion terminal 10 e is so designed to be able to be connected to a connection terminal 7 e inside the fuel cell pack 1, and the connection terminal 7 e is connected to Vcc 31. Of the multiple pin insertion terminals 10 a to 10 e, a pin 10 f for 16V, conductive pin for shorting two pin insertion terminals, are inserted between the pin insertion terminals 10 b and 10 e. The multiple pin insertion terminals 10 a to 10 e and the pin 10 f constitute the output voltage reference value output means 10, which is so designed that, by inserting the pin 10 f for 16V between the pin insertion terminals 10 b and 10 e, an output voltage reference value of 16V is set for the DC-to-DC converter 7. A pin 10 f for 15V, 19V and 20V is also available. The pin for 15V is so designed to be inserted between the pin insertion terminals 10 a and 10 e; the pin for 19V is so designed to be inserted between the pin insertion terminals 10 c and 10 e; and the pin for 20V is so designed to be inserted between the pin insertion terminals 10 d and 10 e. When any one of the above pins is inserted between the specified pin insertion terminals, an output voltage reference value of 15V, 19V or 20V is set for the DC-to-DC converter 7.
  • The output of each [0048] FET 27 a to 27 d is inputted altogether to the non-reversed input terminal of the error amplifier 28. A voltage, which is the voltage of the output voltage line 19 divided by the paired dividing resistors 26 e, is inputted to the reversed input terminal of the error amplifier 28. The output of the error amplifier 28 is inputted to the non-reversed input terminal of the PWM comparator 30. On the other hand, the output of the triangular wave oscillator 29 is inputted to the reversed input terminal of the PWM comparator 30. The output of the PWM comparator 30 is inputted to the gate of the power MOSFET 21 via the drive circuit 24.
  • Next, the operation of the DC-to-[0049] DC converter 7 is described hereunder. When the connector 9 is connected to the fuel cell pack 1, Vcc 31 is electrically connected to the output voltage reference value output means 10 via the pin. In the output voltage reference value output means 10, Vcc is connected to the pin according to the output voltage specification of the cable 13, that is, the power supply voltage specification of the load. The output voltage specification of the cable 13 shown in the figure is 16V and accordingly, of the FETs 27 a to 27 d inside the DC-to-DC converter 7, only FET 27 b that corresponds to 16V is set on. As a result of this, a voltage of 16V is applied to the error amplifier 28 as the reference voltage. Then, the error amplifier 28 performs a feedback control so that the voltage of the output voltage line 19 turns to 16V.
  • The output of the fuel cell outputted from the [0050] power generation part 6 is boosted to stable 16V by the boost converter, and then supplied to the load via the cable 13.
  • According to this embodiment, by an operation as simple as inserting a [0051] cable 13 suitable for the load 5 into the fuel cell pack 1, a voltage suitable for the load is correctly selected and supplied, without any mistake, out of multiple output voltages the fuel cell can output. This enables the user to eliminate voltage setting mistake or wrong operation.
  • Next, the fifth embodiment of the invention is described hereunder, using FIG. 6 and FIG. 7. FIG. 6 is a circuit diagram showing the start-stop circuit of a mobile type power supply. FIG. 7 is a chart explaining the relationship between the operation of the start-[0052] stop circuit 5 and the condition of the valve 3. In FIG. 6, the start-stop circuit 5 comprises a diode 32, electric double-layer capacitor 33, two pairs of dividing resistors 34 a and 34 b, control power supply 35, valve drive circuit 36, hysteresis comparator 37, AND circuit 38, and resistor 39, wherein the anode of the diode 32 is connected to the power generation part 6 and the cathode is connected to the electric double-layer capacitor 33. The dividing resistors 34 a in series are connected in parallel to the electric double-layer capacitor 33. The control power supply 35 is connected to the electric double-layer capacitor 33, and the dividing resistors 34 b in series, power supply terminal of the hysteresis comparator 37, power supply terminal of the AND circuit 38, and resistor 39 are connected to the output side of the control power supply 35. Besides, the connection point between each of the two paired dividing resistors 34 a and 34 b in series is connected to the hysteresis comparator 37. The output of the hysteresis comparator 37, which is output A, is inputted to the AND circuit 38. One end of the resistor 38, which is B, is inputted to the AND circuit 38 and also connected to the switch 12 via the connector 9 and cable 13. One end of the switch 12 is connected to the ground line 8. The output of the AND circuit 38 is inputted to the valve drive circuit 36, and the output of the valve drive circuit 36 is connected to the valve 3.
  • Next, the operation of the start-[0053] stop circuit 5 is described hereunder. The voltage of the fuel cell outputted from the power generation part 6 is transmitted to the DC-to-DC converter 7 and also applied to the electric double-layer capacitor 33 via the diode 32 to charge the capacitor 33. The electric double-layer capacitor 33 functions as the power source, and the voltage of the electric double-layer capacitor 33 is divided by the dividing resistor 34 a and inputted to the hysteresis comparator 37.
  • On the other hand, the voltage of the electric double-[0054] layer capacitor 33 is stabilized by the control power supply 35 and the stabilized voltage is also divided by the dividing resistor 34 b and inputted to the hysteresis comparator 37. In this operation, because of the voltage of the electric double-layer capacitor 33, the logic of the output A of the hysteresis comparator 37 becomes as shown in the column in FIG. 7. That is, when the voltage is lower than a specified value, A becomes L (low level) and, when the voltage is higher than a specified value, A becomes H (high level). On the other hand, depending upon the condition of the switch 12, B becomes as shown in the row in FIG. 7. That is, when the switch 12 is on, B is grounded and becomes L and, when the switch 12 is off, B is pulled up by the resistor 39 and becomes H. Beside, when the connector 9 and cable 13 are disconnected from the fuel cell pack 1, B becomes H because it is pulled up by the resistor 39.
  • Now, since the output of the AND [0055] circuit 38 becomes H only when the inputted A and B become H, if the valve drive circuit 36 is so operated as to close the valve 3 only when the output voltage of the AND circuit 38 is H, the condition of the valve 3 is determined by the voltage condition of the electric double-layer capacitor 33 and the condition of the switch 12 as shown in FIG. 7.
  • In other words, when the voltage of the electric double-[0056] layer capacitor 33 decreases, and if the switch 12 is on, the valve 3 is opened to supply the fuel from the fuel tank 2 to the power generation part 6. On the other hand, only when the voltage condition of the electric double-layer capacitor 33 is favorable and the switch 12 is off or the cable 13 is disconnected, the valve 3 is closed to stop power generation. The valve 3 shall favorably be of a type that requires power only upon a change in the condition, but can be a normally-on type that closes when voltage is applied.
  • While fuel consumption is reduced, energy saving is enhanced, and the fuel consumption rate is improved because of the above operation, electric remote control, including start and stop of the [0057] fuel cell pack 1, by means of the switch 12 becomes possible by employing the electric double-layer capacitor 33 as the control power supply (voltage source).
  • Although an electric double-[0058] layer capacitor 33 is employed in this embodiment, any other large-capacity capacitor or rechargeable battery, such as lithium ion battery and nickel hydride battery, can substitute.
  • Next, the sixth embodiment of the invention is described hereunder, using FIG. 8. This embodiment employs an [0059] AC adaptor 50 in place of the fuel cell pack 1 and uses a connector 9, cable 13 and DC plug 14 as the connection means. Other components are the same as shown in FIG. 2.
  • In FIG. 8, the [0060] AC adaptor 50 comprises an AC-to-DC converter 49, start-stop circuit 5, and display control circuit 52, and DC power is supplied to the AC-to-DC converter 49 from a commercial power source 51. When an output voltage reference value corresponding to the power supply voltage of the load 15 is inputted from the output voltage reference value output means 10 contained in the connector 9, the AC-to-DC converter 49 converts the DC power of the commercial power source 51 into DC power according to the output voltage reference value, and supplies the DC power to the load 15 via the output voltage line 19. The start-stop circuit 5 constitutes a conversion control means that controls the conversion by the AC-to-DC converter 49. In addition, the circuit has a function of a connection condition detection means that detects the connection condition between the connector 9 and AC adaptor 50, and stops the conversion of the AC-to-DC converter 49 when disconnection between the connector 9 and AC adaptor 50 is detected.
  • The [0061] display control circuit 52 constitutes an output condition detection means that detect the output condition of the AC-to-DC converter 49, and displays the output condition of the AC-to-DC converter on a light emitting diode 11. That is, the light emitting diode 11 constitutes an output condition display means that displays the output condition of the AC-to-DC converter 49.
  • Next, the operation is described hereunder. When the [0062] connector 9 is inserted into the AC adaptor 50, the output voltage reference value output means 10 contained in the connector 9 is connected to the AC-to-DC converter 49. Accordingly, the output voltage of the AC-to-DC converter 49 is determined. The start-stop circuit 5 operates in the same way as in the afore-mentioned embodiments, that is, it stops output when the switch 12 is off or the connector 9 is disconnected from the AC adaptor 50. The display control circuit 52 displays the condition of the AC-to-DC converter 49 on the light emitting diode 11. With this construction, it becomes possible for the user to monitor the voltage (100V, 200V, or else) of the commercial DC power source 51 and its condition, such as power failure and recovery, and the operating condition and output voltage of the AC-to-DC converter 49 on the light emitting diode 11. Besides, since the cable 13 can be of the same specification as for the one to be connected to the fuel cell pack 1 described in the afore-mentioned embodiments, it becomes also possible for the user to use the AC adaptor 50 when a commercial DC power source 51 is available and, where no commercial DC power source 51 is available, to prepare and use the fuel cell pack 1 instead.
  • According to this embodiment, as described above, a mobile type power supply that is applicable to various environments of using equipments and very much easy to use for users can be offered. [0063]
  • Next, the seventh embodiment of the invention is described hereunder, using FIGS. 9, 10, [0064] 11, and 12. In this embodiment, the output of the remaining capacity detector 4 inside the fuel cell pack 1 is connected to the reference voltage circuit 25 inside the DC-to-DC converter 7, and a lithium battery compatible plug 40 is provided, instead of the DC plug 14, on the end of the cable 13. Other components are the same as shown in FIG. 2. The remaining capacity detector 4 alters the output voltage of the reference voltage circuit 25 inside the fuel cell pack 1 forcibly according to the remaining capacity of the fuel in the fuel tank 2, and forcibly alters (decreases) the output voltage reference value for the DC-to-DC converter 7 according to the remaining capacity in the fuel tank 2. Besides, the lithium battery compatible plug 40 has the same shape as the lithium ion battery pack 41 shown in FIG. 10, and is exchangeable with the lithium ion battery pack 41. The lithium battery compatible plug 40 contains a switch 12 for tuning on/off the fuel cell and also contains multiple (three) resistors 43 and multiple (three) terminals 42 a. Each terminal 42 a is connected to each lithium battery condition detection terminal 44 a, respectively, and the paired power supply terminals 42 b of the lithium battery compatible plug 40 are provided for connection to the paired lithium battery power supply terminals 44 b on the load side. Of the multiple terminals 42 a, the terminal 42 a connected to the output voltage line 19 and ground line 8 constitutes a power supply voltage detection means that detects the output voltage of the DC-to-DC converter 7 as the power supply voltage of the load 15. Each resistor 43 divides the output voltage of the DC-to-DC converter 7 and outputs the divided voltage from the terminal 42 a to the load 15 via the lithium battery condition detection terminal 44 a.
  • Next, the operation is described hereunder. The output voltage of the [0065] fuel cell pack 1 is supplied from the lithium batter power supply terminal 44 b to the load 15 through the output voltage line 19 and ground line 8 and via the connector 9, cable 13 and lithium battery compatible plug 40.
  • The terminal voltage of the lithium ion battery varies as shown in FIG. 11 because the capacity (SOC) of the battery decreases as the time elapses. In this embodiment, therefore, the reference voltage of the DC-to-DC converter [0066] 7 (that is, the output voltage of the reference voltage circuit 25) is varied to the characteristic shown in FIG. 12 according to the remaining capacity of the fuel in the fuel tank 2 of the fuel cell pack 1. In doing this, the characteristic in FIG. 12 shall correspond to the number of lithium ion cells in series and the remaining capacity. It is naturally necessary that the output voltage reference value of the output voltage reference value output means 10 must consider the number of cells in series in the lithium ion battery pack 41 suitable for the load 15. This construction makes the load 15 recognize as if a lithium ion battery is installed. Because of this, when the remaining capacity of the fuel tank 2 decreases, the remaining capacity detection function of the lithium battery installed on the notebook type personal computer is actuated, and so the user, taking the battery remaining capacity displayed on the computer as the display of the fuel capacity of the fuel cell, can be aware of fuel shortage well in advance.
  • With this embodiment, a system with excellent operability can be offered because the user can use the [0067] fuel cell pack 1 without any modification to the remaining capacity detection and display mechanism with which the user has been familiar.
  • Next, the eighth embodiment of the invention is described hereunder, using FIG. 13 and FIG. 4. In this embodiment, a charge and [0068] supply control circuit 45 is provided in the fuel cell pack 1, the output of the remaining capacity detector 4 is connected to the reference voltage circuit 25 of the DC-to-DC converter 7 via the charge and supply control circuit 45, a connector 46 is provided on the end of the cable 13, the connector 46 is connected to the lithium battery compatible plug 40, and a lithium ion battery 54 is contained in the lithium battery compatible plug 40; and besides a switching circuit 47 is provided on the switch 12, the lithium ion battery 54 is connected three lithium battery condition detection terminals 44 a and also to the paired lithium battery power supply terminals 44 b, and a switch 48 is provided between the output voltage line 19 and lithium ion battery 54. Other components are the same as in FIG. 9.
  • That is, this embodiment is characteristic in that the [0069] lithium ion battery 54 is provided in the lithium battery compatible plug and so the lithium ion battery pack 1 has a function of charging the lithium ion battery 54. Conditions of the switch 12, connector 46, switch 48 and valve 3 are as shown in FIG. 14. The switch circuit 47 changes over each condition.
  • Next, the concrete operation of the embodiment is described hereunder. First, when the [0070] switch 12 is on and the connector 46 is connected properly, the switch 48 is set on and the lithium ion battery 54 is connected to the output voltage line 19 of the fuel cell pack 1. When this is caused, the valve 3 is open and the fuel cell is in the power generation mode. The lithium ion battery 54 is then set to a charge mode. In this mode, each cell voltage of the lithium ion battery 54 is inputted to the charge and supply control circuit 45, and the charge and supply circuit 45 controls the reference voltage circuit 25 of the DC-to-DC converter 7 so as to properly charge the lithium ion battery 54. Besides, it supplies power also to the load 15 via the lithium battery power supply terminal 44 b.
  • When the [0071] switch 12 is on and the connector 46 is disconnected, the switch 48 is set on in the switching circuit 47 but the valve 3 is closed by the start-stop circuit 5, and so power generation of the fuel cell is stopped. When this is caused, power is supplied from the lithium ion battery 54 to the load 15. If an AC adaptor is additionally connected to the load 15, it is also possible to charge the lithium ion battery 40 from the load 15 side. When this applies, the condition of the lithium battery 54 is sent to the load 15 by the lithium battery condition detection terminal 42 for proper charging. This embodiment is very much reliable because the supply source switches automatically to the lithium battery 54 as above if the connector 46 is unexpectedly disconnected. Even in the case that the connector 9 is disconnected from the fuel cell pack 1, the equipment is similarly protected from a failure due to connector disconnection because the supply source switches from the lithium battery 54 to the power generation for the load 15.
  • When the [0072] switch 12 is turned off, the valve 3 is always closed when the switch 48 is turned on, irrespective of the connection of the connector 46. With this construction, waste of fuel in the fuel cell pack 1 can be prevented. Besides, when the connector 46 is disconnected, the switch 12 in no way acts upon the lithium ion battery 54, and so the lithium ion battery pack can be used as an ordinary one.
  • Since switching from an ordinary lithium ion battery pack to the fuel cell pack, and vice versa, can be done easily according to this embodiment, the power supply can meet user's requirement for wide applications. [0073]
  • In addition, since fuel cell is slower in response to a momentary load variation than lithium ion battery, utilization of the above construction, that is, use of the [0074] lithium ion battery 54 as an auxiliary power supply, enables to build a power supply system that can hardly be affected by a momentary load variation.
  • Next, the ninth embodiment of the invention is described hereunder, using FIG. 15 and FIG. 16. In this embodiment, on the [0075] fuel cell pack 1, the shape of the connection with the connector 1 is modified according to the power supply voltage of the load or the output voltage specification of the cable 13, and there are provided connector insertion port 55 a to 55 d for each 15V, 16V, 19V and 20V at the connection. The connector insertion port 55 a for 15V fits with the connector 9 having a round shape; the connector insertion port 55 b for 16V fits with the connector 9 having a rectangular shape; the connector insertion port 55 c for 19V fits with the connector 9 having a triangular shape; and the connector insertion port 55 d for 20V fits with the connector 9 having a hexagonal shape.
  • The [0076] fuel cell pack 1 of this embodiment is equipped with multiple connector insertion ports 55 a to 55 d in accordance with the power supply voltage of the load or the output voltage specification of the cable 13 as above, and each connector insertion port 55 a to 55 d has a different shape. If, for example, the connector 9 for 16V is used for the cable 13, the connector 9 is connected only to the connector insertion port 55 b, and so the output voltage reference value for the DC-to-DC converter 7 is always set to 16V.
  • That is to say, when the [0077] connector 9 of the cable 13 is inserted into the connecter insertion port 55 b of the fuel cell pack 1, the terminals 56 b for 16V are connected with each other among the multiple terminals 56 a to 56 d, as shown in FIG. 16, and the FET 27 b for 16V is set on and accordingly an output voltage of 16V is outputted from the DC-to-DC converter 7.
  • It must be noted that any protection circuit for a case where two or [0078] more connectors 9 are inserted at the same time is not shown in this embodiment. By providing a protection circuit that prohibits outputting any voltage in the above case, the equipment connected as load can be protected from a failure resulting from improper operation.
  • According to each of the above-mentioned embodiments, there is produced a merit that a new type of energy can be offered without any modification to the load. That is, any load already existing in the market, office and home can be driven by the fuel cell. Besides, if battery pack is sold together with multiple connectors suitable for different loads, only a single type of battery pack becomes applicable to various loads. Since the required lineup of the [0079] battery pack 53 can be as small as the variety of the output voltage such as 10 W, 20 W and 40 W, its applicability improves and hence tremendous cost reduction can be expected.
  • In addition, by providing a means for displaying the remaining capacity of the fuel cell, for example, on the cable, the user's operability and visibility improve. [0080]
  • Further, the [0081] connector 9 and cable 13, used as the connection means in each embodiment, can be constructed into a connection device. And further, the mobile type power supply in each embodiment and an electronic equipment connected as load can together be constructed into a mobile type electronic equipment.
  • EFFECTS OF THE INVENTION
  • As explained above, according to the prevent invention, the battery pack cost can be reduced as a result of common utilization. [0082]

Claims (20)

What is claimed is:
1. A mobile type power supply, comprising
a battery pack containing a battery and an output voltage conversion means that converts the output voltage of the battery according to an output voltage reference value; and
a connection means that is connected to both battery pack and a load and supplies DC power, outputted by the output voltage conversion means, to the load;
the connection means comprising an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the output voltage conversion means.
2. A mobile type power supply according to claim 1, wherein
the output voltage reference value output means outputs an output voltage reference value, which, among multiple output voltage reference values, corresponds to the power supply voltage of the load, to the output voltage conversion means.
3. A mobile type power supply according to claim 1, comprising
a fuel cell as the battery, and further comprising
a power generation control means that controls the fuel cell, and
a connection condition detection means that detects the connection condition between the connection means and battery pack;
the power generation control means stopping power generation when disconnection between the connection means and battery pack is detected by the connection condition detection means.
4. A mobile type power supply according to claim 3, wherein
the power generation control means comprises a valve that opens/closes the fuel passage connecting the fuel storage means that stores the fuel for the fuel cell and a power generation part that receives the fuel and generates power; and
the valve closes the fuel passage at the time when disconnection between the connection means and battery pack is detected by the connection condition detection means and also on condition that the voltage of a charge accumulation means that accumulates electric charge outputted by the power generation part is higher than a specified value.
5. A mobile type power supply according to claim 3, comprising
a switch that, installed in the connection means, constitutes an element of the connection condition detection means and turns on/off the fuel cell.
6. A mobile type power supply according to claim 3, comprising
a switch that, installed in the connection means, constitutes an element of the connection condition detection means and turns on/off the fuel cell; wherein
the power generation control means comprises a valve that opens/closes the fuel passage connecting the fuel storage means that stores the fuel for the fuel cell and a power generation part that receives the fuel and generates power; and
the valve closes the fuel passage at the time when the switch is turned off and also on condition that the voltage of a charge accumulation means that accumulates electric charge outputted by the power generation part is higher than a specified value.
7. A mobile type power supply according to claim 1, comprising
a fuel cell as the battery, and further comprising
a remaining capacity detection means that detects the remaining capacity of a fuel storage means storing the fuel for the fuel cell, and
a remaining capacity display means that, installed on the connection means, displays the remaining capacity of the fuel storage means according to the detection output from the remaining capacity detection means.
8. A mobile type power supply according to claim 1, wherein
the load side of the connection means is comprised of a rechargeable battery compatible plug that is exchangeable with a rechargeable battery pack to be attached and detached freely to and from the load.
9. A mobile type power supply according to claim 1, comprising
a fuel cell as the battery, and further comprising
a remaining capacity detection means that detects the remaining capacity of a fuel storage means storing the fuel for the fuel cell,
a power supply voltage detection means that detects the output voltage of the output voltage conversion means as the power supply voltage of the load, and
a rechargeable battery condition detection terminal that outputs the detection output of the power supply voltage detection means to the load; wherein
the remaining capacity detection means alters the output voltage reference value for the output voltage conversion means forcibly according to the remaining capacity of the fuel storage means.
10. A mobile type power supply according to claim 1, comprising
a fuel cell as the battery; wherein
the load side of the connection means is comprised of a rechargeable battery compatible plug that is exchangeable with a rechargeable battery pack to be attached and detached freely to and from the load, and
the rechargeable battery compatible plug is provided with
a switch that constitutes an element of the connection condition detection means and turns on/off the fuel cell.
11. A mobile type power supply according to claim 1, wherein
the load side of the connection means is comprised of a rechargeable battery compatible plug that is exchangeable with a rechargeable battery pack to be attached and detached freely to and from the load, and
the rechargeable battery compatible plug is provided inside with
a rechargeable battery that is connected to the power supply terminal of the load and to the output of the output voltage conversion means.
12. A mobile type power supply according to claim 1, wherein
the output voltage conversion means is a DC-to-DC boost converter.
13. A mobile type power supply according to claim 1, wherein
multiple pin insertion terminals, corresponding to multiple output voltage reference values, are provided on the battery pack side of the connection means,
multiple connection terminals connectable to the multiple pin insertion terminals are provided on the battery pack, and
an output voltage reference value is outputted to the output voltage conversion means of the battery pack as a pin is inserted into a pin insertion terminal, which, among the multiple pin insertion terminals, corresponds to the power supply voltage of the load.
14. A mobile type power supply, comprising
an AC adaptor containing an AC-to-DC converter that converts AC power from an AC power supply to DC power according to an output voltage reference value, and
a connection means that is connected to both AC adaptor and a load and supplies DC power, outputted by the AC-to-DC converter, to the load;
the connection means comprising an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the AC-to-DC converter.
15. A mobile type power supply according to claim 14, comprising
a conversion control means that controls the conversion of the AC-to-DC converter, and
a connection condition detection means that detects the connection condition between the connection means and AC adaptor;
the conversion control means stopping the conversion of the AC-to-DC converter when disconnection between the connection means and AC adaptor is detected by the connection condition detection means.
16. A mobile type power supply according to claim 15, comprising
a switch that, installed in the connection means, constitutes an element of the connection condition detection means and turns on/off the AC-to-DC converter.
17. A mobile type power supply according to claim 15, comprising
an output condition detection means that detects the output condition of the AC-to-DC converter, and
an output condition display means that, installed on the connection means, displays the output condition of the AC-to-DC converter according to the detection output from the output condition detection means.
18. A mobile type power supply according to claim 14, wherein
the AC adaptor side of the connection means is made connectable to a battery pack containing
a fuel cell and an output voltage conversion means that converts the output voltage of the fuel cell according to an output voltage reference value.
19. A carried type electronic equipment, comprising
a mobile type power supply according to claim 1 and an electronic equipment that receives power from the mobile type power supply and operates as a load to the mobile type power supply.
20. A connection device, comprising
a connection means that is connected to both battery pack, containing a battery and an output voltage conversion means which converts the output voltage of the battery according to an output voltage reference value, and a load, and supplies DC power, outputted by the output voltage conversion means, to the load; and
an output voltage reference value output means that outputs an output voltage reference value, corresponding to the power supply voltage of the load, to the output voltage conversion means.
US10/804,122 2003-04-18 2004-03-19 Mobile type power supply, connection device, and carried type electronic equipment Pending US20040207362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/849,261 US7692400B2 (en) 2003-04-18 2007-08-31 Mobile type power supply, connection device, and carried type electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003114299A JP4500505B2 (en) 2003-04-18 2003-04-18 Portable power supply
JP2003-114299 2003-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/849,261 Continuation US7692400B2 (en) 2003-04-18 2007-08-31 Mobile type power supply, connection device, and carried type electronic equipment

Publications (1)

Publication Number Publication Date
US20040207362A1 true US20040207362A1 (en) 2004-10-21

Family

ID=33157049

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/804,122 Pending US20040207362A1 (en) 2003-04-18 2004-03-19 Mobile type power supply, connection device, and carried type electronic equipment
US11/849,261 Expired - Fee Related US7692400B2 (en) 2003-04-18 2007-08-31 Mobile type power supply, connection device, and carried type electronic equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/849,261 Expired - Fee Related US7692400B2 (en) 2003-04-18 2007-08-31 Mobile type power supply, connection device, and carried type electronic equipment

Country Status (2)

Country Link
US (2) US20040207362A1 (en)
JP (1) JP4500505B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050162131A1 (en) * 2003-10-27 2005-07-28 Hiromitsu Sennami Battery packs
US20050280392A1 (en) * 2004-06-22 2005-12-22 Nguyen Don J Fuel cell power adapter for computer system
FR2878087A1 (en) * 2004-11-15 2006-05-19 France Telecom AUTONOMOUS ELECTRIC CHARGER
US20060126315A1 (en) * 2004-12-13 2006-06-15 Hsi-Ming Shu Electrical circuit interface board for connecting fuel cell
US20060280006A1 (en) * 2005-05-30 2006-12-14 Hideki Arakawa Storage device and control method therefor
US20070182363A1 (en) * 2006-01-30 2007-08-09 Fu-I Yang Portable power supply
US20070237989A1 (en) * 2006-04-06 2007-10-11 Yasuaki Norimatsu Power source system using a fuel cell and its control method
US20070278968A1 (en) * 2006-06-06 2007-12-06 Masahiro Takada Power supply apparatus
US20080093930A1 (en) * 2006-10-24 2008-04-24 Inventec Corporation Uninterruptible power supply device
US20080123373A1 (en) * 2006-11-29 2008-05-29 General Electric Company Current fed power converter system including normally-on switch
US20080164758A1 (en) * 2007-01-04 2008-07-10 Mccoy Richard A Electrical accessory charging compartment for a cabinet and retrofit components therefor
US20080165476A1 (en) * 2007-01-04 2008-07-10 Whirlpool Corporation Appliance With an Electrically Adaptive Adapter to Alternatively Couple Multiple Consumer Electronic Devices
US20080222327A1 (en) * 2007-01-04 2008-09-11 Whirlpool Corporation Vertical adapters and vertical device for mounting to a horizontal service interface
US20090017680A1 (en) * 2007-01-04 2009-01-15 Whirlpool Corporation Adapter with a rechargeable power source for a consumer electronic device
US20090021965A1 (en) * 2007-07-20 2009-01-22 Samsung Sdi Co., Ltd. Electronic device capable of supplying power bi-directionally through port and method of operating the same
US20090061269A1 (en) * 2007-08-30 2009-03-05 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and control method therefor
US20100248546A1 (en) * 2007-01-04 2010-09-30 Whirlpool Corporation Adapter for coupling a consumer electronic device to an appliance
US20110077809A1 (en) * 2009-09-28 2011-03-31 Powerhydrant Llc Method and system for charging electric vehicles
US20110320891A1 (en) * 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Driving Method of Electronic Device
US20130162210A1 (en) * 2011-12-26 2013-06-27 Hon Hai Precision Industry Co., Ltd. Power supply system and rechargeable battery used in the system
US20150244183A1 (en) * 2014-02-25 2015-08-27 Motorola Solutions, Inc. Method and apparatus for controlling access to a logic circuit in a battery by multiple components connected to the battery
US9493087B2 (en) 2013-08-07 2016-11-15 Powerhydrant Llc Method and system for automatic charging of electric vehicles
US9592742B1 (en) 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
GB2546063A (en) * 2015-11-16 2017-07-12 Bytec Healthcare Ltd Programmable power module for mobile cart
TWI602050B (en) * 2017-01-11 2017-10-11 宏碁股份有限公司 Electronic device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032611A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell system
JP2006054976A (en) 2004-08-16 2006-02-23 Hitachi Ltd Equipment with fuel cell mounted thereon
JP4845369B2 (en) * 2004-11-15 2011-12-28 株式会社日立超エル・エス・アイ・システムズ Power supply
JP4806927B2 (en) * 2004-11-26 2011-11-02 パナソニック株式会社 Power supply
JP4527517B2 (en) * 2004-12-17 2010-08-18 Necパーソナルプロダクツ株式会社 Electronic device, electronic device system, and output power control method for fuel cell pack
JP2006236689A (en) * 2005-02-23 2006-09-07 Nitto Denko Corp Step-up circuit for fuel cell, and fuel cell module
JP4753753B2 (en) * 2005-03-30 2011-08-24 三洋電機株式会社 Fuel cell system
JP4827457B2 (en) 2005-08-11 2011-11-30 富士通株式会社 Electronic device and battery device
JP4595755B2 (en) * 2005-09-01 2010-12-08 ヤマハ株式会社 Electronic musical instruments
JP4658786B2 (en) * 2005-11-30 2011-03-23 株式会社日立製作所 Power supply
KR100713865B1 (en) * 2006-03-20 2007-05-04 (주)에스피에스 Universal power supply apparatus
JP2008010273A (en) * 2006-06-28 2008-01-17 Nitto Denko Corp Charging device
TW200803022A (en) * 2006-06-30 2008-01-01 Syspotek Corp Mini-fuel cell system
TW200822431A (en) * 2006-11-07 2008-05-16 Nan Ya Printed Circuit Board Corp Fuel cell system without using detector for dectecting fuel concentration
EP1942562A3 (en) * 2007-01-08 2009-11-18 Modern Sense Limited Universal power adapter/converter
JP5110913B2 (en) 2007-02-28 2012-12-26 三洋電機株式会社 Power supply
JP5181778B2 (en) * 2008-03-31 2013-04-10 株式会社ノーリツ Heating communication terminal device
CN101825687B (en) * 2009-03-06 2012-06-13 鸿富锦精密工业(深圳)有限公司 Electricity detecting device
JP5307675B2 (en) * 2009-09-28 2013-10-02 京セラ株式会社 Portable electronic devices
JP2011175831A (en) * 2010-02-24 2011-09-08 Kyocera Corp Electronic equipment
US8450965B2 (en) * 2010-07-20 2013-05-28 GM Global Technology Operations LLC Stack-powered fuel cell monitoring device with prioritized arbitration
US8922063B2 (en) * 2011-04-27 2014-12-30 Green Charge Networks, Llc Circuit for rendering energy storage devices parallelable
US9360507B2 (en) * 2011-12-19 2016-06-07 Tyco Safety Products Canada Ltd. Displacement tamper sensor and method
US20140300311A1 (en) * 2013-04-08 2014-10-09 Magnadyne Corporation Portable power bank and battery booster
JP2015162485A (en) * 2014-02-26 2015-09-07 日本電信電話株式会社 Transformer-integrated rack
JP2016082872A (en) * 2014-10-10 2016-05-16 壮彦 北中 Voltage variable battery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326771B1 (en) * 1999-03-08 2001-12-04 02 Micro International Limited Buffer battery power supply system
US6559621B2 (en) * 2001-05-21 2003-05-06 Cellex Power Products, Inc. Hybrid energy storage device charge equalization system and method
US20030122523A1 (en) * 2001-12-28 2003-07-03 Hyun-Jun Kim External battery pack apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249399A (en) 1994-03-10 1995-09-26 Hitachi Ltd Power supply card device
JPH09199096A (en) 1996-01-19 1997-07-31 Sharp Corp Battery pack
JPH1064567A (en) 1996-06-14 1998-03-06 Matsushita Electric Ind Co Ltd Fuel cell hydrogen supply system and portable electrical machinery and apparatus
JP3445561B2 (en) 2000-07-17 2003-09-08 株式会社東芝 Computer system
JP2002169625A (en) 2000-11-30 2002-06-14 Toshiba Corp Information processing equipment
JP2002289211A (en) 2001-01-17 2002-10-04 Casio Comput Co Ltd Fuel filling part, power generation module and power supply system
JP3867528B2 (en) 2001-08-06 2007-01-10 カシオ計算機株式会社 Power generation components
JP3859055B2 (en) 2001-03-22 2006-12-20 カシオ計算機株式会社 Power supply system, power generation method of power supply system, and network service providing method using power supply system
JP4604389B2 (en) 2001-05-09 2011-01-05 株式会社デンソー Fuel cell system
JP3720024B2 (en) * 2003-01-10 2005-11-24 株式会社東芝 Electronic device system and operation control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326771B1 (en) * 1999-03-08 2001-12-04 02 Micro International Limited Buffer battery power supply system
US6559621B2 (en) * 2001-05-21 2003-05-06 Cellex Power Products, Inc. Hybrid energy storage device charge equalization system and method
US20030122523A1 (en) * 2001-12-28 2003-07-03 Hyun-Jun Kim External battery pack apparatus

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737658B2 (en) * 2003-10-27 2010-06-15 Sony Corporation Battery packs having a charging mode and a discharging mode
US20050162131A1 (en) * 2003-10-27 2005-07-28 Hiromitsu Sennami Battery packs
US20050280392A1 (en) * 2004-06-22 2005-12-22 Nguyen Don J Fuel cell power adapter for computer system
FR2878087A1 (en) * 2004-11-15 2006-05-19 France Telecom AUTONOMOUS ELECTRIC CHARGER
WO2006051178A3 (en) * 2004-11-15 2007-10-04 France Telecom Self-powered electric charger
US20070296376A1 (en) * 2004-11-15 2007-12-27 France Telecom Self-Powered Electric Charger
US20060126315A1 (en) * 2004-12-13 2006-06-15 Hsi-Ming Shu Electrical circuit interface board for connecting fuel cell
US20060280006A1 (en) * 2005-05-30 2006-12-14 Hideki Arakawa Storage device and control method therefor
US7274602B2 (en) 2005-05-30 2007-09-25 Spansion Llc Storage device and control method therefor
US20070182363A1 (en) * 2006-01-30 2007-08-09 Fu-I Yang Portable power supply
US20070237989A1 (en) * 2006-04-06 2007-10-11 Yasuaki Norimatsu Power source system using a fuel cell and its control method
US7750597B2 (en) * 2006-06-06 2010-07-06 Panasonic Corporation Power supply apparatus
US20070278968A1 (en) * 2006-06-06 2007-12-06 Masahiro Takada Power supply apparatus
US20080093930A1 (en) * 2006-10-24 2008-04-24 Inventec Corporation Uninterruptible power supply device
US20080123373A1 (en) * 2006-11-29 2008-05-29 General Electric Company Current fed power converter system including normally-on switch
US20100248546A1 (en) * 2007-01-04 2010-09-30 Whirlpool Corporation Adapter for coupling a consumer electronic device to an appliance
US20090017680A1 (en) * 2007-01-04 2009-01-15 Whirlpool Corporation Adapter with a rechargeable power source for a consumer electronic device
US20080222327A1 (en) * 2007-01-04 2008-09-11 Whirlpool Corporation Vertical adapters and vertical device for mounting to a horizontal service interface
US20080165476A1 (en) * 2007-01-04 2008-07-10 Whirlpool Corporation Appliance With an Electrically Adaptive Adapter to Alternatively Couple Multiple Consumer Electronic Devices
US7841907B2 (en) 2007-01-04 2010-11-30 Whirlpool Corporation Adapter with a rechargeable power source for a consumer electronic device
US7843697B2 (en) 2007-01-04 2010-11-30 Whirlpool Corporation Vertical adapters and vertical device for mounting to a horizontal service interface
US7865639B2 (en) * 2007-01-04 2011-01-04 Whirlpool Corporation Appliance with an electrically adaptive adapter to alternatively couple multiple consumer electronic devices
US7903397B2 (en) 2007-01-04 2011-03-08 Whirlpool Corporation Adapter for coupling a consumer electronic device to an appliance
US20080164758A1 (en) * 2007-01-04 2008-07-10 Mccoy Richard A Electrical accessory charging compartment for a cabinet and retrofit components therefor
US20090021965A1 (en) * 2007-07-20 2009-01-22 Samsung Sdi Co., Ltd. Electronic device capable of supplying power bi-directionally through port and method of operating the same
US20090061269A1 (en) * 2007-08-30 2009-03-05 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and control method therefor
US8697266B2 (en) 2007-08-30 2014-04-15 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and control method therefor
US20110077809A1 (en) * 2009-09-28 2011-03-31 Powerhydrant Llc Method and system for charging electric vehicles
US8473131B2 (en) * 2009-09-28 2013-06-25 Powerhydrant Llc Method and system for charging electric vehicles
US8718856B2 (en) 2009-09-28 2014-05-06 Powerhydrant Llc Method and system for charging electric vehicles
US8656230B2 (en) * 2010-06-25 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Driving method of electronic device
US20110320891A1 (en) * 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Driving Method of Electronic Device
US20130162210A1 (en) * 2011-12-26 2013-06-27 Hon Hai Precision Industry Co., Ltd. Power supply system and rechargeable battery used in the system
US9493087B2 (en) 2013-08-07 2016-11-15 Powerhydrant Llc Method and system for automatic charging of electric vehicles
US20150244183A1 (en) * 2014-02-25 2015-08-27 Motorola Solutions, Inc. Method and apparatus for controlling access to a logic circuit in a battery by multiple components connected to the battery
US9553341B2 (en) * 2014-02-25 2017-01-24 Motorola Solutions, Inc. Method and apparatus for controlling access to a logic circuit in a battery by multiple components connected to the battery
US9592742B1 (en) 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
GB2546063A (en) * 2015-11-16 2017-07-12 Bytec Healthcare Ltd Programmable power module for mobile cart
GB2546063B (en) * 2015-11-16 2021-11-17 Bytec Healthcare Ltd Programmable power module for mobile cart
TWI602050B (en) * 2017-01-11 2017-10-11 宏碁股份有限公司 Electronic device

Also Published As

Publication number Publication date
JP4500505B2 (en) 2010-07-14
JP2004319367A (en) 2004-11-11
US20080258678A1 (en) 2008-10-23
US7692400B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
US7692400B2 (en) Mobile type power supply, connection device, and carried type electronic equipment
US20060068239A1 (en) Electric power source apparatus using fuel cell and method of controlling the same
US8008889B2 (en) Charging circuit for secondary battery, power supply switching method in charging circuit for secondary battery, and power supply unit
CN100525004C (en) System and method for efficiently implementing a battery controller for an electronic device
CN101171718B (en) Bidirectional battery charge controller
US7538451B2 (en) Power supply system and electronic device
US6127801A (en) Battery pack assembly
EP0469533B1 (en) Adapter for external battery and battery system
US7876069B2 (en) Electrical power unit
US7884567B2 (en) Fuel cell system and method for controlling operation of the fuel cell system
US20080290731A1 (en) Energy Efficient Power Supply
JP4753753B2 (en) Fuel cell system
EP1178547A2 (en) Battery discriminating method, dry battery cell pack, and electronic device
US20110127943A1 (en) Power supply device and charge-discharge control method
CN104685759B (en) Standby power for the electronic product using power supply adaptor cuts off equipment
EP1406366A2 (en) Apparatus for charging battery of mobile communication terminal
US20070237989A1 (en) Power source system using a fuel cell and its control method
CN102854966A (en) Electronic equipment and power management circuit
US20070212580A1 (en) Hybrid power supply device
US20040170875A1 (en) Electronic apparatus system, and operation control method
KR100713865B1 (en) Universal power supply apparatus
CN100386710C (en) Electronic device, electronic device system and working model switching method
US20050048330A1 (en) Electronic system and power supply method
CN101079552B (en) Charging device with cell capacity analysis function
US20050069739A1 (en) Battery unit and power supply control method

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANOUDA, AKIHIKO;NORIMATSU, YASUAKI;MURABAYASHI, FUMIO;REEL/FRAME:015125/0588

Effective date: 20040128

STCC Information on status: application revival

Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION