US20040198813A1 - Novel microemulsion and micelle systems for solubilizing drugs - Google Patents

Novel microemulsion and micelle systems for solubilizing drugs Download PDF

Info

Publication number
US20040198813A1
US20040198813A1 US10/679,581 US67958103A US2004198813A1 US 20040198813 A1 US20040198813 A1 US 20040198813A1 US 67958103 A US67958103 A US 67958103A US 2004198813 A1 US2004198813 A1 US 2004198813A1
Authority
US
United States
Prior art keywords
composition
surfactant component
oil
fatty acid
long chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/679,581
Inventor
Donn Dennis
Nikolaus Gravenstein
Jerome Modell
Timothy Morey
Dinesh Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Florida Research Foundation Inc
Original Assignee
University of Florida Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Florida Research Foundation Inc filed Critical University of Florida Research Foundation Inc
Priority to US10/679,581 priority Critical patent/US20040198813A1/en
Publication of US20040198813A1 publication Critical patent/US20040198813A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers

Definitions

  • This invention relates to compositions and a method for making microemulsion delivery systems for water insoluble or sparingly soluble drugs.
  • Dissolving water insoluble agents into aqueous solutions appropriate for human use represents a major technological hurdle for pharmaceutical delivery systems.
  • Previous attempts have resulted in a number of serious side effects caused not by the drugs, but by the carrier agents used to dissolve the drug.
  • These complications include significant hypotension during intravenous injection (e.g., amiodarone), painful injection with subsequent phlebitis (e.g., valium), anaphylaxis (e.g., propofol in Cremaphor), postoperative infections (e.g., propofol in Intralipid), and others.
  • the anesthetic propofol is supplied to the health care industry as Baxter PPI propofol (Gensia Sicor, Inc.) or Diprivan (AstraZeneca Pharmaceuticals, Inc.), as a macroemulsion of propofol in soybean oil (100 mg/mL), glycerol (22.5 mg/mL), egg lecithin (12 mg/mL), and disodium edetate (0.005%) or metabisulfite; with sodium hydroxide to adjust pH to 7.0-8.5.
  • the stability of such macroemulsions is relatively poor, and the oil and water components separate into distinct phases over time.
  • the droplet size of the macroemulsion increases with time.
  • Macroemulsions are defined as formed by high shear mixing and normally having particles of 1 micron to 10 microns in size.
  • microemulsion systems consisting of oil, water, and appropriate emulsifiers can form spontaneously and are therefore thermodynamically stable. For this reason, microemulsion systems theoretically have an infinite shelf life under normal conditions in contrast to the limited life of macroemulsions (e.g., two years for Baxter PPI propofol).
  • the size of the droplets in such microemulsions remains constant and ranges from 100-1000 angstroms (10-100 nm), and has very low oil/water interfacial tension. Because the droplet size is less than 25% of the wavelength of visible light, microemulsions are transparent.
  • Three distinct microemulsion solubilization systems that can be used for drugs are as follows:
  • the delivery system described herein has been found particularly useful for propofol, but is not exclusively limited thereto. It is presented here as an example of a state of the art drug, normally poorly soluble in its present delivery form, but when properly delivered in a pharmaceutical microemulsion carrier, the current problems can be solved. Such current problems in the case of propofol stem directly from its poor solubility in water. These include significant pain during injection, and post-operative infections in some patients who, for example, receive a macroemulsion of propofol for surgery or sedation.
  • Propofol (2,6-diisopropylphenol, molecular weight 178.27) is an organic liquid similar to oil, has very little solubility in the aqueous phase (octanol/water partition coefficient 6761:1 at a pH 6.0-8.5), and is a short-acting intravenous anesthetic that meets the criteria of rapid anesthetic emergence with minimal side effects.
  • propofol is supplied as a macroemulsion, an opaque dispersion using biocompatible emulsifiers such as phospholipids, cholesterol, and others.
  • biocompatible emulsifiers such as phospholipids, cholesterol, and others.
  • a number of other drawbacks cause significant limitations and risk to some patients.
  • propofol is a liquid at room temperature and is extremely insoluble in water.
  • the inherent lipophilicity of propofol makes dissolution in saline or phosphate buffer problematic.
  • Cremaphor was used as a solvent, but subsequently abandoned because of its propensity to cause life threatening anaphylactic reactions. Since that time, propofol is suspended in a macroemulsion consisting of 10% Intralipid, a milky white solution of soybean oil and other additives as specified previously.
  • the current commercial formulation of propofol has several major disadvantages.
  • a third major disadvantage of the current preparation of propofol relates to its free, aqueous concentrations.
  • Propofol is a phenol derivative (2,6-diisopropylphenol) and causes pain on injection. This effect is the single greatest complaint of anesthesiologists and patients regarding propofol and may on occasion necessitate discontinuation of the drug for sedative purposes. Most authorities believe that the stinging relates to the concentration of propofol in free, aqueous solution.
  • a solvent that completely emulsifies or partitions propofol into the non-aqueous phase would preclude (or markedly reduce) stinging and allow painless injection similar to thiopental sodium (another widely used intravenous anesthetic).
  • the formulations of the present invention address and overcome these three disadvantages.
  • FIG. 1 shows release of active drug from microemulsions or micelles to Heptane phase.
  • FIG. 2 shows similar experimental results.
  • a microemulsion delivery system for normally water insoluble or sparingly soluble drugs, such as propofol is microemulsified with an emulsifier combination of a long chain polymer surfactant component and a short chain fatty acid surfactant component. These are selected to reduce surface tension to absorption between the two phases to thereby allow the formation of thermodynamically stable microemulsions or micelles.
  • the system is particularly useful for propofol, but is not limited to propofol.
  • Microemulsion drug delivery systems of this invention are hereinafter described in conjunction with microemulsions with the pharmaceutically active anesthetic propofol.
  • propofol as the active water insoluble or sparingly soluble drug in the description is exemplary only of the generally described class of normally poorly water soluble drugs.
  • Microemulsion systems of the present invention can be used to dissolve substantial concentrations of oil-soluble drugs such as propofol, and they can thereafter be injected intravenously into human patients or animals with less, or even without pain caused by the delivery system.
  • water soluble drugs such as cyclosporine, insulin, and others can be dissolved in water-in-oil microemulsions and can be taken orally (e.g., gelatin capsule) or injected. These microemulsions spread over the intestinal surface wherein nanometer-sized water droplets with drugs dissolved therein permeate and diffuse across the intestinal brush border.
  • various drugs i.e., oil-soluble, water-soluble, and interphase soluble drugs
  • Such solutions can be especially valuable to patients with abdominal disorders that inhibit absorption such as short gut syndrome and for better oral delivery of expensive drugs that are otherwise poorly absorbed.
  • analgesics/antipyretics e.g., aspirin, acetaminophen, ibuprofen, naproxen sodium, buprenorphine hydrochloride, propoxyphene hydrochloride, propoxyphene napsylate, meperidine hydrochloride, hydromorphone hydrochloride, morphine sulfate, oxycodone hydrochloride, codeine phosphate, dihydrocodeine bitartrate, pentazocine hydrochloride, hydrocodone bitartrate, levorphanol tartrate, diflunisal, trolamine salicylate, nalbuphine hydrochloride, mefenamic acid, butorphanol tartrate, choline salicylate, butalbital, phenyltoloxamine citrate, diphenhydramine citrate, methotrimeprazine, cinnamedrine hydrochloride, meprobamate, and the like);
  • anesthetics e.g., halothane, isoflurane, methoxyflurane, propofol, thiobarbiturates, xenon and the like
  • antiasthmatics e.g., Azelastine, Ketotifen, Traxanox, and the like
  • antibiotics e.g., neomycin, streptomycin, chloramphenicol, cephalosporin, ampicillin, penicillin, tetracycline, and the like
  • antibiotics e.g., neomycin, streptomycin, chloramphenicol, cephalosporin, ampicillin, penicillin, tetracycline, and the like
  • antidepressants e.g., nefopam, oxypertine, doxepin hydrochloride, amoxapine, trazodone hydrochloride, amitriptyline hydrochloride, maprotiline hydrochloride, phenelzine sulfate, desipramine hydrochloride, nortriptyline hydrochloride, tranylcypromine sulfate, fluoxetine hydrochloride, doxepin hydrochloride, imipramine hydrochloride, imipramine pamoate, nortriptyline, amitriptyline hydrochloride, isocarboxazid, desipramine hydrochloride, trimipramine maleate, protriptyline hydrochloride, and the like);
  • antidepressants e.g., nefopam, oxypertine, doxepin hydrochloride, amoxapine, trazodone hydrochloride,
  • antidiabetics e.g., biguanides, hormones, sulfonylurea derivatives, and the like
  • biguanides e.g., biguanides, hormones, sulfonylurea derivatives, and the like
  • antifungal agents e.g., griseofulvin, keoconazole, amphotericin B, Nystatin, candicidin, and the like
  • griseofulvin e.g., griseofulvin, keoconazole, amphotericin B, Nystatin, candicidin, and the like
  • antihypertensive agents e.g., propanolol, propafenone, oxyprenolol, nifedipine, reserpine, trimethaphan camsylate, phenoxybenzamine hydrochloride, pargyline hydrochloride, deserpidine, diazoxide, guanethidine monosulfate, minoxidil, rescinamine, sodium nitroprusside, rauwolfia serpentina, alseroxylon, phentolamine mesylate, reserpine, and the like);
  • antihypertensive agents e.g., propanolol, propafenone, oxyprenolol, nifedipine, reserpine, trimethaphan camsylate, phenoxybenzamine hydrochloride, pargyline hydrochloride, deserpidine, diazoxide, guanethidine monosulf
  • anti-inflammatories e.g., (non-steroidal) indomethacin, naproxen, ibuprofen, ramifenazone, piroxicam, (steroidal) cortisone, dexamethasone, fluazacort, hydrocortisone, prednisolone, prednisone, and the like);
  • antineoplastics e.g., adriamycin, cyclophosphamide, actinomycin, bleomycin, duanorubicin, doxorubicin, epirubicin, mitomycin, methotrexate, fluorouracil, carboplatin, carmustine (BCNU), methyl-CCNU, cisplatin, etoposide, interferons, camptothecin and derivatives thereof, phenesterine, taxol and derivatives thereof, taxotere and derivatives thereof, vinblastine, vincristine, tamoxifen, etoposide, piposulfan, and the like);
  • antineoplastics e.g., adriamycin, cyclophosphamide, actinomycin, bleomycin, duanorubicin, doxorubicin, epirubicin, mitomycin, methotrexate, fluorouracil, carboplatin, carmustine
  • antianxiety agents e.g., lorazepam, buspirone hydrochloride, prazepam, chlordiazepoxide hydrochloride, oxazepam, clorazepate dipotassium, diazepam, hydroxyzine pamoate, hydroxyzine hydrochloride, alprazolam, droperidol, halazepam, chlormezanone, dantrolene, and the like);
  • antianxiety agents e.g., lorazepam, buspirone hydrochloride, prazepam, chlordiazepoxide hydrochloride, oxazepam, clorazepate dipotassium, diazepam, hydroxyzine pamoate, hydroxyzine hydrochloride, alprazolam, droperidol, halazepam, chlormezanone, dantrolene, and the like);
  • immunosuppressive agents e.g., cyclosporine, azathioprine, mizoribine, FK506 (tacrolimus), and the like
  • antimigraine agents e.g., ergotamine tartrate, propanolol hydrochloride, isometheptene mucate, dichloralphenazone, and the like
  • sedatives/hypnotics e.g., barbiturates (e.g., pentobarbital, pentobarbital sodium, secobarbital sodium), benzodiazapines (e.g., flurazepam hydrochloride, triazolam, tomazeparm, midazolam hydrochloride, and the like);
  • antianginal agents e.g., beta-adrenergic blockers, calcium channel blockers (e.g., nifedipine, diltiazem hydrochloride, and the like), nitrates (e.g., nitroglycerin, isosorbide dinitrate, pentaerythritol tetranitrate, erythrityl tetranitrate, and the like));
  • antipsychotic agents e.g., haloperidol, loxapine succinate, loxapine hydrochloride, thioridazine, thioridazine hydrochloride, thiothixene, fluphenazine hydrochloride, fluphenazine decanoate, fluphenazine enanthate, trifluoperazine hydrochloride, chlorpromazine hydrochloride, perphenazine, lithium citrate, prochlorperazine, and the like);
  • antimanic agents e.g., lithium carbonate
  • antiarrhythmics e.g., amiodarone, related derivatives of amiodarone, bretylium tosylate, esmolol hydrochloride, verapamil hydrochloride, encainide hydrochloride, digoxin, digitoxin, mexiletine hydrochloride, disopyramide phosphate, procainamide hydrochloride, quinidine sulfate, quinidine gluconate, quinidine polygalacturonate, flecainide acetate, tocainide hydrochloride, lidocaine hydrochloride, and the like);
  • antiarthritic agents e.g., phenylbutazone, sulindac, penicillamine, salsalate, piroxicam, azathioprine, indomethacin, meclofenamate sodium, gold sodium thiomalate, ketoprofen, auranofin, aurothioglucose, tolmetin sodium, and the like;
  • antigout agents e.g., colchicine, allopurinol, and the like.
  • anticoagulants e.g., heparin, heparin sodium, warfarin sodium, and the like.
  • thrombolytic agents e.g., urokinase, streptokinase, altoplase, and the like
  • urokinase e.g., urokinase, streptokinase, altoplase, and the like
  • antifibrinolytic agents e.g., aminocaproic acid
  • hemorheologic agents e.g., pentoxifylline
  • antiplatelet agents e.g., aspirin, empirin, ascriptin, and the like
  • anticonvulsants e.g., valproic acid, divalproate sodium, phenytoin, phenytoin sodium, clonazepam, primidone, phenobarbitol, phenobarbitol sodium, carbamazepine, amobarbital sodium, methsuximide, metharbital, mephobarbital, mephenytoin, phensuximide, paramethadione, ethotoin, phenacemide, secobarbitol sodium, clorazepate dipotassium, trimethadione, and the like);
  • antiparkinson agents e.g., ethosuximide, and the like
  • antihistamines/antipruritics e.g., hydroxyzine hydrochloride, diphenhydramine hydrochloride, chlorpheniramine maleate, brompheniramine maleate, cyproheptadine hydrochloride, terfenadine, clemastine fumarate, triprolidine hydrochloride, carbinoxamine maleate, diphenylpyraline hydrochloride, phenindamine tartrate, azatadine maleate, tripelennamine hydrochloride, dexchlorpheniramine maleate, methdilazine hydrochloride, trimprazine tartrate and the like);
  • agents useful for calcium regulation e.g., calcitonin, parathyroid hormone, and the like.
  • antibacterial agents e.g., amikacin sulfate, aztreonam, chloramphenicol, chloramphenicol palmitate, chloramphenicol sodium succinate, ciprofloxacin hydrochloride, clindamycin hydrochloride, clindamycin palmitate, clindamycin phosphate, metronidazole, metronidazole hydrochloride, gentamicin sulfate, lincomycin hydrochloride, tobramycin sulfate, vancomycin hydrochloride, polymyxin B sulfate, colistimethate sodium, colistin sulfate, and the like);
  • antibacterial agents e.g., amikacin sulfate, aztreonam, chloramphenicol, chloramphenicol palmitate, chloramphenicol sodium succinate, ciprofloxacin hydrochloride, clindamycin hydrochloride, clindamycin palmitate
  • antiviral agents e.g., interferon gamma, zidovudine, amantadine hydrochloride, ribavirin, acyclovir, and the like;
  • antimicrobials e.g., cephalosporins (e.g., cefazolin sodium, cephradine, cefaclor, cephapirin sodium, ceftizoxime sodium, cefoperazone sodium, cefotetan disodium, cefutoxime azotil, cefotaxime sodium, cefadroxil monohydrate, ceftazidime, cephalexin, cephalothin sodium, cephalexin hydrochloride monohydrate, cefamandole nafate, cefoxitin sodium, cefonicid sodium, ceforanide, ceftriaxone sodium, ceftazidime, cefadroxil, cephradine, cefuroxime sodium, and the like), prythronycins, penicillins (e.g., ampicillin, amoxicillin, penicillin G benzathine, cyclacillin, ampicillin sodium, penicillin G potassium, penicillin V potassium,
  • anti-infectives e.g., GM-CSF
  • bronchodilators e.g., sympathomimetics (e.g., epinephrine hydrochloride, metaproterenol sulfate, terbutaline sulfate, isoetharine, isoetharine mesylate, isoetharine hydrochloride, albuterol sulfate, albuterol, bitolterol, mesylate isoproterenol hydrochloride, terbutaline sulfate, epinephrine bitartrate, metaproterenol sulfate, epinephrine, epinephrine bitartrate), anticholinergic agents (e.g., ipratropium bromide), xanthines (e.g., aminophylline, dyphylline, metaproterenol sulfate, aminophylline), mast cell stabilizers (e.g., cromoly
  • hormones e.g., androgens (e.g., danazol, testosterone cypionate, fluoxymesterone, ethyltostosterone, testosterone enanihate, methyltestosterone, fluoxymesterone, testosterone cypionate), estrogens (e.g., estradiol, estropipate, conjugated estrogens), progestins (e.g., methoxyprogesterone acetate, norethindrone acetate), corticosteroids (e.g., triamcinolone, betamethasone, betamethasone sodium phosphate, dexamethasone, dexamethasone sodium phosphate, dexamethasone acetate, prednisone, methylprednisolone acetate suspension, triamcinolone acetonide, methylprednisolone, prednisolone sodium phosphate methylprednisolone sodium succinate, hydro
  • hypoglycemic agents e.g., human insulin, purified beef insulin, purified pork insulin, glyburide, chlorpropamide, glipizide, tolbutamide, tolazamide, and the like;
  • hypolipidemic agents e.g., clofibrate, dextrothyroxine sodium, probucol, lovastatin, niacin, and the like
  • hypolipidemic agents e.g., clofibrate, dextrothyroxine sodium, probucol, lovastatin, niacin, and the like
  • proteins e.g., DNase, alginase, superoxide dismutase, lipase, and the like;
  • nucleic acids e.g., sense or anti-sense nucleic acids encoding any therapeutically useful protein, including any of the proteins described herein, and the like;
  • agents useful for erythropoiesis stimulation e.g., erythropoietin
  • antiulcer/antireflux agents e.g., famotidine, cimetidine, ranitidine hydrochloride, and the like
  • antiulcer/antireflux agents e.g., famotidine, cimetidine, ranitidine hydrochloride, and the like
  • antinauseants/antiemetics e.g., meclizine hydrochloride, nabilone, prochlorperazine, dimenhydrinate, promethazine hydrochloride, thiethylperazine, scopolamine, and the like;
  • oil-soluble vitamins e.g., vitamins A, D, E, K, and the like
  • microemulsion systems of the present invention may be used in brain chemotherapy and gene chemotherapy, since the nature of the surface of virus particles is an important determinant of the transfer rate of viruses across the blood/brain barrier or into another protected compartment (e.g., intraocular cerebrospinal fluid).
  • chemotherapeutic agents dissolved in an oil in water microemulsion might be more readily delivered to a tumor site in the brain.
  • pediatric patients with brain tumors may frequently require general anesthesia so that chemotherapeutic agents can be safely injected into the cerebrospinal fluid by puncture of the lumbar cistern.
  • Use of microemulsions to target brain tumors might obviate the need for anesthesia and/or lumbar puncture in adult and pediatric patients.
  • the solubility of nonpolar drugs can be significantly increased if dissolved in mixed solvents such as water and alcohol or propylene glycol by influencing the hydrophobic forces existing in the system. This approach will also be compared with microemulsion and selective micelle release systems.
  • the mixed solvent system may be the simplest method to solve problems of drug solubilization.
  • the first step is to select the normally difficultly soluble drug, such as propofol, which is similar to an oil.
  • the pharmaceutically active component such as propofol
  • the appropriate combination of surfactants is the combination of a long chain polymer surfactant component such as a poloxamer with a short chain fatty acid surfactant component.
  • the ratio of long chain polymer surfactant to short chain fatty acid surfactant should be from 10 to 100, preferably from 25 to 80 (wt./wt.).
  • Suitable long chain surfactants can be selected from the group known as organic or inorganic surfactant pharmaceutical excipients.
  • Preferred surfactants include nonionic and anionic surfactants.
  • long chain or high molecular weight (>1000) surfactants include gelatin, casein, lecithin (phosphatides), gum acacia, cholesterol, tragacanth, polyoxyethylene alkyl ethers, e.g., macrogol ethers such as cetomacrogol 1000, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, e.g., the commercially available Tweens, polyethylene glycols, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, microcrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, and polyvinylpyrrolidene (PVP).
  • gelatin casein, lecithin (phosphatides), gum acacia, cholesterol, tragacanth, poly
  • the low molecular weight ( ⁇ 1000) include stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, and sorbitan esters. Most of these surface modifiers are known pharmaceutical excipients and are described in detail in the Handbook of Pharmaceutical Excipients, published jointly by the American Pharmaceutical Association and The Pharmaceutical Society of Great Britain, the Pharmaceutical Press, 1986.
  • Particularly preferred long chain surfactants include polyvinylpyrrolidone, tyloxapol, poloxamers such as Pluronic F68, F77, and F108, which are block copolymers of ethylene oxide and propylene oxide, and polyxamines such as Tetronic 908 (also known as Poloxamine 908), which is a tetrafunctional block copolymer derived from sequential addition of propylene oxide and ethylene oxide to ethylenediamine, available from BASF, dextran, lecithin, dialkylesters of sodium sulfosuccinic acid, such as Aerosol OT, which is a dioctyl ester of sodium sulfosuccinic acid, available from American Cyanamid, Duponol P, which is a sodium lauryl sulfate, available from DuPont, Triton X-200, which is an alkyl aryl polyether sulfonate, available from Rohm and Haas, T
  • Tetronic 908 the Tweens, Pluronic F-68 and polyvinylpyrrolidone.
  • Other useful surface modifiers include: decanoyl-N-methylglucamide; n-decyl.beta-D-glucsopyranoside; n-decyl.beta-D-maltopyranoside; n-dodecyl.beta-D-glucopyranoside; n-dodecyl.beta.-D-maltoside; heptanoyl-N-methylglucamide; n-heptyl-.beta.-D-glucopyranoside; n-heptyl.beta.-D-thioglucoside; n-hexyl.beta.-D-glucopyranoside; nonanoyl-N-methylglucamide; n-noyl.beta.-D-gluglu
  • tyloxapol a nonionic liquid polymer of the alkyl aryl polyether alcohol type; also known as superinone or triton.
  • This surfactant is commercially available and/or can be prepared by techniques known in the art.
  • One preferred long chain surfactant is a block copolymer linked to at least one anionic group.
  • the polymers contain at least one, and preferably two, three, four or more anionic groups per molecule.
  • Preferred anionic groups include sulfate, sulfonate, phosphonate, phosphate and carboxylate groups.
  • the anionic groups are covalently attached to the nonionic block copolymer.
  • the nonionic sulfated polymeric surfactant has a molecular weight of 1,000-50,000, preferably 2,000-40,000, and more preferably 3,000-30,000.
  • the polymer comprises at least about 50%, and more preferably, at least about 60% by weight of hydrophilic units, e.g., alkylene oxide units. The reason for this is that the presence of a major weight proportion of hydrophilic units confers aqueous solubility to the polymer.
  • a preferred class of block copolymers useful as surface modifiers herein includes block copolymers of ethylene oxide and propylene oxide. These block copolymers are commercially available as Pluronics. Specific examples of the block copolymers include F68, F77, F108 and F127.
  • block copolymers useful herein include tetrafunctional block copolymers derived from sequential addition of ethylene oxide and propylene oxide to ethylene diamine. These polymers, in an unsulfated form, are commercially available as Tetronics.
  • the long chain surfactant is preferably a block copolymer which is a poloxamer which is a copolymer of ethylene oxide and propylene oxide. These copolymers are commercially available as Pluronics®.
  • the second component of the co-surfactant or emulsifier combination is a short chain fatty acid component.
  • short chain is meant C 8 to C 16 chain length, preferably, C 8 to C 12 .
  • One preferred co-emulsifier with especially good results is sodium laurate.
  • microemulsions In addition to microemulsions, one can design the interface of such nanometer-sized droplets so that droplet stability and lifespan in humans can be selectively designed to last from a few milliseconds to minutes, or even to hours. We believe that the interfacial rigidity of the microemulsion droplets plays a key role in the flux of the drugs from such droplets to the cells and tissues. Tailoring of microemulsion systems to control the flux of the drugs can also be manipulated in such systems to customize drug delivery according to individual patient requirements or to specific pharmaceutical needs.
  • the combination that comprises the long chain polymer surfactant component in a short chain fatty acid surfactant component are selected so that they are safe to be taken by humans either orally or intravenously. In providing the composition for administration to humans intravenously and safely intravenously, the concentration would normally be less than 1000 mg of active material per one mL of total material.
  • the surfactant and the cosurfactant i.e. the long chain polymer surfactant active component and the short chain fatty acid surface active component are preferably selected from the GRAS list.
  • Drugs such as lidocaine and tetracaine can be obtained in base form (nonionic or unionized) or salt (ionic) form.
  • the salt form of drugs has a much greater solubility in aqueous phase (i.e., water). For this reason, many drugs are commonly supplied in the salt form in the aqueous phase.
  • aqueous phase i.e., water
  • surface active drug molecules form micelles in the aqueous phase. These micelles can easily solubilize nonpolar or nonionic forms of drugs.
  • the solubility of a drug can be three to five-fold greater in the aqueous phase if we put ionized and unionized forms of lidocaine into the aqueous phase.
  • the microemulsion When injected into a peripheral vein (e.g., arm or hand vein), the microemulsion would be designed in a manner that it may or may not release the lipophilic drug that it is holding until it enters the central blood circulation. Using this design approach, patient safety and comfort would be markedly improved. Specifically, the damage and/or pain associated with peripheral intravenous injection for certain drugs such as chemotherapeutic agents and propofol could be significantly reduced or even eliminated. This technique may avoid the risks of placing a catheter into the central circulation to administer these types of drugs.
  • chemotherapeutic agents and propofol could be significantly reduced or even eliminated. This technique may avoid the risks of placing a catheter into the central circulation to administer these types of drugs.
  • Micelle stability significantly affects transfer rate of drugs. For example, one might deliver a long-acting, peripheral neural blockade using lidocaine instead of bupivicaine by encasing lidocaine in micelles with life spans of several hours. Because the therapeutic index for cardiotoxic effects of lidocaine is much greater than that for bupivicaine, use of tailored micelles would significantly enhance patient safety. (Therapeutic index is a pharmacological term regarding the margin of safety to be expected for a certain concentration of a drug to produce a desired effect [e.g., TD 50 ] compared to the concentration that causes an undesired effect [e.g., LD 50 ]). Similarly, long-lived micelles might be useful for coating drug particles or viruses for permeation through the blood/brain barrier.
  • propofol was used as the drug selected.
  • Propofol was used with a microemulsion emulsifier combination of Pluronic® F77 and sodium laurate in amounts specified below.
  • Microemulsions with the emulsifier combination saline and propofol were made. Stability and viscosity were determined, using conventional methods and tabulated in Tables 1, 2, 3 and 4 below.
  • a syringe pump (sp2000i, World Precision Instruments, Sarasota, Fla.) was used to assure a constant rate of drug administration.
  • Body temperature was maintained using a heating blanket (TP-400, Gaymar Industries, Inc., Orchard Park, N.Y.).
  • the endpoint of anesthetic induction was total drug dose to cause the loss of reflexive withdrawal of the leg following a left great toe pinch. Following loss of withdrawal, the drug infusion was discontinued. Endpoints of anesthetic recovery were timed until recovery of spontaneous eye blinking, sustained head lift, and righting reflex. Following the first anesthetic and recovery, rats were allowed to fully recover for approximately 45 min. before receiving the alternative formulation of propofol. Rats were observed for seven days after receiving anesthesia.
  • the invention accomplishes at least all of its stated objectives. And, an important aspect of which is the combination emulsifier system of a long chain polymer surfactant component, and a short chain fatty acid component which set up a competitive adsorption at the interface of the oil and water to reduce interfacial tension to a very low value.
  • This allows the formation of stable microemulsions, particularly so with the preferred drug propofol and the preferred emulsifier combination pluronic F77 and sodium laurate.
  • the formed microemulsion is clear, not milky appearing at all times.

Abstract

A microemulsion delivery system for water insoluble or sparingly water soluble drugs that comprises a long polymer chain surfactant component and a short fatty acid surfactant component, with the amount of each being selected to provide stable microemulsion or micellar systems.

Description

    CROSS REFERENCED TO A RELATED APPLICATION
  • This application is a continuation-in-part of Dennis et al., Ser. No. 09/630,237 filed Aug. 1, 2000.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to compositions and a method for making microemulsion delivery systems for water insoluble or sparingly soluble drugs. [0002]
  • BACKGROUND OF THE INVENTION
  • Dissolving water insoluble agents into aqueous solutions appropriate for human use (e.g., oral, topical application, intravenous injection, intramuscular injection, subcutaneous injection) represents a major technological hurdle for pharmaceutical delivery systems. Previous attempts have resulted in a number of serious side effects caused not by the drugs, but by the carrier agents used to dissolve the drug. These complications include significant hypotension during intravenous injection (e.g., amiodarone), painful injection with subsequent phlebitis (e.g., valium), anaphylaxis (e.g., propofol in Cremaphor), postoperative infections (e.g., propofol in Intralipid), and others. Clearly, an approach aimed at improving the solubilization of these drugs and avoiding the complications of solubilizing agents would enhance the quality of health care to patients. For many drugs, a major technological barrier for their routine clinical use is very poor solubility in the aqueous phase. For such drugs, oil/water macroemulsions have been commonly used in the pharmaceutical industry to “dissolve” a drug to its desired concentration. For example, the anesthetic propofol is supplied to the health care industry as Baxter PPI propofol (Gensia Sicor, Inc.) or Diprivan (AstraZeneca Pharmaceuticals, Inc.), as a macroemulsion of propofol in soybean oil (100 mg/mL), glycerol (22.5 mg/mL), egg lecithin (12 mg/mL), and disodium edetate (0.005%) or metabisulfite; with sodium hydroxide to adjust pH to 7.0-8.5. However, the stability of such macroemulsions is relatively poor, and the oil and water components separate into distinct phases over time. In addition, the droplet size of the macroemulsion increases with time. Macroemulsions are defined as formed by high shear mixing and normally having particles of 1 micron to 10 microns in size. [0003]
  • In contrast to macroemulsion systems, microemulsion systems consisting of oil, water, and appropriate emulsifiers can form spontaneously and are therefore thermodynamically stable. For this reason, microemulsion systems theoretically have an infinite shelf life under normal conditions in contrast to the limited life of macroemulsions (e.g., two years for Baxter PPI propofol). In addition, the size of the droplets in such microemulsions remains constant and ranges from 100-1000 angstroms (10-100 nm), and has very low oil/water interfacial tension. Because the droplet size is less than 25% of the wavelength of visible light, microemulsions are transparent. Three distinct microemulsion solubilization systems that can be used for drugs are as follows: [0004]
  • 1. oil in water microemulsions wherein oil droplets are dispersed in the continuous aqueous phase; [0005]
  • 2. water in oil microemulsions wherein water droplets are dispersed in the continuous oil phase; [0006]
  • 3. bi-continuous microemulsions wherein microdomains of oil and water are interdispersed within the system. In all three types of microemulsions, the interface is stabilized by an appropriate combination of surfactants and/or co-surfactants. [0007]
  • It can be seen from the above description that there is a real and continuing need for the development of new and effective drug delivery systems for water insoluble or sparingly soluble drugs. One such approach might be pharmaceutical microemulsions. However, one must choose materials that are biocompatible, non-toxic, clinically acceptable, and use emulsifiers in an appropriate concentration range, and form stable microemulsions. This invention has as its objective the formation of safe and effective pharmaceutical microemulsion delivery systems. [0008]
  • The delivery system described herein has been found particularly useful for propofol, but is not exclusively limited thereto. It is presented here as an example of a state of the art drug, normally poorly soluble in its present delivery form, but when properly delivered in a pharmaceutical microemulsion carrier, the current problems can be solved. Such current problems in the case of propofol stem directly from its poor solubility in water. These include significant pain during injection, and post-operative infections in some patients who, for example, receive a macroemulsion of propofol for surgery or sedation. [0009]
  • In an attempt to lower health care costs, there has been an explosive growth in the number of surgical procedures being done on an outpatient basis in the United States. In the outpatient setting, the use of short acting anesthetics allows for prompt emergence from anesthesia and provides expeditious discharge of patients to their home. Propofol (2,6-diisopropylphenol, molecular weight 178.27) is an organic liquid similar to oil, has very little solubility in the aqueous phase (octanol/water partition coefficient 6761:1 at a pH 6.0-8.5), and is a short-acting intravenous anesthetic that meets the criteria of rapid anesthetic emergence with minimal side effects. Currently, propofol is supplied as a macroemulsion, an opaque dispersion using biocompatible emulsifiers such as phospholipids, cholesterol, and others. In addition, a number of other drawbacks cause significant limitations and risk to some patients. [0010]
  • Most of the disadvantages of propofol relate to its commercial formulation and physical properties. That is, propofol is a liquid at room temperature and is extremely insoluble in water. The inherent lipophilicity of propofol makes dissolution in saline or phosphate buffer problematic. In the early 1980's, Cremaphor was used as a solvent, but subsequently abandoned because of its propensity to cause life threatening anaphylactic reactions. Since that time, propofol is suspended in a macroemulsion consisting of 10% Intralipid, a milky white solution of soybean oil and other additives as specified previously. The current commercial formulation of propofol has several major disadvantages. First, use of propofol in Intralipid has been implicated as the causative agent contributing to several cases of postoperative infection in human patients as detailed by the Center for Disease Control and Prevention. The cause of the infections and death was attributed to extrinsically contaminated Diprivan (i.e., propofol in Intralipid) used as an anesthetic during the surgical procedures. To address the propensity of bacterial growth, manufacturers added the preservatives EDTA (0.05 mg/ml) to Diprivan and sodium metabisulfite (0.25 mg/ml) to Baxter PPI propofol. Unfortunately, both of these preservatives may potentially cause adverse reactions in humans. Whereas sodium metabisulfite may cause allergic-type reactions in susceptible patients, the chelating properties of EDTA were of concern to the FDA because of their effects on cardiac conduction and renal function. Thus, use of a solvent that does not support bacterial growth would significantly enhance the therapeutic safety of propofol not only by preventing intravenous injection of microbes, but also by obviating the need for preservatives and possible adverse effects of these agents. [0011]
  • Second, the cost of Intralipid substantially adds to the expense of manufacturing a propofol macroemulsion. This vehicle is produced by Clinitec, licensed to the pharmaceutical corporations for the purpose of solubilizing propofol, and constitutes a major fraction of the cost of producing Diprivan (propofol in 10% Intralipid). [0012]
  • A third major disadvantage of the current preparation of propofol relates to its free, aqueous concentrations. Propofol is a phenol derivative (2,6-diisopropylphenol) and causes pain on injection. This effect is the single greatest complaint of anesthesiologists and patients regarding propofol and may on occasion necessitate discontinuation of the drug for sedative purposes. Most authorities believe that the stinging relates to the concentration of propofol in free, aqueous solution. [0013]
  • A solvent that completely emulsifies or partitions propofol into the non-aqueous phase would preclude (or markedly reduce) stinging and allow painless injection similar to thiopental sodium (another widely used intravenous anesthetic). The formulations of the present invention address and overcome these three disadvantages.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows release of active drug from microemulsions or micelles to Heptane phase. [0015]
  • FIG. 2 shows similar experimental results.[0016]
  • SUMMARY OF THE INVENTION
  • A microemulsion delivery system for normally water insoluble or sparingly soluble drugs, such as propofol. The drug is microemulsified with an emulsifier combination of a long chain polymer surfactant component and a short chain fatty acid surfactant component. These are selected to reduce surface tension to absorption between the two phases to thereby allow the formation of thermodynamically stable microemulsions or micelles. The system is particularly useful for propofol, but is not limited to propofol. [0017]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Microemulsion drug delivery systems of this invention are hereinafter described in conjunction with microemulsions with the pharmaceutically active anesthetic propofol. However, it should be understood that the use of propofol as the active water insoluble or sparingly soluble drug in the description is exemplary only of the generally described class of normally poorly water soluble drugs. Microemulsion systems of the present invention, particularly oil and water, can be used to dissolve substantial concentrations of oil-soluble drugs such as propofol, and they can thereafter be injected intravenously into human patients or animals with less, or even without pain caused by the delivery system. [0018]
  • Many water soluble drugs such as cyclosporine, insulin, and others can be dissolved in water-in-oil microemulsions and can be taken orally (e.g., gelatin capsule) or injected. These microemulsions spread over the intestinal surface wherein nanometer-sized water droplets with drugs dissolved therein permeate and diffuse across the intestinal brush border. The delivery of various drugs (i.e., oil-soluble, water-soluble, and interphase soluble drugs) in patients using the previously-mentioned three types of microemulsion systems consisting of biocompatible surfactants and co-surfactants will work. Such solutions can be especially valuable to patients with abdominal disorders that inhibit absorption such as short gut syndrome and for better oral delivery of expensive drugs that are otherwise poorly absorbed. [0019]
  • Substantially water insoluble pharmacologically active agents contemplated for use in the practice of the present invention include pharmaceutically active agents, not limited in class, except to say they are normally difficultly soluble in aqueous systems. Examples of pharmaceutically active drug agents include: [0020]
  • analgesics/antipyretics (e.g., aspirin, acetaminophen, ibuprofen, naproxen sodium, buprenorphine hydrochloride, propoxyphene hydrochloride, propoxyphene napsylate, meperidine hydrochloride, hydromorphone hydrochloride, morphine sulfate, oxycodone hydrochloride, codeine phosphate, dihydrocodeine bitartrate, pentazocine hydrochloride, hydrocodone bitartrate, levorphanol tartrate, diflunisal, trolamine salicylate, nalbuphine hydrochloride, mefenamic acid, butorphanol tartrate, choline salicylate, butalbital, phenyltoloxamine citrate, diphenhydramine citrate, methotrimeprazine, cinnamedrine hydrochloride, meprobamate, and the like); [0021]
  • anesthetics (e.g., halothane, isoflurane, methoxyflurane, propofol, thiobarbiturates, xenon and the like); antiasthmatics (e.g., Azelastine, Ketotifen, Traxanox, and the like); [0022]
  • antibiotics (e.g., neomycin, streptomycin, chloramphenicol, cephalosporin, ampicillin, penicillin, tetracycline, and the like); [0023]
  • antidepressants (e.g., nefopam, oxypertine, doxepin hydrochloride, amoxapine, trazodone hydrochloride, amitriptyline hydrochloride, maprotiline hydrochloride, phenelzine sulfate, desipramine hydrochloride, nortriptyline hydrochloride, tranylcypromine sulfate, fluoxetine hydrochloride, doxepin hydrochloride, imipramine hydrochloride, imipramine pamoate, nortriptyline, amitriptyline hydrochloride, isocarboxazid, desipramine hydrochloride, trimipramine maleate, protriptyline hydrochloride, and the like); [0024]
  • antidiabetics (e.g., biguanides, hormones, sulfonylurea derivatives, and the like); [0025]
  • antifungal agents (e.g., griseofulvin, keoconazole, amphotericin B, Nystatin, candicidin, and the like); [0026]
  • antihypertensive agents (e.g., propanolol, propafenone, oxyprenolol, nifedipine, reserpine, trimethaphan camsylate, phenoxybenzamine hydrochloride, pargyline hydrochloride, deserpidine, diazoxide, guanethidine monosulfate, minoxidil, rescinamine, sodium nitroprusside, rauwolfia serpentina, alseroxylon, phentolamine mesylate, reserpine, and the like); [0027]
  • anti-inflammatories (e.g., (non-steroidal) indomethacin, naproxen, ibuprofen, ramifenazone, piroxicam, (steroidal) cortisone, dexamethasone, fluazacort, hydrocortisone, prednisolone, prednisone, and the like); [0028]
  • antineoplastics (e.g., adriamycin, cyclophosphamide, actinomycin, bleomycin, duanorubicin, doxorubicin, epirubicin, mitomycin, methotrexate, fluorouracil, carboplatin, carmustine (BCNU), methyl-CCNU, cisplatin, etoposide, interferons, camptothecin and derivatives thereof, phenesterine, taxol and derivatives thereof, taxotere and derivatives thereof, vinblastine, vincristine, tamoxifen, etoposide, piposulfan, and the like); [0029]
  • antianxiety agents (e.g., lorazepam, buspirone hydrochloride, prazepam, chlordiazepoxide hydrochloride, oxazepam, clorazepate dipotassium, diazepam, hydroxyzine pamoate, hydroxyzine hydrochloride, alprazolam, droperidol, halazepam, chlormezanone, dantrolene, and the like); [0030]
  • immunosuppressive agents (e.g., cyclosporine, azathioprine, mizoribine, FK506 (tacrolimus), and the like); antimigraine agents (e.g., ergotamine tartrate, propanolol hydrochloride, isometheptene mucate, dichloralphenazone, and the like); [0031]
  • sedatives/hypnotics (e.g., barbiturates (e.g., pentobarbital, pentobarbital sodium, secobarbital sodium), benzodiazapines (e.g., flurazepam hydrochloride, triazolam, tomazeparm, midazolam hydrochloride, and the like); [0032]
  • antianginal agents (e.g., beta-adrenergic blockers, calcium channel blockers (e.g., nifedipine, diltiazem hydrochloride, and the like), nitrates (e.g., nitroglycerin, isosorbide dinitrate, pentaerythritol tetranitrate, erythrityl tetranitrate, and the like)); [0033]
  • antipsychotic agents (e.g., haloperidol, loxapine succinate, loxapine hydrochloride, thioridazine, thioridazine hydrochloride, thiothixene, fluphenazine hydrochloride, fluphenazine decanoate, fluphenazine enanthate, trifluoperazine hydrochloride, chlorpromazine hydrochloride, perphenazine, lithium citrate, prochlorperazine, and the like); [0034]
  • antimanic agents (e.g., lithium carbonate); [0035]
  • antiarrhythmics (e.g., amiodarone, related derivatives of amiodarone, bretylium tosylate, esmolol hydrochloride, verapamil hydrochloride, encainide hydrochloride, digoxin, digitoxin, mexiletine hydrochloride, disopyramide phosphate, procainamide hydrochloride, quinidine sulfate, quinidine gluconate, quinidine polygalacturonate, flecainide acetate, tocainide hydrochloride, lidocaine hydrochloride, and the like); [0036]
  • antiarthritic agents (e.g., phenylbutazone, sulindac, penicillamine, salsalate, piroxicam, azathioprine, indomethacin, meclofenamate sodium, gold sodium thiomalate, ketoprofen, auranofin, aurothioglucose, tolmetin sodium, and the like); [0037]
  • antigout agents (e.g., colchicine, allopurinol, and the like); [0038]
  • anticoagulants (e.g., heparin, heparin sodium, warfarin sodium, and the like); [0039]
  • thrombolytic agents (e.g., urokinase, streptokinase, altoplase, and the like); [0040]
  • antifibrinolytic agents (e.g., aminocaproic acid); hemorheologic agents (e.g., pentoxifylline); [0041]
  • antiplatelet agents (e.g., aspirin, empirin, ascriptin, and the like); [0042]
  • anticonvulsants (e.g., valproic acid, divalproate sodium, phenytoin, phenytoin sodium, clonazepam, primidone, phenobarbitol, phenobarbitol sodium, carbamazepine, amobarbital sodium, methsuximide, metharbital, mephobarbital, mephenytoin, phensuximide, paramethadione, ethotoin, phenacemide, secobarbitol sodium, clorazepate dipotassium, trimethadione, and the like); [0043]
  • antiparkinson agents (e.g., ethosuximide, and the like); antihistamines/antipruritics (e.g., hydroxyzine hydrochloride, diphenhydramine hydrochloride, chlorpheniramine maleate, brompheniramine maleate, cyproheptadine hydrochloride, terfenadine, clemastine fumarate, triprolidine hydrochloride, carbinoxamine maleate, diphenylpyraline hydrochloride, phenindamine tartrate, azatadine maleate, tripelennamine hydrochloride, dexchlorpheniramine maleate, methdilazine hydrochloride, trimprazine tartrate and the like); [0044]
  • agents useful for calcium regulation (e.g., calcitonin, parathyroid hormone, and the like); [0045]
  • antibacterial agents (e.g., amikacin sulfate, aztreonam, chloramphenicol, chloramphenicol palmitate, chloramphenicol sodium succinate, ciprofloxacin hydrochloride, clindamycin hydrochloride, clindamycin palmitate, clindamycin phosphate, metronidazole, metronidazole hydrochloride, gentamicin sulfate, lincomycin hydrochloride, tobramycin sulfate, vancomycin hydrochloride, polymyxin B sulfate, colistimethate sodium, colistin sulfate, and the like); [0046]
  • antiviral agents (e.g., interferon gamma, zidovudine, amantadine hydrochloride, ribavirin, acyclovir, and the like); [0047]
  • antimicrobials (e.g., cephalosporins (e.g., cefazolin sodium, cephradine, cefaclor, cephapirin sodium, ceftizoxime sodium, cefoperazone sodium, cefotetan disodium, cefutoxime azotil, cefotaxime sodium, cefadroxil monohydrate, ceftazidime, cephalexin, cephalothin sodium, cephalexin hydrochloride monohydrate, cefamandole nafate, cefoxitin sodium, cefonicid sodium, ceforanide, ceftriaxone sodium, ceftazidime, cefadroxil, cephradine, cefuroxime sodium, and the like), prythronycins, penicillins (e.g., ampicillin, amoxicillin, penicillin G benzathine, cyclacillin, ampicillin sodium, penicillin G potassium, penicillin V potassium, piperacillin sodium, oxacillin sodium, bacampicillin hydrochloride, cloxacillin sodium, ticarcillin disodium, azlocillin sodium, carbenicillin indanyl sodium, penicillin G potassium, penicillin G procaine, methicillin sodium, nafcillin sodium, and the like), erythromycins (e.g., erythromycin ethylsuccinate, erythromycin, erythromycin estolate, erythromycin lactobionate, erythromycin siearate, erythromycin ethylsuccinate, and the like), tetracyclines (e.g., tetracycline hydrochloride, doxycycline hyclate, minocycline hydrochloride, and the like), and the like); [0048]
  • anti-infectives (e.g., GM-CSF); [0049]
  • bronchodilators (e.g., sympathomimetics (e.g., epinephrine hydrochloride, metaproterenol sulfate, terbutaline sulfate, isoetharine, isoetharine mesylate, isoetharine hydrochloride, albuterol sulfate, albuterol, bitolterol, mesylate isoproterenol hydrochloride, terbutaline sulfate, epinephrine bitartrate, metaproterenol sulfate, epinephrine, epinephrine bitartrate), anticholinergic agents (e.g., ipratropium bromide), xanthines (e.g., aminophylline, dyphylline, metaproterenol sulfate, aminophylline), mast cell stabilizers (e.g., cromolyn sodium), inhalant corticosteroids (e.g., flurisolidebeclomethasone dipropionate, beclomethasone dipropionate monohydrate), salbutamol, beclomethasone dipropionate (BDP), ipratropium bromide, budesonide, ketotifen, salmeterol, xinafoate, terbutaline sulfate, triamcinolone, theophylline, nedocromil sodium, metaproterenol sulfate, albuterol, flunisolide, and the like); [0050]
  • hormones (e.g., androgens (e.g., danazol, testosterone cypionate, fluoxymesterone, ethyltostosterone, testosterone enanihate, methyltestosterone, fluoxymesterone, testosterone cypionate), estrogens (e.g., estradiol, estropipate, conjugated estrogens), progestins (e.g., methoxyprogesterone acetate, norethindrone acetate), corticosteroids (e.g., triamcinolone, betamethasone, betamethasone sodium phosphate, dexamethasone, dexamethasone sodium phosphate, dexamethasone acetate, prednisone, methylprednisolone acetate suspension, triamcinolone acetonide, methylprednisolone, prednisolone sodium phosphate methylprednisolone sodium succinate, hydrocortisone sodium succinate, methylprednisolone sodium succinate, triamcinolone hexacatonide, hydrocortisone, hydrocortisone cypionate, prednisolone, fluorocortisone acetate, paramethasone acetate, prednisolone tebulate, prednisolone acetate, prednisolone sodium phosphate, hydrocortisone sodium succinate, and the like), thyroid hormones (e.g., levothyroxine sodium) and the like), and the like; [0051]
  • hypoglycemic agents (e.g., human insulin, purified beef insulin, purified pork insulin, glyburide, chlorpropamide, glipizide, tolbutamide, tolazamide, and the like); [0052]
  • hypolipidemic agents (e.g., clofibrate, dextrothyroxine sodium, probucol, lovastatin, niacin, and the like); [0053]
  • proteins (e.g., DNase, alginase, superoxide dismutase, lipase, and the like); [0054]
  • nucleic acids (e.g., sense or anti-sense nucleic acids encoding any therapeutically useful protein, including any of the proteins described herein, and the like); [0055]
  • agents useful for erythropoiesis stimulation (e.g., erythropoietin); [0056]
  • antiulcer/antireflux agents (e.g., famotidine, cimetidine, ranitidine hydrochloride, and the like); [0057]
  • antinauseants/antiemetics (e.g., meclizine hydrochloride, nabilone, prochlorperazine, dimenhydrinate, promethazine hydrochloride, thiethylperazine, scopolamine, and the like); [0058]
  • oil-soluble vitamins (e.g., vitamins A, D, E, K, and the like); [0059]
  • as well as other drugs such as mitotane, visadine, halonitrosoureas, anthrocyclines, ellipticine, and the like. [0060]
  • As well, the microemulsion systems of the present invention may be used in brain chemotherapy and gene chemotherapy, since the nature of the surface of virus particles is an important determinant of the transfer rate of viruses across the blood/brain barrier or into another protected compartment (e.g., intraocular cerebrospinal fluid). [0061]
  • Likewise, many chemotherapeutic agents dissolved in an oil in water microemulsion might be more readily delivered to a tumor site in the brain. For example, pediatric patients with brain tumors may frequently require general anesthesia so that chemotherapeutic agents can be safely injected into the cerebrospinal fluid by puncture of the lumbar cistern. Use of microemulsions to target brain tumors might obviate the need for anesthesia and/or lumbar puncture in adult and pediatric patients. [0062]
  • The solubility of nonpolar drugs can be significantly increased if dissolved in mixed solvents such as water and alcohol or propylene glycol by influencing the hydrophobic forces existing in the system. This approach will also be compared with microemulsion and selective micelle release systems. The mixed solvent system may be the simplest method to solve problems of drug solubilization. [0063]
  • In preparation of the pharmaceutically active drug such as propofol useful in highly bioavailable form in accordance with the present invention, the first step is to select the normally difficultly soluble drug, such as propofol, which is similar to an oil. In order to make a homogeneous microemulsion of the pharmaceutically active component such as propofol, one needs to mix it with the appropriate emulsifier combination for formation of the microemulsion. [0064]
  • Surprisingly, it has been found that in accordance with the present invention, the appropriate combination of surfactants is the combination of a long chain polymer surfactant component such as a poloxamer with a short chain fatty acid surfactant component. The ratio of long chain polymer surfactant to short chain fatty acid surfactant should be from 10 to 100, preferably from 25 to 80 (wt./wt.). [0065]
  • Suitable long chain surfactants can be selected from the group known as organic or inorganic surfactant pharmaceutical excipients. Preferred surfactants include nonionic and anionic surfactants. [0066]
  • Representative examples of long chain or high molecular weight (>1000) surfactants include gelatin, casein, lecithin (phosphatides), gum acacia, cholesterol, tragacanth, polyoxyethylene alkyl ethers, e.g., macrogol ethers such as cetomacrogol 1000, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, e.g., the commercially available Tweens, polyethylene glycols, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, microcrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, and polyvinylpyrrolidene (PVP). The low molecular weight (<1000) include stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, and sorbitan esters. Most of these surface modifiers are known pharmaceutical excipients and are described in detail in the Handbook of Pharmaceutical Excipients, published jointly by the American Pharmaceutical Association and The Pharmaceutical Society of Great Britain, the Pharmaceutical Press, 1986. [0067]
  • Particularly preferred long chain surfactants include polyvinylpyrrolidone, tyloxapol, poloxamers such as Pluronic F68, F77, and F108, which are block copolymers of ethylene oxide and propylene oxide, and polyxamines such as Tetronic 908 (also known as Poloxamine 908), which is a tetrafunctional block copolymer derived from sequential addition of propylene oxide and ethylene oxide to ethylenediamine, available from BASF, dextran, lecithin, dialkylesters of sodium sulfosuccinic acid, such as Aerosol OT, which is a dioctyl ester of sodium sulfosuccinic acid, available from American Cyanamid, Duponol P, which is a sodium lauryl sulfate, available from DuPont, Triton X-200, which is an alkyl aryl polyether sulfonate, available from Rohm and Haas, Tween 20 and Tween 80, which are polyoxyethylene sorbitan fatty acid esters, available from ICI Specialty Chemicals; Carbowax 3550 and 934, which are polyethylene glycols available from Union Carbide; Crodesta F-110, which is a mixture of sucrose stearate and sucrose distearate, available from Croda Inc., Crodesta SL-40, which is available from Croda, Inc., and SA90HCO, which is C.sub.18 H.sub.37-CH.sub.2(CON(CH.sub.3)CH.sub.2 (CHOH).sub.4 CH.sub.2OH).sub.2. Surface modifiers which have been found to be particularly useful include Tetronic 908, the Tweens, Pluronic F-68 and polyvinylpyrrolidone. Other useful surface modifiers include: decanoyl-N-methylglucamide; n-decyl.beta-D-glucsopyranoside; n-decyl.beta-D-maltopyranoside; n-dodecyl.beta-D-glucopyranoside; n-dodecyl.beta.-D-maltoside; heptanoyl-N-methylglucamide; n-heptyl-.beta.-D-glucopyranoside; n-heptyl.beta.-D-thioglucoside; n-hexyl.beta.-D-glucopyranoside; nonanoyl-N-methylglucamide; n-noyl.beta.-D-glucopyranoside; octanoyl-N-methylglucamide; n-octyl-.beta.-D-glucopyranoside; octyl.beta.-D-thioglucopyranoside; and the like. [0068]
  • Another useful long chain surfactant is tyloxapol (a nonionic liquid polymer of the alkyl aryl polyether alcohol type; also known as superinone or triton). This surfactant is commercially available and/or can be prepared by techniques known in the art. [0069]
  • Another preferred surfactant p-isononylphenoxypoly (glycidol) also known as Olin-10G or Surfactant 10-G, is commercially available as 10G from Olin Chemicals, Stamford, Conn. [0070]
  • One preferred long chain surfactant is a block copolymer linked to at least one anionic group. The polymers contain at least one, and preferably two, three, four or more anionic groups per molecule. Preferred anionic groups include sulfate, sulfonate, phosphonate, phosphate and carboxylate groups. The anionic groups are covalently attached to the nonionic block copolymer. The nonionic sulfated polymeric surfactant has a molecular weight of 1,000-50,000, preferably 2,000-40,000, and more preferably 3,000-30,000. In preferred embodiments, the polymer comprises at least about 50%, and more preferably, at least about 60% by weight of hydrophilic units, e.g., alkylene oxide units. The reason for this is that the presence of a major weight proportion of hydrophilic units confers aqueous solubility to the polymer. [0071]
  • A preferred class of block copolymers useful as surface modifiers herein includes block copolymers of ethylene oxide and propylene oxide. These block copolymers are commercially available as Pluronics. Specific examples of the block copolymers include F68, F77, F108 and F127. [0072]
  • Another preferred class of block copolymers useful herein include tetrafunctional block copolymers derived from sequential addition of ethylene oxide and propylene oxide to ethylene diamine. These polymers, in an unsulfated form, are commercially available as Tetronics. [0073]
  • To summarize, the long chain surfactant is preferably a block copolymer which is a poloxamer which is a copolymer of ethylene oxide and propylene oxide. These copolymers are commercially available as Pluronics®. [0074]
  • The second component of the co-surfactant or emulsifier combination is a short chain fatty acid component. By short chain is meant C[0075] 8 to C16 chain length, preferably, C8 to C12. One preferred co-emulsifier with especially good results is sodium laurate.
  • The advantages of this combination system are that one can solubilize a broad range of concentrations of active drugs and optimize the exact composition of the microemulsion components. For example, with respect to propofol, high concentrations can be achieved if desired by using higher concentrations of the co-emulsifiers. Concentrations of propofol used by healthcare providers (i.e., 1% concentrate, 10 mg/mL) can be very easily achieved in the present system shown by Tables 1, 2, 3 and 4 with respect to the examples below. These are all clear solutions, colorless, thermodynamically stable over time (currently these have been demonstrated for stability up to at least 16 months), and do not support bacterial growth. [0076]
  • In addition to microemulsions, one can design the interface of such nanometer-sized droplets so that droplet stability and lifespan in humans can be selectively designed to last from a few milliseconds to minutes, or even to hours. We believe that the interfacial rigidity of the microemulsion droplets plays a key role in the flux of the drugs from such droplets to the cells and tissues. Tailoring of microemulsion systems to control the flux of the drugs can also be manipulated in such systems to customize drug delivery according to individual patient requirements or to specific pharmaceutical needs. [0077]
  • A mixture of one or more of the drug active ingredients in the microemulsion carrier composition of the present invention to generally lower the interfacial tension of the active ingredient to less than 0.1 duines/cm with a drop size of the active ingredient in the carrier liquid being preferably less than 200 nm. Preferably the combination that comprises the long chain polymer surfactant component in a short chain fatty acid surfactant component are selected so that they are safe to be taken by humans either orally or intravenously. In providing the composition for administration to humans intravenously and safely intravenously, the concentration would normally be less than 1000 mg of active material per one mL of total material. Of course, the surfactant and the cosurfactant i.e. the long chain polymer surfactant active component and the short chain fatty acid surface active component are preferably selected from the GRAS list. [0078]
  • Drugs such as lidocaine and tetracaine can be obtained in base form (nonionic or unionized) or salt (ionic) form. The salt form of drugs has a much greater solubility in aqueous phase (i.e., water). For this reason, many drugs are commonly supplied in the salt form in the aqueous phase. We have shown that surface active drug molecules form micelles in the aqueous phase. These micelles can easily solubilize nonpolar or nonionic forms of drugs. Thus, we have shown that the solubility of a drug can be three to five-fold greater in the aqueous phase if we put ionized and unionized forms of lidocaine into the aqueous phase. [0079]
  • When injected into a peripheral vein (e.g., arm or hand vein), the microemulsion would be designed in a manner that it may or may not release the lipophilic drug that it is holding until it enters the central blood circulation. Using this design approach, patient safety and comfort would be markedly improved. Specifically, the damage and/or pain associated with peripheral intravenous injection for certain drugs such as chemotherapeutic agents and propofol could be significantly reduced or even eliminated. This technique may avoid the risks of placing a catheter into the central circulation to administer these types of drugs. [0080]
  • Further modification of this approach can also be made so that one can tailor a micelle of a bio-compatible surfactant having definite stability or lifetime (milliseconds to hours). Solubility of these drugs and transfer to the surrounding medium is significantly influenced by the lifetime and, hence stability of the micelles. Experimental techniques are available to scientifically measure the stability of micelles from 10[0081] −3-103 seconds range. One can then correlate micellar stability and drug release rate. Such studies can be performed using the Franz diffusion cell wherein hairless mouse skin serves as a diffusion barrier between the donor and receptor cell compartments. In the donor compartment, micelles are placed with a specific relaxation time (i.e., lifetime or stability). A given drug's transfer rate into the receptor compartment can be measured and correlated to the stability of the micelles and drug release rate. Recently, we have performed similar studies using nonpolar dye molecules that were solubilized in micelles into the aqueous phase (FIG. 1).
  • Micelle stability significantly affects transfer rate of drugs. For example, one might deliver a long-acting, peripheral neural blockade using lidocaine instead of bupivicaine by encasing lidocaine in micelles with life spans of several hours. Because the therapeutic index for cardiotoxic effects of lidocaine is much greater than that for bupivicaine, use of tailored micelles would significantly enhance patient safety. (Therapeutic index is a pharmacological term regarding the margin of safety to be expected for a certain concentration of a drug to produce a desired effect [e.g., TD[0082] 50] compared to the concentration that causes an undesired effect [e.g., LD50]). Similarly, long-lived micelles might be useful for coating drug particles or viruses for permeation through the blood/brain barrier.
  • The following examples are further offered to illustrate but not limit the invention. In the examples herein, propofol was used as the drug selected. Propofol was used with a microemulsion emulsifier combination of Pluronic® F77 and sodium laurate in amounts specified below. Microemulsions with the emulsifier combination saline and propofol were made. Stability and viscosity were determined, using conventional methods and tabulated in Tables 1, 2, 3 and 4 below. [0083]
    TABLE 1
    Formulation parameters of propofol microemulsions
    Total volume = 100 ml
    Sample Pluronic Sodium Propofol
    Number F-77(gm) laurate(gm) (ml)
    1A 4.0
    2A 4.0 1.0
    3A 4.0 0.05 1.0
    4A 4.0 0.10 1.0
    5A 4.0 0.15 1.0
    1B 4.5
    2B 4.5 1.0
    3B 4.5 0.05 1.0
    4B 4.5 0.10 1.0
    5B 4.5 0.15 1.0
  • [0084]
    TABLE 2
    The effect of temperature, and sodium laurate concentration
    and storage time on droplet size of propofol microemulsions.
    Particle Size(nm) Particle Size(nm) Particle Size(nm)
    Freshly prepared(A) 2 weeks later(B) 5 months later(C)
    Age 25° C. 37° C. 25° C. 37° C. 25° C. 37° C.
    1A
    2A 93.4 35.5 96.4 36.2 104.3 39.1
    3A 29.8 28.1 30.9 28.7 33.5 30.1
    4A 29.3 26.9 30.4 28.2 31.5 29.0
    5A 25.1 24.2 25.7 25.1 25.3 25.1
    1B
    2B 72.1 32.8 78.7 35.8 85.6 38.3
    3B 29.3 27.4 29.7 27.7 30.5 28.3
    4B 26.9 25.1 27.4 25.6 27.4 25.8
    5B 24.6 24.1 24.7 24.3 24.9 24.7
  • [0085]
    TABLE 3
    The effect of temperature, and sodium laurate concentration
    and storage time on pH level of propofol microemulsions
    pH pH pH
    Freshly 2 weeks 5 months
    prepared(A) later(B) later(C)
    Age 25° C. 37° C. 25° C. 37° C. 25° C. 37° C.
    Pf 77-1 6.58 6.58 6.55 6.52 6.5 6.5
    Pf 77-2 6.42 6.43 6.37 6.34 6.34 6.36
    Pf 77-3 7.32 7.3 7.11 7.08 7.14 7.06
    Pf 77-4 7.53 4.5 7.42 7.24 7.38 7.24
    Pf 77-5 7.62 7.66 7.58 7.4 7.52 7.42
    Pf 77-1 6.59 6.58 6.5 6.48 6.5 6.52
    Pf 77-2 6.42 6.41 6.34 6.30 6.36 6.3
    Pf 77-3 7.44 7.38 7.24 7.32 7.28 7.34
    Pf 77-4 7.57 7.54 7.46 7.5 7.5 7.52
    Pf 77-5 7.6 7.62 7.56 7.58 7.55 7.55
  • [0086]
    TABLE 4-A
    The effect of temperature and shear rate on viscosity
    of freshly prepared propofol microemulsions
    Viscosity Viscosity Viscosity Viscosity Viscosity Viscosity
    in cps in cps in cps in cps in cps in cps
    Code of 10 S−1 10 S−1 100 S−1 100 S−1 1000 S−1 1000 S−1
    Emulsion 25° C. 37° C. 25° C. 37° C. 25° C. 37° C.
    1A 1.77 1.57 1.73 1.27 1.73 1.26
    2A 53.45 33.45 13.20 1.26 5.14 4.66
    3A 2.22 1.49 1.94 1.255 1.77 1.21
    4A 2.18 1.33 1.81 1.20 1.71 1.20
    5A 1.66 1.34 1.64 1.24 1.635 1.205
    1B 1.75 1.59 1.81 1.35 1.80 1.36
    2B 13.2 1.44 6.37 1.31 3.46 1.28
    3B 2 .04 1.51 1.87 1.33 1.79 1.30
    4B 1.85 1.41 1.80 1.30 1.77 1.29
    5B 1.43 1.21 1.58 1.22 1.47 1.206
  • [0087]
    TABLE 4-B
    The effect of temperature and shear rate on viscosity
    of two week old propofol microemulsions
    Viscosity Viscosity Viscosity Viscosity Viscosity Viscosity
    in cps in cps in cps in cps in cps in cps
    Code of 10 S−1 10 S−1 100 S−1 100 S−1 1000 S−1 1000 S−1
    Emulsion 25° C. 37° C. 25° C. 37° C. 25° C. 37° C.
    1A 1.77 1.57 1.73 1.275 1.73 1.29
    2A 59.5 20.95 14.3 10.4 5.52 4.39
    3A 3.13 1.66 2.37 1.24 1.97 1.20
    4A 2.51 1.34 1.91 1.21 1.75 1.22
    5A 1.69 1.51 1.62 1.23 1.63 1.23
    1B 1.74 1.63 1.80 1.35 1.81 1.35
    2B 13.0 1.49 6.36 1.40 3.47 1.35
    3B 2.06 1.69 1.91 1.33 1.91 1.32
    4B 1.86 1.51 1.81 1.29 1.79 1.27
    5B
  • [0088]
    TABLE 4-C
    The effect of temperature and shear rate on viscosity
    of five month old propofol microemulsions
    Viscosity Viscosity Viscosity Viscosity Viscosity Viscosity
    in cps in cps in cps in cps in cps in cps
    Code of 10 S−1 10 S−1 100 S−1 100 S−1 1000 S−1 1000 S−1
    Emulsion 25° C. 37° C. 25° C. 37° C. 25° C. 37° C.
    1A 1.78 1.590 1.70 1.278 1.72 1.280
    2A 60.04 21.55 14.6 10.70 5.70 4.52
    3A 3.30 1.77 2.46 1.324 2.13 1.28
    4A 2.58 1.388 1.97 1.25 1.79 1.25
    5A 1.66 1.534 1.59 1.249 1.60 1.245
    1B 1.73 1.55 1.86 1.308 1.82 1.374
    2B 13.9 1.514 6.64 1.512 3.64 1.450
    3B 2.04 1.71 1.96 1.365 1.87 1.350
    4B 1.90 1.55 1.86 1.308 1.84 1.280
    5B
  • Release from microemulsion micelles of the dye orange OT, using the co-emulsion combination of pluronic 77 and sodium laurate, are illustrated at 4, 6 and 10 hours respectively in FIGS. 1 and 2. As can be seen, the release rate is influenced by the micelles. [0089]
  • The anesthetic properties of propofol as a microemulsion in 0.9% normal saline (NS) with a Pluronic acid emulsifier were compared to those of propofol as a macroemulsion in Intralipid (Diprivan®) using a randomized, crossover design in a rat model for intravenous anesthetic induction and recovery. [0090]
  • This protocol was approved by the Animal Care and Use Committee of the University of Florida. Intravenous catheters (24 g) were inserted and secured in tail veins of Harlan Sprague-Dawley rats (350 g). Catheters were maintained with a cap and flushed with heparinized saline. Subsequently, rats were randomly administered either propofol/NS/Pluronic F-77 (University of Florida) after filtration through a 0.20 μm filter or sterile propofol/Intralipid (Diprivan®, AstraZeneca Pharmaceuticals, Inc., Wilmington, Del.) at a rate of 10 mg/kg/min. To remove the variability associated with the rate of injection caused by manual bolus administration and its effect on the rate of anesthetic induction, a syringe pump (sp2000i, World Precision Instruments, Sarasota, Fla.) was used to assure a constant rate of drug administration. Body temperature was maintained using a heating blanket (TP-400, Gaymar Industries, Inc., Orchard Park, N.Y.). The endpoint of anesthetic induction was total drug dose to cause the loss of reflexive withdrawal of the leg following a left great toe pinch. Following loss of withdrawal, the drug infusion was discontinued. Endpoints of anesthetic recovery were timed until recovery of spontaneous eye blinking, sustained head lift, and righting reflex. Following the first anesthetic and recovery, rats were allowed to fully recover for approximately 45 min. before receiving the alternative formulation of propofol. Rats were observed for seven days after receiving anesthesia. [0091]
  • All rats in both study groups experienced rapid induction of anesthesia with subsequent recovery. Continuous spontaneous ventilation occurred in every case. All rats maintained pink paws and ears. No rat died during seven days of observation after the anesthetic. Specific endpoints are detailed in Table 5. [0092]
    TABLE 5
    Anesthetic induction and recovery properties of either
    propofol in a microemulsion using NS/Pluronic F-77 or
    propofol in a macroemulsion of Intralipid (Diprivan ®)
    in rats.
    Propofol/NS/Pluronic Propofol/Intralipid
    Parameter F-77 Microemulsion Macroemulsion P valuea
    Total propofol 17.5 ± 2.2 14.9 ± 1.4 0.354
    dose (mg/kg)
    Time to eye 609 ± 86 802 ± 57 0.184
    blinking (sec)
    Time to head lift 691 ± 98 827 ± 63 0.459
    (sec)
    Time to righting 756 ± 97 895 ± 34 0.393
    (sec)
  • Based on these limited observations in a rat model, the anesthetic properties of propofol in a NS/Pluronic F-77 microemulsion formulation are at least equivalent to those of the commercially available propofol preparation, Diprivan®. [0093]
  • From the above it can be seen that the invention accomplishes at least all of its stated objectives. And, an important aspect of which is the combination emulsifier system of a long chain polymer surfactant component, and a short chain fatty acid component which set up a competitive adsorption at the interface of the oil and water to reduce interfacial tension to a very low value. This allows the formation of stable microemulsions, particularly so with the preferred drug propofol and the preferred emulsifier combination pluronic F77 and sodium laurate. The formed microemulsion is clear, not milky appearing at all times. [0094]
  • It, of course, goes without saying that certain modifications of the emulsification system can be made without departing from the spirit and scope of the present invention. [0095]

Claims (24)

1-24. Cancelled
25. A microemulsion composition for intravenous delivery comprising an oil phase and an aqueous phase, wherein the oil phase comprises:
an oil-soluble drug;
a long chain polymer surfactant component; and
a short chain fatty acid surfactant component;
and wherein the amounts of the long chain polymer and short chain fatty acid surfactant components are selected to provide for spontaneous formation of thermodynamically stable microemulsion droplets of the oil phase having a particle size from 10 nm to 100 nm.
26. The composition of claim 25, wherein the oil-soluble drug is a solid.
27. The composition of claim 26, wherein the long chain polymer surfactant component is selected from the group consisting of polyoxyethylene alkyl esters, polyoxyethylene glycols, polyvinylpyrrolidone, polyvinylalcohol, tyloxapol, and poloxamer.
28. The composition of claim 27, wherein the long chain polymer surfactant component is a poloxamer.
29. The composition of claim 26, wherein the short chain fatty acid surfactant component is a C8 to C16 component.
30. The composition of claim 29, wherein the short chain fatty acid surfactant component is a C8 to C12 component.
31. The composition of claim 26, wherein the long chain polymer surfactant component is a poloxamer and the short chain fatty acid surfactant component is a laurate.
32. The composition of claim 26, wherein the total amount of long chain polymer surfactant component and short chain fatty acid surfactant component does not exceed 4.65% by weight.
33. The composition of claim 26, wherein the interfacial tension of the oil-soluble drug with an emulsifier combination comprising the long chain polymer surfactant component and the short chain fatty acid surfactant component is less than 0.1 dynes per cm.
34. The composition of claim 26, wherein the oil-soluble drug is selected from the group consisting of analgesics, anesthetics, antibiotics, antidepressants, antidiabetics, antifungals, antihypertensives, anti-inflammatories, antineoplastics, immunosuppressives, sedatives, antianginals, antipsychotics, antimanics, antiarthritics, antigouts, anticoagulants, antithrombolytics, anticonvulsants, antiparkinsons, antibacterials, antivirals, and anti-infectives.
35. The composition of claim 34, wherein the oil-soluble drug is an anesthetic.
36. The composition of claim 35, wherein the oil-soluble drug is an aryl containing molecule.
37. The composition of claim 25, wherein the oil-soluble drug is an oil-soluble vitamin.
38. The composition of claim 26, wherein the long chain polymer surfactant component and the short chain fatty acid surfactant component are selected from the GRAS list.
39. The composition of claim 26, wherein the ratio of long chain polymer surfactant component to short chain fatty acid surfactant component is from 10:100 to 25:80 wt/wt.
40. The composition of claim 26, wherein the long chain polymer surfactant component has a molecular weight greater than 1000, and the short chain fatty acid surfactant component has a molecular weight less than 1000.
41. The composition of claim 39, wherein the amount of oil-soluble drug is from 0.1% to 1.0%.
42. The composition of claim 26, wherein the oil-soluble drug is a mixture of the base form and the salt form of the drug.
43. The composition of claim 26, wherein the drug transfer rate is controlled by control of the character and nature of micelle formation of the microemulsion droplets.
44. A method of controlling intravenous drug delivery and transfer rate of an oil-soluble drug comprising:
administering a composition comprising microdroplets of the oil-soluble drug and an emulsifier combination comprising a long chain polymer surfactant component and a short chain fatty acid surfactant component, the amounts of each component being selected to provide for spontaneous formation of thermodynamically stable microemulsion droplets having a particle size from 10 nm to 100 nm and to control intravenous delivery and transfer rate as desired.
45. A microemulsion composition for drug delivery comprising an oil phase and an aqueous phase, wherein the oil phase comprises:
an oil-soluble drug; and
an emulsifier combination comprising a long chain polymer surfactant component and a short chain fatty acid surfactant component;
and wherein the amounts of the long chain polymer surfactant component and the short chain fatty acid surfactant component are selected to provide for spontaneous formation of thermodynamically stable microemulsion droplets of the oil phase having a particle size from 10 nm to 100 nm and wherein the interfacial tension of the oil-soluble drug with the emulsifier combination is less than 0.1 dynes per cm.
46. The method of claim 44, wherein the oil-soluble drug is a solid.
47. The microemulsion composition of claim 25 comprising at least two oil-soluble drugs.
US10/679,581 2000-08-01 2003-10-06 Novel microemulsion and micelle systems for solubilizing drugs Abandoned US20040198813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/679,581 US20040198813A1 (en) 2000-08-01 2003-10-06 Novel microemulsion and micelle systems for solubilizing drugs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/630,237 US6623765B1 (en) 2000-08-01 2000-08-01 Microemulsion and micelle systems for solubilizing drugs
US09/924,290 US6638537B2 (en) 2000-08-01 2001-08-08 Microemulsion and micelle systems for solubilizing drugs
US10/679,581 US20040198813A1 (en) 2000-08-01 2003-10-06 Novel microemulsion and micelle systems for solubilizing drugs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/924,290 Continuation US6638537B2 (en) 2000-08-01 2001-08-08 Microemulsion and micelle systems for solubilizing drugs

Publications (1)

Publication Number Publication Date
US20040198813A1 true US20040198813A1 (en) 2004-10-07

Family

ID=24526357

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/630,237 Expired - Fee Related US6623765B1 (en) 2000-08-01 2000-08-01 Microemulsion and micelle systems for solubilizing drugs
US09/924,290 Expired - Fee Related US6638537B2 (en) 2000-08-01 2001-08-08 Microemulsion and micelle systems for solubilizing drugs
US10/679,581 Abandoned US20040198813A1 (en) 2000-08-01 2003-10-06 Novel microemulsion and micelle systems for solubilizing drugs

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/630,237 Expired - Fee Related US6623765B1 (en) 2000-08-01 2000-08-01 Microemulsion and micelle systems for solubilizing drugs
US09/924,290 Expired - Fee Related US6638537B2 (en) 2000-08-01 2001-08-08 Microemulsion and micelle systems for solubilizing drugs

Country Status (6)

Country Link
US (3) US6623765B1 (en)
EP (1) EP1305005A2 (en)
JP (1) JP4932123B2 (en)
AU (1) AU2001278124A1 (en)
CA (1) CA2417800C (en)
WO (2) WO2002009671A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060160888A1 (en) * 2004-12-09 2006-07-20 Insys Therapeutics, Inc. Room-temperature stable dronabinol formulations
US20080112895A1 (en) * 2006-08-04 2008-05-15 Insys Therapeutics Inc. Aqueous dronabinol formulations
US20090181080A1 (en) * 2007-08-06 2009-07-16 Insys Therapeutics Inc. Oral cannabinnoid liquid formulations and methods of treatment
US20130115305A1 (en) * 2003-07-07 2013-05-09 Per Wollmer Microemulsions and its use for preventing airway diseases
WO2013049733A3 (en) * 2011-09-30 2014-05-08 Sparkmed Research, Llc Systems, devices, and methods for embedding drug molecules into medical catheters or tubes
US20140322330A1 (en) * 2010-12-10 2014-10-30 Ns Technologies Pty Ltd Methods for forming miniemulsions and use thereof for delivering bioactive agents
CN104523592A (en) * 2015-01-26 2015-04-22 湖北工业大学 Self-microemulsified preparation for injection of methylprednisolone acetate and preparation method of self-microemulsified preparation
WO2018067930A1 (en) * 2016-10-06 2018-04-12 The Administrators Of The Tulane Educational Fund Water-soluble micelles for delivery of oil-soluble materials

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502363A (en) * 1999-06-21 2003-01-21 コンイル ファーマシューティカル カンパニー、リミテッド Anesthetic composition for intravenous injection containing propofol
CA2450748A1 (en) * 2001-06-22 2003-01-03 Pfizer Products Inc. Pharmaceutical compositions containing polymer and drug assemblies
EP1414497A4 (en) * 2001-08-08 2007-11-21 Univ Florida Novel microemulsion and micelle systems for solubilizing drugs
GB0120701D0 (en) * 2001-08-24 2001-10-17 Maelor Pharmaceuticals Ltd Pharmaceutical formulations
GB0124071D0 (en) * 2001-10-08 2001-11-28 Kbig Ltd Improvement in the administration of high boiling point aneasthetics
US20040220283A1 (en) * 2002-07-29 2004-11-04 Transform Pharmaceuticals, Inc. Aqueous 2,6-diisopropylphenol pharmaceutical compositions
WO2004039360A1 (en) * 2002-10-29 2004-05-13 Transform Pharmaceuticals, Inc. Aqueous 2,6-diisopropylphenol pharmaceutical compositions
US7550155B2 (en) * 2002-07-29 2009-06-23 Transform Pharmaceuticals Inc. Aqueous pharmaceutical compositions of 2,6-diisopropylphenol (propofol) and their uses
CA2494297C (en) * 2002-07-29 2011-10-18 Transform Pharmaceuticals, Inc. Aqueous 2,6-diisopropylphenol pharmaceutical compositions
KR100482269B1 (en) * 2002-10-08 2005-04-14 센츄론(주) Injectable Anaesthetic Agent Comprising 2,6-Diisopropylphenol as an Active Ingredient and Preparation Method thereof
AU2003900887A0 (en) * 2003-02-27 2003-03-13 Novasel Australia Pty Ltd Poloxamer emulsion preparations
US8802116B2 (en) 2003-02-27 2014-08-12 Novasel Australia Pty. Ltd. Poloxamer emulsion preparations
AU2004257132B2 (en) 2003-07-18 2008-02-21 Agency For Science, Technology And Research Thermosensitive polymers for therapeutic use and methods of preparation
DE10334897A1 (en) * 2003-07-29 2005-03-10 Univ Koeln Microemulsions and their use as fuel
US7713440B2 (en) 2003-10-08 2010-05-11 Lyotropic Therapeutics, Inc. Stabilized uncoated particles of reversed liquid crystalline phase materials
PE20050596A1 (en) * 2003-12-19 2005-10-18 Novartis Ag MICROEMULSION INCLUDING A RENIN INHIBITOR
WO2005070399A1 (en) * 2004-01-09 2005-08-04 Wyeth Microemulsions for pharmaceutical compositions
CN100479812C (en) * 2004-02-13 2009-04-22 生物药效率有限公司 A microemulsion preparation of high concentration propofol for anesthetic uses
US20050232974A1 (en) * 2004-04-19 2005-10-20 Gore Makarand P System and a method for pharmaceutical dosage preparation using jettable microemulsions
US7659310B2 (en) * 2004-04-27 2010-02-09 Formatech, Inc. Methods of enhancing solubility of agents
EP1748759B1 (en) * 2004-04-27 2013-03-27 Javeri, Indu Methods of enhancing solubility in water of hydrophobic compounds by micellar dispersions
EP1652512A1 (en) * 2004-11-02 2006-05-03 Medesis Pharma Reverse micelle composition for delivery of metal cations comprising a diglyceride and a phytosterol and method of preparation
US20060198891A1 (en) 2004-11-29 2006-09-07 Francois Ravenelle Solid formulations of liquid biologically active agents
GB0504950D0 (en) * 2005-03-10 2005-04-20 Novartis Ag Organic compositions
US8492369B2 (en) 2010-04-12 2013-07-23 Clarus Therapeutics Inc Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same
KR20080009201A (en) 2005-04-15 2008-01-25 클라루스 쎄러퓨틱스, 아이엔씨. Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same
DK1906921T3 (en) * 2005-07-08 2009-04-06 Physica Pharma Clear pharmaceutical aqueous microemulsion comprising propofol and method of preparation
WO2007014445A1 (en) * 2005-08-02 2007-02-08 Miv Therapeutics Inc. Microdevices comprising nanocapsules for controlled delivery of drugs and method of manufacturing same
ZA200802765B (en) 2005-08-31 2009-08-26 Abraxis Bioscience Llc Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
NZ566705A (en) 2005-08-31 2011-06-30 Abraxis Bioscience Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
WO2007064845A1 (en) * 2005-11-29 2007-06-07 Pr Pharmaceuticals, Inc. Sustained release butorphanol drug delivery compositions for analgesia
US20070253909A1 (en) * 2006-05-01 2007-11-01 Medi-Flex, Inc. Aqueous Antiseptic Solution and Compatible Cationic Dye for Staining Skin
US9918934B2 (en) * 2006-12-12 2018-03-20 Edgar Joel Acosta-Zara Linker-based lecithin microemulsion delivery vehicles
US8703204B2 (en) 2007-05-03 2014-04-22 Bend Research, Inc. Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and anon-ionizable polymer
US8309129B2 (en) 2007-05-03 2012-11-13 Bend Research, Inc. Nanoparticles comprising a drug, ethylcellulose, and a bile salt
WO2008149230A2 (en) 2007-06-04 2008-12-11 Pfizer Products Inc. Nanoparticles comprising drug, a non-ionizable cellulosic polymer and tocopheryl polyethylene glycol succinate
US8974827B2 (en) 2007-06-04 2015-03-10 Bend Research, Inc. Nanoparticles comprising a non-ionizable cellulosic polymer and an amphiphilic non-ionizable block copolymer
GB2451811A (en) 2007-08-09 2009-02-18 Ems Sa Delivery composition for solubilising water-insoluble pharmaceutical active ingredients
EP2231169B1 (en) 2007-12-06 2016-05-04 Bend Research, Inc. Pharmaceutical compositions comprising nanoparticles and a resuspending material
US9233078B2 (en) 2007-12-06 2016-01-12 Bend Research, Inc. Nanoparticles comprising a non-ionizable polymer and an Amine-functionalized methacrylate copolymer
JP5518302B2 (en) * 2008-05-16 2014-06-11 一丸ファルコス株式会社 Method for sustained release of hydrophobic substances from polymer micelles
US8541360B2 (en) * 2008-11-19 2013-09-24 Ben Venue Laboratories, Inc. Parenteral formulations comprising sugar-based esters and ethers
NZ597016A (en) 2009-06-05 2013-10-25 Sunev Pharma Solution Ltd Topical micro-emulsions for the treatment of rheumatic disorders
CA2781529C (en) * 2009-09-23 2017-10-24 Indu Javeri Methods for the preparation of liposomes comprising docetaxel
US20110070294A1 (en) * 2009-09-23 2011-03-24 Javeri Indu Methods for the Administration of Drugs Using Liposomes
US10143652B2 (en) 2009-09-23 2018-12-04 Curirx Inc. Methods for the preparation of liposomes
EP2335686A1 (en) * 2009-12-21 2011-06-22 LEK Pharmaceuticals d.d. An aqueous intravenous nanosuspension with reduced adverse effects
WO2011130834A1 (en) * 2010-04-23 2011-10-27 Labopharm Inc. Non-intravenous dosage form comprising solid formulation of liquid biologically active agent and uses thereof
US8808734B2 (en) * 2011-07-11 2014-08-19 Full Spectrum Laboratories Limited Cannabinoid formulations
US9308269B2 (en) 2011-07-27 2016-04-12 University Of Miami Stable liquid formulations of volatile gas anesthetics
AU2014212275B2 (en) 2013-02-01 2018-09-06 Ocuphire Pharma, Inc. Methods and compositions for daily ophthalmic administration of phentolamine to improve visual performance
DK2950648T3 (en) 2013-02-01 2019-12-02 Ocuphire Pharma Inc Aqueous ophthalmic solutions of phentolamine and its medical applications
EA201591954A1 (en) * 2013-04-12 2016-04-29 Вайом Байосайнсиз Пвт. Лтд. COMPOSITION AND COMPOSITION OF ANTI-MICROBAL MEANS, METHODS OF THEIR RECEPTION AND METHODS OF TREATING MICROBIAL INFECTIONS
US10245273B2 (en) 2013-12-26 2019-04-02 Clarus Therapeutics, Inc. Oral pharmaceutical products and methods of use combining testosterone esters with hypolipidemic agents
CN104352433A (en) * 2014-10-21 2015-02-18 河南牧翔动物药业有限公司 Oil-in-water compound antimicrobial cefazolin nanoemulsion medicine
FR3041883B1 (en) * 2015-10-02 2019-03-15 Chu Clermont-Ferrand PROCESS FOR PREPARING A CICLOSPORIN A COLLYRE
US11395798B2 (en) 2015-10-08 2022-07-26 Nof Corporation O/W type emulsion
SG11202104094YA (en) 2018-10-26 2021-05-28 Ocuphire Pharma Inc Methods and compositions for treatment of presbyopia, mydriasis, and other ocular disorders
BR102020001836A2 (en) * 2020-01-28 2021-08-03 Katia Solange Cardoso Rodrigues Dos Santos Geraldi WATER-BASED PROPYLENEGLYCOL-FREE MICROEMULSION FOR CARRYING MINOXIDIL IN THE TREATMENT OF HAIR LOSS AND PROCESSING METHOD
CN115368310A (en) 2021-05-18 2022-11-22 奥库菲尔医药公司 Method for synthesizing phentolamine mesylate

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798846A (en) * 1974-03-28 1989-01-17 Imperial Chemical Industries Plc Pharmaceutical compositions
US5274093A (en) * 1989-08-03 1993-12-28 Huels Aktiengesellschaft Process for the preparation of sodium thiobarbiturate
US5342625A (en) * 1988-09-16 1994-08-30 Sandoz Ltd. Pharmaceutical compositions comprising cyclosporins
US5478860A (en) * 1993-06-04 1995-12-26 Inex Pharmaceuticals Corp. Stable microemulsions for hydrophobic compound delivery
US5560931A (en) * 1995-02-14 1996-10-01 Nawosystems L.L.C. Formulations of compounds as nanoparticulate dispersions in digestible oils or fatty acids
US5637625A (en) * 1996-03-19 1997-06-10 Research Triangle Pharmaceuticals Ltd. Propofol microdroplet formulations
US5726164A (en) * 1995-03-21 1998-03-10 Novartis Corporation Nanosuspensions for intravenous administration
US5750142A (en) * 1992-02-18 1998-05-12 Pharmos Corporation Dry compositions for preparing submicron emulsions
US5858410A (en) * 1994-11-11 1999-01-12 Medac Gesellschaft Fur Klinische Spezialpraparate Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution
US5908869A (en) * 1994-03-22 1999-06-01 Zeneca Limited Propofol compositions containing edetate
US5908825A (en) * 1997-01-09 1999-06-01 University Of Maryland At Baltimore Dosage composition for nasal delivery and method of use of the same
US5908619A (en) * 1997-01-09 1999-06-01 Minnesota Mining And Manufacturing Company Hydroalcoholic compositions thickened using surfactant/polymer complexes
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5925684A (en) * 1996-03-11 1999-07-20 Basf Aktiengesellschaft Stable carotenoid emulsions suitable for parenteral administration
US5932243A (en) * 1993-05-27 1999-08-03 Novartis Ag Galenical formulations
US5952004A (en) * 1994-03-18 1999-09-14 Shire Laboratories Inc. Emulsified drug delivery systems
US5993858A (en) * 1996-06-14 1999-11-30 Port Systems L.L.C. Method and formulation for increasing the bioavailability of poorly water-soluble drugs
US6024978A (en) * 1988-09-16 2000-02-15 Novartis Ag Pharmaceutical compositions comprising cyclosporins
US6063762A (en) * 1997-12-05 2000-05-16 Chong Kun Dang Corp. Cyclosporin-containing microemulsion preconcentrate composition
US6121313A (en) * 1997-07-29 2000-09-19 Pharmacia & Upjohn Company Pharmaceutical composition in a form of self-emulsifying formulation for lipophilic compounds
US6197323B1 (en) * 1997-03-10 2001-03-06 Michael Georgieff Medicinal preparation containing a lipophilic inert gas
US6241969B1 (en) * 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
US6284268B1 (en) * 1997-12-10 2001-09-04 Cyclosporine Therapeutics Limited Pharmaceutical compositions containing an omega-3 fatty acid oil
US6383471B1 (en) * 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
US6451339B2 (en) * 1999-02-26 2002-09-17 Lipocine, Inc. Compositions and methods for improved delivery of hydrophobic agents
US20040067919A1 (en) * 2002-10-08 2004-04-08 Centurion Inc. Injectable 2, 6-diisopropylphenol-containing anesthetic composition and methods
US6743436B1 (en) * 1999-06-21 2004-06-01 Kuhnil Pharm. Co., Ltd. Anesthetic composition for intravenous injection comprising propofol

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505367A (en) * 1992-10-16 1996-06-11 スミスクライン・ビーチャム・コーポレイション Pharmaceutical emulsion composition
AU6708096A (en) 1995-09-18 1997-04-09 Vesifact Ag Propofol nanodispersions

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798846A (en) * 1974-03-28 1989-01-17 Imperial Chemical Industries Plc Pharmaceutical compositions
US5342625A (en) * 1988-09-16 1994-08-30 Sandoz Ltd. Pharmaceutical compositions comprising cyclosporins
US6024978A (en) * 1988-09-16 2000-02-15 Novartis Ag Pharmaceutical compositions comprising cyclosporins
US5274093A (en) * 1989-08-03 1993-12-28 Huels Aktiengesellschaft Process for the preparation of sodium thiobarbiturate
US5750142A (en) * 1992-02-18 1998-05-12 Pharmos Corporation Dry compositions for preparing submicron emulsions
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5932243A (en) * 1993-05-27 1999-08-03 Novartis Ag Galenical formulations
US5478860A (en) * 1993-06-04 1995-12-26 Inex Pharmaceuticals Corp. Stable microemulsions for hydrophobic compound delivery
US5952004A (en) * 1994-03-18 1999-09-14 Shire Laboratories Inc. Emulsified drug delivery systems
US5908869A (en) * 1994-03-22 1999-06-01 Zeneca Limited Propofol compositions containing edetate
US5858410A (en) * 1994-11-11 1999-01-12 Medac Gesellschaft Fur Klinische Spezialpraparate Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution
US5560931A (en) * 1995-02-14 1996-10-01 Nawosystems L.L.C. Formulations of compounds as nanoparticulate dispersions in digestible oils or fatty acids
US5726164A (en) * 1995-03-21 1998-03-10 Novartis Corporation Nanosuspensions for intravenous administration
US5925684A (en) * 1996-03-11 1999-07-20 Basf Aktiengesellschaft Stable carotenoid emulsions suitable for parenteral administration
US5637625A (en) * 1996-03-19 1997-06-10 Research Triangle Pharmaceuticals Ltd. Propofol microdroplet formulations
US5993858A (en) * 1996-06-14 1999-11-30 Port Systems L.L.C. Method and formulation for increasing the bioavailability of poorly water-soluble drugs
US5908619A (en) * 1997-01-09 1999-06-01 Minnesota Mining And Manufacturing Company Hydroalcoholic compositions thickened using surfactant/polymer complexes
US5908825A (en) * 1997-01-09 1999-06-01 University Of Maryland At Baltimore Dosage composition for nasal delivery and method of use of the same
US6197323B1 (en) * 1997-03-10 2001-03-06 Michael Georgieff Medicinal preparation containing a lipophilic inert gas
US6121313A (en) * 1997-07-29 2000-09-19 Pharmacia & Upjohn Company Pharmaceutical composition in a form of self-emulsifying formulation for lipophilic compounds
US6063762A (en) * 1997-12-05 2000-05-16 Chong Kun Dang Corp. Cyclosporin-containing microemulsion preconcentrate composition
US6284268B1 (en) * 1997-12-10 2001-09-04 Cyclosporine Therapeutics Limited Pharmaceutical compositions containing an omega-3 fatty acid oil
US6241969B1 (en) * 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
US6451339B2 (en) * 1999-02-26 2002-09-17 Lipocine, Inc. Compositions and methods for improved delivery of hydrophobic agents
US6383471B1 (en) * 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
US6743436B1 (en) * 1999-06-21 2004-06-01 Kuhnil Pharm. Co., Ltd. Anesthetic composition for intravenous injection comprising propofol
US20040067919A1 (en) * 2002-10-08 2004-04-08 Centurion Inc. Injectable 2, 6-diisopropylphenol-containing anesthetic composition and methods

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115305A1 (en) * 2003-07-07 2013-05-09 Per Wollmer Microemulsions and its use for preventing airway diseases
US8940339B2 (en) * 2003-07-07 2015-01-27 Nares Ab Microemulsions and its use for preventing airway diseases
US8628796B2 (en) 2004-12-09 2014-01-14 Insys Therapeutics, Inc. Room-temperature stable dronabinol formulations
US20060160888A1 (en) * 2004-12-09 2006-07-20 Insys Therapeutics, Inc. Room-temperature stable dronabinol formulations
US20080112895A1 (en) * 2006-08-04 2008-05-15 Insys Therapeutics Inc. Aqueous dronabinol formulations
US20090181080A1 (en) * 2007-08-06 2009-07-16 Insys Therapeutics Inc. Oral cannabinnoid liquid formulations and methods of treatment
US9987226B2 (en) * 2010-12-10 2018-06-05 Ns Technologies Pty Ltd Methods for forming miniemulsions and use thereof for delivering bioactive agents
US10792250B2 (en) 2010-12-10 2020-10-06 Ns Technologies Pty Ltd Methods for forming miniemulsions and use thereof for delivering bioactive agents
US20140322330A1 (en) * 2010-12-10 2014-10-30 Ns Technologies Pty Ltd Methods for forming miniemulsions and use thereof for delivering bioactive agents
US20140302113A1 (en) * 2011-09-30 2014-10-09 Sparkmed Research, Llc Systems, devices, and methods for embedding drug molecules into medical catheters or tubes
WO2013049733A3 (en) * 2011-09-30 2014-05-08 Sparkmed Research, Llc Systems, devices, and methods for embedding drug molecules into medical catheters or tubes
CN104523592A (en) * 2015-01-26 2015-04-22 湖北工业大学 Self-microemulsified preparation for injection of methylprednisolone acetate and preparation method of self-microemulsified preparation
WO2018067930A1 (en) * 2016-10-06 2018-04-12 The Administrators Of The Tulane Educational Fund Water-soluble micelles for delivery of oil-soluble materials

Also Published As

Publication number Publication date
WO2002009671A2 (en) 2002-02-07
JP4932123B2 (en) 2012-05-16
WO2003015823A1 (en) 2003-02-27
CA2417800A1 (en) 2002-02-07
EP1305005A2 (en) 2003-05-02
JP2004505033A (en) 2004-02-19
WO2003015823B1 (en) 2003-04-10
WO2002009671A3 (en) 2002-05-16
US6623765B1 (en) 2003-09-23
US20020120015A1 (en) 2002-08-29
CA2417800C (en) 2007-01-02
US6638537B2 (en) 2003-10-28
AU2001278124A1 (en) 2002-02-13

Similar Documents

Publication Publication Date Title
US6638537B2 (en) Microemulsion and micelle systems for solubilizing drugs
US6749868B1 (en) Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
EP0961612B2 (en) Protein stabilized pharmacologically active agents and their use
TWI376239B (en) Vitamin e succinate stabilized pharmaceutical compositions, methods for the preparation and the use thereof
AU2006202836B2 (en) Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US20030049320A1 (en) Novel in-situ forming controlled release microcarrier delivery system
US20070196361A1 (en) Long term administration of pharmacologically active agents
CA2581635A1 (en) Low oil emulsion compositions for delivering taxoids and other insoluble drugs
KR20010099888A (en) Controlled-release biocompatible ocular drug delivery implant devices and methods
JP2963538B2 (en) Useful compositions
CN101011355B (en) Vitamin e succinate stabilized pharmaceutical compositions, methods for the preparation and the use thereof
CN110753541A (en) Pharmaceutical compositions for in vivo delivery, process for preparing substantially water insoluble pharmacologically active agents
EP1414497A1 (en) Novel microemulsion and micelle systems for solubilizing drugs
Sheikh et al. Advanced injectable drug delivery system: A brief review
Chaubal et al. Excipient selection and criteria for injectable dosage forms
Tamilvanan Oil-in-water nanosized emulsions: medical applications

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION