US20040156441A1 - Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units - Google Patents

Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units Download PDF

Info

Publication number
US20040156441A1
US20040156441A1 US10/640,333 US64033303A US2004156441A1 US 20040156441 A1 US20040156441 A1 US 20040156441A1 US 64033303 A US64033303 A US 64033303A US 2004156441 A1 US2004156441 A1 US 2004156441A1
Authority
US
United States
Prior art keywords
phase
clock timing
timing error
carrier
arr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/640,333
Inventor
Miguel Peeters
Thierry Pollet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA filed Critical Alcatel SA
Priority to US10/640,333 priority Critical patent/US20040156441A1/en
Assigned to ALCATEL reassignment ALCATEL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEETERS, MIGUEL, POLLET, THIERRY
Publication of US20040156441A1 publication Critical patent/US20040156441A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to a method to determine during a tracking mode a clock timing error in a multi-carrier transmission system as defined in the preamble of claim 1 , an arrangement adapted to perform this method as defined in the preamble of claim 9 , and synchronisation units including such an arrangement as defined in the preambles of claim 10 , claim 11 and claim 12 respectively.
  • phase correcting signal is used in a phase-locked loop (PLL) to realise synchronisation between a transmitting multi-carrier modem and a receiving multi-carrier modem.
  • An object of the present invention is to provide a method, arrangement and synchronisation units similar to those known, one but whose robustness for narrowband noise near the pilot carriers is optimised.
  • this object is achieved by the method defined in claim 1 , the arrangement defined in claim 9 and the synchronisation units defined in claim 10 , claim 11 and claim 12 respectively.
  • a device A coupled to a device B should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means.
  • the transmission quality of the medium in between two multi-carrier modems at a certain frequency does not change abruptly, unless impulse noise disturbs the medium. If the transmission quality of the medium at that certain frequency is measured once during an acquisition mode or initialisation procedure, the measured quality can be used for a long period.
  • DMT Discrete Multi Tone
  • ADSL Asynchronous Digital Subscriber Line
  • the transmission quality of the medium has to be measured as a function of frequency during initialisation of the system to be able to execute the bit allocation procedure: the process wherein each carrier is assigned a number of bits depending on the transmission quality of this carrier.
  • the information required to perform the method according to the present invention is available once the system is in operation so that no additional measurements are required to determine the shares of phase errors of different pilot carriers in the clock timing error used for synchronisation. Only the phase errors of the different pilot carriers have to be detected during the tracking mode or normal operation process.
  • the clock timing error becomes a linear combination of the phase errors detected for the different pilot carriers so that calculation of the clock timing error involves low mathematical complexity.
  • the phase errors get different shares in the clock timing error.
  • a further feature of the method according to the present invention is defined by claim 6 .
  • the complete gain of the arrangement that determines the clock timing error is made equal to one.
  • This feature is particularly advantageous in a system where the number of pilot carriers used for synchronisation is adaptive. independence of the level of the clock timing error from the number of pilot carriers used to determine this clock timing error, obtained by a normalisation as defined in claim 7 , is advantageous from the point of view of hardware implementation.
  • signal-to-noise ratio values of the different pilot carriers are excellent measures for the transmission quality of the medium between the multi-carrier modems.
  • ADSL Asymmetric Digital Subscriber Line
  • a signal-to-noise ratio value is measured for each carrier during initialisation and used for bit allocation. This is indicated in paragraphs 12.6.6, 12.7.8 and 6.5 of the cited ANSI Standard.
  • Alternative implementations of the present invention may use other transmission quality parameters, for instance the noise level, to determine the shares of the phase errors of different pilot carriers in the clock timing error used for synchronisation.
  • FIG. 1 shows a block scheme of a receiving multi-carrier modem RX equipped with an embodiment of the clock timing error determination arrangement ARR according to the present invention
  • FIG. 2 shows a block scheme of a receiving multi-carrier modem RX 2 equipped with a second synchronisation unit SYNCHRO 2 including an embodiment of the clock timing error determination arrangement ARR according to the present invention
  • FIG. 3 shows a block scheme of a receiving multi-carrier modem RX 3 equipped with a third synchronisation unit SYNCHRO 3 including an embodiment of the clock timing error determination arrangement ARR according to the present invention.
  • the multi-carrier receiver RX 1 drawn in FIG. 1 is provided with a skip and duplicate device S/D, a serial-to-parallel converter S/P, a fast fourier transformer FFT, a rotation device ROTOR, a clock timing error determination arrangement ARR, a feedback loop FBL, a channel gain device CHANNEL and a channel analysing device SNR.
  • the rotation device ROTOR is equipped with N multipliers MU 0 , MU 1 , . . . , MU N-1 , and the clock timing error determination arrangement ARR includes a phase detection unit PHASE, a weight determination unit WEIGHT, and a calculation unit CALC.
  • the latter calculation unit CALC comprises N multipliers M 0 , M 1 , . .
  • the feedback loop FBL includes a filter FIL.
  • the skip and duplicate device S/D, the rotation device ROTOR, the clock timing error determination arrangement ARR and the feedback loop FBL constitute a synchronisation system SYNCHRO 1 .
  • the incoming communication line is coupled via hybrid means, filtering and amplifying circuitry and an analogue to digital converter, not shown in FIG. 1, to an input of the skip and duplicate device S/D.
  • An output of the skip and duplicate device S/D is connected to an input of the serial-to-parallel converter S/P and the outputs of this serial-to-parallel converter S/P are coupled to respective inputs of the fast fourier transformer FFT.
  • Each output terminal of the fast fourier transformer FFT is coupled to both an input of the channel analysing device SNR and an input of the rotation device ROTOR.
  • a first output of the fast fourier transformer FFT is coupled to the first multiplier MU 0 in the rotation device ROTOR
  • a second output of the fast fourier transformer FFT is coupled to the second multiplier MU 1 in the rotation device ROTOR
  • the N'th output of the fast fourier transformer FFT is coupled to the N'th multiplier MUN-1 in the rotation device ROTOR.
  • the N multipliers MU 0 , MU 1 , . . . , MU N-1 further are coupled to respective inputs of the phase detection unit PHASE, and N outputs of this phase detection unit PHASE are coupled to the N multipliers M 0 , M 1 , . . . , M i , . .
  • the N multipliers M 0 , M 1 , . . . , M i , . . . , M N-1 have outputs connected to input terminals of the adder S, and this adder S is further connected to the divider DIV.
  • An output of the divider DIV is feedback coupled to a control input of the skip and duplicate device S/D and to control terminals of the multipliers MU 0 , MU 1 , . . . , MU N-1 in the rotation device ROTOR via the filter FIL in the feedback loop FBL.
  • Outputs of the channel gain device CHANNEL are also coupled to these control terminals of the multipliers MU 0 , MU 1 , . . . , MU N-1 via other multipliers MU′ 0 , MU′ 1 , . . . , MU′ N-1 inserted in the feed back loop from the divider DIV to the rotation device ROTOR.
  • the channel analysing device SNR is via an output thereof coupled to an input of the weight determination unit WEIGHT which has N+1 outputs, labelled A 0 , A 1 , . . . , A i , . . . , A N-1 , and B in FIG. 1. These outputs are coupled to second inputs of the multipliers M 0 , M 1 , . . . , M i , . . . , M N-1 and of the divider DIV in the calculation unit CALC respectively.
  • the receiver RX 1 is supposed to be of the ADSL (Asymmetric Digital Subscriber Line) type and consequently receives at its input a multi-carrier signal following the recommendations of the already cited ADSL Standard.
  • the multi-carrier signal received by the modem RX 1 is composed of a sequence of DMT (Discrete Multi Tone) symbols.
  • DMT Discrete Multi Tone
  • Such a DMT symbol has a predetermined length in time and consists of the superposition of 256 modulated carriers with equidistant frequencies.
  • the receiving modem RX 1 basically detects the boundaries of the received DMT symbols in order to select the correct block of consecutive samples to be fed to the fast fourier transformer FFT.
  • symbol timing recovery is defined as the process to determine for each incoming DMT symbol which is the first sample of the sequence of consecutive samples to be sent to the fast fourier transformer FFT.
  • FFT fast fourier transformer
  • the present invention however is related to the process of sample timing synchronisation, wherein the receiving modem RX 1 monitors the increase in difference in phase between the transmitter clock and the receiver clock and compensates for this difference via a feedback algorithm.
  • the difference between the transmitter timing basis and receiver timing basis is compensated for during the normal transmission mode instead of during the acquisition phase because the clock differences can change all the time.
  • the invention concerns the method to estimate the difference in clock timing between the transmitter and receiver clock. The more accurate this clock timing difference is determined, the better the sample timing synchronisation process will compensate for it.
  • the role of the functional blocks drawn in FIG. 1 is discussed briefly.
  • a lower bound is derived for the variance on the estimation error of the clock timing error determined according to the present invention in function of the number of pilot carriers involved in the clock timing error determination method.
  • a further paragraph describes a most likelihood based approach of the problem of determining the clock timing error and results in deriving a preferred embodiment of the present invention.
  • Alternative synchronisation units for the one drawn in FIG. 1 wherein the same clock timing error determination arrangement ARR is used but which include other circuitry to realise the sample timing synchronisation are described in yet another paragraph which deals with FIG. 2 and FIG. 3.
  • the digitised multi-carrier signal is serial-to-parallel converted.
  • the serial-to-parallel converter S/P thereto applies subsequent samples of one and the same DMT (Discrete Multi Tone) symbol to subsequent ones of its outputs.
  • the fast fourier transformer FFT in addition converts these samples of one DAT symbol from time domain to frequency domain by executing the well-known Discrete Fourier Transformation.
  • each signal at an output terminal of the fourier transformer FFT represents a modulated carrier and can be seen as a vector point in a two-dimensional vector plane wherein the modulation constellation represents a set of points.
  • the amplitude and phase that can be associated to this vector point in the two-dimensional vector plane correspond to the amplitude and phase of the modulated carrier at the output of the fast fourier transformer FFT.
  • the rotation device ROTOR coupled to the fast fourier transformer FFT, has the task to compensate for differences between the clocks in the transmitting modem, not drawn in the figure, and receiving modem RX 1 .
  • the clock signal in the receiving modem RX 1 is generated by a free running crystal, not shown in FIG. 1, and supplied to the clock input of the analogue to digital converter mentioned above.
  • the clock differences introduce phase errors which are proportional to the frequencies of the carriers.
  • the rotation device ROTOR consequently applies a phase shift or so called rotation to each one of the carriers in proportion to the frequency of the respective carrier so that the clock speed difference is compensated for.
  • the channel gain device CHANNEL thereto realises that the signals fed back to the multipliers MU 0 , MU 1 , . . . , MU N-1 are proportional to the frequencies of the respective carriers.
  • the rotation device ROTOR needs accurate information with respect to the clock timing error ⁇ e . It is the task of the clock timing error determination arrangement ARR and the feedback loop FBL to determine this clock timing error ⁇ e precisely and to feed it back to the rotation device ROTOR.
  • the accurateness of the clock timing error ⁇ e determined by the clock timing error determination arrangement ARR is of significant importance, since it determines the accurateness of the operations performed by the rotation device ROTOR and the skip and duplicate device S/D and thus also the accurateness of the whole synchronisation process between transmitting modem and receiving modem RX 1 .
  • the phase detection unit PHASE produces phase errors ⁇ 0 , ⁇ 1 , . . . , ⁇ i , . . . , ⁇ N-1 for N carriers from observations of the fast fourier transformers outputs.
  • phase detection unit PHASE measures the phase of the signals at the output of the fast fourier transformer FFT
  • an alternative implementation of the phase detection unit PHASE may determine the difference between a received vector and an expected vector (determined by the closest constellation point in the constellation diagram) and can approximate the phase errors therefrom.
  • Each phase error is multiplied with a corresponding weight coefficient A 0 , A 1 , . . . , A i , . . . , A N-1 .
  • a N-1 are determined by the weight determination unit WEIGHT on the basis of signal-to-noise ratio values SNR i measured for the different pilot carriers.
  • SNR i signal-to-noise ratio values measured for the different pilot carriers.
  • the channel analyser SNR analyses these modulated carriers after transmission thereof over the communication line and measures the signal-to-noise ratio for each carrier.
  • the channel analyser SNR applies the signal-to-noise ratio values SNR i to the weight determination unit WEIGHT which determines the weight coefficients A 0 , A 1 , . . . , A i , . . . , A N-1 and applies them to the multipliers M 0 , M 1 , . . .
  • the weighted phase errors are summed together by the adder S and normalised with a normalisation factor B by the divider DIV.
  • the normalisation factor B is also determined by the weight determination unit WEIGHT from the signal-to-noise ratio values SNR i .
  • the clock timing error ⁇ e obtained in this way at the output of the calculation unit CALC is fed back via the filter FIL and digital voltage controlled oscillator to the rotation device ROTOR and skip and duplicate device S/D.
  • the feedback loop FBL may perform the function of a traditional phase locked loop (PLL).
  • the rotation device ROTOR phase shifts each carrier of the multi-carrier signal proportional to the calculated clock timing error ⁇ e and to the frequency of the respective carrier.
  • the signal supplied to the second terminals of the multipliers MU 0 , MU 1 , . . . , MU N-1 is made proportional to the frequency of the respective carriers by the channel gain device CHANNEL and the multipliers MU′ 0 , MU′ 1 , . . . , MU′ N-1 .
  • the skip and duplicate device S/D is activated to either skip or duplicate a sample in the incoming multi-carrier signal.
  • N Number of carriers in the DMT signal, i.e. 256 in an ADSL system
  • a m k symbol modulating the k'th carrier in the m'th DMT symbol period
  • g(t) composite channel impulse response, i.e. the channel impulse response that is eventually equalised to reduce intersymbol interference
  • n(t) additive noise component
  • n sample index
  • k carrier index
  • m DMT symbol index
  • number of guardband samples, i.e. the number of redundant samples in a cyclic prefix added to each DMT symbol to compensate for intersymbol interference;
  • estimated time difference at the output of the feedback loop FBL.
  • ⁇ tilde over ( ⁇ ) ⁇ time difference or difference in sample timing between the transmitting modem and receiving modem.
  • G k represents the fourier transform of g(t) evaluated at the k'th carrier frequency which is equal to k N ⁇ T
  • N k represents the contribution of the additive noise at the k'th carrier frequency.
  • This expression (3) is correct as long as the clock timing difference ⁇ is smaller than the difference between the channel impulse response duration and the guard time duration.
  • the Cramer-Rao bound is a fundamental lower bound on the estimation of unbiased parameters.
  • Estimation of the clock timing difference ⁇ , denoted by ⁇ tilde over ( ⁇ ) ⁇ can be derived from observations of the fast fourier transform outputs.
  • M is the observation window expressed as an integer number of DMT symbols
  • SNR k is the signal-to-noise ratio value associated with the k'th carrier.
  • 2 ⁇ represents the mean power of the m'th symbol
  • 2 represents the gain of the channel
  • 2 ⁇ represents the mean noise power on carrier k.
  • SNR k 1 K f ⁇ d ⁇ ( N ⁇ ⁇ T k ) 2 ( 6 )
  • K represents the number of outputs of the fast fourier transformer FFT used to produce the clock timing error ⁇ e .
  • L m ⁇ ( ⁇ ⁇ m ) ⁇ - K 2 ⁇ ln ⁇ ( 2 ⁇ ⁇ ) - 1 2 ⁇ ⁇ k ⁇ ln ⁇ ( E ⁇ ⁇ ⁇ N k ⁇ 2 ⁇ ) - ⁇ ⁇ k ⁇ ⁇ F m k - a m k ⁇ G k ⁇ e - i ⁇ 2 ⁇ ⁇ ⁇ 2 ⁇ ⁇ ⁇ m 2 ⁇ N ⁇ T ⁇ k ⁇ 2 2 ⁇ E ⁇ ⁇ ⁇ N k ⁇ 2 ⁇ ( 8 )
  • the derived timing error ⁇ e can be used to control either continuous time or discrete time based synchronisation structures.
  • FIG. 2 a multi-carrier receiver RX 2 is drawn which only differs from the multi-carrier receiver RX 1 in FIG. 1 in the means used to realise sample timing synchronisation.
  • the serial-to-parallel converter S/P, the fast fourier transformer FFT, the rotation device ROTOR, the clock timing error determination arrangement ARR and the components PHASE, CALC and WEIGHT thereof, the feedback loop FBL, the channel gain device CHANNEL and the channel analyser SNR perform exactly the same functions as the equally labelled functional blocks in FIG. 1.
  • the clock timing error ⁇ e in receiver RX 2 is fed back to a voltage controlled crystal oscillator VCXO whose output is coupled to the clock input of the analogue to digital converter A/D.
  • the clock timing error ⁇ e thus is used to adapt the sample period so that sample timing synchronisation between the transmitting modem and receiving modem is obtained.
  • the analogue to digital converter A/D, the voltage controlled crystal oscillator VCXO, the rotation device ROTOR, the clock timing error determination arrangement ARR and the feedback loop FBL constitute a synchronisation unit SYNCHRO 2 which is an alternative for the synchronisation unit SYNCHRO 1 of FIG. 1.
  • FIG. 3 Yet another multi-carrier receiver RX 3 is drawn in FIG. 3.
  • the clock timing error re now however is fed back to both an interpolator INT whereto the serial-to-parallel converter S/P is coupled.
  • the interpolator now provide for sample timing synchronisation by interpollating between two samples.
  • the interpolator INT, the rotation device ROTOR, the clock time error determination arrangement ARR and the feedback loop FBL constitute an alternative synchronisation unit SYNCHRO 3 for the synchronisation units SYNCHRO 1 and SYNCHRO 2 drawn in FIG. 1 and FIG. 2 respectively.
  • a first remark is that, although the multi-carrier signal in the above described embodiment is transported over a telephone line, the applicability of the present invention is not restricted by the transmission medium via which the signal is transported.
  • any connection between the transmitting modem and receiving modem RX e.g. a cable connection, a satellite connection, a radio link through the air, and so on, may be affected by narrowband noise, and thus the synchronisation procedure can be improved according to the present invention.
  • the invention also is not only related to ADSL (Asymmetric Digital Subscriber Line) or similar systems wherein DMT (Discrete Multi Tone) modulation is used.
  • ADSL Asymmetric Digital Subscriber Line
  • DMT Discrete Multi Tone modulation
  • a person skilled in the art will be able to adapt the above described embodiment so that it is applicable in any other system wherein a multi-carrier signal is transmitted from a transmitting modem to a receiving modem RX and wherein a plurality of pilot carriers are used for synchronisation purposes during the tracking mode.
  • OFDM orthogonal frequency division multiplexing
  • OAM orthogonally multiplexed quadrature amplitude modulation
  • weights A 0 , A 1 , . . . , A i , . . . , A N-1 and the normalisation factor B are calculated above in accordance to the results of a maximum likelihood approach.
  • the above weights A 0 , A 1 , . . . , A i , . . . , A N-1 and normalisation factor B are to be used in a preferred embodiment of the present invention, the basic principle of the present invention, i.e.
  • the use of transmission quality information for a plurality of pilot carriers to determine the shores of phase information obtained from these pilot carriers in the clock timing error ⁇ e that is used for synchronisation is also satisfied when less optimal values are used for the weights A 0 , A 1 , . . . , A i , . . . , A N-1 or the normalisation factor B.

Abstract

In a multi-carrier transmission system, a clock timing error (τe) is calculated at the receiver's side and used for synchronisation between a transmitting modem and a receiving modem (RX1). The clock timing error (τe) is calculated from phase errors (φ0, φ1, . . . , φi, . . . , φN-1) detected for a plurality of pilot carriers during a tracking mode in such a way that the share (Ai) of a phase error (φi) detected for a particular pilot carrier in the clock timing error (τe) depends on the transmission quality (SNRi) of that pilot carrier over the transmission medium in between the two modems. In this way, the robustness of the synchronisation for norrowband noise near a pilot carrier is improved significantly.

Description

  • The present invention relates to a method to determine during a tracking mode a clock timing error in a multi-carrier transmission system as defined in the preamble of [0001] claim 1, an arrangement adapted to perform this method as defined in the preamble of claim 9, and synchronisation units including such an arrangement as defined in the preambles of claim 10, claim 11 and claim 12 respectively.
  • Such a method and related equipment to perform this method are already known in the art, e.g. from the European Patent Application EP 0 453 203, entitled ‘Method and apparatus for correcting for clock and carrier frequency offset, and phase litter in multicarrier modems’ from applicant Telebit Corporation. Therein, phases of a few pilot carriers are detected and used to calculate a clock timing error named a phase correcting signal (see page 3, lines 11-35 of the cited European Patent Application). As is indicated on page 6, lines 24-26 of EP 0 453 203, the phase correcting signal is used in a phase-locked loop (PLL) to realise synchronisation between a transmitting multi-carrier modem and a receiving multi-carrier modem. [0002]
  • In case of a narrowband interferer in the vicinity of one of the pilot carriers whose phases are detected to calculate the clock timing error, use of phase information extracted from this pilot carrier renders the so called clock timing error or phase correcting signal less accurate as a measure for the timing difference between transmitting and receiving modem. As a consequence, synchronisation between the transmitting and receiving modem may be lost in the known system when one of the pilot carriers is affected by noise. [0003]
  • An object of the present invention is to provide a method, arrangement and synchronisation units similar to those known, one but whose robustness for narrowband noise near the pilot carriers is optimised. [0004]
  • According to the invention, this object is achieved by the method defined in [0005] claim 1, the arrangement defined in claim 9 and the synchronisation units defined in claim 10, claim 11 and claim 12 respectively.
  • Indeed, giving the phase error detected for a first pilot carrier which is transferred with a low transmission quality a relatively low share in the clock timing error used for synchronisation, and giving the phase error detected for a second pilot carrier which is transferred with a high transmission quality a relatively high share in the clock timing error used for synchronisation, has a filtering effect on the narrowband noise which affects the transmission quality of the first pilot carrier for this clock timing error. As a consequence, the variance of the clock timing error is reduced according to the present invention resulting in a better tracking of the timing-locked loop whereto the clock timing error is applied as input. This implies that the synchronisation process is made less sensitive for narrowband noise. [0006]
  • It is to be noticed that the term ‘comprising’, used in the claims, should not be interpreted as being limitative to the means listed thereafter. Thus, the scope of the expression ‘a device comprising means A and B’ should not be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B. [0007]
  • Similarly, it is to be noticed that the term ‘coupled’, also used in the claims, should not be interpreted as being limitative to direct connections only. Thus, the scope of the expression ‘a device A coupled to a device B’ should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means. [0008]
  • An additional feature of the present invention is defined in claim [0009] 2.
  • Indeed, it can be expected that the transmission quality of the medium in between two multi-carrier modems at a certain frequency does not change abruptly, unless impulse noise disturbs the medium. If the transmission quality of the medium at that certain frequency is measured once during an acquisition mode or initialisation procedure, the measured quality can be used for a long period. In Discrete Multi Tone (DMT) systems such as an Asynchronous Digital Subscriber Line (ADSL) system, the transmission quality of the medium has to be measured as a function of frequency during initialisation of the system to be able to execute the bit allocation procedure: the process wherein each carrier is assigned a number of bits depending on the transmission quality of this carrier. In such systems, the information required to perform the method according to the present invention is available once the system is in operation so that no additional measurements are required to determine the shares of phase errors of different pilot carriers in the clock timing error used for synchronisation. Only the phase errors of the different pilot carriers have to be detected during the tracking mode or normal operation process. [0010]
  • Another advantageous feature of the method according to the present invention is defined in claim [0011] 3.
  • In this way, the clock timing error becomes a linear combination of the phase errors detected for the different pilot carriers so that calculation of the clock timing error involves low mathematical complexity. Via the weights of the different terms in the linear combination, the phase errors get different shares in the clock timing error. These weights, according to the present invention, are dependent on the transmission quality of the respective pilot carriers. [0012]
  • Also an advantageous feature of the present invention is defined in claim [0013] 4.
  • As will be proven later on in this document, a maximum likelihood based approach of the problem of calculating the clock timing error out of phase errors detected for a plurality of pilot tones results in a linear relationship between the weights and the transmission quality of the pilot carriers. [0014]
  • Yet another advantageous feature of the present method is defined in claim [0015] 5.
  • Another result of the maximum likelihood approach set out later on in this document is that, for a particular pilot carrier, the coefficient which has to be multiplied with the transmission quality value to obtain the weight related to that pilot carrier is proportional to the frequency of that pilot carrier or the pilot carrier index in case the frequency is determined thereby. [0016]
  • A further feature of the method according to the present invention is defined by claim [0017] 6.
  • In this way, the weights are normalised. [0018]
  • Still a feature of the present invention is described in claim [0019] 7.
  • Thus, the complete gain of the arrangement that determines the clock timing error is made equal to one. This feature is particularly advantageous in a system where the number of pilot carriers used for synchronisation is adaptive. Independence of the level of the clock timing error from the number of pilot carriers used to determine this clock timing error, obtained by a normalisation as defined in claim [0020] 7, is advantageous from the point of view of hardware implementation.
  • Moreover, a feature of the present invention is defined in claim [0021] 8.
  • Indeed, signal-to-noise ratio values of the different pilot carriers are excellent measures for the transmission quality of the medium between the multi-carrier modems. In an Asymmetric Digital Subscriber Line (ADSL) system operating according to the ANSI Standard T1.413-1995 entitled ‘Network and Customer Installation Interfaces—Asymmetric Digital Subscriber Line (ADSL) Metallic Interface’, a signal-to-noise ratio value is measured for each carrier during initialisation and used for bit allocation. This is indicated in paragraphs 12.6.6, 12.7.8 and 6.5 of the cited ANSI Standard. Alternative implementations of the present invention however may use other transmission quality parameters, for instance the noise level, to determine the shares of the phase errors of different pilot carriers in the clock timing error used for synchronisation.[0022]
  • The above mentioned and other objects and features of the invention will become more apparent and the invention itself will be best understood by referring to the following description of an embodiment taken in conjunction with the accompanying drawings wherein: [0023]
  • FIG. 1 shows a block scheme of a receiving multi-carrier modem RX equipped with an embodiment of the clock timing error determination arrangement ARR according to the present invention; [0024]
  • FIG. 2 shows a block scheme of a receiving multi-carrier modem RX[0025] 2 equipped with a second synchronisation unit SYNCHRO2 including an embodiment of the clock timing error determination arrangement ARR according to the present invention; and
  • FIG. 3 shows a block scheme of a receiving multi-carrier modem RX[0026] 3 equipped with a third synchronisation unit SYNCHRO3 including an embodiment of the clock timing error determination arrangement ARR according to the present invention.
  • The multi-carrier receiver RX[0027] 1 drawn in FIG. 1 is provided with a skip and duplicate device S/D, a serial-to-parallel converter S/P, a fast fourier transformer FFT, a rotation device ROTOR, a clock timing error determination arrangement ARR, a feedback loop FBL, a channel gain device CHANNEL and a channel analysing device SNR. The rotation device ROTOR is equipped with N multipliers MU0, MU1, . . . , MUN-1, and the clock timing error determination arrangement ARR includes a phase detection unit PHASE, a weight determination unit WEIGHT, and a calculation unit CALC. The latter calculation unit CALC comprises N multipliers M0, M1, . . . , Mi, . . . , MN-1, an adder S and a divider DIV. The feedback loop FBL includes a filter FIL. The skip and duplicate device S/D, the rotation device ROTOR, the clock timing error determination arrangement ARR and the feedback loop FBL constitute a synchronisation system SYNCHRO1.
  • The incoming communication line is coupled via hybrid means, filtering and amplifying circuitry and an analogue to digital converter, not shown in FIG. 1, to an input of the skip and duplicate device S/D. An output of the skip and duplicate device S/D is connected to an input of the serial-to-parallel converter S/P and the outputs of this serial-to-parallel converter S/P are coupled to respective inputs of the fast fourier transformer FFT. Each output terminal of the fast fourier transformer FFT is coupled to both an input of the channel analysing device SNR and an input of the rotation device ROTOR. More detailed, a first output of the fast fourier transformer FFT is coupled to the first multiplier MU[0028] 0 in the rotation device ROTOR, a second output of the fast fourier transformer FFT is coupled to the second multiplier MU1 in the rotation device ROTOR, . . . , and the N'th output of the fast fourier transformer FFT is coupled to the N'th multiplier MUN-1 in the rotation device ROTOR. The N multipliers MU0, MU1, . . . , MUN-1 further are coupled to respective inputs of the phase detection unit PHASE, and N outputs of this phase detection unit PHASE are coupled to the N multipliers M0, M1, . . . , Mi, . . . , MN-1 in the calculation unit CALC respectively. The N multipliers M0, M1, . . . , Mi, . . . , MN-1 have outputs connected to input terminals of the adder S, and this adder S is further connected to the divider DIV. An output of the divider DIV is feedback coupled to a control input of the skip and duplicate device S/D and to control terminals of the multipliers MU0, MU1, . . . , MUN-1 in the rotation device ROTOR via the filter FIL in the feedback loop FBL. Outputs of the channel gain device CHANNEL are also coupled to these control terminals of the multipliers MU0, MU1, . . . , MUN-1 via other multipliers MU′0, MU′1, . . . , MU′N-1 inserted in the feed back loop from the divider DIV to the rotation device ROTOR. The channel analysing device SNR is via an output thereof coupled to an input of the weight determination unit WEIGHT which has N+1 outputs, labelled A0, A1, . . . , Ai, . . . , AN-1, and B in FIG. 1. These outputs are coupled to second inputs of the multipliers M0, M1, . . . , Mi, . . . , MN-1 and of the divider DIV in the calculation unit CALC respectively.
  • The receiver RX[0029] 1 is supposed to be of the ADSL (Asymmetric Digital Subscriber Line) type and consequently receives at its input a multi-carrier signal following the recommendations of the already cited ADSL Standard. This implies for instance that the multi-carrier signal received by the modem RX1 is composed of a sequence of DMT (Discrete Multi Tone) symbols. Such a DMT symbol has a predetermined length in time and consists of the superposition of 256 modulated carriers with equidistant frequencies. In the symbol timing synchronisation process, the receiving modem RX1 basically detects the boundaries of the received DMT symbols in order to select the correct block of consecutive samples to be fed to the fast fourier transformer FFT. In other words, symbol timing recovery is defined as the process to determine for each incoming DMT symbol which is the first sample of the sequence of consecutive samples to be sent to the fast fourier transformer FFT. Several algorithms for symbol synchronisation are described in literature. Estimation of the symbol boundaries for instance may be executed with an accuracy equal to one sample period during an acquisition phase.
  • The present invention however is related to the process of sample timing synchronisation, wherein the receiving modem RX[0030] 1 monitors the increase in difference in phase between the transmitter clock and the receiver clock and compensates for this difference via a feedback algorithm. The difference between the transmitter timing basis and receiver timing basis is compensated for during the normal transmission mode instead of during the acquisition phase because the clock differences can change all the time. The invention concerns the method to estimate the difference in clock timing between the transmitter and receiver clock. The more accurate this clock timing difference is determined, the better the sample timing synchronisation process will compensate for it. In the following paragraph, the role of the functional blocks drawn in FIG. 1 is discussed briefly. In an additional paragraph, a lower bound is derived for the variance on the estimation error of the clock timing error determined according to the present invention in function of the number of pilot carriers involved in the clock timing error determination method. A further paragraph describes a most likelihood based approach of the problem of determining the clock timing error and results in deriving a preferred embodiment of the present invention. Alternative synchronisation units for the one drawn in FIG. 1 wherein the same clock timing error determination arrangement ARR is used but which include other circuitry to realise the sample timing synchronisation are described in yet another paragraph which deals with FIG. 2 and FIG. 3. Some remarks and notes concerning the applicability of the present invention are listed in the paragraphs concluding the description of the present application.
  • After digitisation and having passed the skip and duplicate device S/D, the digitised multi-carrier signal is serial-to-parallel converted. The serial-to-parallel converter S/P thereto applies subsequent samples of one and the same DMT (Discrete Multi Tone) symbol to subsequent ones of its outputs. The fast fourier transformer FFT in addition converts these samples of one DAT symbol from time domain to frequency domain by executing the well-known Discrete Fourier Transformation. As a result thereof, each signal at an output terminal of the fourier transformer FFT represents a modulated carrier and can be seen as a vector point in a two-dimensional vector plane wherein the modulation constellation represents a set of points. The amplitude and phase that can be associated to this vector point in the two-dimensional vector plane correspond to the amplitude and phase of the modulated carrier at the output of the fast fourier transformer FFT. The rotation device ROTOR, coupled to the fast fourier transformer FFT, has the task to compensate for differences between the clocks in the transmitting modem, not drawn in the figure, and receiving modem RX[0031] 1. The clock signal in the receiving modem RX1 is generated by a free running crystal, not shown in FIG. 1, and supplied to the clock input of the analogue to digital converter mentioned above. The clock differences introduce phase errors which are proportional to the frequencies of the carriers. The rotation device ROTOR consequently applies a phase shift or so called rotation to each one of the carriers in proportion to the frequency of the respective carrier so that the clock speed difference is compensated for. The channel gain device CHANNEL thereto realises that the signals fed back to the multipliers MU0, MU1, . . . , MUN-1 are proportional to the frequencies of the respective carriers. To be able to precisely compensate for the clock difference, the rotation device ROTOR needs accurate information with respect to the clock timing error τe. It is the task of the clock timing error determination arrangement ARR and the feedback loop FBL to determine this clock timing error τe precisely and to feed it back to the rotation device ROTOR. As soon as the clock timing error τe to be compensated for by the rotation device ROTOR becomes larger than one sample period, a sample has to be skipped or duplicated in the incoming digitised signal. This is the task of the skip and duplicate device S/D which therefor also receives the information generated by the clock timing error determination arrangement ARR and feedback loop FBL. The operation of the skip and duplicate device S/D and that of the rotation device ROTOR accords to well-known techniques described for instance in the contribution to the ADSL Standard T1E7.4/93-025, paragraphs 2.2, 2.2.7, 2.2.8, 3.2, 3.2.7 and 3.2.8. This contribution is entitled ‘VLSI DMT Implementation for ADSL’ and originates from Amati Communications Corporation. The accurateness of the clock timing error τe determined by the clock timing error determination arrangement ARR is of significant importance, since it determines the accurateness of the operations performed by the rotation device ROTOR and the skip and duplicate device S/D and thus also the accurateness of the whole synchronisation process between transmitting modem and receiving modem RX1. As will be shown in the following paragraph, a larger robustness for narrowband noise is obtained when multiple pilot carriers are used. Therefor, the phase detection unit PHASE produces phase errors φ0, φ1, . . . , φi, . . . , φN-1 for N carriers from observations of the fast fourier transformers outputs. Although the phase detection unit PHASE measures the phase of the signals at the output of the fast fourier transformer FFT, it has to be noted that an alternative implementation of the phase detection unit PHASE may determine the difference between a received vector and an expected vector (determined by the closest constellation point in the constellation diagram) and can approximate the phase errors therefrom. Each phase error is multiplied with a corresponding weight coefficient A0, A1, . . . , Ai, . . . , AN-1. These weights A0, A1, . . . , Ai, . . . , AN-1 are determined by the weight determination unit WEIGHT on the basis of signal-to-noise ratio values SNRi measured for the different pilot carriers. During the acquisition mode, a predetermined sequence of bits is modulated on the carriers. The channel analyser SNR analyses these modulated carriers after transmission thereof over the communication line and measures the signal-to-noise ratio for each carrier. During tracking mode, the channel analyser SNR applies the signal-to-noise ratio values SNRi to the weight determination unit WEIGHT which determines the weight coefficients A0, A1, . . . , Ai, . . . , AN-1 and applies them to the multipliers M0, M1, . . . , Mi, . . . , MN-1 respectively. The weighted phase errors are summed together by the adder S and normalised with a normalisation factor B by the divider DIV. The normalisation factor B is also determined by the weight determination unit WEIGHT from the signal-to-noise ratio values SNRi. The clock timing error τe obtained in this way at the output of the calculation unit CALC is fed back via the filter FIL and digital voltage controlled oscillator to the rotation device ROTOR and skip and duplicate device S/D. The feedback loop FBL may perform the function of a traditional phase locked loop (PLL). The rotation device ROTOR phase shifts each carrier of the multi-carrier signal proportional to the calculated clock timing error τe and to the frequency of the respective carrier. The signal supplied to the second terminals of the multipliers MU0, MU1, . . . , MUN-1 is made proportional to the frequency of the respective carriers by the channel gain device CHANNEL and the multipliers MU′0, MU′1, . . . , MU′N-1. When the clock timing error τe becomes larger than one sample period, the skip and duplicate device S/D is activated to either skip or duplicate a sample in the incoming multi-carrier signal.
  • Consider the received continuous time multi-carrier signal r(t) at the input of the receiver RX[0032] 1: r ( t ) = m = - + k = 0 2 N - 1 n = - υ 2 N - 1 a m k · g ( t - n · T 2 - m ( 2 · N + υ ) · T 2 ) · e i · 2 π 2 N · k · n + n ( t ) ( 1 )
    Figure US20040156441A1-20040812-M00001
  • Herein, the following notation is used: [0033]
  • N: Number of carriers in the DMT signal, i.e. 256 in an ADSL system; [0034]
  • a[0035] m k: symbol modulating the k'th carrier in the m'th DMT symbol period;
  • g(t): composite channel impulse response, i.e. the channel impulse response that is eventually equalised to reduce intersymbol interference; [0036]
  • t: time; [0037] 2 T
    Figure US20040156441A1-20040812-M00002
  • : sampling rate; [0038]
  • n(t): additive noise component; [0039]
  • n: sample index; [0040]
  • k: carrier index; [0041]
  • m: DMT symbol index; [0042]
  • ν: number of guardband samples, i.e. the number of redundant samples in a cyclic prefix added to each DMT symbol to compensate for intersymbol interference; [0043]
  • i: square root of −1; [0044]
  • π: pi=3.1415; [0045]
  • ∞: symbol representing infinity; [0046]
  • τe: clock timing error at the output of the arrangement ARR; [0047]
  • τ: estimated time difference at the output of the feedback loop FBL; and [0048]
  • {tilde over (τ)}: time difference or difference in sample timing between the transmitting modem and receiving modem. [0049]
  • After the acquisition mode and assuming no timing error, the output of the fast fourier transformer FFT can be expressed as: [0050]
  • F m k =a m k ·G k +N k  (2)
  • Herein, G[0051] k represents the fourier transform of g(t) evaluated at the k'th carrier frequency which is equal to k N · T
    Figure US20040156441A1-20040812-M00003
  • and N[0052] k represents the contribution of the additive noise at the k'th carrier frequency.
  • In case of a clock timing difference equal to τ, the output of the fast fourier transformer FFT can be expressed as: [0053] F m k = a m k · G k · e - i · 2 π · 2 τ 2 N · T · k + N ~ k ( 3 )
    Figure US20040156441A1-20040812-M00004
  • This expression (3) is correct as long as the clock timing difference τ is smaller than the difference between the channel impulse response duration and the guard time duration. The Cramer-Rao bound is a fundamental lower bound on the estimation of unbiased parameters. Estimation of the clock timing difference τ, denoted by {tilde over (τ)} can be derived from observations of the fast fourier transform outputs. In the assumption that the additive noise contributions at the output of the fast fourier transformer FFT are uncorrelated, the lower bound on the timing error variance can be expressed as: [0054] E { ( τ - τ ~ ) 2 } = ( T 2 ) 2 · ( 2 N 2 π ) 2 · 1 M · ( k SNR k · k 2 ) - 1 ( 4 )
    Figure US20040156441A1-20040812-M00005
  • Herein E{(τ−{tilde over (τ)})[0055] 2} represents the Cramer-Rao lower bound on the variance of the clock timing error τ−{tilde over (τ)}=τe, M is the observation window expressed as an integer number of DMT symbols, and SNRk is the signal-to-noise ratio value associated with the k'th carrier. By definition, this signal-to-noise ratio value SNRk is equal to: SNR k = E { a m k 2 } · G k 2 E { N m 2 } ( 5 )
    Figure US20040156441A1-20040812-M00006
  • In (5) E{|a[0056] m k|2} represents the mean power of the m'th symbol, |Gk|2 represents the gain of the channel, and E{|Nm|2} represents the mean noise power on carrier k. For transmission over a FEXT (Far End Crosstalk) dominated channel, the signal-to-noise ratio SNRk can be expressed as: SNR k = 1 K f · d ( N T k ) 2 ( 6 )
    Figure US20040156441A1-20040812-M00007
  • This is indicated in paragraph 6.2.1 of the ‘VDSL System Requirements’ with reference T1E1.4/96-153R3, published on Dec. 31, 1996. In expression (6), d equals the length of the transmission cable and K[0057] f represents the FEXT coupling constant. Substituting (6) in (4) gives for the Cramer-Rao lower bound the following expression: E { ( τ - τ ~ ) 2 } = 1 K · K f · d 4 · M · π 2 ( 7 )
    Figure US20040156441A1-20040812-M00008
  • Herein, K represents the number of outputs of the fast fourier transformer FFT used to produce the clock timing error τ[0058] e.
  • From (7) it can be concluded that it is advantageous to base the calculation of the clock timing error τ[0059] e on multiple carriers. In a FEXT dominated environment the variance on the clock timing error τe is proportional to the inverse of the number of carriers used. When selecting only a limited number of pilot carriers to produce the clock timing error τe, one should take the carriers with the largest product of the signal-to-noise ratio and squared carrier index in order to obtain the lowest clock timing error variance. In the receiver RX1 of FIG. 1, all carriers are used by the clock timing determination arrangement ARR to produce the estimate of the clock timing error τe.
  • In a most-likelihood based approach, new timing error estimates are based on snapshots of the log likelihood function L[0060] m({tilde over (τ)}m) whereby: L m ( τ ~ m ) = - K 2 · ln ( 2 π ) - 1 2 · k ln ( E { N k 2 } ) - k F m k - a m k · G k · e - i · 2 π · 2 τ ~ m 2 N · T · k 2 2 · E { N k 2 } ( 8 )
    Figure US20040156441A1-20040812-M00009
  • During tracking mode, the clock timing error determination arrangement ARR produces reliable estimates of the transmitted data sequence while channel gains are known to the receiver (they have been measured during modem initialisation). Hence, at the m'th DMT symbol period, a Data Aided Most Likelihood (DA ML) clock timing error determination arrangement ARR produces the value τ[0061] e: τ m = - 2 · { π N · 2 τ ~ m T · k · F m k · ( a m k · G k ) * · e i · 2 π · 2 τ ~ m 2 N · T · k 2 · E { N k 2 } } ( 9 )
    Figure US20040156441A1-20040812-M00010
  • Herein * denotes the complex cojugate and ℑ denotes the imaginary part. Substitution from (3) into (9) leads to the conclusion that the weight coefficent A[0062] i has to be equal to SNRi.i and the normalisation factor B has to equal k = 0 N - 1 k 2 · SNR k .
    Figure US20040156441A1-20040812-M00011
  • The derived timing error τ[0063] e can be used to control either continuous time or discrete time based synchronisation structures.
  • In FIG. 2 a multi-carrier receiver RX[0064] 2 is drawn which only differs from the multi-carrier receiver RX1 in FIG. 1 in the means used to realise sample timing synchronisation. The serial-to-parallel converter S/P, the fast fourier transformer FFT, the rotation device ROTOR, the clock timing error determination arrangement ARR and the components PHASE, CALC and WEIGHT thereof, the feedback loop FBL, the channel gain device CHANNEL and the channel analyser SNR perform exactly the same functions as the equally labelled functional blocks in FIG. 1. Instead of feeding back the clock timing error τe produced by the clock timing error determination arrangement ARR to the skip and duplicate device S/D and the rotation device ROTOR, the clock timing error τe in receiver RX2 is fed back to a voltage controlled crystal oscillator VCXO whose output is coupled to the clock input of the analogue to digital converter A/D. The clock timing error τe thus is used to adapt the sample period so that sample timing synchronisation between the transmitting modem and receiving modem is obtained. The analogue to digital converter A/D, the voltage controlled crystal oscillator VCXO, the rotation device ROTOR, the clock timing error determination arrangement ARR and the feedback loop FBL constitute a synchronisation unit SYNCHRO2 which is an alternative for the synchronisation unit SYNCHRO1 of FIG. 1.
  • Yet another multi-carrier receiver RX[0065] 3 is drawn in FIG. 3. The serial-to-parallel converter S/P, the fast fourier transformer FFT, the rotation device ROTOR, the clock timing error determination arrangement ARR with its components PHASE, WEIGHT and CALC, the feedback loop FBL, the channel gain device CHANNEL and the channel analyse SNR again perform the same role as the equally labelled functional blocks in FIG. 1 and FIG. 2. The clock timing error re now however is fed back to both an interpolator INT whereto the serial-to-parallel converter S/P is coupled. The interpolator now provide for sample timing synchronisation by interpollating between two samples. The interpolator INT, the rotation device ROTOR, the clock time error determination arrangement ARR and the feedback loop FBL constitute an alternative synchronisation unit SYNCHRO3 for the synchronisation units SYNCHRO1 and SYNCHRO2 drawn in FIG. 1 and FIG. 2 respectively.
  • A first remark is that, although the multi-carrier signal in the above described embodiment is transported over a telephone line, the applicability of the present invention is not restricted by the transmission medium via which the signal is transported. In particular, any connection between the transmitting modem and receiving modem RX, e.g. a cable connection, a satellite connection, a radio link through the air, and so on, may be affected by narrowband noise, and thus the synchronisation procedure can be improved according to the present invention. [0066]
  • The invention also is not only related to ADSL (Asymmetric Digital Subscriber Line) or similar systems wherein DMT (Discrete Multi Tone) modulation is used. A person skilled in the art will be able to adapt the above described embodiment so that it is applicable in any other system wherein a multi-carrier signal is transmitted from a transmitting modem to a receiving modem RX and wherein a plurality of pilot carriers are used for synchronisation purposes during the tracking mode. Systems wherein orthogonal frequency division multiplexing (OFDM) or orthogonally multiplexed quadrature amplitude modulation (OMQAM) is applied for instance are multi-carrier environments wherein the present invention is applicable. [0067]
  • Another remark is that embodiments of the present invention are described above in terms of functional. From the functional description of these blocks, given above, it will be obvious for a person skilled in the art of designing electronic devices how embodiments of these blocks can be manufactured with well-known electronic components. A detailed architecture of the contents of the functional blocks hence is not given. [0068]
  • It is to be noticed that the weights A[0069] 0, A1, . . . , Ai, . . . , AN-1 and the normalisation factor B are calculated above in accordance to the results of a maximum likelihood approach. Although the above weights A0, A1, . . . , Ai, . . . , AN-1 and normalisation factor B are to be used in a preferred embodiment of the present invention, the basic principle of the present invention, i.e. the use of transmission quality information for a plurality of pilot carriers to determine the shores of phase information obtained from these pilot carriers in the clock timing error τe that is used for synchronisation, is also satisfied when less optimal values are used for the weights A0, A1, . . . , Ai, . . . , AN-1 or the normalisation factor B.
  • It is also noticed that applicability of the present invention is not restricted to digital environments. A person skilled in the art of electronic design knows that analogue equivalents exist for all functional blocks described above so that an analogue version of the present invention can be derived from the above described digital embodiments without inventive contribution. [0070]
  • While the principles of the invention have been described above in connection with specific apparatus, it is to be clearly understood that this description is made only by way of example and not as a limitation on the scope of the invention. [0071]

Claims (12)

1. Method to determine during a tracking mode in a multi-carrier system a clock timing error (τe) used for synchronisation purposes, said method comprising the steps of detecting phase errors (φ0, φ1, . . . , φi, . . . , φN-1) for a plurality of pilot carriers and calculating said clock timing error (τe) from said phase errors (φ0, φ1, . . . , φi, φN-1)
CHARACTERISED IN THAT a share (Ai) of a phase error (φi) of said phase errors (φ0, φ1, . . . , φi, . . . , φN-1) in said clock timing error (τe) depends on a value (SNRi) of a transmission quality parameter measured for a pilot carrier of said pilot carriers for whom said phase error (φi) is measured.
2. Method according to claim 1,
CHARACTERISED IN THAT said value (SNRi) of said transmission quality parameter is determined during an acquisition mode preceding said tracking mode.
3. Method according to claim 1,
CHARACTERISED IN THAT said clock timing error (τe) is calculated as a weighted sum of said phase errors (φ0, φ1, . . . , φi, . . . , φN-1) whereby said share (Ai) of said phase error (φi) equals a weight coefficient (Ai/B) in said sum.
4. Method according to claim 3,
CHARACTERISED IN THAT said share (Ai) is linearly proportional to said value (SNRi) of said transmission quality parameter.
5. Method according to claim 4,
CHARACTERISED IN THAT a proportionality factor between said share (Ai) and said value (SNRi) of sold transmission quality parameter is linearly dependent on a frequency of said pilot carrier.
6. Method according to claim 4,
CHARACTERISED IN THAT said weighted sum is normalised by a linear combination (B) of values (SNRi) of said transmission quality parameter measured for sold plurality of pilot carriers.
7. Method according to claim 6,
CHARACTERISED IN THAT a coefficient in said linear combination (B) depends on a square frequency of a pilot carrier of said pilot carriers.
8. Method according to claim 1,
CHARACTERISED IN THAT said transmission quality parameter is a signal-to-noise ratio.
9. Arrangement (ARR) to determine during a tracking mode in a multi-carrier system a clock timing error (τe) used for synchronisation purposes, said arrangement (ARR) comprising:
a. phase error detection means (PHASE) whereto a multi-carrier signal is applied, said phase error detection means (PHASE) being adapted to detect phase errors (φ0, φ1, . . . , φi, . . . , φN-1) for a plurality of pilot carriers; and
b. calculation means (CALC), coupled to said phase error detection means (PHASE), and adopted to calculate said clock timing error (be) from said phase errors (φ0, φ1, . . . , φi, . . . , φN-1)
CHARACTERISED IN THAT said arrangement (ARR) further comprises:
c. share determination means (WEIGHT), having an output coupled to said calculation means (CALC) and being adapted to receive via an input thereof values (SNRi) of a transmission quality parameter related to said plurality of pilot tones and to determine shares (A0, A1, . . . , Ai, . . . , AN-1) of said phase errors (φ0, φ1, . . . , φi, . . . , φN-1) in said clock timing error (τe) from said values (SNRi) of said transmission quality parameter; and further in that:
d. said calculation means (CALC) is adapted to receive via an input thereof said shares (A0, A1, . . . , Ai, . . . , AN-1) and to calculate said clock timing error (τe) from said shares (A0, A1, . . . , Ai, . . . , AN-1) and said phase errors (φ0, φ1, . . . , φi, . . . , φN-1).
10. Synchronisation unit (SYNCHRO1) to be used in a multi-carrier system, said synchronisation unit (SYNCHRO1) comprising:
a. skip and duplicate means (S/D), adapted to remove a sample from or to duplicate a sample in a multi-carrier signal when a clock timing error (τe) becomes larger than or equal to a sample period;
b. phase rotation means (ROTOR), coupled in series with said skip and duplicate means (S/D), and adapted to apply a phase shift to each carrier in said multi-carrier signal proportional to said clock timing error (τe) and proportional to a frequency of said carrier;
c. a clock timing error determination arrangement (ARR), coupled to said phase rotation means (ROTOR), and adapted to determine during a tracking mode of said multi-carrier system said clock timing error (τe), said clock timing error determination arrangement (ARR) comprising:
c1. phase error detection means (PHASE) whereto a multi-carrier signal is applied, said phase error detection means (PHASE) being adapted to detect phase errors (φ0, φ1, . . . , φi, . . . , φN-1) for a plurality of pilot carriers; and
c2. calculation means (CALC), coupled to said phase error detection means (PHASE), and adapted to calculate said clock timing error (τe) from said phase errors (φ0, φ1, . . . , φi, . . . , φN-1); and
d. a feedback loop (FBL) coupled to said clock timing error determination arrangement (ARR) and having an output coupled to inputs of both said skip and duplicate means (S/D) and said phase rotation means (ROTOR), said feedback loop (FBL) being adapted to feed back said clock timing error (τe) to both said skip and duplicate means (S/D) and said phase rotation means (ROTOR),
CHARACTERISED IN THAT said clock timing error determination arrangement (ARR) further comprises:
c3. share determination means (WEIGHT), having an output coupled to said calculation means (CALC) and being adapted to receive via an input thereof values (SNRi) of a transmission quality parameter related to said plurality of pilot tones and to determine shares (A0, A1, . . . , Ai, . . . , AN-1) of said phase errors (φ0, φ1, . . . , φi, . . . , φN-1) in said clock timing error (τe) from said values (SNRi) of said transmission quality parameter; and further in that:
c4. said calculation means (CALC) is adapted to receive via an input thereof said shares (A0, A1, . . . , Ai, A . . . , AN-1) and to calculate said clock timing error (τe) from said shares (A0, A1, . . . , Ai, . . . , AN-1) and said phase errors (φ0, φ1, . . . , φi, . . . , φN-1).
11. Synchronisation unit (SYNCHRO2) to be used in a multi-carrier system, said synchronisation unit (SYNCHRO2) comprising:
a. sampling means (A/D) under control of a voltage controlled oscillator (VCXO), adopted to sample a multi-carrier signal, a period of said voltage controlled oscillator (VCXO) being controlled by a clock timing error (τe);
b. phase rotation means (ROTOR), coupled in series with said sampling means (A/D), and adapted to apply a phase shift to each carrier in said multi-carrier signal proportional to a frequency of said carrier;
c. a clock timing error determination arrangement (ARR), coupled to said phase rotation means (ROTOR), and adapted to determine during a tracking mode of said multi-carrier system said clock timing error (τe), said clock timing error determination arrangement (ARR) comprising:
c1. phase error detection means (PHASE) whereto a multi-carrier signal is applied, said phase error detection means (PHASE) being adapted to detect phase errors (φ0, φ1, . . . , φi, . . . , φN-1) for a plurality of pilot carriers; and
c2. calculation means (CALC), coupled to said phase error detection means (PHASE), and adapted to calculate said clock timing error (τe) from said phase errors (φ0, φ1, . . . , φi, . . . , φN-1); and
d. a feedback loop (FBL) coupled to said clock timing error determination arrangement (ARR) and having an output coupled to an input of said voltage controlled oscillator (VCXO), said feedback loop (FBL) being adapted to feed back said clock timing error (τe) to said voltage controlled oscillator (VCXO),
CHARACTERISED IN THAT said clock timing error determination arrangement (ARR) further comprises:
c3. share determination means (WEIGHT), having an output coupled to said calculation means (CALC) and being adapted to receive via an input thereof values (SNRi) of a transmission quality parameter related to said plurality of pilot tones and to determine shares (A0, A1, . . . , Ai, . . . , AN-1) of said phase errors (φ0, φ1, . . . , φi, . . . , φN-1) in said clock timing error (τe) from said values (SNRi) of said transmission quality parameter; and further in that:
c4. said calculation means (CALC) is adapted to receive via an input thereof said shares (A0, A1, . . . , Ai, . . . , AN-1) and to calculate said clock timing error (τe) from said shares (A0, A1, . . . , Ai, . . . , AN-1) and said phase errors (φ0, φ1, . . . , φi, . . . , φN-1).
12. Synchronisation unit (SYNCHRO3) to be used in a multi-carrier system, said synchronisation unit (SYNCHRO3) comprising:
a. interpolator means (INT), adapted to receive a multi-carrier input signal and to interpollate in between two successive samples of said multi-carrier input signal to generate an intermediate sample;
b. phase rotation means (ROTOR), coupled in series with said interpolator means (INT), and adapted to apply a phase shift to each carrier in said multi-carrier signal proportional to a frequency of said carrier;
c. a clock timing error determination arrangement (ARR), coupled to said phase rotation means (ROTOR), and adapted to determine during a tracking mode of said multi-carrier system said clock timing error (τe), said clock timing error determination arrangement (ARR) comprising:
c1. phase error detection means (PHASE) whereto a multi-carrier signal is applied, said phase error detection means (PHASE) being adapted to detect phase errors (φ0, φ1, . . . , φi, . . . , φN-1) for a plurality of pilot carriers; and
c2. calculation means (CALC), coupled to said phase error detection means (PHASE), and adapted to calculate said clock timing error (τe) from said phase errors (φ0, φ1, . . . , φi, . . . , φN-1); and
d. a feedback loop (FBL) coupled to said clock timing error determination arrangement (ARR) and having an output coupled to an input of both said skip and duplicate means (S/D) and said interpolator means (INT), said feedback loop (FBL) being adapted to feed back said clock timing error (τe) to both said skip and duplicate means (S/D) and said interpolator (INT);
CHARACTERISED IN THAT said clock timing error determination arrangement (ARR) further comprises:
c3. share determination means (WEIGHT), having an output coupled to said calculation means (CALC) and being adapted to receive via an input thereof values (SNRi) of a transmission quality parameter related to said plurality of pilot tones and to determine shares (A0, A1, . . . , Ai, . . . , AN-1) of said phase errors (φ0, φ1, . . . , φi, . . . , φN-1) in said clock timing error (τe) from said values (SNRi) of said transmission quality parameter; and further in that:
c4. said calculation means (CALC) is adapted to receive via an input thereof said shares (A0, A1, . . . , Ai, . . . , AN-1) and to calculate said clock timing error (τe) from said shares (A0, A1, . . . , Ai, . . . , AN-1) and said phase errors (φ0, φ1, . . . , φi, . . . , φN-1).
US10/640,333 1997-09-22 2003-08-13 Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units Abandoned US20040156441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/640,333 US20040156441A1 (en) 1997-09-22 2003-08-13 Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97402201A EP0903897B1 (en) 1997-09-22 1997-09-22 Method and arrangement to determine a clock timing error in a multi-carrier transmission system
EP97402201.4 1997-09-22
US09/158,596 US6628738B1 (en) 1997-09-22 1998-09-22 Method of arrangement to determine a clock timing error in a multi-carrier transmission system, and a related synchronization units
US10/640,333 US20040156441A1 (en) 1997-09-22 2003-08-13 Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/158,596 Continuation US6628738B1 (en) 1997-09-22 1998-09-22 Method of arrangement to determine a clock timing error in a multi-carrier transmission system, and a related synchronization units

Publications (1)

Publication Number Publication Date
US20040156441A1 true US20040156441A1 (en) 2004-08-12

Family

ID=8229853

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/158,596 Expired - Lifetime US6628738B1 (en) 1997-09-22 1998-09-22 Method of arrangement to determine a clock timing error in a multi-carrier transmission system, and a related synchronization units
US10/640,333 Abandoned US20040156441A1 (en) 1997-09-22 2003-08-13 Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/158,596 Expired - Lifetime US6628738B1 (en) 1997-09-22 1998-09-22 Method of arrangement to determine a clock timing error in a multi-carrier transmission system, and a related synchronization units

Country Status (8)

Country Link
US (2) US6628738B1 (en)
EP (1) EP0903897B1 (en)
JP (1) JP4188466B2 (en)
AT (1) ATE208110T1 (en)
AU (1) AU743588B2 (en)
DE (1) DE69707872T2 (en)
ES (1) ES2164313T3 (en)
IL (1) IL125333A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089127A1 (en) * 2003-10-22 2005-04-28 Sasken Communication Technologies Limited Apparatus, methods, systems, and articles incorporating a clock correction technique
US20050169357A1 (en) * 2004-02-04 2005-08-04 Hossein Sedarat Reliable multicarrier communication in the presence of timing phase error
US20050190825A1 (en) * 2004-02-26 2005-09-01 Hossein Sedarat Bit-loading in multicarrier communication systems in the presence of an asymmetric, correlated Gaussian noise sources
US20080209296A1 (en) * 2005-08-29 2008-08-28 International Businesss Machines Corporation Clock and Data Recovery System and Method for Clock and Data Recovery Based on a Forward Error Correction
US20080247480A1 (en) * 2007-04-06 2008-10-09 Dumitru Mihai Ionescu Methods and systems for detecting a narrow-band interferer
US7515657B1 (en) * 2004-03-05 2009-04-07 Marvell International Ltd. Frequency tracking for OFDM transmission over frequency selective channels
US7570722B1 (en) * 2004-02-27 2009-08-04 Marvell International Ltd. Carrier frequency offset estimation for OFDM systems
US7813439B2 (en) 2006-02-06 2010-10-12 Broadcom Corporation Various methods and apparatuses for impulse noise detection
US7852950B2 (en) 2005-02-25 2010-12-14 Broadcom Corporation Methods and apparatuses for canceling correlated noise in a multi-carrier communication system
US20100322364A1 (en) * 2007-03-12 2010-12-23 Bogdan John W Noise Filtering Inverse Transformation
US7953163B2 (en) 2004-11-30 2011-05-31 Broadcom Corporation Block linear equalization in a multicarrier communication system
US20110158360A1 (en) * 2009-12-30 2011-06-30 Man-On Pun SNR-Based Blanking Scheme for Impulsive Noise Mitigation in Wireless Networks
US8194722B2 (en) 2004-10-11 2012-06-05 Broadcom Corporation Various methods and apparatuses for impulse noise mitigation
US8472533B2 (en) 2008-10-10 2013-06-25 Broadcom Corporation Reduced-complexity common-mode noise cancellation system for DSL
RU2583228C1 (en) * 2014-12-15 2016-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Method for application of wear-resistant coatings based on titanium diboride and nickel on steel surface
US9374257B2 (en) 2005-03-18 2016-06-21 Broadcom Corporation Methods and apparatuses of measuring impulse noise parameters in multi-carrier communication systems

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254300B1 (en) * 1998-01-06 2013-05-15 Mosaid Technologies Incorporated Multicarrier modulation system with variable symbol rates
DE19849318A1 (en) * 1998-10-26 2000-04-27 Rohde & Schwarz Orthogonal frequency division multiplex processing method in multi antenna system, involves summing up I/Q values weighted with channel correction values
US6370188B1 (en) * 1999-03-31 2002-04-09 Texas Instruments Incorporated Phase and frequency offset compensation in a telecommunications receiver
AU749134B2 (en) * 1999-04-22 2002-06-20 Nippon Telegraph & Telephone Corporation OFDM packet communication receiver
US6735255B1 (en) 1999-05-28 2004-05-11 3Com Corporation Correlation based method of determining frame boundaries of data frames that are periodically extended
US6785349B1 (en) 1999-05-28 2004-08-31 3Com Corporation Correlation based method of determining frame boundaries of data frames that are periodically extended
US6765969B1 (en) * 1999-09-01 2004-07-20 Motorola, Inc. Method and device for multi-user channel estimation
US6272192B1 (en) * 1999-09-20 2001-08-07 Motorola Inc. Method and apparatus for transmit timing adjustment in a host-processor-based modem
DE69906548T2 (en) * 1999-12-14 2004-03-04 Stmicroelectronics N.V. DSL transmission system with remote crosstalk compensation
GB0004088D0 (en) * 2000-02-21 2000-04-12 Nokia Networks Oy Packet data services in a telecommunications system
WO2001065794A1 (en) * 2000-02-29 2001-09-07 3Com Corporation Method of multicarrier symbol synchronisation by using correlation
KR20010093494A (en) * 2000-03-29 2001-10-29 전주범 A time stamp error detector of cable modem
US7020074B1 (en) * 2000-04-03 2006-03-28 Nortel Networks Limited Synchronization method and apparatus for frequency division multiplexed telecommunication systems
US6847693B1 (en) * 2000-05-16 2005-01-25 3Com Corporation Method and device providing data derived timing recovery for multicarrier communications
US7050522B2 (en) * 2000-05-26 2006-05-23 International Business Machines Corporation Phase rotator and data recovery receiver incorporating said phase rotator
EP1162803A1 (en) * 2000-06-05 2001-12-12 Telefonaktiebolaget L M Ericsson (Publ) Frequency tracking device and method for a receiver of a multi-carrier communication system
EP1162777A1 (en) * 2000-06-07 2001-12-12 Alcatel Multi-carrier comunication system with sample rate pilot carrier and time division duplexing frame rate pilot carrier
DE10031677B4 (en) * 2000-06-29 2005-09-29 Siemens Ag Method or communication system with robust diversity combining
US6983047B1 (en) 2000-08-29 2006-01-03 Lucent Technologies Inc. Echo canceling system for a bit pump and method of operating the same
US6876699B1 (en) 2000-08-29 2005-04-05 Lucent Technologies Inc. Filter circuit for a bit pump and method of configuring the same
US6894989B1 (en) 2000-08-29 2005-05-17 Agere Systems Inc. Separation circuit for an echo canceling system and method of operating the same
US6973146B1 (en) * 2000-08-29 2005-12-06 Lucent Technologies Inc. Resampler for a bit pump and method of resampling a signal associated therewith
US6970511B1 (en) 2000-08-29 2005-11-29 Lucent Technologies Inc. Interpolator, a resampler employing the interpolator and method of interpolating a signal associated therewith
EP1221794A1 (en) * 2001-01-05 2002-07-10 Alcatel Method and arrangement to determine a clock timing error in a multi-carrier transmission system
US6760574B1 (en) * 2001-04-17 2004-07-06 Centillium Communications, Inc. Two-dimensional signal detector with dynamic timing phase compensation
US6985550B2 (en) * 2001-04-30 2006-01-10 Agere Systems Inc. Jitter control processor and a transceiver employing the same
US7272175B2 (en) * 2001-08-16 2007-09-18 Dsp Group Inc. Digital phase locked loop
US7103116B2 (en) * 2001-09-24 2006-09-05 Atheros Communications, Inc. Detection of a false detection of a communication packet
US7203255B2 (en) * 2001-09-24 2007-04-10 Atheros Communications, Inc. Method and system to implement non-linear filtering and crossover detection for pilot carrier signal phase tracking
US7170961B2 (en) * 2002-01-08 2007-01-30 Patrick Vandenameele-Lepla Method and apparatus for frequency-domain tracking of residual frequency and channel estimation offsets
EP1335553A1 (en) * 2002-02-12 2003-08-13 Alcatel Symbol synchronisation in a multicarrier transmission system
US7260117B2 (en) * 2002-03-08 2007-08-21 Centillium Communications, Inc. Synchronizing initial handshake in ADSL annex C to TTR
US7376157B1 (en) 2002-03-08 2008-05-20 Centillium Communications, Inc. Synchronizing ADSL Annex C transceivers to TTR
US20030231582A1 (en) * 2002-05-06 2003-12-18 Enikia L.L.C. Method and system of channel analysis and carrier selection in OFDM and multi-carrier systems
US7224666B2 (en) * 2002-05-13 2007-05-29 Texas Instruments Incorporated Estimating frequency offsets using pilot tones in an OFDM system
US20030235252A1 (en) * 2002-06-19 2003-12-25 Jose Tellado Method and system of biasing a timing phase estimate of data segments of a received signal
GB0215639D0 (en) * 2002-07-05 2002-08-14 British Broadcasting Corp OFDM receivers
US7158576B2 (en) * 2003-01-03 2007-01-02 Accton Technology Corporation Orthogonally-multiplexed orthogonal amplitude modulation method
AU2003269740A1 (en) * 2003-03-28 2004-10-18 Intel Corporation System and method for adaptive phase compensation of ofdm signals
US7583737B2 (en) * 2003-05-30 2009-09-01 Mitsubishi Electric Corporation OFDM signal receiver device and OFDM signal receiving method
US7254204B2 (en) * 2003-08-05 2007-08-07 Afa Technologies, Inc. Method and system for OFDM symbol timing synchronization
US6942272B2 (en) * 2003-08-29 2005-09-13 Thomas John Livingston Tailgate step
WO2005047923A2 (en) * 2003-09-02 2005-05-26 Sirf Technology, Inc. Signal processing system for satellite positioning signals
KR100601939B1 (en) * 2004-01-16 2006-07-14 삼성전자주식회사 Coarse frequency synchronization method and apparatus in OFDM system
GB2430570B (en) * 2004-04-07 2009-01-21 Siemens Ag Method and apparatus for determining a deviation between clock pulse devices
WO2005117433A1 (en) * 2004-05-12 2005-12-08 Electronics And Telecommunications Research Institute Apparatus and method for corresponding frequency synchronization in on-channel repeater
US7751501B2 (en) * 2004-05-19 2010-07-06 Infineon Technologies Ag Tracking system
US7539255B2 (en) 2004-06-23 2009-05-26 Texas Insturments Incorporated Using multiple pilot signals for timing error estimation in digital subscriber line communications
US7672383B2 (en) * 2004-09-17 2010-03-02 Qualcomm Incorporated Noise variance estimation in wireless communications for diversity combining and log-likelihood scaling
US7587016B2 (en) * 2005-07-20 2009-09-08 Broadcom Corporation MIMO timing recovery
EP2443746A4 (en) * 2009-06-15 2017-03-08 Ikanos Communications, Inc. Method and apparatus for clock recovery in xdsl transceivers
US8416889B2 (en) * 2009-11-27 2013-04-09 Dora S.P.A. Method of estimating transmission channel response and difference of synchronization offsets introduced in a received stream of packets of OFDM data and relative receiver
US8750444B2 (en) 2011-05-06 2014-06-10 Northrop Grumman Systems Corporation Snapshot processing of timing data
CN117318871B (en) * 2023-11-29 2024-02-27 四川蜀能电科能源技术有限公司 Time protection method, equipment and medium for power monitoring system

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253270A (en) * 1991-07-08 1993-10-12 Hal Communications Apparatus useful in radio communication of digital data using minimal bandwidth
US5313169A (en) * 1990-11-30 1994-05-17 Thomson-Csf Method of realigning the local oscillators of a receiver and device for implementing the method
US5321850A (en) * 1991-10-09 1994-06-14 Telefonaktiebolaget L M Ericsson Diversity radio receiver automatic frequency control
US5471508A (en) * 1993-08-20 1995-11-28 Hitachi America, Ltd. Carrier recovery system using acquisition and tracking modes and automatic carrier-to-noise estimation
US5768323A (en) * 1994-10-13 1998-06-16 Westinghouse Electric Corporation Symbol synchronizer using modified early/punctual/late gate technique
US5828710A (en) * 1995-12-11 1998-10-27 Delco Electronics Corporation AFC frequency synchronization network
US5838734A (en) * 1993-05-05 1998-11-17 British Broadcasting Corporation Compensation for local oscillator errors in an OFDM receiver
US5889759A (en) * 1996-08-12 1999-03-30 Telecommunications Research Laboratories OFDM timing and frequency recovery system
US6125150A (en) * 1995-10-30 2000-09-26 The Board Of Trustees Of The Leland Stanford, Junior University Transmission system using code designed for transmission with periodic interleaving
US6215819B1 (en) * 1997-05-02 2001-04-10 Sony Corporation Receiving apparatus and receiving method
US6249249B1 (en) * 1998-05-14 2001-06-19 Kabushiki Kaisha Toshiba Active array antenna system
US20020065047A1 (en) * 2000-11-30 2002-05-30 Moose Paul H. Synchronization, channel estimation and pilot tone tracking system
US20020085653A1 (en) * 2000-12-22 2002-07-04 Kabushhiki Kaisha Toshiba Beam formation circuit and an apparatus and a method of receiving radio frequency signals making use of a smart antenna
US20020150071A1 (en) * 2001-01-05 2002-10-17 Alcatel Method and arrangement to determine a clock timing error in a multi-carrier transmission system
US6473438B1 (en) * 1994-06-02 2002-10-29 Amati Communications Corporation Method and apparatus for coordinating multi-point to-point communications in a multi-tone data transmission system
US20030063678A1 (en) * 2001-08-21 2003-04-03 Crawford James A. OFDM pilot tone tracking to reduce performance loss due to frequency pulling and pushing
US20030223354A1 (en) * 2002-05-30 2003-12-04 Denso Corporation SINR measurement method for OFDM communications systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679227A (en) * 1985-05-20 1987-07-07 Telebit Corporation Ensemble modem structure for imperfect transmission media
US5206886A (en) * 1990-04-16 1993-04-27 Telebit Corporation Method and apparatus for correcting for clock and carrier frequency offset, and phase jitter in mulicarrier modems
JP3041175B2 (en) * 1993-11-12 2000-05-15 株式会社東芝 OFDM synchronous demodulation circuit
US5627863A (en) * 1994-07-15 1997-05-06 Amati Communications Corporation Frame synchronization in multicarrier transmission systems
US5640431A (en) * 1995-03-10 1997-06-17 Motorola, Inc. Method and apparatus for offset frequency estimation for a coherent receiver
US5970093A (en) * 1996-01-23 1999-10-19 Tiernan Communications, Inc. Fractionally-spaced adaptively-equalized self-recovering digital receiver for amplitude-Phase modulated signals
US5818872A (en) * 1996-12-31 1998-10-06 Cirrus Logic, Inc. Timing offset error extraction method and apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313169A (en) * 1990-11-30 1994-05-17 Thomson-Csf Method of realigning the local oscillators of a receiver and device for implementing the method
US5253270A (en) * 1991-07-08 1993-10-12 Hal Communications Apparatus useful in radio communication of digital data using minimal bandwidth
US5321850A (en) * 1991-10-09 1994-06-14 Telefonaktiebolaget L M Ericsson Diversity radio receiver automatic frequency control
US5838734A (en) * 1993-05-05 1998-11-17 British Broadcasting Corporation Compensation for local oscillator errors in an OFDM receiver
US5471508A (en) * 1993-08-20 1995-11-28 Hitachi America, Ltd. Carrier recovery system using acquisition and tracking modes and automatic carrier-to-noise estimation
US6473438B1 (en) * 1994-06-02 2002-10-29 Amati Communications Corporation Method and apparatus for coordinating multi-point to-point communications in a multi-tone data transmission system
US5768323A (en) * 1994-10-13 1998-06-16 Westinghouse Electric Corporation Symbol synchronizer using modified early/punctual/late gate technique
US6125150A (en) * 1995-10-30 2000-09-26 The Board Of Trustees Of The Leland Stanford, Junior University Transmission system using code designed for transmission with periodic interleaving
US5828710A (en) * 1995-12-11 1998-10-27 Delco Electronics Corporation AFC frequency synchronization network
US5889759A (en) * 1996-08-12 1999-03-30 Telecommunications Research Laboratories OFDM timing and frequency recovery system
US6215819B1 (en) * 1997-05-02 2001-04-10 Sony Corporation Receiving apparatus and receiving method
US6249249B1 (en) * 1998-05-14 2001-06-19 Kabushiki Kaisha Toshiba Active array antenna system
US20020065047A1 (en) * 2000-11-30 2002-05-30 Moose Paul H. Synchronization, channel estimation and pilot tone tracking system
US20020085653A1 (en) * 2000-12-22 2002-07-04 Kabushhiki Kaisha Toshiba Beam formation circuit and an apparatus and a method of receiving radio frequency signals making use of a smart antenna
US20020150071A1 (en) * 2001-01-05 2002-10-17 Alcatel Method and arrangement to determine a clock timing error in a multi-carrier transmission system
US20030063678A1 (en) * 2001-08-21 2003-04-03 Crawford James A. OFDM pilot tone tracking to reduce performance loss due to frequency pulling and pushing
US20030223354A1 (en) * 2002-05-30 2003-12-04 Denso Corporation SINR measurement method for OFDM communications systems

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089127A1 (en) * 2003-10-22 2005-04-28 Sasken Communication Technologies Limited Apparatus, methods, systems, and articles incorporating a clock correction technique
US7433435B2 (en) * 2003-10-22 2008-10-07 Sasken Communication Technologies Limited Apparatus, methods, systems, and articles incorporating a clock correction technique
US20050169357A1 (en) * 2004-02-04 2005-08-04 Hossein Sedarat Reliable multicarrier communication in the presence of timing phase error
US7433395B2 (en) 2004-02-04 2008-10-07 2Wire, Inc. Reliable multicarrier communication in the presence of timing phase error
US20080317110A1 (en) * 2004-02-04 2008-12-25 Hossein Sedarat Reliable multicarrier communication in the presence of timing phase error
US20050190825A1 (en) * 2004-02-26 2005-09-01 Hossein Sedarat Bit-loading in multicarrier communication systems in the presence of an asymmetric, correlated Gaussian noise sources
US7421015B2 (en) * 2004-02-26 2008-09-02 2Wire, Inc. Bit-loading in multicarrier communication systems in the presence of an asymmetric, correlated gaussian noise sources
US7570722B1 (en) * 2004-02-27 2009-08-04 Marvell International Ltd. Carrier frequency offset estimation for OFDM systems
US8311152B1 (en) 2004-02-27 2012-11-13 Marvell International Ltd. Adaptive OFDM receiver based on carrier frequency offset
US8619841B1 (en) 2004-02-27 2013-12-31 Marvell International Ltd. Transceiver with carrier frequency offset based parameter adjustment
US7756003B1 (en) 2004-02-27 2010-07-13 Marvell International Ltd. Adaptive OFDM transmitter based on carrier frequency offset
US7515657B1 (en) * 2004-03-05 2009-04-07 Marvell International Ltd. Frequency tracking for OFDM transmission over frequency selective channels
US8194722B2 (en) 2004-10-11 2012-06-05 Broadcom Corporation Various methods and apparatuses for impulse noise mitigation
US7953163B2 (en) 2004-11-30 2011-05-31 Broadcom Corporation Block linear equalization in a multicarrier communication system
US7852950B2 (en) 2005-02-25 2010-12-14 Broadcom Corporation Methods and apparatuses for canceling correlated noise in a multi-carrier communication system
US9374257B2 (en) 2005-03-18 2016-06-21 Broadcom Corporation Methods and apparatuses of measuring impulse noise parameters in multi-carrier communication systems
US7522687B2 (en) * 2005-08-29 2009-04-21 International Business Machines Corporation Clock and data recovery system and method for clock and data recovery based on a forward error correction
US8054926B2 (en) * 2005-08-29 2011-11-08 International Business Machines Corporation Clock and data recovery system and method for clock and data recovery based on a forward error correction
US20080209296A1 (en) * 2005-08-29 2008-08-28 International Businesss Machines Corporation Clock and Data Recovery System and Method for Clock and Data Recovery Based on a Forward Error Correction
US7813439B2 (en) 2006-02-06 2010-10-12 Broadcom Corporation Various methods and apparatuses for impulse noise detection
US8284877B2 (en) * 2007-03-12 2012-10-09 John W. Bogdan Noise filtering inverse transformation
US20100322364A1 (en) * 2007-03-12 2010-12-23 Bogdan John W Noise Filtering Inverse Transformation
US8077786B2 (en) * 2007-04-06 2011-12-13 Olympus Corporation Methods and systems for detecting a narrow-band interferer
US8031789B2 (en) 2007-04-06 2011-10-04 Olympus Corporation Methods and systems for diversity combining of synchronization statistics in OFDM systems
US8036290B2 (en) * 2007-04-06 2011-10-11 Olympus Corporation Methods and systems for computing a minimum variance unbiased estimator of carrier and sampling clock frequency
US8300720B1 (en) * 2007-04-06 2012-10-30 Olympus Corporation Methods and systems for diversity combining of synchronization statistics in OFDM systems
US20080247480A1 (en) * 2007-04-06 2008-10-09 Dumitru Mihai Ionescu Methods and systems for detecting a narrow-band interferer
US20080247481A1 (en) * 2007-04-06 2008-10-09 Dumitru Mihai Ionescu Methods and systems for computing a minimum variance unbiased estimator of carrier and sampling clock frequency
US9160381B2 (en) 2008-10-10 2015-10-13 Broadcom Corporation Adaptive frequency-domain reference noise canceller for multicarrier communications systems
US8472533B2 (en) 2008-10-10 2013-06-25 Broadcom Corporation Reduced-complexity common-mode noise cancellation system for DSL
US8605837B2 (en) 2008-10-10 2013-12-10 Broadcom Corporation Adaptive frequency-domain reference noise canceller for multicarrier communications systems
US20110158360A1 (en) * 2009-12-30 2011-06-30 Man-On Pun SNR-Based Blanking Scheme for Impulsive Noise Mitigation in Wireless Networks
US8451956B2 (en) * 2009-12-30 2013-05-28 Mitsubishi Electric Research Laboratories, Inc. SNR-based blanking scheme for impulsive noise mitigation in wireless networks
RU2583228C1 (en) * 2014-12-15 2016-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Method for application of wear-resistant coatings based on titanium diboride and nickel on steel surface

Also Published As

Publication number Publication date
AU8418798A (en) 1999-04-01
EP0903897B1 (en) 2001-10-31
ES2164313T3 (en) 2002-02-16
IL125333A0 (en) 1999-03-12
JP4188466B2 (en) 2008-11-26
DE69707872T2 (en) 2002-04-25
ATE208110T1 (en) 2001-11-15
DE69707872D1 (en) 2001-12-06
IL125333A (en) 2002-02-10
EP0903897A1 (en) 1999-03-24
JPH11163816A (en) 1999-06-18
AU743588B2 (en) 2002-01-31
US6628738B1 (en) 2003-09-30

Similar Documents

Publication Publication Date Title
US6628738B1 (en) Method of arrangement to determine a clock timing error in a multi-carrier transmission system, and a related synchronization units
KR100488802B1 (en) Method and apparatus for carrier frequency offset and sampling clock frequency offset tracking in orthogonal frequency division multiplexing wireless communication systems
Armstrong Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM
US7139340B2 (en) Robust OFDM carrier recovery methods and apparatus
US7450654B2 (en) Method and apparatus for multicarrier channel estimation and synchronization using pilot sequences
US6643340B1 (en) Carrier phase derived symbol timing
KR100442816B1 (en) Orthogonal Frequency Division Multiplexing (OFDM) Receiver Synchronization Method and Apparatus
EP1070400B1 (en) Orthogonal frequency division multiplexing receiver system
US6584164B1 (en) Method for forming a training sequence
JP2831636B2 (en) Fine FFT window position recovery device for OFDM system receiver
US20020181390A1 (en) Estimating channel parameters in multi-input, multi-output (MIMO) systems
EP1320232A2 (en) Phase Estimation And Compensation In Orthogonal Frequency Division Multiplex (OFDM) Systems
US20030128751A1 (en) Method and apparatus for frequency-domain tracking of residual frequency and channel estimation offsets
KR20000043086A (en) Apparatus for clocking an initial frequency of ofdm receiver
US6389087B1 (en) Apparatus and method for synchronization in a multiple-carrier communication system by observing energy within a guard band
KR20010022578A (en) Method and device for combined measurement of the beginning of a data block and carrier frequency shift in a multicarrier transmission system in f classes
US7305053B2 (en) Dat-aided frequency offset detection using phase unwrapping
US20010024454A1 (en) Resynchronous control apparatus of subscriber communication machine, and resynchronizing method
KR100213100B1 (en) Frequency error corrector for orthogonal frequency division multiplexing and method therefor
EP0820171B1 (en) Multicarrier transmitter or receiver with phase rotators
US6553066B1 (en) Time error compensation arrangement and multi-carrier modem comprising the arrangement
US6625112B1 (en) Synchronization
KR100429837B1 (en) Method and apparatus for synchronization of OFDM signals
US20010019593A1 (en) xDSL sample rate compensation using phase balancing
KR100345329B1 (en) Apparatus for sampling clock recovery in an OFDM receiver and method therof

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCATEL, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PEETERS, MIGUEL;POLLET, THIERRY;REEL/FRAME:014405/0571

Effective date: 19980930

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION