US20040198998A1 - Glycine-free antiperspirant salts with betaine for enhanced cosmetic products - Google Patents

Glycine-free antiperspirant salts with betaine for enhanced cosmetic products Download PDF

Info

Publication number
US20040198998A1
US20040198998A1 US10/406,856 US40685603A US2004198998A1 US 20040198998 A1 US20040198998 A1 US 20040198998A1 US 40685603 A US40685603 A US 40685603A US 2004198998 A1 US2004198998 A1 US 2004198998A1
Authority
US
United States
Prior art keywords
betaine
solution
aluminum
zirconium
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/406,856
Inventor
Marian Holerca
Xiaozhong Tang
Heng Cai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Priority to US10/406,856 priority Critical patent/US20040198998A1/en
Priority to US10/462,200 priority patent/US6969510B2/en
Assigned to COLGATE-PALMOLIVE COMPANY reassignment COLGATE-PALMOLIVE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAI, HENG, TANG, XIAOZHONG, HOLERCA, MARIAN
Priority to CL200400701A priority patent/CL2004000701A1/en
Priority to ARP040101140A priority patent/AR043973A1/en
Priority to PL04758798T priority patent/PL1675559T3/en
Priority to GT200400061A priority patent/GT200400061A/en
Priority to MXPA05010691A priority patent/MXPA05010691A/en
Priority to AU2004228006A priority patent/AU2004228006B2/en
Priority to DE602004024103T priority patent/DE602004024103D1/en
Priority to PCT/US2004/010224 priority patent/WO2004089325A1/en
Priority to RU2005134225/04A priority patent/RU2346932C2/en
Priority to ES04758798T priority patent/ES2332318T3/en
Priority to AT04758798T priority patent/ATE447927T1/en
Priority to EP04758798A priority patent/EP1675559B1/en
Priority to CA2521245A priority patent/CA2521245C/en
Priority to BRPI0409195-7A priority patent/BRPI0409195B1/en
Publication of US20040198998A1 publication Critical patent/US20040198998A1/en
Priority to US11/120,336 priority patent/US20050191256A1/en
Priority to CO05111766A priority patent/CO5700700A2/en
Priority to ZA200508925A priority patent/ZA200508925B/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/28Zirconium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic System without C-Metal linkages

Definitions

  • This invention relates to a class of glycine-free antiperspirant salts combined with Betaine that may be used to formulate antiperspirants with enhanced stability and efficacy.
  • U.S. Pat. No. 4,331,609 to Orr teaches an antiperspirant active comprising aluminum and zirconium made with separate aluminum and zirconium compounds as well as a neutral amino acid wherein the molar ratio of neutral amino acid to total metal is from about 0.90 to about 0.24.
  • the total metal:chlorine ratio in the complex that is formed is less than 1.30.
  • EP publication number 0 047 650 describes aqueous solution-stable antiperspirant complexes comprising an aluminum compound, a zirconium or hafnium compound, a water soluble neutral amino acid and an inorganic acid.
  • the molar ratio of neutral amino acid to total metal is from about 0.90 to about 0.24 in an aqueous system, and the molar ratio of neutral amino acid to total metal is from about 0.90 to about 0.75 in a non-aqueous system.
  • the total metal:chlorine ratio in the complex that is formed is less than 1.30.
  • United Kingdom Patent Application GB 2,076,289 describes an antiperspirant compositions comprising a combination of an aluminum chloride and an aluminum zirconium hydroxychloride in a synergistic mixture.
  • the metal:chloride ratio is less than 0.9.
  • Canadian Patent 1,153,313 describes an antiperspirant composition which contains a buffering agent such as glycine with a synergistic mixture of aluminum chlorohydrate, aluminum chloride or aluminum zirconium polychlorohydrate complex.
  • a buffering agent such as glycine
  • the molar ratio of aluminum to chloride is in the range of 0.78:1 to abut 1.95:1.
  • Various salts are described which have a metal:halide ratio of 2.1:1-0.9:1.
  • the glycine:zirconium ratio is much less than 1:1.
  • U.S. Pat. No. 4,871,525 to Giovanniello et al describes a solid powder of aluminum zirconium hydroxyl halide glycinate complex having improved antiperspirant activity wherein the glycine is used to prevent gel formation.
  • the ratio of Zr to glycine is less than 1:1.
  • U.S. Pat. No. 6,126,928 to Swaile describes antiperspirant compositions wherein the molar ratio of neutral amino acid to total metal (aluminum+zirconium) is from about 0.90 to about 0.24, and the mole ratio of (aluminum+zirconium):chlorine is less than about 1.30:1.
  • U.S. Pat. No. 6,066,314 to Tang describes the use of post added glycine to aluminum zirconium salts in an amount in the range of 1:1.2-1:5 of zirconium:amino acid on a weight:weight basis.
  • betaine is used in a variety of ways. In particular, a variety of uses of betaines with long chains can be found in the surfactant art. Such betaines may be represented by the following Formula A where n>0:
  • methyl groups can be replaced with other longer chain alkyls and can be straight chain or branched.
  • the Betaine (defined below) of this invention is not a surfactant and has been found to have properties important to the field of antiperspirant salts that contain zirconium.
  • the Betaine used in this invention is a natural product found in a number of plants in the Chenopodiaceae family, and also in fish and selected legumes. Extracted most often from sugar beets ( Beta Vulgaris ), it is reported as an extremely versatile molecule with a wide range of applications: food supplement, anti-irritant, skin moisturizer, skin-softening agent, skin-conditioning agent, promoter of wound healing and component in cosmetic compositions for skin aging and stressed skin.
  • Betaine in IUPAC nomenclature is 1-carboxy-N,N,N-trimethylmethanaminium hydroxide-inner salt, with alternative names including carboxymethyl-trimethylammonium betaine or (carboxymethyl)trimethylammonium hydroxide-inner salt or glycine betaine or glycoll betaine or glycyl betaine or trimethyl glycine or trimethylglycoll.
  • Betaine appears in numerous patents, with a wide range of applications. Note that for purposes of this application, the term “betaine” will be used if any compound of Formula A is described. The term “Betaine” will be used if only a compound of Formula I is described.
  • PCT Publication WO 00/67726 describes host-guest processes and formulations containing Betaine for delivering bio-affecting compounds and topical compositions for cosmetic or pharmaceutical uses formed by the processes.
  • the processes comprise mixing, in any order: (i) a nonionic surfactant; (ii) an amphoteric surfactant; (iii) a solvent for the amphoteric surfactant; (iv) an aromatic compound; (v) an aluminum cation; (vi) a Lewis acid that is not a Bronsted-Lowry acid; and (vii) a Bronsted-Lowry acid.
  • U.S. Pat. No. 5,877,143 describes a composition containing a lamellar liquid crystalline phase which comprises betaines and amine oxides. This is a pumpable, fluid composition of amine oxide, betaine and/or sultaine is prepared with active concentration of about 36-45% of these materials by the addition of alkaline earth or aluminum salts.
  • German Patent DE 19725087 is related to cosmetic and dermatologic oil-in-water emulsion formulations for light protection containing hydrophobic inorganic micropigments and hydrophilic surfactants.
  • PCT Publication WO 97/23594 describes skin cleansing compositions with enhanced antimicrobial activity comprising 0.1-30% of an amphoteric, zwitterionic, nonionic, anionic and/or cationic emulsifier, 0.00001-5% of a Ag compound (AgCl, Ag 2 CO 3 , etc.), deposited on a particulate inert support material (metal oxides, especially TiO 2 ) as antimicrobial agent, and H 2 O.
  • a typical composition contains cetyl betaine.
  • Japanese Patent JP 52093633 describes chemical polishing solutions for aluminum and its alloys. Al or its alloys are chemically polished in a H 3 PO 4 —H 2 SO 4 solution containing a betaine and organic polythio sulfonic acid salt.
  • British Patent GB 2354771 relates to bactericide combinations in detergents.
  • the detergent comprises a bactericide in combination with an anionic, cationic, nonionic or amphoteric surfactant which has a C12-18 alkyl group as the longest chain attached to the hydrophilic moiety.
  • Japanese Patent JP 2001163752 describes long-lasting cosmetic makeup compositions comprising plate-type glossy polymer powders and antiperspirants.
  • European Patent EP 1005853 describes the use of betaines as antiperspirants.
  • European Patent EP 1005852 describes the use of functionally substituted betaines as antiperspirants.
  • Japanese Patent JP 11130652 discloses skin-conditioning and moisturizing cosmetics containing clay minerals and low-molecular-weight betaines to inhibit the release of pyrrolidonecarboxylic acid (a natural moisturizing factor) from human skin.
  • German Patent DE 2610225 describes aluminum salts of Betaine chloride being useful as ulcer inhibitors, for treatment of gastritis, to promote wound healing, and as antiperspirants and deodorants.
  • PCT Publication WO 01/62222 describes cosmetic compositions containing phospholipids and quaternary amines.
  • the invention relates to a cosmetic composition, especially for use on aging and/or stressed skin, the composition comprising, in addition to water, at least one substance that forms lamellar structures with water.
  • Compositions including Betaine are described.
  • PCT Publication WO 01/47479 assigned to the same owner as this case describes cosmetic moisturizing compositions containing quaternary ammonium compounds. Compositions with cocamidopropyl betaine are described.
  • PCT Publication WO 01/39730 describes a cosmetic composition containing peat and Betaine.
  • PCT Publication WO 97/46246 is related to complex preparations for topical use containing Betaine to stimulate cellular and physiological processes.
  • PCT Publication WO 91/18588 presents a method of reducing the irritating properties of a cosmetic composition by addition of Betaine derivatives.
  • Japanese Patent JP 03033266 describes modified fabrics coated with a mixture of dodecyl betaine and other ingredients for controlling pH change in skin during sweating.
  • This invention comprises aluminum and/or zirconium salts with Betaine as a complexing agent and buffering agent and which do not contain glycine.
  • This invention comprises glycine-free aluminum and/or zirconium Betaine salts having a metal to chloride molar ratio in the range of 0.3-2.5:1 (especially in the range of 0.9-2.1:1), a Betaine:aluminum molar ratio in the range of 0.05-1.0:1 (particularly 0.05-0.26:1 and, more particularly, 0.05-0.16:1) and/or a Betaine:zirconium molar ratio in the range of 0.2-3.0:1 (particularly 0.4-1.5:1).
  • Method A An aluminum chlorohydrate (ACH) solution of ACH salt in water of suitable concentration is mixed with an aqueous solution of zirconyl chloride (ZrOCl 2 ) (or alternatively combining ZrOCO 3 and HCl to make the zirconyl chloride in situ) of suitable concentration and powdered Betaine. The mixture is stirred at room temperature to obtain the salt, or dried to remove water to come out with powder form of the salt.
  • ZrOCl 2 zirconyl chloride
  • Method B A suitable commercially available glycine-free aluminum zirconium tetrachlorohydrex salt, aluminum zirconium trichlorohydrex, aluminum zirconium pentachlorohydrex, or aluminum zirconium octachlorohydrex is dissolved in water or water solutions of glycols and mixed with a sufficient amount of powdered Betaine. The mixture is stirred at room temperature to obtain the salt, or the solution is dried to remove water to have a powder form of the salt.
  • a suitable salt to use as a starting material includes various types salts such as aluminum zirconium chlorohydrex, aluminum zirconium chlorohydrex propylene glycol complex, aluminum zirconium chlorohydrex dipropylene glycol complex, and mixtures of any of the foregoing.
  • Method C An aqueous aluminum chlorohydrate (ACH) solution made from an activated ACH salt of suitable concentration is mixed with an aqueous solution of zirconyl chloride (ZrOCl 2 ) (or alternatively combining ZrOCO 3 and HCl to make the zirconyl chloride in situ) of suitable concentration and powdered Betaine. The mixture is stirred at room temperature for a short period of time and then spray dried to obtain the salt in powder form.
  • ACH aqueous aluminum chlorohydrate
  • ZrOCl 2 zirconyl chloride
  • Method D An aqueous aluminum chlorohydrate (ACH) solution made from an activated ACH salt of suitable concentration is mixed with powdered Betaine. The mixture is stirred at room temperature to obtain a solution of the salt, or the solution is dried to remove water to have a powder form of the salt.
  • ACH aqueous aluminum chlorohydrate
  • Method E An aqueous aluminum dichlorohydrate (ADCH) solution made from an ADCH salt of suitable concentration is mixed with powdered Betaine. The mixture is stirred at room temperature to obtain a solution of the salt, or the solution is dried to remove water to have a powder form of the salt.
  • ADCH aqueous aluminum dichlorohydrate
  • Method F An aqueous solution made of zirconyl chloride (ZrOCl 2 ) of suitable concentration is mixed with powdered Betaine. The mixture is stirred at room temperature to obtain a solution of the salt, or the solution is dried to remove water to have a powder form of the salt.
  • ZrOCl 2 zirconyl chloride
  • Examples of commercial salts that may be used in Method B include glycine-free salts such as aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate, aluminum zirconium pentachlorohydrate, and aluminum zirconium octachlorohydrate.
  • the size of the particles of antiperspirant active of the invention currently does not appear to be critical and may include conventional sizes such as in the range of 2 to 100 microns, with selected grades having an average particle size of 30-40 microns; finer sized grades having an average particle size distribution from 2-10 microns with an average size of about 7 microns as made by a suitable dry-grinding method; and micronized grades of the type described in a co-pending patent application U.S. Ser. No. 9/579,322 having an average particle size of less than or equal to 2 microns, particularly less than or equal to 1.5 microns.
  • the enhanced salts of this invention may be used to formulate antiperspirants having improved efficacy.
  • antiperspirants include solids such as sticks and creams (creams sometimes being included in the term “soft solid”), gels, liquids (such as are suitable for roll-on products), and aerosols.
  • the forms of these products may be suspensions or emulsions.
  • Suitable formulations include the following:
  • Sticks may be made with conventional gelling agents such as stearyl alcohol and dibenzylidene sorbitol.
  • a sample formulation is as follows:
  • Soft solids may be made with formulations described in co-pending patent application (U.S. Ser. No. 9/273,152 and PCT Publication WO 99/51192.
  • a sample formulation is as follows:
  • polyethylene for example, beads having a density in the range of 0.91-0.98 g/cm 3 and an average particle size in the range of 5-40 microns
  • Gels may be made with a variety of formulations such as
  • the refractive indices of the external and internal phases are matched within 0.005 to obtain a clear product.
  • compositions of interest include:
  • dimethicone copolyol for example, Dow Corning 2-5185C (48%)
  • cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • dimethicone copolyol for example, Dow Corning 2-5185C (48%)
  • elastomer in cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • dimethicone copolyol for example, Dow Corning 2-5185C (48%)
  • elastomer in cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • elastomer in cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • dimethicone copolyol for example, Dow Corning 2-5185C (48%)
  • elastomer in cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • dimethicone copolyol for example, Dow Corning 2-5185C (48%)
  • cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • dimethicone copolyol for example, Dow Corning 2-5185C (48%)
  • elastomer in cyclomethicone for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)
  • the cosmetic composition according to the present invention can be packaged in conventional containers, using conventional techniques.
  • a gel, cream or soft-solid cosmetic composition is produced, the composition can be introduced into a dispensing package (for example, conventional packages for gels with glide on applicators, jars where the gel or cream is applied by hand, and newer style packages having a top surface with pores) as conventionally done in the art.
  • the product can be dispensed from the dispensing package as conventionally done in the art, to deposit the active material, for example, on the skin.
  • sprays, aerosols and roll-ons the compositions can be placed in a conventional types of container (with the inclusion of propellants in aerosols). This provides good deposition of the active material on the skin.
  • compositions of the present invention can be formulated as clear, translucent or opaque products, although clear products are preferred.
  • a desired feature of the present invention is that a clear, or transparent, cosmetic composition, (for example, a clear or transparent deodorant or antiperspirant composition) can be provided.
  • the term clear or transparent according to the present invention is intended to connote its usual dictionary definition; thus, a clear liquid or gel antiperspirant composition of the present invention allows ready viewing of objects behind it.
  • a translucent composition although allowing light to pass through, causes the light to be scattered so that it will be impossible to see clearly objects behind the translucent composition.
  • An opaque composition does not allow light to pass therethrough.
  • a gel or stick is deemed to be transparent or clear if the maximum transmittance of light of any wavelength in the range 400-800 nm through a sample 1 cm thick is at least 35%, preferably at least 50%.
  • the gel or liquid is deemed translucent if the maximum transmittance of such light through the sample is between 2% and less than 35%.
  • a gel or liquid is deemed opaque if the maximum transmittance of light is less than 2%.
  • the transmittance can be measured by placing a sample of the aforementioned thickness into a light beam of a spectrophotometer whose working range includes the visible spectrum, such as a Bausch & Lomb Spectronic 88 Spectrophotometer. As to this definition of clear, see European Patent Application Publication No. 291,334 A2.
  • the amounts of the components are in weight percents based on the standard described; if no other standard is described then the total weight of the composition is to be inferred.
  • Various names of chemical components include those listed in the CTFA International Cosmetic Ingredient Dictionary (Cosmetics, Toiletry and Fragrance Association, Inc., 7 th ed. 1997). While specific amounts of particular elastomers have been described, there are chemical differences in the variety of elastomers that are available. The use of different elastomers may result in the need to increase or decrease the amount of elastomer used in a particular formulation, especially if a clear product is desired.
  • the reference is made to using the antiperspirant active either as a powder or in some type of solution such as dissolved in water at a concentration of 25-45% actives on an anhydrous basis.
  • the Betaine used is the Betaine of Formula I.
  • a salt solution may be made by dissolving 19.26 g ZrOCl 2 .8H 2 O in 49.6 g of water and then adding 8.39 g Betaine anhydrous. After everything is dissolved, an ACH powder (22.65 g of Chlorhydrol from Reheis Chemical Co., Berkeley Heights, N.J.) into the solution with additional DI water so that the total weight of the solution is 100 g. The solution is shaken or stirred to make sure the solution is clear. Optionally, the solution can be spray dried or freeze-dried to make a powder sample.
  • a salt may solution be made by dissolving 19.26 g ZrOCl 2 .8H 2 O in 49.6 g of water and then adding 5.36 g Betaine anhydrous. After everything is dissolved, an ACH powder (22.65 g of Chlorhydrol from Reheis) into the solution with additional DI water so that the total weight of the solution is 100 g. The solution is shaken or stirred to make sure the solution is clear. Optionally, the solution can be spray dried or freeze-dried to make a powder sample.
  • a salt solution may be made by dissolving e 19.26 g of ZrOCl 2 .8H 2 O in 40 gm of distilled water and then adding 9.68 g of Betaine monohydrate. After everything is dissolved, an ACH powder (22.65 g of Chlorhydrol from Reheis) is added to the solution with additional DI water so that the total weight of the solution is 100 g. The solution is shaken or stirred to make sure a clear solution of 30% salt solution (anhydrous basis) is obtained.
  • the solution can be spray dried or freeze-dried to make a powder sample if needed.
  • a salt solution may be made by dissolve 240 g of ZrOCl 2 .8H 2 O in 463 g of distilled water and then adding 100.4 g of Betaine monohydrate. After every thing is dissolved, ACH is added (210 g of ACH Chlorhydrol Powder from Reheis) to the solution. The solution is shaken or stirred to make sure a clear solution of 24% (anhydrous) is obtained.
  • the solution can be spray dried or freeze-dried to make a powder sample if needed.
  • a salt solution may be made by mixing 278 g of zirconium hydroxychloride trihydrate solution (15% Zr and 6.66% Cl) with 76 g of Betaine monohydrate at room temperature. After everything is dissolved, ACH is added (400 g of Chlorhydrol Powder solution, which contains 12.3% of Al and 10.0% of Cl) to the solution. The combined solution is shaken or stirred to mix the two solutions well. The final solution then is spray dried or freeze-dried to make a powder sample.
  • Betaine monohydrate powder (286 g) is added to a zirconium compound (1000 g of a 31% solution of zirconium oxychloride (ZrOCl 2 )) with stirring.
  • Aluminum chlorohydrate (“ACH”) (1120 g of a 50% aqueous ACH solution) is then added with additional stirring.
  • the final solution is then diluted with distilled water into an anhydrous concentration of 33.0%, with a Betaine/zirconium molar ratio of 1.45:1; an aluminum/zirconium molar ratio of 3.56:1, and a metal/chloride ratio of 1.01:1.
  • Betaine monohydrate (287 g) is added to a zirconium compound (1000 g of a 31% solution of zirconium oxychloride (ZrOCl 2 ) with stirring.
  • ACH (1204 g of a 50% aqueous ACH solution) is then added with additional stirring.
  • the final solution is then diluted with distilled water into an anhydrous concentration of 30.0% with a Betaine/zirconium molar ratio as 1.45:1; an aluminum/zirconium molar ratio of 3.82:1, and a metal/chloride ratio of 0.98.
  • Betaine monohydrate powder (287 g) is added to a zirconium compound (1000 g of a 31% solution of zirconium oxychloride (ZrOCl 2 )) with stirring.
  • Aluminum chlorohydrate (“ACH”) (2800 g of a 20% ACH solution made from a powder (REACH 101, from Reheis, Berkeley Height, N.J.) is then added with additional stirring.
  • the final solution is then quickly spray dried to remove water.
  • the Zirconium/Aluminum/Betaine (“ZAB”) powder obtained has a Betaine/zirconium molar ratio of 1.42:1; an aluminum:zirconium molar ratio of 3.56:1; and a metal:chloride ratio of 1.05:1.
  • a solution of aluminum pentachlorohydrex (Reheis Penta-solv, glycine-free) is prepared by dissolution of 30 g Penta-solv in 62 g of DI water. After the solution is mixed and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/zirconium molar ratio of 2.83:1; an aluminum/zirconium molar ratio of 9.56:1, and a metal/chloride ratio of 1.67:1.
  • a solution of aluminum octachlorohydrex (Reheis Octa-solv, glycine-free) is prepared by dissolution of 30 g Octa-solv in 62 g of DI water. After the solution is mixed and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/zirconium molar ratio of 2.65:1; an aluminum/zirconium molar ratio of 8.18:1, and a metal/chloride ratio of 1.40:1.
  • a solution of aluminum chlorohydrex (ACH, Reheis Chlorhydrol, 50%) is prepared by dissolution of 30 g ACH in 62 g of DI water. After the solution is stirred and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/aluminum molar ratio of 0.25 and an aluminum/chloride ratio of 2.0:1.
  • a solution of aluminum dichlorohydrex (ADCH, Westchlor 100, 38%) is prepared by dissolution of 30 g ADCH in 62 g of DI water. After the solution is mixed and becomes clear, 8 g of anhydrous Betaine is added and the solution is mixed at room temperature until clear. The final solution has a Betaine/aluminum molar ratio of 0.61 and an aluminum/chloride ratio of 1.00.
  • a solution of aluminum chloride hydrate (AlCl 3 ) is prepared by dissolution of 30 g AlCl 3 in 62 g of DI water. After the solution is mixed and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/aluminum molar ratio of 0.30 and an aluminum/chloride ratio of 0.33.
  • a 31% solution of zirconium oxychloride (ZrOCl 2 ) is mixed with 8 g anhydrous Betaine and stirred at room temperature until clear.
  • the final solution has a Betaine/zirconium molar ratio of 0.43 and a zirconium/chloride ratio of 0.50.
  • Size exclusion chromatography (“SEC”) or gel permeation chromatography (“GPC”) are methods frequently used for obtaining information on polymer distribution in antiperspirant salt solutions. With appropriate chromatographic columns, at least five distinctive groups of polymer species can be detected in a ZAG, appealing in a chromatogram as peaks 1, 2, 3, 4 and a peak known as “5,6”. Peak 1 is the larger Zr species (greater than 60 Angstroms). Peaks 2 and 3 are larger aluminum species. Peak 4 is the smaller aluminum species (aluminum oligomers) and has been correlated with enhanced efficacy for both ACH and ZAG salts. Peak 5,6 is the smallest aluminum species. The relative retention time (“Kd”) for each of these peaks varies depending on the experimental conditions.
  • the external and internal phases are formed separately either at room temperature or with heating as described below.
  • the internal phase is added to the external phase very slowly while stirring at to form an emulsion. After the addition has been completed, the mixture is stirred at higher speed to achieve a homogeneous mixture.
  • the final formula viscosity is then achieved by homogenizing the emulsion under either batch or continuous process conditions as described below.
  • the fragrance may be added at any time during the process prior to final homogenization.
  • the ingredients to be used in the external phase are weighed out at room temperature and combined in a suitable vessel such as a 2 liter glass beaker. The mixture is stirred at about 500 rpm for 15-20 minutes using an overhead mixer such as a Lightnin' Mixer Model L1003. If a waxy or solid emollient is to be added to the external (also called “continuous”) phase, the mixture may be heated to facilitate dissolution while stirring then cooled to room temperature prior to combination with the internal phase as described below. If an elastomer component used it is obtained as a suspension of elastomer in cyclomethicone (for example at a concentration of 6% active in D5 cyclomethicone). The elastomer component is added to the external phase with stirring at high speed (500-700 rpm for a 0.5 kilogram batch) until no particles of elastomer are visible to the eye.
  • a suitable vessel such as a 2 liter glass beaker.
  • L1003 Lightnin' Mixer Model L1003
  • the internal dispersed phase is prepared as described below. Ingredients are mixed for a time sufficient to achieve homogeneity. The antiperspirant active used is weighed into a large beaker equipped with an overhead stirrer. Other internal phase ingredients are then added while stirring.
  • the fragrance (if any is used) is added last and may be added either to the internal phase or the external phase or the final formula prior to homogenization. For many of the examples described here, one could add the fragrance to the internal phase.
  • the emulsifier and propylene glycol are combined in a separate beaker and heated to 40 degrees C. with stirring until the non-ionic emulsifier completely dissolved. The heat is turned off and the remaining ingredients to be used in the internal phase, including the antiperspirant active are weighed out and added to the mixture of propylene glycol and non-ionic emulsifier.
  • the internal phase is prepared as follows.
  • the solution containing antiperspirant active salt as received from supplier is weighed into a large beaker equipped with a magnetic stirrer. Additional ingredients such as propylene glycol, ethanol and water are added while stirring.
  • a salt water solution such as for NaCl, etc.
  • the salt water solution is prepared by dissolving the crystalline salt in water in a separate beaker and stirring until dissolved. The salt water solution is then added to the rest of the internal phase and the mixture is stirred until homogeneous.
  • the internal phase made as described above is then added to the external phase over the course of 15-30 minutes while stirring at a speed of 500-700 rpm. After the addition is complete, the mixture is stirred at 500-700 rpm for 20 minutes using a Lightnin Mixer Model L1003. The mixture is then homogenized for 2-4 minutes (especially 3 minutes) using a homogenizer from Greerco Corp., Hudson, N.H. at a reading of about 60 on a Powerstat Variable Autotransformer from Superior Electric Co., Bristol, Conn.
  • the product is then further processed by homogenization to achieve the desired final viscosity.
  • This can be done by using a Gilford-Wood Model 1-L (Greerco Corp., Hudson, N.H.) homogenizer.
  • the homogenizer speed is controlled by a Powerstat Variable Autotransformer Type 3PN116B (Superior Electronic. Co., Bristol, Conn.). Typical voltage setting and processing time are chosen to give a desired final formula viscosity.
  • An other method of homogenization of the final product is to pass the emulsion through a colloid mill such as a Sonic Tri-Homo Colloid Mill or a process sonolator such Sonic Production Sonolator 200-30 both available from Sonic Corporation of Stratford, Conn. Process conditions are chosen to give the desired final product viscosity.
  • a colloid mill such as a Sonic Tri-Homo Colloid Mill or a process sonolator such Sonic Production Sonolator 200-30 both available from Sonic Corporation of Stratford, Conn. Process conditions are chosen to give the desired final product viscosity.
  • Example 15 The methods described in Example 15 may be used to make the products listed in Tables 6 and 7 with the types and amounts of ingredients listed in the Tables 6 and 7. Amounts are in percent by weight based on the total weight of the composition. TABLE 6 Ingredient Ex. 16 Ex. 17 Ex. 18 Ex. 19 Ex. 20 Ex. 21 Ex. 22 Ex. 23 Ex. 24 Ex.

Abstract

A glycine-free aluminum and/or zirconium Betaine salt having a metal to chloride molar ratio in the range of 0.3-2.5:1, a Betaine:aluminum molar ratio in the range of 0.05-1.0:1 and/or a Betaine:zirconium molar ratio in the range of 0.2-3.0:1, wherein the Betaine has the following Formula I:
Figure US20040198998A1-20041007-C00001

Description

    FIELD OF THE INVENTION
  • This invention relates to a class of glycine-free antiperspirant salts combined with Betaine that may be used to formulate antiperspirants with enhanced stability and efficacy. [0001]
  • BACKGROUND OF THE INVENTION
  • A variety of art is available that describes various salts and methods of making them. [0002]
  • U.S. Pat. No. 4,331,609 to Orr teaches an antiperspirant active comprising aluminum and zirconium made with separate aluminum and zirconium compounds as well as a neutral amino acid wherein the molar ratio of neutral amino acid to total metal is from about 0.90 to about 0.24. The total metal:chlorine ratio in the complex that is formed is less than 1.30. [0003]
  • EP publication number 0 047 650 describes aqueous solution-stable antiperspirant complexes comprising an aluminum compound, a zirconium or hafnium compound, a water soluble neutral amino acid and an inorganic acid. The molar ratio of neutral amino acid to total metal is from about 0.90 to about 0.24 in an aqueous system, and the molar ratio of neutral amino acid to total metal is from about 0.90 to about 0.75 in a non-aqueous system. The total metal:chlorine ratio in the complex that is formed is less than 1.30. [0004]
  • United Kingdom Patent Application GB 2,076,289 describes an antiperspirant compositions comprising a combination of an aluminum chloride and an aluminum zirconium hydroxychloride in a synergistic mixture. The metal:chloride ratio is less than 0.9. [0005]
  • Canadian Patent 1,153,313 describes an antiperspirant composition which contains a buffering agent such as glycine with a synergistic mixture of aluminum chlorohydrate, aluminum chloride or aluminum zirconium polychlorohydrate complex. The molar ratio of aluminum to chloride is in the range of 0.78:1 to abut 1.95:1. Various salts are described which have a metal:halide ratio of 2.1:1-0.9:1. The glycine:zirconium ratio is much less than 1:1. [0006]
  • U.S. Pat. No. 4,871,525 to Giovanniello et al describes a solid powder of aluminum zirconium hydroxyl halide glycinate complex having improved antiperspirant activity wherein the glycine is used to prevent gel formation. The ratio of Zr to glycine is less than 1:1. [0007]
  • U.S. Pat. No. 6,126,928 to Swaile describes antiperspirant compositions wherein the molar ratio of neutral amino acid to total metal (aluminum+zirconium) is from about 0.90 to about 0.24, and the mole ratio of (aluminum+zirconium):chlorine is less than about 1.30:1. [0008]
  • U.S. Pat. No. 6,066,314 to Tang describes the use of post added glycine to aluminum zirconium salts in an amount in the range of 1:1.2-1:5 of zirconium:amino acid on a weight:weight basis. [0009]
  • None of the above cases described the combination of metal to chloride in combination with the Betaine (as defined herein) to zirconium ratio as found in the instant invention. Thus, it is surprising that the antiperspirant actives described in this invention provide more efficacious cosmetic products. [0010]
  • The term “betaine” is used in a variety of ways. In particular, a variety of uses of betaines with long chains can be found in the surfactant art. Such betaines may be represented by the following Formula A where n>0: [0011]
    Figure US20040198998A1-20041007-C00002
  • The methyl groups can be replaced with other longer chain alkyls and can be straight chain or branched. [0012]
  • The Betaine (defined below) of this invention, however, is not a surfactant and has been found to have properties important to the field of antiperspirant salts that contain zirconium. The Betaine used in this invention is a natural product found in a number of plants in the Chenopodiaceae family, and also in fish and selected legumes. Extracted most often from sugar beets ([0013] Beta Vulgaris), it is reported as an extremely versatile molecule with a wide range of applications: food supplement, anti-irritant, skin moisturizer, skin-softening agent, skin-conditioning agent, promoter of wound healing and component in cosmetic compositions for skin aging and stressed skin.
  • Betaine in IUPAC nomenclature is 1-carboxy-N,N,N-trimethylmethanaminium hydroxide-inner salt, with alternative names including carboxymethyl-trimethylammonium betaine or (carboxymethyl)trimethylammonium hydroxide-inner salt or glycine betaine or glycoll betaine or glycyl betaine or trimethyl glycine or trimethylglycoll. For convenience here the material of Formula I (C[0014] 5H11NO2; Mass=117.08 amu; molecular weight=117.15; analysis as C: 51.26; H: 9.46; N: 11.96; O: 27.32) will be referred to as Betaine.
    Figure US20040198998A1-20041007-C00003
  • Betaine appears in numerous patents, with a wide range of applications. Note that for purposes of this application, the term “betaine” will be used if any compound of Formula A is described. The term “Betaine” will be used if only a compound of Formula I is described. [0015]
  • PCT Publication WO 00/67726 describes host-guest processes and formulations containing Betaine for delivering bio-affecting compounds and topical compositions for cosmetic or pharmaceutical uses formed by the processes. The processes comprise mixing, in any order: (i) a nonionic surfactant; (ii) an amphoteric surfactant; (iii) a solvent for the amphoteric surfactant; (iv) an aromatic compound; (v) an aluminum cation; (vi) a Lewis acid that is not a Bronsted-Lowry acid; and (vii) a Bronsted-Lowry acid. [0016]
  • U.S. Pat. No. 5,877,143 describes a composition containing a lamellar liquid crystalline phase which comprises betaines and amine oxides. This is a pumpable, fluid composition of amine oxide, betaine and/or sultaine is prepared with active concentration of about 36-45% of these materials by the addition of alkaline earth or aluminum salts. [0017]
  • German Patent DE 19725087 is related to cosmetic and dermatologic oil-in-water emulsion formulations for light protection containing hydrophobic inorganic micropigments and hydrophilic surfactants. [0018]
  • PCT Publication WO 97/23594 describes skin cleansing compositions with enhanced antimicrobial activity comprising 0.1-30% of an amphoteric, zwitterionic, nonionic, anionic and/or cationic emulsifier, 0.00001-5% of a Ag compound (AgCl, Ag[0019] 2CO3, etc.), deposited on a particulate inert support material (metal oxides, especially TiO2) as antimicrobial agent, and H2O. A typical composition contains cetyl betaine.
  • Japanese Patent JP 52093633 describes chemical polishing solutions for aluminum and its alloys. Al or its alloys are chemically polished in a H[0020] 3PO4—H2SO4 solution containing a betaine and organic polythio sulfonic acid salt.
  • British Patent GB 2354771 relates to bactericide combinations in detergents. The detergent comprises a bactericide in combination with an anionic, cationic, nonionic or amphoteric surfactant which has a C12-18 alkyl group as the longest chain attached to the hydrophilic moiety. [0021]
  • Japanese Patent JP 2001163752 describes long-lasting cosmetic makeup compositions comprising plate-type glossy polymer powders and antiperspirants. [0022]
  • European Patent EP 1005853 describes the use of betaines as antiperspirants. Mono-, di-, and trimethylammonio-substituted carboxylic acids (R[0023] 1) (R2)(R3)N+—(CH2)nC(O)O— (with R1—R3═H, Me; n=1-10) are active as antiperspirants and are compatible with the skin and with other conventional constituents of antiperspirant and deodorant compositions.
  • European Patent EP 1005852 describes the use of functionally substituted betaines as antiperspirants. Mono-, di-, and trimethylammonio-substituted carboxylic acids R[0024] 1R2R3N+(CH2)nCHX(CH2)mC(O)O— and/or X(CH2)nCH(N+R1R2R3)(CH2)mC(O)O— (R1—R3═H, Me; m, n=1-8) are active as antiperspirants and are compatible with the skin and with other conventional constituents of antiperspirant and deodorant compositions.
  • Japanese Patent JP 11130652 discloses skin-conditioning and moisturizing cosmetics containing clay minerals and low-molecular-weight betaines to inhibit the release of pyrrolidonecarboxylic acid (a natural moisturizing factor) from human skin. [0025]
  • German Patent DE 2610225 describes aluminum salts of Betaine chloride being useful as ulcer inhibitors, for treatment of gastritis, to promote wound healing, and as antiperspirants and deodorants. [0026]
  • PCT Publication WO 01/62222 describes cosmetic compositions containing phospholipids and quaternary amines. The invention relates to a cosmetic composition, especially for use on aging and/or stressed skin, the composition comprising, in addition to water, at least one substance that forms lamellar structures with water. Compositions including Betaine are described. [0027]
  • PCT Publication WO 01/47479 assigned to the same owner as this case describes cosmetic moisturizing compositions containing quaternary ammonium compounds. Compositions with cocamidopropyl betaine are described. [0028]
  • PCT Publication WO 01/39730 describes a cosmetic composition containing peat and Betaine. [0029]
  • PCT Publication WO 97/46246 is related to complex preparations for topical use containing Betaine to stimulate cellular and physiological processes. [0030]
  • PCT Publication WO 91/18588 presents a method of reducing the irritating properties of a cosmetic composition by addition of Betaine derivatives. [0031]
  • Japanese Patent JP 03033266 describes modified fabrics coated with a mixture of dodecyl betaine and other ingredients for controlling pH change in skin during sweating. [0032]
  • BRIEF SUMMARY OF THE INVENTION
  • This invention comprises aluminum and/or zirconium salts with Betaine as a complexing agent and buffering agent and which do not contain glycine. [0033]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention comprises glycine-free aluminum and/or zirconium Betaine salts having a metal to chloride molar ratio in the range of 0.3-2.5:1 (especially in the range of 0.9-2.1:1), a Betaine:aluminum molar ratio in the range of 0.05-1.0:1 (particularly 0.05-0.26:1 and, more particularly, 0.05-0.16:1) and/or a Betaine:zirconium molar ratio in the range of 0.2-3.0:1 (particularly 0.4-1.5:1). [0034]
  • The salts of this invention may be made in a variety of ways: [0035]
  • Method A: An aluminum chlorohydrate (ACH) solution of ACH salt in water of suitable concentration is mixed with an aqueous solution of zirconyl chloride (ZrOCl[0036] 2) (or alternatively combining ZrOCO3 and HCl to make the zirconyl chloride in situ) of suitable concentration and powdered Betaine. The mixture is stirred at room temperature to obtain the salt, or dried to remove water to come out with powder form of the salt.
  • Method B: A suitable commercially available glycine-free aluminum zirconium tetrachlorohydrex salt, aluminum zirconium trichlorohydrex, aluminum zirconium pentachlorohydrex, or aluminum zirconium octachlorohydrex is dissolved in water or water solutions of glycols and mixed with a sufficient amount of powdered Betaine. The mixture is stirred at room temperature to obtain the salt, or the solution is dried to remove water to have a powder form of the salt. When Method B is used, a suitable salt to use as a starting material includes various types salts such as aluminum zirconium chlorohydrex, aluminum zirconium chlorohydrex propylene glycol complex, aluminum zirconium chlorohydrex dipropylene glycol complex, and mixtures of any of the foregoing. [0037]
  • Method C: An aqueous aluminum chlorohydrate (ACH) solution made from an activated ACH salt of suitable concentration is mixed with an aqueous solution of zirconyl chloride (ZrOCl[0038] 2) (or alternatively combining ZrOCO3 and HCl to make the zirconyl chloride in situ) of suitable concentration and powdered Betaine. The mixture is stirred at room temperature for a short period of time and then spray dried to obtain the salt in powder form.
  • Method D: An aqueous aluminum chlorohydrate (ACH) solution made from an activated ACH salt of suitable concentration is mixed with powdered Betaine. The mixture is stirred at room temperature to obtain a solution of the salt, or the solution is dried to remove water to have a powder form of the salt. [0039]
  • Method E: An aqueous aluminum dichlorohydrate (ADCH) solution made from an ADCH salt of suitable concentration is mixed with powdered Betaine. The mixture is stirred at room temperature to obtain a solution of the salt, or the solution is dried to remove water to have a powder form of the salt. [0040]
  • Method F: An aqueous solution made of zirconyl chloride (ZrOCl[0041] 2) of suitable concentration is mixed with powdered Betaine. The mixture is stirred at room temperature to obtain a solution of the salt, or the solution is dried to remove water to have a powder form of the salt.
  • Examples of commercial salts that may be used in Method B include glycine-free salts such as aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate, aluminum zirconium pentachlorohydrate, and aluminum zirconium octachlorohydrate. [0042]
  • If the product is used as a solid powder, the size of the particles of antiperspirant active of the invention currently does not appear to be critical and may include conventional sizes such as in the range of 2 to 100 microns, with selected grades having an average particle size of 30-40 microns; finer sized grades having an average particle size distribution from 2-10 microns with an average size of about 7 microns as made by a suitable dry-grinding method; and micronized grades of the type described in a co-pending patent application U.S. Ser. No. 9/579,322 having an average particle size of less than or equal to 2 microns, particularly less than or equal to 1.5 microns. [0043]
  • The enhanced salts of this invention may be used to formulate antiperspirants having improved efficacy. Such antiperspirants include solids such as sticks and creams (creams sometimes being included in the term “soft solid”), gels, liquids (such as are suitable for roll-on products), and aerosols. The forms of these products may be suspensions or emulsions. [0044]
  • Examples of suitable formulations include the following: [0045]
  • Sticks—Stick products may be made with conventional gelling agents such as stearyl alcohol and dibenzylidene sorbitol. A sample formulation is as follows: [0046]
  • 40-55% (particularly 45%) cyclomethicone (especially D5 cyclomethicone) [0047]
  • 20-30% (particularly 21%) stearyl alcohol [0048]
  • 7-15% (particularly 10%) talc [0049]
  • 15-22% (particularly 22%) antiperspirant active in powder form [0050]
  • 1-3% (particularly 2%) fragrance [0051]
  • Roll Ons—[0052]
  • 45-65% (particularly 55%) cyclomethicone (especially D5 cyclomethicone) [0053]
  • 0.1-10% (particularly 3%) cyclomethicone/dimethicone copolyol (such as Dow Corning 2-5185 C) [0054]
  • 10-25% (particularly 20%) antiperspirant active in solution form (25-45% actives on an anhydrous basis in water) [0055]
  • 5-30% (particularly 20%) water [0056]
  • 1-3% (particularly 2%) fragrance [0057]
  • Soft solids—Soft solids may be made with formulations described in co-pending patent application (U.S. Ser. No. 9/273,152 and PCT Publication WO 99/51192. A sample formulation is as follows: [0058]
  • 40-70% (particularly 50%) elastomer in cyclomethicone (KSG-15 from Shin-Etsu) [0059]
  • 5-15% (particularly 6%) polyethylene (for example, beads having a density in the range of 0.91-0.98 g/cm[0060] 3 and an average particle size in the range of 5-40 microns)
  • 10-20% (particularly 15%) C12-15 alkylbenzoate (FINSOLV TN from Finetex) [0061]
  • 0.1-25%% (particularly 22%) antiperspirant active in powder form [0062]
  • 1-15% (particularly 5%) dimethicone (particularly with a viscosity of 100 centistokes) [0063]
  • 1-3% (particularly 2%) fragrance [0064]
  • Gels—Gels may be made with a variety of formulations such as [0065]
  • 5-50% (particularly 29%) cyclomethicone (particularly D5) [0066]
  • 0.1-10% (particularly 3%) cyclomethicone/dimethicone copolyol (such as Dow Corning 2-5185 C) [0067]
  • 0-10% (particularly 5%) hydrogenated polyisobutene 250 [0068]
  • 0-10% (particularly 5%) C12-15 alkylbenzoate (FINSOLV TN from Finetex) [0069]
  • 0-10% (particularly 5%) dimethicone (particularly with a viscosity of 100 centistokes) [0070]
  • 0.1-25% (particularly 20%) antiperspirant active in powder form or 10-25% (particularly 20%) of active in solution (25-45% actives on an anhydrous basis) [0071]
  • 5-50% (particularly 30%) water [0072]
  • 1-3% (particularly 2%) fragrance [0073]
  • Note that in the explanation of the invention, where water is listed it is intended to count the contribution of the water present in the antiperspirant solution as part of the overall water content. Thus, water is sometimes listed as part of the actives solution or sometimes listed separately. [0074]
  • In a preferred embodiment the refractive indices of the external and internal phases are matched within 0.005 to obtain a clear product. [0075]
  • Particular formulations of interest include: [0076]
  • Formulation A: [0077]
  • 0.5-2.5% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0078]
  • 55-65% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0079]
  • 1-10% PPG-3 myristyl ether [0080]
  • 10-25% antiperspirant active of the invention [0081]
  • 10-25% water [0082]
  • 0.5-1.5% fragrance [0083]
  • Formulation B [0084]
  • 1.0-3.0% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0085]
  • 40-60% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0086]
  • 1-5% cyclomethicone (in addition to that found in the elastomer) [0087]
  • 4-12% PPG-3 myristyl ether [0088]
  • 15-30% antiperspirant active of the invention [0089]
  • 15-35% water [0090]
  • 0.5-1.5% fragrance [0091]
  • Formulation C [0092]
  • 1.0-3.0% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0093]
  • 1-10% hydrogenated polyisobutene (for example, Fancol™ Polyiso 250) [0094]
  • 40-55% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0095]
  • 3-8% PPG-3 myristyl ether [0096]
  • 15-20% antiperspirant active of the invention 20-30% water [0097]
  • 1.0-3.0% fragrance [0098]
  • Formulation D [0099]
  • 1.0-3.0% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0100]
  • 40-60% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0101]
  • 3-8% PPG-3 myristyl ether [0102]
  • 15-30% antiperspirant active of the invention [0103]
  • 15-30% water [0104]
  • 0.5-1.5% fragrance [0105]
  • 1-10% diethylhexyl naphthalate [0106]
  • Formulation E [0107]
  • 0.5-2.5% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0108]
  • 60-70% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0109]
  • 7-10% antiperspirant active of the invention [0110]
  • 25-35% water [0111]
  • 1-10% methylpropylene diol (MPDiol) [0112]
  • 0.5-1.5% fragrance [0113]
  • Formulation F [0114]
  • 1.0-3.0% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0115]
  • 6-10% hydrogenated polyisobutene (for example, Fancol™ Polyiso 250) [0116]
  • 35-45% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0117]
  • 6-10% PPG-3 myristyl ether [0118]
  • 40-50% antiperspirant active of the invention as 43% active in water [0119]
  • no additional water [0120]
  • 0.5-1.0% fragrance [0121]
  • Formulation G [0122]
  • 0.1-0.6% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0123]
  • 4-7% hydrogenated polyisobutene (for example, Fancol™ Polyiso 250) [0124]
  • 40-50% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0125]
  • 4-7% PPG-3 myristyl ether [0126]
  • 40-50% antiperspirant active of the invention as 43% active in water no additional water [0127]
  • 0.5-1.0% fragrance [0128]
  • Formulation H [0129]
  • 0.5-2.0% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0130]
  • 1-7% hydrogenated polyisobutene (for example, Fancol™ Polyiso 250) [0131]
  • 40-50% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0132]
  • 45-55% antiperspirant active as 43% active of the invention in water [0133]
  • no additional water [0134]
  • 0.5-1.5% fragrance [0135]
  • Formulation I [0136]
  • 2-7% dimethicone copolyol (for example, Dow Corning 2-5185C (48%)) [0137]
  • 0.1-1% Oleath-20 [0138]
  • 1-5% C12-15 alkyl benzoate (FINSOLV TN) [0139]
  • 15-25% elastomer in cyclomethicone (for example, DC-9040 from Dow Corning Corporation (Midland, Mich.) or KSG-15 from Shin-Etsu Silicones of America (Akron, Ohio)) [0140]
  • 15-25% antiperspirant active [0141]
  • 15-30% water [0142]
  • 0.5-1.5% fragrance [0143]
  • The cosmetic composition according to the present invention can be packaged in conventional containers, using conventional techniques. Where a gel, cream or soft-solid cosmetic composition is produced, the composition can be introduced into a dispensing package (for example, conventional packages for gels with glide on applicators, jars where the gel or cream is applied by hand, and newer style packages having a top surface with pores) as conventionally done in the art. Thereafter, the product can be dispensed from the dispensing package as conventionally done in the art, to deposit the active material, for example, on the skin. For sticks, sprays, aerosols and roll-ons the compositions can be placed in a conventional types of container (with the inclusion of propellants in aerosols). This provides good deposition of the active material on the skin. [0144]
  • Compositions of the present invention can be formulated as clear, translucent or opaque products, although clear products are preferred. A desired feature of the present invention is that a clear, or transparent, cosmetic composition, (for example, a clear or transparent deodorant or antiperspirant composition) can be provided. The term clear or transparent according to the present invention is intended to connote its usual dictionary definition; thus, a clear liquid or gel antiperspirant composition of the present invention allows ready viewing of objects behind it. By contrast, a translucent composition, although allowing light to pass through, causes the light to be scattered so that it will be impossible to see clearly objects behind the translucent composition. An opaque composition does not allow light to pass therethrough. Within the context of the present invention, a gel or stick is deemed to be transparent or clear if the maximum transmittance of light of any wavelength in the range 400-800 nm through a sample 1 cm thick is at least 35%, preferably at least 50%. The gel or liquid is deemed translucent if the maximum transmittance of such light through the sample is between 2% and less than 35%. A gel or liquid is deemed opaque if the maximum transmittance of light is less than 2%. The transmittance can be measured by placing a sample of the aforementioned thickness into a light beam of a spectrophotometer whose working range includes the visible spectrum, such as a Bausch & Lomb Spectronic 88 Spectrophotometer. As to this definition of clear, see European Patent Application Publication No. 291,334 A2. Thus, according to the present invention, there are differences between transparent (clear), translucent and opaque compositions. [0145]
  • EXAMPLES
  • The following Examples are offered as illustrative of the invention and are not to be construed as limitations thereon. In the Examples and elsewhere in the description of the invention, chemical symbols and terminology have their usual and customary meanings. In the Examples as elsewhere in this application values for n, m, etc. in formulas, molecular weights and degree of ethoxylation or propoxylation are averages. Temperatures are in degrees C. unless otherwise indicated. If alcohol is used, it is 95% unless otherwise indicated. Unless otherwise indicated, “water” or “DI water” mean deionized water. As is true throughout the application, the amounts of the components are in weight percents based on the standard described; if no other standard is described then the total weight of the composition is to be inferred. Various names of chemical components include those listed in the [0146] CTFA International Cosmetic Ingredient Dictionary (Cosmetics, Toiletry and Fragrance Association, Inc., 7th ed. 1997). While specific amounts of particular elastomers have been described, there are chemical differences in the variety of elastomers that are available. The use of different elastomers may result in the need to increase or decrease the amount of elastomer used in a particular formulation, especially if a clear product is desired.
  • In the Examples, as elsewhere in the description of the invention, the reference is made to using the antiperspirant active either as a powder or in some type of solution such as dissolved in water at a concentration of 25-45% actives on an anhydrous basis. [0147]
  • In the Examples, the Betaine used is the Betaine of Formula I. [0148]
  • Examples Antiperspirant Salts Example 1
  • A salt solution may be made by dissolving 19.26 g ZrOCl[0149] 2.8H2O in 49.6 g of water and then adding 8.39 g Betaine anhydrous. After everything is dissolved, an ACH powder (22.65 g of Chlorhydrol from Reheis Chemical Co., Berkeley Heights, N.J.) into the solution with additional DI water so that the total weight of the solution is 100 g. The solution is shaken or stirred to make sure the solution is clear. Optionally, the solution can be spray dried or freeze-dried to make a powder sample. This 30% salt solution (anhydrous basis) has the following composition:
    Al/Zr = 3.5 Metal/Cl = 1.2 Betaine/Zr = 1.2
    Al: 5.64% 0.00209 Mole
    Zr: 5.45% 0.000597 Mole 
    Cl: 7.95% 0.00224 Mole
    Betaine 8.39% 0.000716 Mole 
  • Example 2
  • A salt may solution be made by dissolving 19.26 g ZrOCl[0150] 2.8H2O in 49.6 g of water and then adding 5.36 g Betaine anhydrous. After everything is dissolved, an ACH powder (22.65 g of Chlorhydrol from Reheis) into the solution with additional DI water so that the total weight of the solution is 100 g. The solution is shaken or stirred to make sure the solution is clear. Optionally, the solution can be spray dried or freeze-dried to make a powder sample. This 30% salt solution (anhydrous basis) has the following composition:
    Al/Zr = 3.5 Metal/Cl = 1.2 Betaine/Zr = 0.76
    Al: 5.64% 0.00209 Mole
    Zr: 5.45% 0.000597 Mole 
    Cl: 7.95% 0.00224 Mole
    Betaine 5.36% 0.000457 Mole 
  • Example 3
  • A salt solution may be made by dissolving e 19.26 g of ZrOCl[0151] 2.8H2O in 40 gm of distilled water and then adding 9.68 g of Betaine monohydrate. After everything is dissolved, an ACH powder (22.65 g of Chlorhydrol from Reheis) is added to the solution with additional DI water so that the total weight of the solution is 100 g. The solution is shaken or stirred to make sure a clear solution of 30% salt solution (anhydrous basis) is obtained. This 30% salt solution (anhydrous basis) has the following composition:
    Al/Zr = 3.5 M/Cl = 1.2 Btn/Zr = 1.2
    Al: 5.64% 0.00209 Mole
    Zr: 5.45% 0.000597 Mole 
    Cl: 7.95% 0.00224 Mole
    Betaine 8.39% 0.000716 Mole 
  • The solution can be spray dried or freeze-dried to make a powder sample if needed. [0152]
  • Example 4
  • A salt solution may be made by dissolve 240 g of ZrOCl[0153] 2.8H2O in 463 g of distilled water and then adding 100.4 g of Betaine monohydrate. After every thing is dissolved, ACH is added (210 g of ACH Chlorhydrol Powder from Reheis) to the solution. The solution is shaken or stirred to make sure a clear solution of 24% (anhydrous) is obtained. This 24% salt solution (anhydrous basis) has the following composition:
    Al/Zr = 2.6 Metal/Cl = 1.1 Betaine/Zr = 1.0
    Al: 2.7%
    Zr: 6.9%
    Cl: 6.85% 
    Betaine 8.86% 
  • The solution can be spray dried or freeze-dried to make a powder sample if needed. [0154]
  • Example 5
  • A salt solution may be made by mixing 278 g of zirconium hydroxychloride trihydrate solution (15% Zr and 6.66% Cl) with 76 g of Betaine monohydrate at room temperature. After everything is dissolved, ACH is added (400 g of Chlorhydrol Powder solution, which contains 12.3% of Al and 10.0% of Cl) to the solution. The combined solution is shaken or stirred to mix the two solutions well. The final solution then is spray dried or freeze-dried to make a powder sample. [0155]
  • The final powder has the following values: [0156]
    Al/Zr = 3.4 Metal/Cl = 1.4 Betaine/Zr = 1.2
    Al: 14.2%
    Zr: 14.5%
    Cl: 17.2%
    Betaine 22.6%
  • Example 6
  • Betaine monohydrate powder (286 g) is added to a zirconium compound (1000 g of a 31% solution of zirconium oxychloride (ZrOCl[0157] 2)) with stirring. Aluminum chlorohydrate (“ACH”) (1120 g of a 50% aqueous ACH solution) is then added with additional stirring. The final solution is then diluted with distilled water into an anhydrous concentration of 33.0%, with a Betaine/zirconium molar ratio of 1.45:1; an aluminum/zirconium molar ratio of 3.56:1, and a metal/chloride ratio of 1.01:1.
  • Example 7
  • Betaine monohydrate (287 g) is added to a zirconium compound (1000 g of a 31% solution of zirconium oxychloride (ZrOCl[0158] 2) with stirring. ACH (1204 g of a 50% aqueous ACH solution) is then added with additional stirring. The final solution is then diluted with distilled water into an anhydrous concentration of 30.0% with a Betaine/zirconium molar ratio as 1.45:1; an aluminum/zirconium molar ratio of 3.82:1, and a metal/chloride ratio of 0.98.
  • Example 8
  • Betaine monohydrate powder (287 g) is added to a zirconium compound (1000 g of a 31% solution of zirconium oxychloride (ZrOCl[0159] 2)) with stirring. Aluminum chlorohydrate (“ACH”) (2800 g of a 20% ACH solution made from a powder (REACH 101, from Reheis, Berkeley Height, N.J.) is then added with additional stirring. The final solution is then quickly spray dried to remove water. The Zirconium/Aluminum/Betaine (“ZAB”) powder obtained has a Betaine/zirconium molar ratio of 1.42:1; an aluminum:zirconium molar ratio of 3.56:1; and a metal:chloride ratio of 1.05:1.
  • Example 9
  • A solution of aluminum pentachlorohydrex (Reheis Penta-solv, glycine-free) is prepared by dissolution of 30 g Penta-solv in 62 g of DI water. After the solution is mixed and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/zirconium molar ratio of 2.83:1; an aluminum/zirconium molar ratio of 9.56:1, and a metal/chloride ratio of 1.67:1. [0160]
  • Example 10
  • A solution of aluminum octachlorohydrex (Reheis Octa-solv, glycine-free) is prepared by dissolution of 30 g Octa-solv in 62 g of DI water. After the solution is mixed and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/zirconium molar ratio of 2.65:1; an aluminum/zirconium molar ratio of 8.18:1, and a metal/chloride ratio of 1.40:1. [0161]
  • Example 11
  • A solution of aluminum chlorohydrex (ACH, Reheis Chlorhydrol, 50%) is prepared by dissolution of 30 g ACH in 62 g of DI water. After the solution is stirred and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/aluminum molar ratio of 0.25 and an aluminum/chloride ratio of 2.0:1. [0162]
  • Example 12
  • A solution of aluminum dichlorohydrex (ADCH, Westchlor 100, 38%) is prepared by dissolution of 30 g ADCH in 62 g of DI water. After the solution is mixed and becomes clear, 8 g of anhydrous Betaine is added and the solution is mixed at room temperature until clear. The final solution has a Betaine/aluminum molar ratio of 0.61 and an aluminum/chloride ratio of 1.00. [0163]
  • Example 13
  • A solution of aluminum chloride hydrate (AlCl[0164] 3) is prepared by dissolution of 30 g AlCl3 in 62 g of DI water. After the solution is mixed and becomes clear, 8 gm of anhydrous Betaine are added and the solution is mixed at room temperature until clear. The final solution has a Betaine/aluminum molar ratio of 0.30 and an aluminum/chloride ratio of 0.33.
  • Example 14
  • A 31% solution of zirconium oxychloride (ZrOCl[0165] 2) is mixed with 8 g anhydrous Betaine and stirred at room temperature until clear. The final solution has a Betaine/zirconium molar ratio of 0.43 and a zirconium/chloride ratio of 0.50.
  • Analytical Data for Examples 1, 2 and 10
  • Size exclusion chromatography (“SEC”) or gel permeation chromatography (“GPC”) are methods frequently used for obtaining information on polymer distribution in antiperspirant salt solutions. With appropriate chromatographic columns, at least five distinctive groups of polymer species can be detected in a ZAG, appealing in a chromatogram as peaks 1, 2, 3, 4 and a peak known as “5,6”. Peak 1 is the larger Zr species (greater than 60 Angstroms). Peaks 2 and 3 are larger aluminum species. Peak 4 is the smaller aluminum species (aluminum oligomers) and has been correlated with enhanced efficacy for both ACH and ZAG salts. Peak 5,6 is the smallest aluminum species. The relative retention time (“Kd”) for each of these peaks varies depending on the experimental conditions. This method is also applicable to ZAB salts. Data for Table A was obtained using the SEC method described in an issued patent owned by the same company as a this case, U.S. Pat. No. 6,066,314, incorporate by reference as to the test method described therein. [0166]
    TABLE 1
    SEC Polymer distribution of the ZAB sample
    1 from Example 1 at room temperature.
    Time (days) Peak1/All Peaks
    8 0.003
    15 0.008
    31 0.001
    70 0.039
    86 0.070
    122 0.086
    146 0.152
    192 0.206
    294 0.163
  • [0167]
    TABLE 2
    SEC Polymer distribution of the ZAB sample
    1 from Example 1 at 40 degree C.
    Time (days) Peak1/All Peaks
    8 0.027
    15 0.070
    31 0.121
    70 0.148
    86 0.144
    129 0.185
    146 0.168
  • [0168]
    TABLE 3
    SEC Polymer distribution of the ZAB sample
    1 from Example 2 at room temperature.
    Time (days) Peak1/All Peaks
    8 0.098
    15 0.146
    31 0.196
    70 0.227
    86 0.251
    122 0.283
    146 0.315
    192 0.400
    294 0.363
  • [0169]
    TABLE 4
    SEC Polymer distribution of the ZAB sample
    1 from Example 2 at 40 degree C.
    Time (days) Peak1/All Peaks
    8 0.270
    15 0.260
    31 0.311
    70 0.307
    86 0.342
    129 0.365
    146 0.349
  • [0170]
    TABLE 5
    SEC Polymer distribution of the ZAB sample
    1 from Example 10 at room temperature.
    Time (days) Peak1/All Peaks
    4 0.214
    24 0.199
    45 0.191
    80 0.193
    108 0.190
  • Example 15 General Method for Making Antiperspirant Products
  • In general, the external and internal phases are formed separately either at room temperature or with heating as described below. The internal phase is added to the external phase very slowly while stirring at to form an emulsion. After the addition has been completed, the mixture is stirred at higher speed to achieve a homogeneous mixture. The final formula viscosity is then achieved by homogenizing the emulsion under either batch or continuous process conditions as described below. The fragrance may be added at any time during the process prior to final homogenization. [0171]
  • Preparation of the External Phase: [0172]
  • The ingredients to be used in the external phase (including the elastomer) are weighed out at room temperature and combined in a suitable vessel such as a 2 liter glass beaker. The mixture is stirred at about 500 rpm for 15-20 minutes using an overhead mixer such as a Lightnin' Mixer Model L1003. If a waxy or solid emollient is to be added to the external (also called “continuous”) phase, the mixture may be heated to facilitate dissolution while stirring then cooled to room temperature prior to combination with the internal phase as described below. If an elastomer component used it is obtained as a suspension of elastomer in cyclomethicone (for example at a concentration of 6% active in D5 cyclomethicone). The elastomer component is added to the external phase with stirring at high speed (500-700 rpm for a 0.5 kilogram batch) until no particles of elastomer are visible to the eye. [0173]
  • Preparation of the Internal Phase: [0174]
  • The internal dispersed phase is prepared as described below. Ingredients are mixed for a time sufficient to achieve homogeneity. The antiperspirant active used is weighed into a large beaker equipped with an overhead stirrer. Other internal phase ingredients are then added while stirring. [0175]
  • The fragrance (if any is used) is added last and may be added either to the internal phase or the external phase or the final formula prior to homogenization. For many of the examples described here, one could add the fragrance to the internal phase. [0176]
  • If an optional non-ionic emulsifier such as Oleath-20 is used, the emulsifier and propylene glycol are combined in a separate beaker and heated to 40 degrees C. with stirring until the non-ionic emulsifier completely dissolved. The heat is turned off and the remaining ingredients to be used in the internal phase, including the antiperspirant active are weighed out and added to the mixture of propylene glycol and non-ionic emulsifier. [0177]
  • If water or a salt solution is used, the internal phase is prepared as follows. The solution containing antiperspirant active salt as received from supplier is weighed into a large beaker equipped with a magnetic stirrer. Additional ingredients such as propylene glycol, ethanol and water are added while stirring. If a salt water solution is used (such as for NaCl, etc.), the salt water solution is prepared by dissolving the crystalline salt in water in a separate beaker and stirring until dissolved. The salt water solution is then added to the rest of the internal phase and the mixture is stirred until homogeneous. [0178]
  • Preparation of the Emulsion: [0179]
  • The internal phase made as described above is then added to the external phase over the course of 15-30 minutes while stirring at a speed of 500-700 rpm. After the addition is complete, the mixture is stirred at 500-700 rpm for 20 minutes using a Lightnin Mixer Model L1003. The mixture is then homogenized for 2-4 minutes (especially 3 minutes) using a homogenizer from Greerco Corp., Hudson, N.H. at a reading of about 60 on a Powerstat Variable Autotransformer from Superior Electric Co., Bristol, Conn. [0180]
  • Further Processing: [0181]
  • The product is then further processed by homogenization to achieve the desired final viscosity. This can be done by using a Gilford-Wood Model 1-L (Greerco Corp., Hudson, N.H.) homogenizer. The homogenizer speed is controlled by a Powerstat Variable Autotransformer Type 3PN116B (Superior Electronic. Co., Bristol, Conn.). Typical voltage setting and processing time are chosen to give a desired final formula viscosity. [0182]
  • An other method of homogenization of the final product is to pass the emulsion through a colloid mill such as a Sonic Tri-Homo Colloid Mill or a process sonolator such Sonic Production Sonolator 200-30 both available from Sonic Corporation of Stratford, Conn. Process conditions are chosen to give the desired final product viscosity. [0183]
  • Examples 16-36 Compositions Based on Example 15
  • The methods described in Example 15 may be used to make the products listed in Tables 6 and 7 with the types and amounts of ingredients listed in the Tables 6 and 7. Amounts are in percent by weight based on the total weight of the composition. [0184]
    TABLE 6
    Ingredient Ex. 16 Ex. 17 Ex. 18 Ex. 19 Ex. 20 Ex. 21 Ex. 22 Ex. 23 Ex. 24 Ex. 25
    External Phase
    Elastomer (KSG-15, 6% 62 50 48 40 41.5 42.0 46.5 35 32.17 25
    active)
    Dimethicone copolyol 2 2 1.5 4 1.5 0.5 1.0 1.0 2.48 1.0
    (Dow Corning 2-5185, 48%
    active in cyclomethicone)
    Hydrogenated 0 0 5 8 5 5 5 5 4.95 0
    polyisobutene (Polyiso
    250)
    PPG-3 Myristyl Ether 5 5 4.5 0 4.5 5.0 0 0 0 5
    C12-15 alkyl benzoate 2.0
    (FINSOLV TN)
    Cyclomethicone (Dow 0 2 0 0 0 0 0 0 0 0
    Corning 245)
    Fragrance 1 1 1 1 1 1 1 1 1 0
    Internal Phase
    Antiperspirant Activea 15 20 17.5 19.5 46.5 46.5 46.5 58 59.40 48.45
    Water (deionized)b 15 20 22.5 25 0 0 0 0 0 0
    Oleath-20 (HLB > 8) 0 0 0 0.5 0 0 0 0 0 19.55
    Total 100 100 100 100 100 100 100 100 100 100
  • [0185]
    TABLE 7
    Ingredient Ex. 26 Ex. 27 Ex. 28 Ex. 29 Ex. 30 Ex. 31 Ex. 32 Ex. 33 Ex. 34 Ex. 35 Ex. 36
    External Phase
    Elastomer (DC 9040) 12% 55 62 62 40 41.5 25 31.5 21 17 17 50
    active)
    Dimethicone copolyol 1 2 2 4 1 1 2.5 1 1 1 2
    (Dow Corning 2-5185, 48%
    active in cyclomethicone)
    Hydrogenated 5 8 5 5 1.5 1.5 1.5
    polyisobutene (Polyiso
    250)
    PPG-3 Myristyl Ether 3 4.5 5 5 5 0.5 0.5 0.5 5.0
    C12-15 alkyl benzoate 2
    (FINSOLV TN)
    Cyclomethicone (Dow 5 9.0 9.0 2.0
    Corning 245)
    Fragrance 1 1 1 1 1 1 1 1 1 1 1
    Internal Phase
    Antiperspirant Activea 15 15.5 30 19.5 46.5 48.45 60.0 60.5 63.68 60.13 20
    Water (deionized)b 20 15 25 19.55 9.5 6.32 9.87 20
    Oleath-20 (HLB > 8) 0.5
    Total 100 100 100 100 100 100 100 100 100 100 100

Claims (11)

We claim:
1. A glycine-free aluminum and/or zirconium Betaine salt having a metal to chloride molar ratio in the range of 0.3-2.5:1, a Betaine:aluminum molar ratio in the range of 0.05-1.0:1 and/or a Betaine:zirconium molar ratio in the range of 0.2-3.0:1, wherein the Betaine has the following Formula I:
Figure US20040198998A1-20041007-C00004
2. A salt according to claim 1 wherein the metal to chloride molar ratio is in the range of 0.9-2.1:1.
3. A salt according to claim 1 comprising aluminum and wherein the Betaine:aluminum molar ratio is in the range of 0.05-0.26:1.
4. A salt according to claim 1 comprising aluminum and wherein the Betaine:aluminum molar ratio is in the range of 0.05-0.16:1.
5. A salt according to claim 1 comprising zirconium and wherein the Betaine:zirconium molar ratio is in the range of 0.4-1.5:1.
6. A salt according to claim 3 or claim 4 comprising zirconium and wherein the Betaine:zirconium molar ratio is in the range of 0.4-1.5:1.
7. An antiperspirant and/or deodorant product made with a salt according to any one of claims 1, 2, 3, 4 or 5.
8. A stick antiperspirant and/or deodorant comprising:
40-55% cyclomethicone; 20-30% stearyl alcohol; 7-15% talc; 15-22% of a salt according to claim 1 added in powder form; and 1-3% fragrance.
9. A roll-on antiperspirant and/or deodorant comprising:
45-65% cyclomethicone; 0.1-10% cyclomethicone/dimethicone copolyol; 10-25% of a salt according to claim 1 in a solution as 25-45% actives on an anhydrous basis in water; 5-30% water; and 1-3% fragrance.
10. A soft solid antiperspirant and/or deodorant comprising: 40-70% elastomer in cyclomethicone; 5-15% polyethylene beads having a density in the range of 0.91-0.98 g/cm3 and an average particle size in the range of 5-40 microns; 10-20% C12-15 alkylbenzoate; 0.1-25%% of a salt according to claim 1 added in powder form; 1-15% dimethicone; and 1-3% fragrance.
11. A gel antiperspirant and/or deodorant comprising:
5-50% cyclomethicone; 0.1-10% cyclomethicone/dimethicone copolyol; 0-10% hydrogenated polyisobutene 250; 0-10% C12-15 alkylbenzoate; 0-10% dimethicone; 0.1-25% of a salt according to claim 1 added in powder form or as 10-25% of active in solution (25-45% actives on an anhydrous basis); 5-50%; and 1-3% fragrance.
US10/406,856 2003-04-04 2003-04-04 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products Abandoned US20040198998A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US10/406,856 US20040198998A1 (en) 2003-04-04 2003-04-04 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
US10/462,200 US6969510B2 (en) 2003-04-04 2003-06-16 Glycine-free antiperspirant salts with Betaine for enhanced cosmetic products
CL200400701A CL2004000701A1 (en) 2003-04-04 2004-04-01 BETAINE CHLORINE AND ZIRCONIO FREE ZIRCONIO FREE BETA SALT INCLUDING A METAL MOLAR RELATIONSHIP: CHLORINE OF 0.3-2.5: 1, A BETAINE MOLAR RELATIONSHIP: ALUMINUM OF 0.05-1.0: 1 AND ONE BETAINE MOLAR RATIO: 0.2-3.0: 1 ZIRCONY; PREPA PROCESS
BRPI0409195-7A BRPI0409195B1 (en) 2003-04-04 2004-04-02 Glycine-free aluminum and / or zirconium salt with betaine, antiperspirant and / or deodorant product, antiperspirant and / or deodorant stick, roller, soft solid, and gel, and process for making salt
DE602004024103T DE602004024103D1 (en) 2003-04-04 2004-04-02 GLYCIN-FREE ANTIPERSPIRANS SALT WITH BETAIN FOR IMPROVED COSMETIC PRODUCTS
AT04758798T ATE447927T1 (en) 2003-04-04 2004-04-02 GLYCINE-FREE ANTIPERSPIRANT SALTS WITH BETAIN FOR IMPROVED COSMETIC PRODUCTS
GT200400061A GT200400061A (en) 2003-04-04 2004-04-02 ANTITRANSPIRANTS FREE OF GLYCINE WITH BETAIN FOR IMPROVED COSMETIC PRODUCTS.
MXPA05010691A MXPA05010691A (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products.
AU2004228006A AU2004228006B2 (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
ARP040101140A AR043973A1 (en) 2003-04-04 2004-04-02 ANTI-TRANSPIRANT SALTS FREE OF GLYCINE WITH BETAINE FOR IMPROVED COSMETIC PRODUCTS
PCT/US2004/010224 WO2004089325A1 (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
RU2005134225/04A RU2346932C2 (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for improvement of cosmetic goods quality
ES04758798T ES2332318T3 (en) 2003-04-04 2004-04-02 ANTITRANSPIRANT SALTS EXEMPTED FROM GLICINE WITH BETAINE FOR IMPROVED COSMETIC PRODUCTS
PL04758798T PL1675559T3 (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
EP04758798A EP1675559B1 (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
CA2521245A CA2521245C (en) 2003-04-04 2004-04-02 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
US11/120,336 US20050191256A1 (en) 2003-04-04 2005-05-03 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
CO05111766A CO5700700A2 (en) 2003-04-04 2005-11-02 ANTI-TRANSPIRANT SALTS FREE OF GLYCINE WITH BETAINE FOR IMPROVED COSMETIC PRODUCTS
ZA200508925A ZA200508925B (en) 2003-04-04 2005-11-03 Glycine-free antiperspirant salts with Betaine for enhanced cosmetic products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/406,856 US20040198998A1 (en) 2003-04-04 2003-04-04 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/462,200 Continuation-In-Part US6969510B2 (en) 2003-04-04 2003-06-16 Glycine-free antiperspirant salts with Betaine for enhanced cosmetic products

Publications (1)

Publication Number Publication Date
US20040198998A1 true US20040198998A1 (en) 2004-10-07

Family

ID=33097405

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/406,856 Abandoned US20040198998A1 (en) 2003-04-04 2003-04-04 Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
US10/462,200 Expired - Lifetime US6969510B2 (en) 2003-04-04 2003-06-16 Glycine-free antiperspirant salts with Betaine for enhanced cosmetic products

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/462,200 Expired - Lifetime US6969510B2 (en) 2003-04-04 2003-06-16 Glycine-free antiperspirant salts with Betaine for enhanced cosmetic products

Country Status (9)

Country Link
US (2) US20040198998A1 (en)
AR (1) AR043973A1 (en)
AT (1) ATE447927T1 (en)
CL (1) CL2004000701A1 (en)
CO (1) CO5700700A2 (en)
DE (1) DE602004024103D1 (en)
ES (1) ES2332318T3 (en)
GT (1) GT200400061A (en)
ZA (1) ZA200508925B (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241122A1 (en) * 2003-05-30 2004-12-02 Christine Popoff High efficacy gel with low glycol content
WO2006091417A1 (en) * 2005-02-18 2006-08-31 Colgate-Palmolive Company Enhanced efficacy aluminum or aluminum-zirconium antiperspirant salt compositions containing calcium salt(s) and betaine
US20070020211A1 (en) * 2005-07-22 2007-01-25 Reheis, Inc. Betaine with Calcium and/or Strontium Antiperspirants
US20070196303A1 (en) * 2006-02-17 2007-08-23 Reheis, Inc. Stable buffered aluminum compositions having high hplc bands iii and iv containing calcium/strontium
WO2008097716A2 (en) 2007-02-02 2008-08-14 Colgate-Palmolive Company Antiperspirant/deodorant composition
WO2008144079A1 (en) 2007-02-02 2008-11-27 Colgate-Palmolive Company Antiperspirant / deodorant compositions
US20110014144A1 (en) * 2005-11-16 2011-01-20 Colgate-Palmolive Company Antiperspirant compositions
US20110076309A1 (en) * 2009-09-30 2011-03-31 Misner H Steven Antiperspirant/Deodorant Composition
US20110076310A1 (en) * 2009-09-30 2011-03-31 Colgate-Palmolive Company Antiperspirant/Deodorant Composition
WO2011050044A1 (en) 2009-10-20 2011-04-28 Colgate-Palmolive Company Antiperspirant that reduces/eliminates yellowing on clothing
US20110135585A1 (en) * 2008-08-04 2011-06-09 Shiseido Company, Ltd. Complex, Emulsion Containing The Same, And Water-In-Oil Emulsion Cosmetic Containing The Same
WO2011079001A2 (en) 2009-12-23 2011-06-30 Colgate-Palmolive Company Anhydrous liquid antiperspirant/deodorant composition
WO2012005720A1 (en) 2010-07-06 2012-01-12 Colgate-Palmolive Company Personal care product and manufacture thereof
WO2014092688A1 (en) 2012-12-11 2014-06-19 Colgate-Palmolive Company Antiperspirant/deodorant with alkylated polyvinylpyrrolidone
WO2014098813A1 (en) * 2012-12-19 2014-06-26 Colgate-Palmolive Company Zinc amino acid/trimethylglycine halide
WO2014098818A1 (en) * 2012-12-19 2014-06-26 Colgate-Palmolive Company Zinc-lysine complex
WO2014098814A1 (en) * 2012-12-19 2014-06-26 Colgate-Palmolive Company Composition with zinc amino acid/trimethylglycine halide precursors
WO2014099226A3 (en) * 2012-12-19 2014-09-25 Colgate-Palmolive Company Personal cleansing compositions containing zinc amino acid/trimethylglycine halide
WO2014171948A1 (en) 2013-04-19 2014-10-23 Colgate-Palmolive Company Aerosol antiperspirants
US8952052B2 (en) 2008-12-30 2015-02-10 Hill's Pet Nutrition, Inc. Use of lipoic acid for treating or preventing degenerative joint conditions, osteoarthritis, cartilage damage, and related disorders in companion animals
US9498421B2 (en) 2012-12-19 2016-11-22 Colgate-Palmolive Company Two component compositions containing tetrabasic zinc-amino acid halide complexes and cysteine
US9504858B2 (en) 2012-12-19 2016-11-29 Colgate-Palmolive Company Zinc amino acid halide complex with cysteine
CN106414460A (en) * 2014-06-18 2017-02-15 高露洁-棕榄公司 Synthesis of zinc-lysine complex from zinc chloride
US9572756B2 (en) 2012-12-19 2017-02-21 Colgate-Palmolive Company Teeth whitening methods, visually perceptible signals and compositions therefor
CN106459094A (en) * 2014-06-18 2017-02-22 高露洁-棕榄公司 LOW pH SYNTHESIS OF ZINC-LYSINE COMPLEX
US9675823B2 (en) 2012-12-19 2017-06-13 Colgate-Palmolive Company Two component compositions containing zinc amino acid halide complexes and cysteine
US9750670B2 (en) 2012-12-19 2017-09-05 Colgate-Palmolive Company Zinc amino acid complex with cysteine
US9763865B2 (en) 2012-12-19 2017-09-19 Colgate-Palmolive Company Oral gel comprising zinc-amino acid complex
US9775792B2 (en) 2012-12-19 2017-10-03 Colgate-Palmolive Company Oral care products comprising a tetrabasic zinc-amino acid-halide complex
US9827177B2 (en) 2012-12-19 2017-11-28 Colgate-Palmolive Company Antiperspirant products with protein and antiperspirant salts
US9861563B2 (en) 2012-12-19 2018-01-09 Colgate-Palmolive Company Oral care products comprising tetrabasic zinc chloride and trimethylglycine
US9901523B2 (en) 2012-12-19 2018-02-27 Colgate-Palmolive Company Oral care products comprising zinc oxide and trimethylglycine
US9980890B2 (en) 2012-12-19 2018-05-29 Colgate-Palmolive Company Zinc amino acid halide mouthwashes
WO2018125030A1 (en) 2016-12-27 2018-07-05 Colgate-Palmolive Company Extruded antiperspirant composition for improved efficacy
US10105303B2 (en) 2012-12-19 2018-10-23 Colgate-Palmolive Company Oral care composition comprising zinc amino acid halides
US10111817B2 (en) 2014-07-21 2018-10-30 Colgate-Palmolive Company Antiperspirant compositions containing ethylenediamine disuccinate
US10188112B2 (en) 2012-12-19 2019-01-29 Colgate-Palmolive Company Personal cleansing compositions containing zinc amino acid/trimethylglycine halide
US10952943B2 (en) 2018-12-21 2021-03-23 Colgate-Palmolive Company Zinc-arginine-chloride complex
WO2021096518A1 (en) 2019-11-14 2021-05-20 Colgate-Palmolive Company Personal care compositions for treating odor causing bacteria and methods for the same
US11091502B2 (en) 2018-12-21 2021-08-17 Colgate-Palmolive Company Methods for synthesizing zinc-lysine-chloride complex
US11117906B2 (en) 2018-12-21 2021-09-14 Colgate-Palmolive Company Methods for synthesizing zinc-lysine-chloride complex
US11229591B2 (en) 2018-12-21 2022-01-25 Colgate-Palmolive Company Methods for synthesizing zinc-lysine-chloride complex
GB2610052A (en) * 2021-07-05 2023-02-22 Henkel Ag & Co Kgaa Stable, effective and skin-friendly antiperspirants

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109833A1 (en) 2002-12-09 2004-06-10 Xiaozhong Tang High efficacy, low irritation aluminum salts and related products
US7105691B2 (en) * 2003-06-26 2006-09-12 Colgate-Palmolive Company Aluminum / zirconium / glycine antiperspirant actives stabilized with Betaine
US20060233739A1 (en) * 2003-11-24 2006-10-19 Thornfeldt Carl R Treatment of mucocutaneous disorders through reversing chronic imflammation and barrier disruption
US20080187562A1 (en) * 2007-02-02 2008-08-07 Aixing Fan Antiperspirant/Deodorant Compositions
US8257689B2 (en) 2007-12-12 2012-09-04 Colgate-Palmolive Company Antiperspirant active compositions having SEC chromatogram exhibiting high SEC peak 4 intensity
US20100202993A1 (en) 2007-12-12 2010-08-12 Long Pan Antiperspirant Active Compositions Having SEC Chromatogram Exhibiting High SEC Peak 4 Intensity
EP2462061B1 (en) * 2009-08-06 2017-05-31 Colgate-Palmolive Company Method of making an antiperspirant active composition having sec chromatogram exhibiting high sec peak 4 intensity
AU2010363348B2 (en) 2010-11-02 2014-07-31 Colgate-Palmolive Company Antiperspirant active compositions and manufacture thereof
US9463985B2 (en) 2010-11-02 2016-10-11 Colgate-Palmolive Company Aluminum salt containing high percentage of Al30
CA2834129A1 (en) 2011-04-26 2012-11-01 Colgate-Palmolive Company Compositions containing polyhydroxyoxoaluminum cations and manufacture thereof
AU2011366870B2 (en) 2011-04-26 2014-10-30 Colgate-Palmolive Company Antiperspirant active compositions and manufacture thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331609A (en) * 1980-09-08 1982-05-25 The Procter & Gamble Company Antiperspirant composition
US4871525A (en) * 1986-10-24 1989-10-03 Westwood Chemical Corporation Antiperspirant composition and method of preparation
US5877143A (en) * 1997-11-20 1999-03-02 Colgate-Palmolive Co. Composition containing a lamellar liquid crystalline phase which comprises betaines and amine oxides
US6066314A (en) * 1997-10-29 2000-05-23 Colgate-Palmolive Company Antiperspirant actives and formulations made therefrom
US6126928A (en) * 1999-08-24 2000-10-03 The Procter & Gamble Company Compositions containing solubilized, acid-enhanced antiperspirant active
US20030044368A1 (en) * 2000-07-03 2003-03-06 Keiji Tsuchikura Deodorant composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2303536A1 (en) * 1975-03-11 1976-10-08 Rhone Poulenc Ind NEW ALUMINUM SALTS, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331609A (en) * 1980-09-08 1982-05-25 The Procter & Gamble Company Antiperspirant composition
US4871525A (en) * 1986-10-24 1989-10-03 Westwood Chemical Corporation Antiperspirant composition and method of preparation
US6066314A (en) * 1997-10-29 2000-05-23 Colgate-Palmolive Company Antiperspirant actives and formulations made therefrom
US5877143A (en) * 1997-11-20 1999-03-02 Colgate-Palmolive Co. Composition containing a lamellar liquid crystalline phase which comprises betaines and amine oxides
US6126928A (en) * 1999-08-24 2000-10-03 The Procter & Gamble Company Compositions containing solubilized, acid-enhanced antiperspirant active
US20030044368A1 (en) * 2000-07-03 2003-03-06 Keiji Tsuchikura Deodorant composition

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204976B2 (en) 2003-05-30 2007-04-17 Colgate-Palmolive Company High efficacy gel with low glycol content
US20040241122A1 (en) * 2003-05-30 2004-12-02 Christine Popoff High efficacy gel with low glycol content
US7704531B2 (en) 2005-02-18 2010-04-27 Colgate-Palmolive Company Enhanced efficacy aluminum or aluminum-zirconium antiperspirant salt compositions containing calcium salt(s) and betaine
WO2006091417A1 (en) * 2005-02-18 2006-08-31 Colgate-Palmolive Company Enhanced efficacy aluminum or aluminum-zirconium antiperspirant salt compositions containing calcium salt(s) and betaine
US20060204463A1 (en) * 2005-02-18 2006-09-14 Xiaozhong Tang Enhanced efficacy aluminum or aluminum-zirconium antiperspirant salt compositions containing calcium salt(s) and betaine
AU2006216930B2 (en) * 2005-02-18 2009-08-20 Colgate-Palmolive Company Enhanced efficacy aluminum or aluminum-zirconium antiperspirant salt compositions containing calcium salt(s) and betaine
US20070020211A1 (en) * 2005-07-22 2007-01-25 Reheis, Inc. Betaine with Calcium and/or Strontium Antiperspirants
US20110014144A1 (en) * 2005-11-16 2011-01-20 Colgate-Palmolive Company Antiperspirant compositions
US20070196303A1 (en) * 2006-02-17 2007-08-23 Reheis, Inc. Stable buffered aluminum compositions having high hplc bands iii and iv containing calcium/strontium
WO2008097716A2 (en) 2007-02-02 2008-08-14 Colgate-Palmolive Company Antiperspirant/deodorant composition
EP2149366A2 (en) 2007-02-02 2010-02-03 Colgate-Palmolive Company Antiperspirant/deodorant composition
WO2008144079A1 (en) 2007-02-02 2008-11-27 Colgate-Palmolive Company Antiperspirant / deodorant compositions
EP2559457A1 (en) 2007-02-02 2013-02-20 Colgate-Palmolive Company Antiperspirant/deodorant compositions
US20110135585A1 (en) * 2008-08-04 2011-06-09 Shiseido Company, Ltd. Complex, Emulsion Containing The Same, And Water-In-Oil Emulsion Cosmetic Containing The Same
US9271957B2 (en) 2008-12-30 2016-03-01 Colgate-Palmolive Company Methods of treating or preventing degenerative joint conditions, osteoarthritis, cartilage damage, and related disorders in companion animals
US8952052B2 (en) 2008-12-30 2015-02-10 Hill's Pet Nutrition, Inc. Use of lipoic acid for treating or preventing degenerative joint conditions, osteoarthritis, cartilage damage, and related disorders in companion animals
US11058904B2 (en) 2009-09-30 2021-07-13 Colgate-Palmolive Company Antiperspirant/deodorant composition
WO2011040909A1 (en) 2009-09-30 2011-04-07 Colgate-Palmolive Company Antiperspirant/deodorant composition
US20110076309A1 (en) * 2009-09-30 2011-03-31 Misner H Steven Antiperspirant/Deodorant Composition
US20110076310A1 (en) * 2009-09-30 2011-03-31 Colgate-Palmolive Company Antiperspirant/Deodorant Composition
WO2011050044A1 (en) 2009-10-20 2011-04-28 Colgate-Palmolive Company Antiperspirant that reduces/eliminates yellowing on clothing
EP3653197A1 (en) 2009-10-20 2020-05-20 Colgate-Palmolive Company Antiperspirant that reduces/eliminates yellowing on clothing
WO2011087702A2 (en) 2009-12-23 2011-07-21 Colgate-Palmolive Company Aqueous antiperspirant/deodorant composition
US8557228B2 (en) 2009-12-23 2013-10-15 Colgate-Palmolive Company Aqueous antiperspirant composition
US8663610B2 (en) 2009-12-23 2014-03-04 Colgate-Palmolive Company Method of making an anhydrous liquid antiperspirant composition
US8815222B2 (en) 2009-12-23 2014-08-26 Colgate—Palmolive Company Anhydrous liquid antiperspirant composition
US9585825B2 (en) 2009-12-23 2017-03-07 Colgate-Palmolive Company Method of making an anhydrous liquid antiperspirant composition
WO2011087701A2 (en) 2009-12-23 2011-07-21 Colgate-Palmolive Company Method of making an anhydrous liquid antiperspirant composition
WO2011079001A2 (en) 2009-12-23 2011-06-30 Colgate-Palmolive Company Anhydrous liquid antiperspirant/deodorant composition
US8529919B2 (en) 2010-07-06 2013-09-10 Colgate-Palmolive Company Personal care product and manufacture thereof
WO2012005720A1 (en) 2010-07-06 2012-01-12 Colgate-Palmolive Company Personal care product and manufacture thereof
WO2014092688A1 (en) 2012-12-11 2014-06-19 Colgate-Palmolive Company Antiperspirant/deodorant with alkylated polyvinylpyrrolidone
US9707171B2 (en) 2012-12-11 2017-07-18 Colgate-Palmolive Company Antiperspirant/deodorant with alkylated polyvinylpyrrolidone
US9504858B2 (en) 2012-12-19 2016-11-29 Colgate-Palmolive Company Zinc amino acid halide complex with cysteine
US9993407B2 (en) 2012-12-19 2018-06-12 Colgate-Palmolive Company Teeth whitening methods, visually perceptible signals and compositions therefor
CN104853720A (en) * 2012-12-19 2015-08-19 高露洁-棕榄公司 Composition with zinc amino acid/trimethylglycine halide precursors
US11197811B2 (en) 2012-12-19 2021-12-14 Colgate-Palmolive Company Teeth whitening methods, visually perceptible signals and compositions therefor
US9498421B2 (en) 2012-12-19 2016-11-22 Colgate-Palmolive Company Two component compositions containing tetrabasic zinc-amino acid halide complexes and cysteine
WO2014098813A1 (en) * 2012-12-19 2014-06-26 Colgate-Palmolive Company Zinc amino acid/trimethylglycine halide
US10792236B2 (en) 2012-12-19 2020-10-06 Colgate-Palmolive Company Dentifrice comprising zinc-amino acid complex
US9572756B2 (en) 2012-12-19 2017-02-21 Colgate-Palmolive Company Teeth whitening methods, visually perceptible signals and compositions therefor
WO2014098818A1 (en) * 2012-12-19 2014-06-26 Colgate-Palmolive Company Zinc-lysine complex
WO2014099226A3 (en) * 2012-12-19 2014-09-25 Colgate-Palmolive Company Personal cleansing compositions containing zinc amino acid/trimethylglycine halide
RU2615131C2 (en) * 2012-12-19 2017-04-04 Колгейт-Палмолив Компани Zinc-lysine complex
US9675823B2 (en) 2012-12-19 2017-06-13 Colgate-Palmolive Company Two component compositions containing zinc amino acid halide complexes and cysteine
WO2014098814A1 (en) * 2012-12-19 2014-06-26 Colgate-Palmolive Company Composition with zinc amino acid/trimethylglycine halide precursors
US9750670B2 (en) 2012-12-19 2017-09-05 Colgate-Palmolive Company Zinc amino acid complex with cysteine
US9757316B2 (en) 2012-12-19 2017-09-12 Colgate-Palmolive Company Zinc-lysine complex
US9763865B2 (en) 2012-12-19 2017-09-19 Colgate-Palmolive Company Oral gel comprising zinc-amino acid complex
US9775792B2 (en) 2012-12-19 2017-10-03 Colgate-Palmolive Company Oral care products comprising a tetrabasic zinc-amino acid-halide complex
US9827177B2 (en) 2012-12-19 2017-11-28 Colgate-Palmolive Company Antiperspirant products with protein and antiperspirant salts
US9861563B2 (en) 2012-12-19 2018-01-09 Colgate-Palmolive Company Oral care products comprising tetrabasic zinc chloride and trimethylglycine
US9901523B2 (en) 2012-12-19 2018-02-27 Colgate-Palmolive Company Oral care products comprising zinc oxide and trimethylglycine
US9925130B2 (en) 2012-12-19 2018-03-27 Colgate-Palmolive Company Composition with zinc amino acid/trimethylglycine halide precursors
US9943473B2 (en) 2012-12-19 2018-04-17 Colgate-Palmolive Company Zinc lysine halide complex
US9980890B2 (en) 2012-12-19 2018-05-29 Colgate-Palmolive Company Zinc amino acid halide mouthwashes
CN104854114A (en) * 2012-12-19 2015-08-19 高露洁-棕榄公司 Zinc-lysine complex
US10610475B2 (en) 2012-12-19 2020-04-07 Colgate-Palmolive Company Teeth whitening methods, visually perceptible signals and compositions therefor
US10105303B2 (en) 2012-12-19 2018-10-23 Colgate-Palmolive Company Oral care composition comprising zinc amino acid halides
US10610470B2 (en) 2012-12-19 2020-04-07 Colgate-Palmolive Company Oral care composition zinc-lysine complex
US10188112B2 (en) 2012-12-19 2019-01-29 Colgate-Palmolive Company Personal cleansing compositions containing zinc amino acid/trimethylglycine halide
US10195125B2 (en) 2012-12-19 2019-02-05 Colgate-Palmolive Company Oral care composition comprising zinc-lysine complex
US10245222B2 (en) 2012-12-19 2019-04-02 Colgate-Palmolive Company Dentifrice comprising zinc-amino acid complex
US10524995B2 (en) 2012-12-19 2020-01-07 Colgate-Palmolive Company Zinc amino acid halide mouthwashes
US10588841B2 (en) 2012-12-19 2020-03-17 Colgate-Palmolive Company Oral care compositions comprising zinc amino acid halides
US9408799B2 (en) 2013-04-19 2016-08-09 Colgate-Palmolvie Company Aerosol antiperspirants
WO2014171948A1 (en) 2013-04-19 2014-10-23 Colgate-Palmolive Company Aerosol antiperspirants
CN106459094A (en) * 2014-06-18 2017-02-22 高露洁-棕榄公司 LOW pH SYNTHESIS OF ZINC-LYSINE COMPLEX
CN106414460A (en) * 2014-06-18 2017-02-15 高露洁-棕榄公司 Synthesis of zinc-lysine complex from zinc chloride
US10111817B2 (en) 2014-07-21 2018-10-30 Colgate-Palmolive Company Antiperspirant compositions containing ethylenediamine disuccinate
WO2018125030A1 (en) 2016-12-27 2018-07-05 Colgate-Palmolive Company Extruded antiperspirant composition for improved efficacy
US10952943B2 (en) 2018-12-21 2021-03-23 Colgate-Palmolive Company Zinc-arginine-chloride complex
US11229591B2 (en) 2018-12-21 2022-01-25 Colgate-Palmolive Company Methods for synthesizing zinc-lysine-chloride complex
US11091502B2 (en) 2018-12-21 2021-08-17 Colgate-Palmolive Company Methods for synthesizing zinc-lysine-chloride complex
US11117906B2 (en) 2018-12-21 2021-09-14 Colgate-Palmolive Company Methods for synthesizing zinc-lysine-chloride complex
US11826448B2 (en) 2018-12-21 2023-11-28 Colgate-Palmolive Company Zinc-arginine-chloride complex
WO2021096518A1 (en) 2019-11-14 2021-05-20 Colgate-Palmolive Company Personal care compositions for treating odor causing bacteria and methods for the same
GB2610052A (en) * 2021-07-05 2023-02-22 Henkel Ag & Co Kgaa Stable, effective and skin-friendly antiperspirants
GB2610052B (en) * 2021-07-05 2023-11-29 Henkel Ag & Co Kgaa Stable, effective and skin-friendly antiperspirants

Also Published As

Publication number Publication date
US6969510B2 (en) 2005-11-29
ATE447927T1 (en) 2009-11-15
ZA200508925B (en) 2007-03-28
CO5700700A2 (en) 2006-11-30
ES2332318T3 (en) 2010-02-02
AR043973A1 (en) 2005-08-17
US20040204601A1 (en) 2004-10-14
GT200400061A (en) 2004-11-30
CL2004000701A1 (en) 2005-04-15
DE602004024103D1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US6969510B2 (en) Glycine-free antiperspirant salts with Betaine for enhanced cosmetic products
EP1638981B1 (en) Aluminum/zirconium/glycine antiperspirant actives stabilized with betaine
US7311898B2 (en) High efficacy, low irritation aluminum salts and related products
US6790435B1 (en) Antiperspirant compositions comprising microemulsions
CA2706142C (en) Antiperspirant active compositions having sec chromatogram exhibiting high sec peak 4 intensity
US20020164296A1 (en) Stable emulsions for cosmetic products
US20050191256A1 (en) Glycine-free antiperspirant salts with betaine for enhanced cosmetic products
CA2082823A1 (en) Liquid antiperspirant compositions
AU2012207017B2 (en) Antiperspirant active compositions having SEC chromatogram exhibiting high SEC peak 4 intensity

Legal Events

Date Code Title Description
AS Assignment

Owner name: COLGATE-PALMOLIVE COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOLERCA, MARIAN;TANG, XIAOZHONG;CAI, HENG;REEL/FRAME:014566/0192;SIGNING DATES FROM 20030429 TO 20030602

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION