US20040192897A2 - Altered Antibodies - Google Patents

Altered Antibodies Download PDF

Info

Publication number
US20040192897A2
US20040192897A2 US10/351,748 US35174803A US2004192897A2 US 20040192897 A2 US20040192897 A2 US 20040192897A2 US 35174803 A US35174803 A US 35174803A US 2004192897 A2 US2004192897 A2 US 2004192897A2
Authority
US
United States
Prior art keywords
antibody
human
kabat
variable domain
frs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/351,748
Other versions
US6982321B2 (en
US20040127688A1 (en
Inventor
Gregory Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
Original Assignee
Medical Research Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB868607679A external-priority patent/GB8607679D0/en
Application filed by Medical Research Council filed Critical Medical Research Council
Priority to US10/351,748 priority Critical patent/US6982321B2/en
Publication of US20040127688A1 publication Critical patent/US20040127688A1/en
Publication of US20040192897A2 publication Critical patent/US20040192897A2/en
Assigned to BTG INTERNATIONAL LIMITED reassignment BTG INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDICAL RESEARCH COUNCIL
Application granted granted Critical
Publication of US6982321B2 publication Critical patent/US6982321B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/464Igs containing CDR-residues from one specie grafted between FR-residues from another
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to altered antibodies in which at least part of the complementarity determining regions (CDRs) in the light or heavy chain variable domains of the antibody have been replaced by analogous parts of CDRs from an antibody of different specificity.
  • CDRs complementarity determining regions
  • the present invention also relates to-methods for the production of such altered antibodies.
  • altered antibody is used herein to mean an antibody in which at least one residue of the amino acid sequence has been varied as compared with the sequence of a naturally occuring antibody.
  • Natural antibodies, or immunoglobulins comprise two heavy chains linked together by disulphide bonds and two light chains, each light chain being linked to a respective heavy chain by disulphide bonds.
  • the general structure of an antibody of class IgG ie an immunoglobulin (Ig) of class gamma (G)
  • Ig immunoglobulin
  • G gamma
  • Each heavy chain has at one end a variable domain followed by a number of constant domains.
  • Each light chain has a variable domain at one end and a constant domain at its other end, the light chain variable domain being aligned with the variable domain of the heavy chain and the light chain constant domain being aligned with the first constant domain of the heavy chain.
  • the constant domains in the light and heavy chains are not involved directly in binding the antibody to the antigen.
  • variable domains forms an antigen binding site.
  • the variable domains of the light and heavy chains have the same general structure and each domain comprises four framework regions, whose sequences are relatively conserved, connected by-three hypervariable or complementarity determining regions (CDRs) (see Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M. and Perry, H., in Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1983 and 1987).
  • CDRs hypervariable or complementarity determining regions
  • the four framework regions largely adopt a beta-sheet conformation and the CDRs form loops connecting, and in some cases forming part of, the beta-sheet structure.
  • the CDRs are held in close proximity by the framework regions and, with the CDRs from the other variable domain, contribute to the formation of the antigen binding site.
  • variable domains For a more detailed account of the structure of variable domains, reference may be made to: Poljak, R.J., Amzel, L.M., Avey, H.P., Chen, B.L., Phizackerly, R.P. and Saul, F., PNAS USA, 70, 3305-3310, 1973; Segal, D.M., Padlan, E.A., Cohen, G.H., Rudikoff, S., Potter, M. and Davies, D.R., PNAS USA, 71, 4298-4302, 1974; and Marquart, M., Deisenhofer, J., Huber, R. and Palm, W., J. Mol. Biol., 141, 369-391, 1980.
  • EP-A-0 088 994 proposes the construction of recombinant DNA vectors comprising a ds DNA sequence which codes for a variable domain of a light or a heavy chain of an Ig specific for a predetermined ligand.
  • the ds DNA sequence is provided with initiation and termination codons at its 5" - and 3" - termini respectively, but lacks any nucleotides coding for amino acids superfluous to the variable domain.
  • the ds DNA sequence is used to transform bacterial cells. The application does not contemplate variations in the sequence of the variable domain.
  • EP-A-1 102 634 (Takeda Chemical Industries Limited) describes the cloning and expression in bacterial host organisms of genes coding for the whole or a part of human IgE heavy chain polypeptide, but does not contemplate variations in the sequence of the polypeptide.
  • EP-A-0 125 023 proposes the use of recombinant DNA techniques in bacterial cells to produce Igs which are analogous to those normally found in vertebrate systems and to take advantage of the gene modification techniques proposed therein to construct chimeric Igs, having amino acid sequence portions homologous to sequences from different Ig sources, or other modified forms of Ig.
  • a replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary light or heavy chain respectively of an Ig molecule;
  • the second part of the DNA sequence may encode:
  • EP-A-0 173 494 (The Board of Trustees of the Leland Stanford Junior University) also concerns the production of chimeric antibodies having variable domains from one mammalian source and constant domains from another mammalian source.
  • variable domains from one mammalian source
  • constant domains from another mammalian source.
  • hitherto variable domains have been regarded as indivisible units.
  • the present invention in a first aspect, provides an altered antibody in which at least part of a CDR in a light or heavy chain variable domain has been replaced by analogous part(s) of a CDR from an antibody of different specificity.
  • variable regions of the two parts of an antigen binding site are held in the correct orientation by inter-chain non-covalent interactions. These may involve amino-acid residues within the CDRs.
  • variable domains in both the heavy and light chains have been altered by at least partial CDR replacement and, if necessary, by partial framework region replacement and sequence changing.
  • the CDRs may be derived from an antibody of the same species class or even subclass as the antibody from which the framework regions are derived, it is envisaged that the CDRs will generally preferably be derived from an antibody of different species and/or from an antibody of different class or subclass.
  • the CDRs from a mouse antibody could be grafted onto the framework regions of a human antibody.
  • This arrangement will be of particular use in the therapeutic use of monoclonal antibodies.
  • the altered antibody has the structure of a natural antibody or a fragment thereof.
  • the altered antibody may comprise a complete antibody, an (Fab") 2 fragment, an Fab fragment, a light chain dimer or an Fv fragment.
  • the altered antibody may be a chimeric antibody of the type described in the Neuberger application referred to above. The production of such an altered chimeric antibody can be carried out using the methods described below used in conjunction with the methods described in the Neuberger application.
  • the present invention in a second aspect, comprises a method for producing an altered antibody comprising:
  • a second replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary Ig light or heavy chain respectively;
  • the cell line which is transformed to produce the altered antibody is an immortalised mammalian cell line, which is advantageously of lymphoid origin, such as a myeloma, hybridoma, trioma or quadroma cell line.
  • the cell line may also comrpise a normal lymphoid cell, such as a B-cell, which has been immortalised by transformation with a virus, such as the Epstein-Barr virus.
  • the immortalised cell line is a myeloma cell line or a derivative thereof.
  • the cell line used to produce the altered antibody is preferably a mammalian cell line
  • any other suitable cell line such as a bacterial cell line or a yeast cell line
  • E. Coli derived bacterial strains could be used.
  • step b In general the immortalised cell line will not secrete a complementary chain, and it will be necessary to carry out step b). This step may be carried out by further manipulating the vector produced in step a) so that this vector encodes not only the variable domain of an altered antibody light or heavy chain, but also the complementary variable domain.
  • step b) is carried out by preparing a second vector which is used to transform the immortalised cell line.
  • the transformed cell line may be produced for example by transforming a suitable bacterial cell with the vector and then fusing the bacterial cell with the immortalised cell line by spheroplast fusion.
  • the DNA may be directly introduced into the immortalised cell line by electroporation.
  • the DNA sequence encoding the altered variable domain may be prepared by oligonucleotide synthesis. This requires that at least the framework region sequence of the acceptor antibody and at least the CDRs sequences of the donor antibody are known or can be readily determined.
  • a convenient variant of this technique would involve making a symthetic gene lacking the CDRs in which the four framework regions are fused together with suitable restriction sites at the junctions. Double stranded synthetic CDR cassettes with sticky ends could then be ligated at the junctions of the framework regions.
  • a protocol for achieving this variant is shown diagrammatically in Figure 6 of the accompanying drawings.
  • the DNA sequence encoding the altered variable domain may be prepared by primer directed oligonucleotide site-directed mutagenesis.
  • This technique in essence involves hybridising an oligonucleotide coding for a desired mutation with a single strand of DNA containing the region to be mutated and using the signle strand as a template for extension of the oligonucleotide to produce a strand containing the mutation.
  • This technique in various forms, is described by: Zoller, M.J. and Smith, M., Nuc. Acids Res., 10, 6487-6500, 1982; Norris, K., Norris, F., Christainsen, L. and Fiil, N., Nuc.
  • this technique in its simplest form does not always produce a high frequency of mutation.
  • An improved technique for introducing both single and multiple mutations in an M13 based vector has been described by Carter et al. (Carter, P., Bedouelle H. and Winter, G., Nuc. Acids Res., 13, 4431-4443, 1985).
  • the oligonucleotides used for site-directed mutagenesis may be prepared by oligonucleotide synthesis or may be isolated from DNA coding for the variable domain of the second antibody by use of suitable restriction enzymes. Such long oligonucleotides will generally be at least 30 bases long and may be up to or over 80 bases in length.
  • the method of the present invention is envisaged as being of particular use in reshaping human monoclonal antibodies by introducing CDRs of desired specificity.
  • a mouse monoclonal antibody against a particular human cancer cell may be produced by techniques well known in the art.
  • the CDRs from the mouse monoclonal antibody may then be partially or totally grated into the framework regions of a human monoclonal antibody, which is then produced in quantity by a suitable cell line.
  • the product is thus a specifically targetted, essentially human antibody which will recognise the cancer cells, but will not itself be recognised to any significant degree, by a human"s immune system, until the anti-idiotype response eventually becomes apparent.
  • the method and product of the present invention will be of particular use in the clinical environment.
  • Figure 1 is a schematic diagram showing the structure of an IgG molecule
  • Figure 2 shows the amino acid sequence of the V H domain of NEWM in comparison with the V H domain of the BI-8 antibody
  • Figure 3 shows the amino acid and nucleotide sequence of the HuV NP gene.
  • Figure 4 shows a comparison of the results for HuV NP -IgE and MoV NP -1gE in binding inhibition assays
  • Figure 5 shows the structure of three oligonucleotides used for site directed mutagenesis
  • Figure 6 shows a protocol for the construction of CDR replacements by insertion of CDR cassettes into a vector containing four framework regions fused together;
  • Figure 7 shows the sequence of the variable domain of antibody D1.3 and the gene coding therefor;
  • Figure 8 shows a protocol for the cloning of the D1.3 variable domain gene
  • Figure 9 illustrates nucleic acid and amino acid sequences of the variable domains of antibodies to Campath-1, with
  • Figure 10 illustrates the sequence of the HuVLLYS°gene and derived amino acid sequence
  • Figure 11 illustrates the sequences of the HuVLLYS gene and derived amino acid sequence, with asterisks marking the CDRs;
  • Figure 12 illustrates a strategy for producing a reshaped human antibody having rat CDRs
  • Figure 13 illustrates loop Phe 27 to Tyr 35 in the heavy chain variable domain of the human myeloma protein KOL
  • Figure 14 illustrates the results of complement lysis and ADCC for various antibodies
  • Figure 15 illustrates the results of complement lysis and ADCC of various further antibodies
  • Figure 16 A to D are 4 graphs of fluorescence emission spectra of mouse arid humanised anti-lysozyme antibody in the presence of two equivalents of lysozyme;
  • Figure 17 is a graph illustrating spectral change at fixed wavelength as a function of lysozyme concentration on titration of antibody samples
  • Figure 18 illustrates the plasmid for expression of the Fv fragment of a reshaped antilysozyme antibody
  • Figure 19 illustrates the results of SDS acrylamide (16%) gel analysis of the Fv fragments and other units
  • Figure 20 illustrates the results of native acrylamide (8%) gel analysis at pH 7.5 of the Fv fragments and other units.
  • Figure 21 illustrates the results of native acrylamide (8%) gel analysis at pH4 of the Fv fragments and other units.
  • variable domain of the heavy chains comprises the framework regions of a human heavy chain and the CDRs from a mouse heavy chain.
  • the framework regions were derived from the human myeloma heavy chain NEWM, the crystallographic structure of which is known (see Poljak et al., loc. cit. and Bruggemann, M., Radbruch, A., and Rajewsky, K., EMBO J., 1, 629-634, 1982.)
  • a gene encoding a variable domain HuV NP comprising the B1-8 CDRs and the NEWM framework regions, was constructed by gene synthesis as follows.
  • the HuV NP gene was derived by replacing sections of the MoV NP gene in the vector pSV-V NP (see Neuberger, M.S., Williams, G.T., Mitchell, E.B., Jouhal, S., Flanagan, J.G. and Rabbitts, T.H., Nature, 314, 268-270, 1985) by a synthetic fragment encoding the HuV NP domain.
  • the leader sequence, the L-V intron, five N-terminal and four C-terminal amino acids are from the MoV NP gene and the rest of the coding sequence is from the synthetic HuV NP fragment.
  • oligonucleotides from which the HuV NP fragment was assembled are aligned below the corresponding portion of the HuV NP gene.
  • the ends of oligonucleotides 25 and 26b form a Hind II site followed by a Hind III site, and the sequences of the 25/26b oligonucleotides therefore differ from the HuV NP gene.
  • the HuV NP synthetic fragment was built as a PstI-Hind III fragment.
  • the nucleotide sequence was derived from the protein sequence using the computer programme ANALYSEQ (Staden, R., Nuc. Acids. Res., 12, 521-538, 1984) with optimal codon usage taken from the sequences of mouse constant domain genes.
  • the oligonucleotides (1 to 26b, 28 in total) varyin size from 14 to 59 residues and were made on a Biosearch SAM or an Applied Biosystems machine, and purified on 8M-urea po1yacry1amide gels (see Sanger, F. and Coulson, A., FEBS Lett., 107-110, 1978).
  • oligonucleotides were assembled in eight single stranded blocks (AD) containing oligonucleotides
  • oligonucleotides 1,3,5 and 7 were phosphorylated at the 5" end with T4 polynucleotide kinase and mixed together with 5 pmole of the terminal oligonucleotide [1] which had been phosphorylated with 5 uCi [gamma- 32 P] ATP (Amersham 3000 Ci/mmole).
  • oligonucleotides were annealed by heating to 80°C and cooling over 30 minutes to room temperature, with unkinased oligonucleotides 2, 4 and 6 as splints, in 150 ul of 50 mM Tris.C1, ph 7.5, 10 mM MgC1 2 .
  • ATP 1 mM
  • DTT 10mM
  • EDTA was added to 10 mM
  • the sample was extracted with phenol, precipitated from ethanol, dissolved in 20 ul water and boiled for 1 minute with an equal volume of formamide dyes.
  • the sample was loaded onto and run on a 0.3 mm 8M-urea 10% polyacrylamide gel. A band of the expected size was detected by autoradiography and eluted by soaking.
  • blocks A to D were annealed and ligated in 30 ul as set out in the previous paragraph using 100 pmole of olignucleotides 10a, 16 and 20 as splints.
  • Blocks A" to D" were ligated using oligonucleotides 7, 13b and 17 as splints.
  • block A-D was annealed with block A"-D", small amounts were cloned in the vector M13mp18 (Yanish-Perron, C., Vieria, J. and Messing, J., Gene, 33, 103-119, 1985) cut with PstI and Hind III, and the gene sequenced by the dideoxy technique (Sanger, F., Nicklen, S and Coulson, A.R., PNAS USA, 74, 5463-5467, 1977).
  • the MoV NP gene was transferred as a Hind III - BamHI fragment from the vector pSV-V NP (Neuberger et al., loc. cit.) to the vector M13mp8 (Messing, J.and Vieria, J. , Gene, 19, 269-276, 1982).
  • the vector M13mp8 M13mp8
  • three Hind II sites were removed from the 5" non-coding sequence by site directed mutagenesis, and a new Hind II site was subsequently introduced near the end of the fourth framework region (FR4 in Figure 2).
  • FR4 fourth framework region
  • HE contains the gpt marker
  • stably transfected myeloma cells could be selected in medium containing mycophenolic acid.
  • Transfectants secreted an antibody (HuV NP -IgE) with heavy chains comprising a HuV NP variable domain (ie a humanised” mouse variable region) and human epsilon constant domains, and lambda 1 light chains from the J558L myeloma cells.
  • the culture supernatants of several gpt + clones were assayed by radioimmunoassay and found to contain NIP-cap binding antibody.
  • the antibody secreted by one such clone was purified from culture supernatant by affinity chromatography on NIP-cap Sepharose (Sepharose is a registered trade mark).
  • a polyacrylamide - SDS gel indicated that the protein was indistinguishable from the chimeric antibody MoV NP -IgE (Neuberger et al., loc. cit.).
  • the HuV NP -IgE antibody competes effectively with the MoV NP -IgE for binding to both anti-human-IgE and to NIP-cap coupled to bovine serum albumin.
  • Antibody solutions were diluted to 100 nM in phosphate buffered saline, filtered (0.45 um pore cellulose acetate) and titrated with NP-cap in the range 0.2 to 20 uM.
  • mouse DI-3 antibody Mariuzza, R.A., Jankovic, D.L., Bulot, G., Amit, A.G., Saludjian, P., Le Guern, A., Mazie, J.C. and Poljak, R.J., J. Mol. Biol., 170, 1055-1058, 1983
  • hapten concentration varied from 10 to 300 nM, and about 50% quenching of fluorescence was observed at saturation. Since the antibody concentrations were comparable to the value of the dissociation constants, data were fitted by least squares to an equation describing tight binding inhibition (Segal, I.H., in Enzyme Kinetics, 73-74, Wiley, New York, 1975).
  • the HuV NP -IgE antibody has lost the MoV NP idiotypic determinant recognised by the antibody Ac146. Furthermore, HuV NP -IgE also binds the Ac38 antibody less well ( Figure 4(c)), and it is therefore not surprising that HuV NP -IgE has lost many of the determinants recognised by the polyclonal rabbit anti-idiotypic antiserum ( Figure 4 (e)).
  • the oligonucleotides encoding the CDRs may be used again, but with a set of oligonucleotides encoding a different set of framework regions.
  • the DNA sequence of the heavy chain variable region was determined by making cDNA from the mRNA of the D1.3 hybridoma cells, and cloning into plasmid and M13 vectors. The sequence is shown in Figure 7, in which the boxed residues comprise the three CDRs and the asterisks mark residues which contact lysozyme.
  • each oligonucleotide has 12 nucleotides at the 5" end and 12 nucleotides at the 3" end which are complementary to the appropriate HuV NP framework regions.
  • the central portion of each oligonucleotide encodes either CDR1, CDR3, or CDR3 of the Dl.3 antibody, as shown in Figure 5, to which reference is now made. It can be seen from this Figure that these oligonucleotides are 39, 72 and 48 nucleotides long respectively.
  • This M13 template was used in a second round of mutagenesis with D1.3 CDR2 primer; finally template with "both CDRs 1 & 2 replaced was used in a third round of mutagenesis with D1.3 CDR3 primer. In this case, three rounds of mutganesis were used.
  • variable domain containing the Dl.3 CDRs was then attached to sequences encoding the heavy chain constant regions of human IgG2 so as to produce a vector encoding a heavy chain Hu*.
  • the vector was transfected into J558L cells as above.
  • the antibody Hu* 2 L 2 is secreted.
  • variable region gene for the Dl.3 antibody was inserted into a suitable vector and attached to a gene encoding the constant regions of mouse IgG1 to produce a gene encoding a heavy chain H* with the same sequence as H.
  • the protocol for achieving this is shown in Figure 8.
  • the vector (vector A) is then cut with NcoI, blunted with Klenow polymerase and cut with PstI.
  • the PstI-NcoI fragment is purified and cloned into PstI-HindII cut MV NP to replace most of the MV NP coding sequences.
  • the MV NP vector comprises the mouse variable domain gene with its promoter, 5" leader, and 5" and 3" introns cloned into M13mp9. This product is shown as vector B in Figure 8.
  • Vector C is then cut with HindIII and BamHI and the fragment formed thereby is inserted into HindIII/BarnHI cut M13mp9.
  • the product is cut with Hind III and Sad and the fragment is inserted into PSV-V NP cut with Hind III/Saci so as to replace the VNP variable domain with the Dl.3 variable domain.
  • Mouse IgG1 constant domains are cloned into the vector as a Sad fragment to produce vector D of Figure 8.
  • Vector D of Figure 8 is transfected into J558L cells and the heavy chain H* is secreted in association with the lambda bight chain L as an antibody H* 2 L 2 .
  • Separated K or L bight chains can be produced by treating an appropriate antibody (for instance Dl.3 antibody to produce K bight chains) with 2-mercaptoethanol in guanidine hydrochloride, blocking the free interchain sulphydryls with iodoacetamide and separating the dissociated heavy and light chains by HPLC in guanidine hydrochloride.
  • an appropriate antibody for instance Dl.3 antibody to produce K bight chains
  • Different heavy and light chains can be reassociated to produce functional antibodies by mixing the separated heavy and light chains, and dialysing into a non-denaturing buffer to promote reassociation and refolding.
  • Properly reassociated and folded antibody molecules can be purified on protein A-sepharose columns. Using appropriate combinations of the above procedures, the following antibodies were prepared.
  • H* 2 L 2 (Dl.3 heavy chain, lambda light chain)
  • Hu* 2 L 2 humanised Dl.3 heavy chain, lambda light chain
  • the affinity of the antibodies for lysozyme was determined by fluroresecent quenching, with excitation at 290nm and emission observed at 340nm.
  • Antibody solutions were diluted to l5-30ug/mg in phosphate buffered saline, filtered (0.45 um-cellulose acetate) and titrated with hen eggwhite lysozyme. There is quenching of fluoresence on adding the bysozyme to the antibody (greater than 100% quench) and data were fitted by least squares to an equation describing tight binding inhibition (I.H. Segal in Enzyme Kinetics, p73-74, Wiley, New York 1975).
  • the Campath-1 antigen is strongly expressed on virtually all human lymphocytes and monocytes, but is absent from other blood cells including the hemopoietic stem cells (Hale, G., Bright, S., Chumbley, G., Hoang, T., Metcalf, D., Munro, A.J. & Waldmann, H. Blood 62,873-882 (1983)).
  • a series of antibodies to Campath-1 have been produced, including rat monoclonal antibodies of IgM, IgG2a, and IgG2c isotypes (Hale, G., Hoang, T., Prospero, T., Watts, S.M. & Waldmann, H. Mol. Biol. Med.
  • IgG1 and IgG2b isotypes have been isolated as class switch variants from the IgG2a secreting cell line YTH 34.5HL (Hale, G., Cobbold, S.P., Waldmann, H., Easter, G., Matejtschuk, P. & Coombs, R.R.A.J. Immunol. Meth. 103, 59-67 (1987)). All of these antibodies with the exception of the rat IgG2c isotype are able to lyse efficiently human lymphocytes with human complement.
  • the IgG2b antibody YTH 34.5HL-G2b is effective in antibody dependent cell mediated cytotoxicity (ADCC) with human effector cells (Hale et al, 1987, loc. cit.).
  • ADCC antibody dependent cell mediated cytotoxicity
  • rat monoclonal antibodies have found important application in the context of immunosuppression, for control of graft-versus-host disease in bone marrow transplantation (Hale et al, 1983, loc. cit.); the management of organ rejection (Hale, G., Waldmann, H., Friend, P. & Caine, R.
  • the NEW light chain was not used because there is a deletion at the beginning of the third framework region of the NEW light chain.
  • the resulting reshaped heavy chain variable domain HuVHCAMP is based on the HuVHNP gene (Kabat et al, loc. cit. and Jones, P.T., Dear, P.H., Foote, 3., Neuberger, M.S. "& Winter, G. Nature 321, 522-525 (1986)) with the framework regions of human NEW alternating with the hypervariable regions of rat YTH 34.5HL.
  • the reshaped light chain variable domain HuVLCAMP is a similar construct, except with essentially the framework regions of the human myeloma protein REI, with the C-terminal and the 3" non-coding sequence taken from a human J K -region sequence (Hieter, P.A., Max, E.E., Seidmann, J.G., Maizel, J.V. Jr & Leder, P. Cell 22,197-207 (1980)). Sequence information for the variable domain of the reshaped antibody is given in the upper lines in Figure 9. The sequences of oligonucleotide primers are given and their locations on the genes are also marked in Figure 9.
  • MRNA was purified (Kaartinen, M., Griffiths, G.M., Hamlyn, P.H., Markham, A.F., Karjalainen, K., Pelkonen J.L.T., Makela, O. & Milstein, C.J. Immunol. 130,320-324 (1983)) from the hybridoma clone YTH 34.5HL (gamma 2a, k b ), and first strand cDNA made by priming with oligonucleotides complementary to the 5" end of the CH1 (oligonucleotide I) and the Ck exons (oligonucleotide II).
  • cDNA was cloned and sequenced as described in Gubler, U. & "Hoffman, B.J. Gene 25, 263-269 (1983) and Sanger, F., Nicklen, S.A. & Coulson, A.R. Proc.natl.Acad.Sci USA 74, 5463-5467 (1977).
  • rat heavy chain variable domain RaVHCAMP For expression of the rat heavy chain variable domain RaVHCAMP, two restriction sites (XbaI and SalI) were introduced at each end of the cDNA clone in M13 using mutagenic oligonucleotides III and V respectively, and the XbaI-SaII fragment excised. Simultaneously, the corresponding sites were introduced into the M13-HuVHNP gene using oligonucleotides IV and VI, and the region between the sites exchanged. The sequence at the junctions was corrected with oligonucleotides VII and VIII, and an internal BamHI site removed using the oligonucleotide IX, to create the M13-RaVHCAMP gene. The encoded sequence of the mature domain is thus identical to that of YTH 34.5HL.
  • the reshaped heavy chain variable domain (HuVHCAMP) was constructed in an M13 vector by priming with three long oligonucleotides simultaneously on the single strand containing the M13-HuVHNP gene (see Kabat et al, loc. cit and Jones et al, loc. cit).).
  • the mutagenesis techniques used were similar to those described in Carter et al loc. cit, using the host 71-18 mutL and without imposing strand selection.
  • Each oligonucleotide (X, XI and XII) was designed to replace each of the hypervariable regions with the corresponding region from the heavy chain of the YTH 34.5HL antibody.
  • the reshaped light chain variable domain (HuVLCAMP) was constructed in an M13 vector from a gene with framework regions based on human REI. As above, three long oligonucleotides (XIV, XV, and XVI) were used to introduce the hypervariable regions of the YTH 34.5HL light chain.
  • Humanised light chain variable domain (HuVLCAMP) was constructed in three stages, utilising a humanised light chain variable domain (HuVLLYS) which had been constructed for other purposes.
  • the first stage involved the gene synthesis of a humanised light chain variable domain gene (HuVLLYS°).
  • the HuVLLYS° gene incorporates human framework regions identical to the most common residue in each position in the Kabat alignment of the human kappa subgroup I, except for residues 97-108, which were identical to those in the human J1 fragment described in Heiter, P., Maizel, J, & Leder, P. J. Biol. Chem. 257, 1516-1522 (1982).
  • the sequences of the framework regions are very similar to the crystallographically solved light chain structure REI.
  • the CDRs in HuVLLYS° were identical to those in the mouse antilysozyme antibody (D1.3) light chain (unpublished).
  • Oligonucleotides listed below were produced on an Applied Biosystems 380B synthesizer. Each oligonucleotide was size-purified, 10 nmol being subjected to electrophoresis on a 20 x 40 cm 12% polyacrylamide, 7M urea gel, eluted from the -gel by dialysis against water, and lyophilized.
  • oligonucleotide For gene synthesis or mutagenesis, a 50 pmol aliquot of each purified oligonucleotide was phosphorylated in a 20 ul reaction mixture with 50mM Tris-C1 (pH 8.0), 10mM MgCl 2 , 5mM dithiothreitol, 1 mM ATP, and 5 units -of polynucleotide kinase; incubated at 37° for 30 minutes. When used as hybridization probes, gel-purified oligonucleotides were phosphorylated in a similar fashion, except on a 15 pmol scale with an excess of 32 P labeled ATP.
  • the three cloned blocks were excised from bug double stranded replicative form of the thee M13 vectors, by digestion with PstI/KpnI (block PK1-5), KpnI (block KKI-5) and KpnI/EcoRI (block KE1-8).
  • the inserts were separated from the vector by electrophoresis on a 20 x 20 cm 12% polyacrylamide gel, eluted from the gel slices with 0.5 M NH 4 OAc, 10 mM Mg (OAc) 2 , 0.1 mM EDTA, 0.1% SDS, and purified by phenol extraction and ethanol precipitation.
  • Campath-l light chain variable domain was derived from the HuVLLYS domain, and the reshaped human heavy (HuVHCAMP) and light (HuVLCAMP) chain variable domains were then assembled with constant domains in three stages as illustrated in Figure 12.
  • sequences of rat origin are marked in black, and those of human origin in white.
  • the recombinant heavy and light chains are also marked using a systematic nomenclature.
  • the illustrated procedure permits a step-wise check on the reshaping of the heavy chain variable domain (stage 1), the selection of the human isotype (stage 2), and the reshaping of the light chain variable domain and assembly of human antibody (stage 3).
  • stage 1 The vector constructions were genomic, with the variable domains excised from the Ml3 vectors and cloned as HindIII-BamHI fragments and the constant domains as BamHI-BamHI fragments in either pSVgpt (heavy chain) (Mulligan, R.C. & Berg, P. Proc.natl.Acad.Sci USA 78,2072-2076 (1981)) or pSVneo (light chain) (Southern, P.J.
  • the heavy chain enhancer was included to the 5" side of the variable domain, and expression of both light and heavy chains was driven from heavy chain promoter and the heavy chain signal sequence.
  • stage 1 the pSVgpt vectors HuVHCAMP-RaIgG2B, and also two mutants for reasons to be explained below, HuVHCAMP(Ser27 to Phe)-RaIgG2B, HuVHCAMP(Ser27 to Phe, Ser30 to Thr)-RaIgG2B) were introduced into the heavy chain loss variant of YTH-34.5HL.
  • stage 2 the pSVgpt vectors RaVHCAMP-RaIgG2B, RaVHCAMP-HuIgGl, RaVHCAMP-HuIgG2, RaVHCAKP-HuIgG3, RaVHCAMP-HuIgG4 were transfected as described above.
  • stage 3 the pSV-gpt vector Hu(Ser27-Phe, Ser30-Thr)VHCAMP-HuIgGl was cotransfected with the pSV-neo vector HuVLCAMP-HuIgK into the rat -myeloma cell line Y0 (Y B2/3.0 Ag 20) (Galfre, G. & Milstein, C. Meth.Enzymol. 73,1-46 (1981)).
  • clones resistant to mycophenobic acid were selected and screened for antibody production by ELISA assays. Clones secreting antibody were subcboned by limiting dilution (for Y0) or the soft agar method (for the loss variant) and assayed again before 1 litre growth in roller bottles.
  • stage 1 the reshaped heavy chain variable domain (HuVHCAMP) was attached to constant domains of the rat isotype IgG2b and transfected into a heavy chain loss variant of the YTH34.5 hybridoma.
  • the loss variant carries two light chains, one derived from the Y3 fusion partner (Galfre et al., loc. cit).
  • the cloned rat heavy chain variable domain (RaVHCAMP) was also expressed as above.
  • Antibodies were harvested at stationary phase and concentrated by precipitation with ammonium sulphate, followed by ion exchange chromatography on a Pharmacia MonoQ column. The yields of antibody were measured by an ELISA assay directed against the rat IgG2b isotype, and each adjusted to the same concentration (Clark and Waldmann loc. cit).
  • the HuVHCAMP and RaVHCAMP antibodies - all of the rat IgG2b isotype - were compared in a direct binding assay to the Campath-1.
  • antigen obtained from a glycolipid extract from human spleen
  • complement lysis of human lymphocytes For measuring the binding to antigen, the partially purified Campath-l antigen was coated onto microtitre wells. Bound antibody was detected via a biotin labelled anti-rat IgG2b monoclonal antibody (Clark & Waldmann loc. cit), developed with a streptavidin-peroxidase conjugate (Amersham plc).
  • FIG. 13 illustrates loop Phe27 to Tyr35 in the heavy chain variable domain of the human myeloma protein KOL which is crystallographically solved (Marquardt, M., Deisenhofer, J., Huber, P. & Palm, W. J. Mol. Biol. 141,368-391 (1980)).
  • the backbone of the hypervariable region according to Kabat et al, (loc. cit.) is highlighted, and a 200% van der Waal surface is thrown around Phe27 to show the interactions with Tyr32 and Met34 of the Kabat hypervariable region.
  • stage 2 ( Figure 12), the rat heavy chain variable domain was attached to constant domains of the human isotypes IgG1, 2, 3, and 4, and transfected into the heavy chain boss variant of the YTH34.5 hybridoma.
  • Antibody was harvested from cells in stationary phase, concentrated by precipitation with ammonium sulphate and desalted into phosphate buffered saline (PBS). Antibodies bound to the Campath-l antigen coated on microtitre plates, were assayed in ELISA directed against the rat k light chain (Clark & Waldmann loc cit), and adjusted to the same concentration. The antibodies were assayed in complement lysis (as described above) and ADCC with activated human peripheral blood mononuclear cells (Clark & Waldmann loc. cit and Hale, G. Clark, M. & Waldmann, H. J. Immunol. 134,3056-3061 (1985)).
  • PBS phosphate buffered saline
  • Results of lysis with the antibody YTH34.5HL are represented by solid circles.
  • the human IgG1 isotype proved similar to the YTH34.5HL-G2b, with the human IgG3 isotype less effective.
  • the human IgG2 isotype was only weakly lytic and the IgG4 isotype non-lytic.
  • the human IgG1 was more lytic than the YTH34.5HL-G2b antibody.
  • the decrease in lysis at higher concentration of the rat IgG2b and the human IgG1 antibody is due to an excess of antibody, which causes the lysis of effector cells.
  • the human IgG3 antibody was weakly lytic, and the IgG2 and IgG4 isotypes were non-lytic.
  • the human IgG1 isotype was therefore suitable for a reshaped antibody for therapeutic use. Other recent work also suggests the IgG1 isotype as favoured for therapeutic application.
  • the effector functions of human isotypes were compared using a set of chimaeric antibodies with an anti-hapten variable domain, the IgG1 isotype appeared superior to the IgG3 in both complement and cell mediated lysis (Bruggemann, M., Williams, G.T., Bindon, C., Clark, M.R., Walker, M.R., Jefferis, R., Waldmann, H. & Neuberger, M.S. J.Exp.Med. (in press).
  • stage 3 the reshaped heavy chain was completed, by attaching the reshaped HuVHCAMP. (Ser27 to Phe, Ser30 to Thr) domain to the human IgG1 isotype.
  • the reshaped light chain domain HuVHCAMP was attached to the human Ck domain.
  • the two vectors were cotransfected into the non-secreting rat Y0 myeloma line.
  • Antibody HuVHCAMP (Ser27 to Phe, Thr30 to Ser)-HuIGG1, HuVLCAMP-HuIGK was purified from supernatants of cells in stationary phase by affinity chromatography on protein A Sepharose. The antibody was at least 95% (by wt) pure. The yield (about 10mg/1) was measured spectrophotometrically. Complement and ADCC assays were performed as described in connection with Figure 14.
  • the rat antibody and fully humanised antibody were compared in a direct binding assay to Campath-1 antigen.
  • Antibody concentrations were determined as described in Figures 14 and 15.
  • the amount of rat antibody bound to partially purified Campath-l antigen was determined as described in connection with Table 3.
  • the amount of human antibody bound was determined by an ELISA assay using a biotinylated sheep anti-human IgG antibody (Amersham).
  • HuVHCAMP (Ser 27 to Phe, Ser30 to Thr)
  • the antibody can be reshaped for therapeutic application.
  • the strategy illustrated in Figure 12 is stepwise assembly to allow any problems to be detected at each stage (reshaping of heavy chain variable domain, selection of constant domain and reshaping of light chain variable domain). It is quite possible to build the reshaped antibody in a single step assembly, i.e. constructing the two reshaped -variable domains, attaching to appropriate constant domains and cotransfecting into e.g. YO.
  • the heavy chain variable region was constructed as described in Example 2 above, and the light chain variable region was constructed as described in Example 3 above.
  • Heavy and light chain constructs were prepared from 1 L of bacterial culture by CsC1 density gradient ultracentrifugation. 20 ug of each plasmid was digested with Pvul and co-transfected into 10 7 NSO cells by electroporation. Transformants were selected by growth in medium containing mycophenolic acid, in a 24-well tissue culture plate. After two weeks growth, aliquots of cells were removed from each well, incubated overnight with 35 S-methionine, and the supernatant medium affinity adsorbed with Protein A - Sepharose beads (Pharmacia).
  • Absorbed proteins were subjected to sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), followed by autoflurography. Clones were isolated by limiting dilution from the wells which had yielded both heavy and light chain bands on the autofluorogram. The radioincorporation screening method was again employed to identify those clones secreting a complete antibody. Of these, one cell line was chosen and propagated for storage and further analysis.
  • a 2L culture of the cell line was grown to saturation in Dulbecco"s modifed Eagle medium supplemented with 10% fetal calf serum.
  • Antibody was concetrated from the culture medium by ammonium sulfate precipitation.
  • the precipitate was redissolved in phosphate-buffered saline, pH 7.4(PBS), dialyzed, and chromatographed on a column of lysozyme-Sepharose (prepared by reaction of 20 mg lysozyme per ml of CNBr-activated Sepharose CL-4B).
  • the column was washed with 0.5 M NaC1, 0.1 M Tris chloride, pH 8.5, and subsequently with 50 mM Et 2 NH.
  • Immunoglobulin-containing fractions eluting with the latter wash were identified by SDS-PAGE followed by Coomassie Blue staining; these were pooled and dialyzed against PBS.
  • the dialyzed material was applied to a column of protein A -Sepharose. The column was washed with PBS, followed by 0.1 M citrate buffers in the order pH 6, 5, 4, 3.
  • a peak eluting at pH 4 (the pH expected for elution of a human immunoglobulin of the gamma 2 isotype) was identified as homogeneous immunoglobulin by SDS-PAGE. This was dialyzed vs PBS for storage. Its concentration was determined spectrophotormetrically using an extinction coefficient at 280 nm of 1.4 cm -1 (mg/ml) -1 .
  • Spectroscopic conditions employed consisted of an excitation wavelength of 280 nm with a 5 nm bandwidth, and an emission bandwidth of 2.5 nm.
  • Data acquisition was with a Perkin-Elmer LS-5B spectrofluorimeter interfaced to a Macintosh microcomputer, which in turn was used for data manipulation and display.
  • Reshaped Fv fragments of the anti-bysozyme antibody D1.3 (Verhoeyen et al, loc. cit) were constructed.
  • the heavy chain variable region was reshaped by combining human framework (FR) sequences from the myeloma protein NEW (Saul F.A., Amzel, M., Poljak R.J., J. Biol. Chem. 253.585 (1978)) with the mouse Dl.3 CDRs which provide the-antigen specifically (Verhoeyen et al, loc. cit).
  • the reshaped light chain contains human FRs from human kappa consensus sequence (Kabat et al, loc. cit) similar to the sequence of the Bence Jones protein REI (Epp, O., et al, Eur. J. Biochem. 45, 513 (1974)) combined with the Dl.3 light chain CDRs.
  • Figure 18 illustrates the plasmid for the expression of the Fv-fragment of the reshaped version of the antilysozyme antibody Dl.3.
  • the plasmid was transfected by electroporation (Potter, H., Weir, L., Leder, P. Proc. Natl. Acad. Sci. USA 81,7161 (1984)) into the non-producer myeloma cell line NSO (Galfre, G., Milstein, C., Meth.Enzymol 73, 1 (1981)). Transfectants were selected with mycophenolic acid (Mulligan, R. C., Berg, P., Proc. Natl. Acad. Sci. USA 78,20722076).
  • the genes (HuVHLYS and HuVLLYS) for the VH and VL domains were produced as HindIII-BamHI fragments in Ml3 for the expression of the whole antibody (see M. Verhoeyen et al. Science loc. cit. for sequence of VH, see Riechmann, I. Clark, M., Waldmann, H., Winter, G., Nature in press for VL-framework sequences and see Verhoeyen, M., Berek, C., Winter, G., Nucleic Acid. Res. submitted for the VL CDRs).
  • VL-gene containing Ig-enhancer, HCMV-promoter, VL-coding region and polyadenylation signal
  • pBGS18 Frazier, B., et al., Gene 41,337 (1986)
  • pBGS-HuVLLYS was cloned into the pSVgpt-HuVHLYS vector as a BamHI fragment as shown in Figure 18.
  • the final plasmid pLRI further contained the resistance genes for the drugs ampicillin (amp R ), kanamycm (kan R ) and mycophenolic acid (Eco gpt) two col EI origins of replication (col EI ori) and the SV40 enhancer (SV40 enh pro).
  • ampicillin ampicillin
  • kan R kanamycm
  • Eco gpt mycophenolic acid
  • SV40 enhancer SV40 enh pro
  • BamHI (B), HindIII (H), EcoRI (E) and SacI (S) restriction sites used for cloning steps are indicated. The diagram is not to scale.
  • the Fv fragment contains two chains of about 12KD (calculated values 12,749 for VH and 11,875 for VL) when analysed on SDS gels. See results in Figure 19, in which lysozyme was run in lane 1, Fv-fragment plus lysozyme in lane 2, affinity purified Fvfragment in lane 3, isolated VL-domain in lane 4, isolated VH-domain in lane 5) and size markers in lanes 6). The Fv-fragment and the lysozyme/Fv-fragment complex were eluted from the bands in the native gel in Figure 20 (lanes 2,3). All samples were applied in buffer containing beta mercaptoethanol.
  • the Fv-fragment is secreted in a functional form, as it can readily be purified from the culture supernatant with lysozyme Sepharose (Fv-fragments from cell culture supernatants were prepared by filtering through two layers of Whatmann 3MM paper, adsorption to lysozyme coupled to CnBr-Sepharose (Pharmacia), extensive washing with phosphate buffered saline and elution with 50mM diethylamine. Eluates were immediately adjusted to pH 7.5.
  • the Fv-fragment runs as a single band, that contains both the VH and the VL domain when analysed on SDS gels (compare lane 3 in Figures 19 and 20).
  • This band can be shifted on the native gel, when the antigen lysozyme is added.
  • the shifted band contains lysozyme, VH and VL domain in similar amounts when analysed on SDS-gels (compare lane 2 in Figures 19 and 20).
  • the isolated VL, domain runs as a diffused band with a mobility different to the Fv-fragment on the native gel (lane 4, Figure 20).
  • the isolated VH does not run into the gel because of its net charge at pH 7.5.
  • VH-VL heterodimer The VL and VH-domains were separated on a MonoS column (Pharmacia) in 50 mM acetic acid, 6 M urea (adjusted to pH 4.8 with NaOH) using 0 to 0.3 M NaCI gradient over 6 minutes.
  • the VH was sufficiently pure according to SDS gel analysis.
  • the VL was further purified after desalting into phosphate buffered saline on a Biozorbax GF250 (DuPont) sizing column to get rid of residual VH-VL heterodimer)
  • VH-VL heterodimers were further established, when Fv fragments were incubated at a concentration of 0.5 mg/ml in phosphate buffered saline with 3.7% formaldehyde overnight.
  • Crosslinked VH-VL heterodimers of about 25 kD were formed (Purified, biosynthetically 35 S-methionine labelled VH domain was incubated in 3.7% formaldehyde/PBS overnight in the absence or presence of excessive unlabelled VH-VL heterodimer.
  • VH VL heterodimers When analysed on SDS gels crosslinked, labelled VH VL heterodimers (molecular weight of about 25 kD) are formed from isolated labelled VH only in the precsence of unlabelled Fv-fragment. No formation of dimers could be detected in the absence of unlabelled Fv-fragment). Lysozyme-Sepharose purification of the crosslinked material showed that the crosslinked VH-VL heterodimer is still active. Overloading of SDS gels with crosslinked material also made visible a small fraction (less than 5%) of slightly lower molecular weight material suggesting the formation of crosslinked VL homodimers. No higher molecular weight band for possible VH homodimers was observed.
  • the Fv-fragment is predominantly associated at neutral pH, it is in a dynamic equilibrimun; the purified biosynthetically labelled VH domain exchanges with the unlabelled VH domain when incubated with an excess of unlabelled VH-VL heterodimer, because labelled VH-VL heterodimers can be trapped by crosslinking with formaldehyde.
  • Fv-fragments should not cause problems in diagnostic or therapeutic applications.
  • Fv-fragments will certainly be of considerable advantage without further treatment. They should especially simplify the assignment of signals in NMR-spectra, if the same beta-sheet frameworks are used for Fvfragments with different specificities.

Abstract

Abstract of the Disclosure
An altered antibody is produced by replacing the complementarity determining regions (CDRs) of a variable region of an immunoglobulin (Ig) with the CDRs from an Ig of different specificity, using recombinant DNA techniques. The gene coding sequence for producing the altered antibody may be produced by site-directed mutagenesis using long oligonucleotides or using gene synthesis.

Description

    Detailed Description of the Invention Cross Reference to Related Applications
  • This application is a continuation of application No. 08/452,462, filed on May 26, 1995, now Patent No. 6,548,640, which is a continuation of application No. 07/942,140, now abandoned, which is a continuation of application No. 07/624,515, filed on December 7, 1990, now abandoned, which is a continuation of application No. 07/189,814, filed on May 3, 1988, now abandoned.[0001]
  • Background of Invention
  • 1.Field of the Invention[0002]
  • The present invention relates to altered antibodies in which at least part of the complementarity determining regions (CDRs) in the light or heavy chain variable domains of the antibody have been replaced by analogous parts of CDRs from an antibody of different specificity. The present invention also relates to-methods for the production of such altered antibodies. The term altered antibody is used herein to mean an antibody in which at least one residue of the amino acid sequence has been varied as compared with the sequence of a naturally occuring antibody.[0003]
  • 2.Descripton of the Prior Art[0004]
  • Natural antibodies, or immunoglobulins, comprise two heavy chains linked together by disulphide bonds and two light chains, each light chain being linked to a respective heavy chain by disulphide bonds. The general structure of an antibody of class IgG (ie an immunoglobulin (Ig) of class gamma (G)) is shown schematically in Figure 1 of the accompanying drawings.[0005]
  • Each heavy chain has at one end a variable domain followed by a number of constant domains. Each light chain has a variable domain at one end and a constant domain at its other end, the light chain variable domain being aligned with the variable domain of the heavy chain and the light chain constant domain being aligned with the first constant domain of the heavy chain. The constant domains in the light and heavy chains are not involved directly in binding the antibody to the antigen.[0006]
  • Each pair of light and heavy chains variable domains forms an antigen binding site. The variable domains of the light and heavy chains have the same general structure and each domain comprises four framework regions, whose sequences are relatively conserved, connected by-three hypervariable or complementarity determining regions (CDRs) (see Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M. and Perry, H., in Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1983 and 1987). The four framework regions largely adopt a beta-sheet conformation and the CDRs form loops connecting, and in some cases forming part of, the beta-sheet structure. The CDRs are held in close proximity by the framework regions and, with the CDRs from the other variable domain, contribute to the formation of the antigen binding site.[0007]
  • For a more detailed account of the structure of variable domains, reference may be made to: Poljak, R.J., Amzel, L.M., Avey, H.P., Chen, B.L., Phizackerly, R.P. and Saul, F., PNAS USA, 70, 3305-3310, 1973; Segal, D.M., Padlan, E.A., Cohen, G.H., Rudikoff, S., Potter, M. and Davies, D.R., PNAS USA, 71, 4298-4302, 1974; and Marquart, M., Deisenhofer, J., Huber, R. and Palm, W., J. Mol. Biol., 141, 369-391, 1980.[0008]
  • In recent years advances in molecular biology based on recombinant DNA techniques have provided processes for the production of a wide range of heterologous polypeptides by transformation of host cells with heterologous DNA sequences which code for the production of the desired products.[0009]
  • EP-A-0 088 994 (Schering Corporation) proposes the construction of recombinant DNA vectors comprising a ds DNA sequence which codes for a variable domain of a light or a heavy chain of an Ig specific for a predetermined ligand. The ds DNA sequence is provided with initiation and termination codons at its 5" - and 3" - termini respectively, but lacks any nucleotides coding for amino acids superfluous to the variable domain. The ds DNA sequence is used to transform bacterial cells. The application does not contemplate variations in the sequence of the variable domain.[0010]
  • EP-A-1 102 634 (Takeda Chemical Industries Limited) describes the cloning and expression in bacterial host organisms of genes coding for the whole or a part of human IgE heavy chain polypeptide, but does not contemplate variations in the sequence of the polypeptide.[0011]
  • EP-A-0 125 023 (Genentech Inc.) proposes the use of recombinant DNA techniques in bacterial cells to produce Igs which are analogous to those normally found in vertebrate systems and to take advantage of the gene modification techniques proposed therein to construct chimeric Igs, having amino acid sequence portions homologous to sequences from different Ig sources, or other modified forms of Ig.[0012]
  • The proposals set out in the above Genentech application did not lead to secretion of chimeric Igs, but these were produced as inclusion bodies and were assembled in vitro with a low yield of recovery of antigen binding activity.[0013]
  • The production of monoclonal antibodies was first disclosed by Kohler and Milstein (Kohler, G. and Milstein, C., Nature, 256, 495-497, 1975). Such monoclonal antibodies have found widespread use not only as diagnostic reagents (see, for example, "Immunology for the 80s", Eds. Voller, A., Bartlett, A., and Bidwell, D., MTP Press, Lancaster, 1981) but also in therapy (see, for example, Ritz, J. and Schlossman, S.F., Blood, 59, 1-11, 1982).[0014]
  • The recent emergence of techniques allowing the stable introduction of Ig gene DNA into myeloma cells (see, for example, Oi, V.T., Morrison, S.L., Herzenberg, L.A. and Berg, P., PNAS USA, 80, 825-829, 1983; Neuberger, M.S., EMBO J., 2, 1373-1378, 1983; and Ochi, T., Hawley, R.G., Hawley, T., Schulman, M.J., Traunecker, A., Kohler, G. and Hozumi, N., PNAS USA, 80, 6351-6355, 1983), has opened up the possibility of using in vitro mutagenesis and DNA transfection to construct recombinant Igs possessing novel properties.[0015]
  • However, it is known that the function of an Ig molecule is dependent on its three dimensional structure, which in turn is dependent on its primary amino acid sequence. Thus, changing the amino acid sequence of an Ig may adversely affect its activity. Moreover, a change in the DNA sequence coding for the Ig may affect the ability of the cell containing the DNA sequence to express, secrete or assemble the Ig.[0016]
  • It is therefore not at all clear that it will be possible to produce functional altered antibodies by recombinant DNA techniques.[0017]
  • However, colleagues of the present Inventor have devised a process whereby chimeric antibodies in which both parts of the protein are functional can be secreted. The process, which is disclosed in International Patent Application No. PCT/GB85/00392 (WO86/01533) (Neuberger et al. and Celltech Limited), comprises:[0018]
  • a) preparing a replicable expression vector including a suitable promoter operably linked to a DNA sequence comprising a first part which encodes at least the variable domain of the heavy or light chain of an Ig molecule and a second part which encodes at least part of a second protein;[0019]
  • b) if necessary, preparing a replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary light or heavy chain respectively of an Ig molecule;[0020]
  • c) transforming an immortalised mammalian cell line with the or both prepared vectors; and[0021]
  • d) culturing said transformed cell line to produce a chimeric antibody.[0022]
  • The second part of the DNA sequence may encode:[0023]
  • i) at least part, for instance the constant domain of a heavy chain, of an Ig molecule of different species, class or subclass;[0024]
  • ii) at least the active portion or all of an enzyme;[0025]
  • iii) a protein having a known binding specificity;[0026]
  • iv) a protein expressed by a known gene but whose sequence, function or antigenicity is not known; or[0027]
  • v) a protein toxin, such a ricin.[0028]
  • The above Neuberger application only shows the production of chimeric antibodies in which complete variable domains are coded for by the first part of the DNA sequence. It does not show any chimeric antibodies in which the sequence of the variable domain has been altered.[0029]
  • EP-A-0 173 494 (The Board of Trustees of the Leland Stanford Junior University) also concerns the production of chimeric antibodies having variable domains from one mammalian source and constant domains from another mammalian source. However, there is no disclosure or suggestion of production, of a chimeric antibody in which the sequence of a variable domain has been altered: indeed, hitherto variable domains have been regarded as indivisible units.[0030]
  • Summary of Invention
  • The present invention, in a first aspect, provides an altered antibody in which at least part of a CDR in a light or heavy chain variable domain has been replaced by analogous part(s) of a CDR from an antibody of different specificity.[0031]
  • The determination as to what constitutes a CDR and what constitutes a framework region is made on the basis of the amino-acid sequences of a number of Igs. However, from the three dimensional structure of a number of Igs it is apparent that the antigen binding site of an Ig variable domain comprises three looped regions supported on sheet-like structures. The loop regions do not correspond exactly to the CDRs, although in general there is considerable overlap.[0032]
  • Moreover, not all of the amino-acid residues in the loop regions are solvent accessible and in at least one case it is known that an amino-acid residue in the framework region is involved in antigen binding. (Amit, A.G., Mariuzza, R.A., Phillips, S.E.V. and Poljak, R.J., Science, 233, 747-753, 1986).[0033]
  • It is also known that the variable regions of the two parts of an antigen binding site are held in the correct orientation by inter-chain non-covalent interactions. These may involve amino-acid residues within the CDRs.[0034]
  • Further, the three dimensional structure of CDRs, and therefore the ability to bid antigen, depends on the interaction with the framework regions: thus in some cases transplanting CDRs to a different framework might destroy antigen binding.[0035]
  • In order to transfer the antigen binding capacity of one variable domain to another, it may not be necessary in all cases to replace all of the CDRs with the complete CDRs from the donor variable region. It may, eg, be necessary to transfer only those residues which are accessible from the antigen binding site. In addition, in some cases it may also be necessary to alter one or more residues in the framework regions to retain antigen binding capacity: this is found to be the case with reshaped antibody to Campath 1, which is discussed below.[0036]
  • It may also be necessary to ensure that residues essential for inter-chain interactions are preserved in the acceptor variable domain.[0037]
  • Within a domain, the packing together and orientation of the two disulphide bonded betasheets (and therefore the ends of the CDR loops) are relatively conserved. However, small shifts in packing and orientation of these beta-sheets do occur (Lesk, A.M. and Chothia, C., J. Mol. Biol., 160, 325-342, 1982). However, the packing together and orientation of heavy and light chain variable domains is relatively conserved (Chothia, C., Novotny, J., Bruccoleri, R. and Karplus, M., J. Mol. Biol., 186, 651-653, 1985). These points will need to be borne in mind when constructing a new antigen binding site so as to ensure that packing and orientation are not altered to the deteriment of antigen binding capacity.[0038]
  • It is thus, clear that merely by replacing at least part of one or more CDRs with complementary CDRs may not always result in a functional altered antibody. However, given the explanations set out above, it will be well within the competence of the man skilled in the art, either by carrying out routine experimentation or by trial and error testing to obtain a functional altered antibody.[0039]
  • Preferably, the variable domains in both the heavy and light chains have been altered by at least partial CDR replacement and, if necessary, by partial framework region replacement and sequence changing. Although the CDRs may be derived from an antibody of the same species class or even subclass as the antibody from which the framework regions are derived, it is envisaged that the CDRs will generally preferably be derived from an antibody of different species and/or from an antibody of different class or subclass.[0040]
  • Thus, it is envisaged, for instance, that the CDRs from a mouse antibody could be grafted onto the framework regions of a human antibody. This arrangement will be of particular use in the therapeutic use of monoclonal antibodies.[0041]
  • At present, if a mouse monoclonal antibody is injected into a human, the human body"s immune system recognises the antibody as foreign and produces an immune response thereto. Thus, on subsequent injections of the mouse antibody into the human, its effectiveness is considerably reduced by the action of the body"s immune system against the foreign antibody. In the altered antibody of the present invention, only the CDRs of the antibody will be foreign to the body, and this should minimise side effects if used for human therapy. Although, for example, human and mouse framework regions have characteristic sequences, to a first approximation there seem to be no characteristic features which distinguish human from mouse CDRs. Thus, an antibody comprised of mouse CDRs in a human framework may well be no more foreign to the body than a genuine human antibody.[0042]
  • Even with the altered antibodies of the present invention, there is likely to be an anti-idiotypic response by the recipient of the altered antibody. This response is directed to the antibody binding region of the altered antibody. It is believed that at least some anti-idiotype antibodies are directed at sites bridging the CDRs and the framework regions. It would therefore be possible to provide a panel of antibodies having the same partial or complete CDR replacements but on a series of different framework regions. Thus, once a first altered antibody became therapeutically ineffective, due to an anti-idiotype response, a second altered antibody from the series could be used, and so on, to overcome the effect of the anti-idiotype response. Thus, the useful life of the antigen-binding capacity of the altered antibodies could be extended.[0043]
  • Preferably, the altered antibody has the structure of a natural antibody or a fragment thereof. Thus, the altered antibody may comprise a complete antibody, an (Fab")[0044] 2 fragment, an Fab fragment, a light chain dimer or an Fv fragment. Alternatively, the altered antibody may be a chimeric antibody of the type described in the Neuberger application referred to above. The production of such an altered chimeric antibody can be carried out using the methods described below used in conjunction with the methods described in the Neuberger application.
  • The present invention, in a second aspect, comprises a method for producing an altered antibody comprising:[0045]
  • a) preparing a first replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least a variable domain of an Ig framework regions consisting at least parts of framework regions from a first antibody and CDRs comprising at least part of the CDRs from a second antibody of different specificity;[0046]
  • b) if necessary, preparing a second replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary Ig light or heavy chain respectively;[0047]
  • c) transforming a cell line with the first or both prepared vectors; and[0048]
  • d) culturing said transformed cell line to produce said altered antibody.[0049]
  • Preferably, the cell line which is transformed to produce the altered antibody is an immortalised mammalian cell line, which is advantageously of lymphoid origin, such as a myeloma, hybridoma, trioma or quadroma cell line. The cell line may also comrpise a normal lymphoid cell, such as a B-cell, which has been immortalised by transformation with a virus, such as the Epstein-Barr virus. Most preferably, the immortalised cell line is a myeloma cell line or a derivative thereof.[0050]
  • Although the cell line used to produce the altered antibody is preferably a mammalian cell line, any other suitable cell line, such as a bacterial cell line or a yeast cell line, may alternatively be used. In particular, it is envisaged that E. Coli derived bacterial strains could be used.[0051]
  • It is known that some immortalised lymphoid cell lines, such as myeloma cell lines, in their normal state secrete isolated Ig light or heavy chains. If such a cell line is transformed with the vector prepared in step a) of the process of the invention, it will not be necessary to carry out step b) of the process, provided that the normally secreted chain is complementary to the variable domain of the Ig chain encoded by the vector prepared in step a).[0052]
  • In general the immortalised cell line will not secrete a complementary chain, and it will be necessary to carry out step b). This step may be carried out by further manipulating the vector produced in step a) so that this vector encodes not only the variable domain of an altered antibody light or heavy chain, but also the complementary variable domain.[0053]
  • Alternatively, step b) is carried out by preparing a second vector which is used to transform the immortalised cell line.[0054]
  • The techniques by which such vectors can be produced and used to transform the immortalised cell lines are well known in the art, and do not form any part of the invention.[0055]
  • In the case where the immortalised cell line secretes a complementary light or heavy chain, the transformed cell line may be produced for example by transforming a suitable bacterial cell with the vector and then fusing the bacterial cell with the immortalised cell line by spheroplast fusion. Alternatively, the DNA may be directly introduced into the immortalised cell line by electroporation. The DNA sequence encoding the altered variable domain may be prepared by oligonucleotide synthesis. This requires that at least the framework region sequence of the acceptor antibody and at least the CDRs sequences of the donor antibody are known or can be readily determined. Although determining these sequences, the synthesis of the DNA from oligonucleotides and the preparation of suitable vectors is to some extent laborious, it involves the use of known techniques which can readily be carried out by a person skilled in the art in light of the teaching given here.[0056]
  • If it was desired to repeat this strategy to insert a different antigen binding site, it would only require the synthesis of oligonucleotides encoding the CDRs, as the framework oligonucleotides can be re-used.[0057]
  • A convenient variant of this technique would involve making a symthetic gene lacking the CDRs in which the four framework regions are fused together with suitable restriction sites at the junctions. Double stranded synthetic CDR cassettes with sticky ends could then be ligated at the junctions of the framework regions. A protocol for achieving this variant is shown diagrammatically in Figure 6 of the accompanying drawings.[0058]
  • Alternatively, the DNA sequence encoding the altered variable domain may be prepared by primer directed oligonucleotide site-directed mutagenesis. This technique in essence involves hybridising an oligonucleotide coding for a desired mutation with a single strand of DNA containing the region to be mutated and using the signle strand as a template for extension of the oligonucleotide to produce a strand containing the mutation. This technique, in various forms, is described by: Zoller, M.J. and Smith, M., Nuc. Acids Res., 10, 6487-6500, 1982; Norris, K., Norris, F., Christainsen, L. and Fiil, N., Nuc. Acids Res., 11, 5103-5112, 1983; Zoller, M.J. and Smith, M., DNA, 3, 479-488 (1984); Kramer, W., Schughart, K. and Fritz, W.-J., Nuc. Acids Res., 10, 6475-6485, 1982.[0059]
  • For various reasons, this technique in its simplest form does not always produce a high frequency of mutation. An improved technique for introducing both single and multiple mutations in an M13 based vector, has been described by Carter et al. (Carter, P., Bedouelle H. and Winter, G., Nuc. Acids Res., 13, 4431-4443, 1985).[0060]
  • Using a long oligonucleotide, it has proved possible to introduce many changes simultaneously (as in Carter et al., loc. cit.) and thus single oligonucleotides, each encoding a CDR, can be used to introduce the three CDRs from a second antibody into the framework regions of a first antibody. Not only is this technique less laborious than total gene synthesis, but is represents a particularly convenient way of expressing a variable domain of required specificity, as it can be simpler than tailoring an entire V[0061] H domain for insertion into an expression plasmid.
  • The oligonucleotides used for site-directed mutagenesis may be prepared by oligonucleotide synthesis or may be isolated from DNA coding for the variable domain of the second antibody by use of suitable restriction enzymes. Such long oligonucleotides will generally be at least 30 bases long and may be up to or over 80 bases in length.[0062]
  • The techniques set out above may also be used, where necessary, to produce the vector of part (b) of the process.[0063]
  • The method of the present invention is envisaged as being of particular use in reshaping human monoclonal antibodies by introducing CDRs of desired specificity. Thus, for instance, a mouse monoclonal antibody against a particular human cancer cell may be produced by techniques well known in the art. The CDRs from the mouse monoclonal antibody may then be partially or totally grated into the framework regions of a human monoclonal antibody, which is then produced in quantity by a suitable cell line. The product is thus a specifically targetted, essentially human antibody which will recognise the cancer cells, but will not itself be recognised to any significant degree, by a human"s immune system, until the anti-idiotype response eventually becomes apparent. Thus, the method and product of the present invention will be of particular use in the clinical environment.[0064]
  • The present invention is now described, by way of example only, with reference to the accompanying drawings.[0065]
  • Brief Description of Drawings
  • In the drawings:[0066]
  • Figure 1 is a schematic diagram showing the structure of an IgG molecule;[0067]
  • Figure 2 shows the amino acid sequence of the V[0068] H domain of NEWM in comparison with the VH domain of the BI-8 antibody;
  • Figure 3 shows the amino acid and nucleotide sequence of the HuV[0069] NP gene.
  • Figure 4 shows a comparison of the results for HuV[0070] NP-IgE and MoVNP-1gE in binding inhibition assays;
  • Figure 5 shows the structure of three oligonucleotides used for site directed mutagenesis;[0071]
  • Figure 6 shows a protocol for the construction of CDR replacements by insertion of CDR cassettes into a vector containing four framework regions fused together;[0072]
  • Figure 7 shows the sequence of the variable domain of antibody D1.3 and the gene coding therefor;[0073]
  • Figure 8 shows a protocol for the cloning of the D1.3 variable domain gene;Figure 9 illustrates nucleic acid and amino acid sequences of the variable domains of antibodies to Campath-1, with [0074]
  • Figure 9a representing the heavy chain and Figure 9b representing the light chain;[0075]
  • Figure 10 illustrates the sequence of the HuVLLYS°gene and derived amino acid sequence;[0076]
  • Figure 11 illustrates the sequences of the HuVLLYS gene and derived amino acid sequence, with asterisks marking the CDRs;[0077]
  • Figure 12 illustrates a strategy for producing a reshaped human antibody having rat CDRs;[0078]
  • Figure 13 illustrates loop Phe 27 to [0079] Tyr 35 in the heavy chain variable domain of the human myeloma protein KOL;
  • Figure 14 illustrates the results of complement lysis and ADCC for various antibodies;[0080]
  • Figure 15 illustrates the results of complement lysis and ADCC of various further antibodies;[0081]
  • Figure 16 A to D are 4 graphs of fluorescence emission spectra of mouse arid humanised anti-lysozyme antibody in the presence of two equivalents of lysozyme;[0082]
  • Figure 17 is a graph illustrating spectral change at fixed wavelength as a function of lysozyme concentration on titration of antibody samples;[0083]
  • Figure 18 illustrates the plasmid for expression of the Fv fragment of a reshaped antilysozyme antibody;[0084]
  • Figure 19 illustrates the results of SDS acrylamide (16%) gel analysis of the Fv fragments and other units;[0085]
  • Figure 20 illustrates the results of native acrylamide (8%) gel analysis at pH 7.5 of the Fv fragments and other units; and[0086]
  • Figure 21 illustrates the results of native acrylamide (8%) gel analysis at pH4 of the Fv fragments and other units.[0087]
  • Detailed Description
  • EXAMPLE 1 [0088]
  • This example shows the production of an altered antibody in which the variable domain of the heavy chains comprises the framework regions of a human heavy chain and the CDRs from a mouse heavy chain.[0089]
  • The framework regions were derived from the human myeloma heavy chain NEWM, the crystallographic structure of which is known (see Poljak et al., loc. cit. and Bruggemann, M., Radbruch, A., and Rajewsky, K., EMBO J., 1, 629-634, 1982.)The CDRs were derived from the mouse monoclonal antibody B1-8 (see Reth et al., loc. cit.), which binds the hapten NP-cap (4-hydroxy-3-nitrophenyl acetyl-caproic acid: K[0090] NP-CAP=1.2 uM).
  • A gene encoding a variable domain HuV[0091] NP, comprising the B1-8 CDRs and the NEWM framework regions, was constructed by gene synthesis as follows.
  • The amino acid sequence of the V[0092] H domain of NEWM is shown in Figure 2, wherein it is compared to the amino acid sequence of the VH domain of the B1-8 antibody. The sequence is divided into framework regions and CDRs according to Kabat et al. (loc. cit.). Conserved residues are marked with a line.
  • The amino acid and nucleotide sequence of the HuV[0093] NP gene, in which the CDRs from the B1-8 antibody alternate with the framework regions of the NEWM antibody, is shown in Figure 3. The HuVNP gene was derived by replacing sections of the MoVNP gene in the vector pSV-VNP (see Neuberger, M.S., Williams, G.T., Mitchell, E.B., Jouhal, S., Flanagan, J.G. and Rabbitts, T.H., Nature, 314, 268-270, 1985) by a synthetic fragment encoding the HuVNP domain. Thus the 5" and 3" non-encoding sequences, the leader sequence, the L-V intron, five N-terminal and four C-terminal amino acids are from the MoVNP gene and the rest of the coding sequence is from the synthetic HuVNP fragment.
  • The oligonucleotides from which the HuV[0094] NP fragment was assembled are aligned below the corresponding portion of the HuVNP gene. For convenience in cloning, the ends of oligonucleotides 25 and 26b form a Hind II site followed by a Hind III site, and the sequences of the 25/26b oligonucleotides therefore differ from the HuVNP gene.
  • The HuV[0095] NP synthetic fragment was built as a PstI-Hind III fragment. The nucleotide sequence was derived from the protein sequence using the computer programme ANALYSEQ (Staden, R., Nuc. Acids. Res., 12, 521-538, 1984) with optimal codon usage taken from the sequences of mouse constant domain genes. The oligonucleotides (1 to 26b, 28 in total) varyin size from 14 to 59 residues and were made on a Biosearch SAM or an Applied Biosystems machine, and purified on 8M-urea po1yacry1amide gels (see Sanger, F. and Coulson, A., FEBS Lett., 107-110, 1978).
  • The oligonucleotides were assembled in eight single stranded blocks (AD) containing oligonucleotides[0096]
  • [1,3,5,7] (Block A), [2,4,6,8] (block A"), [9,11,13a,13b] (Block B), [10a, 10b,l2/14] (block B"), [15,l7] (block C), [16,18] (block C"), [19, 21, 23, 25] (block D) and [20, 22/24, 26a, 26b] (block D").[0097]
  • In a typical assembly, for example of block A, 50 pmole of [0098] oligonucleotides 1,3,5 and 7 were phosphorylated at the 5" end with T4 polynucleotide kinase and mixed together with 5 pmole of the terminal oligonucleotide [1] which had been phosphorylated with 5 uCi [gamma-32P] ATP (Amersham 3000 Ci/mmole). These oligonucleotides were annealed by heating to 80°C and cooling over 30 minutes to room temperature, with unkinased oligonucleotides 2, 4 and 6 as splints, in 150 ul of 50 mM Tris.C1, ph 7.5, 10 mM MgC12. For the ligation, ATP (1 mM) and DTT (10mM) were added with 50 U T4 DNA ligase (Anglian Biotechnology Ltd.) and incubated for 30 minutes at room temperature. EDTA was added to 10 mM, the sample was extracted with phenol, precipitated from ethanol, dissolved in 20 ul water and boiled for 1 minute with an equal volume of formamide dyes. The sample was loaded onto and run on a 0.3 mm 8M-urea 10% polyacrylamide gel. A band of the expected size was detected by autoradiography and eluted by soaking.
  • Two full length single strands were assembled from blocks A to D and A" to D" using splint oligonucleotides. Thus blocks A to D were annealed and ligated in 30 ul as set out in the previous paragraph using 100 pmole of [0099] olignucleotides 10a, 16 and 20 as splints. Blocks A" to D" were ligated using oligonucleotides 7, 13b and 17 as splints.
  • After phenol/ether extraction, block A-D was annealed with block A"-D", small amounts were cloned in the vector M13mp18 (Yanish-Perron, C., Vieria, J. and Messing, J., Gene, 33, 103-119, 1985) cut with PstI and Hind III, and the gene sequenced by the dideoxy technique (Sanger, F., Nicklen, S and Coulson, A.R., PNAS USA, 74, 5463-5467, 1977).[0100]
  • The MoV[0101] NP gene was transferred as a Hind III - BamHI fragment from the vector pSV-VNP (Neuberger et al., loc. cit.) to the vector M13mp8 (Messing, J.and Vieria, J., Gene, 19, 269-276, 1982). To facilitate the replacement of MoVNP coding sequences by the synthetic HuVNP fragment, three Hind II sites were removed from the 5" non-coding sequence by site directed mutagenesis, and a new Hind II site was subsequently introduced near the end of the fourth framework region (FR4 in Figure 2). By cutting the vector with PstI and Hind II, most of the VNP fragment can be inserted as a PstI-Hind II fragment. The sequence at the Hind II site was corrected to NEWM FR4 by site directed mutagenesis.
  • The Hind III - Bam HI fragment, now carrying the HuV[0102] NP gene, was excised from M13 and cloned back into pSV-VNP to replace the MoVNP gene and produce a vector pSV-HuVNP. Finally, the genes for the heavy chain constant domains of human Ig E (Flanagan, J.G. and Rabbitts, T.H., EMBO J., 1, 655-660, 1982) were introduced as a Bam HI fragment to give the vector pSV-HuVNP. HE. This was transfected into the mouse myeloma line J558 L by spheroplast fusion.
  • The sequence of the HuV[0103] NP gene in pSV-HuVNp. HE was checked by recloning the Hind III-Bam HI fragment back into M13mp8 (Messing et al., loc. cit.). J558L myeloma cells secrete lambda 1 light chains which have been shown to associate with heavy chains containing the MoVNP variable domain to create a binding site for NP-cap or the related hapten NIP-Cap (3-iodo-4-hydroxy-5-nitrophenylacetyl-caproic acid) (Reth, M., Hammerling, G.J. and Rajewsky, K., Eur. J. Immunol., 8, 393-400, 1978).
  • As the plasmid pSV-HuV[0104] NP. HE contains the gpt marker, stably transfected myeloma cells could be selected in medium containing mycophenolic acid. Transfectants secreted an antibody (HuVNP-IgE) with heavy chains comprising a HuVNP variable domain (ie a humanised" mouse variable region) and human epsilon constant domains, and lambda 1 light chains from the J558L myeloma cells.
  • The culture supernatants of several gpt[0105] + clones were assayed by radioimmunoassay and found to contain NIP-cap binding antibody. The antibody secreted by one such clone was purified from culture supernatant by affinity chromatography on NIP-cap Sepharose (Sepharose is a registered trade mark). A polyacrylamide - SDS gel indicated that the protein was indistinguishable from the chimeric antibody MoVNP-IgE (Neuberger et al., loc. cit.).
  • The HuV[0106] NP-IgE antibody competes effectively with the MoVNP-IgE for binding to both anti-human-IgE and to NIP-cap coupled to bovine serum albumin.
  • Various concentrations of HuV[0107] NP-IgE and MoVNP-IgE were used to compete with the binding of radiolabelled MoVNP-IgE to polyvinyl microtitre plates coated with (a) Sheep anti-human-IgE antiserum (Seward Laboratories); (b) NIP-cap-bovine serum albumin; (c) Ac38 anti-idiotypic antibody; (d) Ac 146 anti-idiotypic antibody; and (e) rabbit anti-MoVNP antiserum. Binding was also carried out in the presence of MoVNP-IgM antibody (Neuberger, M.S., Williams, G.T. and Fox, R.O., Nature, 312, 604-608, 1984) or of JW5/1/2 which is an IgM antibody differing from the MoVNP-IgM antibody at 13 residues mainly located in the VH CDR2 region.
  • The results of the binding assays are shown in Figure 4, wherein black circles represent HuV[0108] NP, white circles MoVNP, black squares MoVNP-IgM and white squares JW5/1/2. Binding is given relative to the binding in the absence of the inhibitor.
  • The affinities of HuV[0109] NP-IgE for NP-cap and NIP-cap were then measured directly using the fluorescence quench technique and compared to those for MoVNP-IgE, using excitation at 295 nm and observing emission at 340 nm (Eisen, H.N., Methods Med. Res., 10, 115-121,1964).
  • Antibody solutions were diluted to 100 nM in phosphate buffered saline, filtered (0.45 um pore cellulose acetate) and titrated with NP-cap in the range 0.2 to 20 uM. As a control, mouse DI-3 antibody (Mariuzza, R.A., Jankovic, D.L., Bulot, G., Amit, A.G., Saludjian, P., Le Guern, A., Mazie, J.C. and Poljak, R.J., J. Mol. Biol., 170, 1055-1058, 1983), which does not bind hapten, was titrated in parallel.[0110]
  • Decrease in the ratio of the fluorescence of HuV[0111] NP-IgE or HuVNP-IgE to the fluorescence of the D1-3 antibody was taken to be proportional to NP-cap occupancy of the antigen binding sites. The maximum quench was about 40% for both antibodies, and hapten dissociation constants were determined from least-squares fits of triplicate data sets to a hyperbola.
  • For NIP-cap, hapten concentration varied from 10 to 300 nM, and about 50% quenching of fluorescence was observed at saturation. Since the antibody concentrations were comparable to the value of the dissociation constants, data were fitted by least squares to an equation describing tight binding inhibition (Segal, I.H., in Enzyme Kinetics, 73-74, Wiley, New York, 1975).[0112]
  • The binding constants obtained from these data for these antibodies are shown in Table 1 below.[0113]
  • Table 1[0114]
  • K[0115] NP-cap KNIP-cap
  • MoV[0116] NP-IgE 1.2 uM 0.02 uM
  • HuV[0117] NP-IgE 1.9 uM 0.07 uM
  • These results show that the affinities of these antibodies are similar and that the change in affinity is less than would be expected for the loss of a hydrogen bond or a van der Waals contact point at the active site of an enzyme.[0118]
  • Thus, it has been shown that it is possible to produce an antibody specific for an artificial small hapten, comprising a variable domain having human framework regions and mouse CDRs, without any significant loss of antigen binding capacity.[0119]
  • As shown in Figure 4(d), the HuV[0120] NP-IgE antibody has lost the MoVNP idiotypic determinant recognised by the antibody Ac146. Furthermore, HuVNP-IgE also binds the Ac38 antibody less well (Figure 4(c)), and it is therefore not surprising that HuVNP-IgE has lost many of the determinants recognised by the polyclonal rabbit anti-idiotypic antiserum (Figure 4 (e)).
  • It can thus be seen that, although the HuV[0121] NP-IgE antibody has acquired substantially all the antigen binding capacity of the mouse CDRs, it has not acquired any substantial proportion of the mouse antibody"s antigenicity.
  • The results of Figures 4(d) and 4(e) carry a further practical implication. The mouse (or human) CDRs could be transferred from one set of human frameworks (antibody 1) to another (antibody 2). In therapy, anti-idiotypic antibodies generated in response to [0122] antibody 1 might well -bind poorly to antibody 2. Thus, as the anti-idiotyic response starts to neutralise antibody 1 treatment could be continued with antibody 2, and the CDRs of a-desired specificity used more than once.
  • For instance, the oligonucleotides encoding the CDRs may be used again, but with a set of oligonucleotides encoding a different set of framework regions.[0123]
  • The above work has shown that antigen binding characteristics can be transferred from one framework to another without boss of activity, so long as the original antibody is specific for a small hapten.[0124]
  • It is known that small haptens generally fit into an antigen binding cleft. However, this may not be true for natural antigens, for instance antigens comprising an epitopic site on a protein or polysaccharide. For such antigens, the, antibody may lack a cleft (it may only have a shallow concavity), and surface amino acid residues may play a significant role in antigen binding. It is therefore not readily apparent that the work on artificial antigens shows conclusively that CDR replacement could be used to transfer natural antigen binding properties.[0125]
  • Therefore work was carried out to see if CDR replacement could be used for this purpose. This work also involved using primer-directed, oligonucleotide site-directed mutagenesis using three synthetic oligonculeotides coding for each of the mouse CDRs and the flanking parts of framwork regions to produce a variable domain gene similar to the HuV[0126] NP gene.
  • EXAMPLE 2[0127]
  • The three dimensional structure of a complex of lysozyme and the antilysozyme antibody D1.3 (Amit et al., loc. cit.) was solved by X-ray crystallography. There is a large surface of interaction between the antibody and antigen. The antibody has two heavy chains of the mouse IgG1 class (H) and two Kappa light chains (K), and is denoted below as H[0128] 2K2.
  • The DNA sequence of the heavy chain variable region was determined by making cDNA from the mRNA of the D1.3 hybridoma cells, and cloning into plasmid and M13 vectors. The sequence is shown in Figure 7, in which the boxed residues comprise the three CDRs and the asterisks mark residues which contact lysozyme.[0129]
  • Three synthetic oligonucleotides were then designed to introduce the D1.3 V[0130] HCDRs in place of the VHCDRs of the HuVNP gene. The HuNP gene has been cloned into Ml3mp8 as a BamHI-Hind III fragment, as described above. Each oligonucleotide has 12 nucleotides at the 5" end and 12 nucleotides at the 3" end which are complementary to the appropriate HuVNP framework regions. The central portion of each oligonucleotide encodes either CDR1, CDR3, or CDR3 of the Dl.3 antibody, as shown in Figure 5, to which reference is now made. It can be seen from this Figure that these oligonucleotides are 39, 72 and 48 nucleotides long respectively.
  • 10 pmole of D1.3 CDR1 primer phosphorylated at the 5" end and annealed to lug of the M13-HuV[0131] NP template and extended with the Klenow fragment of DNA polymerase in the presence of T4 DNA ligase. After an oligonucleotide extension at 15°C, the sample was used to transfect E. Coli strain BHM71/l8 mutL and plaques gridded and grown up as infected colonies.
  • After transfer to nitrocellulose filters, the colonies were probed at room temperature with 10 pmole of D1.3 CDR1 primer labelled at the 5" end with 30 uCi [0132] 32-P-APT. After a 3 wash at 60°C, autoradiography revealed about 20% of the colonies had hybrdidised well to the probe. All these techniques are fully described in Oligonucleotide site-directed mutagenesis in M13 an experimental manual by P. Carter, H. Bedouelle, M.M.Y. Waye and G. Winter 1985 and published by Anglian Biotechnology Limited, Hawkins Road, Colchester, Essex CO2 8JX. Several clones were sequenced, and the replacement of HuVNP CDR1 by D 1.3 CDR1 was confirmed. This M13 template was used in a second round of mutagenesis with D1.3 CDR2 primer; finally template with "both CDRs 1 & 2 replaced was used in a third round of mutagenesis with D1.3 CDR3 primer. In this case, three rounds of mutganesis were used.
  • The variable domain containing the Dl.3 CDRs was then attached to sequences encoding the heavy chain constant regions of human IgG2 so as to produce a vector encoding a heavy chain Hu*. The vector was transfected into J558L cells as above. The antibody Hu* [0133] 2L2 is secreted.
  • For comparative purposes, the variable region gene for the Dl.3 antibody was inserted into a suitable vector and attached to a gene encoding the constant regions of mouse IgG1 to produce a gene encoding a heavy chain H* with the same sequence as H. The protocol for achieving this is shown in Figure 8.[0134]
  • As shown in Figure 8, the gene encoding the Dl.3 heavy chain V and [0135] C H1 domains and part of the hinge region are cloned into the M13mp9 vector.
  • The vector (vector A) is then cut with NcoI, blunted with Klenow polymerase and cut with PstI. The PstI-NcoI fragment is purified and cloned into PstI-HindII cut MV[0136] NP to replace most of the MVNP coding sequences. The MVNP vector comprises the mouse variable domain gene with its promoter, 5" leader, and 5" and 3" introns cloned into M13mp9. This product is shown as vector B in Figure 8.
  • Using site directed mutagenesis on the single stranded template of vector B with two primers, the sequence encoding the N-terminal portion of the [0137] C H1 domain and the PstI site near the N-terminus of the V domain are removed. Thus the V domain of Dl.3 now replaces that of VNP to produce vector C of Figure 8.
  • Vector C is then cut with HindIII and BamHI and the fragment formed thereby is inserted into HindIII/BarnHI cut M13mp9. The product is cut with Hind III and Sad and the fragment is inserted into PSV-V[0138] NP cut with Hind III/Saci so as to replace the VNP variable domain with the Dl.3 variable domain. Mouse IgG1 constant domains are cloned into the vector as a Sad fragment to produce vector D of Figure 8.
  • Vector D of Figure 8 is transfected into J558L cells and the heavy chain H* is secreted in association with the lambda bight chain L as an antibody H* [0139] 2L2.
  • Separated K or L bight chains can be produced by treating an appropriate antibody (for instance Dl.3 antibody to produce K bight chains) with 2-mercaptoethanol in guanidine hydrochloride, blocking the free interchain sulphydryls with iodoacetamide and separating the dissociated heavy and light chains by HPLC in guanidine hydrochloride.[0140]
  • Different heavy and light chains can be reassociated to produce functional antibodies by mixing the separated heavy and light chains, and dialysing into a non-denaturing buffer to promote reassociation and refolding. Properly reassociated and folded antibody molecules can be purified on protein A-sepharose columns. Using appropriate combinations of the above procedures, the following antibodies were prepared.[0141]
  • H[0142] 2K2 (D1.3 antibody)
  • H* [0143] 2L2 (Dl.3 heavy chain, lambda light chain)
  • H* [0144] 2K2 (recombinant equivalent of D1.3)
  • Hu* [0145] 2L2 (humanised Dl.3 heavy chain, lambda light chain)
  • Hu* [0146] 2:K2 (humanised D1.3)
  • The antibodies containing the lambda light chains were not tested for antigen binding capacity. The other antibodies were, and the results are shown in Table 2.[0147]
  • Table 2[0148]
  • Antibody Dissociation constant for bysozyme (nM)[0149]
  • Dl.3 (H[0150] 2K2) 14.4
  • Dl.3 (H[0151] 2K2) 15.9, 11.4
  • (reassociated)[0152]
  • recombinant Dl.3 (H* [0153] 2K2) 9.2
  • (reassociated)[0154]
  • humanised Dl.3 (Hu* [0155] 2K2) 3.5, 3.7
  • (reassociated)[0156]
  • The affinity of the antibodies for lysozyme was determined by fluroresecent quenching, with excitation at 290nm and emission observed at 340nm. Antibody solutions were diluted to l5-30ug/mg in phosphate buffered saline, filtered (0.45 um-cellulose acetate) and titrated with hen eggwhite lysozyme. There is quenching of fluoresence on adding the bysozyme to the antibody (greater than 100% quench) and data were fitted by least squares to an equation describing tight binding inhibition (I.H. Segal in Enzyme Kinetics, p73-74, Wiley, New York 1975). This data suggests that the binding of the humanised antibody to lysozyme is tighter than in the original Dl.3 antibody. Subsequent results suggest that the affinities of the humanised and mouse antibodies are both less than 5nM with 2 mob of lysozyme molecules binding 1 mob of antibody: see Verhoeyen, M., Milstein, C. and Winter, G., Science, 239, 1534-1536 (1988). Although the work described in Verhoeyen et al. suggests that the reshaped antibody may have a weaker affinity for bysozyme than the original mouse antibody it is clear that the humanised antibody binds lysozyme effectively and with a comparable affinity to Dl.3. (within a factor of 10).[0157]
  • Further work on fully humanised antibody to lysozyme is discussed below, in Example 4.[0158]
  • EXAMPLE 3[0159]
  • Further work has been carried out with an antibody to the antigen Campath-1, which is potentially of great therapeutic use, in which both light and heavy chain variable domains were reshaped. In this case, transfer of the CDRs only resulted in production of a reshaped antibody which bound poorly to the antigen as compared with the original antibody. A single mutation in the framework produced greatly enhanced binding affinity.[0160]
  • The Campath-1 antigen is strongly expressed on virtually all human lymphocytes and monocytes, but is absent from other blood cells including the hemopoietic stem cells (Hale, G., Bright, S., Chumbley, G., Hoang, T., Metcalf, D., Munro, A.J. & Waldmann, H. Blood 62,873-882 (1983)). A series of antibodies to Campath-1 have been produced, including rat monoclonal antibodies of IgM, IgG2a, and IgG2c isotypes (Hale, G., Hoang, T., Prospero, T., Watts, S.M. & Waldmann, H. Mol. Biol. Med. 1,305-319 (1983)) and more recently IgG1 and IgG2b isotypes have been isolated as class switch variants from the IgG2a secreting cell line YTH 34.5HL (Hale, G., Cobbold, S.P., Waldmann, H., Easter, G., Matejtschuk, P. & Coombs, R.R.A.J. Immunol. Meth. 103, 59-67 (1987)). All of these antibodies with the exception of the rat IgG2c isotype are able to lyse efficiently human lymphocytes with human complement.[0161]
  • In addition, the IgG2b antibody YTH 34.5HL-G2b, but not the other isotypes, is effective in antibody dependent cell mediated cytotoxicity (ADCC) with human effector cells (Hale et al, 1987, loc. cit.). These rat monoclonal antibodies have found important application in the context of immunosuppression, for control of graft-versus-host disease in bone marrow transplantation (Hale et al, 1983, loc. cit.); the management of organ rejection (Hale, G., Waldmann, H., Friend, P. & Caine, R. Transportation 42,308-311 (1986)); the prevention of marrow rejection and in the treatment of Various lymphoid malignancies (Hale, G., Swirsky, D.M., Hayhoe,, F.G.J. & Waldmann, H. Mol. Biol. Med. 1,321-334 (1983)). For in-vivo use, the IgG2b antibody YTH 34.5HL-G2b seems to be the most effective at depleting lymphocytes, but the use of any of the antibodies in this group is limited by the antiglobulin response which can occur within two weeks of the initiation of treatment (Hale, Swirsky et al, 1983, bc. cit.).[0162]
  • The sequences of the heavy and light chain variable domains of rat IgG2a Campath-1 antibody YTH 34.5HL were determined by cloning the cDNA (Figure 9), and the hypervariable regions were identified according to Kabat et al, loc. cit. Sequence information is given in the lower lines of Figure 9, with the CDRs identified in boxes.[0163]
  • In the heavy chain variable domain there is an unusual feature in the framework region. In most known heavy chain sequences Pro(41) and Leu(45) are highly conserved: Pro(41) helps turn a loop distant from the antigen binding site and Leu(45) is in the beta bulge which forms part of the conserved packing between heavy and light chain variable domains (Chothia, C., Novotny, J., Bruccoleri, R. ,& Karplus. M.J. Mol. Biol. 186, 651-663 (1985)). In YTH 34.5HL these residues are replaced by Ala(41) and Pro(45), and presumably this could have some effect on the packing of the heavy and light chain-variable domains.[0164]
  • Working at the level of the gene and using three large mutagenic oligonucleotides for each variable domain, in a single step the hypervariable regions of YTH 34.5HL were mounted on human heavy or light chain framework regions taken from the crystallographically solved proteins NEW for the heavy chain (Saul, F.A., Amzel, M. & Poljak, R.J. J. Biol. Chem. 253,585-597 (1978)) and from a protein based closely on the human myeloma protein REI for the light chain (Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M. & Huber, R. Eur. J. Biochem. 45,513-524 (1974)). The NEW light chain was not used because there is a deletion at the beginning of the third framework region of the NEW light chain. The resulting reshaped heavy chain variable domain HuVHCAMP is based on the HuVHNP gene (Kabat et al, loc. cit. and Jones, P.T., Dear, P.H., Foote, 3., Neuberger, M.S. "& Winter, G. Nature 321, 522-525 (1986)) with the framework regions of human NEW alternating with the hypervariable regions of rat YTH 34.5HL. The reshaped light chain variable domain HuVLCAMP is a similar construct, except with essentially the framework regions of the human myeloma protein REI, with the C-terminal and the 3" non-coding sequence taken from a human J[0165] K-region sequence (Hieter, P.A., Max, E.E., Seidmann, J.G., Maizel, J.V. Jr & Leder, P. Cell 22,197-207 (1980)). Sequence information for the variable domain of the reshaped antibody is given in the upper lines in Figure 9. The sequences of oligonucleotide primers are given and their locations on the genes are also marked in Figure 9.
  • Considering the above in further detail, MRNA was purified (Kaartinen, M., Griffiths, G.M., Hamlyn, P.H., Markham, A.F., Karjalainen, K., Pelkonen J.L.T., Makela, O. & Milstein, C.J. Immunol. 130,320-324 (1983)) from the hybridoma clone YTH 34.5HL (gamma 2a, k[0166] b), and first strand cDNA made by priming with oligonucleotides complementary to the 5" end of the CH1 (oligonucleotide I) and the Ck exons (oligonucleotide II). cDNA was cloned and sequenced as described in Gubler, U. & "Hoffman, B.J. Gene 25, 263-269 (1983) and Sanger, F., Nicklen, S.A. & Coulson, A.R. Proc.natl.Acad.Sci USA 74, 5463-5467 (1977).
  • For expression of the rat heavy chain variable domain RaVHCAMP, two restriction sites (XbaI and SalI) were introduced at each end of the cDNA clone in M13 using mutagenic oligonucleotides III and V respectively, and the XbaI-SaII fragment excised. Simultaneously, the corresponding sites were introduced into the M13-HuVHNP gene using oligonucleotides IV and VI, and the region between the sites exchanged. The sequence at the junctions was corrected with oligonucleotides VII and VIII, and an internal BamHI site removed using the oligonucleotide IX, to create the M13-RaVHCAMP gene. The encoded sequence of the mature domain is thus identical to that of YTH 34.5HL.[0167]
  • The reshaped heavy chain variable domain (HuVHCAMP) was constructed in an M13 vector by priming with three long oligonucleotides simultaneously on the single strand containing the M13-HuVHNP gene (see Kabat et al, loc. cit and Jones et al, loc. cit).). The mutagenesis techniques used were similar to those described in Carter et al loc. cit, using the host 71-18 mutL and without imposing strand selection. Each oligonucleotide (X, XI and XII) was designed to replace each of the hypervariable regions with the corresponding region from the heavy chain of the YTH 34.5HL antibody.[0168]
  • Colony blots were probed initially with the oligonucleotide X and hybridisation positives were sequenced: the overall yield of the triple mutant was 5%. Ser27 to Phe and Ser27 to Phe, Ser30 to Thr mutants (to be described below) of M13mp8-HuVHCAMP were made with the mixed oligonucleotide XIII.[0169]
  • The reshaped light chain variable domain (HuVLCAMP) was constructed in an M13 vector from a gene with framework regions based on human REI. As above, three long oligonucleotides (XIV, XV, and XVI) were used to introduce the hypervariable regions of the YTH 34.5HL light chain.[0170]
  • Construction of the humanised light chain variable domain is described in greater detail in the following seven paragraphs.[0171]
  • (1) The humanised light chain variable domain (HuVLCAMP) was constructed in three stages, utilising a humanised light chain variable domain (HuVLLYS) which had been constructed for other purposes.[0172]
  • (a) The first stage involved the gene synthesis of a humanised light chain variable domain gene (HuVLLYS°). The HuVLLYS° gene incorporates human framework regions identical to the most common residue in each position in the Kabat alignment of the human kappa subgroup I, except for residues 97-108, which were identical to those in the human J1 fragment described in Heiter, P., Maizel, J, & Leder, P. J. Biol. Chem. 257, 1516-1522 (1982). The sequences of the framework regions are very similar to the crystallographically solved light chain structure REI. The CDRs in HuVLLYS° were identical to those in the mouse antilysozyme antibody (D1.3) light chain (unpublished). A 30 bp sequence, identical to the sequence following the genomic JI segment, was introduced to the 3" side of [0173] residue 108. BamH1 and EcoRI restriction sites were introduced at the 3" end of the synthetic gene, and a PstI site at th 5" end. The gene synthesis of HuVLLYS° is described in paragraphs (2) to (5) below, and the sequence of the gene and the derived amino acid sequence is given in Figure 10.
  • (b) The second stage involved the introduction of the HuVLLYS° gene in place of the heavy chain variable domain in the vector M13-MOVHNP and this is described in [0174] paragraphs 6 and 7 below. Thus the light chain variable domain utilises the promoter and signal sequence of a heavy chain variable domain: at the 3" end of the gene the sequence is derived from the human light chain J1 segment as described in paragraph (la). The sequence of the HuVLLYS gene and the derived amino acid sequence is given in Figure 11.
  • (c) The third stage involved the conversion of HuVLLYS to a humanised light chain variable domain with the CDRs of Campath-l specifity.[0175]
  • 2. For the synthesis of the HuVLLYS°gene, three blocks of oligonucleotides (PK1-5, KK1-5 and KK1-8 in the table in [0176] paragraph 3 below were cloned separately into M13 vectors, and sequenced. Each cloned block was excised and ligated together into M13mp19 to create the HuVLLYS°gene.
  • 3. Oligonucleotides listed below were produced on an Applied Biosystems 380B synthesizer. Each oligonucleotide was size-purified, 10 nmol being subjected to electrophoresis on a 20 x 40 [0177] cm 12% polyacrylamide, 7M urea gel, eluted from the -gel by dialysis against water, and lyophilized. For gene synthesis or mutagenesis, a 50 pmol aliquot of each purified oligonucleotide was phosphorylated in a 20 ul reaction mixture with 50mM Tris-C1 (pH 8.0), 10mM MgCl2, 5mM dithiothreitol, 1 mM ATP, and 5 units -of polynucleotide kinase; incubated at 37° for 30 minutes. When used as hybridization probes, gel-purified oligonucleotides were phosphorylated in a similar fashion, except on a 15 pmol scale with an excess of 32P labeled ATP.
  • name sequence (5'-3') SEQ. ID NO.[0178]
  • [0179] PK1 GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCG 1
  • CCAGCGTGGGT[0180]
  • [0181] PK2 GACAGAGTGACCATCACCTGTAGAGCCAGCGGTAA 2
  • CATCCACAACTACCTGGCTTGGTAC[0182]
  • [0183] PK3 CAAGCCAGGTAGTTGTGGATGTTACCGCTGGC 3
  • TCTACAGGTGAT[0184]
  • [0185] PK4 GGTCACTCTGTCACCCACGCTGGCGCTCAGGCT 4
  • [0186] PK5 GCTTGGGCTCTGGGTCATCTGGATGTCTGCA 5
  • [0187] KK1 CAGCAGAAGCCAGGTAAGGCTCCAAAGCTGCTG 6
  • ATCTACTACACCACCA[0188]
  • [0189] KK2 CCCTGGCTGACGGTGTGCCAAGCAGATTCAGCGG 7
  • TAGCGGTAGCGGTAC[0190]
  • [0191] KK3 CGCTACCGCTACCGCTGAATCTGCT 8
  • [0192] KK4 TGGCACACCGTCAGCCAGGGTGGTGGTGTAG 9
  • TAGATCAGC[0193]
  • [0194] KK5 AGCTTTGGAGCCTTACCTGGCTTCTGCTGGTAC 10
  • [0195] KE1 CGACTTCACCTTCACCATCAGCAGCCTCCAGCCAGA 11
  • GGACATCGCCACCTACTACTGCC[0196]
  • [0197] KE2 AGCACTTCTGGAGCACCCCAAGGACGTTCGGCCAAGGGA 12
  • CCAAGGTGGA[0198]
  • KE3 AATCAAACGTGAGTAGAATTTAAACTTTGCTTCCTCAGTT 13[0199]
  • GGATCCTAG[0200]
  • [0201] KE4 AATTCTAGGATCCAACTGAGGAAGCAAAGTTTAAA 14
  • [0202] KE5 TTCTACTCACGTTTGATTTCCACCTTGGTCCCTT 15
  • [0203] KE6 GGCCGAACGTCCTTGGGGTGCTCCAGAAGTGCTGGCAGTAGTAG 16
  • [0204] KE7 GTGGCGATGTCCTCTGGCTGGAGGCT 17
  • [0205] KE8 GCTGATGGTGAAGGTGAAGTCGGTAC 18
  • [0206] PKO TCATCTGGATGTCGGAGTGGACACCT 19
  • 4. The construction of individual blocks is described for the PK1-5 block, but KK1-5 and KE1-8 blocks were cloned as KpnI-KpnI and KpnI-EcoRI fragments respectively in a similar way. 4u1 portions of each oligonucleotide PK1, PK2, PK3, PK4 and PK5, kinased as in [0207] paragraph 3, were combined and annealed at 80°C for 5 minutes, 67°C for 30 minutes, and allowed to cool to room temperature over the span of 30 minutes, 0.lul of this annealing mix was ligated with 20 ng of PstI/KpnI digested M13-mp19, in 10ul 50mM Tris-Ci (pH7.5), 10mM MgCl2, 10mM dithiothreitol, 1 mM ATP, 120 units T4 DNA ligase (Biolabs), and incubated 12 hours at 15°C. The ligation mix was used to transfect competent E. coli strain BMH 71-18, plated with BCIG and IPTG, and a clone containing the complete PstI-KpnI insert was identified.
  • 5. The three cloned blocks were excised from bug double stranded replicative form of the thee M13 vectors, by digestion with PstI/KpnI (block PK1-5), KpnI (block KKI-5) and KpnI/EcoRI (block KE1-8). The inserts were separated from the vector by electrophoresis on a 20 x 20 [0208] cm 12% polyacrylamide gel, eluted from the gel slices with 0.5 M NH4OAc, 10 mM Mg (OAc)2, 0.1 mM EDTA, 0.1% SDS, and purified by phenol extraction and ethanol precipitation. All three fragments were ligated to PstI/EcoRI cut Ml3-mp19. 200 white plaques were transferred by toothpick to a fresh 2xTY plate, and grown as a grid of infected colonies. The plate was blotted with nitrocellulose filters, which were then treated with 0.5 M NaOH, followed by 1M Tris-C1 (pH7.5), and baked 1 hr at 80°C under vacuum. The filters were washed at 67°C in 3x Denhardt"s solution, 2xSSC, 0.07% SDS, followed by 6xSSC at room temperature. Filters were then probed with the radiolabeled oligonucleotides KK3 or KK4 in 3m1 of 6xSSC at 37°. Following hybridization with both olignucleotides, positive colonies were picked for DNA sequencing. A phage clone containing correctly assembled blocks was designated M13-HuVLLYS°.
  • 6. To introduce the HuVLLYS°gene in place of the heavy chain variable domain in the vector M13-MOVHNP (described in Jones et al, bc. cit) as MV[0209] NP with HindII site at the 3" end of the reading frame), double-stranded replicative form DNA of phages M13-HuVLLYS°and M13-MOVHNP were prepared and digested with PstI and BamHI. The insert of M13-HuVLLYS was isolated on a polyacrylamide gel, and the vector portion of M13-MOVHNP was isolated on an agarose gel. The purified fragments were ligated and transfected into E. coli strain BMH71-18, and the resulting plaques probed with oligonucleotide KK3 to identify the insert. The clone was designated M13-HuVLLYS*.
  • 7. In the Ml3-HuVLLYS* gene, to join the signal sequence of MOVHNP correctly to the 5" end of the HuVLLYS°gene (at the PstI site), single stranded DNA was prepared and altered by oligonucleotide directed mutagenesis with the primer PKO- see paragraph (3) for sequence. The mutant clone was designated M13-HuVLLYS.[0210]
  • As previously mentioned the Campath-l light chain variable domain was derived from the HuVLLYS domain, and the reshaped human heavy (HuVHCAMP) and light (HuVLCAMP) chain variable domains were then assembled with constant domains in three stages as illustrated in Figure 12. In Figure 12 sequences of rat origin are marked in black, and those of human origin in white. The recombinant heavy and light chains are also marked using a systematic nomenclature.[0211]
  • The illustrated procedure permits a step-wise check on the reshaping of the heavy chain variable domain (stage 1), the selection of the human isotype (stage 2), and the reshaping of the light chain variable domain and assembly of human antibody (stage 3). The vector constructions were genomic, with the variable domains excised from the Ml3 vectors and cloned as HindIII-BamHI fragments and the constant domains as BamHI-BamHI fragments in either pSVgpt (heavy chain) (Mulligan, R.C. & Berg, P. Proc.natl.Acad.Sci USA 78,2072-2076 (1981)) or pSVneo (light chain) (Southern, P.J. & Berg, P.J. Mol.Appl.Genetics 1,327-341 (1981)) vectors. The heavy chain enhancer was included to the 5" side of the variable domain, and expression of both light and heavy chains was driven from heavy chain promoter and the heavy chain signal sequence.[0212]
  • The human gamma 1 (Takahashi, N., Ueda, N.S., Obata, M., Nikaido, T. & Honjo, T. Cell 29,671-679 (1982)), gamma 2 (Flanagan, J.G. & Rabbits, T.H. Nature 300,709-713 (1982)), gamma 3 (Huck, S., Fort, P., Crawford, D.H., Lefranc, M.-P. & Lefranc, G. Nucl. Acid Res. 14,1779-1789 (1986), gamma 4 (Clark, M. & Waldmann, H. J.N.C.I. (in press) and K (Heiter et al, loc. cit) constant domains, and the rat gamma 2b (Bruggemann, M. , Free, J. , Diamond, A., Howard, J., Cobbold, S. & Waldmann, H. Proc.natl.[0213] Acad.Sci. USA 83,6075-6079 (1986)) constant domains were introduced as BamHI-BamHI fragments. The following plasmids were constructed and transfected into lymphoid cell lines by electroporation (Potter, H , Weir, L. & Leder, P. Proc.natl.Acad.Sci. USA 81,7161-7163 (1984)) In stage 1, the pSVgpt vectors HuVHCAMP-RaIgG2B, and also two mutants for reasons to be explained below, HuVHCAMP(Ser27 to Phe)-RaIgG2B, HuVHCAMP(Ser27 to Phe, Ser30 to Thr)-RaIgG2B) were introduced into the heavy chain loss variant of YTH-34.5HL. In stage 2, the pSVgpt vectors RaVHCAMP-RaIgG2B, RaVHCAMP-HuIgGl, RaVHCAMP-HuIgG2, RaVHCAKP-HuIgG3, RaVHCAMP-HuIgG4 were transfected as described above. In stage 3, the pSV-gpt vector Hu(Ser27-Phe, Ser30-Thr)VHCAMP-HuIgGl was cotransfected with the pSV-neo vector HuVLCAMP-HuIgK into the rat -myeloma cell line Y0 (Y B2/3.0 Ag 20) (Galfre, G. & Milstein, C. Meth.Enzymol. 73,1-46 (1981)). In each of the three stages, clones resistant to mycophenobic acid were selected and screened for antibody production by ELISA assays. Clones secreting antibody were subcboned by limiting dilution (for Y0) or the soft agar method (for the loss variant) and assayed again before 1 litre growth in roller bottles.
  • Heavy chain variable domain[0214]
  • In [0215] stage 1, the reshaped heavy chain variable domain (HuVHCAMP) was attached to constant domains of the rat isotype IgG2b and transfected into a heavy chain loss variant of the YTH34.5 hybridoma. The loss variant carries two light chains, one derived from the Y3 fusion partner (Galfre et al., loc. cit). The cloned rat heavy chain variable domain (RaVHCAMP) was also expressed as above.
  • Antibodies were harvested at stationary phase and concentrated by precipitation with ammonium sulphate, followed by ion exchange chromatography on a Pharmacia MonoQ column. The yields of antibody were measured by an ELISA assay directed against the rat IgG2b isotype, and each adjusted to the same concentration (Clark and Waldmann loc. cit).[0216]
  • The HuVHCAMP and RaVHCAMP antibodies - all of the rat IgG2b isotype - were compared in a direct binding assay to the Campath-1. antigen (obtained from a glycolipid extract from human spleen), and also in complement lysis of human lymphocytes. For measuring the binding to antigen, the partially purified Campath-l antigen was coated onto microtitre wells. Bound antibody was detected via a biotin labelled anti-rat IgG2b monoclonal antibody (Clark & Waldmann loc. cit), developed with a streptavidin-peroxidase conjugate (Amersham plc). Complement lysis of human Lymphocytes with human serum as the complement source was as described in Hale, Hoang et al (1983) loc. cit. For both binding and complement assays, the titres for the antibodies were determined by fitting the data to a sigmoid curve by a least squares iterative procedure (Hale, Hoang et al (1983) bc. cit), and the concentration of antibody giving 50% maximal binding or lysis was noted.[0217]
  • The results are given in Table 3.[0218]
  • Table 3[0219]
  • Reshaping the heavy chain variable domain[0220]
  • Concentration of antibodyin ug/ml at 50% binding or lysis[0221]
  • heavy chain variable domain antigen binding complement lysis[0222]
  • RaVHCAMP 0.7 2.1[0223]
  • HuVHCAMP 27.3 (*)[0224]
  • HuVHCAMP (Ser27 to Phe) 1.8 16.3[0225]
  • HuVHCAMP (Ser27 to Phe,Ser30 to Thr) 2.0 17.6[0226]
  • (*) Complement lysis with the HuVHCAMP variable domain was too weak for the estimation of lysis titre.[0227]
  • Compared with the original rat antibody, or the engineered equivalent, the antibody with the reshaped heavy chain domain HuVHCAMP bound poorly to the Campathl antigen and was weakly lytic. This suggested an error in the design of the reshaped domain.[0228]
  • There are several assumptions underlying the transfer of hypervariable loops from one antibody to another, and in particular that the antigen binds mainly to the hypervariable regions. These are defined as regions of sequence (Kabat et al, loc. cit) or structural (Chothia, C. & Lesk, A. J. Mol. Biol. 196,901-917 (1987)) hypervariability, and the locations of hypervariable regions are similar by either criterion, except for the first hypervariable loop of the heavy chain. By sequence the first hypervariable loop extends from [0229] residues 31 to 35 (Kabat et al, loc. cit) and by structure from residues 26 to 32 (Chothia et al, (1987) loc. cit). Residues 29 and 30 form part of the surface loop, and residue 27 which is phenylalanine or tyrosine in most sequences including YTH34.5HL, helps pack against residues 32 and 34.
  • By way of illustration, see Figure 13 which illustrates loop Phe27 to Tyr35 in the heavy chain variable domain of the human myeloma protein KOL which is crystallographically solved (Marquardt, M., Deisenhofer, J., Huber, P. & Palm, W. J. Mol. Biol. 141,368-391 (1980)). The backbone of the hypervariable region according to Kabat et al, (loc. cit.) is highlighted, and a 200% van der Waal surface is thrown around Phe27 to show the interactions with Tyr32 and Met34 of the Kabat hypervariable region. In the rat YTH34.5HL heavy chain, these three side chains are conserved, but in HuVHCAMP, Phe27 is replaced by Ser: this is because, unlike most human heavy chains, in NEW the phenylalanine is replaced by serine, which would be unable to pack in the same way as phenylalanine. To restore the packing of the loop, a Ser(27) to Phe mutation was made in HuVHCAMP, and also a double mutation Ser(27) to Phe, Ser(30) to Thr (as mentioned above).[0230]
  • The two mutants showed a significant increase in binding to CAMPATH-1 antigen and lysed human lymphocytes with human complement. See the results given in Table 3. Thus the affinity of the reshaped antibody could be restored by altering the packing between the hypervariable regions and the framework by a single Ser(27) to Phe mutation. This suggests that. alterations in the Kabat framework region can enhance the affinity of the affinity of the antibody, and extends previous work in which an engineered change in the hypervariable region yielded an antibody with increased affinity (Roberts, S., Cheetham, J.C. & Rees, A.R. Nature 328,731734 (1987)).[0231]
  • Heavy chain constant domains[0232]
  • In stage 2 (Figure 12), the rat heavy chain variable domain was attached to constant domains of the human isotypes IgG1, 2, 3, and 4, and transfected into the heavy chain boss variant of the YTH34.5 hybridoma.[0233]
  • Antibody was harvested from cells in stationary phase, concentrated by precipitation with ammonium sulphate and desalted into phosphate buffered saline (PBS). Antibodies bound to the Campath-l antigen coated on microtitre plates, were assayed in ELISA directed against the rat k light chain (Clark & Waldmann loc cit), and adjusted to the same concentration. The antibodies were assayed in complement lysis (as described above) and ADCC with activated human peripheral blood mononuclear cells (Clark & Waldmann loc. cit and Hale, G. Clark, M. & Waldmann, H. J. Immunol. 134,3056-3061 (1985)). Briefly, 5 x 10[0234] 4 human peripheral blood cells were labelled with 51Cr and incubated for 30 minutes at room temperature with different concentrations of antibody. Excess antibody was removed and a 20 fold excess of activated cells added as effectors. After 4 hours at 37°C death was estimated by 51Cr release.
  • The results are shown in Figure 14, in which the results for rat heavy chain variable domain attached to different human isotypes are represented as follows:[0235]
  • IgG1 empty squares [0236]
  • IgG2 empty circles[0237]
  • IgG3 solid squares[0238]
  • IgG4 empty triangles[0239]
  • Results of lysis with the antibody YTH34.5HL are represented by solid circles.[0240]
  • In complement lysis (Figure 14a), the human IgG1 isotype proved similar to the YTH34.5HL-G2b, with the human IgG3 isotype less effective. The human IgG2 isotype was only weakly lytic and the IgG4 isotype non-lytic. In ADCC (Figure 14b) the human IgG1 was more lytic than the YTH34.5HL-G2b antibody. The decrease in lysis at higher concentration of the rat IgG2b and the human IgG1 antibody is due to an excess of antibody, which causes the lysis of effector cells. The human IgG3 antibody was weakly lytic, and the IgG2 and IgG4 isotypes were non-lytic.[0241]
  • The human IgG1 isotype was therefore suitable for a reshaped antibody for therapeutic use. Other recent work also suggests the IgG1 isotype as favoured for therapeutic application. When the effector functions of human isotypes were compared using a set of chimaeric antibodies with an anti-hapten variable domain, the IgG1 isotype appeared superior to the IgG3 in both complement and cell mediated lysis (Bruggemann, M., Williams, G.T., Bindon, C., Clark, M.R., Walker, M.R., Jefferis, R., Waldmann, H. & Neuberger, M.S. J.Exp.Med. (in press). Furthermore, of two mouse chimaeric antibodies directed against cell surface antigens as tumour cell markers, with human IgG1 or IgG3 isotypes, only the IgG1 isotype mediated complement lysis (Liu, A.Y., Robinson, R.R., Hellstrom, K.E., Murray, E.D. Jr., Cheng, C.P. & Hellstrom, I. Proc. natl. Acad. Sci. USA 84,3439-3443 (1987) and Shaw, D.R., Khasaeli, M.B, Sun, L.K., Ghraeyeb, J., Daddona, P.E., McKinney, S. & Lopuglio, A.F. J, Immunol. 138,4534-4538 (1987)).[0242]
  • Light chain[0243]
  • In stage 3 (Figure 12), the reshaped heavy chain was completed, by attaching the reshaped HuVHCAMP. (Ser27 to Phe, Ser30 to Thr) domain to the human IgG1 isotype. The reshaped light chain domain HuVHCAMP was attached to the human Ck domain. The two vectors were cotransfected into the non-secreting rat Y0 myeloma line.[0244]
  • Antibody HuVHCAMP (Ser27 to Phe, Thr30 to Ser)-HuIGG1, HuVLCAMP-HuIGK was purified from supernatants of cells in stationary phase by affinity chromatography on protein A Sepharose. The antibody was at least 95% (by wt) pure. The yield (about 10mg/1) was measured spectrophotometrically. Complement and ADCC assays were performed as described in connection with Figure 14.[0245]
  • The results are shown in Figure 15, in which the results for reshaped human antibodies are represented by squares and those for rat YTH34.5HL antibodies are represented by solid circles.[0246]
  • The purified antibody proved almost identical to the YTH34.5HL-G2b antibody in complement lysis (Figure 15a). In cell mediated lysis the reshaped human antibody was more reactive than the rat antibody (Figure 15b). Similar results to the ones in Figure 15b were obtained with three different donors of target and effector cells (data not shown). Furthermore the antibody was as effective as YTH34.5HL-G2b in killing leukaemic cells from three patients with B Cell lymphocytic leukaemia by complement mediated lysis with human serum.[0247]
  • The rat antibody and fully humanised antibody were compared in a direct binding assay to Campath-1 antigen. Antibody concentrations were determined as described in Figures 14 and 15. The amount of rat antibody bound to partially purified Campath-l antigen was determined as described in connection with Table 3. The amount of human antibody bound was determined by an ELISA assay using a biotinylated sheep anti-human IgG antibody (Amersham).[0248]
  • Table 4[0249]
  • Reshaping the heavy and light chain variable domains simultaneously[0250]
  • Concentration of antibodyin ug/ml at 50% binding[0251]
  • antibody antigenbinding[0252]
  • RaVHCAMP Ra1GG2B[0253]
  • RaVHCAMP RaKappa 1.01[0254]
  • HuVHCAMP (Ser 27 to Phe, Ser30 to Thr) [0255]
  • Hu1GG1HuVLCAMP HuKappa 1.11[0256]
  • Thus by transplanting the hypervariable regions from a rodent to a human antibody of the IgG1 subtype, the antibody can be reshaped for therapeutic application.[0257]
  • The strategy illustrated in Figure 12 is stepwise assembly to allow any problems to be detected at each stage (reshaping of heavy chain variable domain, selection of constant domain and reshaping of light chain variable domain). It is quite possible to build the reshaped antibody in a single step assembly, i.e. constructing the two reshaped -variable domains, attaching to appropriate constant domains and cotransfecting into e.g. YO.[0258]
  • EXAMPLE 4[0259]
  • Following the work described in Example 2, a fully humanised anti-lysozyme antibody with reshaped heavy and light chain variable domains was constructed.[0260]
  • The heavy chain variable region was constructed as described in Example 2 above, and the light chain variable region was constructed as described in Example 3 above.[0261]
  • Heavy and light chain constructs were prepared from 1 L of bacterial culture by CsC1 density gradient ultracentrifugation. 20 ug of each plasmid was digested with Pvul and co-transfected into 10[0262] 7 NSO cells by electroporation. Transformants were selected by growth in medium containing mycophenolic acid, in a 24-well tissue culture plate. After two weeks growth, aliquots of cells were removed from each well, incubated overnight with 35S-methionine, and the supernatant medium affinity adsorbed with Protein A - Sepharose beads (Pharmacia). Absorbed proteins were subjected to sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), followed by autoflurography. Clones were isolated by limiting dilution from the wells which had yielded both heavy and light chain bands on the autofluorogram. The radioincorporation screening method was again employed to identify those clones secreting a complete antibody. Of these, one cell line was chosen and propagated for storage and further analysis.
  • A 2L culture of the cell line was grown to saturation in Dulbecco"s modifed Eagle medium supplemented with 10% fetal calf serum. Antibody was concetrated from the culture medium by ammonium sulfate precipitation. The precipitate was redissolved in phosphate-buffered saline, pH 7.4(PBS), dialyzed, and chromatographed on a column of lysozyme-Sepharose (prepared by reaction of 20 mg lysozyme per ml of CNBr-activated Sepharose CL-4B). The column was washed with 0.5 M NaC1, 0.1 M Tris chloride, pH 8.5, and subsequently with 50 mM Et[0263] 2NH. Immunoglobulin-containing fractions eluting with the latter wash were identified by SDS-PAGE followed by Coomassie Blue staining; these were pooled and dialyzed against PBS. The dialyzed material was applied to a column of protein A -Sepharose. The column was washed with PBS, followed by 0.1 M citrate buffers in the order pH 6, 5, 4, 3. A peak eluting at pH 4 (the pH expected for elution of a human immunoglobulin of the gamma 2 isotype) was identified as homogeneous immunoglobulin by SDS-PAGE. This was dialyzed vs PBS for storage. Its concentration was determined spectrophotormetrically using an extinction coefficient at 280 nm of 1.4 cm-1 (mg/ml)-1.
  • The fluorescence emission spectra of mouse and humanised antilysozyme in the presence of two equivalents of lysozyme show a loss of intensity and a hypsochromic shift relative to the calculated sum of the spectra of free antibody and free lysozyme. This quenching effect is indicative of an interaction between lysozyme and each antibody. Sets of spectra are shown in Figure 16 A-D. Solution conditions prevailing during the measurement of these spectra were 200 nM immunoglobulin and 400 nM lysozyme (separately or in combination), in PBS at a temperature of 20°C. Spectroscopic conditions employed consisted of an excitation wavelength of 280 nm with a 5 nm bandwidth, and an emission bandwidth of 2.5 nm. Data acquisition was with a Perkin-Elmer LS-5B spectrofluorimeter interfaced to a Macintosh microcomputer, which in turn was used for data manipulation and display.[0264]
  • The spectral change at fixed wavelength was measured as a function of lysozyme concentration. Antibody samples were titrated in the spectroflurimeter with small aliquots of a concentrated lysozyme solution, in parallel with a control antibody, which did not interact with lysozyme, at an identical concentration. The fluorescence was determined after each addition. Titration data are shown in Figure 17 (filled squares, humanized; open squares, mouse). The spectral change is expressed as a percent of the maximum change observed at saturation, and titrant amounts are put on a ratio scale to facilitate comparison of the two sets of data. Actual conditions [0265] for the measurements were for the humanized antibody: 200 nM, 10°, 290 nm excitation, 390 nm emission; for the mouse antibody: 50 nM, 25° 280 excitation, 340 emission. The titration showed an equivalence point of 1.9 binding sites per mole for the humanized antibody, and 1.8 for the mouse, extremely close to the 2 antigen binding sites expected for an immunoglobulin G. The data do not allow deduction on exact binding constant for the interaction of lysozyme and humanized antibody. However it appears to be in the range 5-50 nM.
  • EXAMPLE 5[0266]
  • Reshaped Fv fragments of the anti-bysozyme antibody D1.3 (Verhoeyen et al, loc. cit) were constructed. The heavy chain variable region was reshaped by combining human framework (FR) sequences from the myeloma protein NEW (Saul F.A., Amzel, M., Poljak R.J., J. Biol. Chem. 253.585 (1978)) with the mouse Dl.3 CDRs which provide the-antigen specifically (Verhoeyen et al, loc. cit). The reshaped light chain contains human FRs from human kappa consensus sequence (Kabat et al, loc. cit) similar to the sequence of the Bence Jones protein REI (Epp, O., et al, Eur. J. Biochem. 45, 513 (1974)) combined with the Dl.3 light chain CDRs.[0267]
  • Figure 18 illustrates the plasmid for the expression of the Fv-fragment of the reshaped version of the antilysozyme antibody Dl.3. The plasmid was transfected by electroporation (Potter, H., Weir, L., Leder, P. Proc. Natl. Acad. Sci. USA 81,7161 (1984)) into the non-producer myeloma cell line NSO (Galfre, G., Milstein, C., Meth.Enzymol 73, 1 (1981)). Transfectants were selected with mycophenolic acid (Mulligan, R. C., Berg, P., Proc. Natl. Acad. Sci. USA 78,20722076).[0268]
  • The genes (HuVHLYS and HuVLLYS) for the VH and VL domains were produced as HindIII-BamHI fragments in Ml3 for the expression of the whole antibody (see M. Verhoeyen et al. Science loc. cit. for sequence of VH, see Riechmann, I. Clark, M., Waldmann, H., Winter, G., Nature in press for VL-framework sequences and see Verhoeyen, M., Berek, C., Winter, G., Nucleic Acid. Res. submitted for the VL CDRs). At the 3"end of their coding sequence two stops codons followed by a SacI-site were introduced by priming with oligonucleotides I and II on the corresponding single strands. Between the RNA start site and the translation start of the leader sequence in both genes a HindIII site was introduced using oligonucleotide III. The resulting HindIII-BamHI fragments were cloned into a pSVgpt vector (Riechmann et al, Nature loc cit). The vector contains a EcoRI-HindIII fragment of an Ig-heavy chain enhancer (IgH enh) as a linker. The 3" SacI-BamHI fragment of both genes was then exchanged with a SacIBamHI fragment of the human kappa constant region (3"end C[0269] k) (Hieter, P. A. et al., Cell 22, 197 (1980)) to provide a polyadenylation signal. Into the HindIII site of both vectors a HindIII-HindIII fragment of the HCMV immediate-early gene ( Stenberg, R. M. et al. J. Virol 49, 190(1984), Boshart, M. et al., Cell 41, 521 (1985)) containing its enhancer, promotor and the first non-translated exon (HCMV enh-pro) were cloned. The complete VL-gene (containing Ig-enhancer, HCMV-promoter, VL-coding region and polyadenylation signal) was then subcloned as an EcoRI-fragment into pBGS18 (Spratt, B., et al., Gene 41,337 (1986)) and the resulting vector pBGS-HuVLLYS was cloned into the pSVgpt-HuVHLYS vector as a BamHI fragment as shown in Figure 18.
  • The final plasmid pLRI further contained the resistance genes for the drugs ampicillin (amp[0270] R), kanamycm (kanR) and mycophenolic acid (Eco gpt) two col EI origins of replication (col EI ori) and the SV40 enhancer (SV40 enh pro). The BamHI (B), HindIII (H), EcoRI (E) and SacI (S) restriction sites used for cloning steps are indicated. The diagram is not to scale. Oligonucleotides I = 5"- GAG AGG TTG GAG CTC TTA TTA TGA GGA GAC-3", II = 5" -AAG TTT AAA GAG CTC TAC TAT TTG ATT TC-3", III = 5"-CTC AGT AAG CTT AGA GAG A-3"Both heavy and light chain variable domains were combined in a single plasmid to facilitate the selection of transfectants using the gpt selection system (Mulligan, R.C., Berg. P., Proc. Natl. Acad. Sci. USA 78,2072,2076). Pools of transfected cell clones were analysed on SDS-acrylamide gels after 35S methionine incorporation and affinity purification of culture supernatants with lysozyme Sepharose. The cloned cell line used for the preparation of Fv-fragments secreted about 8mg/L when grown in roller bottles. Thus it is possible to produce Fv fragments in myeloma cells with yields similar to recombinant versions of intact antibodies (Neuberger, M.S., Wiliams, G.T., Fox, P.O., Nature 312,604 (1984), Riechmann, I. et al, Nature, loc. cit).
  • The Fv fragment contains two chains of about 12KD (calculated values 12,749 for VH and 11,875 for VL) when analysed on SDS gels. See results in Figure 19, in which lysozyme was run in [0271] lane 1, Fv-fragment plus lysozyme in lane 2, affinity purified Fvfragment in lane 3, isolated VL-domain in lane 4, isolated VH-domain in lane 5) and size markers in lanes 6). The Fv-fragment and the lysozyme/Fv-fragment complex were eluted from the bands in the native gel in Figure 20 (lanes 2,3). All samples were applied in buffer containing beta mercaptoethanol. The Fv-fragment is secreted in a functional form, as it can readily be purified from the culture supernatant with lysozyme Sepharose (Fv-fragments from cell culture supernatants were prepared by filtering through two layers of Whatmann 3MM paper, adsorption to lysozyme coupled to CnBr-Sepharose (Pharmacia), extensive washing with phosphate buffered saline and elution with 50mM diethylamine. Eluates were immediately adjusted to pH 7.5.
  • When the purified Fv-fragment was investigated on an HPLC sizing column (Biozorbax GF250) in phosphate buffered saline, only a single peak was observed and its retention time did not change between concentrations of 70 and 0.3 mg/L.[0272]
  • The Fv-fragment was also analysed on native acrylamide (8%) gels. See results in Figure 20, in which lysozyme was run in [0273] lane 1, lysozyme/Fv fragment complex plus free lysozyme in lane 2, affinity purified Fv-fragment in lane 3, isolated VL-domain in lane 4 and isolated VH-domain in lane 5. Gel and running buffer contained 40mM Tris, 8.3 mM sodium acetate, 0.4 mM Na2 EDTA and was adjusted to pH 7.6 with acetic acid. No stacking gel was used, the gel was run with reversed polarity. Here the Fv-fragment runs as a single band, that contains both the VH and the VL domain when analysed on SDS gels (compare lane 3 in Figures 19 and 20). This band can be shifted on the native gel, when the antigen lysozyme is added. The shifted band contains lysozyme, VH and VL domain in similar amounts when analysed on SDS-gels (compare lane 2 in Figures 19 and 20). Further, the isolated VL, domain runs as a diffused band with a mobility different to the Fv-fragment on the native gel (lane 4, Figure 20). The isolated VH does not run into the gel because of its net charge at pH 7.5.
  • (The VL and VH-domains were separated on a MonoS column (Pharmacia) in 50 mM acetic acid, 6 M urea (adjusted to pH 4.8 with NaOH) using 0 to 0.3 M NaCI gradient over 6 minutes. The VH was sufficiently pure according to SDS gel analysis. The VL was further purified after desalting into phosphate buffered saline on a Biozorbax GF250 (DuPont) sizing column to get rid of residual VH-VL heterodimer) These results strongly suggest that the predominant form of the Fv-fragment at pH 7.5 is an associated VH-VL heterodimer. Also its apparent molecular weight in ultracentrifuge sedimentation analysis was about 23.5 kD. The same was observed with Fv-fragments obtained by proteolytic digestion (Inbar, D., Hochmann, J., Givol, D., Proc.Natl.Acad.Sci USA 69,2659 (1972), Kakimoto, K., Onoue, K., J. Immunol 112,1373 (1974), Sharon, 3., Givol, D., [0274] Biochemistry 15,1591 (1976)).
  • The formation of VH-VL heterodimers was further established, when Fv fragments were incubated at a concentration of 0.5 mg/ml in phosphate buffered saline with 3.7% formaldehyde overnight. Crosslinked VH-VL heterodimers of about 25 kD were formed (Purified, biosynthetically [0275] 35S-methionine labelled VH domain was incubated in 3.7% formaldehyde/PBS overnight in the absence or presence of excessive unlabelled VH-VL heterodimer. When analysed on SDS gels crosslinked, labelled VH VL heterodimers (molecular weight of about 25 kD) are formed from isolated labelled VH only in the precsence of unlabelled Fv-fragment. No formation of dimers could be detected in the absence of unlabelled Fv-fragment). Lysozyme-Sepharose purification of the crosslinked material showed that the crosslinked VH-VL heterodimer is still active. Overloading of SDS gels with crosslinked material also made visible a small fraction (less than 5%) of slightly lower molecular weight material suggesting the formation of crosslinked VL homodimers. No higher molecular weight band for possible VH homodimers was observed.
  • Nevertheless dissociation was observed when the Fv-fragment was analysed on native acrylamide gels at pH4.5. Under these conditions the VH and the VL formed each a single band see results in Figure 21, in which lysozyme was run in [0276] lane 1, lysozyme plus Fv-fragment in lane 2, affinity purified Fv-fragment in lane 3, isolated VL-domain in lane 4 and isolated VL-domain in lane 5. Incubation of antibodies at bow pH has been used historically to facilitate their proteolytic digestion (Connell, G.E., Porter, R.R, Biochem. J. 124,53P (1971)) probably reflecting the same underlying structural change.
  • Although the Fv-fragment is predominantly associated at neutral pH, it is in a dynamic equilibrimun; the purified biosynthetically labelled VH domain exchanges with the unlabelled VH domain when incubated with an excess of unlabelled VH-VL heterodimer, because labelled VH-VL heterodimers can be trapped by crosslinking with formaldehyde.[0277]
  • However, the dissociation of Fv-fragments should not cause problems in diagnostic or therapeutic applications. For structural studies, for which high protein concentrations are used Fv-fragments will certainly be of considerable advantage without further treatment. They should especially simplify the assignment of signals in NMR-spectra, if the same beta-sheet frameworks are used for Fvfragments with different specificities.[0278]
  • It will of course be understood that the present invention has been described above purely by way of example, and modifications of detail can be made within the scope of the invention as defined in the appended claims.[0279]

Claims (32)

What is Claimed is:
1. 16. An antibody comprising a human kappa light chain variable domain, wherein said light chain variable domain comprises a set of four human Kabat framework regions (FRs), wherein each of said FRs in said set of four FRs is identical to the most common residue in each position in a Kabat alignment of a human kappa sub-group 1.
2. 17. An antibody comprising a human kappa light chain variable domain, said light chain variable domain comprising a set of four human Kabat framework regions (FRs), wherein said antibody incorporates FRs identical to the most common residue in each position in a Kabat alignment of a human kappa sub-group 1, and wherein said antibody has a Kabat complementarity determining region (CDR) that is not human.
3. 18. An antibody comprising a human kappa light chain variable domain, said light chain variable domain comprising a set of four human Kabat framework regions (FRs), wherein said antibody incorporates FRs identical to the most common residue in each position in a Kabat alignment of a human kappa sub-group 1, wherein said antibody has a Kabat complementarity determining region (CDR) from a non-human antibody, and wherein said antibody binds the same antigen as the non-human antibody.
4. 19. The antibody of claim 17 or 18, wherein said antibody incorporates a human framework region (FR1) comprising amino acids 1-24 of SEQ. ID NO:1.
5. 20. The antibody of claim 17 or 18, wherein said antibody incorporates a human framework region (FR2) comprising amino acids 35-49 of SEQ. ID NO:1.
6. 21. The antibody of claim 17 or 18, wherein said antibody incorporates a human framework region (FR4) comprising amino acids 97-108 of SEQ. ID NO:1.
7. 22. The antibody of claim 17 or 18, wherein said CDR is a rodent CDR.
8. 23. The antibody of claim 22, wherein said rodent CDR is a mouse CDR.
9. 24. The antibody of claim 17 or 18, wherein each of said FRs in said set of four FRs is identical to the most common residue in each position in the Kabat alignment of the human kappa sub-group 1.
10. 25. The antibody of claim 17 or 18, wherein said set of four human Kabat FRs comprises at least one mutation.
11. 26. The antibody of claim 25, wherein said set of four human Kabat FRs comprises two mutations.
12. 27. The antibody of claim 25, wherein said set of four human Kabat FRs comprises one FR with at least one mutation.
13. 28. The antibody of claim 17 or 18, wherein said antibody further comprises a heavy chain variable domain, said heavy chain variable domain comprising four heavy chain human Kabat framework regions (FRs) and a heavy chain Kabat CDR that is not human.
14. 29. The antibody of claim 28, wherein said four heavy chain human Kabat FRs comprises an alteration in a FR of at least one replacement of a first amino acid residue with a second amino acid residue, and wherein a 200% van der Waals surface thrown around said second amino acid residue identifies a packing interaction with one or more amino acid residues in the heavy chain Kabat CDR.
15. 30. The antibody of claim 29, wherein the packing interaction enhances the antigen-binding activity of the antibody compared to a second antibody, wherein the second antibody lacks the alteration in a FR, but is otherwise identical to the antibody comprising said alteration.
16. 31. The antibody according to claim 28, wherein said antibody is an IgG isotype.
17. 32. The antibody according to claim 28, wherein said antibody is selected from the group consisting of an IgG1, IgG2 and IgG4 isotype.
18. 33. The antibody according to claim 28, wherein said antibody is an IgG1 antibody, and wherein said IgG1 antibody is lytic.
19. 34. The antibody according to claim 28, wherein said antibody is a therapeutic antibody.
20. 35. The antibody according to claim 28, wherein said antibody has effector functions.
21. 36. The antibody according to claim 35, wherein said effector function is complement activation.
22. 37. The antibody according to claim 35, wherein said effector function is antibody-dependent cell-mediated cytotoxicity (ADCC).
23. 38. An antibody comprising a human kappa light chain variable domain having a framework region (FR) from a human antibody and at least a part of a complementarity determining region (CDR) from a non-human antibody.
24. 39. The antibody of claim 38, wherein said FR is identical to the most common residue in each position in a Kabat alignment of a human kappa sub-group 1.
25. 40. The antibody of claim 38, wherein said antibody binds the same antigen as the non-human antibody.
26. 41. The antibody of claim 38, wherein said part of said CDR is an antigen binding region.
27. 42. The antibody of claim 38, further comprising a heavy chain variable domain comprising human Kabat FRs and Kabat CDRs.
28. 43. The antibody of claim 42, wherein said human heavy chain variable domain comprises an altered framework region (altered FR) having at least one replacement of a first amino acid residue with a second amino acid residue, and wherein a 200% van der Waals surface thrown around said second amino acid residue identifies a packing interaction with one or more amino acid residues in the heavy chain Kabat CDRs.
29. 44. The antibody of claim 43, wherein the packing interaction enhances the antigen-binding activity of the antibody compared to a second antibody, wherein the second antibody lacks the alteration in a FR, but is otherwise identical to the antibody comprising said alteration.
30. 45. An antibody comprising a human kappa light chain variable domain having a set of four framework regions (FRs) of a human antibody and a complementarity determining region (CDR) of a non-human antibody.
31. 46. The antibody of claim 45, wherein said CDR is a mouse CDR.
32. 47. The antibody of claim 45, wherein said CDR is a non-human Kabat CDR.
US10/351,748 1986-03-27 2003-01-24 Altered antibodies Expired - Fee Related US6982321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/351,748 US6982321B2 (en) 1986-03-27 2003-01-24 Altered antibodies

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB8607679 1986-03-27
GB868607679A GB8607679D0 (en) 1986-03-27 1986-03-27 Recombinant dna product
US18981488A 1988-05-03 1988-05-03
US62451590A 1990-12-07 1990-12-07
US94214092A 1992-09-08 1992-09-08
US08/452,462 US6548640B1 (en) 1986-03-27 1995-05-26 Altered antibodies
US10/351,748 US6982321B2 (en) 1986-03-27 2003-01-24 Altered antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/452,462 Continuation US6548640B1 (en) 1986-03-27 1995-05-26 Altered antibodies

Publications (3)

Publication Number Publication Date
US20040127688A1 US20040127688A1 (en) 2004-07-01
US20040192897A2 true US20040192897A2 (en) 2004-09-30
US6982321B2 US6982321B2 (en) 2006-01-03

Family

ID=27449751

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/452,462 Expired - Lifetime US6548640B1 (en) 1986-03-27 1995-05-26 Altered antibodies
US10/351,748 Expired - Fee Related US6982321B2 (en) 1986-03-27 2003-01-24 Altered antibodies

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/452,462 Expired - Lifetime US6548640B1 (en) 1986-03-27 1995-05-26 Altered antibodies

Country Status (1)

Country Link
US (2) US6548640B1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040132101A1 (en) * 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US20040236078A1 (en) * 1991-06-14 2004-11-25 Genentech, Inc. Method for making humanized antibodies
US20050244403A1 (en) * 2004-03-24 2005-11-03 Xencor, Inc. Immunoglobulin variants outside the Fc region
US20050249723A1 (en) * 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
US20060074225A1 (en) * 2004-09-14 2006-04-06 Xencor, Inc. Monomeric immunoglobulin Fc domains
US20060173170A1 (en) * 2004-11-12 2006-08-03 Xencor, Inc. Fc variants with altered binding to FcRn
US20060235208A1 (en) * 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
US20060275282A1 (en) * 2005-01-12 2006-12-07 Xencor, Inc. Antibodies and Fc fusion proteins with altered immunogenicity
US20070003546A1 (en) * 2002-03-01 2007-01-04 Xencor, Inc. Optimized Fc variants and methods for their generation
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US20070219133A1 (en) * 2002-03-01 2007-09-20 Xencor, Inc. CD52 OPTIMIZED Fc VARIANTS AND METHODS FOR THEIR GENERATION
US20070237767A1 (en) * 2003-03-03 2007-10-11 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRllla
US20070275460A1 (en) * 2003-03-03 2007-11-29 Xencor.Inc. Fc Variants With Optimized Fc Receptor Binding Properties
US20080057056A1 (en) * 2003-03-03 2008-03-06 Xencor, Inc. Fc Variants with Increased Affinity for FcyRIIC
US20080206867A1 (en) * 2005-10-03 2008-08-28 Desjarlais John R Fc variants with optimized Fc receptor binding properties
US20080254027A1 (en) * 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
US20080260731A1 (en) * 2002-03-01 2008-10-23 Bernett Matthew J Optimized antibodies that target cd19
US20080267976A1 (en) * 2005-10-06 2008-10-30 Gregory Alan Lazar Optimized Anti-Cd30 Antibodies
US20080313379A1 (en) * 2007-06-15 2008-12-18 United Memories, Inc. Multiple bus charge sharing
US20100104557A1 (en) * 2006-09-18 2010-04-29 Xencor, Inc. Optimized Antibodies that Target HM1.24
US20100226920A1 (en) * 2006-03-27 2010-09-09 Ablynx N.V. Medical delivery device for therapeutic proteins based on single domain antibodies
US20100272723A1 (en) * 2006-08-14 2010-10-28 Xencor, Inc. Optimized Antibodies that Target CD19
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US8318907B2 (en) 2004-11-12 2012-11-27 Xencor, Inc. Fc variants with altered binding to FcRn
WO2012166906A1 (en) 2011-05-31 2012-12-06 Massachusetts Institute Of Technology Cell-directed synthesis of multifunctional nanopatterns and nanomaterials
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
US9475881B2 (en) 2010-01-19 2016-10-25 Xencor, Inc. Antibody variants with enhanced complement activity
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US11401348B2 (en) 2009-09-02 2022-08-02 Xencor, Inc. Heterodimeric Fc variants
US11820830B2 (en) 2004-07-20 2023-11-21 Xencor, Inc. Optimized Fc variants
US11932685B2 (en) 2007-10-31 2024-03-19 Xencor, Inc. Fc variants with altered binding to FcRn

Families Citing this family (1219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US20030229208A1 (en) * 1988-12-28 2003-12-11 Protein Design Labs, Inc. Humanized immunoglobulins
US20030225254A1 (en) * 1989-08-07 2003-12-04 Rathjen Deborah Ann Tumour necrosis factor binding ligands
US5959087A (en) * 1989-08-07 1999-09-28 Peptide Technology, Ltd. Tumour necrosis factor binding ligands
AU640400B2 (en) * 1989-08-07 1993-08-26 Peptide Technology Ltd. Tumour necrosis factor binding ligands
GB9020282D0 (en) 1990-09-17 1990-10-31 Gorman Scott D Altered antibodies and their preparation
TWI239847B (en) * 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US20080050367A1 (en) * 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
US7179892B2 (en) * 2000-12-06 2007-02-20 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US7790856B2 (en) * 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US6761888B1 (en) * 2000-05-26 2004-07-13 Neuralab Limited Passive immunization treatment of Alzheimer's disease
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
BR0001078A (en) * 2000-04-06 2003-05-13 Maria Amalia Rotolo De Moraes Method and apparatus for positive mental stimulation
TWI255272B (en) * 2000-12-06 2006-05-21 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
US7647184B2 (en) * 2001-08-27 2010-01-12 Hanall Pharmaceuticals, Co. Ltd High throughput directed evolution by rational mutagenesis
US20030157108A1 (en) * 2001-10-25 2003-08-21 Genentech, Inc. Glycoprotein compositions
MY139983A (en) * 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
US8946387B2 (en) * 2002-08-14 2015-02-03 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8193318B2 (en) * 2002-08-14 2012-06-05 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8044180B2 (en) * 2002-08-14 2011-10-25 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8530627B2 (en) * 2002-08-14 2013-09-10 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8968730B2 (en) * 2002-08-14 2015-03-03 Macrogenics Inc. FcγRIIB specific antibodies and methods of use thereof
US8187593B2 (en) * 2002-08-14 2012-05-29 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US20060020396A1 (en) * 2002-09-09 2006-01-26 Rene Gantier Rational directed protein evolution using two-dimensional rational mutagenesis scanning
US20050202438A1 (en) * 2002-09-09 2005-09-15 Rene Gantier Rational directed protein evolution using two-dimensional rational mutagenesis scanning
ES2343518T3 (en) * 2002-09-09 2010-08-03 Hanall Biopharma Co., Ltd. ALFA INTERFERATED POLYPEPTIDES MODIFIED PROTEASAS RESISTANT.
AU2003304238A1 (en) * 2002-10-08 2005-01-13 Rinat Neuroscience Corp. Methods for treating post-surgical pain by administering an anti-nerve growth factor antagonist antibody and compositions containing the same
RU2338555C2 (en) 2002-10-08 2008-11-20 Ринат Ньюросайенс Корп. Method of treatment of postoperative pain by administering of antagonist of factor of growth of nerves and compositions containing factor of growth of nerves
UA80447C2 (en) * 2002-10-08 2007-09-25 Methods for treating pain by administering nerve growth factor antagonist and opioid analgesic
AU2003279216A1 (en) * 2002-10-09 2004-05-04 Rinat Neuroscience Corp. Methods of treating alzheimer's disease using antibodies directed against amyloid beta peptide and compositions thereof
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
US7569364B2 (en) * 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
SI1575517T1 (en) * 2002-12-24 2012-06-29 Rinat Neuroscience Corp Anti-ngf antibodies and methods using same
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7355008B2 (en) * 2003-01-09 2008-04-08 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US20060188512A1 (en) * 2003-02-01 2006-08-24 Ted Yednock Active immunization to generate antibodies to solble a-beta
PL379983A1 (en) 2003-02-19 2006-11-27 Rinat Neuroscience Corp. Methods for treating pain by administering a nerve growth factor antagonist and an nsaid and compositions containing the same
EP1620127A4 (en) * 2003-03-20 2007-04-04 Rinat Neuroscience Corp Methods for treating taxol-induced gut disorder
US20060121455A1 (en) * 2003-04-14 2006-06-08 California Institute Of Technology COP protein design tool
TWI306458B (en) * 2003-05-30 2009-02-21 Elan Pharma Int Ltd Humanized antibodies that recognize beta amyloid peptide
EP1694706B1 (en) * 2003-11-01 2012-04-04 Merck Patent GmbH Modified anti-cd52 antibody
KR20070001932A (en) 2003-12-23 2007-01-04 리나트 뉴로사이언스 코퍼레이션 Agonist anti-trkc antibodies and methods using same
EP1761561B1 (en) * 2004-01-20 2015-08-26 KaloBios Pharmaceuticals, Inc. Antibody specificity transfer using minimal essential binding determinants
EA010687B1 (en) * 2004-02-06 2008-10-30 Нимокс Корпорейшн Humanized antibody
JP5301152B2 (en) * 2004-04-07 2013-09-25 ライナット ニューロサイエンス コーポレイション Method for treating bone cancer pain by administering a nerve growth factor antagonist
US7794713B2 (en) 2004-04-07 2010-09-14 Lpath, Inc. Compositions and methods for the treatment and prevention of hyperproliferative diseases
MXPA06012601A (en) 2004-05-10 2007-05-10 Macrogenics Inc HUMANIZED FcgammaRIIB SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF.
US7973134B2 (en) * 2004-07-07 2011-07-05 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in anaplastic large cell lymphoma signaling pathways
TWI355389B (en) 2004-07-30 2012-01-01 Rinat Neuroscience Corp Antibodies directed against amyloid-beta peptide a
US20060177445A1 (en) * 2004-08-16 2006-08-10 Boris Skurkovich Treatment of inflammatory skin diseases
US7935790B2 (en) * 2004-10-04 2011-05-03 Cell Singaling Technology, Inc. Reagents for the detection of protein phosphorylation in T-cell receptor signaling pathways
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
US20070135620A1 (en) * 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
PL2343380T3 (en) * 2004-11-16 2020-03-31 Humanigen, Inc. Immunoglobulin variable region cassette exchange
PE20061329A1 (en) * 2004-12-15 2006-12-08 Neuralab Ltd HUMANIZED AB ANTIBODIES TO IMPROVE COGNITION
WO2006066171A1 (en) * 2004-12-15 2006-06-22 Neuralab Limited Amyloid βετα antibodies for use in improving cognition
ES2396555T3 (en) * 2004-12-15 2013-02-22 Janssen Alzheimer Immunotherapy Antibodies that recognize beta amyloid peptide
US7807789B2 (en) * 2004-12-21 2010-10-05 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in EGFR-signaling pathways
US20060172357A1 (en) * 2004-12-31 2006-08-03 Genentech Detecting human antibodies in non-human serum
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
US20090099340A1 (en) * 2007-10-12 2009-04-16 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in carcinoma signaling pathways
AR054260A1 (en) * 2005-04-26 2007-06-13 Rinat Neuroscience Corp METHODS OF TREATMENT OF DISEASES OF THE LOWER MOTOR NEURONE AND COMPOSITIONS USED IN THE SAME
UY29504A1 (en) 2005-04-29 2006-10-31 Rinat Neuroscience Corp DIRECTED ANTIBODIES AGAINST BETA AMYLOID PEPTIDE AND METHODS USING THE SAME.
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
PL2390267T3 (en) 2005-06-07 2013-09-30 Esbatech A Novartis Co Llc Stable and soluble antibodies inhibiting TNF(alpha)
US20090246349A1 (en) * 2005-07-11 2009-10-01 Joanna Louise Mimica Wheat pigment
GB0514779D0 (en) * 2005-07-19 2005-08-24 Celltech R&D Ltd Biological products
SI1919503T1 (en) 2005-08-10 2015-02-27 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
EP1934867A2 (en) * 2005-08-31 2008-06-25 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in leukemia signaling pathways
US20100151495A9 (en) * 2005-08-31 2010-06-17 Cell Signaling Technolgy, Inc. Reagents for the detection of protein phosphorylation in carcinoma signaling pathways
AU2006303820B2 (en) * 2005-10-20 2013-06-20 Commonwealth Scientific And Industrial Research Organisation Cereals with altered dormancy
WO2007056858A1 (en) 2005-11-18 2007-05-24 Glenmark Pharmaceuticals S.A. Anti-alpha2 integrin antibodies and their uses
US20120208824A1 (en) 2006-01-20 2012-08-16 Cell Signaling Technology, Inc. ROS Kinase in Lung Cancer
EP2650306A1 (en) 2006-03-06 2013-10-16 Aeres Biomedical Limited Humanized Anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
AU2007226752A1 (en) * 2006-03-10 2007-09-20 Macrogenics, Inc. Identification and engineering of antibodies with variant heavy chains and methods of using same
MX340784B (en) 2006-03-15 2016-07-26 Alexion Pharma Inc Treatment of paroxysmal nocturnal hemoglobinuria patients by an inhibitor of complement.
US8784810B2 (en) * 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
WO2007127335A2 (en) * 2006-04-27 2007-11-08 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in atm and atr kinase signaling pathways
EP1918302A3 (en) * 2006-05-18 2009-11-18 AvantGen, Inc. Methods for the identification and the isolation of epitope specific antibodies
WO2008105886A2 (en) 2006-05-26 2008-09-04 Macrogenics, Inc. HUMANIZED FCγRIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
US7862812B2 (en) * 2006-05-31 2011-01-04 Lpath, Inc. Methods for decreasing immune response and treating immune conditions
ATE495195T1 (en) 2006-06-02 2011-01-15 Aveo Pharmaceuticals Inc HEPATOCYTE GROWTH FACTOR (HGF) BINDING PROTEI E
WO2007143098A2 (en) 2006-06-02 2007-12-13 Aveo Pharmaceuticals, Inc. Hepatocyte growth factor (hgf) binding proteins
CN103709252B (en) 2006-06-07 2016-12-07 生物联合公司 Identify antibody and the using method thereof of the sugary epi-position of CD-43 and CEA expressed on cancerous cell
WO2008019199A2 (en) * 2006-06-26 2008-02-14 Macrogenics, Inc. FCγRIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
WO2008002933A2 (en) * 2006-06-26 2008-01-03 Macrogenics, Inc. Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof
ES2656359T3 (en) 2006-06-30 2018-02-26 Novo Nordisk A/S Anti-NKG2A antibodies and uses thereof
CA2659392A1 (en) 2006-07-13 2008-01-17 University Of Iowa Research Foundation Methods and reagents for treatment and diagnosis of vascular disorders and age-related macular degeneration
WO2008013918A2 (en) * 2006-07-26 2008-01-31 Myelin Repair Foundation, Inc. Cell cycle regulation and differentiation
US7939636B2 (en) * 2006-08-11 2011-05-10 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in c-Src signaling pathways
US20090258442A1 (en) * 2006-08-31 2009-10-15 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in carcinoma signaling pathways
NZ575018A (en) 2006-09-05 2012-04-27 Alexion Pharma Inc Compositions for the treatment of antibody mediated neuropathies
US20080112961A1 (en) * 2006-10-09 2008-05-15 Macrogenics, Inc. Identification and Engineering of Antibodies with Variant Fc Regions and Methods of Using Same
US20080091357A1 (en) * 2006-10-12 2008-04-17 One Lambda, Inc. Method to identify epitopes
WO2008055072A2 (en) 2006-10-27 2008-05-08 Lpath, Inc. Compositions and methods for treating ocular diseases and conditions
PT2087002E (en) * 2006-10-27 2014-11-26 Lpath Inc Compositions and methods for binding sphingosine-1-phosphate
US8652466B2 (en) * 2006-12-08 2014-02-18 Macrogenics, Inc. Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting
TW200833711A (en) * 2006-12-22 2008-08-16 Genentech Inc Antibodies to insulin-like growth factor receptor
CN103432580A (en) 2007-03-02 2013-12-11 健泰科生物技术公司 Predicting response to a HER dimerisation inhibitor based on low HER3 expression
US20090081659A1 (en) 2007-03-07 2009-03-26 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in carcinoma signaling pathways
US20090068684A1 (en) * 2007-03-26 2009-03-12 Cell Signaling Technology, Inc. Serine and threoninephosphorylation sites
US20080238709A1 (en) * 2007-03-28 2008-10-02 Faramarz Vaziri One-way communication apparatus with dynamic key generation
US8003097B2 (en) * 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
JP2011526240A (en) * 2007-04-18 2011-10-06 ヤンセン アルツハイマー イミュノセラピー Prevention and treatment of cerebral amyloid angiopathy
EP1983003A3 (en) 2007-04-19 2009-03-11 Peter Hornbeck Tyrosine phosphorylation sites and antibodies specific for them
US7977462B2 (en) 2007-04-19 2011-07-12 Cell Signaling Technology, Inc. Tyrosine phosphorylation sites
EP2145902A3 (en) 2007-04-19 2010-09-29 Peter Hornbeck Tyrosine phosphorylation sites and antibodies specific for them
US20090053831A1 (en) 2007-05-01 2009-02-26 Cell Signaling Technology, Inc. Tyrosine phosphorylation sites
NZ581596A (en) 2007-05-21 2012-02-24 Alderbio Holdings Llc Antibodies to il-6 and use thereof
US9163091B2 (en) * 2007-05-30 2015-10-20 Lpath, Inc. Compositions and methods for binding lysophosphatidic acid
US8158124B2 (en) * 2007-05-30 2012-04-17 Lpath, Inc. Compositions and methods for binding lysophosphatidic acid
US20110064744A1 (en) * 2007-05-30 2011-03-17 Sabbadini Roger A Prevention and treatment of pain using antibodies to lysophosphatidic acid
ES2498040T3 (en) 2007-07-27 2014-09-24 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases with humanized anti-beta antibodies
PE20120259A1 (en) 2007-08-09 2012-04-04 Boehringer Ingelheim Int ANTI-CD37 ANTIBODIES
EP2022848A1 (en) 2007-08-10 2009-02-11 Hubrecht Institut A method for identifying, expanding, and removing adult stem cells and cancer stem cells
BRPI0815399A2 (en) * 2007-08-13 2019-09-24 Vasgene Therapeutics Inc cancer treatment using humanized antibodies that bind ephb4
EP3415529B1 (en) 2007-09-26 2020-11-04 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
JO3076B1 (en) * 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap Immunotherapy regimes dependent on apoe status
EP2203558B1 (en) 2007-10-18 2016-05-04 Cell Signaling Technology, Inc. Translocation and mutant ros kinase in human non-small cell lung carcinoma
US8361465B2 (en) * 2007-10-26 2013-01-29 Lpath, Inc. Use of anti-sphingosine-1-phosphate antibodies in combination with chemotherapeutic agents
WO2009057664A1 (en) * 2007-10-29 2009-05-07 Mitsubishi Chemical Corporation Antibody and use thereof
EP2062920A3 (en) 2007-11-21 2009-06-17 Peter Hornbeck Protein phosphorylation by basophilic serine/threonine kinases in insulin signalling pathways
TWI580694B (en) 2007-11-30 2017-05-01 建南德克公司 Anti-vegf antibodies
DK2222706T4 (en) 2007-12-14 2016-11-21 Novo Nordisk As Antibodies that bind to NKG2D and its use
SG186669A1 (en) 2007-12-18 2013-01-30 Bioalliance Cv Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
CA2712220A1 (en) 2008-01-24 2009-07-30 Novo Nordisk A/S Humanized anti-human nkg2a monoclonal antibody
US20090220991A1 (en) * 2008-02-29 2009-09-03 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in leukemia signaling pathways
EP2271770B1 (en) * 2008-03-31 2018-08-22 Genentech, Inc. Compositions and methods for treating and diagnosing asthma
ES2654937T3 (en) 2008-04-02 2018-02-15 Macrogenics, Inc. Specific antibodies for the BCR complex and procedures for their use
BRPI0906309A2 (en) * 2008-04-02 2020-05-26 Macrogenics, Inc IMMUNOGLOBULIN, ANTIBODY, USE OF ANTIBODY AND PHARMACEUTICAL COMPOSITION
EP2274437B1 (en) 2008-04-10 2015-12-23 Cell Signaling Technology, Inc. Compositions and methods for detecting egfr mutations in cancer
PT2274331E (en) 2008-05-02 2014-02-27 Novartis Ag Improved fibronectin-based binding molecules and uses thereof
WO2010033279A2 (en) * 2008-06-04 2010-03-25 Macrogenics, Inc. Antibodies with altered binding to fcrn and methods of using same
JP5856480B2 (en) 2008-06-25 2016-02-09 エスバテック − ア ノバルティスカンパニー エルエルシー Humanization of rabbit antibodies using a versatile antibody framework
WO2009155723A2 (en) 2008-06-25 2009-12-30 Esbatech, An Alcon Biomedical Research Unit Llc STABLE AND SOLUBLE ANTIBODIES INHIBITING TNFα
RU2531523C3 (en) 2008-06-25 2022-05-04 Новартис Аг STABLE AND SOLUBLE ANTIBODIES INHIBITING VEGF
US8148088B2 (en) * 2008-07-18 2012-04-03 Abgent Regulation of autophagy pathway phosphorylation and uses thereof
CN102245208B (en) 2008-10-14 2016-03-16 霍夫曼-拉罗奇有限公司 immunoglobulin variants and uses thereof
US8871202B2 (en) 2008-10-24 2014-10-28 Lpath, Inc. Prevention and treatment of pain using antibodies to sphingosine-1-phosphate
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
MX2011004696A (en) * 2008-11-06 2011-10-14 Glenmark Pharmaceuticals Sa Treatment with anti-alpha2 integrin antibodies.
EP3338799B1 (en) 2008-11-25 2021-04-07 Vitaeris Inc. Antibodies to il-6 and use thereof
CA2745436A1 (en) * 2008-12-05 2010-06-10 Lpath, Inc. Antibody design using anti-lipid antibody crystal structures
US8401799B2 (en) * 2008-12-05 2013-03-19 Lpath, Inc. Antibody design using anti-lipid antibody crystal structures
CN102245640B (en) 2008-12-09 2014-12-31 霍夫曼-拉罗奇有限公司 Anti-PD-L1 antibodies and their use to enhance T-cell function
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
JP6039183B2 (en) 2008-12-23 2016-12-07 ジェネンテック, インコーポレイテッド Immunoglobulin variants with altered binding to protein A
HUE035769T2 (en) 2009-02-12 2018-05-28 Cell Signaling Technology Inc Mutant ROS expression in human liver cancer
EP2400981A4 (en) * 2009-02-26 2013-02-27 Lpath Inc Humanized platelet activating factor antibody design using anti-lipid antibody templates
US20100248265A1 (en) * 2009-02-27 2010-09-30 The Salk Institute For Biological Studies Compositions and methods for diagnosis and treatment of cancer
CN102378766A (en) 2009-03-23 2012-03-14 夸克医药公司 Compounds compositions and methods of treating cancer and fibrotic diseases
TWI504409B (en) 2009-03-25 2015-10-21 Genentech Inc Novel anti-α5β1 antibodies and uses thereof
WO2010112193A1 (en) * 2009-04-02 2010-10-07 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
PL2417156T3 (en) * 2009-04-07 2015-07-31 Roche Glycart Ag Trivalent, bispecific antibodies
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
WO2010121093A2 (en) * 2009-04-17 2010-10-21 Lpath, Inc. Humanized antibody compositions and methods for binding lysophosphatidic acid
JP5797642B2 (en) * 2009-05-20 2015-10-21 ノビミューン エスアー Synthetic polypeptide libraries and methods for generating naturally diversified polypeptide variants
EP2435473B1 (en) * 2009-05-27 2013-10-02 F.Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US20100316639A1 (en) 2009-06-16 2010-12-16 Genentech, Inc. Biomarkers for igf-1r inhibitor therapy
BR112012000032A2 (en) 2009-07-03 2016-03-15 Bionor Immuno As innovative therapeutic and diagnostic means
WO2011006001A1 (en) 2009-07-09 2011-01-13 Genentech, Inc. Animal model for the evaluation of adjuvant therapies of cancer
CN106148547A (en) 2009-07-13 2016-11-23 霍夫曼-拉罗奇有限公司 Diagnostic method and composition for treatment of cancer
WO2011014457A1 (en) 2009-07-27 2011-02-03 Genentech, Inc. Combination treatments
EP2459591B1 (en) 2009-07-31 2014-08-20 Genentech, Inc. Inhibition of tumor metastasis using anti-g-csf-antibodies
CN104059955A (en) 2009-08-11 2014-09-24 弗·哈夫曼-拉罗切有限公司 Production Of Proteins In Glutamine-free Cell Culture Media
BR112012003077A2 (en) 2009-08-14 2019-09-24 Genentech Inc biological goods to monitor patient response to vegf antagonists
AU2010289400B2 (en) 2009-09-02 2014-10-23 Curis, Inc. Mutant smoothened and methods of using the same
US20110064670A1 (en) 2009-09-11 2011-03-17 Genentech, Inc. Method to identify a patient with an increased likelihood of responding to an anti-cancer agent
CN102712696A (en) 2009-09-16 2012-10-03 弗·哈夫曼-拉罗切有限公司 Coiled coil and/or tether containing protein complexes and uses thereof
WO2011033006A1 (en) 2009-09-17 2011-03-24 F. Hoffmann-La Roche Ag Methods and compositions for diagnostics use in cancer patients
PE20120998A1 (en) 2009-09-30 2012-08-14 Genentech Inc METHODS FOR TREATING CANCER USING NOTCH ANTAGONISTS
LT2486141T (en) 2009-10-07 2018-05-25 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011060015A1 (en) 2009-11-11 2011-05-19 Genentech, Inc. Methods and compositions for detecting target proteins
TWI505836B (en) 2009-12-11 2015-11-01 Genentech Inc Anti-vegf-c antibodies and methods using same
SG2014011340A (en) 2009-12-21 2014-07-30 Genentech Inc Antibody formulation
MX2012007379A (en) 2009-12-23 2012-08-31 Genentech Inc Anti-bv8 antibodies and uses thereof.
TW201125583A (en) * 2009-12-23 2011-08-01 Bioalliance Cv Anti-EpCAM antibodies that induce apoptosis of cancer cells and methods using same
EP2354159A1 (en) 2010-02-05 2011-08-10 RWTH Aachen CCL17 inhibitors for use in T helper cell-driven diseases
JP5981853B2 (en) 2010-02-18 2016-08-31 ジェネンテック, インコーポレイテッド Neuregulin antagonists and their use in the treatment of cancer
BR112012021261A2 (en) 2010-02-23 2020-01-07 Sanofi HUMANIZED ANTI-ALFA2 INTEGRIN ANTIBODY, USE OF THE SAME, ISOLATED NUCLEIC ACID ENCODING AN ANTI-ALFA2BETA1 INTEGRIN ANTIBODY, VECTOR, HOST CELL, COMPOSITION, KIT AND ANTIBODY
WO2011106723A2 (en) * 2010-02-26 2011-09-01 Lpath, Inc. Anti-paf antibodies
SG10201604336VA (en) 2010-03-04 2016-07-28 Macrogenics Inc Antibodies Reactive With B7-H3, Immunologically Active Fragments Thereof And Uses Thereof
US8802091B2 (en) 2010-03-04 2014-08-12 Macrogenics, Inc. Antibodies reactive with B7-H3 and uses thereof
GB201003701D0 (en) 2010-03-05 2010-04-21 Cilian Ag System for the expression of a protein
KR101899835B1 (en) 2010-03-24 2018-09-19 제넨테크, 인크. Anti-lrp6 antibodies
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
AR080793A1 (en) 2010-03-26 2012-05-09 Roche Glycart Ag BISPECIFIC ANTIBODIES
WO2011120013A2 (en) 2010-03-26 2011-09-29 Trustees Of Dartmouth College Vista regulatory t cell mediator protein, vista binding agents and use thereof
RU2568051C2 (en) 2010-04-09 2015-11-10 Авео Фармасьютикалз, Инк. ANTI-ErbB3 ANTIBODIES
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
WO2011156617A2 (en) 2010-06-09 2011-12-15 Aveo Pharmaceuticals, Inc. Anti-egfr antibodies
CA2794731C (en) 2010-06-18 2019-03-19 Genentech, Inc. Anti-axl antibodies and methods of use
EP3327035A1 (en) 2010-06-22 2018-05-30 Precision Biologics Inc. Colon and pancreas cancer specific antigens and antibodies
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
WO2012003472A1 (en) 2010-07-02 2012-01-05 Aveo Pharmaceuticals, Inc. Anti-notch1 antibodies
WO2012006341A2 (en) 2010-07-06 2012-01-12 Aveo Pharmaceuticals, Inc. Anti-ron antibodies
SG186983A1 (en) 2010-07-09 2013-02-28 Genentech Inc Anti-neuropilin antibodies and methods of use
JP2013538338A (en) 2010-07-19 2013-10-10 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Methods for identifying patients with increased likelihood of response to anti-cancer therapy
EP2596361A1 (en) 2010-07-19 2013-05-29 F.Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
WO2012016245A2 (en) 2010-07-30 2012-02-02 Novartis Ag Fibronectin cradle molecules and libraries thereof
KR20130045914A (en) 2010-08-03 2013-05-06 에프. 호프만-라 로슈 아게 Chronic lymphocytic leukemia (cll) biomarkers
RU2013106217A (en) 2010-08-05 2014-09-10 Ф. Хоффманн-Ля Рош Аг HYBRID PROTEIN FROM ANTIBODIES AGAINST MHC AND ANTIVIRAL CYTOKINE
WO2012019061A2 (en) 2010-08-05 2012-02-09 Stem Centrx, Inc. Novel effectors and methods of use
US20120101108A1 (en) 2010-08-06 2012-04-26 Cell Signaling Technology, Inc. Anaplastic Lymphoma Kinase In Kidney Cancer
US20130177555A1 (en) 2010-08-13 2013-07-11 Medimmune Limited Monomeric Polypeptides Comprising Variant FC Regions And Methods Of Use
SI2603530T1 (en) 2010-08-13 2018-02-28 Roche Glycart Ag Anti-fap antibodies and methods of use
RU2584597C2 (en) 2010-08-13 2016-05-20 Рош Гликарт Аг Antibodies against a2 tenastin-c and methods for use thereof
CN103154032A (en) 2010-08-13 2013-06-12 弗·哈夫曼-拉罗切有限公司 Antibodies to IL-1beta and IL-18, for treatment of disease
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
US9505829B2 (en) 2010-08-19 2016-11-29 Zoetis Belgium S.A. Anti-NGF antibodies and their use
RU2013110875A (en) 2010-08-24 2014-09-27 Ф.Хоффманн-Ля Рош Аг SPECIFIC ANTIBODIES CONTAINING DISSULPHIDE-STABILIZED Fv Fragment
MX2013002255A (en) 2010-08-27 2013-07-03 Stem Centrx Inc Notum protein modulators and methods of use.
BR112013004673A8 (en) 2010-08-31 2018-01-02 Genentech Inc biomarkers and treatment methods.
CA2810016A1 (en) 2010-09-03 2012-03-08 Stem Centrx, Inc. Novel modulators and methods of use
CA2812556C (en) 2010-09-23 2023-02-14 Xue-Ping Wang Colon and pancreas cancer peptidomimetics
WO2012047968A2 (en) 2010-10-05 2012-04-12 Genentech, Inc. Mutant smoothened and methods of using the same
UY33679A (en) 2010-10-22 2012-03-30 Esbatech STABLE AND SOLUBLE ANTIBODIES
AU2011325871B2 (en) 2010-11-05 2016-02-04 Medvet Science Pty Ltd Markers of endothelial progenitor cells and uses thereof
EP2638070B1 (en) 2010-11-10 2016-10-19 F.Hoffmann-La Roche Ag Methods and compositions for neural disease immunotherapy
SG10201509499RA (en) 2010-11-19 2015-12-30 Eisai R&D Man Co Ltd Neutralizing anti-ccl20 antibodies
WO2012071554A2 (en) 2010-11-23 2012-05-31 Alder Biopharmaceuticals, Inc. Anti-il-6 antibodies for the treatment of oral mucositis
US9783601B2 (en) 2010-12-01 2017-10-10 Alderbio Holdings Llc Methods of preventing inflammation and treating pain using anti-NGF compositions
CA2820885A1 (en) 2010-12-08 2012-09-07 Stem Centrx, Inc. Novel modulators and methods of use
AU2011343570B2 (en) 2010-12-16 2016-11-03 Genentech, Inc. Diagnosis and treatments relating to TH2 inhibition
NZ610976A (en) 2010-12-20 2015-07-31 Genentech Inc Anti-mesothelin antibodies and immunoconjugates
JP2014511106A (en) 2010-12-22 2014-05-08 ジェネンテック, インコーポレイテッド Anti-PCSK9 antibody and method of use
JP5766296B2 (en) 2010-12-23 2015-08-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Polypeptide-polynucleotide complexes and their use in targeted delivery of effector components
EP2471554A1 (en) 2010-12-28 2012-07-04 Hexal AG Pharmaceutical formulation comprising a biopharmaceutical drug
JP2014502607A (en) 2011-01-03 2014-02-03 エフ.ホフマン−ラ ロシュ アーゲー Pharmaceutical composition of complex of digoxigenin conjugated with anti-DIG antibody and peptide
BR112013019083A2 (en) 2011-02-10 2017-04-04 Roche Glycart Ag combination of (a) an immunoconjugate, pharmaceutical composition, use of (a) an immunoconjugate, method of treating a disease in an individual, method of stimulating cellular function in an individual, and kit for treating a disease.
EP3971206A1 (en) 2011-02-10 2022-03-23 Roche Glycart AG Mutant interleukin-2 polypeptides
SA112330278B1 (en) 2011-02-18 2015-10-09 ستيم سينتركس، انك. Novel modulators and methods of use
EP2681239B8 (en) 2011-02-28 2015-09-09 F. Hoffmann-La Roche AG Antigen binding proteins
BR112013020338A2 (en) 2011-02-28 2016-10-18 Hoffmann La Roche monovalent antigen binding protein, pharmaceutical composition, use of monovalent antigen binding protein, method for treating a patient in need of therapy, method for preparing a monovalent antigen binding protein, nucleic acid, vector and cell hostess
KR20190006083A (en) 2011-03-09 2019-01-16 셀 시그널링 테크놀러지, 인크. Methods and reagents for creating monoclonal antibodies
CA2828347A1 (en) 2011-03-10 2012-09-13 Hco Antibody, Inc. Bispecific three-chain antibody-like molecules
AU2012229236B2 (en) 2011-03-11 2017-05-18 Beth Israel Deaconess Medical Center, Inc. Anti-CD40 antibodies and uses thereof
HUE041335T2 (en) 2011-03-29 2019-05-28 Roche Glycart Ag Antibody fc variants
EP2694551A1 (en) 2011-04-07 2014-02-12 Genentech, Inc. Anti-fgfr4 antibodies and methods of use
EP2511293A1 (en) 2011-04-13 2012-10-17 LEK Pharmaceuticals d.d. A method for controlling the main complex N-glycan structures and the acidic variants and variability in bioprocesses producing recombinant proteins
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
EP2707723B1 (en) 2011-05-12 2016-02-10 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature pepides
US8846042B2 (en) 2011-05-16 2014-09-30 Fabion Pharmaceuticals, Inc. Multi-specific FAB fusion proteins and methods of use
AU2012255881C1 (en) 2011-05-16 2015-11-26 Genentech, Inc. FGFR1 agonists and methods of use
EA033109B1 (en) 2011-05-20 2019-08-30 Олдербайо Холдингз Ллк Methods of inhibiting, preventing or treating diarrhea and/or maintaining appropriate electrolyty and fluid levels in the colon of a subject having a condition associated with diarrhea using an anti-cgrp antibody or an anti-cgrp antibody fragment
SG10201604040PA (en) 2011-05-20 2016-07-28 Alderbio Holdings Llc Anti-cgrp compositions and use thereof
JP6374789B2 (en) 2011-05-20 2018-08-15 アルダーバイオ・ホールディングズ・エルエルシー Use of anti-CGRP antibodies and antibody fragments that prevent or inhibit photophobia or photoaversion in subjects in need thereof, particularly migraine patients
SG10201603962TA (en) 2011-05-25 2016-07-28 Innate Pharma Sa Anti-kir antibodies for the treatment of inflammatory disorders
EP2721067B1 (en) 2011-06-15 2019-07-31 F.Hoffmann-La Roche Ag Anti-human epo receptor antibodies and methods of use
AR086823A1 (en) 2011-06-30 2014-01-22 Genentech Inc ANTI-C-MET ANTIBODY FORMULATIONS, METHODS
JP2013040160A (en) 2011-07-01 2013-02-28 Genentech Inc Use of anti-cd83 agonist antibody for treating autoimmune disease
TW202114735A (en) 2011-08-01 2021-04-16 美商建南德克公司 Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors
CA2842375A1 (en) 2011-08-17 2013-02-21 Erica Jackson Neuregulin antibodies and uses thereof
EP2744825A1 (en) 2011-08-17 2014-06-25 F.Hoffmann-La Roche Ag Inhibition of angiogenesis in refractory tumors
US20130078250A1 (en) 2011-08-23 2013-03-28 Oliver Ast Bispecific t cell activating antigen binding molecules
RS56879B1 (en) 2011-08-23 2018-04-30 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
KR20140048292A (en) 2011-08-23 2014-04-23 로슈 글리카트 아게 Anti-mcsp antibodies
SI2748202T1 (en) 2011-08-23 2018-10-30 Roche Glycart Ag Bispecific antigen binding molecules
JP6060162B2 (en) 2011-08-23 2017-01-11 ロシュ グリクアート アーゲー Fc-free antibody comprising two Fab fragments and methods of use
CN103889452B (en) 2011-08-23 2017-11-03 罗切格利卡特公司 To T cell activation antigen and the bispecific antibody and application method of specific for tumour antigen
US20130058947A1 (en) 2011-09-02 2013-03-07 Stem Centrx, Inc Novel Modulators and Methods of Use
BR112014005720A2 (en) 2011-09-15 2017-12-12 Genentech Inc method of selecting and / or identifying a usp1 antagonist, uaf1 antagonist and / or an id antagonist that promotes a change in the cellular fate of said method
RU2014114617A (en) 2011-09-19 2015-10-27 Дженентек, Инк. COMBINED TREATMENTS CONTAINING C-MET ANTAGONISTS AND B-RAF ANTAGONISTS
EP3275461A1 (en) 2011-09-19 2018-01-31 Axon Neuroscience SE Protein-based therapy and diagnosis of tau-mediated pathology in alzheimer's disease field
AU2012319150B2 (en) 2011-10-05 2017-08-17 Genentech, Inc. Methods of treating liver conditions using Notch2 antagonists
RS57645B1 (en) 2011-10-14 2018-11-30 Hoffmann La Roche Anti-htra1 antibodies and methods of use
RU2014119426A (en) 2011-10-15 2015-11-20 Дженентек, Инк. WAYS OF APPLICATION OF SCD1 ANTAGONISTS
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
SG11201401815XA (en) 2011-10-28 2014-05-29 Genentech Inc Therapeutic combinations and methods of treating melanoma
WO2013063419A2 (en) 2011-10-28 2013-05-02 The Trustees Of The University Of Pennsylvania A fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting
ES2861435T3 (en) 2011-11-03 2021-10-06 Univ Pennsylvania Specific compositions of isolated B7-H4 and methods of using them
US20140322216A1 (en) 2011-11-08 2014-10-30 The Trustees Of The University Of Pennsylvania Glypican-3-specific antibody and uses thereof
TW201326193A (en) 2011-11-21 2013-07-01 Genentech Inc Purification of anti-c-met antibodies
AU2012344260B2 (en) 2011-11-28 2017-09-07 Merck Patent Gmbh Anti-PD-L1 antibodies and uses thereof
EP2788024A1 (en) 2011-12-06 2014-10-15 F.Hoffmann-La Roche Ag Antibody formulation
SG11201403445YA (en) 2011-12-22 2014-07-30 Hoffmann La Roche Full length antibody display system for eukaryotic cells and its use
SG11201403223PA (en) 2011-12-22 2014-07-30 Hoffmann La Roche Expression vector organization, novel production cell generation methods and their use for the recombinant production of polypeptides
KR102229491B1 (en) 2011-12-22 2021-03-18 에프. 호프만-라 로슈 아게 Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
EP2793947B1 (en) 2011-12-23 2021-02-03 Innate Pharma Enzymatic conjugation of polypeptides
US20150216998A1 (en) 2012-01-01 2015-08-06 Ramot At Tel-Aviv University Ltd. Endo180-targeted particles for selective delivery of therapeutic and diagnostic agents
AU2013208007A1 (en) 2012-01-09 2014-07-31 The Scripps Research Institute Humanized antibodies with ultralong CDR3
JP6684490B2 (en) 2012-01-09 2020-04-22 ザ・スクリップス・リサーチ・インスティテュート Ultralong complementarity determining regions and uses thereof
BR112014017320A2 (en) 2012-01-13 2018-05-29 Genentech Inc method for determining whether a patient is prone to respond to treatment with a vegf antagonist, method for optimizing the therapeutic efficacy of a vegf antagonist, method for selecting a therapy, method for identifying a biomarker, and method for diagnosing an angiogenic disorder
PE20141561A1 (en) 2012-01-18 2014-11-12 Genentech Inc ANTI-LRP5 ANTIBODIES AND METHODS OF USE
WO2013109856A2 (en) 2012-01-18 2013-07-25 Genentech, Inc. Methods of using fgf19 modulators
US20130243750A1 (en) 2012-01-31 2013-09-19 Genentech, Inc. Anti-ige antibodies and methods using same
BR112014019579A2 (en) 2012-02-10 2019-10-15 Genentech, Inc SINGLE CHAIN ANTIBODY, POLYNUCLEOTIDE, VECTOR, HOST CELL, METHOD OF PRODUCTION OF A SINGLE CHAIN ANTIBODY, HETEROMULTYMER AND METHOD OF PRODUCTION
EP2812350B1 (en) 2012-02-11 2019-04-03 F.Hoffmann-La Roche Ag R-spondin translocations and methods using the same
BR112014018005B1 (en) 2012-02-15 2021-06-29 F. Hoffmann-La Roche Ag USE OF A NON-COVALENT IMMOBILIZED COMPLEX
CA2865404C (en) 2012-02-24 2019-08-27 Stem Centrx, Inc. Dll3-binding antibodies and drug conjugates thereof to treat cancer
MX365139B (en) 2012-03-13 2019-05-24 Hoffmann La Roche Combination therapy for the treatment of ovarian cancer.
US20130259867A1 (en) 2012-03-27 2013-10-03 Genentech, Inc. Diagnosis and treatments relating to her3 inhibitors
MX2014011582A (en) 2012-03-30 2014-11-21 Genentech Inc Diagnostic methods and compositions for treatment of cancer.
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
US10114023B2 (en) 2012-04-18 2018-10-30 Massachusetts Institute Of Technology Method of enhancing the efficacy of anti-hepatocyte growth factor receptor breast cancer therapy by administering an inhibitor of menaINV
HUE037856T2 (en) 2012-04-18 2018-09-28 Cell Signaling Technology Inc Egfr and ros1 in cancer
TW201402609A (en) 2012-05-01 2014-01-16 Genentech Inc Anti-PMEL17 antibodies and immunoconjugates
WO2013165590A1 (en) 2012-05-03 2013-11-07 Fibrogen, Inc. Methods for treating idiopathic pulmonary fibrosis
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
US8992915B2 (en) 2012-05-16 2015-03-31 Boehringer Ingelheim International Gmbh Combination of CD37 antibodies with ICE
JP6294311B2 (en) 2012-05-23 2018-03-14 ジェネンテック, インコーポレイテッド How to select a treatment
MY186099A (en) 2012-05-31 2021-06-22 Genentech Inc Methods of treating cancer using pd-l1 axis binding antagonists and vegf antagonists
JP6629069B2 (en) 2012-06-06 2020-01-15 ゾエティス・エルエルシー Canine anti-NGF antibody and method thereof
EP3967323A3 (en) 2012-06-06 2022-05-04 Bionor Immuno AS Hiv vaccine
BR112014031310A2 (en) 2012-06-15 2017-07-25 Genentech Inc anti-pcsk9 antibodies, formulations, dosage and methods of use
AU2013277051B2 (en) 2012-06-22 2018-06-07 King's College London Novel VISTA-Ig constructs and the use of VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
BR112014032193A2 (en) 2012-06-27 2017-06-27 Hoffmann La Roche bispecific antibody production and combination determination methods, bispecific antibody, formulation and use of bispecific antibody
WO2014001325A1 (en) 2012-06-27 2014-01-03 F. Hoffmann-La Roche Ag Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
WO2014006123A1 (en) 2012-07-04 2014-01-09 F. Hoffmann-La Roche Ag Anti-biotin antibodies and methods of use
EP2869848B1 (en) 2012-07-04 2016-09-21 F. Hoffmann-La Roche AG Covalently linked antigen-antibody conjugates
CN107082810B (en) 2012-07-04 2020-12-25 弗·哈夫曼-拉罗切有限公司 Anti-theophylline antibodies and methods of use
SI2870247T1 (en) 2012-07-05 2019-10-30 Hoffmann La Roche Expression and secretion system
SG11201500096YA (en) 2012-07-09 2015-02-27 Genentech Inc Immunoconjugates comprising anti - cd79b antibodies
AU2013288929A1 (en) 2012-07-09 2014-12-04 Genentech, Inc. Immunoconjugates comprising anti-CD22 antibodies
EA201590171A1 (en) 2012-07-09 2015-09-30 Дженентек, Инк. IMMUNOCONGATES CONTAINING ANTIBODIES TO CD79b
WO2014011520A1 (en) 2012-07-09 2014-01-16 Genentech, Inc. Immunoconjugates comprising anti-cd22 antibodies
US10132799B2 (en) 2012-07-13 2018-11-20 Innate Pharma Screening of conjugated antibodies
BR112015000638A2 (en) 2012-07-13 2017-08-08 Univ Pennsylvania isolated nucleic acid sequence, cell, methods for stimulating a cell-mediated immune response to a target cell or tissue population in a mammal, for providing antitumor immunity in a mammal, for treating a mammal having a disease, disorder or condition associated with high expression of a tumor antigen
LT2872534T (en) 2012-07-13 2018-10-25 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
CA2872195A1 (en) 2012-08-07 2014-02-13 Roche Glycart Ag Composition comprising two antibodies engineered to have reduced and increased effector function
MX360189B (en) 2012-08-07 2018-10-24 Genentech Inc Combination therapy for the treatment of glioblastoma.
CN104540848B (en) 2012-08-08 2019-05-31 罗切格利卡特公司 Interleukin-10 fusion protein and application thereof
BR112015002790A2 (en) 2012-08-09 2017-08-08 Roche Glycart Ag asgpr antibodies and uses thereof.
US20140044675A1 (en) 2012-08-10 2014-02-13 Roche Glycart Ag Interleukin-2 fusion proteins and uses thereof
WO2014028939A2 (en) 2012-08-17 2014-02-20 California Institute Of Technology Targeting phosphofructokinase and its glycosylation form for cancer
CN109793893B (en) 2012-09-07 2023-05-26 达特茅斯大学理事会 VISTA modulators for diagnosis and treatment of cancer
WO2014055442A2 (en) 2012-10-01 2014-04-10 The Trustees Of The University Of Pennsylvania Compositions and methods for targeting stromal cells for the treatment of cancer
US9598489B2 (en) 2012-10-05 2017-03-21 The Trustees Of The Univeristy Of Pennsylvania Human alpha-folate receptor chimeric antigen receptor
WO2014056783A1 (en) 2012-10-08 2014-04-17 Roche Glycart Ag Fc-free antibodies comprising two fab-fragments and methods of use
WO2014066864A2 (en) 2012-10-26 2014-05-01 Memorial Sloan-Kettering Cancer Center Androgen receptor variants and methods for making and using
CA2889764C (en) 2012-11-01 2023-10-10 Martin Lipp An antibody that binds cd269 (bcma) suitable for use in the treatment of plasma cell diseases such as multiple myeloma and autoimmune diseases
AU2013337277B2 (en) 2012-11-05 2018-03-08 Foundation Medicine, Inc. Novel NTRK1 fusion molecules and uses thereof
WO2014072306A1 (en) 2012-11-08 2014-05-15 F. Hoffmann-La Roche Ag Her3 antigen binding proteins binding to the beta-hairpin of her3
EP3564259A3 (en) 2012-11-09 2020-02-12 Innate Pharma Recognition tags for tgase-mediated conjugation
TWI657095B (en) 2012-11-13 2019-04-21 美商建南德克公司 Anti-hemagglutinin antibodies and methods of use
PL2935330T3 (en) 2012-12-19 2019-11-29 Aveo Pharmaceuticals Inc Anti-notch3 antibodies
EA038645B1 (en) 2012-12-21 2021-09-28 Авео Фармасьютикалз, Инк. Anti-gdf15 antibodies
CA2896331C (en) 2012-12-26 2023-08-01 Oncosynergy, Inc. Anti-integrin .beta.1 antibody compositions and methods of use thereof
AU2013370171B2 (en) 2012-12-28 2018-09-13 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
EP3939614A1 (en) 2013-01-18 2022-01-19 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
EP2951199A4 (en) 2013-01-31 2016-07-20 Univ Jefferson Fusion proteins for modulating regulatory and effector t cells
UY35340A (en) 2013-02-20 2014-09-30 Novartis Ag EFFECTIVE MARKING OF HUMAN LEUKEMIA USING CELLS DESIGNED WITH AN ANTIGEN CHEMERIC RECEIVER ANTI-CD123
SG11201505896YA (en) 2013-02-20 2015-09-29 Novartis Ag Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor
PL2958944T3 (en) 2013-02-22 2019-09-30 Abbvie Stemcentrx Llc Antidll3-antibody-pbd conjugates and uses thereof
KR20150118159A (en) 2013-02-22 2015-10-21 에프. 호프만-라 로슈 아게 Methods of treating cancer and preventing drug resistance
KR102182488B1 (en) 2013-02-25 2020-11-24 제넨테크, 인크. Methods and compositions for detecting and treating drug resistant akt mutant
CN104936987A (en) 2013-02-26 2015-09-23 罗切格利卡特公司 Anti-MCSP antibodies
JP6133444B2 (en) 2013-02-26 2017-05-24 ロシュ グリクアート アーゲー Bispecific T cell activation antigen binding molecule
EP2961773B1 (en) 2013-02-26 2019-03-20 Roche Glycart AG Bispecific t cell activating antigen binding molecules
RU2015140917A (en) 2013-02-26 2017-04-03 Роше Гликарт Аг BSPECIFIC ANTI-BINDING MOLECULES ACTIVATING T-CELLS
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
US9925240B2 (en) 2013-03-06 2018-03-27 Genentech, Inc. Methods of treating and preventing cancer drug resistance
BR112015022484A2 (en) 2013-03-13 2017-07-18 Genentech Inc reduced oxidation formulations
AR095398A1 (en) 2013-03-13 2015-10-14 Genentech Inc FORMULATIONS WITH REDUCED OXIDATION
RU2707550C2 (en) 2013-03-13 2019-11-27 Дженентек, Инк. Compositions with reduced oxidation
MY189047A (en) 2013-03-13 2022-01-21 Genentech Inc Antibody formulations
US10653779B2 (en) 2013-03-13 2020-05-19 Genentech, Inc. Formulations with reduced oxidation
JP2016515132A (en) 2013-03-14 2016-05-26 ジェネンテック, インコーポレイテッド Combination and use of MEK inhibitor compounds with HER3 / EGFR inhibitor compounds
EP3299391B1 (en) 2013-03-14 2019-12-04 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
MX2015011606A (en) 2013-03-14 2016-05-17 Genentech Inc Methods of treating cancer and preventing cancer drug resistance.
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
MX2015012922A (en) 2013-03-14 2016-04-04 Ren Liu Cancer treatment using antibodies that bing cell surface grp78.
CN105283201B (en) 2013-03-14 2019-08-02 斯克利普斯研究所 Targeting agent antibody coupling matter and application thereof
AU2014235453A1 (en) 2013-03-15 2015-10-08 Genentech, Inc. Biomarkers and methods of treating PD-1 and PD-L1 related conditions
WO2014150877A2 (en) 2013-03-15 2014-09-25 Ac Immune S.A. Anti-tau antibodies and methods of use
US9745368B2 (en) 2013-03-15 2017-08-29 The Trustees Of The University Of Pennsylvania Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
JP6527132B2 (en) 2013-03-15 2019-06-05 ジェネンテック, インコーポレイテッド Compositions and methods for diagnosis and treatment of liver cancer
US9446105B2 (en) 2013-03-15 2016-09-20 The Trustees Of The University Of Pennsylvania Chimeric antigen receptor specific for folate receptor β
MX2015011899A (en) 2013-03-15 2016-05-05 Genentech Inc Methods of treating cancer and preventing cancer drug resistance.
WO2014140300A1 (en) 2013-03-15 2014-09-18 Innate Pharma Solid phase tgase-mediated conjugation of antibodies
JP2016517441A (en) 2013-03-15 2016-06-16 ジェネンテック, インコーポレイテッド Anti-CRTh2 antibody and method of use
CA2903589A1 (en) 2013-03-15 2014-09-18 Genentech, Inc. Cell culture media and methods of antibody production
TWI654206B (en) 2013-03-16 2019-03-21 諾華公司 Treatment of cancer with a humanized anti-CD19 chimeric antigen receptor
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
WO2014169076A1 (en) 2013-04-09 2014-10-16 Annexon,,Inc. Methods of treatment for neuromyelitis optica
EP2992010B1 (en) 2013-04-29 2021-03-24 F.Hoffmann-La Roche Ag Fc-receptor binding modified asymmetric antibodies and methods of use
AU2014261631B2 (en) 2013-04-29 2019-02-14 F. Hoffmann-La Roche Ag FcRn-binding abolished anti-IGF-1R antibodies and their use in the treatment of vascular eye diseases
AU2014261630B2 (en) 2013-04-29 2019-05-09 F. Hoffmann-La Roche Ag Human FcRn-binding modified antibodies and methods of use
KR102293064B1 (en) 2013-05-20 2021-08-23 제넨테크, 인크. Anti-transferrin receptor antibodies and methods of use
EP3010547B1 (en) 2013-06-20 2021-04-21 Innate Pharma Enzymatic conjugation of polypeptides
EP3010548A1 (en) 2013-06-21 2016-04-27 Innate Pharma Enzymatic conjugation of polypeptides
AU2014287221C1 (en) 2013-07-09 2020-03-05 Annexon, Inc. Anti-complement factor C1q antibodies and uses thereof
US10208125B2 (en) 2013-07-15 2019-02-19 University of Pittsburgh—of the Commonwealth System of Higher Education Anti-mucin 1 binding agents and uses thereof
ES2819209T3 (en) 2013-07-16 2021-04-15 Hoffmann La Roche Cancer treatment procedures using PD-1 axis binding antagonists and TIGIT inhibitors
WO2015010100A2 (en) 2013-07-18 2015-01-22 Fabrus, Inc. Humanized antibodies with ultralong complementarity determining regions
WO2015017146A2 (en) 2013-07-18 2015-02-05 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
WO2015007337A1 (en) 2013-07-19 2015-01-22 Bionor Immuno As Method for the vaccination against hiv
WO2015011660A1 (en) 2013-07-23 2015-01-29 Biocon Limited Methods for controlling fucosylation levels in proteins
PT3708583T (en) 2013-08-01 2022-05-13 Five Prime Therapeutics Inc Afucosylated anti-fgfr2iiib antibodies
US10227370B2 (en) 2013-08-02 2019-03-12 California Institute Of Technology Heparan sulfate/heparin mimetics with anti-chemokine and anti-inflammatory activity
US9770461B2 (en) 2013-08-02 2017-09-26 California Institute Of Technology Tailored glycopolymers as anticoagulant heparin mimetics
JP2016538318A (en) 2013-08-28 2016-12-08 ステムセントリックス, インコーポレイテッド New SEZ6 modulator and method of use
PE20160674A1 (en) 2013-08-28 2016-07-21 Stemcentrx Inc METHODS OF CONJUGATION OF SITE-SPECIFIC ANTIBODIES AND COMPOSITIONS
US10456470B2 (en) 2013-08-30 2019-10-29 Genentech, Inc. Diagnostic methods and compositions for treatment of glioblastoma
US10617755B2 (en) 2013-08-30 2020-04-14 Genentech, Inc. Combination therapy for the treatment of glioblastoma
CN105518027A (en) 2013-09-17 2016-04-20 豪夫迈·罗氏有限公司 Methods of using anti-LGR5 antibodies
TWI714022B (en) 2013-09-27 2020-12-21 美商建南德克公司 Anti-pdl1 antibody formulations
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
LT3052192T (en) 2013-10-02 2020-12-10 Medimmune, Llc Neutralizing anti-influenza a antibodies and uses thereof
EP3055328A1 (en) 2013-10-11 2016-08-17 F. Hoffmann-La Roche AG Nsp4 inhibitors and methods of use
CA2922912A1 (en) 2013-10-11 2015-04-16 F. Hoffmann-La Roche Ag Multispecific domain exchanged common variable light chain antibodies
CA2925598A1 (en) 2013-10-18 2015-04-23 Genentech, Inc. Anti-rspo antibodies and methods of use
SG11201603127WA (en) 2013-10-23 2016-05-30 Genentech Inc Methods of diagnosing and treating eosinophilic disorders
CA2928671A1 (en) 2013-11-06 2015-05-14 Stemcentrx, Inc. Novel anti-claudin antibodies and methods of use
MX2016005631A (en) 2013-11-21 2016-07-14 Hoffmann La Roche ANTI-alpha-SYNUCLEIN ANTIBODIES AND METHODS OF USE.
US9321834B2 (en) 2013-12-05 2016-04-26 Leidos, Inc. Anti-malarial compositions
AU2014363944B2 (en) 2013-12-09 2020-03-26 Allakos Inc. Anti-Siglec-8 antibodies and methods of use thereof
WO2015089338A2 (en) 2013-12-11 2015-06-18 Sloan-Kettering Institute For Cancer Research Glucocorticoid inhibitors for treatment of prostate cancer
EP3080164B1 (en) 2013-12-13 2019-01-16 Genentech, Inc. Anti-cd33 antibodies and immunoconjugates
HUE050156T2 (en) 2013-12-17 2020-11-30 Genentech Inc Anti-cd3 antibodies and methods of use
RU2016128726A (en) 2013-12-17 2018-01-23 Дженентек, Инк. METHODS FOR TREATING MALIGNANT TUMORS USING PD-1 BINDING ANTAGONISTS AND ANTIBODIES AGAINST CD20
US20150190506A1 (en) 2013-12-17 2015-07-09 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
MX2016007972A (en) 2013-12-17 2016-10-28 Genentech Inc Methods of treating cancers using pd-1 axis binding antagonists and taxanes.
PT3083680T (en) 2013-12-20 2020-03-17 Hoffmann La Roche Humanized anti-tau(ps422) antibodies and methods of use
EP3087101A4 (en) 2013-12-20 2017-12-06 Novartis AG Regulatable chimeric antigen receptor
TWI728373B (en) 2013-12-23 2021-05-21 美商建南德克公司 Antibodies and methods of use
CA2935378C (en) 2013-12-24 2023-04-18 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
JP6476194B2 (en) 2014-01-03 2019-02-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Bispecific anti-hapten / anti-blood brain barrier receptor antibodies, complexes thereof, and their use as blood brain barrier shuttles
RU2694981C2 (en) 2014-01-03 2019-07-18 Ф. Хоффманн-Ля Рош Аг Covalently linked conjugates chelicar-antibody against chelicar and use thereof
CN105873616B (en) 2014-01-03 2020-06-05 豪夫迈·罗氏有限公司 Covalently linked polypeptide toxin-antibody conjugates
RU2694659C2 (en) 2014-01-06 2019-07-16 Ф. Хоффманн-Ля Рош Аг Monovalent carrier modules across blood-brain barrier
RU2727639C2 (en) 2014-01-15 2020-07-22 Ф.Хоффманн-Ля Рош Аг Variants of fc-region with modified ability to bind to fcrn and with preserved ability to bind with protein a
US11028143B2 (en) 2014-01-21 2021-06-08 Novartis Ag Enhanced antigen presenting ability of RNA CAR T cells by co-introduction of costimulatory molecules
EP3096797A1 (en) 2014-01-24 2016-11-30 F. Hoffmann-La Roche AG Methods of using anti-steap1 antibodies and immunoconjugates
JP6736467B2 (en) 2014-02-04 2020-08-05 ジェネンテック, インコーポレイテッド Smoothing mutant and method of using the same
CA2931114A1 (en) 2014-02-06 2015-08-13 F. Hoffmann-La Roche Ag Interleukin-2 fusion proteins and uses thereof
SG11201606316XA (en) 2014-02-08 2016-08-30 Genentech Inc Methods of treating alzheimer's disease
WO2015120280A1 (en) 2014-02-08 2015-08-13 Genentech, Inc. Methods of treating alzheimer's disease
TW201902515A (en) 2014-02-12 2019-01-16 美商建南德克公司 Anti-jagged1 antibodies and methods of use
EP3107574A2 (en) 2014-02-21 2016-12-28 F. Hoffmann-La Roche AG Anti-il-13/il-17 bispecific antibodies and uses thereof
WO2015127407A1 (en) 2014-02-21 2015-08-27 Stemcentrx, Inc. Anti-dll3 antibodies and drug conjugates for use in melanoma
US10183996B2 (en) 2014-02-28 2019-01-22 Allakos Inc. Methods and compositions for treating Siglec-8 associated diseases
WO2015139046A1 (en) 2014-03-14 2015-09-17 Genentech, Inc. Methods and compositions for secretion of heterologous polypeptides
WO2015142661A1 (en) 2014-03-15 2015-09-24 Novartis Ag Regulatable chimeric antigen receptor
WO2015142675A2 (en) 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
MA39776A (en) 2014-03-24 2017-02-01 Hoffmann La Roche Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
MA39817A (en) 2014-03-31 2017-02-08 Hoffmann La Roche Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
EP3632934A1 (en) 2014-03-31 2020-04-08 F. Hoffmann-La Roche AG Anti-ox40 antibodies and methods of use
SG11201608054YA (en) 2014-04-02 2016-10-28 Hoffmann La Roche Method for detecting multispecific antibody light chain mispairing
KR102651707B1 (en) 2014-04-07 2024-03-29 노파르티스 아게 Treatment of cancer using anti-cd19 chimeric antigen receptor
ES2845650T3 (en) 2014-04-18 2021-07-27 Acceleron Pharma Inc Procedures to increase red blood cell levels and treat sickle cell disease
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
US10087259B1 (en) 2014-04-28 2018-10-02 Memorial Sloan Kettering Cancer Center Depleting tumor-specific tregs
US20170267780A1 (en) 2014-05-16 2017-09-21 Medimmune, Llc Molecules with altered neonate fc receptor binding having enhanced therapeutic and diagnostic properties
CN106414499A (en) 2014-05-22 2017-02-15 基因泰克公司 Anti-GPC3 antibodies and immunoconjugates
RU2016144405A (en) 2014-05-23 2018-06-26 Дженентек, Инк. MiT BIOMARKERS AND WAYS OF THEIR APPLICATION
EP3155015A1 (en) 2014-06-11 2017-04-19 F. Hoffmann-La Roche AG Anti-lgr5 antibodies and uses thereof
MX2016016310A (en) 2014-06-11 2017-10-20 A Green Kathy Use of vista agonists and antagonists to suppress or enhance humoral immunity.
CN107073121A (en) 2014-06-13 2017-08-18 基因泰克公司 Treatment and the method for prevention cancer drug resistance
TN2016000553A1 (en) 2014-06-13 2018-04-04 Acceleron Pharma Inc Methods and compositions for treating ulcers
JP6768527B2 (en) 2014-06-20 2020-10-14 アベオ ファーマシューティカルズ, インコーポレイテッド Treatment of chronic kidney disease and other renal dysfunctions with GDF15 regulators
WO2015196142A1 (en) 2014-06-20 2015-12-23 Aveo Pharmaceuticals, Inc. Treatment of congestive heart failure and other cardiac dysfunction using a gdf15 modulator
WO2015197736A1 (en) 2014-06-26 2015-12-30 F. Hoffmann-La Roche Ag Anti-brdu antibodies and methods of use
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
CN106574270B (en) 2014-07-03 2021-07-13 豪夫迈·罗氏有限公司 Polypeptide expression system
EP3309174B1 (en) 2014-07-11 2022-05-11 Ventana Medical Systems, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
BR112017000130A2 (en) 2014-07-11 2018-01-09 Genentech Inc method for mitigating toxicity associated with notch pathway inhibition and cancer treatment method
EP3169801A1 (en) 2014-07-14 2017-05-24 F. Hoffmann-La Roche AG Diagnostic methods and compositions for treatment of glioblastoma
JP6673896B2 (en) 2014-07-15 2020-03-25 ジェネンテック, インコーポレイテッド Compositions for treating cancer using PD-1 axis binding antagonists and MEK inhibitors
US9777061B2 (en) 2014-07-21 2017-10-03 Novartis Ag Treatment of cancer using a CD33 chimeric antigen receptor
EP3172237A2 (en) 2014-07-21 2017-05-31 Novartis AG Treatment of cancer using humanized anti-bcma chimeric antigen receptor
WO2016014530A1 (en) 2014-07-21 2016-01-28 Novartis Ag Combinations of low, immune enhancing. doses of mtor inhibitors and cars
WO2016014553A1 (en) 2014-07-21 2016-01-28 Novartis Ag Sortase synthesized chimeric antigen receptors
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
EP3177643B1 (en) 2014-08-04 2019-05-08 F.Hoffmann-La Roche Ag Bispecific t cell activating antigen binding molecules
CA2955086A1 (en) 2014-08-08 2016-02-11 Alector Llc Anti-trem2 antibodies and methods of use thereof
JP6919118B2 (en) 2014-08-14 2021-08-18 ノバルティス アーゲー Treatment of cancer with GFRα-4 chimeric antigen receptor
BR112017003104A2 (en) 2014-08-19 2017-12-05 Novartis Ag cancer treatment using an anti-cd123 chimeric antigen receptor
TW201617368A (en) 2014-09-05 2016-05-16 史坦森特瑞斯公司 Novel anti-MFI2 antibodies and methods of use
CN113698485A (en) 2014-09-12 2021-11-26 基因泰克公司 anti-B7-H4 antibodies and immunoconjugates
SG11201701623UA (en) 2014-09-12 2017-03-30 Genentech Inc Anti-her2 antibodies and immunoconjugates
JP6886398B2 (en) 2014-09-12 2021-06-16 ジェネンテック, インコーポレイテッド ANTI-CLL-1 antibody and immune complex
EP3193932B1 (en) 2014-09-15 2023-04-26 F. Hoffmann-La Roche AG Antibody formulations
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
RU2727663C2 (en) 2014-09-17 2020-07-22 Дженентек, Инк. Immunoconjugates, containing antibodies against her2 and pyrrolbenzodiazepines
EP3689910A3 (en) 2014-09-23 2020-12-02 F. Hoffmann-La Roche AG Method of using anti-cd79b immunoconjugates
US20170306008A1 (en) 2014-09-25 2017-10-26 Aveo Pharmaceuticals, Inc. Methods of reversing cachexia and prolonging survival comprising administering a gdf15 modulator and an anti-cancer agent
EP3207057A2 (en) 2014-10-16 2017-08-23 F. Hoffmann-La Roche AG Anti-alpha-synuclein antibodies and methods of use
EP3223865A4 (en) 2014-10-31 2018-10-03 Jounce Therapeutics, Inc. Methods of treating conditions with antibodies that bind b7-h4
CA2964948A1 (en) 2014-10-31 2016-05-06 The Trustees Of The University Of Pennsylvania Altering gene expression in modified t cells and uses thereof
CN107106609A (en) 2014-10-31 2017-08-29 宾夕法尼亚大学董事会 Stimulate and extend the composition and method of T cell
AU2015343337A1 (en) 2014-11-03 2017-06-15 Genentech, Inc. Assays for detecting T cell immune subsets and methods of use thereof
EP3215637B1 (en) 2014-11-03 2019-07-03 F. Hoffmann-La Roche AG Methods and biomarkers for predicting efficacy and valuation of an ox40 agonist treatment
WO2016073685A1 (en) 2014-11-05 2016-05-12 Annexon, Inc. Humanized anti-complement factor c1q antibodies and uses thereof
AU2015342964B2 (en) 2014-11-05 2021-06-24 Genentech, Inc. Methods of producing two chain proteins in bacteria
CN108064308B (en) 2014-11-05 2023-06-09 豪夫迈·罗氏有限公司 Method for producing double-stranded protein in bacteria
JP6576456B2 (en) 2014-11-06 2019-09-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Fc region variants with modified FcRn binding properties and protein A binding properties
EP3215536A1 (en) 2014-11-06 2017-09-13 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and tigit inhibitors
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
RU2714116C2 (en) 2014-11-06 2020-02-11 Ф. Хоффманн-Ля Рош Аг VARIANTS OF Fc-DOMAIN WITH MODIFIED FcRn BINDING AND METHODS OF APPLICATION THEREOF
JP6929771B2 (en) 2014-11-10 2021-09-01 ジェネンテック, インコーポレイテッド Anti-interleukin-33 antibody and its use
CN107105632A (en) 2014-11-10 2017-08-29 豪夫迈·罗氏有限公司 Nephrosis animal model and its therapeutic agent
BR112017009006A2 (en) 2014-11-14 2018-04-10 F. Hoffmann-La Roche Ag binding molecule, isolated polynucleotide, vector, host cell, binding molecule production method, pharmaceutical composition, use of the binding molecule, and method of treating a disease in an individual
SG10201807625PA (en) 2014-11-17 2018-10-30 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
US10508151B2 (en) 2014-11-19 2019-12-17 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
JP6993228B2 (en) 2014-11-19 2022-03-03 ジェネンテック, インコーポレイテッド Anti-transferrin receptor / anti-BACE1 multispecific antibody and usage
US10882920B2 (en) 2014-11-19 2021-01-05 Genentech, Inc. Antibodies against BACE1 and use thereof for neural disease immunotherapy
MY192999A (en) 2014-11-20 2022-09-20 Hoffmann La Roche Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
CA2968162A1 (en) 2014-11-20 2016-05-26 F. Hoffmann-La Roche Ag Common light chains and methods of use
US10517898B2 (en) 2014-11-20 2019-12-31 The Regents Of The University Of California Compositions and methods related to hematologic recovery
MA41119A (en) 2014-12-03 2017-10-10 Acceleron Pharma Inc METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
WO2016087416A1 (en) 2014-12-03 2016-06-09 F. Hoffmann-La Roche Ag Multispecific antibodies
DK3227336T3 (en) 2014-12-05 2019-09-16 Hoffmann La Roche Anti-CD79b antibodies and methods for use
WO2016090300A1 (en) 2014-12-05 2016-06-09 Genentech, Inc. Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
JP2018505911A (en) 2014-12-05 2018-03-01 イミュネクスト,インコーポレーテッド Identification of VSIG8 as a putative VISTA receptor and its use to produce a VISTA / VSIG8 modulator
EP3230317A2 (en) 2014-12-10 2017-10-18 F. Hoffmann-La Roche AG Blood brain barrier receptor antibodies and methods of use
CA2966551A1 (en) 2014-12-18 2016-06-23 F. Hoffmann-La Roche Ag Assay and method for determining cdc eliciting antibodies
EP3233921B1 (en) 2014-12-19 2021-09-29 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
CA2973819A1 (en) 2014-12-19 2016-06-23 Alder Biopharmaceuticals, Inc. Humanized anti-acth antibodies and use thereof
US10239942B2 (en) 2014-12-22 2019-03-26 Pd-1 Acquisition Group, Llc Anti-PD-1 antibodies
US20160200815A1 (en) 2015-01-05 2016-07-14 Jounce Therapeutics, Inc. Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof
EP3247723A1 (en) 2015-01-22 2017-11-29 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
EP4223873A3 (en) 2015-01-31 2023-09-06 The Trustees of the University of Pennsylvania Compositions and methods for t cell delivery of therapeutic molecules
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
CA2975875A1 (en) 2015-02-04 2016-08-11 Genentech, Inc. Mutant smoothened and methods of using the same
SG10201907215QA (en) 2015-02-05 2019-09-27 Chugai Pharmaceutical Co Ltd Antibodies Comprising An Ion Concentration Dependent Antigen-Binding Domain, Fc Region Variants, Il-8-Binding Antibodies, And Uses Therof
SG10201810615VA (en) 2015-02-26 2019-01-30 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for the treatment of cancer
CA2977285A1 (en) 2015-03-16 2016-09-22 F. Hoffmann-La Roche Ag Methods of detecting and quantifying il-13 and uses in diagnosing and treating th2-associated diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
WO2016154177A2 (en) 2015-03-23 2016-09-29 Jounce Therapeutics, Inc. Antibodies to icos
CN107743495B (en) 2015-03-23 2021-05-14 拜耳制药股份公司 anti-CEACAM 6 antibodies and uses thereof
MA41919A (en) 2015-04-06 2018-02-13 Acceleron Pharma Inc ALK4 HETEROMULTIMERS: ACTRIIB AND THEIR USES
MA41916A (en) 2015-04-06 2021-04-14 Acceleron Pharma Inc TGF-BETA SUPERFAMILY TYPE I AND TYPE II RECEIVER HETEROMULTIMERS AND THEIR USES
CA2981183A1 (en) 2015-04-07 2016-10-13 Greg Lazar Antigen binding complex having agonistic activity and methods of use
SG10201912087SA (en) 2015-04-07 2020-02-27 Alector Llc Anti-sortilin antibodies and methods of use thereof
IL254817B2 (en) 2015-04-08 2023-12-01 Novartis Ag Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
ES2881694T3 (en) 2015-04-24 2021-11-30 Hoffmann La Roche Procedures for Identifying Bacteria Comprising Binding Polypeptides
JP2018520642A (en) 2015-05-01 2018-08-02 ジェネンテック, インコーポレイテッド Mask anti-CD3 antibody and method of use thereof
WO2016179194A1 (en) 2015-05-04 2016-11-10 Jounce Therapeutics, Inc. Lilra3 and method of using the same
US20180140694A1 (en) 2015-05-04 2018-05-24 Bionor Immuno As Dosage regimen for hiv vaccine
JP6963508B2 (en) 2015-05-11 2021-11-10 ジェネンテック, インコーポレイテッド Compositions and Methods for Treating Lupus Nephritis
CA2983282A1 (en) 2015-05-12 2016-11-17 Genentech, Inc. Therapeutic and diagnostic methods for cancer
AU2016264323B2 (en) 2015-05-18 2021-02-18 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
CN107849148B (en) 2015-05-21 2023-09-19 哈普恩治疗公司 Trispecific binding proteins and methods of use
WO2016191397A1 (en) 2015-05-22 2016-12-01 Td2 Inc. Benzamide and active compound compositions and methods of use
EP3303391A1 (en) 2015-05-26 2018-04-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions (ntsr1 inhibitors) for the treatment of hepatocellular carcinomas
WO2016189118A1 (en) 2015-05-28 2016-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of prognosis and treatment of patients suffering from acute myeloid leukemia
CA2984003A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
JP2018520658A (en) 2015-05-29 2018-08-02 ジェネンテック, インコーポレイテッド Humanized anti-Ebola virus glycoprotein antibodies and uses thereof
JP2018516933A (en) 2015-06-02 2018-06-28 ジェネンテック, インコーポレイテッド Compositions and methods for treating neurological disorders using anti-IL-34 antibodies
CA2986942A1 (en) 2015-06-05 2016-12-08 Genentech, Inc. Anti-tau antibodies and methods of use
KR20180011839A (en) 2015-06-08 2018-02-02 제넨테크, 인크. Treatment of Cancer Using Anti-OX40 Antibody
US20170000885A1 (en) 2015-06-08 2017-01-05 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
US11136390B2 (en) 2015-06-12 2021-10-05 Alector Llc Anti-CD33 antibodies and methods of use thereof
JP2018518491A (en) 2015-06-12 2018-07-12 アレクトル エルエルシー Anti-CD33 antibody and method of use thereof
CN108064246A (en) 2015-06-15 2018-05-22 基因泰克公司 Antibody and immune conjugate
JP2018526972A (en) 2015-06-16 2018-09-20 ジェネンテック, インコーポレイテッド Anti-CD3 antibody and method of use
HRP20231134T1 (en) 2015-06-16 2024-01-05 F. Hoffmann - La Roche Ag Humanized and affinity matured antibodies to fcrh5 and methods of use
CN107847568B (en) 2015-06-16 2022-12-20 豪夫迈·罗氏有限公司 anti-CLL-1 antibodies and methods of use
MX2017016324A (en) 2015-06-16 2018-03-02 Merck Patent Gmbh Pd-l1 antagonist combination treatments.
AU2016280159A1 (en) 2015-06-17 2017-12-07 Genentech, Inc. Anti-HER2 antibodies and methods of use
AU2016278239B9 (en) 2015-06-17 2022-08-11 Allakos Inc. Methods and compositions for treating fibrotic diseases
AU2016280070B2 (en) 2015-06-17 2022-09-15 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using PD-1 axis binding antagonists and taxanes
CA2990394A1 (en) 2015-06-23 2016-12-29 Bayer Pharma Aktiengesellschaft Antibody drug conjugates of kinesin spindel protein (ksp) inhibitors with anti-tweakr-antibodies
US9862763B2 (en) 2015-06-24 2018-01-09 Hoffmann-La Roche Inc. Humanized anti-tau(pS422) antibodies and methods of use
CN107922497B (en) 2015-06-24 2022-04-12 詹森药业有限公司 anti-VISTA antibodies and fragments
HRP20220304T1 (en) 2015-06-24 2022-05-13 F. Hoffmann - La Roche Ag Anti-transferrin receptor antibodies with tailored affinity
BR112017027736A2 (en) 2015-06-29 2018-10-09 Genentech Inc anti-cd20 type ii antibody for use in organ transplantation
WO2017001350A1 (en) 2015-06-29 2017-01-05 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
CN108348578B (en) 2015-08-04 2022-08-09 阿塞勒隆制药公司 Methods for treating myeloproliferative disorders
US11667691B2 (en) 2015-08-07 2023-06-06 Novartis Ag Treatment of cancer using chimeric CD3 receptor proteins
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
BR112018001956A2 (en) 2015-08-20 2018-09-11 Hoffmann La Roche ? analyte measurement method and kit?
JP2018525999A (en) 2015-08-28 2018-09-13 アレクトル エルエルシー Anti-Siglec-7 antibody and method of use thereof
IL258088B2 (en) 2015-09-18 2024-02-01 Chugai Pharmaceutical Co Ltd Il-8-binding antibodies and uses thereof
CA2999369C (en) 2015-09-22 2023-11-07 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
PE20181363A1 (en) 2015-09-23 2018-08-27 Genentech Inc OPTIMIZED VARIANTS OF ANTI-VEGF ANTIBODIES
US11142565B2 (en) 2015-09-24 2021-10-12 Abvitro Llc Broadly neutralizing anti-HIV-1 antibodies that bind to an N-glycan epitope on the envelope
EP3356551B1 (en) 2015-09-29 2020-09-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for determining the metabolic status of b-lymphomas
US20180282415A1 (en) 2015-09-30 2018-10-04 Merck Patent Gmbh Combination of a PD-1 Axis Binding Antagonist and an ALK Inhibitor for Treating ALK-Negative Cancer
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
EP3356407B1 (en) 2015-10-02 2021-11-03 F. Hoffmann-La Roche AG Bispecific anti-cd19xcd3 t cell activating antigen binding molecules
WO2017055388A2 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific t cell activating antigen binding molecules
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
EP3356406A1 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific anti-human cd20/human transferrin receptor antibodies and methods of use
WO2017055395A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
AU2016329251B2 (en) 2015-10-02 2023-02-02 F. Hoffmann-La Roche Ag Anti-PD1 antibodies and methods of use
MA43025A (en) 2015-10-02 2021-05-26 Hoffmann La Roche BISPECIFIC BISPECIFIC MOLECULES OF ANTIGEN ACTIVATING T-LYMPHOCYTES ANTI-CEAXCD3
JP2018536389A (en) 2015-10-02 2018-12-13 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific cell-activating antigen binding molecule that binds mesothelin and CD3
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
AU2016334051B2 (en) 2015-10-06 2023-10-26 Alector Llc Anti-TREM2 antibodies and methods of use thereof
AU2016335842A1 (en) 2015-10-07 2018-04-12 Obi Pharma, Inc. Novel carbohydrate antibodies, pharmaceutical compositions and uses thereof
EP3362088B1 (en) 2015-10-12 2020-11-25 Institut National de la Sante et de la Recherche Medicale (INSERM) An agent capable of depleting cd8 t cells for the treatment of myocardial infarction or acute myocardial infarction
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
WO2017067944A1 (en) 2015-10-19 2017-04-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from triple negative breast cancer
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
KR20180066236A (en) 2015-10-22 2018-06-18 조운스 테라퓨틱스, 인크. Gene traits for measuring ICOS expression
KR20180085723A (en) 2015-10-28 2018-07-27 예일 유니버시티 Humanized anti-DKK2 antibodies and uses thereof
IL295756A (en) 2015-10-29 2022-10-01 Hoffmann La Roche Anti-variant fc-region antibodies and methods of use
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
WO2017075432A2 (en) 2015-10-29 2017-05-04 Alector Llc Anti-siglec-9 antibodies and methods of use thereof
TW201730211A (en) 2015-10-30 2017-09-01 建南德克公司 Anti-Factor D antibodies and conjugates
PE20181009A1 (en) 2015-10-30 2018-06-26 Genentech Inc ANTI-HtrA1 ANTIBODIES AND METHODS OF USE OF THEM
CN108602884A (en) 2015-11-08 2018-09-28 豪夫迈·罗氏有限公司 The method for screening multi-specificity antibody
TWI791422B (en) 2015-11-23 2023-02-11 美商戊瑞治療有限公司 Fgfr2 inhibitors alone or in combination with immune stimulating agents in cancer treatment
CN108697793B (en) 2015-11-23 2023-08-01 阿塞勒隆制药公司 Methods of treating eye diseases
JP7325186B2 (en) 2015-12-09 2023-08-14 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Type II anti-CD20 antibody for reducing the formation of anti-drug antibodies
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
TWI597292B (en) 2015-12-18 2017-09-01 中外製藥股份有限公司 Anti-c5 antibodies and methods of use
US20170239355A1 (en) 2015-12-30 2017-08-24 Genentech, Inc. Use of tryptophan derivatives for protein formulations
WO2017117311A1 (en) 2015-12-30 2017-07-06 Genentech, Inc. Formulations with reduced degradation of polysorbate
EP3400443B1 (en) 2016-01-04 2020-09-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma
US20200270365A1 (en) 2016-01-05 2020-08-27 Jiangsu Hengrui Medicine Co., Ltd. Pcsk9 antibody, antigen-binding fragment thereof, and medical uses thereof
ES2880731T3 (en) 2016-01-08 2021-11-25 Altrubio Inc Quadrivalent anti-PSGL-1 antibodies and uses thereof
WO2017120536A1 (en) 2016-01-08 2017-07-13 Apg Therapeutics, Inc. Polyethylenimine (pei)-polypeptide conjugates and methods of use thereof
PL3400246T3 (en) 2016-01-08 2021-03-08 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
CN109195988B (en) 2016-01-10 2023-12-01 尼奥克斯医疗有限公司 Methods and compositions for enhancing the efficacy of superantigen-mediated cancer immunotherapy
CA3011739A1 (en) 2016-01-20 2017-07-27 Genentech, Inc. High dose treatments for alzheimer's disease
WO2017125897A1 (en) 2016-01-21 2017-07-27 Novartis Ag Multispecific molecules targeting cll-1
WO2017129558A1 (en) 2016-01-25 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting or treating myelopoiesis-driven cardiometabolic diseases and sepsis
WO2017136558A1 (en) 2016-02-04 2017-08-10 Curis, Inc. Mutant smoothened and methods of using the same
TWI756204B (en) 2016-02-12 2022-03-01 比利時商楊森製藥公司 Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
CN114395624A (en) 2016-02-29 2022-04-26 基因泰克公司 Methods for treatment and diagnosis of cancer
WO2017152102A2 (en) 2016-03-04 2017-09-08 Alector Llc Anti-trem1 antibodies and methods of use thereof
KR20180118175A (en) 2016-03-04 2018-10-30 노파르티스 아게 Cells expressing multiple chimeric antigen receptor (CAR) molecules and their uses
US10443054B2 (en) 2016-03-06 2019-10-15 Massachusetts Institute Of Technology Methods for identifying and treating invasive/metastatic breast cancers
MX2018010546A (en) 2016-03-15 2019-02-20 Chugai Pharmaceutical Co Ltd Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies.
CA3017776A1 (en) 2016-03-15 2017-09-21 Generon (Shanghai) Corporation Ltd. Multispecific fab fusion proteins and use thereof
BR112018016281A2 (en) 2016-03-22 2019-01-02 Hoffmann La Roche protease activatable bispecific t-cell activating molecule, idiotype-specific polypeptide, pharmaceutical composition, uses of the bispecific molecule and method of treating a disease in an individual
EP3432924A1 (en) 2016-03-23 2019-01-30 Novartis AG Cell secreted minibodies and uses thereof
JP6943872B2 (en) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド Multiple whole antibody and antibody complex drug quantification assay
EP3231813A1 (en) 2016-03-29 2017-10-18 F. Hoffmann-La Roche AG Trimeric costimulatory tnf family ligand-containing antigen binding molecules
EP3443004A1 (en) 2016-04-14 2019-02-20 H. Hoffnabb-La Roche Ag Anti-rspo3 antibodies and methods of use
HRP20230457T1 (en) 2016-04-15 2023-07-21 Novartis Ag Compositions and methods for selective expression of chimeric antigen receptors
EP3443120A2 (en) 2016-04-15 2019-02-20 H. Hoffnabb-La Roche Ag Methods for monitoring and treating cancer
CN109069633A (en) 2016-04-15 2018-12-21 宏观基因有限公司 Novel B7-H3- binding molecule, its antibody drug conjugate and its application method
US10202435B2 (en) 2016-04-15 2019-02-12 Alder Biopharmaceuticals, Inc. Anti-PACAP antibodies and uses thereof
SG11201808633RA (en) 2016-04-15 2018-10-30 Immunext Inc Anti-human vista antibodies and use thereof
CN109154613A (en) 2016-04-15 2019-01-04 豪夫迈·罗氏有限公司 For monitoring and the method for the treatment of cancer
UA123323C2 (en) 2016-05-02 2021-03-17 Ф. Хоффманн-Ля Рош Аг The contorsbody - a single chain target binder
TWI794171B (en) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-l1 inhibitors
TWI808055B (en) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-1 inhibitors
EP3455252B1 (en) 2016-05-11 2022-02-23 F. Hoffmann-La Roche AG Modified anti-tenascin antibodies and methods of use
JP7285076B2 (en) 2016-05-11 2023-06-01 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antigen-binding molecule comprising a TNF family ligand trimer and a tenascin-binding portion
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
IL308504A (en) 2016-05-13 2024-01-01 Bioatla Llc Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
WO2017201488A1 (en) 2016-05-20 2017-11-23 Harpoon Therapeutics, Inc. Single domain serum albumin binding protein
PL3458101T3 (en) 2016-05-20 2021-05-31 F. Hoffmann-La Roche Ag Protac antibody conjugates and methods of use
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
RU2018145184A (en) 2016-05-26 2020-06-26 Мерк Патент Гмбх PD-1 / PD-L1 Inhibitors for the treatment of malignant neoplasms
US20170370906A1 (en) 2016-05-27 2017-12-28 Genentech, Inc. Bioanalytical analysis of site-specific antibody drug conjugates
WO2017202890A1 (en) 2016-05-27 2017-11-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating myeloma
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
EP3464375A2 (en) 2016-06-02 2019-04-10 Novartis AG Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
WO2017214024A1 (en) 2016-06-06 2017-12-14 Genentech, Inc. Silvestrol antibody-drug conjugates and methods of use
JP6921943B2 (en) 2016-06-06 2021-08-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Ophthalmic fusion protein with increased eye retention
AU2017276706A1 (en) 2016-06-07 2019-01-03 Max-Delbrück-Centrum Für Molekulare Medizin In Der Helmholtz-Gemeinschaft Chimeric antigen receptor and CAR-T cells that bind BCMA
WO2017218891A1 (en) 2016-06-17 2017-12-21 Life Technologies Corporation Site-specific crosslinking of antibodies
CN109563160B (en) 2016-06-24 2023-02-28 豪夫迈·罗氏有限公司 Anti-polyubiquitin multispecific antibodies
WO2018007314A1 (en) 2016-07-04 2018-01-11 F. Hoffmann-La Roche Ag Novel antibody format
DK3496739T3 (en) 2016-07-15 2021-05-10 Acceleron Pharma Inc COMPOSITIONS INCLUDING ACTRIIA POLYPEPTIDES FOR USE IN THE TREATMENT OF PULMONAL HYPERTENSION
CN110461315A (en) 2016-07-15 2019-11-15 诺华股份有限公司 Cytokines release syndrome is treated and prevented using with the Chimeric antigen receptor of kinase inhibitor combination
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
EP3490582A4 (en) 2016-07-27 2020-04-01 Acceleron Pharma Inc. Methods and compositions for treating myelofibrosis
MX2019001184A (en) 2016-07-29 2019-09-26 Juno Therapeutics Inc Anti-idiotypic antibodies against anti-cd19 antibodies.
BR112019002035A2 (en) 2016-08-01 2019-05-14 Novartis Ag cancer treatment using a chimeric antigen receptor in combination with an inhibitor of a m2 pro-macrophage molecule
AU2017306432A1 (en) 2016-08-02 2019-03-21 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US20190352426A1 (en) 2016-08-03 2019-11-21 Achaogen, Inc. Plazomicin antibodies and methods of use
WO2018026600A1 (en) 2016-08-03 2018-02-08 The Board Of Trustees Of The Leland Stanford Junior University Disrupting fc receptor engagement on macrophages enhances efficacy of anti-sirpalpha antibody therapy
EP3494139B1 (en) 2016-08-05 2022-01-12 F. Hoffmann-La Roche AG Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
CN116271014A (en) 2016-08-05 2023-06-23 中外制药株式会社 Compositions for preventing or treating IL-8 related diseases
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
CN109689111B (en) 2016-08-11 2024-04-05 基因泰克公司 Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
BR112019002036A2 (en) 2016-08-12 2019-05-14 Genentech Inc methods of treatment of a colorectal cancer subject, colorectal cancer treatment kit in a human subject, and drug combination for colorectal cancer therapy
EP3510046A4 (en) 2016-09-07 2020-05-06 The Regents of the University of California Antibodies to oxidation-specific epitopes
WO2018049248A1 (en) 2016-09-09 2018-03-15 Icellhealth Consulting Llc Oncolytic virus equipped with bispecific engager molecules
IL265321B2 (en) 2016-09-14 2024-01-01 Teneobio Inc Cd3 binding antibodies
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
CN109689682B (en) 2016-09-19 2022-11-29 豪夫迈·罗氏有限公司 Complement factor-based affinity chromatography
LT3528838T (en) 2016-09-23 2023-10-10 F. Hoffmann-La Roche Ag Uses of il-13 antagonists for treating atopic dermatitis
JP2019534251A (en) 2016-09-29 2019-11-28 ジェネンテック, インコーポレイテッド Combination therapy using MEK inhibitor, PD-1 axis inhibitor, and taxane
ES2897217T3 (en) 2016-09-30 2022-02-28 Hoffmann La Roche Bispecific antibodies against p95HER2
WO2018067754A1 (en) 2016-10-04 2018-04-12 Fairbanks Pharmaceuticals, Inc. Anti-fstl3 antibodies and uses thereof
WO2018065501A1 (en) 2016-10-05 2018-04-12 F. Hoffmann-La Roche Ag Methods for preparing antibody drug conjugates
CN110198743B (en) 2016-10-05 2023-07-18 艾科赛扬制药股份有限公司 Compositions and methods for treating kidney disease
MX2019003934A (en) 2016-10-06 2019-07-10 Genentech Inc Therapeutic and diagnostic methods for cancer.
CN109843324A (en) 2016-10-06 2019-06-04 辉瑞公司 AVELUMAB therapeutic regimen for treating cancer
ES2875959T3 (en) 2016-10-07 2021-11-11 Tcr2 Therapeutics Inc Compositions and methods for T-cell receptor reprogramming using fusion proteins
US10525083B2 (en) 2016-10-07 2020-01-07 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
WO2018081531A2 (en) 2016-10-28 2018-05-03 Ariad Pharmaceuticals, Inc. Methods for human t-cell activation
WO2018081649A1 (en) 2016-10-28 2018-05-03 Banyan Biomarkers, Inc. Antibodies to ubiquitin c-terminal hydrolase l1 (uch-l1) and glial fibrillary acidic protein (gfap) and related methods
EP3532091A2 (en) 2016-10-29 2019-09-04 H. Hoffnabb-La Roche Ag Anti-mic antibidies and methods of use
PL3535298T3 (en) 2016-11-02 2021-12-27 Jounce Therapeutics, Inc. Antibodies to pd-1 and uses thereof
WO2018144097A1 (en) 2016-11-04 2018-08-09 Akeagen Llc Genetically modified non-human animals and methods for producing heavy chain-only antibodies
MX2019005438A (en) 2016-11-15 2019-08-16 Genentech Inc Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies.
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-hla-g antibodies and use thereof
AU2017363311A1 (en) 2016-11-22 2019-06-13 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
WO2018098354A1 (en) 2016-11-23 2018-05-31 Harpoon Therapeutics, Inc. Prostate specific membrane antigen binding protein
JP7215997B2 (en) 2016-11-23 2023-01-31 ハープーン セラピューティクス,インク. Trispecific proteins targeting prostate specific membrane antigen (PSMA) and methods of use
US10780080B2 (en) 2016-11-23 2020-09-22 Translational Drug Development, Llc Benzamide and active compound compositions and methods of use
WO2018100190A1 (en) 2016-12-02 2018-06-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for diagnosing renal cell carcinoma
AU2017373889A1 (en) 2016-12-07 2019-06-06 Ac Immune Sa Anti-Tau antibodies and methods of use
CN110248959B (en) 2016-12-07 2023-06-30 基因泰克公司 anti-TAU antibodies and methods of use
JP7144755B2 (en) 2016-12-16 2022-09-30 ハー・ルンドベック・アクチエゼルスカベット Drugs, uses and methods
TWI829628B (en) 2016-12-19 2024-01-21 瑞士商赫孚孟拉羅股份公司 Combination therapy with targeted 4-1bb (cd137) agonists
JP7247091B2 (en) 2016-12-20 2023-03-28 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Combination therapy with anti-CD20/anti-CD3 bispecific antibody and 4-1BB (CD137) agonist
EP3559250A1 (en) 2016-12-21 2019-10-30 H. Hoffnabb-La Roche Ag Re-use of enzymes in in vitro glycoengineering of antibodies
IL267352B2 (en) 2016-12-21 2023-10-01 Hoffmann La Roche Method for in vitro glycoengineering of antibodies
WO2018114877A1 (en) 2016-12-21 2018-06-28 F. Hoffmann-La Roche Ag In vitro glycoengineering of antibodies
GB201621806D0 (en) 2016-12-21 2017-02-01 Philogen Spa Immunocytokines with progressive activation mechanism
US11535662B2 (en) 2017-01-26 2022-12-27 Novartis Ag CD28 compositions and methods for chimeric antigen receptor therapy
CN110582509A (en) 2017-01-31 2019-12-17 诺华股份有限公司 Treatment of cancer using chimeric T cell receptor proteins with multispecific properties
EP3577460B1 (en) 2017-02-02 2021-01-20 Roche Diagnostics GmbH Immunoassay using at least two pegylated analyte-specific binding agents
UA126574C2 (en) 2017-02-10 2022-11-02 Дженентек, Інк. Anti-tryptase antibodies, compositions thereof, and uses thereof
WO2018160754A2 (en) 2017-02-28 2018-09-07 Harpoon Therapeutics, Inc. Inducible monovalent antigen binding protein
EP3589754B1 (en) 2017-03-01 2023-06-28 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for cancer
JP7227151B2 (en) 2017-03-22 2023-02-21 ジェネンテック, インコーポレイテッド Antibody Compositions Optimized for Treatment of Eye Disorders
MA49265A (en) 2017-03-22 2020-02-05 Ascendis Pharma As Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
US20210186982A1 (en) 2017-03-24 2021-06-24 Universite Nice Sophia Antipolis Methods and compositions for treating melanoma
WO2018178029A1 (en) 2017-03-27 2018-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating degenerative muscular and/or neurological conditions or diseases
WO2018178030A1 (en) 2017-03-27 2018-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating degenerative muscular and/or neurological conditions or diseases
SG10201911225WA (en) 2017-03-28 2020-01-30 Genentech Inc Methods of treating neurodegenerative diseases
WO2018178076A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
WO2018178074A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Trimeric antigen binding molecules specific for a costimulatory tnf receptor
WO2018178055A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
EP3600308A1 (en) 2017-03-30 2020-02-05 INSERM - Institut National de la Santé et de la Recherche Médicale Methods for the treatment of mitochondrial genetic diseases
EP3600410A1 (en) 2017-03-30 2020-02-05 Merck Patent GmbH Combination of an anti-pd-l1 antibody and a dna-pk inhibitor for the treatment of cancer
CA3055132A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Antibodies binding to steap-1
US20200024351A1 (en) 2017-04-03 2020-01-23 Jounce Therapeutics, Inc. Compositions and Methods for the Treatment of Cancer
WO2018184965A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Immunoconjugates of il-2 with an anti-pd-1 and tim-3 bispecific antibody
CN110392692B (en) 2017-04-03 2023-07-21 豪夫迈·罗氏有限公司 Immunoconjugates of anti-PD-1 antibodies with mutant IL-2 or with IL-15
SI3606954T1 (en) 2017-04-05 2022-10-28 F. Hoffmann - La Roche Ag Anti-lag3 antibodies
CN110505883A (en) 2017-04-13 2019-11-26 豪夫迈·罗氏有限公司 Proleulzin immunoconjugates used in method for treating cancer, CD40 agonist, and optionally PD-1 axis binding antagonists
EP3624820A1 (en) 2017-04-21 2020-03-25 H. Hoffnabb-La Roche Ag Use of klk5 antagonists for treatment of a disease
US20220135670A1 (en) 2017-04-27 2022-05-05 Tesaro, Inc. Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
EP3615055A1 (en) 2017-04-28 2020-03-04 Novartis AG Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
US11203638B2 (en) 2017-05-05 2021-12-21 Allakos Inc. Methods and compositions for treating perennial allergic conjunctivitis and keratoconjunctivitis
EP3401328A1 (en) 2017-05-10 2018-11-14 Bayer Pharma Aktiengesellschaft One step antibody humanization by golden gate based germline framework region shuffling
EP3621648A4 (en) 2017-05-12 2021-01-20 Harpoon Therapeutics, Inc. Msln targeting trispecific proteins and methods of use
KR102376863B1 (en) 2017-05-12 2022-03-21 하푼 테라퓨틱스, 인크. mesothelin binding protein
CN111094335B (en) 2017-05-15 2022-08-23 罗切斯特大学 Broadly neutralizing anti-influenza monoclonal antibodies and uses thereof
US11359014B2 (en) 2017-05-16 2022-06-14 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
EP3403649A1 (en) 2017-05-16 2018-11-21 Bayer Pharma Aktiengesellschaft Inhibitors and antagonists of gpr84 for the treatment of endometriosis
JP7299842B2 (en) 2017-05-16 2023-06-28 ファイヴ プライム セラピューティクス インク Anti-FGFR2 Antibodies in Combination with Chemotherapeutic Agents in Cancer Treatment
EP3406253A1 (en) 2017-05-24 2018-11-28 Bayer Aktiengesellschaft Inhibitors and antagonists of human pycr1
EP3630829A1 (en) 2017-06-02 2020-04-08 H. Hoffnabb-La Roche Ag Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
EP3638295A1 (en) 2017-06-13 2020-04-22 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using fusion proteins
WO2019000223A1 (en) 2017-06-27 2019-01-03 Nanjing Legend Biotech Co., Ltd. Chimeric antibody immune effctor cell engagers and methods of use thereof
WO2019002548A1 (en) 2017-06-29 2019-01-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Treating migraine by agonising trek1, trek2 or heteromers including them
SG11201913137VA (en) 2017-07-11 2020-01-30 Compass Therapeutics Llc Agonist antibodies that bind human cd137 and uses thereof
WO2019016310A1 (en) 2017-07-20 2019-01-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers
KR20200093518A (en) 2017-07-21 2020-08-05 제넨테크, 인크. Methods of treatment and diagnosis for cancer
CN117050176A (en) 2017-07-31 2023-11-14 豪夫迈·罗氏有限公司 Humanization method based on three-dimensional structure
CN110662765B (en) 2017-08-03 2023-09-29 艾利妥 anti-CD 33 antibodies and methods of use thereof
MD3601358T2 (en) 2017-08-03 2023-10-31 Alector Llc Anti-TREM2 antibodies and methods of use thereof
EP3444275A1 (en) 2017-08-16 2019-02-20 Exiris S.r.l. Monoclonal antibody anti-fgfr4
US11643468B2 (en) 2017-08-23 2023-05-09 Max-Delbrück-Centrum für Molekulare Medizin in der Hemlholtz-Gemeinschaft Chimeric antigen receptors and CAR-T cells that bind CXCR5 and methods of use thereof to treat medical disorders
JP7241080B2 (en) 2017-08-28 2023-03-16 アンジーエックス・インコーポレーテッド Anti-TM4SF1 Antibodies and Methods of Using The Same
EP3684413A1 (en) 2017-09-20 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
BR112020005834A2 (en) 2017-09-29 2020-09-24 Chugai Seiyaku Kabushiki Kaisha multispecific antigen binding molecule having blood clotting factor viii cofactor function (fviii) replacement activity, and pharmaceutical formulation containing said molecule as an active ingredient
EP3692370A2 (en) 2017-10-04 2020-08-12 OPKO Pharmaceuticals, LLC Articles and methods directed to personalized therapy of cancer
CA3078974A1 (en) 2017-10-12 2019-04-18 Immunowake Inc. Vegfr-antibody light chain fusion protein
CN111630070A (en) 2017-10-13 2020-09-04 哈普恩治疗公司 Trispecific proteins and methods of use
EA202090739A1 (en) 2017-10-13 2020-09-07 Харпун Терапьютикс, Инк. PROTEINS BINDING ANTIGEN OF MATURING B-CELLS
WO2019083904A1 (en) 2017-10-23 2019-05-02 Chan Zuckerberg Biohub, Inc. Measurement of afucosylated igg fc glycans and related treatment methods
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft Use of activators and stimulators of sgc comprising a beta2 subunit
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
JP2021501162A (en) 2017-11-01 2021-01-14 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Combination therapy with targeted OX40 agonist
JP2021500930A (en) 2017-11-01 2021-01-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft COMP Body-Multivalent Target Binding Substance
CN111278856A (en) 2017-11-01 2020-06-12 豪夫迈·罗氏有限公司 TriFab-Comtes
MX2020004567A (en) 2017-11-06 2020-08-13 Genentech Inc Diagnostic and therapeutic methods for cancer.
SG11202003168WA (en) 2017-11-14 2020-05-28 Arcellx Inc Multifunctional immune cell therapies
EP3713961A2 (en) 2017-11-20 2020-09-30 Compass Therapeutics LLC Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
TWI805665B (en) 2017-12-21 2023-06-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to hla-a2/wt1
US20190211098A1 (en) 2017-12-22 2019-07-11 Genentech, Inc. Use of pilra binding agents for treatment of a disease
WO2019126514A2 (en) 2017-12-22 2019-06-27 Jounce Therapeutics, Inc. Antibodies for lilrb2
BR112020013086A2 (en) 2017-12-27 2020-12-08 Teneobio, Inc. SPECIFIC CD3-DELTA / EPSILON HETERODYMER ANTIBODIES
WO2019129221A1 (en) 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against tigit
KR20200104886A (en) 2017-12-28 2020-09-04 난징 레전드 바이오테크 씨오., 엘티디. Antibodies and variants against PD-L1
EP3732193A1 (en) 2017-12-29 2020-11-04 Alector LLC Anti-tmem106b antibodies and methods of use thereof
WO2019134946A1 (en) 2018-01-04 2019-07-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma resistant
SG11202004233UA (en) 2018-01-15 2020-06-29 Nanjing Legend Biotech Co Ltd Single-domain antibodies and variants thereof against pd-1
US20200339686A1 (en) 2018-01-16 2020-10-29 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
US11472874B2 (en) 2018-01-31 2022-10-18 Alector Llc Anti-MS4A4A antibodies and methods of use thereof
AR115360A1 (en) 2018-02-08 2021-01-13 Genentech Inc ANTIGEN BINDING MOLECULES AND METHODS OF USE
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
MA51741A (en) 2018-02-09 2021-05-19 Hoffmann La Roche THERAPEUTIC AND DIAGNOSIS PROCEDURES FOR INFLAMMATORY DISEASES MEDIATED BY MASTOCYTES
CA3091311A1 (en) 2018-02-16 2019-08-22 Inserm (Institut National De La Sante Et De La Recherche Medicale) Use of antagonists of cxcr3b for treating vitiligo
CA3092108A1 (en) 2018-02-26 2019-08-29 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CA3092414A1 (en) 2018-02-27 2019-09-06 Ecs-Progastrin Sa Progastrin as a biomarker for immunotherapy
WO2019177690A1 (en) 2018-03-12 2019-09-19 Zoetis Services Llc Anti-ngf antibodies and methods thereof
AU2019236372A1 (en) 2018-03-13 2020-07-30 F. Hoffmann-La Roche Ag Therapeutic combination of 4-1 BB agonists with anti-CD20 antibodies
TW202003561A (en) 2018-03-13 2020-01-16 瑞士商赫孚孟拉羅股份公司 Combination therapy with targeted 4-1BB (CD137) agonists
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
CN112119090B (en) 2018-03-15 2023-01-13 中外制药株式会社 Anti-dengue virus antibodies cross-reactive to Zika virus and methods of use
JP2021519073A (en) 2018-03-29 2021-08-10 ジェネンテック, インコーポレイテッド Regulation of lactogenic activity in mammalian cells
JP7104458B2 (en) 2018-04-02 2022-07-21 上海博威生物医薬有限公司 Lymphocyte activation gene-3 (LAG-3) -binding antibody and its use
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
CN112334485A (en) 2018-04-06 2021-02-05 百进生物科技公司 Anti-tetraspanin 33agents and compositions thereof and methods of making and using
EP3552631A1 (en) 2018-04-10 2019-10-16 Inatherys Antibody-drug conjugates and their uses for the treatment of cancer
EP3774900A1 (en) 2018-04-13 2021-02-17 F. Hoffmann-La Roche AG Her2-targeting antigen binding molecules comprising 4-1bbl
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
SG11202009626QA (en) 2018-04-20 2020-10-29 Medizinische Hochschule Hannover Chimeric antigen receptor and car-t cells that bind a herpes virus antigen
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
US20210396739A1 (en) 2018-05-01 2021-12-23 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
JP7402541B2 (en) 2018-05-03 2023-12-21 ユニバーシティ オブ ロチェスター Anti-influenza neuraminidase monoclonal antibody and its use
MX2020011684A (en) 2018-05-04 2020-12-10 Merck Patent Gmbh Combined inhibition of pd-1/pd-l1, tgfî² and dna-pk for the treatment of cancer.
WO2019226973A1 (en) 2018-05-25 2019-11-28 Alector Llc Anti-sirpa antibodies and methods of use thereof
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
EP3802611A2 (en) 2018-06-01 2021-04-14 Novartis AG Binding molecules against bcma and uses thereof
US20210230300A1 (en) 2018-06-04 2021-07-29 Bayer Aktiengesellschaft Inhibitors of shp2
JP7372237B2 (en) 2018-06-04 2023-10-31 中外製薬株式会社 Antigen-binding molecules with altered half-lives in the cytoplasm
KR20210030341A (en) 2018-06-08 2021-03-17 알렉터 엘엘씨 Anti-Siglec-7 antibodies and methods of use thereof
BR112020026384A2 (en) 2018-06-23 2021-03-30 Genentech, Inc. METHODS FOR TREATING AN INDIVIDUAL WITH LUNG CANCER AND FOR TREATING AN INDIVIDUAL WITH SMALL CELL LUNG CANCER, KITS, ANTIBODY ANTI-PD-L1 AND COMPOSITION
US20210277113A1 (en) 2018-06-29 2021-09-09 Alector Llc Anti-SIRP-Beta1 Antibodies and Methods of Use Thereof
ES2940311T3 (en) 2018-07-13 2023-05-05 Alector Llc Anti-sortilin antibodies and methods of use thereof
US20200171146A1 (en) 2018-07-18 2020-06-04 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
WO2020021061A1 (en) 2018-07-26 2020-01-30 Pieris Pharmaceuticals Gmbh Humanized anti-pd-1 antibodies and uses thereof
JP2021531027A (en) 2018-07-27 2021-11-18 アレクトル エルエルシー Anti-Siglec-5 antibody and how to use it
MX2021000783A (en) 2018-07-31 2021-03-31 Heidelberg Pharma Res Gmbh Humanized antibodies against psma.
EP3833389A1 (en) 2018-08-08 2021-06-16 Genentech, Inc. Use of tryptophan derivatives and l-methionine for protein formulation
BR112021002037A2 (en) 2018-08-10 2021-05-04 Chugai Seiyaku Kabushiki Kaisha anti-cd137 antigen binding molecule and its use
AU2019321490A1 (en) 2018-08-13 2021-02-18 Inhibrx, Inc. Ox40-binding polypeptides and uses thereof
TW202021618A (en) 2018-08-17 2020-06-16 美商23與我有限公司 Anti-il1rap antibodies and methods of use thereof
JP2021535140A (en) 2018-08-28 2021-12-16 アンブルックス, インコーポレイテッドAmbrx, Inc. Anti-CD3 antibody folic acid biocomplex and its use
US20210253666A1 (en) 2018-08-30 2021-08-19 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using fusion proteins
MX2021002299A (en) 2018-08-31 2021-04-28 Alector Llc Anti-cd33 antibodies and methods of use thereof.
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
US20220047567A1 (en) 2018-09-10 2022-02-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of neurofibromatosis
EP3853611A1 (en) 2018-09-19 2021-07-28 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for bladder cancer
EP3857230B1 (en) 2018-09-21 2023-06-07 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
SG11202103022WA (en) 2018-09-25 2021-04-29 Harpoon Therapeutics Inc Dll3 binding proteins and methods of use
WO2020068557A1 (en) 2018-09-25 2020-04-02 BioLegend, Inc. Anti-tlr9 agents and compositions and methods for making and using the same
CN113286614A (en) 2018-09-26 2021-08-20 默克专利股份有限公司 Combination of a PD-1 antagonist, an ATR inhibitor and a platinating substance for the treatment of cancer
US20210347851A1 (en) 2018-09-28 2021-11-11 Novartis Ag Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
EP3856779A1 (en) 2018-09-28 2021-08-04 Novartis AG Cd22 chimeric antigen receptor (car) therapies
TW202028244A (en) 2018-10-09 2020-08-01 美商建南德克公司 Methods and systems for determining synapse formation
TW202028246A (en) 2018-10-11 2020-08-01 美商英伊布里克斯公司 B7h3 single domain antibodies and therapeutic compositions thereof
CA3115285A1 (en) 2018-10-11 2020-04-16 Inhibrx, Inc. Pd-1 single domain antibodies and therapeutic compositions thereof
JP2022504822A (en) 2018-10-11 2022-01-13 インヒブルクス インコーポレイテッド DLL3 single domain antibody and therapeutic composition thereof
EP3863721A1 (en) 2018-10-11 2021-08-18 Inhibrx, Inc. 5t4 single domain antibodies and therapeutic compositions thereof
WO2020078905A1 (en) 2018-10-15 2020-04-23 Merck Patent Gmbh Combination therapy utilizing dna alkylating agents and atr inhibitors
KR20210079311A (en) 2018-10-18 2021-06-29 제넨테크, 인크. Diagnosis and treatment methods for sarcoma renal cancer
CN113056287A (en) 2018-10-24 2021-06-29 豪夫迈·罗氏有限公司 Conjugated chemical degradation inducers and methods of use
WO2020087065A1 (en) 2018-10-26 2020-04-30 Teneobio, Inc. Heavy chain antibodies binding to cd38
WO2020092455A2 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Car t cell transcriptional atlas
US20210395390A1 (en) 2018-10-31 2021-12-23 Bayer Aktiengesellschaft Reversal agents for neutralizing the therapeutic activity of anti-fxia antibodies
CA3118453A1 (en) 2018-11-02 2020-05-07 The Regents Of The University Of California Compositions and methods for treating brain injury
TW202031899A (en) 2018-11-05 2020-09-01 美商建南德克公司 Methods of producing two chain proteins in prokaryotic host cells
BR112021008795A2 (en) 2018-11-13 2021-08-31 Compass Therapeutics Llc MULTISPECIFIC BINDING CONSTRUCTS AGAINST CHECKPOINT MOLECULES AND THEIR USES
WO2020104479A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies
JP2022513708A (en) 2018-12-05 2022-02-09 モルフォシス・アーゲー Multispecific antigen-binding molecule
KR20210100668A (en) 2018-12-06 2021-08-17 제넨테크, 인크. Combination therapy of diffuse large B-cell lymphoma comprising an anti-CD79b immunoconjugate, an alkylating agent and an anti-CD20 antibody
WO2020115261A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
GB201820547D0 (en) 2018-12-17 2019-01-30 Oxford Univ Innovation Modified antibodies
GB201820554D0 (en) 2018-12-17 2019-01-30 Univ Oxford Innovation Ltd BTLA antibodies
AR117453A1 (en) 2018-12-20 2021-08-04 Genentech Inc CF OF MODIFIED ANTIBODIES AND METHODS TO USE THEM
AR117327A1 (en) 2018-12-20 2021-07-28 23Andme Inc ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM
CN113614109A (en) 2018-12-21 2021-11-05 Ose免疫疗法公司 Bifunctional anti-PD-1/IL-7 molecules
MA54514A (en) 2018-12-21 2022-03-30 Hoffmann La Roche ANTIBODIES BINDING TO CD3
EP3898682A1 (en) 2018-12-21 2021-10-27 F. Hoffmann-La Roche AG Tumor-targeted agonistic cd28 antigen binding molecules
JP2022515223A (en) 2018-12-21 2022-02-17 オーエスイー・イミュノセラピューティクス Bifunctional molecule for human PD-1
MX2021007274A (en) 2018-12-21 2021-07-15 Ose Immunotherapeutics Bifunctional anti-pd-1/sirpa molecule.
CA3121804A1 (en) 2018-12-21 2020-06-25 Genentech, Inc. Methods of producing polypeptides using a cell line resistant to apoptosis
US11905375B2 (en) * 2018-12-21 2024-02-20 Dow Silicones Corporation Polyfunctional organosiloxanes, compositions containing same, and methods for the preparation thereof
WO2020127885A1 (en) 2018-12-21 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions for treating cancers and resistant cancers
JP2022513495A (en) 2018-12-21 2022-02-08 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Tumor targeting superagonist CD28 antigen binding molecule
JP2022514950A (en) 2018-12-21 2022-02-16 23アンドミー・インコーポレイテッド Anti-IL-36 antibody and how to use it
EP3902832A2 (en) 2018-12-26 2021-11-03 Xilio Development, Inc. Anti-ctla4 antibodies and methods of use thereof
CN113272327A (en) 2018-12-30 2021-08-17 豪夫迈·罗氏有限公司 Anti-rabbit CD19 antibodies and methods of use thereof
WO2020146221A1 (en) 2019-01-07 2020-07-16 Inhibrx, Inc. Polypeptides comprising modified il-2 polypeptides and uses thereof
TW202043272A (en) 2019-01-14 2020-12-01 美商建南德克公司 Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
EP3911675A1 (en) 2019-01-17 2021-11-24 Bayer Aktiengesellschaft Methods to determine whether a subject is suitable of being treated with an agonist of soluble guanylyl cyclase (sgc)
KR20210118881A (en) 2019-01-22 2021-10-01 제넨테크, 인크. Immunoglobulin A Antibodies and Methods of Production and Use
CN113329770A (en) 2019-01-24 2021-08-31 中外制药株式会社 Novel cancer antigen and antibody against said antigen
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
US20220117911A1 (en) 2019-02-04 2022-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating blood-brain barrier
WO2020165374A1 (en) 2019-02-14 2020-08-20 Ose Immunotherapeutics Bifunctional molecule comprising il-15ra
US20220090113A1 (en) 2019-02-18 2022-03-24 Atb Therapeutics Method of producing a binder-toxin fusion protein in a plant cell or a whole plant
WO2020172553A1 (en) 2019-02-22 2020-08-27 Novartis Ag Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
CA3130695A1 (en) 2019-02-27 2020-09-03 Genentech, Inc. Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies
KR20210138574A (en) 2019-03-01 2021-11-19 알로젠 테라퓨틱스 인코포레이티드 DLL3 Targeting Chimeric Antigen Receptor and Binding Agent
WO2020185535A1 (en) 2019-03-08 2020-09-17 Genentech, Inc. Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles
JP2022524074A (en) 2019-03-14 2022-04-27 ジェネンテック, インコーポレイテッド Treatment of cancer with HER2xCD3 bispecific antibodies in combination with anti-HER2 MAB
US20220162291A1 (en) 2019-03-19 2022-05-26 Albert Einstein College Of Medicine Monoclonal antibodies for prevention and treatment of herpes simplex viral infections
WO2020191378A1 (en) 2019-03-21 2020-09-24 Allogene Therapeutics, Inc. METHODS FOR ENHANCING TCRαβ+ CELL DEPLETION EFFICIENCY
CA3130872A1 (en) 2019-03-25 2020-10-01 Max-Delbruck-Centrum Fur Molekulare Medizin In Der Helmholtz-Gemeinschaft Enhancement of cytolytic t-cell activity by inhibiting ebag9
WO2020201073A1 (en) 2019-03-29 2020-10-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of keloid, hypertrophic scars and/or hyperpigmentation disorders
EP3946416A2 (en) 2019-04-04 2022-02-09 Bayer Aktiengesellschaft Agonists of adiponectin
US20220204610A1 (en) 2019-04-09 2022-06-30 New York Society For The Relief Of The Ruptured And Crippled, Maintaing Hospital For Special Surgery Protein binders for irhom2
JP7301155B2 (en) 2019-04-12 2023-06-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antigen-binding molecules containing lipocalin muteins
MX2021012692A (en) 2019-04-19 2021-11-12 Genentech Inc Anti-mertk antibodies and their methods of use.
CN113748201A (en) 2019-04-26 2021-12-03 艾洛基治疗公司 Methods of making allogeneic CAR T cells
WO2020221796A1 (en) 2019-04-30 2020-11-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CN114269376A (en) 2019-05-03 2022-04-01 豪夫迈·罗氏有限公司 Methods of treating cancer with anti-PD-L1 antibodies
US11434297B2 (en) 2019-05-04 2022-09-06 Inhibrx, Inc. CD123-binding polypeptides and uses thereof
MX2021013417A (en) 2019-05-04 2021-12-10 Inhibrx Inc Clec12a-binding polypeptides and uses thereof.
AU2020268827A1 (en) 2019-05-04 2021-11-11 Inhibrx, Inc. CD33-binding polypeptides and uses thereof
CA3138045C (en) 2019-05-14 2024-02-20 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat follicular lymphoma
MX2021013908A (en) 2019-05-15 2022-03-11 Neotx Therapeutics Ltd Cancer treatment.
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
CR20210576A (en) 2019-05-21 2021-12-15 Novartis Ag Cd19 binding molecules and uses thereof
US20200369759A1 (en) 2019-05-23 2020-11-26 Fibrogen, Inc. Methods of treatment of muscular dystrophies
EP3983441A1 (en) 2019-06-11 2022-04-20 Alector LLC Anti-sortilin antibodies for use in therapy
AU2020304813A1 (en) 2019-06-26 2022-01-06 F. Hoffmann-La Roche Ag Fusion of an antibody binding CEA and 4-1BBL
JP7354306B2 (en) 2019-06-27 2023-10-02 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Novel ICOS antibodies and tumor-targeting antigen-binding molecules containing them
WO2020264300A1 (en) 2019-06-28 2020-12-30 Genentech, Inc. Composition and methods for stabilizing liquid protein formulations
EP3994169A1 (en) 2019-07-02 2022-05-11 F. Hoffmann-La Roche AG Immunoconjugates comprising a mutant interleukin-2 and an anti-cd8 antibody
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
BR112022001733A2 (en) 2019-07-31 2022-06-28 Alector Llc ANTI-MS4A4A ANTIBODIES AND METHODS OF USE THEREOF
SG11202112491WA (en) 2019-07-31 2021-12-30 Hoffmann La Roche Antibodies binding to gprc5d
EP4004045A1 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
WO2021024209A1 (en) 2019-08-06 2021-02-11 Aprinoia Therapeutics Inc. Antibodies that bind to pathological tau species and uses thereof
KR20220061977A (en) 2019-08-12 2022-05-13 퓨리노미아 바이오테크, 아이엔씨. Methods and compositions for promoting and enhancing T cell mediated immune response through ADCC targeting of CD39 expressing cells
WO2021035170A1 (en) 2019-08-21 2021-02-25 Precision Biosciences, Inc. Compositions and methods for tcr reprogramming using fusion proteins
CN114641501A (en) 2019-09-04 2022-06-17 Y生物股份有限公司 anti-VSIG 4 antibodies or antigen binding fragments and uses thereof
WO2021048292A1 (en) 2019-09-11 2021-03-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
TW202118512A (en) 2019-09-12 2021-05-16 美商建南德克公司 Compositions and methods of treating lupus nephritis
EP4031579A2 (en) 2019-09-18 2022-07-27 F. Hoffmann-La Roche AG Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
EP4031580A1 (en) 2019-09-20 2022-07-27 F. Hoffmann-La Roche AG Dosing for anti-tryptase antibodies
WO2021059075A1 (en) 2019-09-27 2021-04-01 Janssen Biotech, Inc. Anti-ceacam antibodies and uses thereof
KR20220070237A (en) 2019-09-27 2022-05-30 제넨테크, 인크. Dosing for treatment with anti-TIGIT and anti-PD-L1 antagonist antibodies
CN114829401A (en) 2019-09-27 2022-07-29 南京金斯瑞生物科技有限公司 anti-VHH domain antibodies and uses thereof
WO2021064009A1 (en) 2019-09-30 2021-04-08 Scirhom Gmbh Protein binders to irhom2 epitopes
WO2021063968A1 (en) 2019-09-30 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and composition for diagnosing chronic obstructive pulmonary disease
WO2021064180A1 (en) 2019-10-03 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating macrophages polarization
AU2020365836A1 (en) 2019-10-18 2022-04-28 F. Hoffmann-La Roche Ag Methods of using anti-CD79b immunoconjugates to treat diffuse large B-cell lymphoma
US20230044248A1 (en) 2019-11-01 2023-02-09 Ares Trading S.A. COMBINED INHIBITION OF PD-1, TGFBeta AND ATM TOGETHER WITH RADIOTHERAPY FOR THE TREATMENT OF CANCER
CN114728171A (en) 2019-11-05 2022-07-08 默克专利有限公司 anti-TIGIT antibody and application thereof
IL292758A (en) 2019-11-05 2022-07-01 Merck Patent Gmbh Combined inhibition of pd-1, tgfb and tigit for the treatment of cancer
EP4055388A1 (en) 2019-11-06 2022-09-14 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
EP4057980A1 (en) 2019-11-15 2022-09-21 F. Hoffmann-La Roche AG Prevention of visible particle formation in aqueous protein solutions
US20230034584A1 (en) 2019-12-04 2023-02-02 Bayer Aktiengesellschaft Inhibitors of shp2
AU2020397888A1 (en) 2019-12-05 2022-06-09 Alector Llc Methods of use of anti-TREM2 antibodies
BR112022010627A2 (en) 2019-12-06 2022-08-16 Juno Therapeutics Inc ANTI-IDIOTYPIC ANTIBODIES TO BINDING DOMAINS TARGETED BY BCMA AND RELATED COMPOSITIONS AND METHODS
CN115335399A (en) 2019-12-06 2022-11-11 朱诺治疗学股份有限公司 Anti-idiotype antibodies directed against GPRC5D target binding domains and related compositions and methods
WO2021111636A1 (en) 2019-12-06 2021-06-10 大塚製薬株式会社 Anti-gdf15 antibody
PE20221281A1 (en) 2019-12-09 2022-09-05 Genentech Inc ANTI-PD-L1 ANTIBODY FORMULATIONS
BR112022011337A2 (en) 2019-12-12 2022-08-23 Alector Llc METHOD TO TREAT AND/OR DELAY THE PROGRESSION OF A DISEASE OR INJURY IN AN INDIVIDUAL
CR20220329A (en) 2019-12-13 2022-11-23 Alector Llc Anti-mertk antibodies and methods of use thereof
WO2021119505A1 (en) 2019-12-13 2021-06-17 Genentech, Inc. Anti-ly6g6d antibodies and methods of use
US20210230278A1 (en) 2019-12-18 2021-07-29 Hoffmann-La Roche Inc. Antibodies binding to HLA-A2/MAGE-A4
US20220372162A1 (en) 2019-12-18 2022-11-24 TeneoFour, Inc. Pct/us2020/066088
WO2021133723A2 (en) 2019-12-23 2021-07-01 Genentech, Inc. Apolipoprotein l1-specific antibodies and methods of use
US20230058982A1 (en) 2019-12-27 2023-02-23 Chugai Seiyaku Kabushiki Kaisha Anti-ctla-4 antibody and use thereof
MX2022008214A (en) 2020-01-09 2022-08-08 Hoffmann La Roche New 4-1bbl trimer-containing antigen binding molecules.
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
CN115427447A (en) 2020-01-17 2022-12-02 百进生物科技公司 anti-TLR 7 agents and compositions and methods of making and using the same
US20230076415A1 (en) 2020-01-17 2023-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
IL294800A (en) 2020-01-27 2022-09-01 Genentech Inc Methods for treatment of cancer with an anti-tigit antagonist antibody
EP4097129A1 (en) 2020-01-29 2022-12-07 Inhibrx, Inc. Cd28 single domain antibodies and multivalent and multispecific constructs thereof
WO2021155295A1 (en) 2020-01-31 2021-08-05 The Cleveland Clinic Foundation Anti-müllerian hormone receptor 2 antibodies and methods of use
CA3164559A1 (en) 2020-01-31 2021-08-05 Lars Mueller Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
WO2021160154A1 (en) 2020-02-10 2021-08-19 上海诗健生物科技有限公司 Cldn18.2 antibody and use thereof
KR20220140786A (en) 2020-02-10 2022-10-18 상하이 에스쿠겐 바이오테크놀로지 컴퍼니 리미티드 Claudin 18.2 Antibodies and Their Uses
TW202144395A (en) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 Anti-CD137 antigen-binding molecule for use in cancer treatment
CA3169451A1 (en) 2020-02-14 2021-08-19 Jounce Therapeutics, Inc. Antibodies and fusion proteins that bind to ccr8 and uses thereof
US11180563B2 (en) 2020-02-21 2021-11-23 Harpoon Therapeutics, Inc. FLT3 binding proteins and methods of use
US20230159637A1 (en) 2020-02-24 2023-05-25 Alector Llc Methods of use of anti-trem2 antibodies
WO2021173889A1 (en) 2020-02-26 2021-09-02 Ambrx, Inc. Uses of anti-cd3 antibody folate bioconjugates
JP2023516941A (en) 2020-02-28 2023-04-21 上海復宏漢霖生物技術股▲フン▼有限公司 Anti-CD137 constructs, multispecific antibodies and uses thereof
JP2023516945A (en) 2020-02-28 2023-04-21 上海復宏漢霖生物技術股▲フン▼有限公司 Anti-CD137 constructs and uses thereof
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
CR20220461A (en) 2020-03-13 2022-10-21 Genentech Inc Anti-interleukin-33 antibodies and uses thereof
CN117510630A (en) 2020-03-19 2024-02-06 基因泰克公司 Isotype selective anti-TGF-beta antibodies and methods of use
PE20230414A1 (en) 2020-03-24 2023-03-07 Genentech Inc TIE2 FIXING AGENTS AND METHODS OF USE
TW202202620A (en) 2020-03-26 2022-01-16 美商建南德克公司 Modified mammalian cells
JP2023519962A (en) 2020-03-31 2023-05-15 アレクトル エルエルシー ANTI-MERTK ANTIBODY AND METHOD OF USE THEREOF
CA3170570A1 (en) 2020-04-01 2021-10-07 James J. KOBIE Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses
AU2021247286A1 (en) 2020-04-03 2022-10-20 Alector Llc Methods of use of anti-TREM2 antibodies
WO2021198511A1 (en) 2020-04-03 2021-10-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of sars-cov-2 infection
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
KR20210124867A (en) 2020-04-06 2021-10-15 하. 룬드벡 아크티에셀스카브 Treatment of most bothersome symptom (mbs) associated with migraine using anti-cgrp antibodies
CA3179416A1 (en) 2020-04-07 2021-10-14 Albert Einstein College Of Medicine Method of treating and preventing ocular disease with hsv-2 delta gd
WO2021209458A1 (en) 2020-04-14 2021-10-21 Ares Trading S.A. Combination treatment of cancer
WO2021209402A2 (en) 2020-04-15 2021-10-21 F. Hoffmann-La Roche Ag Immunoconjugates
MX2022013198A (en) 2020-04-24 2022-11-14 Genentech Inc Methods of using anti-cd79b immunoconjugates.
KR20230004520A (en) 2020-04-27 2023-01-06 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Isotype-independent antibodies to lipoproteins (a)
WO2021222935A2 (en) 2020-04-28 2021-11-04 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies and methods of use thereof
JP2023523450A (en) 2020-04-28 2023-06-05 ジェネンテック, インコーポレイテッド Methods and compositions for non-small cell lung cancer immunotherapy
CN116963782A (en) 2020-05-03 2023-10-27 联宁(苏州)生物制药有限公司 Antibody drug conjugates comprising anti-TROP-2 antibodies
WO2021224401A1 (en) 2020-05-07 2021-11-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for determining a reference range of β-galactose exposure platelet
CN115605184A (en) 2020-05-15 2023-01-13 豪夫迈·罗氏有限公司(Ch) Prevention of visible particle formation in parenteral protein solutions
WO2021233853A1 (en) 2020-05-19 2021-11-25 F. Hoffmann-La Roche Ag The use of chelators for the prevention of visible particle formation in parenteral protein solutions
BR112022024339A2 (en) 2020-05-29 2022-12-27 23Andme Inc ANTI CD200R1 ANTIBODIES AND METHODS OF THEIR USE
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
MX2022015376A (en) 2020-06-02 2023-04-14 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof.
EP4161653A1 (en) 2020-06-03 2023-04-12 Bionecure Therapeutics, Inc. Trophoblast cell-surface antigen-2 (trop-2) antibodies
EP4161583A1 (en) 2020-06-05 2023-04-12 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and pharmaceutical compositions for treating ocular diseases
CN115697489A (en) 2020-06-08 2023-02-03 豪夫迈·罗氏有限公司 anti-HBV antibodies and methods of use thereof
WO2021249969A1 (en) 2020-06-10 2021-12-16 Merck Patent Gmbh Combination product for the treatment of cancer diseases
GB202008860D0 (en) 2020-06-11 2020-07-29 Univ Oxford Innovation Ltd BTLA antibodies
AU2021288224A1 (en) 2020-06-11 2023-01-05 Novartis Ag ZBTB32 inhibitors and uses thereof
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
CA3181820A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
US20210395366A1 (en) 2020-06-18 2021-12-23 Genentech, Inc. Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
JP2023529981A (en) 2020-06-19 2023-07-12 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Immunostimulatory Fc domain binding molecules
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
WO2021255217A1 (en) 2020-06-19 2021-12-23 Heidelberg Pharma Research Gmbh Amatoxin and amatoxin conjugates for use in inhibition of rna virus replication
PE20230835A1 (en) 2020-06-19 2023-05-19 Hoffmann La Roche ANTIBODIES THAT BIND CD3
CR20220639A (en) 2020-06-19 2023-02-17 Hoffmann La Roche Antibodies binding to cd3 and folr1
AR122659A1 (en) 2020-06-19 2022-09-28 Hoffmann La Roche BISPECIFIC ANTIBODIES TO PROTEASE-ACTIVATED T-LYMPHOCYTES
BR112022025856A2 (en) 2020-06-19 2023-01-10 Hoffmann La Roche ANTIBODY THAT BINDS CD3 AND CD19, POLYNUCLEOTIDE ISOLATED, HOST CELL, METHOD OF PRODUCING AN ANTIBODY THAT BINDS CD3 AND CD19, PHARMACEUTICAL COMPOSITION, USE OF THE ANTIBODY, METHOD FOR TREATING A DISEASE IN A SUBJECT AND INVENTION
JP2023531222A (en) 2020-06-22 2023-07-21 アルミラル・ソシエダッド・アノニマ ANTI-IL-36 ANTIBODY AND METHODS OF USE THEREOF
EP4168448A1 (en) 2020-06-23 2023-04-26 F. Hoffmann-La Roche AG Agonistic cd28 antigen binding molecules targeting her2
JP2023533217A (en) 2020-06-24 2023-08-02 ジェネンテック, インコーポレイテッド Apoptosis resistant cell line
JP2023531067A (en) 2020-06-25 2023-07-20 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Anti-CD3/Anti-CD28 Bispecific Antigen Binding Molecules
IL299542A (en) 2020-07-02 2023-02-01 Inhibrx Inc Polypeptides comprising modified il-2 polypeptides and uses thereof
JP2023532764A (en) 2020-07-07 2023-07-31 エフ. ホフマン-ラ ロシュ アーゲー Alternative surfactants as stabilizers for therapeutic protein formulations
WO2022010797A2 (en) 2020-07-07 2022-01-13 Bionecure Therapeutics, Inc. Novel maytansinoids as adc payloads and their use for the treatment of cancer
WO2022008597A1 (en) 2020-07-08 2022-01-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of infectious diseases
PE20231300A1 (en) 2020-07-17 2023-08-24 Genentech Inc ANTI-NOTCH2 ANTIBODIES AND METHODS OF USE
EP4185328A1 (en) 2020-07-21 2023-05-31 Genentech, Inc. Antibody-conjugated chemical inducers of degradation of brm and methods thereof
JP2023535610A (en) 2020-07-28 2023-08-18 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Methods and compositions for preventing and treating cancer
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
MX2023001083A (en) 2020-07-29 2023-04-10 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof.
JP2023536602A (en) 2020-08-03 2023-08-28 ジェネンテック, インコーポレイテッド Diagnostic and therapeutic methods for lymphoma
KR20230095918A (en) 2020-08-05 2023-06-29 주노 쎄러퓨티크스 인코퍼레이티드 Anti-idiotype antibodies to the ROR1-target binding domain and related compositions and methods
JP2023538563A (en) 2020-08-17 2023-09-08 エーティービー セラピューティクス Recombinant immunotoxin containing ribotoxin or RNAse
US20240009310A1 (en) 2020-08-24 2024-01-11 Charité - Universitätsmedizin Berlin A CHIMERIC ANTIGEN RECEPTOR CONSTRUCT ENCODING A CHECKPOINT INHIBITORY MOLECULE AND AN IMMUNE STIMULATORY CYTOKINE AND CAR-EXPRESSING CELLS RECOGNIZING CD44v6
US20230321242A1 (en) 2020-08-24 2023-10-12 Charité - Universitätsmedizin Berlin Chimeric antigen receptor (car)-expressing cells recognizing cea
TW202227625A (en) 2020-08-28 2022-07-16 美商建南德克公司 Crispr/cas9 multiplex knockout of host cell proteins
WO2022051591A2 (en) 2020-09-04 2022-03-10 Novarock Biotherapeutics, Ltd. Nectin-4 antibodies and uses thereof
EP4211165A1 (en) 2020-09-14 2023-07-19 Ichnos Sciences SA Antibodies that bind to il1rap and uses thereof
US20240010750A1 (en) 2020-09-15 2024-01-11 Bayer Aktiengesellschaft Novel anti-a2ap antibodies and uses thereof
EP3970752A1 (en) 2020-09-17 2022-03-23 Merck Patent GmbH Molecules with solubility tag and related methods
WO2022064049A1 (en) 2020-09-28 2022-03-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing brucella infection
EP4225443A1 (en) 2020-10-05 2023-08-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2022084210A1 (en) 2020-10-20 2022-04-28 F. Hoffmann-La Roche Ag Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
AR123855A1 (en) 2020-10-20 2023-01-18 Genentech Inc PEG-CONJUGATED ANTI-MERTK ANTIBODIES AND METHODS OF USE
WO2022084300A1 (en) 2020-10-20 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosis and monitoring form of coronavirus infection
WO2022084531A1 (en) 2020-10-23 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating glioma
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
DE102020128677A1 (en) 2020-10-30 2022-05-05 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts A new target for the treatment of renal fibrosis
WO2022093640A1 (en) 2020-10-30 2022-05-05 BioLegend, Inc. Anti-nkg2c agents and compositions and methods for making and using the same
WO2022093641A1 (en) 2020-10-30 2022-05-05 BioLegend, Inc. Anti-nkg2a agents and compositions and methods for making and using the same
AU2021372815A1 (en) 2020-11-02 2023-06-22 Ares Trading S.A. Combination treatment of cancer
CA3196550A1 (en) 2020-11-02 2022-05-05 Yan Lan Combination treatment of cancer
MX2023005131A (en) 2020-11-04 2023-05-25 Genentech Inc Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates.
JP7402381B2 (en) 2020-11-04 2023-12-20 ジェネンテック, インコーポレイテッド Administration for treatment with anti-CD20/anti-CD3 bispecific antibodies
JP2023548522A (en) 2020-11-04 2023-11-17 ハイデルベルク ファルマ リサーチ ゲゼルシャフト ミット ベシュレンクテル ハフツング Composition for use in cancer treatment comprising a combination of an immune checkpoint inhibitor and an antibody-amatoxin conjugate
TW202225191A (en) 2020-11-04 2022-07-01 美商建南德克公司 Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
JP2023548878A (en) 2020-11-04 2023-11-21 ザ ロックフェラー ユニバーシティー Neutralizing anti-SARS-COV-2 antibody
WO2022097061A1 (en) 2020-11-06 2022-05-12 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
US20240025993A1 (en) 2020-11-06 2024-01-25 Novartis Ag Cd19 binding molecules and uses thereof
US20240033358A1 (en) 2020-11-13 2024-02-01 Novartis Ag Combination therapies with chimeric antigen receptor (car)-expressing cells
WO2022101481A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
KR20230109674A (en) 2020-11-16 2023-07-20 에프. 호프만-라 로슈 아게 FAB high mannose sugar form
JP2023553399A (en) 2020-12-02 2023-12-21 アレクトル エルエルシー How to use anti-Sortilin antibodies
AU2021393752A1 (en) 2020-12-04 2023-05-18 F. Hoffmann-La Roche Ag Ph-dependent mutant interleukin-2 polypeptides
CA3200770A1 (en) 2020-12-14 2022-06-23 Lillian SEU Methods and reagents for characterizing car t cells for therapies
CA3204702A1 (en) 2020-12-17 2022-06-23 F. Hoffmann-La Roche Ag Anti-hla-g antibodies and use thereof
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
WO2022153212A1 (en) 2021-01-13 2022-07-21 Axon Neuroscience Se Antibodies neutralizing sars-cov-2
WO2022155324A1 (en) 2021-01-15 2022-07-21 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
CN116917326A (en) 2021-01-22 2023-10-20 博泰康医药公司 anti-HER-2/TROP-2 constructs and uses thereof
TW202245811A (en) 2021-02-03 2022-12-01 美商異基因治療有限公司 Formulations and processes for car t cell drug products
CA3208641A1 (en) 2021-02-19 2022-08-25 Ashraf AMANULLAH Formulations of dr5 binding polypeptides
WO2022180145A2 (en) 2021-02-26 2022-09-01 Bayer Aktiengesellschaft Inhibitors of il-11 or il-11ra for use in the treatment of abnormal uterine bleeding
JP2024510415A (en) 2021-03-01 2024-03-07 スキロム ゲゼルシャフト ミット ベシュレンクテル ハフツング Humanized antibody against iRhom2
EP4301781A1 (en) 2021-03-01 2024-01-10 Xilio Development, Inc. Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
EP4301467A1 (en) 2021-03-01 2024-01-10 Xilio Development, Inc. Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
TW202302645A (en) 2021-03-03 2023-01-16 法商皮爾法伯製藥公司 Anti-vsig4 antibody or antigen binding fragment and uses thereof
JP2024509169A (en) 2021-03-03 2024-02-29 ソレント・セラピューティクス・インコーポレイテッド Antibody-drug conjugates including anti-BCMA antibodies
TW202302646A (en) 2021-03-05 2023-01-16 美商當康生物科技有限公司 Anti-vista constructs and uses thereof
US20240092856A1 (en) 2021-03-09 2024-03-21 Hoffmann-La Roche Inc. Combination therapy of pd-1-targeted il-2 variant immunoconjugates and fap/4-1bb binding molecules
WO2022189380A1 (en) 2021-03-09 2022-09-15 F. Hoffmann-La Roche Ag Combination therapy of pd-1-targeted il-2 variant immunoconjugate and anti-tyrp1/anti-cd3 bispecific antibodies
AU2022232951A1 (en) 2021-03-10 2023-10-19 Immunowake Inc. Immunomodulatory molecules and uses thereof
WO2022192647A1 (en) 2021-03-12 2022-09-15 Genentech, Inc. Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
JP2024511970A (en) 2021-03-15 2024-03-18 ジェネンテック, インコーポレイテッド Compositions and methods for the treatment of lupus nephritis
EP4308118A1 (en) 2021-03-17 2024-01-24 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and compositions for treating melanoma
WO2022197947A1 (en) 2021-03-18 2022-09-22 Alector Llc Anti-tmem106b antibodies and methods of use thereof
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
WO2022194988A2 (en) 2021-03-19 2022-09-22 Heidelberg Pharma Research Gmbh B-lymphocyte specific amatoxin antibody conjugates
EP4314280A1 (en) 2021-03-22 2024-02-07 Juno Therapeutics, Inc. Method to assess potency of viral vector particles
CA3210581A1 (en) 2021-03-22 2022-09-29 Neil HAIG Methods of determining potency of a therapeutic cell composition
WO2022204274A1 (en) 2021-03-23 2022-09-29 Alector Llc Anti-tmem106b antibodies for treating and preventing coronavirus infections
WO2022204724A1 (en) 2021-03-25 2022-09-29 Dynamicure Biotechnology Llc Anti-igfbp7 constructs and uses thereof
KR20230162793A (en) 2021-03-26 2023-11-28 얀센 바이오테크 인코포레이티드 Humanized antibodies against paired helical filament tau and uses thereof
CA3213771A1 (en) 2021-03-29 2022-10-06 Scirhom Gmbh Methods of treatment using protein binders to irhom2 epitopes
JP2024512633A (en) 2021-03-30 2024-03-19 バイエル・アクチエンゲゼルシヤフト Anti-SEMA3A antibody and its uses
EP4314032A1 (en) 2021-03-30 2024-02-07 F. Hoffmann-La Roche AG Protease-activated polypeptides
EP4319728A1 (en) 2021-04-09 2024-02-14 Genentech, Inc. Combination therapy with a raf inhibitor and a pd-1 axis inhibitor
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
IL307501A (en) 2021-04-19 2023-12-01 Hoffmann La Roche Modified mammalian cells
EP4326903A1 (en) 2021-04-23 2024-02-28 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treating cell senescence accumulation related disease
IL308106A (en) 2021-04-30 2023-12-01 Pf Medicament New stable anti-vista antibody
TW202243689A (en) 2021-04-30 2022-11-16 瑞士商赫孚孟拉羅股份公司 Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022228706A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
CA3218697A1 (en) 2021-05-03 2022-11-10 Merck Patent Gmbh Her2 targeting fc antigen binding fragment-drug conjugates
EP4334343A2 (en) 2021-05-06 2024-03-13 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
TW202310876A (en) 2021-05-12 2023-03-16 美商建南德克公司 Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
TW202306993A (en) 2021-05-14 2023-02-16 美商建南德克公司 Agonists of trem2
WO2022246259A1 (en) 2021-05-21 2022-11-24 Genentech, Inc. Modified cells for the production of a recombinant product of interest
EP4346905A1 (en) 2021-05-25 2024-04-10 Merck Patent GmbH Egfr targeting fc antigen binding fragment-drug conjugates
AR126009A1 (en) 2021-06-02 2023-08-30 Hoffmann La Roche CD28 ANTIGEN-BINDING AGONIST MOLECULES THAT TARGET EPCAM
EP4155321A1 (en) 2021-06-04 2023-03-29 Chugai Seiyaku Kabushiki Kaisha Anti-ddr2 antibodies and uses thereof
EP4351640A1 (en) 2021-06-07 2024-04-17 Ares Trading S.A. Combination treatment of cancer
KR20240019109A (en) 2021-06-09 2024-02-14 에프. 호프만-라 로슈 아게 Combination of a specific BRAF inhibitor (Paradox Break) and a PD-1 axis binding antagonist for use in the treatment of cancer
WO2022266223A1 (en) 2021-06-16 2022-12-22 Alector Llc Bispecific anti-mertk and anti-pdl1 antibodies and methods of use thereof
WO2022266221A1 (en) 2021-06-16 2022-12-22 Alector Llc Monovalent anti-mertk antibodies and methods of use thereof
WO2022266660A1 (en) 2021-06-17 2022-12-22 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
WO2022271987A1 (en) 2021-06-23 2022-12-29 TeneoFour, Inc. Anti-cd38 antibodies and epitopes of same
CN117616123A (en) 2021-06-25 2024-02-27 中外制药株式会社 anti-CTLA-4 antibodies
IL308633A (en) 2021-06-25 2024-01-01 Chugai Pharmaceutical Co Ltd Use of anti-ctla-4 antibody
AU2022304258A1 (en) 2021-07-02 2024-02-15 Merck Patent Gmbh Anti-protac antibodies and complexes
US20230049152A1 (en) 2021-07-14 2023-02-16 Genentech, Inc. Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
TW202309102A (en) 2021-07-20 2023-03-01 美商英伊布里克斯公司 Cd8-targeted modified il-2 polypeptides and uses thereof
CA3225092A1 (en) 2021-07-20 2023-01-26 John C. Timmer Cd8-binding polypeptides and uses thereof
CA3219606A1 (en) 2021-07-22 2023-01-26 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
CA3227537A1 (en) 2021-07-27 2023-02-02 Morphosys Ag Combinations of antigen binding molecules
WO2023006975A2 (en) 2021-07-30 2023-02-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Chimeric proteins and methods of immunotherapy
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
WO2023021055A1 (en) 2021-08-19 2023-02-23 F. Hoffmann-La Roche Ag Multivalent anti-variant fc-region antibodies and methods of use
CA3229448A1 (en) 2021-08-23 2023-03-02 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
TW202328177A (en) 2021-08-27 2023-07-16 美商建南德克公司 Methods of treating tau pathologies
CA3229059A1 (en) 2021-08-27 2023-03-02 H. Lundbeck A/S Treatment of cluster headache using anti-cgrp antibodies
TW202325727A (en) 2021-08-30 2023-07-01 美商建南德克公司 Anti-polyubiquitin multispecific antibodies
CA3230117A1 (en) 2021-09-02 2023-03-09 Mark Trautwein Anti-cecam6 antibodies with reduced side-effects
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
TW202321308A (en) 2021-09-30 2023-06-01 美商建南德克公司 Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
US20230190806A1 (en) 2021-10-06 2023-06-22 Immatics Biotechnologies Gmbh Methods of treating metastatic lesions and compositions thereof
CA3233924A1 (en) 2021-10-08 2023-04-13 Kengo ARAI Method for preparing prefilled syringe formulation
WO2023062048A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag Alternative pd1-il7v immunoconjugates for the treatment of cancer
WO2023062050A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
WO2023069919A1 (en) 2021-10-19 2023-04-27 Alector Llc Anti-cd300lb antibodies and methods of use thereof
WO2023078900A1 (en) 2021-11-03 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating triple negative breast cancer (tnbc)
WO2023081898A1 (en) 2021-11-08 2023-05-11 Alector Llc Soluble cd33 as a biomarker for anti-cd33 efficacy
US20230192886A1 (en) 2021-11-08 2023-06-22 Immatics Biotechnologies Gmbh Adoptive cell therapy combination treatment and compositions thereof
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
TW202337494A (en) 2021-11-16 2023-10-01 美商建南德克公司 Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
WO2023094569A1 (en) 2021-11-26 2023-06-01 F. Hoffmann-La Roche Ag Combination therapy of anti-tyrp1/anti-cd3 bispecific antibodies and tyrp1-specific antibodies
AR127887A1 (en) 2021-12-10 2024-03-06 F Hoffmann La Roche Ag ANTIBODIES THAT BIND CD3 AND PLAP
WO2023118165A1 (en) 2021-12-21 2023-06-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
TW202334233A (en) 2022-01-05 2023-09-01 美商英伊布里克斯公司 Gamma delta t-cell-binding polypeptides and uses thereof
TW202334193A (en) 2022-01-05 2023-09-01 美商英伊布里克斯公司 Gamma delta t-cell-targeted modified il-2 polypeptides and uses thereof
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
WO2023147329A1 (en) 2022-01-26 2023-08-03 Genentech, Inc. Antibody-conjugated chemical inducers of degradation and methods thereof
WO2023147328A1 (en) 2022-01-26 2023-08-03 Genentech, Inc. Antibody-conjugated chemical inducers of degradation with hydolysable maleimide linkers and methods thereof
WO2023144235A1 (en) 2022-01-27 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for monitoring and treating warburg effect in patients with pi3k-related disorders
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
WO2023156634A1 (en) 2022-02-17 2023-08-24 Atb Therapeutics Recombinant immunotoxin comprising a ribosome inactivating protein
WO2023164516A1 (en) 2022-02-23 2023-08-31 Alector Llc Methods of use of anti-trem2 antibodies
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2023170291A1 (en) 2022-03-11 2023-09-14 Janssen Pharmaceutica Nv Multispecific antibodies and uses thereof
WO2023170247A1 (en) 2022-03-11 2023-09-14 Mablink Bioscience Antibody-drug conjugates and their uses
WO2023170295A1 (en) 2022-03-11 2023-09-14 Janssen Pharmaceutica Nv Multispecific antibodies and uses thereof
TW202346355A (en) 2022-03-11 2023-12-01 比利時商健生藥品公司 Multispecific antibodies and uses thereof
WO2023175171A1 (en) 2022-03-18 2023-09-21 Inserm (Institut National De La Sante Et De La Recherche Medicale) Bk polyomavirus antibodies and uses thereof
US20230414750A1 (en) 2022-03-23 2023-12-28 Hoffmann-La Roche Inc. Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023186760A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Improved folr1 protease-activatable t cell bispecific antibodies
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023196943A1 (en) 2022-04-08 2023-10-12 Inhibrx, Inc. Dr5 agonist and plk1 inhibitor or cdk inhibitor combination therapy
WO2023201299A1 (en) 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023198727A1 (en) 2022-04-13 2023-10-19 F. Hoffmann-La Roche Ag Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
US20230407252A1 (en) 2022-04-28 2023-12-21 Allogene Therapeutics, Inc. Methods for donor cell analysis
WO2023212293A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Complement factor h related 4-specific antibodies and uses thereof
WO2023212298A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Bispecific antibodies and methods of treating ocular disease
WO2023212294A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Angiopoietin-related protein 7-specific antibodies and uses thereof
WO2023213814A1 (en) 2022-05-02 2023-11-09 Pierre Fabre Medicament New formulation of anti vista antibody
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023215810A1 (en) 2022-05-05 2023-11-09 Inhibrx, Inc. Albumin-binding polypeptides and uses thereof
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023230432A1 (en) 2022-05-23 2023-11-30 Inhibrx, Inc. Dr5 agonist and iap antagonist combination therapy
WO2023235699A1 (en) 2022-05-31 2023-12-07 Jounce Therapeutics, Inc. Antibodies to lilrb4 and uses thereof
WO2023235415A1 (en) 2022-06-01 2023-12-07 Genentech, Inc. Method to identify a patient with an increased likelihood of chemotherapy-induced peripheral neuropathy
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023239803A1 (en) 2022-06-08 2023-12-14 Angiex, Inc. Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same
WO2023237661A1 (en) 2022-06-09 2023-12-14 Institut National de la Santé et de la Recherche Médicale Use of endothelin receptor type b agonists for the treatment of aortic valve stenosis
WO2023240218A1 (en) 2022-06-09 2023-12-14 Allogene Therapeutics Inc. Methods for detecting genomic abnormalities in cells
WO2023240216A1 (en) 2022-06-11 2023-12-14 Inhibrx, Inc. Fcrn-binding polypeptides and uses thereof
WO2023245008A1 (en) 2022-06-13 2023-12-21 Genentech, Inc. Methods of delaying or preventing the onset of alzheimer's disease using crenezumab
DE102022115364A1 (en) 2022-06-21 2023-12-21 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts FATP2 in T cells as a target molecule for the treatment of autoimmune diseases
WO2024008799A1 (en) 2022-07-06 2024-01-11 Institut National de la Santé et de la Recherche Médicale Methods for the treatment of proliferative glomerulonephritis
WO2024013234A1 (en) 2022-07-13 2024-01-18 Institut National de la Santé et de la Recherche Médicale Methods for diagnosis, prognosis, stratification and treating of myocarditis
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020051A1 (en) 2022-07-19 2024-01-25 BioLegend, Inc. Anti-cd157 antibodies, antigen-binding fragments thereof and compositions and methods for making and using the same
WO2024020579A1 (en) 2022-07-22 2024-01-25 Bristol-Myers Squibb Company Antibodies binding to human pad4 and uses thereof
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024023246A1 (en) 2022-07-28 2024-02-01 Philogen S.P.A. Antibody binding to pd1
WO2024026472A2 (en) 2022-07-29 2024-02-01 Alector Llc Transferrin receptor antigen-binding domains and uses therefor
WO2024026447A1 (en) 2022-07-29 2024-02-01 Alector Llc Anti-gpnmb antibodies and methods of use thereof
WO2024026471A1 (en) 2022-07-29 2024-02-01 Alector Llc Cd98hc antigen-binding domains and uses therefor
WO2024028433A1 (en) 2022-08-04 2024-02-08 Institut National de la Santé et de la Recherche Médicale Methods for the treatment of lymphoproliferative disorders
WO2024033362A1 (en) 2022-08-08 2024-02-15 Atb Therapeutics Humanized antibodies against cd79b
WO2024033399A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sigmar1 ligand for the treatment of pancreatic cancer
WO2024033400A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sk2 inhibitor for the treatment of pancreatic cancer
WO2024040090A1 (en) 2022-08-16 2024-02-22 Allogene Therapeutics Inc. In vitro method for inhibiting hhv-6 infection
WO2024040114A2 (en) 2022-08-18 2024-02-22 BioLegend, Inc. Anti-axl antibodies, antigen-binding fragments thereof and methods for making and using the same
US20240092859A1 (en) 2022-08-18 2024-03-21 Immunocore Ltd T cell receptors and fusion proteins thereof
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024068572A1 (en) 2022-09-28 2024-04-04 F. Hoffmann-La Roche Ag Improved protease-activatable t cell bispecific antibodies
WO2024068705A1 (en) 2022-09-29 2024-04-04 F. Hoffmann-La Roche Ag Protease-activated polypeptides

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5078999A (en) * 1991-02-22 1992-01-07 American Home Products Corporation Method of treating systemic lupus erythematosus
US5091513A (en) * 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5585089A (en) * 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
US5846534A (en) * 1988-02-12 1998-12-08 British Technology Group Limited Antibodies to the antigen campath-1
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173494A3 (en) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by dna splicing and expression
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
JPS61104788A (en) 1984-10-26 1986-05-23 Teijin Ltd Nucleic acid base sequence
JPS61134325A (en) 1984-12-04 1986-06-21 Teijin Ltd Expression of hybrid antibody gene
US5078998A (en) 1985-08-02 1992-01-07 Bevan Michael J Hybrid ligand directed to activation of cytotoxic effector T lymphocytes and target associated antigen
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US5091513A (en) * 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5846534A (en) * 1988-02-12 1998-12-08 British Technology Group Limited Antibodies to the antigen campath-1
US6569430B1 (en) * 1988-02-12 2003-05-27 Btg International Limited Antibodies to the antigen Campath-1
US5585089A (en) * 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
US5693761A (en) * 1988-12-28 1997-12-02 Protein Design Labs, Inc. Polynucleotides encoding improved humanized immunoglobulins
US5693762A (en) * 1988-12-28 1997-12-02 Protein Design Labs, Inc. Humanized immunoglobulins
US6180370B1 (en) * 1988-12-28 2001-01-30 Protein Design Labs, Inc. Humanized immunoglobulins and methods of making the same
US5078999A (en) * 1991-02-22 1992-01-07 American Home Products Corporation Method of treating systemic lupus erythematosus

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077243A1 (en) * 1991-06-14 2007-04-05 Genentech, Inc. Method for making humanized antibodies
US20040236078A1 (en) * 1991-06-14 2004-11-25 Genentech, Inc. Method for making humanized antibodies
US8075890B2 (en) 1991-06-14 2011-12-13 Genentech, Inc. Method for making humanized antibodies
US20080181890A1 (en) * 2002-03-01 2008-07-31 Xencor, Inc. Optimized Fc Variants and Methods for Their Generation
US20090142340A1 (en) * 2002-03-01 2009-06-04 Xencor, Inc. Optimized Fc Variants and Methods for Their Generation
US8734791B2 (en) 2002-03-01 2014-05-27 Xencor, Inc. Optimized fc variants and methods for their generation
US20090068175A1 (en) * 2002-03-01 2009-03-12 Xencor, Inc. Optimized FC Variants and Methods for Their Generation
US20080260731A1 (en) * 2002-03-01 2008-10-23 Bernett Matthew J Optimized antibodies that target cd19
US20070003546A1 (en) * 2002-03-01 2007-01-04 Xencor, Inc. Optimized Fc variants and methods for their generation
US20080254027A1 (en) * 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
US20070219133A1 (en) * 2002-03-01 2007-09-20 Xencor, Inc. CD52 OPTIMIZED Fc VARIANTS AND METHODS FOR THEIR GENERATION
US20070224189A1 (en) * 2002-03-01 2007-09-27 Xencor, Inc. CD20 OPTIMIZED Fc VARIANTS AND METHODS FOR THEIR GENERATION
US7662925B2 (en) 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US8124731B2 (en) 2002-03-01 2012-02-28 Xencor, Inc. Optimized Fc variants and methods for their generation
US20090081208A1 (en) * 2002-09-27 2009-03-26 Xencor, Inc. Optimized Fc variants and methods for their generation
US8093359B2 (en) 2002-09-27 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
US9353187B2 (en) 2002-09-27 2016-05-31 Xencor, Inc. Optimized FC variants and methods for their generation
US10184000B2 (en) 2002-09-27 2019-01-22 Xencor, Inc. Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US8753629B2 (en) 2002-09-27 2014-06-17 Xencor, Inc. Optimized Fc variants
US8802823B2 (en) 2002-09-27 2014-08-12 Xencor, Inc. Optimized Fc variants
US20040132101A1 (en) * 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US8809503B2 (en) 2002-09-27 2014-08-19 Xencor, Inc. Optimized Fc variants and methods for their generation
US8753628B2 (en) 2002-09-27 2014-06-17 Xencor, Inc. Optimized Fc variants
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US8383109B2 (en) 2002-09-27 2013-02-26 Xencor, Inc. Optimized Fc variants and methods for their generation
US8858937B2 (en) 2002-09-27 2014-10-14 Xencor, Inc. Optimized Fc variants and methods for their generation
US10183999B2 (en) 2002-09-27 2019-01-22 Xencor, Inc. Optimized Fc variants and methods for their generation
US8039592B2 (en) 2002-09-27 2011-10-18 Xencor, Inc. Optimized Fc variants and methods for their generation
US20060235208A1 (en) * 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
US8735547B2 (en) 2002-09-27 2014-05-27 Xencor, Inc. Optimized Fc Variants
US20090092599A1 (en) * 2002-09-27 2009-04-09 Xencor, Inc. Optimized Fc variants and methods for their generation
US9193798B2 (en) 2002-09-27 2015-11-24 Xencor, Inc. Optimized Fc variants and methods for their generation
US20080057056A1 (en) * 2003-03-03 2008-03-06 Xencor, Inc. Fc Variants with Increased Affinity for FcyRIIC
US20070238665A1 (en) * 2003-03-03 2007-10-11 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIc
US10584176B2 (en) 2003-03-03 2020-03-10 Xencor, Inc. Fc variants with increased affinity for FcγRIIc
US10113001B2 (en) 2003-03-03 2018-10-30 Xencor, Inc. Fc variants with increased affinity for FcyRIIc
US9663582B2 (en) 2003-03-03 2017-05-30 Xencor, Inc. Optimized Fc variants
US9657106B2 (en) 2003-03-03 2017-05-23 Xencor, Inc. Optimized Fc variants
US20110021755A1 (en) * 2003-03-03 2011-01-27 Xencor, Inc. Optimized Fc Variants
US20070237767A1 (en) * 2003-03-03 2007-10-11 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRllla
US20070237766A1 (en) * 2003-03-03 2007-10-11 Xencor, Inc. Fc Variants Having Increased Affinity for FcyRllla
US8735545B2 (en) 2003-03-03 2014-05-27 Xencor, Inc. Fc variants having increased affinity for fcyrllc
US20070237765A1 (en) * 2003-03-03 2007-10-11 Xencor, Inc. Fc Variants Having Increased Affinity for FcyRl
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US20070243188A1 (en) * 2003-03-03 2007-10-18 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRlla
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20070248602A1 (en) * 2003-03-03 2007-10-25 Xencor, Inc. Fc Variants Having Increased Affinity for FcyRllc
US20070275460A1 (en) * 2003-03-03 2007-11-29 Xencor.Inc. Fc Variants With Optimized Fc Receptor Binding Properties
US20070248603A1 (en) * 2003-03-03 2007-10-25 Xencor, Inc. Fc Variants with Increased Affinity for FcyRlla
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US20100093979A1 (en) * 2003-12-22 2010-04-15 Gregory Alan Lazar Fc Polypeptides With Novel Fc Ligand Binding Sites
US20050249723A1 (en) * 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
US20050244403A1 (en) * 2004-03-24 2005-11-03 Xencor, Inc. Immunoglobulin variants outside the Fc region
US7276585B2 (en) 2004-03-24 2007-10-02 Xencor, Inc. Immunoglobulin variants outside the Fc region
US20110064727A9 (en) * 2004-03-24 2011-03-17 Xencor, Inc. Immunoglobulin Variants Outside the Fc Region
US20080248028A1 (en) * 2004-03-24 2008-10-09 Xencor, Inc. Immunoglobulin Variants Outside the Fc Region
US11820830B2 (en) 2004-07-20 2023-11-21 Xencor, Inc. Optimized Fc variants
US20060074225A1 (en) * 2004-09-14 2006-04-06 Xencor, Inc. Monomeric immunoglobulin Fc domains
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
US11198739B2 (en) 2004-11-12 2021-12-14 Xencor, Inc. Fc variants with altered binding to FcRn
US8883973B2 (en) 2004-11-12 2014-11-11 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
US10336818B2 (en) 2004-11-12 2019-07-02 Xencor, Inc. Fc variants with altered binding to FcRn
US8324351B2 (en) 2004-11-12 2012-12-04 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8338574B2 (en) 2004-11-12 2012-12-25 Xencor, Inc. FC variants with altered binding to FCRN
US8852586B2 (en) 2004-11-12 2014-10-07 Xencor, Inc. Fc variants with altered binding to FcRn
US9200079B2 (en) 2004-11-12 2015-12-01 Xencor, Inc. Fc variants with altered binding to FcRn
US8318907B2 (en) 2004-11-12 2012-11-27 Xencor, Inc. Fc variants with altered binding to FcRn
US20060173170A1 (en) * 2004-11-12 2006-08-03 Xencor, Inc. Fc variants with altered binding to FcRn
US9803023B2 (en) 2004-11-12 2017-10-31 Xencor, Inc. Fc variants with altered binding to FcRn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US20060275282A1 (en) * 2005-01-12 2006-12-07 Xencor, Inc. Antibodies and Fc fusion proteins with altered immunogenicity
US9040041B2 (en) 2005-10-03 2015-05-26 Xencor, Inc. Modified FC molecules
US20080206867A1 (en) * 2005-10-03 2008-08-28 Desjarlais John R Fc variants with optimized Fc receptor binding properties
US20100249382A1 (en) * 2005-10-03 2010-09-30 Xencor, Inc. MODIFIED Fc MOLECULES
US20080267976A1 (en) * 2005-10-06 2008-10-30 Gregory Alan Lazar Optimized Anti-Cd30 Antibodies
US9574006B2 (en) 2005-10-06 2017-02-21 Xencor, Inc. Optimized anti-CD30 antibodies
US7973136B2 (en) 2005-10-06 2011-07-05 Xencor, Inc. Optimized anti-CD30 antibodies
US20100226920A1 (en) * 2006-03-27 2010-09-09 Ablynx N.V. Medical delivery device for therapeutic proteins based on single domain antibodies
US8524867B2 (en) 2006-08-14 2013-09-03 Xencor, Inc. Optimized antibodies that target CD19
US11618788B2 (en) 2006-08-14 2023-04-04 Xencor, Inc. Optimized antibodies that target CD19
US9803020B2 (en) 2006-08-14 2017-10-31 Xencor, Inc. Optimized antibodies that target CD19
US20100272723A1 (en) * 2006-08-14 2010-10-28 Xencor, Inc. Optimized Antibodies that Target CD19
US10626182B2 (en) 2006-08-14 2020-04-21 Xencor, Inc. Optimized antibodies that target CD19
US9040042B2 (en) 2006-09-18 2015-05-26 Xencor, Inc. Optimized antibodies that target HM1.24
US20100104557A1 (en) * 2006-09-18 2010-04-29 Xencor, Inc. Optimized Antibodies that Target HM1.24
US8394374B2 (en) 2006-09-18 2013-03-12 Xencor, Inc. Optimized antibodies that target HM1.24
US20080313379A1 (en) * 2007-06-15 2008-12-18 United Memories, Inc. Multiple bus charge sharing
US11932685B2 (en) 2007-10-31 2024-03-19 Xencor, Inc. Fc variants with altered binding to FcRn
US11401348B2 (en) 2009-09-02 2022-08-02 Xencor, Inc. Heterodimeric Fc variants
US9475881B2 (en) 2010-01-19 2016-10-25 Xencor, Inc. Antibody variants with enhanced complement activity
WO2012166906A1 (en) 2011-05-31 2012-12-06 Massachusetts Institute Of Technology Cell-directed synthesis of multifunctional nanopatterns and nanomaterials

Also Published As

Publication number Publication date
US6982321B2 (en) 2006-01-03
US6548640B1 (en) 2003-04-15
US20040127688A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
US6548640B1 (en) Altered antibodies
EP0239400B1 (en) Recombinant antibodies and methods for their production
US5225539A (en) Recombinant altered antibodies and methods of making altered antibodies
EP0328404B1 (en) Modified antibodies
US5846534A (en) Antibodies to the antigen campath-1
EP0504350B1 (en) Antibodies directed against cd3
US5258498A (en) Polypeptide linkers for production of biosynthetic proteins
EP0623679B1 (en) Targeted multifunctional proteins
AU653167B2 (en) Specific binding agents
AU652923B2 (en) Specific binding agents
CA1341615C (en) Targeted multifunctional proteins
BOND NEH

Legal Events

Date Code Title Description
AS Assignment

Owner name: BTG INTERNATIONAL LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL RESEARCH COUNCIL;REEL/FRAME:016508/0742

Effective date: 20050428

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100103