US20040170817A1 - Film surface finishing system - Google Patents

Film surface finishing system Download PDF

Info

Publication number
US20040170817A1
US20040170817A1 US10/707,498 US70749803A US2004170817A1 US 20040170817 A1 US20040170817 A1 US 20040170817A1 US 70749803 A US70749803 A US 70749803A US 2004170817 A1 US2004170817 A1 US 2004170817A1
Authority
US
United States
Prior art keywords
flexible film
film
films
surface finish
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/707,498
Inventor
Derek Fox
Robert Sander
Andrew Bober
Shwn-meei Linden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diversey Inc
Original Assignee
JohnsonDiversey Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JohnsonDiversey Inc filed Critical JohnsonDiversey Inc
Priority to US10/707,498 priority Critical patent/US20040170817A1/en
Assigned to JOHNSONDIVERSEY, INC. reassignment JOHNSONDIVERSEY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LINDEN, SHWN-MEEI Y., BOBER, ANDREW M., SANDER, ROBERT, FOX, DEREK
Publication of US20040170817A1 publication Critical patent/US20040170817A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/508Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0027After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or layers by lamination or by fusion of the coatings or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/10Applying flat materials, e.g. leaflets, pieces of fabrics
    • B44C1/105Applying flat materials, e.g. leaflets, pieces of fabrics comprising an adhesive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1733Decalcomanias applied under pressure only, e.g. provided with a pressure sensitive adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • This invention provides a film for finishing a surface, surfaces finished with the film, and methods for finishing a surface with the film.
  • Floor care programs today are primarily used to both protect and enhance the appearance of a floor substrate, such as vinyl, marble, terrazzo, ceramic, linoleum, wood, etc. floor substrates.
  • Floor care programs can include many different types of products, but generally involve the use of a sealer and/or finish applied to the surface of the floor substrate. This finish is then maintained with the use of cleaners and tools, which can include various buffing or burnishing machines. Although these programs are very effective, they are considered a large expense to customers. Additionally, if a surface becomes worn or unsatisfactory over time, it is necessary to entirely remove the floor substrate, to provide a new fresher look to the floor.
  • Polymer-based floor coatings are an example of finishes that are typically applied with a mop as an aqueous emulsion or solvent solution that dries to a hard protective film. After months of exposure to traffic, such finishes become scratched, scuffed and soiled to a point where they need to be completely removed from the floor and a new finish applied.
  • the removal of these coatings from hard floors has traditionally required the use of corrosive chemical solutions, typically mixtures of alkalis and volatile solvents. These chemical mixtures are generally unpleasant and messy to use. Also, because of their hazardous nature it is generally recommended that users wear protective goggles, gloves and footwear. There is further concern that these liquid mixtures may create slippery floors and an increased risk of slip and fall accidents.
  • the film may be transparent or opaque and may be a colored film.
  • the film may serve to facilitate the removal of overlying top coats, including cured top coats, by peeling the film away without the need for any stripping agents or other chemicals.
  • Other optional layers include a bonding coat for attaching the film to a surface, at least one removable protective layer for protecting the film and/or any bonding coat prior to the application of the film to a surface, and a release coating between the film and the removable protective layer.
  • the bonding coat may be selected to attach the films in a removable or repositionable manner.
  • a floor finishing system which includes a flexible finishing film and a surface onto which the film is to be applied.
  • the system may also include at least one top coat applied over at least a portion of the film.
  • the system may additionally include at least one base coat applied to the surface prior to application of the flexible film to the surface.
  • the film in such a system is desirably sufficiently thin to provide a minimal difference between the height of the surface without the film and the height of the surface having the film applied thereon.
  • the film is disposed on at least a portion of the surface whereby the remaining portion of the surface is devoid of film.
  • the film is applied over the entire surface.
  • the inventive system also optionally includes a surface cleaner for cleaning a surface to which a finishing film has been applied.
  • cleaners include neutral cleaners, alkaline cleaners, acidic cleaners, cleaner/maintainers and maintainers, including polymeric type cleaners.
  • application of the surface finishing film to a surface comprises the following steps. It is advisable, but not required, that the surface be properly cleaned prior to the application of the film to remove dirt or debris which may adversely affect the overall appearance of the film covered surface. It is desirable, but not necessary, to leave a thin film or mist of the cleaners on the surface as a wetting agent or to apply a thin layer of wetting agent to the film prior to applying the film to the surface.
  • the next step involves positioning or disposing the film on at least a portion of the surface. For example, this may involve rolling the film onto the surface beginning at one edge. After such positioning, a top coat, such as a crosslinked finish, may be applied over at least a portion of the film. In some embodiments a base coat layer may be applied to the surface after the cleaning step but prior to positioning the film on the surface.
  • the flexible surface finishing film is strong enough that it may readily be removed from the surface simply by peeling the film away from the surface.
  • FIG. 1 shows a flexible surface finishing film applied to a floor.
  • the present invention is directed to flexible surface finishing films used to finish and protect a surface and to surface finishing systems that include the films.
  • the films are desirably pre-formed polymer films.
  • the present invention has potential applications on any surface where protection, scuff-resistance or slip-resistance is desirable.
  • Such surfaces may be found both indoors and outdoors. These surfaces include floors, walls, ceilings, roofs, patios, shelves, and stairs, and ground cover structures, such as roads, driveways, and sidewalks.
  • the surface to be finished may be made from a vast variety of materials, including, but not limited to, vinyl, marble, terrazzo, ceramic, linoleum, wood, metal, plastic, rubber, gypsum board, plaster, concrete, stone, vinyl composition tile, and glass.
  • FIG. 1 shows an exemplary embodiment of the invention.
  • a floor finishing system may include a flexible film 20 at least partially covering a surface 24 .
  • the surface finishing system of FIG. 1 further includes, a bonding coat 26 disposed against the lower surface of the film 20 , and a top coat 34 applied over the top of the film.
  • a base coat 28 is also shown in FIG. 1, sandwiched between the surface to be finished 24 and the bonding coat 26 .
  • the present invention can include removable protective layers (not shown) above the film 20 and below the bonding coat 26 .
  • the upper removable layer is designed to protect the upper surface of the film 20 and the lower removable layer is designed to protect the lower surface of film 20 and/or any bonding coat 26 applied thereto.
  • the structure may also include a release coat between the upper removable layer and the upper surface of the flexible film and/or between the lower removable layer and the lower surface of the flexible film or any bonding coat applied thereto.
  • the flexible film facilitates the removal of an overlying top coat from the surface.
  • the flexible film may be selected and designed such that the film, along with any overlying layers disposed thereon, may be readily removed by peeling the film layer away from the surface, either in a single sheet or in smaller pieces. This eliminates the need for conventional stripping agents and makes the removal process, less expensive, less energy intensive, and less time consuming. It also eliminates the need for stripping chemicals which pose a hazard to both the user and the environment.
  • the flexible film is desirably thin enough that the thickness of any seam between the surface and the film is minimized.
  • the film has a thickness of 25 mils or less, 10 mils or less or 8 mils or less. This includes embodiments where the film has a thickness of 6 mils or less, embodiments where the film has a thickness of 4 mils or less, embodiments where the film has a thickness of 2 mils or less, embodiments where the film has a thickness of 1 mils or less and embodiments where the film has a thickness of 0.5 mils or less, where a “mil” is defined as one one-thousandth of an inch.
  • the choice of film thickness will depend, at least in part, on the intended application and location of the film.
  • the type of film will impact the film strength.
  • films of particular materials in a thinner dimension while maintaining sufficient strength to be peeled away from the surface without tearing or with only minor amounts of tearing.
  • a thinner film might be more desirable where it is imperative that the transition from the surface to the film be nearly imperceptible.
  • a thicker film might be used to smooth out an underlying surface that is uneven, rough, or damaged.
  • the flexible film may be made from any material suitable for providing a protective layer on an underlying surface.
  • suitable materials for the film include, but are not limited to, fabrics, foils, polymeric sheeting, and paper.
  • suitable polymeric sheeting materials include, but are not limited to, polypropylene films, polyacetal films, polyamide films, polyanhydride films, polyester films, polyolefin films, polystyrene films, polyvinyl chloride films, polyvinylidene chloride films, polyurethane films, polyurea films, and the like.
  • the present invention may optionally include a bonding coat on the lower surface of the film as shown in FIG. 1, where the lower surface of the film is the surface that will be face down with respect to the surface to be finished once the film is applied.
  • a bonding coat is made from an adhesive which serves to adhere the flexible film to the surface.
  • the tackiness of the adhesive may vary over a broad range depending on the intended application of the film.
  • the term “tack” refers to the rate at which an adhesive bond forms between two surfaces. As one of skill in the art will recognize, the tack of certain adhesives may be influenced by the thickness of the adhesive layer.
  • the adhesive should be selected such that it bonds preferentially to the film, rather than the surface to be finished.
  • the tack of the adhesive will range from 50 to 2000 grams per square centimeter. This includes embodiments where the tack of the adhesive ranges from 100 to 1500 grams per square centimeter, and further includes embodiments where the tack of the adhesive ranges from 150 to 1000 grams per square centi meter.
  • the bonding coat is desirably thin in order to minimize the combined thickness of the bonding layer and the film.
  • the combined thickness of these two components is 8 mils or less, 6 mils or less, 5 mils or less, 4 mils or less and even 2 mils or less.
  • Suitable adhesives for use in the bonding coat include pressure sensitive adhesives.
  • the pressure sensitive adhesives are non-curing adhesives or adhesives that do not require curing after application, because such adhesives may be more easily removed from some surfaces.
  • curable epoxies are avoided.
  • Other suitable adhesives include temperature sensitive adhesives, repositionable adhesives, or any other suitable adhesive known to one of ordinary skill in the art. Examples of suitable pressure sensitive adhesives include, but are not limited to those disclosed in U.S. Pat. Nos. 4,845,149; 4,879,333; and 4,923,919, the disclosures of which are incorporated herein by reference.
  • the adhesive may be applied directly to the lower surface of the film or may first be applied to the surface of a protective removable layer, of the type described below, which is then disposed adjacent to the lower surface of the film, sandwiching the adhesive coating between the film and the removable protective layer.
  • a protective removable layer of the type described below
  • the bonding coat may be applied to the surface of the film or the protective layer by any conventional means.
  • the adhesive may be spray coated, rolled or printed onto the film or protective layer.
  • the adhesive dissolves readily in mild detergents.
  • the adhesive may be applied directly to the surface to be finished, or a portion thereof, and the film may subsequently be adhered to the adhesive.
  • the bonding coat may be omitted.
  • an external source may be utilized to maintain the position of the film on the surface to be finished during application of a top coat over at least a portion of the film such that the top coat secures the film to the surface.
  • the film may have enough tack to adhere to the underlying surface without the use of additional adhesive.
  • the film may optionally include a removable protective layer disposed above and/or below its upper and lower surfaces.
  • a release coating may be included between the upper removable protective layer and the upper surface of the film.
  • a lower removable protective layer is disposed next to the lower surface of the film.
  • a bonding coat as described above may be included between the removable protective layer and the film.
  • the removable protective layer serves to prevent debris from collecting in the adhesive and to prevent the adhesive from attaching to a surface prematurely.
  • the upper and lower removable protective layers may be made from the same or different materials. Suitable materials include, but are not limited to, plastics, such as polyester, polypropylene, or polyethylene.
  • the removable protective layer or layers may optionally be transparent materials.
  • the removable protective layer or layers are made from paper which may optionally be coated paper. This has the advantage of significantly lowering the cost of production of the surface finishing films. In addition, because the paper may be readily recycled, this embodiment saves energy and reduces waste.
  • Suitable materials for use in release coats are well known and include, but are not limited to, polyvinyl chloride and acrylics designed to facilitate the release of the removable layer or layers from the film.
  • the release coat may be designed to remain substantially adhered to the removable protective layer after the transfer of the film to the surface to be finished.
  • the release coat may be designed to remain substantially adhered to the film after the transfer.
  • the release coat is referred to as a breakaway coating.
  • the breakaway coating should be selected and designed such that it does not substantially affect the thickness of the applied film.
  • the release coat is split between the film and the removable protective layer upon the removal of the latter.
  • the combined thickness of the film, any bonding coat, and any release coating is 8 mils or less, 6 mils or less, 5 mils or less, 4 mils or less, or even 2 mils or less.
  • At least one top coat may be disposed over at least a portion of the upper surface of the film.
  • the top coat may be any conventional sealant or finish and may be applied as a solid or a liquid top coat.
  • the top coats may be cured top coats.
  • a “cured” coating includes coatings that are formed by the evaporation of a solvent and the coalescence of the solid film without crosslinking (i.e. “evaporatively-cured” coatings) and coatings that are formed by crosslinking reactions.
  • Such top coats are well known and commercially available and are generally used to impart shine, dirt resistance, water resistance, and/or scratch/wear resistance to the surface. Examples of suitable top coats include polishes, waxes and metal cross-linked (reversible cross-linked) finishes.
  • the top coat may help adhere the film to the surface to be finished and to further smooth out the edges of the film. However, the top coat is not required.
  • Suitable commercially available cured floor finishes for use with the floor finish systems provided herein include Signature, a metal interlock styrene-acrylic finish that cures at ambient temperatures, available from JohnsonDiversey, Inc. (Racine Wis.).
  • Suitable commercially available evaporatively-cured floor finishes include ZF-175, Linobase, and JX-4000, available from JohnsonDiversey, Inc. (Racine, Wis.).
  • Conventional floor finishes mixed with crosslinking hardeners may also be employed.
  • Signature may be mixed with about 1% polyaziridine to provide a more durable crosslinked finish.
  • a surface finish For many applications, such as floor applications, it is desirable for a surface finish to provide a slip-resistant surface or a surface having a single coefficient of friction which helps prevent trips, slips and falls.
  • the flexible film may provide a sufficiently slip-resistant surface, however, when it is desirable to increase the slip-resistance of the film, a top coat which provides a coefficient of friction higher than that of the film may be applied over at least a portion of the film.
  • the top coat may provide a non-slip surface.
  • a “non-slip” surface is a surface having a coefficient of friction of at least 0.5 as measured by ASTM D-2047, a standard test method for determining the static coefficient of friction using the James Machine Test.
  • top coat provides a surface having a coefficient of friction of at least 0.55
  • top coat provides a surface having a coefficient of friction of at least 0.6
  • top coat provides a surface having a coefficient of friction of at least 0.65
  • the top coat provides a surface having a coefficient of friction of at least 0.7
  • the top coat provides a surface having a coefficient of friction of at least 0.75.
  • top coats include, but are not limited to, durable crosslinked polymeric top coats, such as crosslinked acrylic finishes.
  • durable crosslinked polymeric top coats such as crosslinked acrylic finishes.
  • the combination of an underlying flexible film with an overlying crosslinked polymeric finish provides a durable surface coating that can be removed simply by peeling the flexible film away from the surface. This represents a significant advantage over surface coatings where a crosslinked finish is applied directly to a surface.
  • crosslinked surface coatings generally can only be removed by physical abrasion.
  • Specific examples of crosslinked top coats that may be applied over the flexible films include styrene acrylics, urethane acrylics, urethanes, vinyls, epoxys, and the like.
  • crosslinked finishes include permanent finishes, where a “permanent” finish is a finish that cannot be removed from an underlying substrate, such as a floor surface, without mechanical abrasion.
  • the top coat is made of a finish that is not alkali-soluble.
  • the finishes may be cured by inducing crosslinking under ambient temperatures (“ambient-curable finishes”) or with the aid of an external heat or energy source (“energy-curable finishes”).
  • energy-curable finishes includes both radiation curable finishes and heat curable finishes.
  • the combined thickness of the film and any top coat is 8 mils or less, 6 mils or less, 5 mils or less, 4 mils or less, or even 2 mils or less. However, it is not imperative that the top coat be particularly thin.
  • the crosslinked top coats may be applied over the flexible film as a composition containing one or more curable monomers or polymers, such as acrylic, urethane, vinyl or epoxy monomers or polymers, in a solvent, desirably an aqueous solvent.
  • the composition may optionally include other additives that assist with the application or curing of the composition, such as dispersants, curing-agents, crosslinking agents, photoinitiators, leveling aids, emulsifiers, silicones, waxes, pigments, dyes and preservatives.
  • Suitable energy sources include heat sources, infrared energy sources, ultraviolet energy sources, radiowave energy sources and microwave energy sources, or a combination thereof.
  • Energy curable surface (e.g. floor) finishes are well known and commercially available.
  • UVInfusion, UltraTc and Ultra Rock, available from Minuteman International (Addison, Ill.) are examples of durable UV crosslinking floor finishes that may be used in the floor finishing systems provided herein.
  • Joncryl 1972 and joncryl 1980 are examples of durable self-crosslinking floor finishes that may be used in the floor finishing systems provided herein.
  • At least one base coat may be disposed between the surface to be finished and the film.
  • Suitable base coats are well known and commercially available.
  • the base coat can be of different, similar or identical composition to the top coat, as previously discussed.
  • FIG. 1 For embodiments of the present invention, a first surface finishing film to be applied to a surface, followed by the application of a top coat over at least a portion of the first surface finishing film, and the subsequent application of a second surface finishing film disposed on top of the top coat, optionally followed by an additional top coating.
  • alternating layers of flexible films and top coats can be utilized to achieve a desired effect.
  • a base coating layer can be disposed on top of the surface to be finished prior to application of the first surface finishing film.
  • the ability to provide multiple layers of films is advantageous because it allows the lower films to be patched in order to fix holes or cover damage.
  • the surface In readying the surface for application of a surface finishing film, it is recommended, but not required, that the surface initially be cleaned or stripped to remove dirt, debris or similar waste, as well as any inferior coatings applied on the surface.
  • Conventional cleaners including neutral cleaners, alkaline cleaners, acidic cleaners, cleaners/maintainers, or maintainers including polymeric cleaners, may be utilized for this purpose.
  • One such cleaner is UHS Cleaner, available from JohnsonDiversey, Inc. (Racine Wis.). Dust mopping, or similar light cleaning may be utilized to remove the majority of the dust and dirt. After cleaning and stripping, the film may be positioned on or rolled out onto the surface.
  • the film is packaged with one or more removable protective layers, those layers are removed, exposing the film or the bonding coat, if present, and the film is applied to the surface, typically by applying light pressure.
  • the film may be applied beginning at one edge by adhering an edge of the film to the surface, using any adhesive coated on the lower surface of the film or a strip of tape, and spreading (e.g. rolling) the film outwardly from that edge, pressing it onto the surface as it spreads.
  • a tool having a flat edge may be utilized to uniformly apply the film to the surface and remove any bubbles, wrinkles, etc.
  • Such tools include, rubbing sticks, rigid blades, flat-bladed squeegees, T-bars, including weighted T-bars and rollers, including heated and/or weighted rollers.
  • Any bubbles remaining in the film after application may be removed by pricking the bubbles with a pin or similar object to release trapped air or liquid.
  • any remaining removable layers may be peeled away.
  • a top coat may be disposed over at least a portion of the film. Multiple layers of the top coat may be applied.
  • a water release or water slide technique can be utilized to position the film on the surface whereby the film is positioned above the surface and moisture is applied to slide the film off of a removable protective layer and onto the surface.
  • bubbles in the film may be reduced or eliminated by first applying a thin layer or mist of a liquid wetting agent having a surface tension equal to or lower than that of water, to the surface to be finished, or to the lower surface of the film prior to the application of the film to the surface.
  • a liquid wetting agent having a surface tension equal to or lower than that of water For example, water may be used as a wetting agent.
  • a wetting agent having surface tension lower than water is desirable.
  • Suitable liquid wetting agents include conventional cleaning solutions including alcohol-containing cleaners, acidic cleaners, alkaline cleaners, and maintainers.
  • a conventional floor finish e.g. an aqueous formulation with suspended solids
  • Such a finish may be applied as a mist or a thin liquid coating, and the flexible film may be applied over the finish before it dries to reduce bubble formation in the film.
  • Bubbles may also be reduced by using an air or liquid permeable film or by using a film that has one or more perforations to allow any liquid or air trapped below the film to escape as the film is flattened onto the surface.
  • the perforations may include holes of various shapes, however narrow slits or pin holes are preferred because they allow air and liquid to escape without significantly reducing the smoothness of the film. This is desirable because a rough surface may wear out faster as dirt collects in rough areas and edges become frayed.
  • the number of perforation is desirably sufficient to reduce the number of bubbles without unnecessarily roughening the surface of or weakening the integrity of the film.
  • the films have an average of at least 1 perforation per square foot.
  • the films have an average of at least 10 perforations per square foot. In some embodiments, the films have an average of no more than about five hundred perforations per square foot. This includes embodiment where the films have an average of no more than about two hundred perforations per square foot, further includes embodiments where the films have an average of no more than about one hundred perforations per square foot and still further includes embodiments where the films have an average of no more than about fifty perforations per square foot.
  • the film may have only a small number or perforations, may include only perforations presenting small openings, such as slits (rather than holes) or pin holes, or may be non-perforated. Where the small opening approach is used, the openings should be sufficiently small to prevent or substantially prevent the top coat from passing through.
  • the flexible films may be provided in sheets or rolls and may be applied as a single sheet or in multiple smaller film segments.
  • the film segments may take on a variety of shapes, but desirably include one or more straight edges. Suitable shapes include rectangles and squares.
  • Maintenance of a flexible film-finished surface according to the present invention may be handled by utilization of commonly used cleaners, including neutral cleaners, alkaline cleaners, acidic cleaners, polymeric cleaners and polymeric maintainers. Commonly available products such as Stride Cleaner, available from JohnsonDiversey (Racine Wis.), can be utilized. After the cleaner is applied to the surface, an agitating force sufficient to remove dirt without damaging the film may be applied. This may be accomplished with commonly used mechanical tools such as auto-scrubbers and buffers.

Abstract

This invention provides a flexible film for providing a protective finish on a surface. The film may optionally include a bonding coat for attaching the film to the surface, at least one removable protective layer, and a release coating for facilitating the transfer of the film to the surface. Cured and crosslinked top coats may be applied over the films to enhance the durability of the underlying surface. These top coats may then be easily removed by peeling the underlying film away from the surface.

Description

    BACKGROUND OF INVENTION FIELD OF THE INVENTION
  • This invention provides a film for finishing a surface, surfaces finished with the film, and methods for finishing a surface with the film. [0001]
  • Floor care programs today are primarily used to both protect and enhance the appearance of a floor substrate, such as vinyl, marble, terrazzo, ceramic, linoleum, wood, etc. floor substrates. Floor care programs can include many different types of products, but generally involve the use of a sealer and/or finish applied to the surface of the floor substrate. This finish is then maintained with the use of cleaners and tools, which can include various buffing or burnishing machines. Although these programs are very effective, they are considered a large expense to customers. Additionally, if a surface becomes worn or unsatisfactory over time, it is necessary to entirely remove the floor substrate, to provide a new fresher look to the floor. [0002]
  • Polymer-based floor coatings are an example of finishes that are typically applied with a mop as an aqueous emulsion or solvent solution that dries to a hard protective film. After months of exposure to traffic, such finishes become scratched, scuffed and soiled to a point where they need to be completely removed from the floor and a new finish applied. The removal of these coatings from hard floors has traditionally required the use of corrosive chemical solutions, typically mixtures of alkalis and volatile solvents. These chemical mixtures are generally unpleasant and messy to use. Also, because of their hazardous nature it is generally recommended that users wear protective goggles, gloves and footwear. There is further concern that these liquid mixtures may create slippery floors and an increased risk of slip and fall accidents. They also present potential environmental and hazardous waste issues. As a result of these issues and the amount of time and labor involved, recent trends in protective floor coatings are to move away from these traditional finishes and move toward more durable, highly crosslinked coatings, such as UV-cured urethanes, polyurethane dispersions and epoxies. These coatings, while they have enhanced durability over more traditional floor finishes, suffer in that they, too, eventually have to be removed from the floor due to scratching, scuffs, etc. However, while more traditional floor finishes can be removed chemically, the highly crosslinked nature of these durable films makes them difficult, if not impossible to remove by any means other than physical abrasion. [0003]
  • In summary, a considerable number of deficiencies exist in the art relating to finishes for indoor and outdoor surfaces, such as floor surfaces, wall surfaces, ceilings, driveways, sidewalks, patios, and the like. [0004]
  • Thus, there is an ongoing search for a surface finishing system which would enable a surface to be finished partially or in its entirety, which can be quickly and easily applied yet is readily removable and resistant to scratches, scuffs, gouges and other damage by maintenance equipment and general wear and tear. [0005]
  • SUMMARY OF INVENTION
  • One aspect of the invention provides a flexible surface finishing film. The film may be transparent or opaque and may be a colored film. The film may serve to facilitate the removal of overlying top coats, including cured top coats, by peeling the film away without the need for any stripping agents or other chemicals. Other optional layers include a bonding coat for attaching the film to a surface, at least one removable protective layer for protecting the film and/or any bonding coat prior to the application of the film to a surface, and a release coating between the film and the removable protective layer. The bonding coat may be selected to attach the films in a removable or repositionable manner. [0006]
  • Another aspect of the invention provides a floor finishing system which includes a flexible finishing film and a surface onto which the film is to be applied. Optionally, the system may also include at least one top coat applied over at least a portion of the film. The system may additionally include at least one base coat applied to the surface prior to application of the flexible film to the surface. The film in such a system is desirably sufficiently thin to provide a minimal difference between the height of the surface without the film and the height of the surface having the film applied thereon. In some embodiments, the film is disposed on at least a portion of the surface whereby the remaining portion of the surface is devoid of film. In other embodiments, the film is applied over the entire surface. [0007]
  • The inventive system also optionally includes a surface cleaner for cleaning a surface to which a finishing film has been applied. Such cleaners include neutral cleaners, alkaline cleaners, acidic cleaners, cleaner/maintainers and maintainers, including polymeric type cleaners. [0008]
  • In practice, application of the surface finishing film to a surface comprises the following steps. It is advisable, but not required, that the surface be properly cleaned prior to the application of the film to remove dirt or debris which may adversely affect the overall appearance of the film covered surface. It is desirable, but not necessary, to leave a thin film or mist of the cleaners on the surface as a wetting agent or to apply a thin layer of wetting agent to the film prior to applying the film to the surface. The next step involves positioning or disposing the film on at least a portion of the surface. For example, this may involve rolling the film onto the surface beginning at one edge. After such positioning, a top coat, such as a crosslinked finish, may be applied over at least a portion of the film. In some embodiments a base coat layer may be applied to the surface after the cleaning step but prior to positioning the film on the surface. [0009]
  • In certain constructions, the flexible surface finishing film is strong enough that it may readily be removed from the surface simply by peeling the film away from the surface.[0010]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a flexible surface finishing film applied to a floor.[0011]
  • DETAILED DESCRIPTION
  • The present invention is directed to flexible surface finishing films used to finish and protect a surface and to surface finishing systems that include the films. The films are desirably pre-formed polymer films. [0012]
  • The present invention has potential applications on any surface where protection, scuff-resistance or slip-resistance is desirable. Such surfaces may be found both indoors and outdoors. These surfaces include floors, walls, ceilings, roofs, patios, shelves, and stairs, and ground cover structures, such as roads, driveways, and sidewalks. The surface to be finished may be made from a vast variety of materials, including, but not limited to, vinyl, marble, terrazzo, ceramic, linoleum, wood, metal, plastic, rubber, gypsum board, plaster, concrete, stone, vinyl composition tile, and glass. [0013]
  • FIG. 1 shows an exemplary embodiment of the invention. As shown in FIG. 1, a floor finishing system may include a [0014] flexible film 20 at least partially covering a surface 24. The surface finishing system of FIG. 1 further includes, a bonding coat 26 disposed against the lower surface of the film 20, and a top coat 34 applied over the top of the film. A base coat 28 is also shown in FIG. 1, sandwiched between the surface to be finished 24 and the bonding coat 26. Initially, the present invention can include removable protective layers (not shown) above the film 20 and below the bonding coat 26. The upper removable layer is designed to protect the upper surface of the film 20 and the lower removable layer is designed to protect the lower surface of film 20 and/or any bonding coat 26 applied thereto. Although not shown in the figure, the structure may also include a release coat between the upper removable layer and the upper surface of the flexible film and/or between the lower removable layer and the lower surface of the flexible film or any bonding coat applied thereto.
  • In some embodiments, the flexible film facilitates the removal of an overlying top coat from the surface. The flexible film may be selected and designed such that the film, along with any overlying layers disposed thereon, may be readily removed by peeling the film layer away from the surface, either in a single sheet or in smaller pieces. This eliminates the need for conventional stripping agents and makes the removal process, less expensive, less energy intensive, and less time consuming. It also eliminates the need for stripping chemicals which pose a hazard to both the user and the environment. [0015]
  • The flexible film is desirably thin enough that the thickness of any seam between the surface and the film is minimized. In some embodiments, the film has a thickness of 25 mils or less, 10 mils or less or 8 mils or less. This includes embodiments where the film has a thickness of 6 mils or less, embodiments where the film has a thickness of 4 mils or less, embodiments where the film has a thickness of 2 mils or less, embodiments where the film has a thickness of 1 mils or less and embodiments where the film has a thickness of 0.5 mils or less, where a “mil” is defined as one one-thousandth of an inch. The choice of film thickness will depend, at least in part, on the intended application and location of the film. Additionally, the type of film will impact the film strength. Thus, it may be possible to utilize films of particular materials in a thinner dimension while maintaining sufficient strength to be peeled away from the surface without tearing or with only minor amounts of tearing. A thinner film might be more desirable where it is imperative that the transition from the surface to the film be nearly imperceptible. Alternatively, a thicker film might be used to smooth out an underlying surface that is uneven, rough, or damaged. [0016]
  • The flexible film may be made from any material suitable for providing a protective layer on an underlying surface. Examples of suitable materials for the film include, but are not limited to, fabrics, foils, polymeric sheeting, and paper. Specific examples of suitable polymeric sheeting materials include, but are not limited to, polypropylene films, polyacetal films, polyamide films, polyanhydride films, polyester films, polyolefin films, polystyrene films, polyvinyl chloride films, polyvinylidene chloride films, polyurethane films, polyurea films, and the like. [0017]
  • As noted above, the present invention may optionally include a bonding coat on the lower surface of the film as shown in FIG. 1, where the lower surface of the film is the surface that will be face down with respect to the surface to be finished once the film is applied. Such a bonding coat is made from an adhesive which serves to adhere the flexible film to the surface. The tackiness of the adhesive may vary over a broad range depending on the intended application of the film. As used herein, the term “tack” refers to the rate at which an adhesive bond forms between two surfaces. As one of skill in the art will recognize, the tack of certain adhesives may be influenced by the thickness of the adhesive layer. In embodiments where it is desirable to provide a surface finishing system wherein the film is readily removed from the surface, the adhesive should be selected such that it bonds preferentially to the film, rather than the surface to be finished. In certain embodiments the tack of the adhesive will range from 50 to 2000 grams per square centimeter. This includes embodiments where the tack of the adhesive ranges from 100 to 1500 grams per square centimeter, and further includes embodiments where the tack of the adhesive ranges from 150 to 1000 grams per square centi meter. [0018]
  • The bonding coat is desirably thin in order to minimize the combined thickness of the bonding layer and the film. In various embodiments, the combined thickness of these two components is 8 mils or less, 6 mils or less, 5 mils or less, 4 mils or less and even 2 mils or less. Suitable adhesives for use in the bonding coat include pressure sensitive adhesives. In some embodiments, the pressure sensitive adhesives are non-curing adhesives or adhesives that do not require curing after application, because such adhesives may be more easily removed from some surfaces. For example, in some embodiments, curable epoxies are avoided. Other suitable adhesives include temperature sensitive adhesives, repositionable adhesives, or any other suitable adhesive known to one of ordinary skill in the art. Examples of suitable pressure sensitive adhesives include, but are not limited to those disclosed in U.S. Pat. Nos. 4,845,149; 4,879,333; and 4,923,919, the disclosures of which are incorporated herein by reference. [0019]
  • The adhesive may be applied directly to the lower surface of the film or may first be applied to the surface of a protective removable layer, of the type described below, which is then disposed adjacent to the lower surface of the film, sandwiching the adhesive coating between the film and the removable protective layer. In this embodiment, it is advantageous if the adhesive bonds preferentially to the film such that it is transferred along with the film onto the surface to be finished. The bonding coat may be applied to the surface of the film or the protective layer by any conventional means. For example, the adhesive may be spray coated, rolled or printed onto the film or protective layer. In some embodiments, the adhesive dissolves readily in mild detergents. Alternatively, the adhesive may be applied directly to the surface to be finished, or a portion thereof, and the film may subsequently be adhered to the adhesive. [0020]
  • In some embodiments, the bonding coat may be omitted. For example, an external source may be utilized to maintain the position of the film on the surface to be finished during application of a top coat over at least a portion of the film such that the top coat secures the film to the surface. Alternatively, the film may have enough tack to adhere to the underlying surface without the use of additional adhesive. [0021]
  • As noted above, the film may optionally include a removable protective layer disposed above and/or below its upper and lower surfaces. A release coating may be included between the upper removable protective layer and the upper surface of the film. In some embodiments, a lower removable protective layer is disposed next to the lower surface of the film. In such applications, a bonding coat as described above, may be included between the removable protective layer and the film. In this construction the removable protective layer serves to prevent debris from collecting in the adhesive and to prevent the adhesive from attaching to a surface prematurely. [0022]
  • The upper and lower removable protective layers may be made from the same or different materials. Suitable materials include, but are not limited to, plastics, such as polyester, polypropylene, or polyethylene. The removable protective layer or layers may optionally be transparent materials. In some embodiments the removable protective layer or layers are made from paper which may optionally be coated paper. This has the advantage of significantly lowering the cost of production of the surface finishing films. In addition, because the paper may be readily recycled, this embodiment saves energy and reduces waste. [0023]
  • Suitable materials for use in release coats are well known and include, but are not limited to, polyvinyl chloride and acrylics designed to facilitate the release of the removable layer or layers from the film. The release coat may be designed to remain substantially adhered to the removable protective layer after the transfer of the film to the surface to be finished. Alternatively, the release coat may be designed to remain substantially adhered to the film after the transfer. In the latter design, the release coat is referred to as a breakaway coating. The breakaway coating should be selected and designed such that it does not substantially affect the thickness of the applied film. In other embodiments, the release coat is split between the film and the removable protective layer upon the removal of the latter. In various embodiments, the combined thickness of the film, any bonding coat, and any release coating is 8 mils or less, 6 mils or less, 5 mils or less, 4 mils or less, or even 2 mils or less. [0024]
  • After the application of the surface finishing films to the surface to be finished, at least one top coat may be disposed over at least a portion of the upper surface of the film. The top coat may be any conventional sealant or finish and may be applied as a solid or a liquid top coat. The top coats may be cured top coats. As used herein, a “cured” coating includes coatings that are formed by the evaporation of a solvent and the coalescence of the solid film without crosslinking (i.e. “evaporatively-cured” coatings) and coatings that are formed by crosslinking reactions. Such top coats are well known and commercially available and are generally used to impart shine, dirt resistance, water resistance, and/or scratch/wear resistance to the surface. Examples of suitable top coats include polishes, waxes and metal cross-linked (reversible cross-linked) finishes. The top coat may help adhere the film to the surface to be finished and to further smooth out the edges of the film. However, the top coat is not required. [0025]
  • Suitable commercially available cured floor finishes for use with the floor finish systems provided herein include Signature, a metal interlock styrene-acrylic finish that cures at ambient temperatures, available from JohnsonDiversey, Inc. (Racine Wis.). Suitable commercially available evaporatively-cured floor finishes include ZF-175, Linobase, and JX-4000, available from JohnsonDiversey, Inc. (Racine, Wis.). Conventional floor finishes mixed with crosslinking hardeners may also be employed. For example, Signature may be mixed with about 1% polyaziridine to provide a more durable crosslinked finish. [0026]
  • For many applications, such as floor applications, it is desirable for a surface finish to provide a slip-resistant surface or a surface having a single coefficient of friction which helps prevent trips, slips and falls. In some instances, the flexible film may provide a sufficiently slip-resistant surface, however, when it is desirable to increase the slip-resistance of the film, a top coat which provides a coefficient of friction higher than that of the film may be applied over at least a portion of the film. In some embodiments the top coat may provide a non-slip surface. As used herein, a “non-slip” surface is a surface having a coefficient of friction of at least 0.5 as measured by ASTM D-2047, a standard test method for determining the static coefficient of friction using the James Machine Test. This includes embodiments where the top coat provides a surface having a coefficient of friction of at least 0.55, further includes embodiments where the top coat provides a surface having a coefficient of friction of at least 0.6, still further includes embodiments where the top coat provides a surface having a coefficient of friction of at least 0.65, yet further includes embodiments where the top coat provides a surface having a coefficient of friction of at least 0.7, and even further includes embodiments where the top coat provides a surface having a coefficient of friction of at least 0.75. [0027]
  • Examples of suitable top coats include, but are not limited to, durable crosslinked polymeric top coats, such as crosslinked acrylic finishes. The combination of an underlying flexible film with an overlying crosslinked polymeric finish provides a durable surface coating that can be removed simply by peeling the flexible film away from the surface. This represents a significant advantage over surface coatings where a crosslinked finish is applied directly to a surface. These crosslinked surface coatings generally can only be removed by physical abrasion. Specific examples of crosslinked top coats that may be applied over the flexible films include styrene acrylics, urethane acrylics, urethanes, vinyls, epoxys, and the like. These crosslinked finishes include permanent finishes, where a “permanent” finish is a finish that cannot be removed from an underlying substrate, such as a floor surface, without mechanical abrasion. For example, in some embodiments, the top coat is made of a finish that is not alkali-soluble. The finishes may be cured by inducing crosslinking under ambient temperatures (“ambient-curable finishes”) or with the aid of an external heat or energy source (“energy-curable finishes”). As used herein, the phrase “energy-curable finishes” includes both radiation curable finishes and heat curable finishes. In various embodiments, the combined thickness of the film and any top coat is 8 mils or less, 6 mils or less, 5 mils or less, 4 mils or less, or even 2 mils or less. However, it is not imperative that the top coat be particularly thin. [0028]
  • The crosslinked top coats may be applied over the flexible film as a composition containing one or more curable monomers or polymers, such as acrylic, urethane, vinyl or epoxy monomers or polymers, in a solvent, desirably an aqueous solvent. The composition may optionally include other additives that assist with the application or curing of the composition, such as dispersants, curing-agents, crosslinking agents, photoinitiators, leveling aids, emulsifiers, silicones, waxes, pigments, dyes and preservatives. Once the composition has been applied to the flexible film, it is allowed to cure. In some cases, it is exposed to energy (heat or radiation) to induce curing. The selection of an appropriate energy will depend on the nature of the finish. Suitable energy sources include heat sources, infrared energy sources, ultraviolet energy sources, radiowave energy sources and microwave energy sources, or a combination thereof. Energy curable surface (e.g. floor) finishes are well known and commercially available. UVInfusion, UltraTc and Ultra Rock, available from Minuteman International (Addison, Ill.), are examples of durable UV crosslinking floor finishes that may be used in the floor finishing systems provided herein. Joncryl 1972 and joncryl 1980 are examples of durable self-crosslinking floor finishes that may be used in the floor finishing systems provided herein. [0029]
  • As noted above, at least one base coat may be disposed between the surface to be finished and the film. Suitable base coats are well known and commercially available. [0030]
  • The base coat can be of different, similar or identical composition to the top coat, as previously discussed. [0031]
  • Further embodiments of the present invention allow for a first surface finishing film to be applied to a surface, followed by the application of a top coat over at least a portion of the first surface finishing film, and the subsequent application of a second surface finishing film disposed on top of the top coat, optionally followed by an additional top coating. Further, alternating layers of flexible films and top coats can be utilized to achieve a desired effect. In such an embodiment, as in previous embodiments, a base coating layer can be disposed on top of the surface to be finished prior to application of the first surface finishing film. The ability to provide multiple layers of films is advantageous because it allows the lower films to be patched in order to fix holes or cover damage. [0032]
  • In readying the surface for application of a surface finishing film, it is recommended, but not required, that the surface initially be cleaned or stripped to remove dirt, debris or similar waste, as well as any inferior coatings applied on the surface. Conventional cleaners including neutral cleaners, alkaline cleaners, acidic cleaners, cleaners/maintainers, or maintainers including polymeric cleaners, may be utilized for this purpose. One such cleaner is UHS Cleaner, available from JohnsonDiversey, Inc. (Racine Wis.). Dust mopping, or similar light cleaning may be utilized to remove the majority of the dust and dirt. After cleaning and stripping, the film may be positioned on or rolled out onto the surface. If the film is packaged with one or more removable protective layers, those layers are removed, exposing the film or the bonding coat, if present, and the film is applied to the surface, typically by applying light pressure. The film may be applied beginning at one edge by adhering an edge of the film to the surface, using any adhesive coated on the lower surface of the film or a strip of tape, and spreading (e.g. rolling) the film outwardly from that edge, pressing it onto the surface as it spreads. A tool having a flat edge may be utilized to uniformly apply the film to the surface and remove any bubbles, wrinkles, etc. Such tools include, rubbing sticks, rigid blades, flat-bladed squeegees, T-bars, including weighted T-bars and rollers, including heated and/or weighted rollers. Any bubbles remaining in the film after application may be removed by pricking the bubbles with a pin or similar object to release trapped air or liquid. After the film is suitably placed and positioned on the surface to be finished, any remaining removable layers may be peeled away. Next, a top coat may be disposed over at least a portion of the film. Multiple layers of the top coat may be applied. [0033]
  • Alternatively, a water release or water slide technique can be utilized to position the film on the surface whereby the film is positioned above the surface and moisture is applied to slide the film off of a removable protective layer and onto the surface. [0034]
  • The inventors have surprisingly and unexpectedly discovered that bubbles in the film may be reduced or eliminated by first applying a thin layer or mist of a liquid wetting agent having a surface tension equal to or lower than that of water, to the surface to be finished, or to the lower surface of the film prior to the application of the film to the surface. For example, water may be used as a wetting agent. For some applications, a wetting agent having surface tension lower than water is desirable. This includes applications where the wetting agent has a surface tension of no more than about 70 dynes/cm at 20° C., further includes applications where the wetting agent has a surface tension of no more than about 65 dynes/cm at 20° C., still further includes applications where the wetting agent has a surface tension of no more than about 60 dynes/cm at 20° C. and even further includes applications where the wetting agent has a surface tension of no more than about 50 dynes/cm at 20° C. Suitable liquid wetting agents include conventional cleaning solutions including alcohol-containing cleaners, acidic cleaners, alkaline cleaners, and maintainers. A conventional floor finish (e.g. an aqueous formulation with suspended solids) may also be used as a wetting agent. Such a finish may be applied as a mist or a thin liquid coating, and the flexible film may be applied over the finish before it dries to reduce bubble formation in the film. [0035]
  • Bubbles may also be reduced by using an air or liquid permeable film or by using a film that has one or more perforations to allow any liquid or air trapped below the film to escape as the film is flattened onto the surface. The perforations may include holes of various shapes, however narrow slits or pin holes are preferred because they allow air and liquid to escape without significantly reducing the smoothness of the film. This is desirable because a rough surface may wear out faster as dirt collects in rough areas and edges become frayed. Thus, the number of perforation is desirably sufficient to reduce the number of bubbles without unnecessarily roughening the surface of or weakening the integrity of the film. In some embodiments, the films have an average of at least 1 perforation per square foot. This includes embodiments where the films have an average of at least 10 perforations per square foot. In some embodiments, the films have an average of no more than about five hundred perforations per square foot. This includes embodiment where the films have an average of no more than about two hundred perforations per square foot, further includes embodiments where the films have an average of no more than about one hundred perforations per square foot and still further includes embodiments where the films have an average of no more than about fifty perforations per square foot. [0036]
  • In embodiments where a cured or crosslinked top coat, of the type discussed above is employed, it is desirable to provide a film that prevents or minimizes leakage of the top coat through the film and contact of the top coat with the underlying surface and/or any underlying bonding layer where it may form a permanent finish that cannot simply be peeled away from the surface. In these embodiments, the film may have only a small number or perforations, may include only perforations presenting small openings, such as slits (rather than holes) or pin holes, or may be non-perforated. Where the small opening approach is used, the openings should be sufficiently small to prevent or substantially prevent the top coat from passing through. [0037]
  • The flexible films may be provided in sheets or rolls and may be applied as a single sheet or in multiple smaller film segments. The film segments may take on a variety of shapes, but desirably include one or more straight edges. Suitable shapes include rectangles and squares. When multiple film segments are laid down they are desirably disposed adjacent each other with edges in contact, but not overlapping. This process may be facilitated using a laser-guided chalk line to help establish straight rows and clean butt joints. [0038]
  • Maintenance of a flexible film-finished surface according to the present invention, may be handled by utilization of commonly used cleaners, including neutral cleaners, alkaline cleaners, acidic cleaners, polymeric cleaners and polymeric maintainers. Commonly available products such as Stride Cleaner, available from JohnsonDiversey (Racine Wis.), can be utilized. After the cleaner is applied to the surface, an agitating force sufficient to remove dirt without damaging the film may be applied. This may be accomplished with commonly used mechanical tools such as auto-scrubbers and buffers. [0039]
  • It should be noted that the layer thicknesses depicted in FIG. 1 are for illustration purposes only and are in no way meant to reflect the actual thickness of each layer or its relative thickness with respect to any other layer. [0040]
  • While the principles of this invention have been described in connection with specific embodiments, it should be understood clearly that these descriptions are made only by a way of example and are not intended to limit the scope of the invention. [0041]

Claims (31)

1. A surface finish comprising:
(a) a flexible film at least partially covering a surface; and
(b) a cured coating disposed over at least a portion of the film.
2. The surface finish of claim 1, wherein the cured coating is an evaporatively-cured coating.
3. The surface finish of claim 1, wherein the cured coating is an ambient-cured coating.
4. The surface finish of claim 1, wherein the cured coating is an energy-cured coating.
5. The surface finish of claim 1, wherein the cured coating is a permanent crosslinked coating.
6. The surface finish of claim 1, wherein the flexible film has a thickness of no more than 10 mils.
7. The surface finish of claim 1, further comprising a bonding coat disposed between the flexible film and the surface.
8. The surface finish of claim 5, wherein the crosslinked coating is selected from the group consisting of acrylic coatings, polyurethane coatings, vinyl coatings and epoxy coatings.
9. The surface finish of claim 1, wherein the flexible film comprises a film selected from the group consisting of polypropylene films, polyacetal films, polyamide films, polyanhydride films, polyester films, polyolefin films, polystyrene films, polyvinylchloride films, polyvinylidene chloride films, polyurethane films, and polyurea films.
10. The surface finish of claim 1, wherein the flexible film can be removed from the surface by peeling without the use of stripping agents.
11. A method for finishing a surface, the method comprising:
(a) applying a flexible film over at least a portion of the surface;
(b) applying a curable composition over at least a portion of the flexible film; and
(c) curing the composition to provide a cured polymer coating.
12. The method of claim 11, wherein the cured polymer coating is a crosslinked polymer coating.
13. The method of claim 11, wherein curing the composition comprises energy-curing the composition.
14. The method of claim 11, wherein the flexible film has a thickness of no more than 10 mils.
15. The method of claim 13, wherein the polymer is energy-cured using heat, infrared radiation, ultraviolet radiation, radiowave radiation, microwave radiation or a combination thereof.
16. The method of claim 12, wherein the crosslinked coating is selected from the group consisting of acrylic coatings, polyurethane coatings, vinyl coatings and epoxy coatings.
17. A surface finish comprising a perforated flexible film at least partially covering a surface, the flexible film having a thickness of no more than 20 mils.
18. The surface finish of claim 17, wherein the flexible film has a thickness of no more than 10 mils.
19. The surface finish of claim 17, wherein the flexible film has an average of at least 1 perforation per square foot.
20. The surface finish of claim 17, wherein the flexible film can be removed from the surface by peeling without the use of stripping agents.
21. A method for finishing a surface with a flexible film, the method comprising:
(a) applying a liquid wetting agent having a surface tension equal to or less than the surface tension of water to the surface to be finished or to the lower surface of the flexible film; and
(b) pressing the flexible film onto the surface to be finished with the liquid wetting agent disposed between the flexible film and the surface to be finished.
22. The method of claim 21, wherein the wetting agent has a surface tension less than that of water.
23. The method of claim 21, wherein the flexible film has a thickness of no more than 10 mils.
24. The method of claim 21, wherein the flexible film has a bonding coat disposed on its the lower surface.
25. A finished surface comprising a plurality of flexible film segments disposed adjacent one another on the surface, each flexible film segment having a thickness of less than 5 mils, wherein the edges of the flexible film segments do not overlap.
26. The finished surface of claim 25, further comprising a bonding coat disposed between each flexible film segment and the surface.
27. The finished surface of claim 25, wherein the flexible film segments can be removed from the surface by peeling without the use of stripping agents.
28. A surface finish comprising:
(a) a flexible film at least partially covering a surface; and
(b) a top coat disposed over at least a portion of the flexible film, the top coat having a higher coefficient of friction than the flexible film.
29. The surface finish of claim 28, wherein the top coat provides a non-slip surface finish.
30. The surface finish of claim 28, wherein the top coat has a coefficient of friction as measured by ASTM D-2047 of at least 0.6.
31. The surface finish of claim 28, wherein the top coat is a crosslinked polymer coating.
US10/707,498 2002-12-18 2003-12-18 Film surface finishing system Abandoned US20040170817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/707,498 US20040170817A1 (en) 2002-12-18 2003-12-18 Film surface finishing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43449902P 2002-12-18 2002-12-18
US10/707,498 US20040170817A1 (en) 2002-12-18 2003-12-18 Film surface finishing system

Publications (1)

Publication Number Publication Date
US20040170817A1 true US20040170817A1 (en) 2004-09-02

Family

ID=32682051

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/707,499 Abandoned US20040121123A1 (en) 2002-12-18 2003-12-18 Ultra-thin surface modification system
US10/707,498 Abandoned US20040170817A1 (en) 2002-12-18 2003-12-18 Film surface finishing system
US10/707,497 Abandoned US20040170793A1 (en) 2002-12-18 2003-12-18 Ultra-thin surface modification system
US11/742,965 Expired - Lifetime US7897002B2 (en) 2002-12-18 2007-05-01 Method of modifying a surface
US11/951,082 Abandoned US20080085396A1 (en) 2002-12-18 2007-12-05 Method of modifying a surface

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/707,499 Abandoned US20040121123A1 (en) 2002-12-18 2003-12-18 Ultra-thin surface modification system

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/707,497 Abandoned US20040170793A1 (en) 2002-12-18 2003-12-18 Ultra-thin surface modification system
US11/742,965 Expired - Lifetime US7897002B2 (en) 2002-12-18 2007-05-01 Method of modifying a surface
US11/951,082 Abandoned US20080085396A1 (en) 2002-12-18 2007-12-05 Method of modifying a surface

Country Status (11)

Country Link
US (5) US20040121123A1 (en)
EP (3) EP1572448A2 (en)
JP (3) JP2006510511A (en)
KR (3) KR20050090130A (en)
CN (3) CN100337815C (en)
AU (3) AU2003304183A1 (en)
BR (3) BR0317156A (en)
CA (3) CA2508960A1 (en)
MX (3) MXPA05006532A (en)
NZ (2) NZ540176A (en)
WO (3) WO2004108409A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185231A1 (en) * 2003-02-28 2004-09-23 Dimmick William Joseph Polymer coated surfaces having inlaid decorative sheets
US20040258889A1 (en) * 2003-05-05 2004-12-23 Gordon Julius Direct laminated vinyl substrates
US20100330372A1 (en) * 2007-05-17 2010-12-30 Johnsondiversey, Inc. Surface coating system and method
US20110097954A1 (en) * 2009-10-23 2011-04-28 Skudo Manufacturing Pty Ltd Peelable Coating
US20110236629A1 (en) * 2006-03-02 2011-09-29 Zagg, Inc. Protective covering for an electronic device
WO2011163416A2 (en) * 2010-06-22 2011-12-29 Zagg Intellectual Property Holding Co., Inc. Protective films for dry application to protected surfaces, installation assemblies and kits including the films, devices protected with the films, and associated methods
WO2011163151A1 (en) * 2010-06-24 2011-12-29 Entrotech, Inc. Assembly, kit and related method for applying a polymeric film to a device
US8567596B1 (en) 2006-04-01 2013-10-29 Zagg Intellectual Property Holding Co., Inc. Electronic device protective film application kit and method
US20140199535A1 (en) * 2013-01-17 2014-07-17 David Clift Removable Protective Surface Flooring
US9777195B2 (en) 2010-06-22 2017-10-03 Zagg Intellectual Property Holding Co., Inc. Dry apply protective systems and methods
US9868862B2 (en) 2011-05-25 2018-01-16 Diversey, Inc. Surface coating system and method of using surface coating system
US10608689B2 (en) 2010-09-01 2020-03-31 Zagg Intellectual Property Holding Co., Inc. Protective covers for electronic devices
US11111418B2 (en) 2010-06-22 2021-09-07 Zagg Inc Systems for securing protective films to surfaces of substrates
US20220332657A1 (en) * 2021-04-16 2022-10-20 Sika Technology Ag Self-etching cementitious substrate coating composition

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05006532A (en) * 2002-12-18 2005-09-08 Johnson Diversey Inc Ultra-thin surface modification system.
US20070001333A1 (en) * 2005-06-30 2007-01-04 Ashwit Dias System and method for forming textured polymeric films
EP2404729B1 (en) 2005-10-21 2020-06-17 Entrotech, Inc. Composite articles comprising protective sheets and related methods
US8322100B2 (en) * 2005-12-21 2012-12-04 Armstrong World Industries, Inc. Easy to install and remove tile system
JP3935493B1 (en) * 2006-03-31 2007-06-20 ジョンソンディバーシー株式会社 Adhesive film for floor, floor structure using the same, and method for maintaining the floor
US7402341B2 (en) * 2006-05-23 2008-07-22 Printar Ltd. Methods and compositions for printable surface pre-treatment
US8545960B2 (en) 2006-10-23 2013-10-01 Entrotech, Inc. Articles comprising protective sheets and related methods
EP2193024A4 (en) 2007-09-25 2013-11-06 Entrotech Inc Paint replacement films, composites therefrom, and related methods
US10981371B2 (en) 2008-01-19 2021-04-20 Entrotech, Inc. Protected graphics and related methods
US7971402B2 (en) * 2008-02-22 2011-07-05 Shawn Engberg Ceiling structure for commercial kitchens
US8474208B2 (en) * 2009-06-22 2013-07-02 Novalis Holdings Limited Floor panel containing a polymer and cork
US8808863B2 (en) 2009-07-28 2014-08-19 Photokinetic Coatings & Adhesives, Llc UV-curable floor sealants
CA2779408A1 (en) * 2009-11-25 2011-06-03 Diversey, Inc. Surface coating system and method
CN102676111B (en) * 2011-03-08 2014-01-29 北京市大禹王防水工程集团有限公司 Polyurea interlayer bonding agent and preparation method thereof
CN103302938B (en) * 2013-06-17 2016-08-24 泰州市翔宇动力机械厂 A kind of plastic and preparation method thereof
KR102179801B1 (en) 2013-11-22 2020-11-17 주식회사 대창 Method for surface treating and washer door surface treated using the same
US9303354B2 (en) 2013-12-31 2016-04-05 Awi Licensing Company Linoleum flooring
US9630068B2 (en) 2014-09-04 2017-04-25 Taylor Made Golf Company, Inc. Golf club
CN107109084B (en) * 2014-10-13 2020-04-28 戴弗西公司 Strippable surface coating system on multi-section substrate
EP3266612A3 (en) * 2016-07-08 2018-03-21 Hazen Paper Company Method and apparatus for transfer lamination
WO2018025156A1 (en) * 2016-08-04 2018-02-08 Chimont International Spa Multilayer finishing product for surface finishing of skins, fabrics, paper or microfiber
WO2018057379A1 (en) 2016-09-20 2018-03-29 Aero Advanced Paint Technology, Inc. Paint film appliques with reduced defects, articles, and methods
JP7144447B2 (en) 2017-05-11 2022-09-29 エコラボ ユーエスエー インコーポレイティド Compositions and methods for cleaning or repairing floors
US20210339279A1 (en) * 2020-04-30 2021-11-04 Johns Manville Slip resistant protective coating for single-ply membranes
CN111554135B (en) * 2020-05-28 2021-10-15 滁州学院 Inactive multimedia device of innovation entrepreneurship education

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1967858A (en) * 1930-05-26 1934-07-24 Borders Bee Friction stop for bowling alleys
US3502601A (en) * 1966-03-07 1970-03-24 Leslie C Case Novel polyurethanes and processes of preparing the same
US4678690A (en) * 1986-01-10 1987-07-07 Rexham Corporation Premasked decal
US4795152A (en) * 1986-06-06 1989-01-03 Suiter James R Bowling lane with transparent plastic film finishing layer
US4944514A (en) * 1986-06-06 1990-07-31 Suitco Surface, Inc. Floor finishing material and method
US5183262A (en) * 1991-04-05 1993-02-02 Will Heddon Bowling lane and refinishing method
US5320693A (en) * 1992-05-22 1994-06-14 S. C. Johnson & Son, Inc. Selectably-removable indicia-containing surface-coating composite and method
US5322708A (en) * 1989-08-31 1994-06-21 Juergen Eissele Self-adhesive dry-transfer decals, process for their manufacture and method of use
US5968624A (en) * 1991-01-02 1999-10-19 Liebe, Jr.; Robert James Multi-layered plastic lettering web and method of producing
US6042881A (en) * 1997-11-26 2000-03-28 Ewan; Frederick R. Temporary tattoo and method for manufacturing same
US6299967B1 (en) * 1998-06-05 2001-10-09 Arkwright Incorporated Ink jet recording media for use in making temporary tattoos and processes thereof
US6423406B1 (en) * 1999-06-25 2002-07-23 Avery Dennison Corporation Heat-transfer label including non-wax release layer
US6432190B1 (en) * 1995-06-06 2002-08-13 Avery Dennison Corporation Ink-imprintable release coatings, and pressure sensitive adhesive constructions
US6740359B2 (en) * 2001-02-06 2004-05-25 E. I. Du Pont De Nemours And Company Ambient cure fast dry solvent borne coating compositions

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1376003A (en) 1971-05-28 1974-12-04 Avery Products Corp Fusible label construction
FR2296536A1 (en) 1975-01-03 1976-07-30 Evangelista Combes INSCRIPTION PROCESS ON TEXTILES AND TEXTILES PROVIDED WITH INSCRIPTIONS OBTAINED BY APPLYING THE PROCEDURE
US4086379A (en) * 1976-08-05 1978-04-25 Bates Printing Specialties, Inc. Multi-layered laminates
AU515084B2 (en) * 1977-10-04 1981-03-12 Letraset International Limited Making asign
DE2843971A1 (en) * 1978-10-09 1980-04-24 Roemmler H Resopal Werk Gmbh DECORATIVE LAMINATE PANEL WITH A SURFACE STRUCTURE
JPS6397988A (en) * 1986-10-14 1988-04-28 トーイン株式会社 Information mat
US5643677A (en) * 1989-09-15 1997-07-01 Armstrong World Industries, Inc. Aminoplast/polyurethane wear layer for PVC support surface
JPH04275140A (en) * 1991-02-28 1992-09-30 Sumitomo Bakelite Co Ltd Laminated sheet artistic
EP0685079B1 (en) * 1993-02-16 1997-10-22 Minnesota Mining And Manufacturing Company Thermal print receptive and frangible retroreflective polymeric sheetings
US6149754A (en) * 1995-06-27 2000-11-21 Toyota Jidosha Kabushiki Kaisha Reproduced image product and a method of forming a reproduced image layer
AU1357797A (en) * 1996-01-11 1997-08-01 Gregory E. Ross Perimeter coating alignment
JPH10146943A (en) * 1996-11-18 1998-06-02 Hiroki Saito High-designed decoration method to uneven surface material
US6258429B1 (en) * 1997-03-11 2001-07-10 Stephen G. Nelson One-way see-thru panel and method of making same
GB9706427D0 (en) * 1997-03-27 1997-05-14 Pearson David Glass treatment process and apparatus
GB9717681D0 (en) * 1997-08-20 1997-10-29 Trip Productions B V Strong flexible dry transfers
JPH11131775A (en) * 1997-10-31 1999-05-18 Kayo Giken Kogyo Kk Floor surface display sheet and manufacture thereof
AU750889B2 (en) * 1998-06-15 2002-08-01 Minnesota Mining And Manufacturing Company Multi-component unidirectional graphic article
US6136127A (en) * 1998-10-05 2000-10-24 Chartpak, Inc. Electrically conductive adhesive transfers
JP4184516B2 (en) * 1998-12-21 2008-11-19 大日本印刷株式会社 Blow molding simultaneous decorating sheet and decorative blow molded product
US6174634B1 (en) * 1999-02-04 2001-01-16 Chartpak, Inc. Manufacture of transfer decalcomanias using ultraviolet cure in and adhesive technology
JP4270662B2 (en) * 1999-07-29 2009-06-03 大日本印刷株式会社 Decorative sheet
US6423190B2 (en) * 2000-01-07 2002-07-23 Delphi Technologies, Inc. Pulse density modulation for uniform barrier discharge in a nonthermal plasma reactor
US6544942B1 (en) * 2000-04-28 2003-04-08 Ecolab Inc. Phase-separating solvent composition
US20020182384A1 (en) * 2001-05-29 2002-12-05 Ralph Rhein Dry ink transfer system
CA2469379A1 (en) * 2001-12-20 2003-07-03 Jamey Gaston Surface enhancement and modification system
US20030203165A1 (en) * 2002-04-30 2003-10-30 Nobles Joy Sharon Computer generated decorative graphic article for application to a surface
US6875497B2 (en) * 2002-05-08 2005-04-05 Flexcon Company, Inc. Multilayer composite for the dry transfer of graphics to receptive substrates
MXPA05006532A (en) * 2002-12-18 2005-09-08 Johnson Diversey Inc Ultra-thin surface modification system.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1967858A (en) * 1930-05-26 1934-07-24 Borders Bee Friction stop for bowling alleys
US3502601A (en) * 1966-03-07 1970-03-24 Leslie C Case Novel polyurethanes and processes of preparing the same
US4678690A (en) * 1986-01-10 1987-07-07 Rexham Corporation Premasked decal
US4795152A (en) * 1986-06-06 1989-01-03 Suiter James R Bowling lane with transparent plastic film finishing layer
US4944514A (en) * 1986-06-06 1990-07-31 Suitco Surface, Inc. Floor finishing material and method
US5322708A (en) * 1989-08-31 1994-06-21 Juergen Eissele Self-adhesive dry-transfer decals, process for their manufacture and method of use
US5968624A (en) * 1991-01-02 1999-10-19 Liebe, Jr.; Robert James Multi-layered plastic lettering web and method of producing
US5183262A (en) * 1991-04-05 1993-02-02 Will Heddon Bowling lane and refinishing method
US5320693A (en) * 1992-05-22 1994-06-14 S. C. Johnson & Son, Inc. Selectably-removable indicia-containing surface-coating composite and method
US6432190B1 (en) * 1995-06-06 2002-08-13 Avery Dennison Corporation Ink-imprintable release coatings, and pressure sensitive adhesive constructions
US6042881A (en) * 1997-11-26 2000-03-28 Ewan; Frederick R. Temporary tattoo and method for manufacturing same
US6299967B1 (en) * 1998-06-05 2001-10-09 Arkwright Incorporated Ink jet recording media for use in making temporary tattoos and processes thereof
US6423406B1 (en) * 1999-06-25 2002-07-23 Avery Dennison Corporation Heat-transfer label including non-wax release layer
US6740359B2 (en) * 2001-02-06 2004-05-25 E. I. Du Pont De Nemours And Company Ambient cure fast dry solvent borne coating compositions

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185231A1 (en) * 2003-02-28 2004-09-23 Dimmick William Joseph Polymer coated surfaces having inlaid decorative sheets
US20040258889A1 (en) * 2003-05-05 2004-12-23 Gordon Julius Direct laminated vinyl substrates
US20110236629A1 (en) * 2006-03-02 2011-09-29 Zagg, Inc. Protective covering for an electronic device
US11169567B2 (en) 2006-03-02 2021-11-09 Zagg Inc Protective covering for an electronic device
US8567596B1 (en) 2006-04-01 2013-10-29 Zagg Intellectual Property Holding Co., Inc. Electronic device protective film application kit and method
US20100330372A1 (en) * 2007-05-17 2010-12-30 Johnsondiversey, Inc. Surface coating system and method
US20110097954A1 (en) * 2009-10-23 2011-04-28 Skudo Manufacturing Pty Ltd Peelable Coating
US9777195B2 (en) 2010-06-22 2017-10-03 Zagg Intellectual Property Holding Co., Inc. Dry apply protective systems and methods
WO2011163416A3 (en) * 2010-06-22 2012-03-08 Zagg Intellectual Property Holding Co., Inc. Protective films for dry application to protected surfaces
US10364374B2 (en) 2010-06-22 2019-07-30 Zagg Intellectual Property Holding Co., Inc. Dry apply protective methods
US10421885B2 (en) 2010-06-22 2019-09-24 Zagg Intellectual Property Holding Co., Inc. Dry apply protective systems
US11111418B2 (en) 2010-06-22 2021-09-07 Zagg Inc Systems for securing protective films to surfaces of substrates
WO2011163416A2 (en) * 2010-06-22 2011-12-29 Zagg Intellectual Property Holding Co., Inc. Protective films for dry application to protected surfaces, installation assemblies and kits including the films, devices protected with the films, and associated methods
US11472098B2 (en) 2010-06-22 2022-10-18 Zagg Inc Protective layers for dry application to protected surfaces, installation assemblies and kits including the layers, devices protected with the layers, and associated methods
US11485880B2 (en) 2010-06-22 2022-11-01 Zagg Inc Dry apply protective methods
WO2011163151A1 (en) * 2010-06-24 2011-12-29 Entrotech, Inc. Assembly, kit and related method for applying a polymeric film to a device
US10608689B2 (en) 2010-09-01 2020-03-31 Zagg Intellectual Property Holding Co., Inc. Protective covers for electronic devices
US9868862B2 (en) 2011-05-25 2018-01-16 Diversey, Inc. Surface coating system and method of using surface coating system
US20140199535A1 (en) * 2013-01-17 2014-07-17 David Clift Removable Protective Surface Flooring
US20220332657A1 (en) * 2021-04-16 2022-10-20 Sika Technology Ag Self-etching cementitious substrate coating composition

Also Published As

Publication number Publication date
CN1726132A (en) 2006-01-25
CA2508843C (en) 2011-04-26
KR20050090130A (en) 2005-09-12
AU2003301085B2 (en) 2009-02-19
JP2006510512A (en) 2006-03-30
AU2003304183A1 (en) 2005-01-04
WO2004056563A8 (en) 2005-03-03
JP2006510511A (en) 2006-03-30
WO2004056563A3 (en) 2004-09-23
BR0317158A (en) 2005-11-01
US20040121123A1 (en) 2004-06-24
KR20050088447A (en) 2005-09-06
US7897002B2 (en) 2011-03-01
AU2003297350A1 (en) 2004-07-14
MXPA05006534A (en) 2005-09-08
WO2004056562A2 (en) 2004-07-08
WO2004056562A3 (en) 2004-09-23
CA2508960A1 (en) 2004-12-16
MXPA05006536A (en) 2005-09-08
US20070202266A1 (en) 2007-08-30
JP2006521218A (en) 2006-09-21
WO2004108409A3 (en) 2005-04-21
CN100337815C (en) 2007-09-19
NZ564473A (en) 2009-04-30
EP1572448A2 (en) 2005-09-14
EP1572446A2 (en) 2005-09-14
EP1572447A2 (en) 2005-09-14
BR0317156A (en) 2005-11-01
MXPA05006532A (en) 2005-09-08
NZ540176A (en) 2008-03-28
KR20050091734A (en) 2005-09-15
US20040170793A1 (en) 2004-09-02
CA2508918A1 (en) 2004-07-08
CN1726131A (en) 2006-01-25
CN1726130A (en) 2006-01-25
AU2003301085A1 (en) 2004-07-14
WO2004056563A2 (en) 2004-07-08
US20080085396A1 (en) 2008-04-10
BR0317154A (en) 2005-11-01
WO2004108409A2 (en) 2004-12-16
CA2508843A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US20040170817A1 (en) Film surface finishing system
US6106916A (en) Flexible laminated sheet flooring product
US20030134074A1 (en) Surface enhancement and modification system
JPH01168976A (en) Coating material for floor

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNSONDIVERSEY, INC., WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOX, DEREK;SANDER, ROBERT;BOBER, ANDREW M.;AND OTHERS;REEL/FRAME:014582/0527;SIGNING DATES FROM 20040312 TO 20040506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION