US20040170893A1 - Cell frame for redox flow cell and redox flow cell - Google Patents

Cell frame for redox flow cell and redox flow cell Download PDF

Info

Publication number
US20040170893A1
US20040170893A1 US10/480,117 US48011704A US2004170893A1 US 20040170893 A1 US20040170893 A1 US 20040170893A1 US 48011704 A US48011704 A US 48011704A US 2004170893 A1 US2004170893 A1 US 2004170893A1
Authority
US
United States
Prior art keywords
frame
cell
redox flow
electrolyte
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/480,117
Inventor
Hiroyuki Nakaishi
Takashi Kanno
Seiji Ogino
Takefumi Ito
Toshio Shigematsu
Nobuyuki Tokuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KANSAI ELECTRIC POWER CO., INC., THE, SUMITOMO ELECTRIC INDUSTRIES, LTD. reassignment KANSAI ELECTRIC POWER CO., INC., THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOKUDA, NOBUYUKI, SHIGEMATSU, TOSHIO, ITO, TAKEFUMI, KANNO, TAKASHI, NAKAISHI, KIROYUKI, OGINO, SEIJI
Publication of US20040170893A1 publication Critical patent/US20040170893A1/en
Priority to US11/979,670 priority Critical patent/US7670719B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • H01M8/0278O-rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cell frame for a redox flow battery designed to effectively prevent leakage of electrolyte out of the cell frame and to a redox flow battery using the same.
  • FIG. 8 there is shown an explanatory view showing an operating principle of a conventional redox flow secondary battery.
  • the redox flow battery has a cell 1 separated into a positive electrode cell 1 A and a negative electrode cell 1 B by a membrane 4 that can allow ions to pass through.
  • the positive electrode cell 1 A and the negative electrode cell 1 B include a positive electrode 5 and a negative electrode 6 , respectively.
  • a positive electrode tank 2 for feeding and discharging positive electrolytic solution to and from the positive electrode cell 1 A is connected to the positive electrode cell 1 A through conduit pipes 7 , 8 .
  • a negative electrode tank 3 for feeding and discharging negative electrolytic solution to and from the negative electrode cell 1 B is connected to the negative electrode cell 1 B through conduit pipes 10 , 11 .
  • the electrolyte containing the ions is circulated by using pumps 9 , 12 , to charge and discharge with the change in ionic valence at the positive electrodes 5 and negative electrodes 6 .
  • FIG. 9 there is shown a diagrammatic illustration of construction of a cell stack used for the redox flow battery mentioned above.
  • This type of battery usually uses the construction which is called a cell stack 100 comprising a plurality of cell frames 20 stacked in layers.
  • the cell stack 100 comprises a stack body formed by a cell frame 20 , a positive electrode 5 made of carbon felt, a membrane 4 , a negative electrode 6 made of carbon felt and the cell frame 20 being repeatedly stacked in this sequence. End plates are arranged at both sides of the stack body and are clamped onto the both sides of the stack body by tightening nuts screwably engaged with long bolts 101 piercing the both end plates, to thereby produce the cell stack 100 .
  • the cell frame 20 comprises a bipolar plate 21 made of plastic carbon and a frame 22 formed around a periphery of the bipolar plate.
  • the cell frame 22 usually has, in lower and upper sides thereof, holes which are called manifolds 23 A, 23 B for feeding and discharging the electrolytes to and from their respective cells and guide grooves 24 extending continuously from the manifolds for guiding the electrolyte to the electrodes 5 , 6 .
  • FIG. 10 there is shown a partially enlarged view schematically showing a section around a frame when conventional cell frames are stacked in layer.
  • a seal using an O-ring (FIG. 10( a )-( c )) disclosed by Japanese Laid-open (Unexamined) Patent Publication No. 2000-260460 and a seal using a flat packing (FIG. 10( d )) disclosed by Japanese Laid-open (Unexamined) Patent Publication No. Hei 8-7913 are known as a mechanism for preventing leakage of electrolyte from between the cell frames.
  • Cell frames 20 a shown in FIG. 10( a ) each have O-ring grooves 25 formed at locations opposite to each other on both sides thereof, one for each side, and O-rings 26 are fitted in the O-ring grooves 25 .
  • Cell frames 20 b shown in FIG. 10( b ) each have an inner O-ring groove 25 a formed on one side thereof and an outer O-ring groove 25 b formed on the other side, both grooves being provided at locations staggered with respect to each other, and an inner O-ring 26 a and an outer O-ring 26 b are fitted in the grooves 25 a , 25 b , respectively.
  • Cell frames 20 c shown in FIG. 10( c ) each have the inner O-ring groove 25 a and the outer O-ring groove 25 b , different in size from each other, which are formed on one side thereof, so that one pair of the grooves 25 a , 25 b is arranged in parallel with each other, and the inner O-ring 26 a and the outer O-ring 26 b are fitted in the grooves 25 a , 25 b , respectively, as is the case with the above.
  • Cell frames 20 d shown in FIG. 10( d ) each have a flat packing 27 , corresponding in shape to the cell frame 20 d , which is arranged on each side.
  • the flat packing 27 shown in FIG. 10( d ) is desirable for the cell frame of a large area to produce a high capacity.
  • the flat packing 27 must be positioned precisely with respect to the cell frames and also the cell frames 20 d stacked in layers must be clamped uniformly by a number of long bolts 101 , in order to prevent the leakage of electrolyte.
  • the flat packing 27 In the cell stack using the flat packing 27 shown in FIG. 10( d ), the flat packing 27 must be also aligned to the cell frames 20 d precisely, thus involving very poor workability in assembling the cell stack.
  • the present invention provides a novel cell frame for a redox flow battery comprising a bipolar plate and a frame formed around a periphery of the bipolar plate, wherein the frame has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte.
  • the membrane is held in sandwich relation between the inner seals and the outer seals.
  • the inner seals mainly work to prevent leakage of the electrolytes to the outside of the cell stack and mixture of the positive electrolyte and the negative electrolyte.
  • the outer seals work to prevent a break in the membrane caused by dryness from propagating inwardly with respect to the outer seals, thereby preventing the leakage of the electrolytes to the outside of the cell stack.
  • the membrane is held in sandwich relation between both the inner seals and the outer seals, thereby preventing the break in the membrane from progressing inwardly from a location where the membrane is sandwiched between the inner seals.
  • this double seal arrangement of the present invention can ensure a high reliability with which the electrolytes are prevented from leaking out of the cell frame.
  • the arrangement of the outer seals can allow slight projection of the membrane from a periphery of the cell frames. Due to this, strictness is not required for fabrication precision of the membrane and positional precision of the membrane to the cell frame, thus providing very good workability in assembling the cell stack by stacking the cell frames in layers. Further, the double seal arrangement can also serve to surely keep the membrane sandwiched between the cell frames in the wet condition.
  • An O-ring is preferably used for both the inner seal and the outer seal. At least the inner seal should preferably be in the form of the O-ring, though a flat packing may be used for the outer seal.
  • the cell frame may previously be provided with a groove suitable for the flat packing and an O-ring groove.
  • the grooves for fitting therein the O-ring or the flat packing are provided at locations correspond to each other on both sides of the cell frame.
  • the grooves may alternatively be provided at locations staggered with respect to each other on both sides of the cell frame when the cell frames having both seals are disposed opposite to each other.
  • the inner seal and the outer seal are spaced apart from each other at a distance so that even when the membrane is dried and thereby broken, the break in the membrane cannot easily be propagated inwardly from the inner seal.
  • the inner seal and the outer seal are spaced apart from each other at a distance of 1 mm or more. The distance means a distance between center lines of the both grooves.
  • the cell frame for the redox flow battery of the present invention it is preferable that the cell frame is provided with a manifold serving as a flow channel of the electrolyte and a guide groove for guiding the electrolyte from the manifold to an inside of the frame, and the guide groove has a sectional area of 5 mm 2 or less.
  • the sectional area defined herein is a sectional area of a single guide groove when a plurality of guide grooves are formed. As the sectional area of the guide groove increases, a quantity of electrolyte flowing through the single guide groove increases and thereby losses caused by electric current flowing in the electrolytes increase.
  • the present invention specifies the sectional area of the guide groove, in order to suppress the losses caused by the electric current flowing in the electrolyte.
  • a diameter of the manifold is preferably in the range of 1%-5% of a total width of the cell frame.
  • a center distance between adjacent manifolds is preferably in the range of 5%-50% of a total width of the cell frame. The center distance is specified for making uniform the flow of the electrolyte in the widthwise direction in the interior of the cell frame.
  • the cell frame of the present invention is preferably formed to be so transparent that one can easily inspect the each other's bonded state of the frame members and the bonded state of the frame member to the bipolar plate.
  • the cell frame may be formed into shape by an injection molding using resin.
  • each frame is configured so that the locations of the manifolds and the guide grooves can be symmetrical in relation to an intersection point of diagonal lines of the frame members as a center.
  • the frame members symmetrical with respect to a point can all be formed into the same configuration, because they can be combined with each other by simply changing orientation.
  • the frame members can be molded from the same mold, thus providing good productivity.
  • the membrane has a thickness of 400 ⁇ m or less. This is because the membrane having a thickness of 400 ⁇ m or less is desirable in that it can provide reduced inner electrical resistance and thus improved battery efficiency.
  • electric terminals for taking out electricity from the electrodes and feeding and discharging portions for feeding and discharging electrolytes to and from the electrodes are arranged on the opposite sides of the cell stack.
  • This arrangement wherein the electric terminals and the feeding and discharging portions are arranged on the opposite side to each other can provide ease of maintenance as well as good workability in assembly of the battery. Further, this arrangement can provide the advantage that even when the electrolyte leaks from the supply/discharge portions, the electrical terminals are kept out of the leakage of the electrolyte, so that there is little possibility that electric current may pass through a power line.
  • FIG. 1 is a plan view of a frame member forming a cell frame of the present invention.
  • FIG. 2 is a partially enlarged view of an area in the vicinity of the frame of the cell frames of the present invention stacked in layer.
  • FIG. 3 is a partially enlarged view schematically showing a section around the frame of the cell frames of the present invention stacked in layer.
  • FIG. 4 is a top view schematically showing the cell stack using the cell frames of the present invention.
  • FIG. 5 is a front view of the cell stack using the cell frames of the present invention.
  • FIG. 6 is a left side view of the cell stack using the cell frames of the present invention.
  • FIG. 7 is a right side view of the cell stack using the cell frames of the present invention.
  • FIG. 8 is an explanatory view of an operating principle of the conventional redox flow battery.
  • FIG. 9 is a diagrammatic illustration of construction view of the cell stack used for the redox flow battery.
  • FIG. 10 is a partially enlarged view schematically showing a section around a frame of conventional cell frames when stacked in layer.
  • a redox flow battery of the present invention operates in the same operation principle as that of the redox flow battery shown in FIGS. 8, 9, using a basically common overall cell stack construction. In the following, the components of the cell stack will be described in detail.
  • FIG. 1 is a plan view of a frame member forming a cell frame of the present invention.
  • FIG. 2 is a partially enlarged view of an area in the vicinity of the frame of the cell frames of the present invention stacked in layer.
  • FIG. 3 is a partially enlarged view schematically showing a section around the same frame.
  • like reference numerals denote like parts.
  • Cell frames 30 of the present invention each comprises a bipolar plate 21 and a frame 31 formed around a periphery of the bipolar plate 21 , as shown in FIG. 2.
  • the cell frames 30 are stacked with each other, sandwiching therebetween a membrane 4 for allowing ions in electrolyte to pass through (FIG. 3).
  • An inner seal 32 (FIG. 3) and an outer seal 33 (FIG. 3) for preventing leakage of electrolyte out of the frame 31 are arranged on each side of the frame 31 .
  • those cell frames are press-contacted with both sides of the membrane 4 to hold the membrane 4 in sandwich relation between the seals 32 , 33 .
  • the bipolar plate 21 is disposed between a pair of frame members 31 a , 31 b forming the frame 31 , so that an outer periphery of the bipolar plate 21 is joined to inner peripheries of the frame members 31 a , 31 b .
  • the frame members 31 a , 31 b forming this cell frame 30 are formed by an injection molding or equivalent using plastics or rubbers, including vinyl chloride resin, polypropylene, polyethylene, fluorocarbon resin, and epoxy resin.
  • a variety of materials may be used for the frame members 31 a , 31 b , as long as they have acid resistance, electrical insulating properties and mechanical strength.
  • the cell frame 30 has, on each side thereof, an inner seal groove 34 for fitting therein the inner seal 32 (FIG. 3) and an outer seal groove 35 for fitting therein the outer seal 33 (FIG. 3) which are arranged to extend in parallel along a periphery of the cell frame (See FIG. 1).
  • the both seal grooves 34 , 35 are spaced apart from each other at a distance of not less than 1 mm.
  • the seal grooves 34 , 35 are provided at locations correspond to each other on both sides of the cell frame 30 .
  • the seal grooves 34 , 35 may alternatively be provided at locations staggered with respect to each other on both sides of the cell frame 30 .
  • the cell frames 30 each having a double seal arrangement of the seals 32 , 33 , can prevent the electrolyte from leaking out of the cell frames 30 when stacked in layers.
  • the inner seals 32 confronting each other are brought into press-contact with both sides of the membrane 4 (FIG. 3) to sandwich the membrane 4 therebetween. This can prevent the electrolyte from leaking out of the cell frames 30 while streaming along the membrane 4 and also can prevent the positive electrolyte and the negative electrolyte from being mixed with each other.
  • the outer seals 33 confronting each other are also brought into press-contact with both sides of the membrane 4 to sandwich the membrane 4 therebetween.
  • Each of the cell frames 30 has a plurality of manifolds 23 A, 23 B formed in its long sides, as shown in FIG. 1.
  • the manifolds 23 A, 23 B are arranged to form flow channels of the electrolytic solutions extending in a stacking direction of the cell frames when a number of cell frames are stacked in layers.
  • the each cell frame has four manifolds formed on its upper side and four manifolds formed on its lower side or a total of eight manifolds.
  • the manifolds arranged along the long side of the cell frame 30 are alternately used as a positive electrolyte manifold 23 A and a negative electrolyte manifold 23 B.
  • the manifolds 23 A, 23 B on the lower side of the cell frame 30 are arranged in the order of the positive electrolyte feeding manifold and the negative electrolyte feeding manifold.
  • the manifolds on the upper side of the cell frame 30 are arranged in the order of the positive electrolyte discharging manifold and the negative electrolyte discharging manifold. Diameters of these manifolds may be varied in consideration of the number and size of the cell frames so that pressure losses of the electrolytes passing through the manifolds can be reduced.
  • a center distance between these manifolds 23 A, 23 B may also be varies in consideration of the number and size of the cell frames.
  • O-rings (not shown) to seal the space between the cell frames are fitted in circular grooves 28 formed around the manifolds 23 B.
  • each cell frame 30 has, on a front side thereof, a circulation portion 24 A of the electrolyte.
  • the circulation portion 24 A comprises electrolyte guide grooves 24 A- 1 extending from the manifolds 23 A and rectifying portions 24 A- 2 for allowing the electrolyte flowing through the guide grooves 24 A- 1 to diffuse along an edge of the positive electrolyte 5 (FIG. 2).
  • the guide grooves 24 A- 1 each have a rectangular section form having a round edge.
  • there are provided a number of guide grooves 24 A- 1 each having a sectional area of not more than 5 mm 2 , so that losses caused by electric current flowing in the electrolytes can be suppressed.
  • the rectifying portions 24 A- 2 are formed by rectangular projections and depressions formed along the long side of the cell frame 30 .
  • the electrolyte is guided to the positive electrode 5 through the depressions.
  • the number and shape of the guide groove 24 A- 1 and of the rectifying portion 24 A- 2 are not limited to those illustrated in this embodiment.
  • the frame members are configured to be symmetrical with respect to a point (FIG. 1).
  • the circulation portions 24 A- 1 , 24 A- 2 in one long side of the frame member and the circulation portions in the other long side thereof are configured to be symmetrical in relation to an intersection point of diagonal lines of the frames as a center.
  • the cell frames of the frame members being joined to each other are also configured to be symmetrical with respect to the point.
  • This arrangement can provide the result that even when either of the one long side of the cell frame and the other long side of the same is put upside, the orientation of the circulation portions is kept unchanged, thus providing the advantage that the stacking work of the cell frames can be performed without paying any attention to their vertical orientations.
  • the configuration that the frame members are formed to be symmetrical with respect to the point can also provide the advantage that the frame members can be molded from the same mold, thus providing good workability.
  • the cell frames 30 have a thickness in the range of 2 mm or more to 8 mm or less, or preferably 3 mm or more to 6 mm or less. It is the reason for the limitation of the thickness of the cell frame to not less than 2 mm that for the cell frame of less than 2 mm thick, it is difficult to form the seal groove therein and also it is infeasible to apply sufficient pressure to the positive electrode 5 and the negative electrode 6 (FIG. 3) arranged between the cell frames 30 , providing an increased contact resistance with the bipolar plate 21 (FIG. 3).
  • the electrodes 5 , 6 are also increased in thickness with the increase in thickness of the cell frame, so that pressure loss is increased for a required amount of electrolytes to pass through. That is to say, when having a thickness in the range of 2 mm or more to 8 mm or less, or preferably 3 mm or more to 6 mm or less, the cell frames 30 can provide sufficient liquid seal, providing improved battery efficiencies when used for the redox flow battery.
  • the guide groove 24 A- 1 and the rectifying portion 24 A- 2 are covered with a plastic protection plate 29 , when the cell frames are stacked as shown in FIG. 2.
  • the protection plate 29 has a circular hole formed in a position corresponding to the manifold 23 A and also has a size to cover an entire area of the guide groove 24 A- 1 and the rectifying portion 24 A- 2 and an area extended slightly upwardly from the rectifying portion 24 A- 2 .
  • the protection plate 29 serves to define a circulation passage of the electrolyte by covering upper portions of the guide groove 24 A- 1 and the rectifying portion 24 A- 2 with it.
  • the protection plate 29 covering projections and depressions of the guide groove 24 A- 1 and rectifying portion 24 A- 2 serves to protect the membrane 4 from tear or damage that can be caused by the direct contact with the guide groove 24 A- 1 and the rectifying portion 24 A- 2 when the cell frames are stacked.
  • the protection plate 29 is made of sufficient size to cover the area extended slightly upwardly from the rectifying portion 24 A- 1 as well, for the purpose of providing the function as a holder to hold upper and lower end portions of the positive electrode 5 or negative electrode between the protection plate 29 and the bipolar plate 21 , to thereby produce improved workability in stacking the cell frames in layers.
  • the protection plate 29 used has thickness of not more than 1 mm.
  • the cell frame 30 has a recessed portion 29 a formed into a corresponding shape to the contour of the protection plate 29 (See FIG. 1), in order to facilitate the alignment of the protection plate 29 .
  • an outer edge of the bipolar plate 21 is positioned on broken lines indicated by A, B, C and both sides of the bipolar plate 21 are bonded to the back side of the each cell frame at a location thereof where the rectifying portion 24 A- 2 is formed.
  • This arrangement can prevent the electrolyte passing through the guide groove 24 A- 1 and the rectifying portion 24 A- 2 from contacting directly with the bipolar plate 21 .
  • the positive electrode 5 is arranged precisely along the upper edge of the rectifying portion 24 A- 2 .
  • the cell frame on the positive electrode 5 side which is the front side of the cell frame
  • the cell frame on the negative electrode side on which the negative electrode is arranged on the back side of the cell frame through the membrane 4
  • the rectifying portion to the negative electrode is provided on the back side of the cell frame as in the case of the cell frame on the positive electrode 5 side, it is omitted herein and only the guide groove 24 B- 1 is depicted by a broken line.
  • O-rings are used for both of the inner seal and the outer seal.
  • the O-rings have a diameter of cross-section of 3 mm or less.
  • the inner seal 32 (FIG. 3) and the outer seal 33 (FIG. 3) may be different in diameter of cross-section from each other. Outer diameters of the O-rings may be varied properly in accordance with the size of the cell frame 30 .
  • the membrane 4 is formed, for example, from vinyl chloride, fluorocarbon resin, polyethylene or polypropylene.
  • the membrane used has a thickness of 400 ⁇ m or less, or particularly preferably 200 ⁇ m or less, and a size slightly larger than an outer size of the frame 31 of the cell frame 30 . A lower limit on the thickness of the membrane of the order of 20 ⁇ m is provided in the present circumstances.
  • the bipolar plate 21 is a rectangular plate made of plastic carbon.
  • the positive electrode 5 is disposed on one side of the bipolar plate and the negative electrode 6 is disposed on the other side of the bipolar plate, as shown in FIG. 3.
  • This bipolar plate 21 may be formed from material comprising graphite, particles of carbon and chlorine.
  • the bipolar plate used has a thickness of 0.1-1 mm and a size slightly larger than a rectangular space formed around an inner periphery of the frame 31 .
  • the electrodes 5 , 6 used are formed of carbon fibers and are formed to have a size corresponding to the rectangular space formed around the inner periphery of the frame 31 .
  • the frame members 31 a , 31 b are molded by a mold. After a pair of frame members 31 a , 31 b are prepared, a periphery portion of the bipolar plate 21 is adhesively bonded to inner periphery portions of the pair of frame members, to form the cell frame 30 .
  • the cell frames 30 are preferably formed using transparent material that one can easily inspect the each other's bonded state of the frame members 31 a , 31 b.
  • the cell frames 30 of the present invention are stacked with the electrodes and the membranes.
  • FIG. 4 is a top view schematically showing the cell stack 40 using the cell frames 30 of the present invention.
  • FIG. 5 is a front view of the cell stack 40 .
  • FIG. 6 is a left side view of the same.
  • FIG. 7 is a right side view of the same.
  • like reference numerals denote like parts.
  • the positive electrode 5 is arranged on one side of the bipolar plate 21 of the cell frame 30 and the negative electrode 6 is arranged on the other side of the bipolar plate 21 and, then, the electrodes are held by the protection plate 29 , as shown in FIG. 2.
  • the inner seal 32 (FIG. 3) and the outer seal 33 (FIG. 3) are placed in the inner seal groove 34 and the outer seal groove 35 on both sides of the cell frame 30 , respectively.
  • the cell stack 40 is formed in such a sequence that after the cell frames 30 comprising the bipolar plate 21 , the electrodes 5 , 6 , the inner seal 32 , and the outer seal 33 are stacked in layers to form a stacked body, the end frame 41 , the plastic plate 42 made of vinyl chloride and the end plates 43 are arranged on each side of the stacked body, then tightening a number of long bolts 44 piercing from one end plate 43 to the other end plate 43 .
  • the end frame 41 is preferably formed by a copper plate having a plastic carbon sheet around an inside thereof The copper plate can be surface-treated by plating, flame spray coating, vapor deposition and the like.
  • the end frame 41 is provided with an electrical terminal 45 for electrical conduction.
  • the plastic plate 42 is provided with a feed and discharge portion 46 for feeding and discharging the electrolyte.
  • the plastic plate 42 has a thickness of 10-50 mm.
  • the end plate 43 has, around its margin 43 a , through holes (not shown) for the long bolts 44 to be extended through and also has a latticed support 43 b in a rectangular space defined in the inside of the margin 43 a , as shown in FIG. 5.
  • the end plate 43 with the latticed support 43 b is useful for bringing all areas of the end plates to be uniformly pressed on the cell frames 30 (FIG. 4) when the end plates are clamped by tightening nuts 50 at both ends of the long bolts 44 . Also, it can hold substantially the same pressing force as the conventional end plate 102 (FIG. 9) of the combination of a flat portion and a latticed portion can do.
  • the rectangular space defined in the inside of the margin 43 a of the end plate 43 is substantially in the form of a cavity, a least possible material is required for forming the end plate 43 , thus reducing the weight of the end plate and thus reducing the burden on a worker when assembling the cell stack 40 .
  • coil springs 48 are disposed around end portions of the long bolts 44 to absorb thermal expansion and contraction of the cell stack.
  • the long bolts 44 each have an insulating coating formed at center portions thereof. While the membrane 4 is sandwiched between the cell frames, as previously mentioned, an outer edge of the membrane 4 is sometimes exposed slightly from an outer edge of the cell frame. The membrane 4 is impregnated with electrolyte. If the long bolts 44 contact with the membrane 4 exposed from the outer edge of the cell frame, electrical conduction through the long bolts can be caused. Consequently, the long bolts 44 placed in the vicinity of the outer edge of the cell frame are also provided with the insulating coating portions so that the electrical conduction through the long bolts can be prevented.
  • the end plates are isolated from the ground via an insulator support 47 , in addition to the electrical isolation provided between the stacked body comprising the cell frames and the membranes and the long bolts.
  • the insulating coating can be provided by painting, fitting of insulating thermal contraction tube or winding an insulating tape.
  • the insulator support 47 serves as a support base of the cell stack, while ensuring the isolation between the cell stack 40 and the ground.
  • electrolyte supply ports 46 A, 46 B and electrolyte discharge ports 46 A′, 46 B′ are arranged on an opposite surface of the cell stack 40 to a surface of the cell stack 40 on which the electrical terminals 45 are arranged, as shown in FIGS. 4, 6, 7 .
  • This arrangement in which the electrolyte supply ports 46 A, 46 B and discharge ports 46 A′, 46 B′ are arranged in the opposite direction to the electrical terminals 45 can provide ease of maintenance as well as good workability in assembly.
  • the electrolyte supply port 46 A is for positive electrolyte and the electrolyte supply port 46 B is for negative electrolyte.
  • the electrolyte discharge port 46 A′ is for positive electrolyte and the electrolyte discharge port 46 B′ is for negative electrolyte.
  • a plate disposed over the cell stack 40 is a cover 49 .
  • Inner size 900 mm wide and 600 mm high
  • Seal groove 3 mm wide, 1 mm deep, and 5 mm in distance between grooves,
  • O-ring size 1.5 mm in diameter of cross-section of the ring, and 1,000 mm in diameter
  • Inner and outer seal grooves Arranged at the same locations on both sides of the cell frame,
  • Material Resin comprising 50 mass % vinyl chloride and 50 mass % acrylonitrile-butadiene-styrene copolymer (ABS),
  • Material Chlorinated polyethylene containing 10 mass % graphite
  • Total number of cell frames 100 in total (A set of stack body with 25 cell frames stacked in layers is temporarily held, and four sets of stack bodies, each being temporarily held, are stacked in layers),
  • Composition Vanadium ion concentration: 2.0 mol/L, Free sulfuric acid concentration: 2.0 mol/L, and Added phosphoric acid concentration: 0.3 mol/L,
  • Rate of spring of coil spring 1,000 (N/m),
  • Inner size 900 mm wide and 300 mm high
  • Seal groove 2 mm wide, 1 mm deep, and 5 mm in distance between grooves,
  • O-ring size 1.5 mm in diameter of cross-section of the ring, and 750 mm in diameter
  • Inner and outer seal grooves Arranged on both sides of the cell frame at the locations shifted 8 mm away from each other,
  • Material Resin comprising 90 mass % vinyl chloride and 10 mass % acrylonitrile-butadiene-styrene copolymer (ABS),
  • Total number of cell frames 75 in total (A set of stack body with 25 cell frames stacked in layers is temporarily held, and three sets of stack bodies, each being temporarily held, are stacked in layers),
  • Rate of spring of coil spring 1,600 (N/m),
  • the cell frame for the redox flow battery and the redox flow battery using the cell frame can provide following effects.
  • the double seal arrangement of the inner and outer seals can prevent the electrolyte from leaking out of the cell frames more effectively.
  • the outer seal and the inner seal are spaced apart from each other at a distance so that a break in the membrane cannot be propagated inwardly, there is provided the advantage that even when a break is produced in the membrane, the electrolyte can be substantially completely prevented from leaking out of the cell frames from the break in the membrane.
  • the membrane need not be fabricated with high precision or need not be located so precisely, thus providing very good workability in assembly of the battery.
  • the frame members being configured to be symmetrical in relation to an intersection point of diagonal lines of the frames as a center, the frame members can be molded from the same mold, without any need to change the mold for each frame member, thus providing good productivity and economical efficiency. Further, as a result of the frame members being configured to be symmetrical with respect to a point, the cell frames joined to each other also come to be symmetrical with respect to the point. This can provide the result that when stacked, the frame members can be stacked without specifying the orientation of the frame members, thus achieving good workability in assembly.

Abstract

This invention provides a cell frame for a redox flow battery that prevents leakage of electrolyte out of the cell frame and also provides a good workability in assembling the redox flow battery. Also, this invention provides a redox flow battery using the cell frame. In the cell frame 30 for the redox flow battery 30 comprising a bipolar plate 21 and a frame 31 fitted around a periphery of the bipolar plate 21, the frame 31 has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte. The frame 31 has, on each side thereof, an inner seal groove 34 and an outer seal groove 35 for placing therein the inner seal and the outer seal, respectively, to prevent the electrolyte from leaking out, and O-rings are placed in the respective seal grooves.

Description

    TECHNICAL FIELD
  • The present invention relates to a cell frame for a redox flow battery designed to effectively prevent leakage of electrolyte out of the cell frame and to a redox flow battery using the same. [0001]
  • BACKGROUND ART
  • Referring to FIG. 8, there is shown an explanatory view showing an operating principle of a conventional redox flow secondary battery. The redox flow battery has a [0002] cell 1 separated into a positive electrode cell 1A and a negative electrode cell 1B by a membrane 4 that can allow ions to pass through. The positive electrode cell 1A and the negative electrode cell 1B include a positive electrode 5 and a negative electrode 6, respectively. A positive electrode tank 2 for feeding and discharging positive electrolytic solution to and from the positive electrode cell 1A is connected to the positive electrode cell 1A through conduit pipes 7, 8. Similarly, a negative electrode tank 3 for feeding and discharging negative electrolytic solution to and from the negative electrode cell 1B is connected to the negative electrode cell 1B through conduit pipes 10, 11. Aqueous solution containing ions that change in valence, such as vanadium ion, is used for the positive and negative electrolytes. The electrolyte containing the ions is circulated by using pumps 9, 12, to charge and discharge with the change in ionic valence at the positive electrodes 5 and negative electrodes 6.
  • Referring to FIG. 9, there is shown a diagrammatic illustration of construction of a cell stack used for the redox flow battery mentioned above. This type of battery usually uses the construction which is called a [0003] cell stack 100 comprising a plurality of cell frames 20 stacked in layers.
  • The [0004] cell stack 100 comprises a stack body formed by a cell frame 20, a positive electrode 5 made of carbon felt, a membrane 4, a negative electrode 6 made of carbon felt and the cell frame 20 being repeatedly stacked in this sequence. End plates are arranged at both sides of the stack body and are clamped onto the both sides of the stack body by tightening nuts screwably engaged with long bolts 101 piercing the both end plates, to thereby produce the cell stack 100.
  • The [0005] cell frame 20 comprises a bipolar plate 21 made of plastic carbon and a frame 22 formed around a periphery of the bipolar plate. The cell frame 22 usually has, in lower and upper sides thereof, holes which are called manifolds 23A, 23B for feeding and discharging the electrolytes to and from their respective cells and guide grooves 24 extending continuously from the manifolds for guiding the electrolyte to the electrodes 5, 6.
  • Referring now to FIG. 10, there is shown a partially enlarged view schematically showing a section around a frame when conventional cell frames are stacked in layer. A seal using an O-ring (FIG. 10([0006] a)-(c)) disclosed by Japanese Laid-open (Unexamined) Patent Publication No. 2000-260460 and a seal using a flat packing (FIG. 10(d)) disclosed by Japanese Laid-open (Unexamined) Patent Publication No. Hei 8-7913 are known as a mechanism for preventing leakage of electrolyte from between the cell frames.
  • [0007] Cell frames 20 a shown in FIG. 10(a) each have O-ring grooves 25 formed at locations opposite to each other on both sides thereof, one for each side, and O-rings 26 are fitted in the O-ring grooves 25.
  • [0008] Cell frames 20 b shown in FIG. 10(b) each have an inner O-ring groove 25 a formed on one side thereof and an outer O-ring groove 25 b formed on the other side, both grooves being provided at locations staggered with respect to each other, and an inner O-ring 26 a and an outer O-ring 26 b are fitted in the grooves 25 a, 25 b, respectively.
  • [0009] Cell frames 20 c shown in FIG. 10(c) each have the inner O-ring groove 25 a and the outer O-ring groove 25 b, different in size from each other, which are formed on one side thereof, so that one pair of the grooves 25 a, 25 b is arranged in parallel with each other, and the inner O-ring 26 a and the outer O-ring 26 b are fitted in the grooves 25 a, 25 b, respectively, as is the case with the above.
  • [0010] Cell frames 20 d shown in FIG. 10(d) each have a flat packing 27, corresponding in shape to the cell frame 20 d, which is arranged on each side.
  • For a redox flow battery of a relatively small size, a seal using a heat fusion bonding method listed in “provisions for power storage battery system” is also known. [0011]
  • The cell stacks using the conventional cell frames described above have the following problems, however. [0012]
  • (1) It is difficult to prevent leakage of electrolyte from between the cell frames effectively, [0013]
  • [0014]
    Figure US20040170893A1-20040902-P00001
    In the cell stack using the cell frames 20 a-20 c shown in FIG. 10(a)-(c), part of the membrane 4 projected outwardly of the O- ring 26, 26 a is not kept in its wet condition due to dryness and thus is sometimes broken. When the break in the membrane progresses inwardly with respect to the O- ring 26, 26 a, there is a possibility that the electrolyte may leak out of the cell frames 20 a-20 c through that break.
  • [0015]
    Figure US20040170893A1-20040902-P00002
    The flat packing 27 shown in FIG. 10(d) is desirable for the cell frame of a large area to produce a high capacity. However, when the cell frames 20 d are stacked in layers, with the flat packing 27 interposed therebetween, the flat packing 27 must be positioned precisely with respect to the cell frames and also the cell frames 20 d stacked in layers must be clamped uniformly by a number of long bolts 101, in order to prevent the leakage of electrolyte.
  • (2) Workability in a cell stack assembly is poor [0016]
  • [0017]
    Figure US20040170893A1-20040902-P00001
    In the cell stack using the cell frames 20 b, 20 c shown in FIG. 10(b) and (c), since the membrane 4 between the cell frames is set so that its periphery is positioned to be above the inner O-ring 26 a but inside of the outer O-ring 26 b, the membrane 4 must be cut to extremely close tolerance. In addition, the membrane 4 cut with a very high degree of precision must be aligned to the cell frames precisely, thus involving very poor workability in producing the cell stack.
  • [0018]
    Figure US20040170893A1-20040902-P00002
    In the cell stack using the flat packing 27 shown in FIG. 10(d), the flat packing 27 must be also aligned to the cell frames 20 d precisely, thus involving very poor workability in assembling the cell stack.
  • [0019]
    Figure US20040170893A1-20040902-P00003
    In the seal using a heat fusion bonding method, as a size of the cell frame increases, the fusion bonding work becomes complicated, involving difficulties in the application of the seal. Also, the use of this type of seal causes cost increase.
  • Accordingly, it is a primary object of the present invention to provide a cell frame for a redox flow battery that effectively prevents leakage of electrolyte out of the cell frame and also provides a good workability in assembling the redox flow battery. [0020]
  • It is another object of the present invention to provide a redox flow battery using that cell frame. [0021]
  • DISCLOSURE OF THE INVENTION
  • The present invention provides a novel cell frame for a redox flow battery comprising a bipolar plate and a frame formed around a periphery of the bipolar plate, wherein the frame has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte. [0022]
  • In the cell frame for the redox flow battery of the present invention, when the cell frames are stacked with the membrane sandwiched therebetween, the membrane is held in sandwich relation between the inner seals and the outer seals. Then, the inner seals mainly work to prevent leakage of the electrolytes to the outside of the cell stack and mixture of the positive electrolyte and the negative electrolyte. The outer seals work to prevent a break in the membrane caused by dryness from propagating inwardly with respect to the outer seals, thereby preventing the leakage of the electrolytes to the outside of the cell stack. In short, according to the present invention, the membrane is held in sandwich relation between both the inner seals and the outer seals, thereby preventing the break in the membrane from progressing inwardly from a location where the membrane is sandwiched between the inner seals. Thus, this double seal arrangement of the present invention can ensure a high reliability with which the electrolytes are prevented from leaking out of the cell frame. [0023]
  • The arrangement of the outer seals can allow slight projection of the membrane from a periphery of the cell frames. Due to this, strictness is not required for fabrication precision of the membrane and positional precision of the membrane to the cell frame, thus providing very good workability in assembling the cell stack by stacking the cell frames in layers. Further, the double seal arrangement can also serve to surely keep the membrane sandwiched between the cell frames in the wet condition. [0024]
  • In the following, the present invention will be described in detail. [0025]
  • An O-ring is preferably used for both the inner seal and the outer seal. At least the inner seal should preferably be in the form of the O-ring, though a flat packing may be used for the outer seal. The cell frame may previously be provided with a groove suitable for the flat packing and an O-ring groove. [0026]
  • Preferably, the grooves for fitting therein the O-ring or the flat packing are provided at locations correspond to each other on both sides of the cell frame. The grooves may alternatively be provided at locations staggered with respect to each other on both sides of the cell frame when the cell frames having both seals are disposed opposite to each other. [0027]
  • It is preferable that the inner seal and the outer seal are spaced apart from each other at a distance so that even when the membrane is dried and thereby broken, the break in the membrane cannot easily be propagated inwardly from the inner seal. To be more specific, the inner seal and the outer seal are spaced apart from each other at a distance of 1 mm or more. The distance means a distance between center lines of the both grooves. [0028]
  • In the cell frame for the redox flow battery of the present invention, it is preferable that the cell frame is provided with a manifold serving as a flow channel of the electrolyte and a guide groove for guiding the electrolyte from the manifold to an inside of the frame, and the guide groove has a sectional area of 5 mm[0029] 2 or less. The sectional area defined herein is a sectional area of a single guide groove when a plurality of guide grooves are formed. As the sectional area of the guide groove increases, a quantity of electrolyte flowing through the single guide groove increases and thereby losses caused by electric current flowing in the electrolytes increase. Also, in the case where the guide groove has a large sectional area, when the cell frames are stacked and clamped, the clamping force is supported by a space in the groove, so there is the possibility that the space in the groove may be flattened out to break the groove, depending on a magnitude of the clamping force. Accordingly, the present invention specifies the sectional area of the guide groove, in order to suppress the losses caused by the electric current flowing in the electrolyte.
  • It is preferable that two or more manifolds are arranged on each of the upper and lower sides of the frame of the cell frame. By increasing the number of electrolyte circulation holes, pressure losses in the electrolyte circulation can be reduced substantially. The manifolds on the lower side of the cell frame may be used for feeding the respective electrolytes and the manifolds on the upper side of the cell frame may be used for discharging the respective electrolytes. For further reduction of the pressure losses in the electrolyte circulation, a diameter of the manifold is preferably in the range of 1%-5% of a total width of the cell frame. Also, a center distance between adjacent manifolds is preferably in the range of 5%-50% of a total width of the cell frame. The center distance is specified for making uniform the flow of the electrolyte in the widthwise direction in the interior of the cell frame. [0030]
  • The cell frame of the present invention is preferably formed to be so transparent that one can easily inspect the each other's bonded state of the frame members and the bonded state of the frame member to the bipolar plate. Particularly, the cell frame may be formed into shape by an injection molding using resin. There are two methods of integrating the frame and the bipolar plate. [0031]
    Figure US20040170893A1-20040902-P00001
    One method is that two frame members produced in an injection molding and the like are prepared and joined together to form the frame and also an outer periphery of the bipolar plate is sandwiched between inner peripheries of the both frame members.
    Figure US20040170893A1-20040902-P00002
    Another one is that the frame is formed in the injection molding using the bipolar plate as a core.
  • It is preferable that the each frame is configured so that the locations of the manifolds and the guide grooves can be symmetrical in relation to an intersection point of diagonal lines of the frame members as a center. The frame members symmetrical with respect to a point can all be formed into the same configuration, because they can be combined with each other by simply changing orientation. Thus, the frame members can be molded from the same mold, thus providing good productivity. [0032]
  • In the redox flow battery using the cell frame of the present invention, it is preferable that the membrane has a thickness of 400 μm or less. This is because the membrane having a thickness of 400 μm or less is desirable in that it can provide reduced inner electrical resistance and thus improved battery efficiency. [0033]
  • Also, in the redox flow battery using the cell frame of the present invention, it is preferable that electric terminals for taking out electricity from the electrodes and feeding and discharging portions for feeding and discharging electrolytes to and from the electrodes are arranged on the opposite sides of the cell stack. This arrangement wherein the electric terminals and the feeding and discharging portions are arranged on the opposite side to each other can provide ease of maintenance as well as good workability in assembly of the battery. Further, this arrangement can provide the advantage that even when the electrolyte leaks from the supply/discharge portions, the electrical terminals are kept out of the leakage of the electrolyte, so that there is little possibility that electric current may pass through a power line.[0034]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a frame member forming a cell frame of the present invention. [0035]
  • FIG. 2 is a partially enlarged view of an area in the vicinity of the frame of the cell frames of the present invention stacked in layer. [0036]
  • FIG. 3 is a partially enlarged view schematically showing a section around the frame of the cell frames of the present invention stacked in layer. [0037]
  • FIG. 4 is a top view schematically showing the cell stack using the cell frames of the present invention. [0038]
  • FIG. 5 is a front view of the cell stack using the cell frames of the present invention. [0039]
  • FIG. 6 is a left side view of the cell stack using the cell frames of the present invention. [0040]
  • FIG. 7 is a right side view of the cell stack using the cell frames of the present invention. [0041]
  • FIG. 8 is an explanatory view of an operating principle of the conventional redox flow battery. [0042]
  • FIG. 9 is a diagrammatic illustration of construction view of the cell stack used for the redox flow battery. [0043]
  • FIG. 10 is a partially enlarged view schematically showing a section around a frame of conventional cell frames when stacked in layer.[0044]
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • In the following, certain preferred embodiments of the present invention are described. [0045]
  • A redox flow battery of the present invention operates in the same operation principle as that of the redox flow battery shown in FIGS. 8, 9, using a basically common overall cell stack construction. In the following, the components of the cell stack will be described in detail. [0046]
  • FIG. 1 is a plan view of a frame member forming a cell frame of the present invention. FIG. 2 is a partially enlarged view of an area in the vicinity of the frame of the cell frames of the present invention stacked in layer. FIG. 3 is a partially enlarged view schematically showing a section around the same frame. In illustration, like reference numerals denote like parts. [0047]
  • (Cell Frame) [0048]
  • Cell frames [0049] 30 of the present invention each comprises a bipolar plate 21 and a frame 31 formed around a periphery of the bipolar plate 21, as shown in FIG. 2. The cell frames 30 are stacked with each other, sandwiching therebetween a membrane 4 for allowing ions in electrolyte to pass through (FIG. 3). An inner seal 32 (FIG. 3) and an outer seal 33 (FIG. 3) for preventing leakage of electrolyte out of the frame 31 are arranged on each side of the frame 31. When the cell frames 30 are stacked with each other sandwiching the membrane 4 therebetween, those cell frames are press-contacted with both sides of the membrane 4 to hold the membrane 4 in sandwich relation between the seals 32, 33.
  • In the [0050] cell frame 30, the bipolar plate 21 is disposed between a pair of frame members 31 a, 31 b forming the frame 31, so that an outer periphery of the bipolar plate 21 is joined to inner peripheries of the frame members 31 a, 31 b. The frame members 31 a, 31 b forming this cell frame 30 are formed by an injection molding or equivalent using plastics or rubbers, including vinyl chloride resin, polypropylene, polyethylene, fluorocarbon resin, and epoxy resin. A variety of materials may be used for the frame members 31 a, 31 b, as long as they have acid resistance, electrical insulating properties and mechanical strength.
  • The [0051] cell frame 30 has, on each side thereof, an inner seal groove 34 for fitting therein the inner seal 32 (FIG. 3) and an outer seal groove 35 for fitting therein the outer seal 33 (FIG. 3) which are arranged to extend in parallel along a periphery of the cell frame (See FIG. 1). The both seal grooves 34, 35 are spaced apart from each other at a distance of not less than 1 mm. In this embodiment, the seal grooves 34, 35 are provided at locations correspond to each other on both sides of the cell frame 30. The seal grooves 34, 35 may alternatively be provided at locations staggered with respect to each other on both sides of the cell frame 30.
  • The cell frames [0052] 30, each having a double seal arrangement of the seals 32, 33, can prevent the electrolyte from leaking out of the cell frames 30 when stacked in layers. In detail, when the cell frames 30 are stacked in layers and then clamped by long bolts, the inner seals 32 confronting each other are brought into press-contact with both sides of the membrane 4 (FIG. 3) to sandwich the membrane 4 therebetween. This can prevent the electrolyte from leaking out of the cell frames 30 while streaming along the membrane 4 and also can prevent the positive electrolyte and the negative electrolyte from being mixed with each other. Also, the outer seals 33 confronting each other are also brought into press-contact with both sides of the membrane 4 to sandwich the membrane 4 therebetween. This can provide the result that even when part of the membrane 4 projected outwardly from the outer seals 33 is broken due to dryness, the outer seals 33 can prevent the break in the membrane from progressing inwardly with respect to the outer seals 33, to prevent the electrolyte from leaking out of the cell frames 30 through the break in the membrane 4.
  • Each of the cell frames [0053] 30 has a plurality of manifolds 23A, 23B formed in its long sides, as shown in FIG. 1. The manifolds 23A, 23B are arranged to form flow channels of the electrolytic solutions extending in a stacking direction of the cell frames when a number of cell frames are stacked in layers. In the illustrated embodiment, the each cell frame has four manifolds formed on its upper side and four manifolds formed on its lower side or a total of eight manifolds. The manifolds arranged along the long side of the cell frame 30 are alternately used as a positive electrolyte manifold 23A and a negative electrolyte manifold 23B. The manifolds 23A, 23B on the lower side of the cell frame 30 are arranged in the order of the positive electrolyte feeding manifold and the negative electrolyte feeding manifold. The manifolds on the upper side of the cell frame 30 are arranged in the order of the positive electrolyte discharging manifold and the negative electrolyte discharging manifold. Diameters of these manifolds may be varied in consideration of the number and size of the cell frames so that pressure losses of the electrolytes passing through the manifolds can be reduced. In addition, a center distance between these manifolds 23A, 23B may also be varies in consideration of the number and size of the cell frames. O-rings (not shown) to seal the space between the cell frames are fitted in circular grooves 28 formed around the manifolds 23B.
  • Further, the each [0054] cell frame 30 has, on a front side thereof, a circulation portion 24A of the electrolyte. The circulation portion 24A comprises electrolyte guide grooves 24A-1 extending from the manifolds 23A and rectifying portions 24A-2 for allowing the electrolyte flowing through the guide grooves 24A-1 to diffuse along an edge of the positive electrolyte 5 (FIG. 2). The guide grooves 24A-1 each have a rectangular section form having a round edge. In this embodiment, there are provided a number of guide grooves 24A-1, each having a sectional area of not more than 5 mm2, so that losses caused by electric current flowing in the electrolytes can be suppressed. The rectifying portions 24A-2 are formed by rectangular projections and depressions formed along the long side of the cell frame 30. The electrolyte is guided to the positive electrode 5 through the depressions. The number and shape of the guide groove 24A-1 and of the rectifying portion 24A-2 are not limited to those illustrated in this embodiment.
  • In the illustrated embodiment, the frame members are configured to be symmetrical with respect to a point (FIG. 1). Specifically, the [0055] circulation portions 24A-1, 24A-2 in one long side of the frame member and the circulation portions in the other long side thereof are configured to be symmetrical in relation to an intersection point of diagonal lines of the frames as a center. Thus, the cell frames of the frame members being joined to each other are also configured to be symmetrical with respect to the point. This arrangement can provide the result that even when either of the one long side of the cell frame and the other long side of the same is put upside, the orientation of the circulation portions is kept unchanged, thus providing the advantage that the stacking work of the cell frames can be performed without paying any attention to their vertical orientations. In addition, the configuration that the frame members are formed to be symmetrical with respect to the point can also provide the advantage that the frame members can be molded from the same mold, thus providing good workability.
  • Preferably, the cell frames [0056] 30 have a thickness in the range of 2 mm or more to 8 mm or less, or preferably 3 mm or more to 6 mm or less. It is the reason for the limitation of the thickness of the cell frame to not less than 2 mm that for the cell frame of less than 2 mm thick, it is difficult to form the seal groove therein and also it is infeasible to apply sufficient pressure to the positive electrode 5 and the negative electrode 6 (FIG. 3) arranged between the cell frames 30, providing an increased contact resistance with the bipolar plate 21 (FIG. 3). On the other hand, it is the reason for the limitation of the thickness of the cell frame to not more than 8 mm that for the cell frame of more than 8 mm thick, the electrodes 5, 6 are also increased in thickness with the increase in thickness of the cell frame, so that pressure loss is increased for a required amount of electrolytes to pass through. That is to say, when having a thickness in the range of 2 mm or more to 8 mm or less, or preferably 3 mm or more to 6 mm or less, the cell frames 30 can provide sufficient liquid seal, providing improved battery efficiencies when used for the redox flow battery.
  • The [0057] guide groove 24A-1 and the rectifying portion 24A-2 are covered with a plastic protection plate 29, when the cell frames are stacked as shown in FIG. 2. The protection plate 29 has a circular hole formed in a position corresponding to the manifold 23A and also has a size to cover an entire area of the guide groove 24A-1 and the rectifying portion 24A-2 and an area extended slightly upwardly from the rectifying portion 24A-2. The protection plate 29 serves to define a circulation passage of the electrolyte by covering upper portions of the guide groove 24A-1 and the rectifying portion 24A-2 with it. Also, the protection plate 29 covering projections and depressions of the guide groove 24A-1 and rectifying portion 24A-2 serves to protect the membrane 4 from tear or damage that can be caused by the direct contact with the guide groove 24A-1 and the rectifying portion 24A-2 when the cell frames are stacked. The protection plate 29 is made of sufficient size to cover the area extended slightly upwardly from the rectifying portion 24A-1 as well, for the purpose of providing the function as a holder to hold upper and lower end portions of the positive electrode 5 or negative electrode between the protection plate 29 and the bipolar plate 21, to thereby produce improved workability in stacking the cell frames in layers. The protection plate 29 used has thickness of not more than 1 mm. Also, the cell frame 30 has a recessed portion 29 a formed into a corresponding shape to the contour of the protection plate 29 (See FIG. 1), in order to facilitate the alignment of the protection plate 29.
  • As shown in FIG. 2, an outer edge of the [0058] bipolar plate 21 is positioned on broken lines indicated by A, B, C and both sides of the bipolar plate 21 are bonded to the back side of the each cell frame at a location thereof where the rectifying portion 24A-2 is formed. This arrangement can prevent the electrolyte passing through the guide groove 24A-1 and the rectifying portion 24A-2 from contacting directly with the bipolar plate 21. The positive electrode 5 is arranged precisely along the upper edge of the rectifying portion 24A-2. Although only the construction of the cell frame on the positive electrode 5 side, which is the front side of the cell frame, has been described above, the cell frame on the negative electrode side, on which the negative electrode is arranged on the back side of the cell frame through the membrane 4, has the same construction. While the rectifying portion to the negative electrode is provided on the back side of the cell frame as in the case of the cell frame on the positive electrode 5 side, it is omitted herein and only the guide groove 24B-1 is depicted by a broken line.
  • (Seal) [0059]
  • In this embodiment, O-rings are used for both of the inner seal and the outer seal. Preferably, the O-rings have a diameter of cross-section of 3 mm or less. The inner seal [0060] 32 (FIG. 3) and the outer seal 33 (FIG. 3) may be different in diameter of cross-section from each other. Outer diameters of the O-rings may be varied properly in accordance with the size of the cell frame 30.
  • (Membrane) [0061]
  • Material that allows ions to pass through, such as an ion-exchange membrane, is used for the [0062] membrane 4. The membrane 4 is formed, for example, from vinyl chloride, fluorocarbon resin, polyethylene or polypropylene. The membrane used has a thickness of 400 μm or less, or particularly preferably 200 μm or less, and a size slightly larger than an outer size of the frame 31 of the cell frame 30. A lower limit on the thickness of the membrane of the order of 20 μm is provided in the present circumstances.
  • (Bipolar Plate and Electrode) [0063]
  • The [0064] bipolar plate 21 is a rectangular plate made of plastic carbon. The positive electrode 5 is disposed on one side of the bipolar plate and the negative electrode 6 is disposed on the other side of the bipolar plate, as shown in FIG. 3. This bipolar plate 21 may be formed from material comprising graphite, particles of carbon and chlorine. The bipolar plate used has a thickness of 0.1-1 mm and a size slightly larger than a rectangular space formed around an inner periphery of the frame 31. The electrodes 5, 6 used are formed of carbon fibers and are formed to have a size corresponding to the rectangular space formed around the inner periphery of the frame 31.
  • (Assembling Sequence of Cell Stack) [0065]
  • First of all, the fabrication sequence of the [0066] cell frame 30 of the present invention will be described. The frame members 31 a, 31 b are molded by a mold. After a pair of frame members 31 a, 31 b are prepared, a periphery portion of the bipolar plate 21 is adhesively bonded to inner periphery portions of the pair of frame members, to form the cell frame 30. The cell frames 30 are preferably formed using transparent material that one can easily inspect the each other's bonded state of the frame members 31 a, 31 b.
  • Then, the cell frames [0067] 30 of the present invention are stacked with the electrodes and the membranes.
  • FIG. 4 is a top view schematically showing the [0068] cell stack 40 using the cell frames 30 of the present invention. FIG. 5 is a front view of the cell stack 40. FIG. 6 is a left side view of the same. FIG. 7 is a right side view of the same. In the diagrams, like reference numerals denote like parts.
  • First, the [0069] positive electrode 5 is arranged on one side of the bipolar plate 21 of the cell frame 30 and the negative electrode 6 is arranged on the other side of the bipolar plate 21 and, then, the electrodes are held by the protection plate 29, as shown in FIG. 2. The inner seal 32 (FIG. 3) and the outer seal 33 (FIG. 3) are placed in the inner seal groove 34 and the outer seal groove 35 on both sides of the cell frame 30, respectively.
  • The [0070] cell stack 40 is formed in such a sequence that after the cell frames 30 comprising the bipolar plate 21, the electrodes 5, 6, the inner seal 32, and the outer seal 33 are stacked in layers to form a stacked body, the end frame 41, the plastic plate 42 made of vinyl chloride and the end plates 43 are arranged on each side of the stacked body, then tightening a number of long bolts 44 piercing from one end plate 43 to the other end plate 43. The end frame 41 is preferably formed by a copper plate having a plastic carbon sheet around an inside thereof The copper plate can be surface-treated by plating, flame spray coating, vapor deposition and the like. The end frame 41 is provided with an electrical terminal 45 for electrical conduction. The plastic plate 42 is provided with a feed and discharge portion 46 for feeding and discharging the electrolyte. Preferably, the plastic plate 42 has a thickness of 10-50 mm.
  • The [0071] end plate 43 has, around its margin 43 a, through holes (not shown) for the long bolts 44 to be extended through and also has a latticed support 43 b in a rectangular space defined in the inside of the margin 43 a, as shown in FIG. 5. The end plate 43 with the latticed support 43 b is useful for bringing all areas of the end plates to be uniformly pressed on the cell frames 30 (FIG. 4) when the end plates are clamped by tightening nuts 50 at both ends of the long bolts 44. Also, it can hold substantially the same pressing force as the conventional end plate 102 (FIG. 9) of the combination of a flat portion and a latticed portion can do. In addition, since the rectangular space defined in the inside of the margin 43 a of the end plate 43 is substantially in the form of a cavity, a least possible material is required for forming the end plate 43, thus reducing the weight of the end plate and thus reducing the burden on a worker when assembling the cell stack 40. Also, coil springs 48 are disposed around end portions of the long bolts 44 to absorb thermal expansion and contraction of the cell stack.
  • In this embodiment, the [0072] long bolts 44 each have an insulating coating formed at center portions thereof. While the membrane 4 is sandwiched between the cell frames, as previously mentioned, an outer edge of the membrane 4 is sometimes exposed slightly from an outer edge of the cell frame. The membrane 4 is impregnated with electrolyte. If the long bolts 44 contact with the membrane 4 exposed from the outer edge of the cell frame, electrical conduction through the long bolts can be caused. Consequently, the long bolts 44 placed in the vicinity of the outer edge of the cell frame are also provided with the insulating coating portions so that the electrical conduction through the long bolts can be prevented. In the cell stack, the end plates are isolated from the ground via an insulator support 47, in addition to the electrical isolation provided between the stacked body comprising the cell frames and the membranes and the long bolts. The insulating coating can be provided by painting, fitting of insulating thermal contraction tube or winding an insulating tape. The insulator support 47 serves as a support base of the cell stack, while ensuring the isolation between the cell stack 40 and the ground.
  • In this embodiment, [0073] electrolyte supply ports 46A, 46B and electrolyte discharge ports 46A′, 46B′ are arranged on an opposite surface of the cell stack 40 to a surface of the cell stack 40 on which the electrical terminals 45 are arranged, as shown in FIGS. 4, 6, 7. This arrangement in which the electrolyte supply ports 46A, 46B and discharge ports 46A′, 46B′ are arranged in the opposite direction to the electrical terminals 45 can provide ease of maintenance as well as good workability in assembly. Further, this arrangement can provide the advantage that even when the electrolyte leaks from the supply/discharge portions 46, the electrical terminals 45 are kept out of the leakage of the electrolyte, so that there is little possibility that electric current may pass through a power line. The electrolyte supply port 46A is for positive electrolyte and the electrolyte supply port 46B is for negative electrolyte. Also, the electrolyte discharge port 46A′ is for positive electrolyte and the electrolyte discharge port 46B′ is for negative electrolyte. A plate disposed over the cell stack 40 is a cover 49.
  • EXAMPLE 1
  • Using the cell stack mentioned above, a redox flow secondary battery was produced, and battery performances and discharge possible power of that redox flow secondary battery were measured. Data on material, size, and others of the cell stack and measurement results are shown below. [0074]
  • <Frame>[0075]
  • Size [0076]
  • Outer size: 1,000 mm wide, 800 mm high, and 5 mm thick, [0077]
  • Inner size: 900 mm wide and 600 mm high, [0078]
  • Seal groove: 3 mm wide, 1 mm deep, and 5 mm in distance between grooves, [0079]
  • O-ring size: 1.5 mm in diameter of cross-section of the ring, and 1,000 mm in diameter, [0080]
  • Inner and outer seal grooves: Arranged at the same locations on both sides of the cell frame, [0081]
  • Ratio of diameter of manifold to total width of cell frame: 3%, [0082]
  • Ratio of distance between adjacent manifolds to total width of cell frame: 30%, [0083]
  • Cross-sectional area of guide groove: 5 mm[0084] 2,
  • Material: Resin comprising 50 mass % vinyl chloride and 50 mass % acrylonitrile-butadiene-styrene copolymer (ABS), [0085]
  • Manufacturing process: Injection molding, [0086]
  • <Bipolar Plate>[0087]
  • Size: 0.5 mm thick, [0088]
  • Material: Chlorinated polyethylene containing 10 mass % graphite, [0089]
  • <Electrode>[0090]
  • Material: Carbon felt, [0091]
  • <Stack Structure>[0092]
  • Total number of cell frames: 100 in total (A set of stack body with 25 cell frames stacked in layers is temporarily held, and four sets of stack bodies, each being temporarily held, are stacked in layers), [0093]
  • <Electrolyte>[0094]
  • Composition: Vanadium ion concentration: 2.0 mol/L, Free sulfuric acid concentration: 2.0 mol/L, and Added phosphoric acid concentration: 0.3 mol/L, [0095]
  • Quantity of electrolyte: 20 m[0096] 3,
  • <Clamping Mechanism>[0097]
  • Number of long bolts: 20, [0098]
  • Rate of spring of coil spring: 1,000 (N/m), [0099]
  • Active coils: 3.0, [0100]
  • Contraction from free length of coil spring when clamped: 30 mm, [0101]
  • <Results>[0102]
  • Battery efficiency: 86%, [0103]
  • Discharge possible power: 350 kWH, [0104]
  • Others: It was found that even when the cell stack was thermally expanded and contracted during operation, no problem occurred and no leakage of electrolyte from between the cell frames occurred, either. [0105]
  • EXAMPLE 2
  • Using the cells of the present invention, a different redox flow secondary battery from that of Example 1 was produced, and battery performances and discharge possible power of that redox flow secondary battery was measured. Differences in data on material, size, and others of the cell stack from those of Example 1 and measurement results are shown below. [0106]
  • <Frame>[0107]
  • Size [0108]
  • Outer size: 1,000 mm wide, 500 mm high, and 4 mm thick, [0109]
  • Inner size: 900 mm wide and 300 mm high, [0110]
  • Seal groove: 2 mm wide, 1 mm deep, and 5 mm in distance between grooves, [0111]
  • O-ring size: 1.5 mm in diameter of cross-section of the ring, and 750 mm in diameter, [0112]
  • Inner and outer seal grooves: Arranged on both sides of the cell frame at the locations shifted 8 mm away from each other, [0113]
  • Ratio of diameter of manifold to total width of cell frame: 2%, [0114]
  • Ratio of distance between adjacent manifolds to total width of cell frame: 35%, [0115]
  • Material: Resin comprising 90 mass % vinyl chloride and 10 mass % acrylonitrile-butadiene-styrene copolymer (ABS), [0116]
  • <Bipolar Plate>[0117]
  • Size: 0.1 mm thick, [0118]
  • Material: Chlorinated polyethylene containing 10 mass % graphite, [0119]
  • <Stack Structure>[0120]
  • Total number of cell frames: 75 in total (A set of stack body with 25 cell frames stacked in layers is temporarily held, and three sets of stack bodies, each being temporarily held, are stacked in layers), [0121]
  • <Clamping Mechanism>[0122]
  • Number of long bolts: 24, [0123]
  • Rate of spring of coil spring: 1,600 (N/m), [0124]
  • Active coils: 2.5, [0125]
  • Contraction from free length of coil spring when clamped: 15 mm, [0126]
  • <Results>[0127]
  • Battery efficiency: 87%, [0128]
  • Discharge possible power: 450 kWH, [0129]
  • Others: It was found that even when the cell stack was thermally expanded and contracted during operation, no problem occurred and no leakage of electrolyte from between the cell frames occurred, either. [0130]
  • Capabilities of Exploitation in Industry [0131]
  • As discussed above, the cell frame for the redox flow battery and the redox flow battery using the cell frame can provide following effects. [0132]
  • The double seal arrangement of the inner and outer seals can prevent the electrolyte from leaking out of the cell frames more effectively. Particularly when the outer seal and the inner seal are spaced apart from each other at a distance so that a break in the membrane cannot be propagated inwardly, there is provided the advantage that even when a break is produced in the membrane, the electrolyte can be substantially completely prevented from leaking out of the cell frames from the break in the membrane. [0133]
  • Also, since this arrangement can allow slight projection of the membrane from the outer periphery of the cell frames, the membrane need not be fabricated with high precision or need not be located so precisely, thus providing very good workability in assembly of the battery. [0134]
  • By the manifolds and a number of guide grooves having a sectional area of 5 mm[0135] 2 or less being arranged in the cell frame, pressure losses of the electrolytes passing through the manifolds can be reduced and losses caused by electric current flowing in the electrolytes can be suppressed, thus providing improved battery efficiencies.
  • By the frame members being configured to be symmetrical in relation to an intersection point of diagonal lines of the frames as a center, the frame members can be molded from the same mold, without any need to change the mold for each frame member, thus providing good productivity and economical efficiency. Further, as a result of the frame members being configured to be symmetrical with respect to a point, the cell frames joined to each other also come to be symmetrical with respect to the point. This can provide the result that when stacked, the frame members can be stacked without specifying the orientation of the frame members, thus achieving good workability in assembly. [0136]

Claims (9)

1. A cell frame for a redox flow battery comprising a bipolar plate and a frame fitted around a periphery of the bipolar plate,
wherein the frame has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte.
2. The cell frame for the redox flow battery according to claim 1, wherein the inner seal is an O-ring.
3. The cell frame for the redox flow battery according to claim 1, wherein the inner seal and the outer seal are spaced apart from each other at a distance of 1 mm or more.
4. The cell frame for the redox flow battery according to claim 1, wherein the frame is provided with a manifold serving as a flow channel of the electrolyte and a guide groove for guiding the electrolyte from the manifold to an inside of the frame, and the guide groove has a sectional area of 5 mm2 or less.
5. The cell frame for the redox flow battery according to claim 4, wherein a diameter of the manifold is 1%-5% of a total width of a cell frame.
6. The cell frame for the redox flow battery according to claim 4, wherein the frame is formed by bonding a pair of frame members to each other, each frame member being configured so that the guide grooves can be symmetrical in relation to an intersection point of diagonal lines of the frames as a center.
7. A redox flow battery comprising a cell stack of cell frames of claim 1, membranes and electrodes being stacked in layers.
8. The redox flow battery according to claim 7, wherein the membrane has a thickness of 400 μm or less.
9. The The redox flow battery according to claim 7, which comprises electric terminals for taking out electricity from the electrodes and feeding and discharging portions for feeding and discharging electrolytes to and from the electrodes, the electrical terminals and the feeding and discharging portions being arranged on surfaces opposite to each other.
US10/480,117 2001-06-12 2002-05-07 Cell frame for redox flow cell and redox flow cell Abandoned US20040170893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/979,670 US7670719B2 (en) 2001-06-12 2007-11-07 Cell stack for redox flow battery, and redox flow battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001177221A JP3682244B2 (en) 2001-06-12 2001-06-12 Cell frame for redox flow battery and redox flow battery
JP2001-177221 2001-06-12
PCT/JP2002/004445 WO2002101864A1 (en) 2001-06-12 2002-05-07 Cell frame for redox flow cell and redox flow cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/979,670 Continuation US7670719B2 (en) 2001-06-12 2007-11-07 Cell stack for redox flow battery, and redox flow battery

Publications (1)

Publication Number Publication Date
US20040170893A1 true US20040170893A1 (en) 2004-09-02

Family

ID=19018094

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/480,117 Abandoned US20040170893A1 (en) 2001-06-12 2002-05-07 Cell frame for redox flow cell and redox flow cell
US11/979,670 Expired - Fee Related US7670719B2 (en) 2001-06-12 2007-11-07 Cell stack for redox flow battery, and redox flow battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/979,670 Expired - Fee Related US7670719B2 (en) 2001-06-12 2007-11-07 Cell stack for redox flow battery, and redox flow battery

Country Status (7)

Country Link
US (2) US20040170893A1 (en)
EP (1) EP1411576B1 (en)
JP (1) JP3682244B2 (en)
CN (1) CN1531761A (en)
CA (1) CA2450517C (en)
TW (1) TW541737B (en)
WO (1) WO2002101864A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216586A1 (en) * 2005-03-22 2006-09-28 Tucholski Gary R Thin printable electrochemical cell utilizing a "picture frame" and methods of making the same
US20070154799A1 (en) * 2005-09-28 2007-07-05 Junill Yoon Apparatus for manufacturing secondary battery
WO2008073328A1 (en) * 2006-12-12 2008-06-19 Corning Incorporated Thermo-mechanical robust seal structure for solid oxide fuel cells
US20080193828A1 (en) * 2007-02-12 2008-08-14 Saroj Kumar Sahu Apparatus and Methods of Determination of State of Charge in a Redox Flow Battery
US20090218984A1 (en) * 2008-02-28 2009-09-03 Deeya Energy, Inc. Battery charger
US20100003586A1 (en) * 2008-07-01 2010-01-07 Deeya Energy, Inc. A California C-Corp Redox flow cell
US20100092757A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Methods for Bonding Porous Flexible Membranes Using Solvent
US20100092807A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Magnetic Current Collector
US20100089480A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Flexible Multi-Walled Tubing Assembly
US20100092843A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Venturi pumping system in a hydrogen gas circulation of a flow battery
US20100090651A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Method and apparatus for determining state of charge of a battery
US20100094468A1 (en) * 2008-10-10 2010-04-15 Deeya Energy, Incorporated Level Sensor for Conductive Liquids
US20100092813A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Thermal Control of a Flow Cell Battery
US20100261070A1 (en) * 2010-03-10 2010-10-14 Deeya Energy, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
WO2010138949A2 (en) * 2009-05-28 2010-12-02 Deeya Energy, Inc. Optical leak detection sensor
US20110070483A1 (en) * 2009-05-28 2011-03-24 Majid Keshavarz Preparation of flow cell battery electrolytes from raw materials
US20110076526A1 (en) * 2009-05-28 2011-03-31 Ge Zu Electrolyte compositions
US20110074357A1 (en) * 2009-05-28 2011-03-31 Parakulam Gopalakrishnan R Control system for a flow cell battery
US20110081561A1 (en) * 2009-05-29 2011-04-07 Majid Keshavarz Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US20110080143A1 (en) * 2009-05-28 2011-04-07 Parakulam Gopalakrishnan R Buck-boost circuit
US20110086247A1 (en) * 2009-05-28 2011-04-14 Majid Keshavarz Redox flow cell rebalancing
US20130029196A1 (en) * 2011-07-29 2013-01-31 Pratt & Whitney Rocketdyne, Inc. Flow battery cells arranged between an inlet manifold and an outlet manifold
WO2013092898A1 (en) 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Redox flow battery with external supply line and/or disposal line
US8722233B2 (en) 2005-05-06 2014-05-13 Blue Spark Technologies, Inc. RFID antenna-battery assembly and the method to make the same
US8722235B2 (en) 2004-04-21 2014-05-13 Blue Spark Technologies, Inc. Thin printable flexible electrochemical cell and method of making the same
US20140162095A1 (en) * 2011-08-22 2014-06-12 Zbb Energy Corporation Internal Header Flow Divider for Uniform Electrolyte Distribution
US8765284B2 (en) 2012-05-21 2014-07-01 Blue Spark Technologies, Inc. Multi-cell battery
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US20150017568A1 (en) * 2013-07-12 2015-01-15 Oci Company Ltd. Redox flow battery and cell frame
WO2015007543A1 (en) * 2013-07-16 2015-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cell and cell stack of a redox flow battery
KR20150008890A (en) * 2011-08-22 2015-01-23 지비비 에너지 코퍼레이션 Reversible polarity operation and switching method for znbr flow battery connected to a common dc bus
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US9027242B2 (en) 2011-09-22 2015-05-12 Blue Spark Technologies, Inc. Cell attachment method
US9077010B2 (en) 2011-03-31 2015-07-07 Nippon Valqua Industries, Ltd. Sealing material for thin plate member
US9172069B2 (en) 2011-03-31 2015-10-27 Sumitomo Electric Industries, Ltd. Battery sealing structure, electrolyte circulation type battery cell frame, electrolyte circulation type battery cell stack, and electrolyte circulation type battery
US9269982B2 (en) 2011-01-13 2016-02-23 Imergy Power Systems, Inc. Flow cell stack
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
US9444078B2 (en) 2012-11-27 2016-09-13 Blue Spark Technologies, Inc. Battery cell construction
TWI575805B (en) * 2015-10-15 2017-03-21 行政院原子能委員會核能研究所 Bipolar Plate of Flow Cell and Producing Method Thereof
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
US9774044B2 (en) 2011-09-21 2017-09-26 United Technologies Corporation Flow battery stack with an integrated heat exchanger
DE102016004027A1 (en) 2016-04-04 2017-10-05 VoltStorage GmbH Cell and cell stack of a redox flow battery and method of making this cell stack
US9782082B2 (en) 2012-11-01 2017-10-10 Blue Spark Technologies, Inc. Body temperature logging patch
US20170352894A1 (en) * 2014-11-05 2017-12-07 Sumitomo Electric Industries, Ltd. Electrolyte-circulating battery
US10096855B2 (en) 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
WO2018231964A1 (en) * 2017-06-13 2018-12-20 Kato Garrett Scott Floating frame plate assembly
US10193178B2 (en) * 2016-03-29 2019-01-29 Sumitomo Electric Inductries, Ltd. Redox flow battery frame body, redox flow battery, and cell stack
WO2018208983A3 (en) * 2017-05-09 2019-02-21 Unienergy Technologies, Llc Gasket assemblies for redox flow batteries
US20190067711A1 (en) * 2016-02-03 2019-02-28 Sumitomo Electric Industries, Ltd. Redox flow battery
DE102019101474A1 (en) 2019-01-22 2020-07-23 Volterion GmbH Distribution module for connecting cells of a cell stack and cell stack with a distribution module
US10749202B2 (en) 2016-02-29 2020-08-18 Sumitomo Electric Industries, Ltd. Redox flow battery
WO2020165314A1 (en) 2019-02-13 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for hydrophilicizing a semifinished element, and electrode element, bipolar element or heat exchanger element produced thereby
US10849501B2 (en) 2017-08-09 2020-12-01 Blue Spark Technologies, Inc. Body temperature logging patch
US11011759B2 (en) * 2015-04-30 2021-05-18 Standard Energy Co., Ltd. Redox flow battery
CN113823806A (en) * 2020-06-19 2021-12-21 中国科学院大连化学物理研究所 Integrated electrode frame structure for all-vanadium redox flow battery, preparation method and application
DE102020117367A1 (en) 2020-07-01 2022-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Cell frame, electrochemical cell, cell stack and method of operation
DE102020124801A1 (en) 2020-09-23 2022-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Electrochemical cell, in particular a redox flow battery, and corresponding cell stack
US11289728B2 (en) 2017-09-01 2022-03-29 Stryten Critical E-Storage Llc Segmented frames for redox flow batteries
US11527770B2 (en) 2018-02-27 2022-12-13 Sumitomo Electric Industries, Ltd. Cell stack and redox flow battery
WO2022268264A1 (en) 2021-06-22 2022-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Structure-integrated electrochemical cell and structure-integrated stack constructed therefrom

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277964B2 (en) 2004-01-15 2012-10-02 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
CN101587959B (en) * 2008-05-23 2012-05-16 大连融科储能技术发展有限公司 Electrode frame and all-vanadium redox flow battery pile
US20100136455A1 (en) * 2008-10-10 2010-06-03 Rick Winter Common Module Stack Component Design
CN101651220B (en) * 2009-07-15 2011-11-09 中南大学 High-tightness flow battery
AT510250A1 (en) * 2010-07-21 2012-02-15 Cellstrom Gmbh FRAME OF A CELL OF A REDOX FLOW BATTERY
US8709629B2 (en) 2010-12-22 2014-04-29 Jd Holding Inc. Systems and methods for redox flow battery scalable modular reactant storage
CN102244212B (en) * 2011-05-25 2013-09-11 深圳市金钒能源科技有限公司 Sealing method for galvanic pile of vanadium liquid flow battery and galvanic pile unit and galvanic pile of vanadium liquid flow battery
US10141594B2 (en) * 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
CN102420335B (en) * 2011-10-25 2013-12-18 中国科学院长春应用化学研究所 Assembling method of self-breathing type direct alcohol fuel cell
US9853454B2 (en) 2011-12-20 2017-12-26 Jd Holding Inc. Vanadium redox battery energy storage system
CN102593495B (en) * 2012-03-05 2014-10-22 上海裕豪机电有限公司 Oxidation reduction flow cell
DE102012006642A1 (en) * 2012-04-03 2013-10-10 Bozankaya BC&C Flow battery, electrochemical energy converter for a flow battery, cell frame and bipolar plate and collector plate
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US8691413B2 (en) 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US8753761B2 (en) 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
CN102760903B (en) * 2012-08-07 2015-03-18 中国东方电气集团有限公司 Vanadium battery
USD756912S1 (en) * 2013-02-04 2016-05-24 Sumitomo Electric Industries, Ltd. Redox flow battery cell stack
WO2014134295A1 (en) 2013-02-28 2014-09-04 Nuvera Fuel Cells, Inc. Electrochemical cell having a cascade seal configuration and hydrogen reclamation
AT513834B1 (en) * 2013-03-01 2014-08-15 Cellstrom Gmbh Elastomer end frame of a redox flow battery
WO2014162326A1 (en) 2013-03-30 2014-10-09 Leシステム株式会社 Redox flow battery and method for operating same
DE102013009629B4 (en) * 2013-06-10 2019-09-12 Carl Freudenberg Kg Electrode module and arrangement with electrode modules
KR101586117B1 (en) * 2013-07-12 2016-01-15 오씨아이 주식회사 Redox flow battery and cell frame
US20150017558A1 (en) 2013-07-12 2015-01-15 OCI Company LTD . Cell frame for improved flow distributing and redox flow battery having the same
CN103367776B (en) * 2013-07-23 2017-07-14 大连融科储能技术发展有限公司 A kind of barrier film of flow battery, pile and pile encapsulating method
KR20160040607A (en) 2013-07-29 2016-04-14 누베라 퓨엘 셀스, 인크. Seal configuration for electrochemical cell
EP3058609B1 (en) * 2013-10-15 2018-08-15 Redflow R & D Pty Ltd. Electrode plate and methods for manufacturing and testing an electrode plate
JP6150069B2 (en) 2013-10-23 2017-06-21 住友電気工業株式会社 Electrolyte circulation battery and electrolyte circulation battery supply / discharge plate
US20150125768A1 (en) * 2013-11-07 2015-05-07 Enervault Corporation Cell and Cell Block Configurations for Redox Flow Battery Systems
JP6103386B2 (en) 2014-01-24 2017-03-29 住友電気工業株式会社 Redox flow battery
WO2015148357A1 (en) * 2014-03-24 2015-10-01 Cornell University Symmetric redox flow battery containing organic redox active molecule
WO2015148358A1 (en) 2014-03-24 2015-10-01 Cornell University Solar flow battery
JP6201876B2 (en) 2014-04-23 2017-09-27 住友電気工業株式会社 Bipolar plate, redox flow battery, and bipolar plate manufacturing method
JP6247590B2 (en) * 2014-05-07 2017-12-13 旭化成株式会社 Cell stack and storage battery
EP3186409B1 (en) 2014-08-28 2020-03-18 Nuvera Fuel Cells, LLC Seal designs for multicomponent bipolar plates of an electrochemical cell
KR101689134B1 (en) * 2014-11-17 2016-12-27 한국에너지기술연구원 Redox Flow Battery
DK3224266T3 (en) 2014-11-26 2021-04-26 Lockheed Martin Energy Llc Metal complexes of substituted catecholates and redox flow batteries containing these
KR101761460B1 (en) * 2014-12-17 2017-07-26 오씨아이 주식회사 Cell stack of redox flow battery
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
JP6819885B2 (en) * 2015-06-23 2021-01-27 住友電気工業株式会社 Bipolar plate, cell frame and cell stack, and redox flow battery
KR101754505B1 (en) * 2015-12-24 2017-07-06 오씨아이 주식회사 Cell stack of redox flow battery
JP6540961B2 (en) * 2016-01-26 2019-07-10 住友電気工業株式会社 Battery and seal material
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
KR101742980B1 (en) * 2016-04-15 2017-06-05 스탠다드에너지(주) Redox flow battery for reducing shunt current
US20190097251A1 (en) * 2016-04-20 2019-03-28 Sumitomo Electric Industries, Ltd. Redox flow battery transport structure, redox flow battery transport method, and redox flow battery
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
KR102365550B1 (en) * 2016-11-09 2022-02-23 다롄 룽커파워 씨오., 엘티디 Electrode structure of flow battery, flow battery stack, and sealing structure for flow battery stack
AU2016429827A1 (en) * 2016-11-16 2018-06-28 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
KR20190077241A (en) * 2016-11-16 2019-07-03 스미토모덴키고교가부시키가이샤 Cell frame, cell stack, and redox flow cell
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
JP6873424B2 (en) * 2017-01-11 2021-05-19 日本圧着端子製造株式会社 Board-to-board connector
WO2018134955A1 (en) * 2017-01-19 2018-07-26 住友電気工業株式会社 Bipolar plate, cell frame, cell stack and redox flow battery
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions
WO2019030817A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 Redox flow battery and method for operating redox flow battery
WO2019030903A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Cell stack and redox flow battery
JP6908031B2 (en) * 2017-09-08 2021-07-21 住友電気工業株式会社 Redox flow battery cells, redox flow battery cell stacks, and redox flow batteries
WO2019167144A1 (en) * 2018-02-27 2019-09-06 住友電気工業株式会社 Cell stack and redox flow battery
CN110416584B (en) * 2018-04-27 2021-04-16 江苏泛宇能源有限公司 Stack frame for flow battery
CN111883798B (en) * 2020-07-24 2021-11-16 苏州敦胜新能源科技有限公司 High-temperature fuel cell integrated bipolar plate
DE102020122478B4 (en) 2020-08-27 2023-07-20 FB-TEST-DEV GmbH Cell stack including a cell and method of making a cell stack
CN113540495B (en) * 2021-07-09 2022-09-20 刘学军 Flow frame structure of flow battery and side surface packaging method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555267B1 (en) * 1999-07-01 2003-04-29 Squirrel Holding Ltd. Membrane-separated, bipolar multicell electrochemical reactor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK171869B1 (en) 1985-10-22 1997-07-21 Takeda Chemical Industries Ltd Process for preparing 2-keto-L-gulonic acid and biologically pure microorganism culture for use in the process
JPH0821400B2 (en) * 1987-03-04 1996-03-04 関西電力株式会社 Electrolyte circulation type secondary battery
JP2842600B2 (en) 1989-01-10 1999-01-06 関西電力 株式会社 Cell stack for electrolyte circulating type secondary battery and cell stack mounting member
JPH0515320A (en) 1991-07-11 1993-01-26 San Ei Chem Ind Ltd Method for coloring jellies into red color
JPH0515320U (en) 1991-07-31 1993-02-26 住友電気工業株式会社 Stacked secondary battery
JP2606335Y2 (en) * 1992-06-29 2000-10-23 住友電気工業株式会社 Redox flow battery cell
JPH087913A (en) 1994-06-22 1996-01-12 Kashima Kita Kyodo Hatsuden Kk Full vanadium redox cell
JP3143613B2 (en) 1999-03-05 2001-03-07 住友電気工業株式会社 Cell for redox flow type secondary battery
JP2001155758A (en) 1999-11-25 2001-06-08 Sumitomo Electric Ind Ltd Cell stack redox flow secondary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555267B1 (en) * 1999-07-01 2003-04-29 Squirrel Holding Ltd. Membrane-separated, bipolar multicell electrochemical reactor

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722235B2 (en) 2004-04-21 2014-05-13 Blue Spark Technologies, Inc. Thin printable flexible electrochemical cell and method of making the same
US20060216586A1 (en) * 2005-03-22 2006-09-28 Tucholski Gary R Thin printable electrochemical cell utilizing a "picture frame" and methods of making the same
US8029927B2 (en) * 2005-03-22 2011-10-04 Blue Spark Technologies, Inc. Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same
US8268475B2 (en) 2005-03-22 2012-09-18 Blue Spark Technologies, Inc. Thin printable electrochemical cell and methods of making the same
US8722233B2 (en) 2005-05-06 2014-05-13 Blue Spark Technologies, Inc. RFID antenna-battery assembly and the method to make the same
US8734980B2 (en) 2005-05-06 2014-05-27 Blue Spark Technologies, Inc. Electrical device-battery assembly and the method to make the same
US20070154799A1 (en) * 2005-09-28 2007-07-05 Junill Yoon Apparatus for manufacturing secondary battery
US8033806B2 (en) * 2005-09-28 2011-10-11 Lg Chem, Ltd. Apparatus for manufacturing secondary battery
WO2008073328A1 (en) * 2006-12-12 2008-06-19 Corning Incorporated Thermo-mechanical robust seal structure for solid oxide fuel cells
US20080166616A1 (en) * 2006-12-12 2008-07-10 Michael Edward Badding Thermo-mechanical robust seal structure for solid oxide fuel cells
US8197979B2 (en) 2006-12-12 2012-06-12 Corning Incorporated Thermo-mechanical robust seal structure for solid oxide fuel cells
US20080193828A1 (en) * 2007-02-12 2008-08-14 Saroj Kumar Sahu Apparatus and Methods of Determination of State of Charge in a Redox Flow Battery
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US20090218984A1 (en) * 2008-02-28 2009-09-03 Deeya Energy, Inc. Battery charger
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US20100003586A1 (en) * 2008-07-01 2010-01-07 Deeya Energy, Inc. A California C-Corp Redox flow cell
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US20100092757A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Methods for Bonding Porous Flexible Membranes Using Solvent
US20100092807A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Magnetic Current Collector
US20100089480A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Flexible Multi-Walled Tubing Assembly
US20100092843A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Venturi pumping system in a hydrogen gas circulation of a flow battery
US20100090651A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Method and apparatus for determining state of charge of a battery
US20100094468A1 (en) * 2008-10-10 2010-04-15 Deeya Energy, Incorporated Level Sensor for Conductive Liquids
US20100092813A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Thermal Control of a Flow Cell Battery
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
WO2010138949A2 (en) * 2009-05-28 2010-12-02 Deeya Energy, Inc. Optical leak detection sensor
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US20110080143A1 (en) * 2009-05-28 2011-04-07 Parakulam Gopalakrishnan R Buck-boost circuit
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US20110081562A1 (en) * 2009-05-28 2011-04-07 Parakulam Gopalakrishnan R Optical leak detection sensor
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
WO2010138949A3 (en) * 2009-05-28 2011-02-03 Deeya Energy, Inc. Optical leak detection sensor
US20110074357A1 (en) * 2009-05-28 2011-03-31 Parakulam Gopalakrishnan R Control system for a flow cell battery
US20110070483A1 (en) * 2009-05-28 2011-03-24 Majid Keshavarz Preparation of flow cell battery electrolytes from raw materials
US20110076526A1 (en) * 2009-05-28 2011-03-31 Ge Zu Electrolyte compositions
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US20110086247A1 (en) * 2009-05-28 2011-04-14 Majid Keshavarz Redox flow cell rebalancing
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US20110081561A1 (en) * 2009-05-29 2011-04-07 Majid Keshavarz Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US20100261070A1 (en) * 2010-03-10 2010-10-14 Deeya Energy, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
US9269982B2 (en) 2011-01-13 2016-02-23 Imergy Power Systems, Inc. Flow cell stack
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US9077010B2 (en) 2011-03-31 2015-07-07 Nippon Valqua Industries, Ltd. Sealing material for thin plate member
US9172069B2 (en) 2011-03-31 2015-10-27 Sumitomo Electric Industries, Ltd. Battery sealing structure, electrolyte circulation type battery cell frame, electrolyte circulation type battery cell stack, and electrolyte circulation type battery
US20130029196A1 (en) * 2011-07-29 2013-01-31 Pratt & Whitney Rocketdyne, Inc. Flow battery cells arranged between an inlet manifold and an outlet manifold
US20140162095A1 (en) * 2011-08-22 2014-06-12 Zbb Energy Corporation Internal Header Flow Divider for Uniform Electrolyte Distribution
US9577242B2 (en) * 2011-08-22 2017-02-21 Ensync, Inc. Internal header flow divider for uniform electrolyte distribution
KR20150008890A (en) * 2011-08-22 2015-01-23 지비비 에너지 코퍼레이션 Reversible polarity operation and switching method for znbr flow battery connected to a common dc bus
KR101649249B1 (en) * 2011-08-22 2016-08-18 엔싱크, 아이엔씨. Reversible polarity operation and switching method for znbr flow battery connected to a common dc bus
US9774044B2 (en) 2011-09-21 2017-09-26 United Technologies Corporation Flow battery stack with an integrated heat exchanger
US9027242B2 (en) 2011-09-22 2015-05-12 Blue Spark Technologies, Inc. Cell attachment method
US10096855B2 (en) 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
DE102011122010A1 (en) 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox flow battery with external supply line and / or disposal line
WO2013092898A1 (en) 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Redox flow battery with external supply line and/or disposal line
US10665877B2 (en) 2011-12-23 2020-05-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox flow battery with external supply line and/or disposal line
US8765284B2 (en) 2012-05-21 2014-07-01 Blue Spark Technologies, Inc. Multi-cell battery
US9782082B2 (en) 2012-11-01 2017-10-10 Blue Spark Technologies, Inc. Body temperature logging patch
US10617306B2 (en) 2012-11-01 2020-04-14 Blue Spark Technologies, Inc. Body temperature logging patch
US9444078B2 (en) 2012-11-27 2016-09-13 Blue Spark Technologies, Inc. Battery cell construction
US20150017568A1 (en) * 2013-07-12 2015-01-15 Oci Company Ltd. Redox flow battery and cell frame
WO2015007543A1 (en) * 2013-07-16 2015-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cell and cell stack of a redox flow battery
DE102013107516A1 (en) 2013-07-16 2015-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cell and cell stack of a redox flow battery
US20170352894A1 (en) * 2014-11-05 2017-12-07 Sumitomo Electric Industries, Ltd. Electrolyte-circulating battery
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
US10631731B2 (en) 2014-12-31 2020-04-28 Blue Spark Technologies, Inc. Body temperature logging patch
US11011759B2 (en) * 2015-04-30 2021-05-18 Standard Energy Co., Ltd. Redox flow battery
TWI575805B (en) * 2015-10-15 2017-03-21 行政院原子能委員會核能研究所 Bipolar Plate of Flow Cell and Producing Method Thereof
US10818939B2 (en) * 2016-02-03 2020-10-27 Sumitomo Electric Industries, Ltd. Redox flow battery
US20190067711A1 (en) * 2016-02-03 2019-02-28 Sumitomo Electric Industries, Ltd. Redox flow battery
US10749202B2 (en) 2016-02-29 2020-08-18 Sumitomo Electric Industries, Ltd. Redox flow battery
US10193178B2 (en) * 2016-03-29 2019-01-29 Sumitomo Electric Inductries, Ltd. Redox flow battery frame body, redox flow battery, and cell stack
WO2017174053A1 (en) 2016-04-04 2017-10-12 VoltStorage GmbH Cell and cell stack of a redox flow battery, and method for producing said cell stack
US10985395B2 (en) 2016-04-04 2021-04-20 VoltStorage GmbH Cell and cell stack of a redox flow battery, and method for producing said cell stack
DE102016004027A1 (en) 2016-04-04 2017-10-05 VoltStorage GmbH Cell and cell stack of a redox flow battery and method of making this cell stack
WO2018208983A3 (en) * 2017-05-09 2019-02-21 Unienergy Technologies, Llc Gasket assemblies for redox flow batteries
WO2018231964A1 (en) * 2017-06-13 2018-12-20 Kato Garrett Scott Floating frame plate assembly
US10849501B2 (en) 2017-08-09 2020-12-01 Blue Spark Technologies, Inc. Body temperature logging patch
US11289728B2 (en) 2017-09-01 2022-03-29 Stryten Critical E-Storage Llc Segmented frames for redox flow batteries
US11764384B2 (en) 2017-09-01 2023-09-19 Stryten Critical E-Storage Llc Segmented frames for redox flow batteries
US11527770B2 (en) 2018-02-27 2022-12-13 Sumitomo Electric Industries, Ltd. Cell stack and redox flow battery
WO2020151953A1 (en) 2019-01-22 2020-07-30 Volterion GmbH Distributor module for connecting cells of a cell stack, and cell stack having a distributor module
DE102019101474A1 (en) 2019-01-22 2020-07-23 Volterion GmbH Distribution module for connecting cells of a cell stack and cell stack with a distribution module
WO2020165314A1 (en) 2019-02-13 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for hydrophilicizing a semifinished element, and electrode element, bipolar element or heat exchanger element produced thereby
CN113823806A (en) * 2020-06-19 2021-12-21 中国科学院大连化学物理研究所 Integrated electrode frame structure for all-vanadium redox flow battery, preparation method and application
DE102020117367A1 (en) 2020-07-01 2022-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Cell frame, electrochemical cell, cell stack and method of operation
WO2022003106A1 (en) 2020-07-01 2022-01-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Cell frame, electrochemical cell, cell stack and operating method
DE102020117367B4 (en) 2020-07-01 2022-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Cell frame, electrochemical cell, cell stack and method of operation
DE102020124801A1 (en) 2020-09-23 2022-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Electrochemical cell, in particular a redox flow battery, and corresponding cell stack
WO2022063610A1 (en) 2020-09-23 2022-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrochemical cell, more particularly of a redox flow battery, and corresponding cell stack
WO2022268264A1 (en) 2021-06-22 2022-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Structure-integrated electrochemical cell and structure-integrated stack constructed therefrom

Also Published As

Publication number Publication date
CA2450517C (en) 2009-08-25
EP1411576B1 (en) 2011-10-12
AU2002255311B2 (en) 2007-03-29
EP1411576A4 (en) 2009-09-23
US7670719B2 (en) 2010-03-02
JP2002367659A (en) 2002-12-20
US20080081247A1 (en) 2008-04-03
CA2450517A1 (en) 2002-12-19
TW541737B (en) 2003-07-11
JP3682244B2 (en) 2005-08-10
WO2002101864A1 (en) 2002-12-19
CN1531761A (en) 2004-09-22
EP1411576A1 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
US7670719B2 (en) Cell stack for redox flow battery, and redox flow battery
AU2002255310B2 (en) Cell stack for redox flow battery
AU2002253671B2 (en) Cell frame for redox flow battery, and redox flow battery
EP1821357B1 (en) Unit cell for solid polymer electrolyte fuel cell
US5858569A (en) Low cost fuel cell stack design
JP4976652B2 (en) Embossed fuel cell bipolar plate
US20140329168A1 (en) Hybrid bipolar plate assembly for fuel cells
CN100394635C (en) Polymer electrolyte fuel cell
US7534518B2 (en) Cell for solid polymer electrolyte fuel cell with improved gas flow sealing
US9812728B2 (en) Fuel-cell single cell
US8221930B2 (en) Bipolar separators with improved fluid distribution
EP2054965B1 (en) Bipolar separators with improved fluid distribution
US7597984B2 (en) Fuel cell bipolar plates with multiple active areas separated by non-conductive frame header
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
US11769897B2 (en) Fuel cell
KR102425934B1 (en) Fuel cell stack
KR20240051521A (en) Cell monitoring connector for fuel cell

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAISHI, KIROYUKI;KANNO, TAKASHI;OGINO, SEIJI;AND OTHERS;REEL/FRAME:015228/0995;SIGNING DATES FROM 20031124 TO 20031208

Owner name: KANSAI ELECTRIC POWER CO., INC., THE, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAISHI, KIROYUKI;KANNO, TAKASHI;OGINO, SEIJI;AND OTHERS;REEL/FRAME:015228/0995;SIGNING DATES FROM 20031124 TO 20031208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION