US20040164229A1 - Color filter configuration for a silicon wafer to be diced into photosensitive chips - Google Patents

Color filter configuration for a silicon wafer to be diced into photosensitive chips Download PDF

Info

Publication number
US20040164229A1
US20040164229A1 US10/784,517 US78451704A US2004164229A1 US 20040164229 A1 US20040164229 A1 US 20040164229A1 US 78451704 A US78451704 A US 78451704A US 2004164229 A1 US2004164229 A1 US 2004164229A1
Authority
US
United States
Prior art keywords
wafer
chip
groove
main surface
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/784,517
Inventor
Paul Hosier
Thomas Grimsley
Josef Jedlicka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US10/784,517 priority Critical patent/US20040164229A1/en
Publication of US20040164229A1 publication Critical patent/US20040164229A1/en
Assigned to JPMORGAN CHASE BANK, AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: XEROX CORPORATION
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO BANK ONE, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Definitions

  • the present invention relates to photosensitive chips for creating electrical signals from an original image, as would be found, for example, in a digital scanner or facsimile machine. More specifically, the present invention relates to a design for a photosensitive chip with a thin-film color filter attached thereto.
  • full-color solid-state photosensitive devices such as a silicon chip having an array of photosensors thereon.
  • One prior-art for causing the photosensors on the silicon chip to be sensitive to a specific primary color is to provide, on the main surface of the silicon chip, a layer of spectrally transparent filter material, such as polyimide or acrylic, which has been dyed or pigmented to a specific primary color. If a single photosensitive chip is intended to have multiple linear arrays of photosensors, each linear array being sensitive to one particular primary color, particular polyimide layers are applied to specific linear arrays, thereby creating a full-color photosensitive chip.
  • One typical method of construction of full-color photosensitive chip is to first create a wafer having a relatively large number, such as one hundred or more, of semiconductor structures, each structure corresponding to one chip. Filters are applied to the structures on the wafer so that filter areas will be applied to the desired linear arrays of photosensors on each chip structure. Typically this application of filter material is carried out by applying an even layer of translucent liquid to the entire wafer, developing the desired areas of the filter material with a photo mask, and then etching away the translucent material in all other areas. For full-color chips, multiple layers of translucent filter material are applied to the wafer, and then etched away as needed, to yield the three primary-color-filtered linear arrays of photosensors.
  • the chip termination is a combination of chemically-etched v-groove and a mechanically sawed portion. The diced chips are first tested and screened for defective chips, and the usable chips are then abutted into a longer linear array.
  • U.S. Pat. No. 5,219,796 discloses the basic concept of dicing image sensor chips from a wafer.
  • U.S. Pat. No. 5,521,125 discloses a technique of dicing silicon chips from a wafer. “Streets” of relatively deep trenches are formed between the functional chip areas of the wafer, and a shock absorbent material is a deposited in the streets, forming a concave meniscus therein. The shock absorbent material retards the trajectories of silicon particles set into motion when the wafer is diced into chips.
  • U.S. Pat. No. 5,604,362 discloses covering essentially the entire main surface of a photosensor chip with a highly light-absorbing filter layer, to avoid stray reflections from non-photosite portions of a photosensor chip.
  • U.S. Pat. No. 5,696,626 discloses the design of a photosensitive chip wherein each photosite is covered with a filter formed from a cured translucent liquid. At the critical ends of the chip, between the end photosite and the edge of the chip, there is provided a ridge which protrudes over the regular thickness of the filter. This ridge maintains the physical integrity of the filter, particularly during a dicing process.
  • U.S. Pat. No. 6,111,247 discloses an imaging chip having a sensor portion and a non-sensor portion disposed about the periphery of the sensor portion, a passivation layer overlying a portion of a top surface of the sensor portion, and a protection layer overlying the passivation layer.
  • U.S. Pat. No. 6,066,883 discloses using a “guard ring,” in the form of a biased diffusion area, to avoid the influence of stray light in an edge photosite in a photosensor chip.
  • U.S. Pat. No. 6,157,019 discloses a configuration of photosensitive chips in which photosites immediately adjacent a functional edge of the chip are shielded and thus defined with an opaque layer that overlaps the diced region and preserves the integrity of the filter layers while eliminating the need for a guard ring.
  • a photosensitive chip for use in an imaging apparatus, comprising a main surface, having at least one photosite thereon, the main surface defining an edge. A groove portion is defined at the edge. A light-transmissive planar layer is disposed over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove portion. A light-transmissive filtering layer is disposed over the planar layer.
  • an imaging apparatus including at least one photosensitive chip.
  • the chip comprises a main surface, having at least one photosite thereon, the main surface defining an edge.
  • a groove portion is defined at the edge.
  • a light-transmissive planar layer is disposed over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove portion.
  • an integrated circuit wafer comprising a first chip area defined in a main surface of the wafer, the first chip area including structure related to a first photosite.
  • a groove is defined in the wafer, the groove defining at least one edge of the first chip area.
  • a light-transmissive planar layer is disposed over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove.
  • a method of making photosensitive chips for use in an imaging apparatus comprising the steps of providing an integrated circuit wafer, the wafer comprising a first chip area defined in a main surface of the wafer, the first chip area including structure related to a first photosite, and a groove defined in the wafer, the groove defining at least one edge of the first chip area, and providing a light-transmissive planar layer over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove.
  • FIG. 1 is a plan view of a single photosensitive chip of a general design found, for example, in a full-color photosensor scanner.
  • FIG. 2 is a perspective view of a wafer from which chips may be diced pursuant to the present invention.
  • FIG. 3 is a detailed cross-sectional view showing the internal structure of a chip according to the present invention, along with a filter architecture pursuant to the present invention.
  • FIG. 4 is a plan view showing the configuration of various translucent filtering layers over a chip when the chip is attached to an adjacent chip within a wafer pursuant to the present invention.
  • FIG. 5 is an elevational view of a portion of a photosensitive device including chips made pursuant to the present invention.
  • FIG. 1 is a plan view of a single photosensitive chip, generally indicated as 10 , of a design found, for example, in a full-color photosensor scanner or digital camera.
  • a typical design of a full-page-width scanner will include a plurality of chips 10 , each chip being approximately one-half to one inch in length, the chips being butted end-to-end to form an effective collinear array of photosensors, which extends across a page image being scanned.
  • Each chip 10 is a silicon-based integrated circuit chip having defined in a main surface thereof three independently-functioning linear arrays of photosensors, each photosensor being here indicated as 14 .
  • the photosensors are disposed in three parallel rows which extend across a main dimension of the chip 10 , these individual rows being shown as 16 A, 16 B, and 16 C.
  • Each individual row of photosensors on chip 10 can be made sensitive to a particular color, by applying to the particular row a spectrally translucent filter layer which covers only the photosensors in a particular row.
  • the three rows of photosensors are each filtered with a different primary color, such as red, green, and blue.
  • each individual photosensor 14 is adapted to output a charge or voltage signal indicative to the intensity of light of a certain type impinging thereon; various structures, such as transfer circuits, or charge-coupled devices, are known in the art for processing signal output by the various photosensors corresponding to photosites 14 .
  • FIG. 2 is a perspective view of a wafer 100 , generally of an integrated circuit design familiar in the art, from which any number of chips 10 may be separated or “diced.”
  • a basic description of the dicing process is given, for instance, in U.S. Pat. Nos. 5,219,796 or 5,696,626, cited above. (The wafer is indicated as “prior art” in FIG. 2 only to the extent that dicing photosensitive chips from a wafer is known; however, aspects of the invention may be embodied in such a wafer 100 , such as shown in FIG. 4.)
  • FIG. 3 corresponds to the cross-section through line marked 3 - 3 in FIG. 2, in the case where a particular chip 10 is still formed as part of a wafer, from which it and any number of other chips are diced.
  • a ridge 20 which protrudes from the main surface of the chip, and is disposed to extend between the perimeter of an end photosite 14 disposed at the end of a particular chip 10 , and the edge of the chip, as shown in FIG. 2.
  • This ridge 20 protrudes a significant distance from the main surface of the chip, typically about 0.8 to 1.2 micrometers from the surface formed by the end photosite 14 .
  • a field oxide indicated as 50 , the specific structure of which is not germane to the present invention.
  • a borophosphosilicon glass indicated as 52 .
  • metal structure 54 which is typically made of aluminum, first and second layers 56 and 58 of inter-metal oxide, and further a light shield indicated as 60 .
  • the topmost layer of both ridge 20 and the neighboring structures on the chip is a top oxide layer here indicated as 62 .
  • doped implants 64 and 66 implant 64 is an optional guardring structure useful in some chip designs, while 66 forms part of a “doughnut” structure familiar in some designs of CMOS photosensors.
  • a relatively deep groove 70 which can be an etched V-groove, as shown, or alternately some other trench-like structure.
  • groove 70 should be wide enough to accommodate the edge placement variation of the dicing blade which separates the chip areas into chips: a typical location of the edge of the portion of the wafer removed by a dicing blade is shown as line 71 .
  • FIG. 3 there is further shown in FIG. 3 the structure of light-transmissive filter layers which are placed over the wafer forming a plurality of chips 10 .
  • a planar layer 72 is placed over the entire structure and allowed to fill groove 70 and cover ridge 20 , yielding a substantially planar surface generally parallel to the main surface of chip 10 .
  • a filtering layer 74 is placed over this planar surface.
  • Both planar layer 72 and filtering layer 74 are preferably made of a relatively brittle or glassy material, such as acrylic, which is placed over the chip 10 in a liquid form and allowed to harden or dry by various means known in the art.
  • planar layer 72 is substantially transmissive of all visible wavelengths of light
  • filtering layer 74 is transmissive of only a portion of the visible spectrum.
  • different types of filtering layers 74 transmitting different portions of the spectrum, can be used to create a photosensor chip, such as shown in FIG. 1, in which each row 16 A, 16 B, 16 C of photosites can be made sensitive to one primary color.
  • FIG. 4 is a plan view showing the configuration of various types of filtering layers 74 over a chip 10 and an adjacent chip 10 ′ within a wafer.
  • a relatively short “scribe area” 75 of otherwise unused wafer area between chips 10 and 10 ′, and successive blade cuts are used to cut through the respective grooves 70 and 70 ′, as described, for example, in U.S. Pat. No. 5,219,796.
  • three distinct filtering layers indicated as 74 A, 74 B, and 74 C, which respectively cover rows of photosites 14 described above as 16 A, 16 B, and 16 C.
  • the three types of filters 74 will each transmit only one primary color, red, green, or blue, so that the chip 10 itself can output image data reflective of the entire visible spectrum, as is familiar in the art.
  • the respective areas covered by filters 74 A, 74 B, and 74 C each extend over one linear array, i.e., row 16 of photosites 14 ; and the same filter area such as 74 A for one chip 10 extends across the groove 70 , scribe area 75 , another groove 70 ′, and over the equivalent row such as 16 A for the adjacent chip 10 ′.
  • each filtered area should extend across the suitable row 16 of photosites for as many chips 10 as is geometrically possible.
  • the filter 74 is disposed over and supported by a clear layer 72 (as shown in FIG. 3) which presents a substantially planar surface over the groove 70 .
  • filter layers 72 and 74 yields desirable practical results in the dicing process.
  • a wafer is diced, such as along a groove 70 , the fact that each filter layer 74 is disposed over and supported by clear layer 72 , which itself takes up most of the void formed by the groove 70 , the filter layer 74 exhibits very little damage or tearing, especially in the portions thereof around any photosites 14 .
  • acrylic-based material the essential nature of which is known in the art, for layers 72 and 74 .
  • the avoidance of disturbances to the filter layers 74 over the photosites is crucial to creation of a reliable photosensor chip 10 .
  • FIG. 5 is an elevational view showing relevant portions of an example photosensor device, such as could be used in conjunction with a digital copier or facsimile, using chips 10 made according to the present invention.
  • Two chips 10 and 10 ′ are disposed on a substrate 200 .
  • the respective sets of photosites in each chip may be configured, such as by butting or spacing the chips closely together, to yield what is in effect a single functional array of photosites, as is familiar in the art.
  • Each chip includes, at critical edges thereof, portions of grooves 70 , as described above, which are remnants of the dicing process.
  • Each chip further includes a layer 72 which, even in the finished chip, has the effect of creating a substantially planar surface of the portion of groove 70 .
  • the layer 72 is, in this embodiment, light-transmissive.
  • Disposed over the planar surface of layer 72 is a light-transmissive layer 74 , which may be a translucent color filter for at least one set of photosites on the chip.

Abstract

An architecture and manufacturing method for photosensitive chips, such as used in office equipment and digital cameras, involves creating grooves between chip areas in a wafer, and then placing a light-transmissive planar layer over the main surface of the wafer. The planar layer, which may be acrylic-based, creates a substantially planar surface over both the photosites in the chip areas and the grooves. The planar layer in turn supports one or more light-transmissive filtering layers. The arrangement avoids damage to the filtering layers when the wafer is diced along the grooves.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a divisional of U.S. application Ser. No. 09/802,792 filed Feb. 8, 2001 by the same inventors, and claims priority therefrom. [0001]
  • Cross-reference is hereby made to the following co-pending US Patent Application, assigned to the assignee hereof: “Systems and Methods for Fabricating an Electro-Optical Device Used for Image Sensing,” U.S. Ser. No. 09/750,425, Filed Dec. 28, 2000 (Attorney Docket Nos. D/A0707 or XXT-092).[0002]
  • TECHNICAL FIELD
  • The present invention relates to photosensitive chips for creating electrical signals from an original image, as would be found, for example, in a digital scanner or facsimile machine. More specifically, the present invention relates to a design for a photosensitive chip with a thin-film color filter attached thereto. [0003]
  • BACKGROUND
  • As copying and scanning of color hard-copy documents becomes more prevalent in the business world, there has arisen a need for full-color solid-state photosensitive devices, such as a silicon chip having an array of photosensors thereon. One prior-art for causing the photosensors on the silicon chip to be sensitive to a specific primary color is to provide, on the main surface of the silicon chip, a layer of spectrally transparent filter material, such as polyimide or acrylic, which has been dyed or pigmented to a specific primary color. If a single photosensitive chip is intended to have multiple linear arrays of photosensors, each linear array being sensitive to one particular primary color, particular polyimide layers are applied to specific linear arrays, thereby creating a full-color photosensitive chip. [0004]
  • One typical method of construction of full-color photosensitive chip is to first create a wafer having a relatively large number, such as one hundred or more, of semiconductor structures, each structure corresponding to one chip. Filters are applied to the structures on the wafer so that filter areas will be applied to the desired linear arrays of photosensors on each chip structure. Typically this application of filter material is carried out by applying an even layer of translucent liquid to the entire wafer, developing the desired areas of the filter material with a photo mask, and then etching away the translucent material in all other areas. For full-color chips, multiple layers of translucent filter material are applied to the wafer, and then etched away as needed, to yield the three primary-color-filtered linear arrays of photosensors. Only after the filter layers are applied as desired is the wafer “diced,” or sawed into individual chips. According to one technique, the chip termination is a combination of chemically-etched v-groove and a mechanically sawed portion. The diced chips are first tested and screened for defective chips, and the usable chips are then abutted into a longer linear array. [0005]
  • In the construction of full-color photosensitive chips having translucent filter layers attached thereto, certain practical problems are evident. One problem concerns the inadvertent ripping or other damage to the cured filter layers when the wafer is diced into individual chips: the relatively thin translucent filter layer, particularly at the photosensors toward either end of the chip, can be torn by the action of a saw blade. If the translucent color filter is torn in a manner that even a very small portion (as little as 1%) of the area of one photosite is exposed to unfiltered white light, this extra light thus introduced to the photosite will have an appreciable effect on resulting image quality. It is therefore crucial that the translucent filters be placed on a wafer from which chips are created such that the integrity of the filters is maintained throughout the manufacturing process. [0006]
  • PRIOR ART
  • U.S. Pat. No. 5,219,796 discloses the basic concept of dicing image sensor chips from a wafer. [0007]
  • U.S. Pat. No. 5,521,125 discloses a technique of dicing silicon chips from a wafer. “Streets” of relatively deep trenches are formed between the functional chip areas of the wafer, and a shock absorbent material is a deposited in the streets, forming a concave meniscus therein. The shock absorbent material retards the trajectories of silicon particles set into motion when the wafer is diced into chips. [0008]
  • U.S. Pat. No. 5,604,362 discloses covering essentially the entire main surface of a photosensor chip with a highly light-absorbing filter layer, to avoid stray reflections from non-photosite portions of a photosensor chip. [0009]
  • U.S. Pat. No. 5,696,626 discloses the design of a photosensitive chip wherein each photosite is covered with a filter formed from a cured translucent liquid. At the critical ends of the chip, between the end photosite and the edge of the chip, there is provided a ridge which protrudes over the regular thickness of the filter. This ridge maintains the physical integrity of the filter, particularly during a dicing process. [0010]
  • U.S. Pat. No. 6,111,247 discloses an imaging chip having a sensor portion and a non-sensor portion disposed about the periphery of the sensor portion, a passivation layer overlying a portion of a top surface of the sensor portion, and a protection layer overlying the passivation layer. [0011]
  • U.S. Pat. No. 6,066,883 discloses using a “guard ring,” in the form of a biased diffusion area, to avoid the influence of stray light in an edge photosite in a photosensor chip. [0012]
  • U.S. Pat. No. 6,157,019 discloses a configuration of photosensitive chips in which photosites immediately adjacent a functional edge of the chip are shielded and thus defined with an opaque layer that overlaps the diced region and preserves the integrity of the filter layers while eliminating the need for a guard ring. [0013]
  • SUMMARY
  • According to one aspect of the present invention, there is provided a photosensitive chip for use in an imaging apparatus, comprising a main surface, having at least one photosite thereon, the main surface defining an edge. A groove portion is defined at the edge. A light-transmissive planar layer is disposed over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove portion. A light-transmissive filtering layer is disposed over the planar layer. [0014]
  • According to another aspect of the present invention, there is provided an imaging apparatus including at least one photosensitive chip. The chip comprises a main surface, having at least one photosite thereon, the main surface defining an edge. A groove portion is defined at the edge. A light-transmissive planar layer is disposed over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove portion. [0015]
  • According to another aspect of the present invention, there is provided an integrated circuit wafer, comprising a first chip area defined in a main surface of the wafer, the first chip area including structure related to a first photosite. A groove is defined in the wafer, the groove defining at least one edge of the first chip area. A light-transmissive planar layer is disposed over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove. [0016]
  • According to another aspect of the present invention, there is provided a method of making photosensitive chips for use in an imaging apparatus, comprising the steps of providing an integrated circuit wafer, the wafer comprising a first chip area defined in a main surface of the wafer, the first chip area including structure related to a first photosite, and a groove defined in the wafer, the groove defining at least one edge of the first chip area, and providing a light-transmissive planar layer over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a single photosensitive chip of a general design found, for example, in a full-color photosensor scanner. [0018]
  • FIG. 2 is a perspective view of a wafer from which chips may be diced pursuant to the present invention. [0019]
  • FIG. 3 is a detailed cross-sectional view showing the internal structure of a chip according to the present invention, along with a filter architecture pursuant to the present invention. [0020]
  • FIG. 4 is a plan view showing the configuration of various translucent filtering layers over a chip when the chip is attached to an adjacent chip within a wafer pursuant to the present invention. [0021]
  • FIG. 5 is an elevational view of a portion of a photosensitive device including chips made pursuant to the present invention.[0022]
  • DETAILED DESCRIPTION
  • FIG. 1 is a plan view of a single photosensitive chip, generally indicated as [0023] 10, of a design found, for example, in a full-color photosensor scanner or digital camera. A typical design of a full-page-width scanner will include a plurality of chips 10, each chip being approximately one-half to one inch in length, the chips being butted end-to-end to form an effective collinear array of photosensors, which extends across a page image being scanned. Each chip 10 is a silicon-based integrated circuit chip having defined in a main surface thereof three independently-functioning linear arrays of photosensors, each photosensor being here indicated as 14. The photosensors are disposed in three parallel rows which extend across a main dimension of the chip 10, these individual rows being shown as 16A, 16B, and 16C. Each individual row of photosensors on chip 10 can be made sensitive to a particular color, by applying to the particular row a spectrally translucent filter layer which covers only the photosensors in a particular row. In a preferred embodiment of the present invention, the three rows of photosensors are each filtered with a different primary color, such as red, green, and blue. Generally, each individual photosensor 14 is adapted to output a charge or voltage signal indicative to the intensity of light of a certain type impinging thereon; various structures, such as transfer circuits, or charge-coupled devices, are known in the art for processing signal output by the various photosensors corresponding to photosites 14.
  • FIG. 2 is a perspective view of a [0024] wafer 100, generally of an integrated circuit design familiar in the art, from which any number of chips 10 may be separated or “diced.” A basic description of the dicing process is given, for instance, in U.S. Pat. Nos. 5,219,796 or 5,696,626, cited above. (The wafer is indicated as “prior art” in FIG. 2 only to the extent that dicing photosensitive chips from a wafer is known; however, aspects of the invention may be embodied in such a wafer 100, such as shown in FIG. 4.)
  • The view shown in FIG. 3 corresponds to the cross-section through line marked [0025] 3-3 in FIG. 2, in the case where a particular chip 10 is still formed as part of a wafer, from which it and any number of other chips are diced. In the illustrated embodiment, there is provided a ridge 20 which protrudes from the main surface of the chip, and is disposed to extend between the perimeter of an end photosite 14 disposed at the end of a particular chip 10, and the edge of the chip, as shown in FIG. 2. This ridge 20 protrudes a significant distance from the main surface of the chip, typically about 0.8 to 1.2 micrometers from the surface formed by the end photosite 14.
  • With regard to the specific internal structure of a [0026] chip 10 in the illustrated embodiment, all of the interconnect layers on the chip 10 are formed on a field oxide indicated as 50, the specific structure of which is not germane to the present invention. Above this field oxide is a borophosphosilicon glass, indicated as 52. There is also a metal structure 54, which is typically made of aluminum, first and second layers 56 and 58 of inter-metal oxide, and further a light shield indicated as 60. The topmost layer of both ridge 20 and the neighboring structures on the chip is a top oxide layer here indicated as 62. Also shown in this particular embodiment are doped implants 64 and 66: implant 64 is an optional guardring structure useful in some chip designs, while 66 forms part of a “doughnut” structure familiar in some designs of CMOS photosensors.
  • When chips such as [0027] 10 are still part of an original wafer, as shown in FIG. 3, in this embodiment of the invention the portions of the wafer corresponding to individual chips are separated by a relatively deep groove 70, which can be an etched V-groove, as shown, or alternately some other trench-like structure. Dimensionally, groove 70 should be wide enough to accommodate the edge placement variation of the dicing blade which separates the chip areas into chips: a typical location of the edge of the portion of the wafer removed by a dicing blade is shown as line 71. Once again, a basic description of the dicing process is given, for instance, in U.S. Pat. Nos. 5,219,796 and 5,696,626, cited above.
  • With particular reference to the present invention, there is further shown in FIG. 3 the structure of light-transmissive filter layers which are placed over the wafer forming a plurality of [0028] chips 10. As shown, a planar layer 72 is placed over the entire structure and allowed to fill groove 70 and cover ridge 20, yielding a substantially planar surface generally parallel to the main surface of chip 10. Over this planar surface is placed a filtering layer 74. Both planar layer 72 and filtering layer 74 are preferably made of a relatively brittle or glassy material, such as acrylic, which is placed over the chip 10 in a liquid form and allowed to harden or dry by various means known in the art.
  • Different requirements of an imaging apparatus will mandate that [0029] respective layers 72, 74 have various light-transmitting properties, such as transparency, translucence, opacity, etc., with respect to any or all wavelengths. In one practical embodiment of the invention, planar layer 72 is substantially transmissive of all visible wavelengths of light, and filtering layer 74 is transmissive of only a portion of the visible spectrum. In an apparatus for recording visible light, different types of filtering layers 74, transmitting different portions of the spectrum, can be used to create a photosensor chip, such as shown in FIG. 1, in which each row 16A, 16B, 16C of photosites can be made sensitive to one primary color.
  • FIG. 4 is a plan view showing the configuration of various types of filtering layers [0030] 74 over a chip 10 and an adjacent chip 10′ within a wafer. In this particular embodiment, there is provided a relatively short “scribe area” 75 of otherwise unused wafer area between chips 10 and 10′, and successive blade cuts are used to cut through the respective grooves 70 and 70′, as described, for example, in U.S. Pat. No. 5,219,796. As shown, in this view there are provided three distinct filtering layers, indicated as 74A, 74B, and 74C, which respectively cover rows of photosites 14 described above as 16A, 16B, and 16C. Typically, the three types of filters 74 will each transmit only one primary color, red, green, or blue, so that the chip 10 itself can output image data reflective of the entire visible spectrum, as is familiar in the art. Significantly, as shown in the Figure, the respective areas covered by filters 74A, 74B, and 74C each extend over one linear array, i.e., row 16 of photosites 14; and the same filter area such as 74A for one chip 10 extends across the groove 70, scribe area 75, another groove 70′, and over the equivalent row such as 16A for the adjacent chip 10′. Indeed, if there are a number of chips 10 in a row along one dimension in a wafer, each filtered area should extend across the suitable row 16 of photosites for as many chips 10 as is geometrically possible. Once again, where a filter 74 extends over a groove 70, the filter 74 is disposed over and supported by a clear layer 72 (as shown in FIG. 3) which presents a substantially planar surface over the groove 70.
  • The described configuration of filter layers [0031] 72 and 74 yields desirable practical results in the dicing process. When a wafer is diced, such as along a groove 70, the fact that each filter layer 74 is disposed over and supported by clear layer 72, which itself takes up most of the void formed by the groove 70, the filter layer 74 exhibits very little damage or tearing, especially in the portions thereof around any photosites 14. Also helpful is the use of acrylic-based material, the essential nature of which is known in the art, for layers 72 and 74. As mentioned above, the avoidance of disturbances to the filter layers 74 over the photosites is crucial to creation of a reliable photosensor chip 10.
  • FIG. 5 is an elevational view showing relevant portions of an example photosensor device, such as could be used in conjunction with a digital copier or facsimile, using [0032] chips 10 made according to the present invention. Two chips 10 and 10′ are disposed on a substrate 200. (Of course, in a full-page-width array of butted chips such as used, for example, in a digital copier or facsimile, there may be as many as twenty such chips arranged on a substrate.) The respective sets of photosites in each chip may be configured, such as by butting or spacing the chips closely together, to yield what is in effect a single functional array of photosites, as is familiar in the art. Each chip includes, at critical edges thereof, portions of grooves 70, as described above, which are remnants of the dicing process. Each chip further includes a layer 72 which, even in the finished chip, has the effect of creating a substantially planar surface of the portion of groove 70. The layer 72 is, in this embodiment, light-transmissive. Disposed over the planar surface of layer 72 is a light-transmissive layer 74, which may be a translucent color filter for at least one set of photosites on the chip.
  • The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. [0033]

Claims (7)

What is claimed is:
1. A method of making photosensitive chips for use in an imaging apparatus, comprising the steps of:
providing an integrated circuit wafer, the wafer comprising a first chip area defined in a main surface of the wafer, the first chip area including structure related to a first photosite, and a groove defined in the wafer, the groove defining at least one edge of the first chip area; providing a light-transmissive planar layer over the main surface, the planar layer forming a planar surface substantially parallel with the main surface, the planar layer extending over the groove; and
dicing the wafer along the groove.
2. The method of claim 1, the planar layer comprising acrylic.
3. The method of claim 1, further comprising the step of providing a filtering layer disposed over the planar layer.
4. The method of claim 3, the filtering layer extending over the first photosite and over the groove.
5. The method of claim 3, the filtering layer comprising acrylic.
6. The method of claim 1, further comprising the step of providing in the chip area a ridge defined on the main surface between the photosite and the groove.
7. The method of claim 1, further comprising the step of providing in the chip area a ridge defined on the main surface between the photosite and the groove.
US10/784,517 2001-03-08 2004-02-23 Color filter configuration for a silicon wafer to be diced into photosensitive chips Abandoned US20040164229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/784,517 US20040164229A1 (en) 2001-03-08 2004-02-23 Color filter configuration for a silicon wafer to be diced into photosensitive chips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/802,792 US6998595B2 (en) 2001-03-08 2001-03-08 Color filter configuration for a silicon wafer to be diced into photosensitive chips
US10/784,517 US20040164229A1 (en) 2001-03-08 2004-02-23 Color filter configuration for a silicon wafer to be diced into photosensitive chips

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/802,792 Division US6998595B2 (en) 2001-03-08 2001-03-08 Color filter configuration for a silicon wafer to be diced into photosensitive chips

Publications (1)

Publication Number Publication Date
US20040164229A1 true US20040164229A1 (en) 2004-08-26

Family

ID=25184696

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/802,792 Expired - Fee Related US6998595B2 (en) 2001-03-08 2001-03-08 Color filter configuration for a silicon wafer to be diced into photosensitive chips
US10/784,517 Abandoned US20040164229A1 (en) 2001-03-08 2004-02-23 Color filter configuration for a silicon wafer to be diced into photosensitive chips

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/802,792 Expired - Fee Related US6998595B2 (en) 2001-03-08 2001-03-08 Color filter configuration for a silicon wafer to be diced into photosensitive chips

Country Status (1)

Country Link
US (2) US6998595B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118104A1 (en) * 2001-12-10 2006-01-27 Advanpack Solutions Pte Ltd Method for packaging an optoelectronic device and package formed thereby
KR102490821B1 (en) 2018-01-23 2023-01-19 삼성전자주식회사 Image sensor and manufacturing method thereof
CN109255285A (en) * 2017-07-13 2019-01-22 三星电子株式会社 Based on optical fingerprint sensor, include its electronic device and its operating method
CN107367866A (en) * 2017-08-25 2017-11-21 武汉华星光电技术有限公司 CF substrates and preparation method thereof and alignment film orientation angle measurement method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135891A (en) * 1988-01-19 1992-08-04 Mitsubishi Denki Kabushiki Kaisha Method for forming film of uniform thickness on semiconductor substrate having concave portion
US5196378A (en) * 1987-12-17 1993-03-23 Texas Instruments Incorporated Method of fabricating an integrated circuit having active regions near a die edge
US5219796A (en) * 1991-11-04 1993-06-15 Xerox Corporation Method of fabricating image sensor dies and the like for use in assembling arrays
US5521125A (en) * 1994-10-28 1996-05-28 Xerox Corporation Precision dicing of silicon chips from a wafer
US5534443A (en) * 1994-03-25 1996-07-09 Matsushita Electronics Corporation Method of manufacturing a solid state imaging device
US5604362A (en) * 1995-04-24 1997-02-18 Xerox Corporation Filter architecture for a photosensitive chip
US5648653A (en) * 1993-10-22 1997-07-15 Canon Kabushiki Kaisha Optical filter having alternately laminated thin layers provided on a light receiving surface of an image sensor
US5696626A (en) * 1995-10-12 1997-12-09 Xerox Corporation Photosensitive silicon chip having a ridge near an end photosite
US5698892A (en) * 1995-01-06 1997-12-16 Canon Kabushiki Kaisha Image pickup element and image pickup device having scribe lines composed of two portions with different layer structure
US5970317A (en) * 1997-05-27 1999-10-19 Sony Corporation Method of forming a filter for a solid-state image sensing device
US6066883A (en) * 1998-03-16 2000-05-23 Xerox Corporation Guarding for a CMOS photosensor chip
US6111247A (en) * 1997-12-08 2000-08-29 Intel Corporation Passivation protection of sensor devices having a color filter on non-sensor portion
US6157019A (en) * 1999-03-31 2000-12-05 Xerox Corporation Edge photosite definition by opaque filter layer
US6168965B1 (en) * 1999-08-12 2001-01-02 Tower Semiconductor Ltd. Method for making backside illuminated image sensor
US6201293B1 (en) * 1998-11-19 2001-03-13 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6242730B1 (en) * 1999-05-26 2001-06-05 United Microelectronics Corp. Semiconductor color image sensor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196378A (en) * 1987-12-17 1993-03-23 Texas Instruments Incorporated Method of fabricating an integrated circuit having active regions near a die edge
US5135891A (en) * 1988-01-19 1992-08-04 Mitsubishi Denki Kabushiki Kaisha Method for forming film of uniform thickness on semiconductor substrate having concave portion
US5219796A (en) * 1991-11-04 1993-06-15 Xerox Corporation Method of fabricating image sensor dies and the like for use in assembling arrays
US5648653A (en) * 1993-10-22 1997-07-15 Canon Kabushiki Kaisha Optical filter having alternately laminated thin layers provided on a light receiving surface of an image sensor
US5534443A (en) * 1994-03-25 1996-07-09 Matsushita Electronics Corporation Method of manufacturing a solid state imaging device
US5521125A (en) * 1994-10-28 1996-05-28 Xerox Corporation Precision dicing of silicon chips from a wafer
US5698892A (en) * 1995-01-06 1997-12-16 Canon Kabushiki Kaisha Image pickup element and image pickup device having scribe lines composed of two portions with different layer structure
US5604362A (en) * 1995-04-24 1997-02-18 Xerox Corporation Filter architecture for a photosensitive chip
US5696626A (en) * 1995-10-12 1997-12-09 Xerox Corporation Photosensitive silicon chip having a ridge near an end photosite
US5970317A (en) * 1997-05-27 1999-10-19 Sony Corporation Method of forming a filter for a solid-state image sensing device
US6111247A (en) * 1997-12-08 2000-08-29 Intel Corporation Passivation protection of sensor devices having a color filter on non-sensor portion
US6066883A (en) * 1998-03-16 2000-05-23 Xerox Corporation Guarding for a CMOS photosensor chip
US6201293B1 (en) * 1998-11-19 2001-03-13 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6157019A (en) * 1999-03-31 2000-12-05 Xerox Corporation Edge photosite definition by opaque filter layer
US6242730B1 (en) * 1999-05-26 2001-06-05 United Microelectronics Corp. Semiconductor color image sensor
US6168965B1 (en) * 1999-08-12 2001-01-02 Tower Semiconductor Ltd. Method for making backside illuminated image sensor

Also Published As

Publication number Publication date
US6998595B2 (en) 2006-02-14
US20020125408A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
US5604362A (en) Filter architecture for a photosensitive chip
US6808960B2 (en) Method for making and packaging image sensor die using protective coating
KR100310102B1 (en) Solid-state color imaging device and method for fabricating the same
US7656453B2 (en) Solid-state imaging device having characteristic color unit depending on color, manufacturing method thereof and camera
EP0721220B1 (en) Image pickup element and image pickup device
US8004020B2 (en) Solid-state image capturing device, camera module and electronic information device
KR100826407B1 (en) Photo diode for sensing ultraviolet rays and image sensor comprising the same
US7615399B2 (en) Fabrication method of complementary metal oxide semiconductor image sensor
US8361824B2 (en) Method for forming lens, method for manufacturing semiconductor apparatus, and electronic information device
KR20000041461A (en) Fabrication method of improved image sensor
US6998595B2 (en) Color filter configuration for a silicon wafer to be diced into photosensitive chips
EP0557135B1 (en) Image sensor color filters
CN1910754A (en) Solid-state imaging device, method for manufacturing the same, and camera using the same
JP2006128383A (en) Imaging device and its manufacturing method
US5696626A (en) Photosensitive silicon chip having a ridge near an end photosite
JP2006351786A (en) Manufacturing method of color filter, manufacturing method of imaging device, and solid-stage image pickup element using the same
US20200075651A1 (en) Double-layer color filter and method for forming the same
US20060249805A1 (en) Shielding Layer outside the Pixel Regions of Optical Device and Method for Making the Same
JP4957564B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2000323696A (en) Photosensitive chip and assembly
KR20030016850A (en) Solid state image sensor and method of the same
US20140242503A1 (en) Method of manufacturing a color filter
US20230290798A1 (en) Solid-state image sensor and method for producing the same
KR100720460B1 (en) Image sensor and method of manufacturing the same
JP2006319133A (en) Color filter, manufacturing method thereof, solid-state imaging element, and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015722/0119

Effective date: 20030625

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015722/0119

Effective date: 20030625

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO BANK ONE, N.A.;REEL/FRAME:061360/0501

Effective date: 20220822