US20040151028A1 - Memory array and its peripheral circuit with byte-erase capability - Google Patents

Memory array and its peripheral circuit with byte-erase capability Download PDF

Info

Publication number
US20040151028A1
US20040151028A1 US10/355,997 US35599703A US2004151028A1 US 20040151028 A1 US20040151028 A1 US 20040151028A1 US 35599703 A US35599703 A US 35599703A US 2004151028 A1 US2004151028 A1 US 2004151028A1
Authority
US
United States
Prior art keywords
byte
line driver
memory array
peripheral circuit
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/355,997
Other versions
US6888754B2 (en
Inventor
Yue-Der Chih
Shu-Chen Chang
Hsiao-Hui Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US10/355,997 priority Critical patent/US6888754B2/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, SHU-CHEN, CHEN, HSIAO-HUI, CHIH, YUE-DER
Publication of US20040151028A1 publication Critical patent/US20040151028A1/en
Application granted granted Critical
Publication of US6888754B2 publication Critical patent/US6888754B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0425Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor

Definitions

  • This invention relates to a memory array and peripheral circuits and methods for writeable memory technologies.
  • this invention relates to providing a memory array and peripheral circuits which allow byte access for programming, erasing and reading.
  • this invention relates to the ability of providing enhanced long-term reliability for memory arrays by reducing the cumulative voltage stressing of writeable memory arrays.
  • Memory cells which can be programmed and erased and re-programmed are known as Electrically, Erasable Programmable Read Only Memory, EEPROM.
  • EEPROM Electrically, Erasable Programmable Read Only Memory
  • peripheral circuits which are used with EEPROM, flash memory, or non-volatile memory.
  • the main deficiencies of the prior art are the inability to access the memory arrays on a byte basis for programming, erasing and reading the memory arrays.
  • Another deficiency of the prior art is the large amount of voltage stress required to program and erase the memory cells of the array.
  • U.S. Pat. No. 5,812,452 “Electrically Byte-Selectable and Byte-Alterable Memory Arrays” describes a memory array which utilizes a byte (block) select transistor to allow the memory cells to be accessed and altered on a byte basis.
  • U.S. Pat. No. 6,128,220 (Banyai et al.) “Apparatus for Enabling EEPROM Functionality Using a Flash Memory Device” discloses a byte-alterable non-volatile memory.
  • U.S. Pat. No. 6,088,269 “Compact Page-Erasable EEPROM Non-Volatile Memory” discloses a page erasable memory which uses two layers of conductive or semiconductive material.
  • a memory array and its peripheral circuit with byte access capability and containing a local word line driver 0 , which connects to control gates of memory cells which store data on bit lines 0 - 7 , a local word line driver 1 , which connects to the control gates of memory cells which store data on bit lines 8 - 15 , a local source line driver 0 , which connects to source lines of memory cells which store data on bit lines 0 - 7 , a local source line driver 1 , which connects to source lines of memory cells which store data on bit lines 8 - 15 , a floating gate memory cell whose drain is connected to a bit line and whose source is connected to said local source line driver, and whose control gate is connected to said local word line driver, bit lines for a first byte of memory which are the drains of said floating gate memory cell, and bit lines for a second byte of memory which are the drains of said floating gate memory cell.
  • the memory array and its peripheral circuit with byte-erase capability also contains a global word line primary input, which feeds two gates of two metal oxide semiconductor field effect transistor MOSFET devices located in said local word line driver circuit, a global source line primary input which feeds two gates of two MOSFET devices located in said local source line driver circuits, a voltage source for said local source line driver circuit, a voltage source for said local word line driver circuit, and a variable, virtual ground for said local word line driver circuit.
  • the memory array and its peripheral circuit also contain bit line outputs, local word lines, and local source lines.
  • the memory array and its peripheral circuit with byte-erase capability has one word line switch for each byte of memory.
  • the memory array and its peripheral circuit with byte-erase capability has one source line switch for each byte of memory.
  • the memory array and its peripheral circuit have its even and odd rows physically separated in the semiconductor material to prevent punch-through problems.
  • the memory array has a variable and virtual ground power supply which is used to reduce the high voltage stress on the High Voltage memory cell device.
  • the memory array is partitioned into sub-arrays.
  • the memory array is divided into sub-arrays which are composed of eight columns of memory cells. There are local word line driver circuits which share a dedicated power supply.
  • FIG. 1 shows a cross-section of the floating gate memory cell used in this invention.
  • FIG. 2 shows a 2 by 2 memory array and its peripheral circuits described in this invention.
  • FIG. 3 shows the voltage of each node for the Selected cell and Unselected memory cells during the Programming operation.
  • FIG. 4 shows the voltage of each node for the Selected cell and Unselected memory cells during the Erase operation.
  • FIG. 5 shows the voltage of each node for the Selected cell and Unselected memory cells during the Read operation.
  • FIG. 1 shows a cross-sectional view of the floating gate memory cell of this invention. Below this cross-sectional view is the device symbol representation.
  • the floating gate 130 is shown in two views. The upper view shows the floating gate made of poly-silicon over an oxide region 145 . The lower view shows the device symbol of the floating gate 130 .
  • the drain 110 of the FET memory cell is shown, attached to a bit line.
  • the source 140 is shown attached to a source line, which comes from a source line driver circuit.
  • the control gate 120 is shown in FIG. 1. It is attached to a word line which comes from a word line driver circuit.
  • FIG. 2 shows a 2 by 2 memory array of this invention.
  • the primary inputs include global word lines GWL ⁇ 0>, GWL ⁇ 1> 220 , 260 , which drive the gates of FET devices in the local word line driver circuits 230 .
  • the global source lines such as GSL ⁇ 0> 210 is a primary input which drives the gates of FET devices in local source line driver circuits.
  • the ZVDD ⁇ 0> 235 is a dedicated supply voltage for the local word line drivers.
  • the VSHV ⁇ 0> 215 is a dedicated supply voltage for local source line drivers.
  • the AGND 245 is a dedicated virtual and variable ground signal for local word line drivers.
  • FIG. 2 shows the bit lines such as BL ⁇ 0:7> 255 and BL ⁇ 8:15> 202 . It also shows local source lines, such as LSL0 ⁇ 0> 285 . It also shows local word lines such as LWL0 ⁇ 0> 275 .
  • FIG. 2 shows local word line driver circuits such as 230 .
  • a p-channel MOSFET 222 has its drain connected to the drain of an n-channel MOSFET 223 .
  • the source of the PMOS FET 222 is connected to ZVDD 235 .
  • the source of NMOS FET 223 is connected to AGND 245 .
  • the gates of both the PMOS FET 222 and the NMOS FET 223 are both tied to the global word line driver signal GWL ⁇ 0> 220 .
  • FIG. 2 shows local source line driver circuits such as 240 .
  • a p-channel MOSFET 272 has its drain connected to the drain of an n-channel MOSFET 273 .
  • the source of the PMOS FET 272 is connected to VSHV 215 .
  • the source of NMOS FET 273 is connected to ground 241 .
  • the gates of both the PMOS FET 272 and the NMOS FET 273 are both tied to the global source line driver signal GSL ⁇ 0> 210 .
  • FIG. 2 shows the single FET memory cell 282 .
  • the control gate 291 is tied to the local word line 275 .
  • the source terminal of the memory cell device 282 is tied to the local source line 285 .
  • the drain terminal of the memory cell device 282 is connected to a bit line 255 .
  • FIG. 3 shows the voltage of the listed nodes 321 , 322 , 331 , 332 , 341 , 342 , 351 , 352 under two different modes, the Select Mode 330 and the Unselect Mode 340 during the Program operation.
  • the global word line, GWL is at a low level, Vss during Select while GWL is at the higher Vdd during the Unselect mode.
  • the global source line, GSL is at Vss during Select Mode, while the source line is equal to 10 volts during Unselect mode.
  • the local word line, LWL is designed to be 1.8 volts during Select and equal to Vss during Unselect mode.
  • the local source line, LSL is set to 10 volts during the Select mode and is set to Vss during the Unselect mode as can be seen in FIG. 3.
  • ZVDD the variable power supply is designed to be equal to 1.8 volts for both the Select mode and the Unselect mode.
  • the VSHV variable power supply is has its voltage set to 10 volts for the Select mode and to 10 volts for the Unselect mode.
  • the virtual, variable ground, AGND is equal to Vss for both Select and Unselect modes.
  • the bit lines are equal to 0.6 volt during the Select mode and equal to Vdd during the Unselect mode.
  • FIG. 4 shows the voltage of the listed nodes 421 , 422 , 431 , 432 , 441 , 442 , 451 , 452 and under two different modes, the Select Mode 430 and the Unselect Mode 440 during the Erase operation.
  • the global word line, GWL is at a low level, Vss during Select while GVVL is at 13 volts during the Unselect mode.
  • the global source line, GSL is at Vdd during Select Mode, and is equal to Vdd during Unselect mode.
  • the local word line, LWL is designed to be 13 volts during Select and equal to Vdd during Unselect mode.
  • the local source line, LSL is set to Vss during the Select mode and is set to Vss during the Unselect mode as can be seen in FIG. 4.
  • ZVDD the variable power supply is designed to be equal to 1.3 volts for both the Select mode and the Unselect mode.
  • the VSHV variable power supply is has its voltage set to Vdd for the Select mode and to Vdd for the Unselect mode.
  • the virtual, variable ground, AGND is equal to Vdd for both Select and Unselect modes.
  • the bit lines are equal to Vss during the Select mode and equal to Vdd during the Unselect mode.
  • FIG. 5 shows the voltage of the listed nodes 521 , 522 , 531 , 532 , 541 , 542 , 551 , 552 under two different modes, the Select Mode 530 and the Unselect Mode 540 during the Read operation.
  • the global word line, GWL is at a low level, Vss during Select while GWL is at the higher Vdd during the Unselect mode.
  • the global source line, GSL is at Vdd during Select Mode, and is equal to Vdd during Unselect mode.
  • the local word line, LWL is designed to be Vdd during Select and equal to Vss during Unselect.
  • the local source line, LSL is set to Vss volts during the Select mode and is set to Vdd during the Unselect mode as can be seen in FIG. 5.
  • ZVDD the variable power supply is designed to be equal to Vdd for both the Select mode and the Unselect mode.
  • the VSHV variable power supply is has its voltage set to Vdd for the Select mode and to Vdd for the Unselect mode.
  • the virtual, variable ground, AGND is equal to Vss for both Select and Unselect modes.
  • the bit lines are equal to 0.8 volt during the Select mode and equal to Vss during the Unselect mode.
  • the advantage of this invention is the ability to access bytes for program, erase, and read operations.
  • This invention allows this access with the addition of one word line switch and one source line switch for each byte to be accessed for program, erase, and read operations.
  • this invention utilizes a new bias condition to lessen the voltage stress on the high voltage device. This is accomplished using a virtual, variable ground voltage, AGND.
  • this invention utilizes separate and dedicated power supplies for the local word line driver circuits and for the local source line driver circuits. This is coupled with the partitioning of the main memory array into sub-arrays of 8 columns. This allows the placing of high voltage only on the selected 8 column (byte) subarray. This also substantially lessens the voltage stress on the memory devices and therefore enhances long-term reliability.

Abstract

This invention provides a memory array and its peripheral circuit with byte-erase capability. The advantage of this invention is the ability to access bytes for program, erase, and read operations. This invention allows this access with the addition of one word line switch and one source line switch for each byte to be accessed for program, erase, and read operations. Also, this invention utilizes a new bias condition to lessen the voltage stress on the high voltage device. In addition, this invention utilizes separate and dedicated power supplies for the local word line driver circuits and for the local source line driver circuits. This is coupled with the partitioning of the main memory array into sub-arrays of 8 columns. This allows the placing of high voltage only on the selected 8 column (byte) subarray. This also substantially lessens the voltage stress on the memory cells and enhances long-term reliability.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a memory array and peripheral circuits and methods for writeable memory technologies. [0002]
  • More particularly this invention relates to providing a memory array and peripheral circuits which allow byte access for programming, erasing and reading. [0003]
  • In addition, this invention relates to the ability of providing enhanced long-term reliability for memory arrays by reducing the cumulative voltage stressing of writeable memory arrays. [0004]
  • 2. Description of Related Art [0005]
  • Memory cells which can be programmed and erased and re-programmed are known as Electrically, Erasable Programmable Read Only Memory, EEPROM. In the prior art, there are known types of memory arrays and peripheral circuits which are used with EEPROM, flash memory, or non-volatile memory. The main deficiencies of the prior art are the inability to access the memory arrays on a byte basis for programming, erasing and reading the memory arrays. Another deficiency of the prior art is the large amount of voltage stress required to program and erase the memory cells of the array. [0006]
  • U.S. Pat. No. 5,812,452 (Hoang) “Electrically Byte-Selectable and Byte-Alterable Memory Arrays” describes a memory array which utilizes a byte (block) select transistor to allow the memory cells to be accessed and altered on a byte basis. [0007]
  • U.S. Pat. No. 6,201,732 B1 (Caywood) “Low Voltage Single CMOS Electrically Erasable Read-Only Memory” describes a CMOS memory cell which can can be programmed, erased and operate at low voltages. [0008]
  • U.S. Pat. No. 6,128,220 (Banyai et al.) “Apparatus for Enabling EEPROM Functionality Using a Flash Memory Device” discloses a byte-alterable non-volatile memory. [0009]
  • U.S. Pat. No. 6,088,269 (Lambertson) “Compact Page-Erasable EEPROM Non-Volatile Memory” discloses a page erasable memory which uses two layers of conductive or semiconductive material. [0010]
  • BRIEF SUMMARY OF THE INVENTION
  • It is the objective of this invention to provide a memory array with byte access for programming, erasing and reading. [0011]
  • It is further an object of this invention to provide a memory array which is more reliable due to new less stressful ways of voltage biasing the memory cell for programming and erasing. [0012]
  • It is further an object of this invention to provide a memory array which is partitioned into sub-arrays with separate supply voltages so as to lessen the amount of high voltage which is applied to the semiconductor chip at any given time. [0013]
  • The objects of this invention are achieved by a memory array and its peripheral circuit with byte access capability and containing a local [0014] word line driver 0, which connects to control gates of memory cells which store data on bit lines 0-7, a local word line driver 1, which connects to the control gates of memory cells which store data on bit lines 8-15, a local source line driver 0, which connects to source lines of memory cells which store data on bit lines 0-7, a local source line driver 1, which connects to source lines of memory cells which store data on bit lines 8-15, a floating gate memory cell whose drain is connected to a bit line and whose source is connected to said local source line driver, and whose control gate is connected to said local word line driver, bit lines for a first byte of memory which are the drains of said floating gate memory cell, and bit lines for a second byte of memory which are the drains of said floating gate memory cell. The memory array and its peripheral circuit with byte-erase capability also contains a global word line primary input, which feeds two gates of two metal oxide semiconductor field effect transistor MOSFET devices located in said local word line driver circuit, a global source line primary input which feeds two gates of two MOSFET devices located in said local source line driver circuits, a voltage source for said local source line driver circuit, a voltage source for said local word line driver circuit, and a variable, virtual ground for said local word line driver circuit. The memory array and its peripheral circuit also contain bit line outputs, local word lines, and local source lines.
  • The memory array and its peripheral circuit with byte-erase capability has one word line switch for each byte of memory. The memory array and its peripheral circuit with byte-erase capability has one source line switch for each byte of memory. The memory array and its peripheral circuit have its even and odd rows physically separated in the semiconductor material to prevent punch-through problems. The memory array has a variable and virtual ground power supply which is used to reduce the high voltage stress on the High Voltage memory cell device. In addition, the memory array is partitioned into sub-arrays. The memory array is divided into sub-arrays which are composed of eight columns of memory cells. There are local word line driver circuits which share a dedicated power supply. Also, there are local source line driver circuits share a dedicated power supply which is different than said dedicated word line driver circuit dedicated power supply. High voltage is only applied to the power of a selected sub-array. This lessens the cumulative voltage stressing on the semiconductor chip and enhances overall chip reliability. [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-section of the floating gate memory cell used in this invention. [0016]
  • FIG. 2 shows a 2 by 2 memory array and its peripheral circuits described in this invention. [0017]
  • FIG. 3 shows the voltage of each node for the Selected cell and Unselected memory cells during the Programming operation. [0018]
  • FIG. 4 shows the voltage of each node for the Selected cell and Unselected memory cells during the Erase operation. [0019]
  • FIG. 5 shows the voltage of each node for the Selected cell and Unselected memory cells during the Read operation. [0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a cross-sectional view of the floating gate memory cell of this invention. Below this cross-sectional view is the device symbol representation. The [0021] floating gate 130 is shown in two views. The upper view shows the floating gate made of poly-silicon over an oxide region 145. The lower view shows the device symbol of the floating gate 130. The drain 110 of the FET memory cell is shown, attached to a bit line. Also, the source 140 is shown attached to a source line, which comes from a source line driver circuit. The control gate 120 is shown in FIG. 1. It is attached to a word line which comes from a word line driver circuit.
  • FIG. 2 shows a 2 by 2 memory array of this invention. The primary inputs include global word lines GWL<0>, GWL<1> [0022] 220, 260, which drive the gates of FET devices in the local word line driver circuits 230. The global source lines such as GSL<0> 210 is a primary input which drives the gates of FET devices in local source line driver circuits. The ZVDD<0> 235 is a dedicated supply voltage for the local word line drivers. The VSHV<0> 215 is a dedicated supply voltage for local source line drivers. The AGND 245 is a dedicated virtual and variable ground signal for local word line drivers.
  • FIG. 2 shows the bit lines such as BL<0:7> [0023] 255 and BL<8:15> 202. It also shows local source lines, such as LSL0<0> 285. It also shows local word lines such as LWL0<0> 275.
  • FIG. 2 shows local word line driver circuits such as [0024] 230. A p-channel MOSFET 222 has its drain connected to the drain of an n-channel MOSFET 223. The source of the PMOS FET 222 is connected to ZVDD 235. The source of NMOS FET 223 is connected to AGND 245. The gates of both the PMOS FET 222 and the NMOS FET 223 are both tied to the global word line driver signal GWL<0> 220.
  • FIG. 2 shows local source line driver circuits such as [0025] 240. A p-channel MOSFET 272 has its drain connected to the drain of an n-channel MOSFET 273. The source of the PMOS FET 272 is connected to VSHV 215. The source of NMOS FET 273 is connected to ground 241. The gates of both the PMOS FET 272 and the NMOS FET 273 are both tied to the global source line driver signal GSL<0> 210.
  • FIG. 2 shows the single [0026] FET memory cell 282. The control gate 291 is tied to the local word line 275. The source terminal of the memory cell device 282 is tied to the local source line 285. The drain terminal of the memory cell device 282 is connected to a bit line 255.
  • FIG. 3 shows the voltage of the listed [0027] nodes 321, 322, 331, 332, 341, 342, 351, 352 under two different modes, the Select Mode 330 and the Unselect Mode 340 during the Program operation. The global word line, GWL, is at a low level, Vss during Select while GWL is at the higher Vdd during the Unselect mode. The global source line, GSL, is at Vss during Select Mode, while the source line is equal to 10 volts during Unselect mode. The local word line, LWL, is designed to be 1.8 volts during Select and equal to Vss during Unselect mode.
  • The local source line, LSL is set to 10 volts during the Select mode and is set to Vss during the Unselect mode as can be seen in FIG. 3. ZVDD the variable power supply is designed to be equal to 1.8 volts for both the Select mode and the Unselect mode. The VSHV variable power supply is has its voltage set to 10 volts for the Select mode and to 10 volts for the Unselect mode. The virtual, variable ground, AGND, is equal to Vss for both Select and Unselect modes. During Program operation, the bit lines are equal to 0.6 volt during the Select mode and equal to Vdd during the Unselect mode. [0028]
  • FIG. 4 shows the voltage of the listed [0029] nodes 421, 422, 431, 432, 441, 442, 451, 452 and under two different modes, the Select Mode 430 and the Unselect Mode 440 during the Erase operation. The global word line, GWL, is at a low level, Vss during Select while GVVL is at 13 volts during the Unselect mode. The global source line, GSL, is at Vdd during Select Mode, and is equal to Vdd during Unselect mode. The local word line, LWL, is designed to be 13 volts during Select and equal to Vdd during Unselect mode.
  • The local source line, LSL is set to Vss during the Select mode and is set to Vss during the Unselect mode as can be seen in FIG. 4. ZVDD the variable power supply is designed to be equal to 1.3 volts for both the Select mode and the Unselect mode. The VSHV variable power supply is has its voltage set to Vdd for the Select mode and to Vdd for the Unselect mode. The virtual, variable ground, AGND, is equal to Vdd for both Select and Unselect modes. During Erase operation, the bit lines are equal to Vss during the Select mode and equal to Vdd during the Unselect mode. [0030]
  • FIG. 5 shows the voltage of the listed [0031] nodes 521, 522, 531, 532, 541, 542, 551, 552 under two different modes, the Select Mode 530 and the Unselect Mode 540 during the Read operation. The global word line, GWL, is at a low level, Vss during Select while GWL is at the higher Vdd during the Unselect mode. The global source line, GSL, is at Vdd during Select Mode, and is equal to Vdd during Unselect mode. The local word line, LWL, is designed to be Vdd during Select and equal to Vss during Unselect.
  • The local source line, LSL is set to Vss volts during the Select mode and is set to Vdd during the Unselect mode as can be seen in FIG. 5. ZVDD the variable power supply is designed to be equal to Vdd for both the Select mode and the Unselect mode. The VSHV variable power supply is has its voltage set to Vdd for the Select mode and to Vdd for the Unselect mode. The virtual, variable ground, AGND, is equal to Vss for both Select and Unselect modes. During Read operation, the bit lines are equal to 0.8 volt during the Select mode and equal to Vss during the Unselect mode. [0032]
  • The advantage of this invention is the ability to access bytes for program, erase, and read operations. This invention allows this access with the addition of one word line switch and one source line switch for each byte to be accessed for program, erase, and read operations. Also, this invention utilizes a new bias condition to lessen the voltage stress on the high voltage device. This is accomplished using a virtual, variable ground voltage, AGND. In addition, this invention utilizes separate and dedicated power supplies for the local word line driver circuits and for the local source line driver circuits. This is coupled with the partitioning of the main memory array into sub-arrays of 8 columns. This allows the placing of high voltage only on the selected 8 column (byte) subarray. This also substantially lessens the voltage stress on the memory devices and therefore enhances long-term reliability. [0033]
  • While this invention has been particularly shown and described with Reference to the preferred embodiments thereof, it will be understood by those Skilled in the art that various changes in form and details may be made without Departing from the spirit and scope of this invention.[0034]

Claims (32)

What is claimed is:
1. A memory array and its peripheral circuit with byte-erase capability comprising:
a first local word line driver, which connects to a first set of control gates of memory cells which store data on a first set of byte;
a second local word line driver, which connects to second set of control gates of memory cells which store data on a second set of byte;
a first local source line driver, which connects to a first set of source lines of memory cells which store data on said first set of byte;
a second local source line driver, which connects to said source lines of memory cells which store data on said second set of byte;
a floating gate memory cell whose drain is connected to a plurality of bit line and whose source is connected to said first or second local source line driver, and whose control gate is connected to said first or second local word line driver, and
a set of bit lines for a plurality of bytes of memory which are the drains of said floating gate memory cells.
2. The memory array and its peripheral circuit with byte-erase capability of claim 1 further comprising:
a global word line primary input, which feeds two gates of two metal oxide semiconductor field effect transistor MOSFET devices located in said local word line driver circuit,
a global source line primary input which feeds two gates of two MOSFET devices located in said local source line driver circuits,
a voltage source for said local source line driver circuit,
a voltage source for said local word line driver circuit, and
a variable, virtual ground for said local word line driver circuit.
3. The memory array and its peripheral circuit with byte-erase capability of claim 1 further comprising:
bit line outputs,
local word lines, and
local source lines.
4. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local word line drivers 0 and 1 each contain two devices, a p-channel metal oxide semiconductor field effect transistor, PMOS FET and an n-channel metal oxide semiconductor field effect transistor, NMOS FET.
5. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said two local source line drivers each contain two devices, a p-channel metal oxide semiconductor field effect transistor, PMOS FET and an n-channel metal oxide semiconductor field effect transistor, NMOS FET.
6. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said memory cell is made up of a floating gate memory cell.
7. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said memory cell has a floating gate which is connected to a local word line, which comes from said local word line driver circuit, has an FET device source node which is connected to a local source line which comes from said local source line driver circuit, and has an FET device drain node which is connected to said bit line.
8. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local source line driver has a PMOS FET device whose drain is tied to the drain of an NMOS FET and to said local source line, and whose source is tied to a variable source power supply, and whose gate is tied to said global source line.
9. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local source line driver has an NMOS FET device whose drain is tied to the drain of said PMOS FET and also to said source line driver, and whose source is connected to ground and whose gate is tied to said global source line.
10. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local word line driver has a PMOS FET device whose drain is tied to the drain of an NMOS FET and to said local word line, and whose source is tied to a variable source power supply, and whose gate is tied to said global source line.
11. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local word line driver has an NMOS FET device whose drain is tied to the drain of said PMOS FET and also to said word line driver, and whose source is connected to ground and whose gate is tied to said global source line.
12. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said each byte of memory contains one word line switch.
13. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said each byte of memory contains one source line switch.
14. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said source lines for even and odd rows are physically separated in the semiconductor material to prevent punch-through problems.
15. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said variable and virtual ground power supply is used to reduce the high voltage stress on the High Voltage memory cell device.
16. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said memory array is partitioned into sub-arrays.
17. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said sub-array is composed of eight columns of memory cells.
18. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local word line driver circuits share a dedicated power supply.
19. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said local source line driver circuits share a dedicated power supply which is different than said dedicated word line driver circuit dedicated power supply.
20. The memory array and its peripheral circuit with byte-erase capability of claim 1 wherein said high voltage is only applied to the power of a selected sub-array.
21. A method for producing a memory array and its peripheral circuit with byte-erase capability comprising the steps of:
including a first local word line driver, which connects to a first set of control gates of memory cells which store data on a first set of byte;
including a second local word line driver, which connects to second set of control gates of memory cells which store data on a second set of byte;
including a first local source line driver, which connects to a first set of source lines of memory cells which store data on said first set of byte;
including a second local source line driver, which connects to said source lines of memory cells which store data on said second set of byte;
including a floating gate memory cell whose drain is connected to a plurality of bit line and whose source is connected to said first or second local source line driver, and whose control gate is connected to said first or second local word line driver, and
including a set of bit lines for a plurality of bytes of memory which are the drains of said floating gate memory cells.
22. The method for producing a memory array and its peripheral circuit with byte-erase capability of claim 21 further comprising the steps of:
including a global word line primary input, which feeds two gates of two metal oxide semiconductor field effect transistor MOSFET devices located in said local word line driver circuit,
Including a global source line primary input which feeds two gates of two MOSFET devices located in said local source line driver circuits,
including a voltage source for said local source line driver circuit,
including a voltage source for said local word line driver circuit, and
including a variable, virtual ground for said local word line driver circuit.
23. The method for producing a memory array and its peripheral circuit with byte-erase capability of claim 21 further comprising the steps of:
including bit line outputs,
including local word lines, and
including local source lines.
24. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said each byte of memory contains one word line switch.
25. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said each byte of memory contains one source line switch.
26. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said source lines for even and odd rows are physically separated in the semiconductor material to prevent punch-through problems.
27. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said variable and virtual ground power supply is used to reduce the high voltage stress on the High Voltage memory cell device.
28. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said memory array is partitioned into sub-arrays.
29. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said sub-array is composed of eight columns of memory cells.
30. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said local word line driver circuits share a dedicated power supply.
31. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said local source line driver circuits share a dedicated power supply which is different than said dedicated word line driver circuit dedicated power supply.
32. The method of producing a memory array and its peripheral circuit with byte-erase capability of claim 21 wherein said high voltage is only applied to the power of a selected sub-array.
US10/355,997 2003-01-31 2003-01-31 Nonvolatile semiconductor memory array with byte-program, byte-erase, and byte-read capabilities Expired - Lifetime US6888754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/355,997 US6888754B2 (en) 2003-01-31 2003-01-31 Nonvolatile semiconductor memory array with byte-program, byte-erase, and byte-read capabilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/355,997 US6888754B2 (en) 2003-01-31 2003-01-31 Nonvolatile semiconductor memory array with byte-program, byte-erase, and byte-read capabilities

Publications (2)

Publication Number Publication Date
US20040151028A1 true US20040151028A1 (en) 2004-08-05
US6888754B2 US6888754B2 (en) 2005-05-03

Family

ID=32770682

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/355,997 Expired - Lifetime US6888754B2 (en) 2003-01-31 2003-01-31 Nonvolatile semiconductor memory array with byte-program, byte-erase, and byte-read capabilities

Country Status (1)

Country Link
US (1) US6888754B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136503A1 (en) * 2002-01-18 2003-07-24 Avery Dennison Corporation RFID label technique
WO2005024826A1 (en) * 2003-09-05 2005-03-17 Koninklijke Philips Electronics N.V. Dummy links in storage medium content
US20060118857A1 (en) * 2004-10-13 2006-06-08 Yong-Sik Jeong Non-volatile memory device and method for fabricating the same
US20060245343A1 (en) * 2004-08-19 2006-11-02 Koninkijkle Electronics N.V. Dummy links in storage medium content
US7669318B2 (en) 2004-09-22 2010-03-02 Avery Dennison Corporation High-speed RFID circuit placement method
US7874493B2 (en) 2005-12-22 2011-01-25 Avery Dennison Corporation Method of manufacturing RFID devices
US8531297B2 (en) 2005-04-25 2013-09-10 Avery Dennison Corporation High-speed RFID circuit placement method and device
WO2016022275A1 (en) * 2014-08-08 2016-02-11 Silicon Storage Technology, Inc. Flash memory system with eeprom functionality

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850438B2 (en) * 2002-07-05 2005-02-01 Aplus Flash Technology, Inc. Combination nonvolatile memory using unified technology with byte, page and block write and simultaneous read and write operations
US6862223B1 (en) * 2002-07-05 2005-03-01 Aplus Flash Technology, Inc. Monolithic, combo nonvolatile memory allowing byte, page and block write with no disturb and divided-well in the cell array using a unified cell structure and technology with a new scheme of decoder and layout
US11621035B1 (en) 2021-09-16 2023-04-04 Globalfoundries U.S. Inc. Memory circuit structure with supply voltage transmitted via word line

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774412A (en) * 1995-06-26 1998-06-30 Micron Technology, Inc. Local word line phase driver
US5812452A (en) * 1997-06-30 1998-09-22 Winbond Memory Laboratory Electrically byte-selectable and byte-alterable memory arrays
US6011746A (en) * 1997-02-06 2000-01-04 Hyundai Electronics America, Inc. Word line driver for semiconductor memories
US6088269A (en) * 1992-03-03 2000-07-11 Xicor, Inc. Compact page-erasable EEPROM non-volatile memory
US6128220A (en) * 1999-01-21 2000-10-03 Intel Corporation Apparatus for enabling EEPROM functionality using a flash memory device
US6201732B1 (en) * 1997-01-02 2001-03-13 John M. Caywood Low voltage single CMOS electrically erasable read-only memory
US6646950B2 (en) * 2001-04-30 2003-11-11 Fujitsu Limited High speed decoder for flash memory

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088269A (en) * 1992-03-03 2000-07-11 Xicor, Inc. Compact page-erasable EEPROM non-volatile memory
US5774412A (en) * 1995-06-26 1998-06-30 Micron Technology, Inc. Local word line phase driver
US6201732B1 (en) * 1997-01-02 2001-03-13 John M. Caywood Low voltage single CMOS electrically erasable read-only memory
US6011746A (en) * 1997-02-06 2000-01-04 Hyundai Electronics America, Inc. Word line driver for semiconductor memories
US5812452A (en) * 1997-06-30 1998-09-22 Winbond Memory Laboratory Electrically byte-selectable and byte-alterable memory arrays
US6128220A (en) * 1999-01-21 2000-10-03 Intel Corporation Apparatus for enabling EEPROM functionality using a flash memory device
US6646950B2 (en) * 2001-04-30 2003-11-11 Fujitsu Limited High speed decoder for flash memory

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9495632B2 (en) 2001-02-02 2016-11-15 Avery Dennison Corporation RFID label technique
US20050252605A1 (en) * 2002-01-18 2005-11-17 Alan Green RFID label technique
US20030136503A1 (en) * 2002-01-18 2003-07-24 Avery Dennison Corporation RFID label technique
US8246773B2 (en) 2002-01-18 2012-08-21 Avery Dennison Corporation RFID label technique
WO2005024826A1 (en) * 2003-09-05 2005-03-17 Koninklijke Philips Electronics N.V. Dummy links in storage medium content
US20060245343A1 (en) * 2004-08-19 2006-11-02 Koninkijkle Electronics N.V. Dummy links in storage medium content
US8020283B2 (en) 2004-09-22 2011-09-20 Avery Dennison Corporation High-speed RFID circuit placement device
US7669318B2 (en) 2004-09-22 2010-03-02 Avery Dennison Corporation High-speed RFID circuit placement method
US20060118857A1 (en) * 2004-10-13 2006-06-08 Yong-Sik Jeong Non-volatile memory device and method for fabricating the same
US8093631B2 (en) * 2004-10-13 2012-01-10 Magnachip Semiconductor, Ltd. Non-volatile memory device and method for fabricating the same
US20080296654A1 (en) * 2004-10-13 2008-12-04 Yong-Sik Jeong Non-volatile memory device and method for fabricating the same
US7425482B2 (en) * 2004-10-13 2008-09-16 Magna-Chip Semiconductor, Ltd. Non-volatile memory device and method for fabricating the same
US8531297B2 (en) 2005-04-25 2013-09-10 Avery Dennison Corporation High-speed RFID circuit placement method and device
US7874493B2 (en) 2005-12-22 2011-01-25 Avery Dennison Corporation Method of manufacturing RFID devices
WO2016022275A1 (en) * 2014-08-08 2016-02-11 Silicon Storage Technology, Inc. Flash memory system with eeprom functionality

Also Published As

Publication number Publication date
US6888754B2 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
US7336541B2 (en) NAND flash memory cell programming
US7110295B2 (en) Semiconductor data processing device
KR100704025B1 (en) Nonvolatile semiconductor memory device having dummy cell arranged in cell string
KR100331563B1 (en) NAND-type flash memory device and method for operating the same
US7505323B2 (en) Programming memory devices
US7212439B2 (en) NAND flash memory device and method of programming the same
US7313027B2 (en) Nonvolatile semiconductor memory device and a method of word lines thereof
US6680865B2 (en) Nonvolatile memory for which program operation is optimized by controlling source potential
US6888754B2 (en) Nonvolatile semiconductor memory array with byte-program, byte-erase, and byte-read capabilities
US6465818B1 (en) Semiconductor memory device capable of performing data writing or erasing operation and data reading operation in parallel
US7050332B2 (en) Nonvolatile register and semiconductor device
US6141255A (en) 1 transistor cell for EEPROM application
US9564231B2 (en) Non-volatile memory device and corresponding operating method with stress reduction
US6501684B1 (en) Integrated circuit having an EEPROM and flash EPROM
US20050017287A1 (en) Memory array with byte-alterable capability
KR100708915B1 (en) Method to reduce capacitive loading in flash memory x-decoder for accurate voltage control at wordlines and select lines
JP4832691B2 (en) Flash memory architecture using three layers of metal wiring
KR100630752B1 (en) Wordline decoder suitable to low operating power voltage of flash memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIH, YUE-DER;CHANG, SHU-CHEN;CHEN, HSIAO-HUI;REEL/FRAME:013732/0020

Effective date: 20020507

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12