US20040136396A1 - Contention-free access intervals on a CSMA network - Google Patents

Contention-free access intervals on a CSMA network Download PDF

Info

Publication number
US20040136396A1
US20040136396A1 US10/695,371 US69537103A US2004136396A1 US 20040136396 A1 US20040136396 A1 US 20040136396A1 US 69537103 A US69537103 A US 69537103A US 2004136396 A1 US2004136396 A1 US 2004136396A1
Authority
US
United States
Prior art keywords
session
contention free
transmission
stations
contention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/695,371
Other versions
US7623542B2 (en
Inventor
Lawrence Yonge
Srinivas Katar
Stanley Kostoff
William Earnshaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Intellon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellon Corp filed Critical Intellon Corp
Priority to US10/695,371 priority Critical patent/US7623542B2/en
Assigned to INTELLON CORPORATION reassignment INTELLON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EARNSHAW, WILLIAM E., KATAR, SRINIVAS, KOSTOFF, STANLEY J., II, YONGE, LAWRENCE W., III
Publication of US20040136396A1 publication Critical patent/US20040136396A1/en
Application granted granted Critical
Publication of US7623542B2 publication Critical patent/US7623542B2/en
Assigned to ATHEROS POWERLINE LLC reassignment ATHEROS POWERLINE LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INTELLON CORPORATION
Assigned to ATHEROS COMMUNICATIONS, INC. reassignment ATHEROS COMMUNICATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATHEROS POWERLINE LLC
Assigned to QUALCOMM ATHEROS, INC. reassignment QUALCOMM ATHEROS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ATHEROS COMMUNICATIONS, INC.
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUALCOMM ATHEROS, INC.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source

Definitions

  • This invention relates to network protocols, and more particularly to contention-free intervals on a carrier sense multiple access (CSMA) network.
  • CSMA carrier sense multiple access
  • TDMA time division multiple access
  • CSMA carrier sense multiple access
  • Polling uses a master station to periodically poll other stations (slave stations), giving the slave stations explicit permission to transmit on the medium.
  • TDMA protocols also rely on a master station (network master), which broadcasts a frame synchronization signal before each round of messages to synchronize the clocks of all stations, and, after synchronization occurs, each station transmits during its uniquely allocated time slice.
  • token passing access to the transmission medium is determined by possession of a special data unit called a token, which is passed from station to station.
  • CSMA protocols rely on all stations listening to the medium prior to transmission to determine when the medium is idle. After the transmission ends, each station waits a specified interval (also known as an interframe gap) followed by an additional delay of one or more transmission (contention resolution) slots based on an assigned slot number before transmitting.
  • a specified interval also known as an interframe gap
  • CSMA Carrier sense multiple access
  • Multimedia applications require guarantees on such parameters as latency, jitter and packet loss probability.
  • QoS quality of service
  • PLP packet loss probability
  • CSMA in the HomePlug® 1.0 protocol uses a priority resolution slot mechanism.
  • HomePlug® 1.0 protocol uses four priority levels to classify transmissions on networks. Each transmission is thus classified depending on its QoS requirements. Each class embodies a coherent set of latency, jitter and packet loss probability (PLP) guarantees. Stations having transmissions at various priority levels waiting to be sent contend during priority resolution slots of time between transmissions, causing transmissions with priority that is lower than the highest available priority in the network to defer.
  • PLP packet loss probability
  • stations having transmissions with highest priority in the network are guaranteed access to the medium before stations having transmissions with lower priority.
  • stations having transmissions with the highest priority in the network still contend within themselves for medium access, thus reducing the level of guarantees on QoS parameters.
  • Stations at the same priority level contending for access to the medium enter a “contention window” where the stations randomly select their transmission slot time.
  • CSMA protocol operation may be adversely effected by distance between stations and/or channel conditions.
  • CSMA protocols may be susceptible to interference (e.g., collision) caused by overlapping networks, that is, networks that are not intended to communicate with one another but that can, in fact, hear each other's transmission, as well as by hidden stations.
  • a hidden station is a station in a network (or overlapped network) that cannot hear all other stations because of its location and/or channel conditions.
  • a CSMA protocol may not function effectively to maintain proper network synchronization and provide orderly media access arbitration.
  • a CSMA protocol may be unable to ensure strict adherence to QoS guarantees. For example, U.S.
  • the invention features a method of operating in a network in which a plurality of stations communicate over a shared medium, including using a carrier sense multiple access (CSMA) service for ordinary communication between the plurality of stations, having a first station that desires to establish a first session of regularly repeated (e.g., periodic) contention-free transmission intervals broadcast information descriptive of the first session to the other stations, wherein the first station can be any of the plurality of stations, and having other stations that receive the broadcast from the first station defer from transmitting during the contention-free intervals of the first session.
  • CSMA carrier sense multiple access
  • Implementations may include one or more of the following features. Distributing control over initiation and makeup of transmissions within the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate a transmission within the contention free interval. Distributing control over the maintenance and termination of transmissions within the contention free interval to the plurality of stations so that any of the plurality of stations can independently terminate a transmission within the contention free interval.
  • the plurality of stations may act as peers with respect to one another in initiating, maintaining, and terminating transmissions within the contention free interval. Not all stations on the network that receive the broadcast from the first station may defer from transmitting during the contention-free intervals; e.g., some stations may comprise legacy equipment (e.g., Home Plug 1.0) lacking the capability to defer.
  • the invention features a method of operating in a network in which stations communicate over a shared medium, including providing regularly repeated contention free intervals, providing CSMA communication during times outside the contention free intervals, and distributing control over the initiation and makeup of the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate a transmission within the contention free interval.
  • Implementations may include one or more of the following features. Distributing control over the maintenance and termination of transmissions within the contention free interval to the plurality of stations so that any of the plurality of stations can independently terminate a transmission within the contention free interval.
  • the plurality of stations may act as peers with respect to one another in initiating, maintaining, and terminating transmissions within the contention free interval.
  • Implementations may further include one or more of the following features.
  • the regularly repeated contention free interval may be approximately periodic.
  • the contention free interval may also support a plurality of transmissions, each using a different time segment within the contention free interval, so that a plurality of data streams can be transmitted using the contention free interval, with each data stream generally assigned to one of the different time segments.
  • Any of the plurality of stations may further be capable of independently inserting a further transmission into the contention free interval.
  • At least one data stream can be assigned to a plurality of different time segments spaced apart within the same contention free interval, thereby reducing latency for the at least one data stream.
  • Implementations may further include one or more of the following features.
  • each of the plurality of stations keeps track of the number of transmissions being supported by the contention free interval and the amount of time used by each of the transmissions, so that the station can make a determination whether the contention free interval has sufficient remaining capacity to support a further transmission by the station.
  • Each of the stations sending a transmission during the contention free interval may begin transmitting in response to recognizing that the transmission immediately prior to it has concluded.
  • a transmission that is concluding includes a hand-off indication near the end of its transmission, and the transmission that follows is initiated based on receipt of the hand-off indication and the identity of the transmission that is concluding.
  • Each station may independently keep track of the usage of the contention free interval (e.g., by observation) to determine whether there is sufficient time available in the interval to support a further transmission that the station has been asked to initiate.
  • Information characterizing each of the plurality of transmissions is conveyed to substantially all of the plurality of stations.
  • the information characterizing a transmission can include information characterizing the temporal location of the transmission within the contention free interval.
  • Implementations may further include one or more of the following features.
  • the information characterizing a particular transmission is conveyed to other stations not only by the station making the particular transmission but by other stations that receive the information and retransmit it to other stations, thereby increasing the likelihood that the information will be conveyed to all stations.
  • Transmissions of different priority classes can share the contention free interval, and access to the contention free interval is given to a transmission of a higher priority class if insufficient time is available within the interval to support all transmissions seeking to use the interval.
  • a transmission can be terminated if transmissions of higher priority consume enough of the contention free interval that insufficient time remains for continuing the transmission.
  • a limit can be set on the fraction of time within the contention free interval that may be used by transmissions of a particular priority class. Different fractions of the contention free interval are assigned to different priority classes, so that some priority classes are allocated more of the contention free interval than other priority classes.
  • Implementations may further include one or more of the following features.
  • the sequence of transmissions within the contention free interval is ordered by priority class, with transmissions of higher priority classes occurring earlier than transmissions of lower priority classes.
  • the sequence of transmissions within the contention free interval is ordered by sequence in which transmission was initiated, with earlier initiated transmissions occurring earlier than later initiated transmissions. Short time intervals are provided between successive transmissions within the contention free interval, so that a station desiring to initiate a new transmission may begin the transmission during the short time interval, and other stations will learn that the new transmission has been inserted at that location in the contention free interval.
  • a short time interval is provided following the last transmission of each priority class, so that a station desiring to initiate a new transmission with a particular priority class may begin the transmission during the short time interval following the last transmission of that priority class.
  • a station desiring to initiate a transmission of a particular priority class will generally initiate the transmission between the last transmission of the same or higher priority class and the start of the first transmission of a lower priority class, thereby maintaining a priority order to the sequence of transmissions within the contention free interval.
  • a short time interval is provided following the last transmission of each priority class, and the transmission of the particular priority class is initiated during the short time interval between the last transmission of the same or higher priority class and the start of the first transmission of a lower priority class.
  • Implementations may further include one or more of the following features.
  • Each of the stations can independently follow a set of admission rules common to the plurality of stations.
  • Each transmission is assigned a unique identifier, and the identifier is conveyed to the other stations along with information characterizing the transmission.
  • the length of the contention free interval varies with demand for contention free transmissions.
  • the shared medium may be an alternating current (AC) power line, and the contention-free intervals may be approximately synchronized to the power cycle.
  • the contention free interval duration may be chosen so that at least some of the transmissions within the contention free interval occupy a different portion of the power cycle during successive contention free intervals.
  • the contention free interval duration may be chosen so that the transmissions within the contention free interval are intentionally not synchronized to the line cycle so that each transmission generally occupies a different portion of the power line cycle during successive contention free intervals.
  • Implementations may further include one or more of the following features.
  • the information descriptive of the first session may comprise the duration of the contention-free intervals.
  • the information descriptive of the first session may comprise a period of the contention-free intervals.
  • the information descriptive of the first session may comprise the time at which the first session will begin.
  • the information descriptive of the first session may comprise the address or addresses of the station or stations that are the intended receivers of the data to be transmitted during the first session.
  • the information descriptive of the first session may comprise the address of the station that is establishing the first session.
  • a second session of regularly-repeated contention-free transmission intervals may be established by a second station, wherein the second station can be any of the plurality of stations, and wherein the method may further comprises having the second station determine the timing of the second session taking into account the information descriptive of the first session, having the second station broadcast information descriptive of the second session to the other stations, and having the other stations that receive the broadcast from the second station defer from transmitting during the contention-free intervals of the first and the second sessions.
  • the method may further comprise having the first station transmit maintenance information during the first session.
  • the maintenance information descriptive of the first session may include a revised duration for the contention-free intervals.
  • the maintenance information descriptive of the first session may include the time at which the subsequent contention-free interval starts.
  • the method may further comprise having the first station transmit termination information during the first session, the termination information including the time at which the first session will end. At least a portion of the information descriptive of the first session may be transmitted in one or more header fields of packets broadcast over the network. At least a portion of the information descriptive of the first session may be transmitted in the packet body of packets broadcast over the network. At least a portion of the information descriptive of the first session may be fixed ahead of time and not included in the information descriptive of the first session. The information descriptive of the first session may be broadcast using the CSMA service. The information descriptive of the first session may be broadcast using the regularly-repeated contention-free session. One or more stations other than the first station may propagate the session information generated by the first station.
  • This invention provides an integrated set of mechanisms to providing guaranteed QoS in CSMA networks in a highly distributed manner. Using this set of mechanisms, traffic streams requiring QoS obtain periodic access to the medium. Multiple traffic streams coordinate with each other in a distributed manner and align with respect to each other. Distributed admission control is used to prevent the network resources from being over allocated.
  • Regularly-repeated contention-free network channel access provides a distributed mechanism for guaranteeing QoS in CSMA networks while maintaining network efficiency.
  • Regularly-repeated contention-free network channel access operates in networks with legacy equipment and has an ability to adapt to changing channel and network conditions.
  • Video traffic can be transmitted on the same power line network as used for data.
  • QoS quality of service
  • the higher throughput and higher quality of service (QoS) associated with TDMA can be provided on a CSMA network, without the complexity and difficulty of setting up one station as a master. By avoiding the use of a master/slave architecture, the communication system can function even in the presence of hidden stations.
  • FIG. 1 is a network configuration.
  • FIG. 2 is a diagram of a Media Access Controller Service Data Unit (MSDU).
  • MSDU Media Access Controller Service Data Unit
  • FIG. 3 is a diagram of Media Access Controller Protocol Data Unit (MPDU).
  • MPDU Media Access Controller Protocol Data Unit
  • FIG. 4 is a diagram of a regularly repeated contention free communication interval and a period of CSMA/CA communication.
  • a network configuration includes communications medium 3 and network 4 in which electronic devices 6 , 8 , and 10 (e.g., audiovisual equipment) communicate over medium 3 .
  • Electronic devices 6 , 8 , and 10 include media access controllers (MAC) 12 , 14 , and 16 that manage communication access to the network 4 for electronic devices 6 , 8 , and 10 , respectively.
  • MACs 12 , 14 , and 16 implement the data link layer and connect to the physical layer of the Open Systems Interconnection (OSI) network architecture standard.
  • OSI Open Systems Interconnection
  • Communications medium 3 is a physical communication link between electronic devices 6 , 8 , and 10 that includes optical fiber, coaxial cable, unshielded twisted pair, in addition to other media such as power lines.
  • Electronic devices 6 , 8 , and 10 communicate with one another based on requirements of software applications running on electronic devices 6 , 8 , and 10 . This communication creates traffic of messages on network 4 .
  • Traffic of messages on network 4 is divided into eight priority classes depending on the QoS requirements of each message.
  • Each priority class embodies a coherent set of latency, jitter and packet loss probability (PLP) guarantees, which translate into such parameters as access priority and number of message transmission retries at the MACs 12 , 14 , and 16 .
  • PLP packet loss probability
  • For network configuration 2 eight traffic classes are defined.
  • Each of these priority classes embodies a set of Quality of Service (QoS) characteristics for an application and can be translated naturally to such behavior in the MACs 12 , 14 , and 16 as channel access and number of retries.
  • QoS Quality of Service
  • the characteristics of these priority classes are defined such that each class can support a specific range of QoS parameters.
  • the priority classes are such that 0 is the lowest priority and 7 is the highest priority. Table 1 shows the definition of each class and its associated QoS Parameters.
  • MACs 12 , 14 , and 16 with Priority Classes 0 to 3 use carrier sense multiple access/collision avoidance (CSMA/CA) protocols such as HomePlug® 1.0.
  • CSMA/CA carrier sense multiple access/collision avoidance
  • MACs 12 , 14 , and 16 having transmissions at priority levels 0 to 3 waiting to be sent simply contend during priority resolution slots between transmissions, causing stations transmissions with priority that is lower that the highest available priority in the network to defer.
  • Stations having transmissions with priority 3 in the network are guaranteed access to the medium before stations having transmissions with lower priorities 0 - 2 . However, stations having transmissions with priority 3 in the network contend within themselves for medium access.
  • Transmissions with priority classes 0 to 3 are intended for applications with low QoS requirements such as applications transferring files and applications managing MACs 12 , 14 , and 16 . Such applications can be described to have aperiodic transmission requirements because their transmissions do not typically have to be sent on a regular periodic basis.
  • MACs 12 , 14 , and 16 use the CSMA/CA protocol when there is no traffic present from priority classes 4 to 7 . Transmissions with priority classes 0 to 3 are guaranteed a minimum amount of time to transmit if traffic at those levels is present; otherwise classes 4 through 7 may occupy almost all the capacity of network 4 .
  • PCF-CA periodic contention free channel access
  • Priority classes 4 to 7 require a Session Setup procedure (described below) and are subject to Admission Control (described below).
  • Priority class 4 is can be used for applications such as network games resulting in a typical data rate of less than 1.0 mega (10 6 ) bits per second (Mbps) and QoS requirements of a latency of less than 15 milliseconds (msec).
  • MAC Service Data Units (MSDU) or transmitted data packets for applications at priority class 4 are typically short (less than 500 octets of 8 bits each).
  • the PLP for priority class 4 is quasi error free (QEF) meaning a PLP of 10 ⁇ 10 to 10 10 ⁇ 11 .
  • Priority class 5 is used for applications such as internet video and video conferencing resulting in a typical data rate of 0.1 to 2 Mbps and QoS requirements of a latency of 75-100 msecs and a PLP of 10 ⁇ 3 seconds.
  • Priority class 6 is used for applications such as high quality video and home theater audio resulting in a typical data rate of 0.3-25 Mbps with QoS requirements of a latency of 100 to 300 msecs and a jitter of 500 nano seconds.
  • Priority class 6 has a PLP requirement of QEF meaning a PLP of 10 ⁇ 10 to 10 ⁇ 11 .
  • Priority class 7 is used for Voice over Internet Protocol (VoIP) applications resulting in a typical data rate of less than 0.064 Mbps but with QoS requirements of a latency of less than 15 msecs and a PLP of 10 ⁇ 2 .
  • MSDUs for applications at priority class 7 are typically short ( ⁇ 500 octets).
  • MSDU refers to the information payload that the MAC (e.g., 12 , 14 , 16 )transports on network 4 .
  • Each MSDU (FIG. 2) contains a Destination Address (DA) 52 , a Source Address (SA) 54 , traffic information 56 , MAC Management Information 58 , and MSDU payload 60 .
  • the Destination Address (DA) field 52 and Source Address (SA) field 54 are 6 octets each where an octet is a sequence of eight bits) and are identical to the corresponding fields described in Institute of Electrical and Electronics Engineers (IEEE) Standard 802.3 (i.e. addresses 52 and 54 use the IEEE 48-bit MAC address format).
  • IEEE Institute of Electrical and Electronics Engineers
  • the 2 -octet Traffic Information field 56 contains a 2-bit Protocol Adaptation Layer (PAL) Type (PLT) field 62 , a 1-bit MAC Management Flag (MMF) 64 , a 1-bit DTS Flag 66 , and a 12 bit MAC Stream ID (MSID) field 68 .
  • PAL Protocol Adaptation Layer
  • MMF MAC Management Flag
  • MSID 12 bit MAC Stream ID
  • the PAL Type (PLT) field 62 defines the protocol and other characteristics of the MSDU payload. Table 3 shows the interpretation of the PLT field 62 . TABLE 3 PAL Type PLT Value Interpretation 0b00 Ethernet PAL 0b01 Isochronous Stream 0b10 Reserved 0b11 Reserved
  • the MAC Management Flag (MMF) 64 is set to 0b1 to indicate that a particular MSDUis associated with an embedded MAC Management Information (MMI) field 58 .
  • the Delivery Time Stamp Flag (DTSF) 66 is set to 0b1 by the PAL to indicate that the MSDU payload 60 should be associated with a Delivery Time Stamp in a Sub-Frame that may contain other MSDU payloads 60 that do not have a DTS (as indicated by a DTSF value of 0b0).
  • the MAC Stream ID (MSID) 68 is a 12-bit field that is associated with the payload 60 being carried by the MSDU.
  • MSIDs 0 to 3 are used by MSDUs that carry connectionless CSMA/CA traffic at channel access priority CA 0 to CA 3 respectively.
  • the remaining MSIDs may be used by connection-based services or CSMA/CA traffic, and are assigned by the MAC (e.g. 12 , 14 , 16 ) during the connection setup process.
  • the MSDU can contain MAC Management Information 58 .
  • the presence of MAC Management Information 58 field is indicated by the MMF flag 64 in the Traffic Information field 56 .
  • the MSDU Payload field 60 depends on the Protocol Adaptation Layer (PAL) in the MAC (e.g. 12 , 14 , 16 ) that generated the MSDU.
  • PAL Protocol Adaptation Layer
  • the MSDU Payload 60 is not interpreted by the MACs 12 , 14 , or 16 .
  • FIG. 3 shows the overall format of an MPDU.
  • the MPDU is composed of a Frame Control field 102 followed by a MPDU Payload 104 that includes a MPDU header 106 and one or more Physical Layer (PHY) Blocks (PBs) 108 .
  • PB 108 is used by the Automatic Retransmission Request (ARQ) mechanism.
  • ARQ is a protocol for error control in data transmission.
  • Each PB 108 has an associated PB Header 112 , PB Body (PBB) 114 and a PB Check Sequence (PBCS) 116 .
  • PBB PB Body
  • PBCS PB Check Sequence
  • PBBs 114 are encrypted independently of one another.
  • the first (or only) FEC Block 110 in an MPDU Payload 104 is composed of the MPDU header 106 , and the first PB 108 .
  • the subsequent (if any) FEC Blocks correspond to PB # 2 to PB #n for an MPDU 100 containing n PBs.
  • the last PBB 118 in the last FEC block 120 may not be full, and so may require padding. If the segment in the last PBB 118 is more than one octet smaller than the PBB size, then a length field comprises the last two octets of the PBB 118 .
  • Frame Control fields 102 carry information required by the PHY to demodulate the MPDU payload 104 as well as Channel Access, ARQ, VCS, and Tone Maps information required by the MAC (e.g., 12 , 14 , 16 ).
  • MPDUs carry structure information that is necessary for coordinating access to the medium and for proper delivery to the intended receiver. MPDUs are also used in conveying reception status (i.e., for acknowledgment) so that the transmitter can retransmit lost MPDUs.
  • the MPDUs typically contains a broadcast header in the form of Frame Control 102 that is received by all MACs 12 , 14 , and 16 in the network 4 defining the extent of the payload that is intended for the destination MAC 12 , 14 , or 16 .
  • Frame Control 102 information can also be used for ARQ.
  • Two MPDU formats are defined, a Long MPDU and a Short MPDU.
  • the long MAC Protocol Data Unit includes a Frame Control 102 and an MPDU header 106 followed by one or more PBs 108 .
  • Long MPDUs carry application data payload.
  • a Short MPDU consists of a Frame Control 102 . These are used for MAC level acknowledgments and maintenance.
  • a Long MPDU is processed by the PHY into the MSDU that has a maximum length in time and varying octet capacity determined by its length and channel conditions.
  • the MPDU header 106 and the first PB 108 are encoded in the first FEC block 110 , and the subsequent PBs are each encoded in their own FEC block 110 by the PHY.
  • a Preamble sequence is prepended to the FC 102 , and two reference symbols are inserted between the FC 102 and the first FEC block 110 to form the MSDU 50 , the physical entity that is transmitted over the medium.
  • the preamble is used for synchronization at the PHY layer.
  • the term Delimiter is also used to refer to a physical entity consisting of a Preamble and Frame Control.
  • the Frame Control 102 contains information used by MACs 12 , 14 , and 16 in the network 4 for channel access, as well as information used by the destination. For this reason, Frame Control 102 has specific physical layer encoding and modulation.
  • PCF-CA Periodic Contention Free Channel Access
  • Traffic streams with priority classes 4 - 7 between MACs 12 , 14 , and 16 that require guarantees on QoS parameters use a periodic contention free channel access (PCF-CA) mechanism that is built over the CSMA/CA protocol.
  • PCF-CA periodic contention free channel access
  • Traffic Streams using PCF-CA access obtain periodic access (e.g., every 25 msec) to the medium 3 .
  • PCF-CA also provides mechanism for half period PCF-session, where certain streams can access the medium twice in a contention free period.
  • the CSMA/CA mechanism is used by traffic with priority classes 0 - 3 that do not require QoS guarantees and for transfer of management information.
  • Periodic contention free (PCF) sessions provide QoS for traffic with priority Classes 4 - 7 .
  • a session is a period of time when one or more MACs 12 , 14 , or 16 have authorization to transmit without contention on network 4 and this session is repeated on a periodic basis. Multiple sessions concatenate with each other. The necessary information required in maintaining these sessions is carried in the Frame Control 102 and in the MAC Management information 58 (FIG. 2).
  • Each MAC 12 , 14 , and 16 monitors transmissions in the network 4 to track the existence of PCF-CA sessions.
  • each MAC 12 , 14 , and 16 tracks the Contention Free Period Target Start Time (CFPTST), as well as the identity (CFID), Class, average usage, average usage deviation, Constant Bit Rate (CBR) equivalent usage, and maximum first MPDU length of each session in its position in the CF period.
  • CFPTST Contention Free Period Target Start Time
  • CFID identity
  • Class Class
  • average usage average usage deviation
  • CBR Constant Bit Rate
  • FIG. 4 shows a interval of message traffic on network 4 using the PCF-CA mechanism.
  • time moves from left to right.
  • the interval with a length of 25 msec begins with a previous CSMA/CA frame 102 .
  • the interval is divided into a contention free interval 166 and a CSMA/CA interval 168 .
  • the contention-free interval is divided into a plurality of time segments so that a plurality of data streams (sessions) A 1 , A 3 , B 1 , B 2 can be transmitted using the contention free interval, with each data stream (session) generally assigned to one of the different time segments of successive contention-free intervals.
  • Each session generally includes a set of MPDUs 100 , as shown in the figure for session A 1 (also denoted 158 ).
  • the sessions are preferably grouped by priority class, with sessions A 1 , A 3 in class 154 , and sessions B 1 , B 2 in class 156 .
  • a unique identifier e.g., CFID
  • CFID identifies each data stream (session).
  • the number of PCF-CA sessions (e.g., 158 , 164 ) that network 4 can support is limited only by the available bandwidth and the number of available Contention-Free Identifiers within each priority class (e.g., 154 , 156 ).
  • the Frame Control (FC) 102 (FIG. 3) of each MPDU 100 carries the fields necessary for supporting the PCF-CA sessions. These include MPDU Class, Contention Free Identifier (CFID), Half Period Session Flag (HPSF), Half Period Session Handoff (HPSH), and Contention Free Session Handoff (CFSH). Additional information about the order of CF sessions within the CF period and the usage patterns for each session are also provided on an intermittent basis in the FC or by means of MAC Management Entities (MME).
  • MME MAC Management Entities
  • the ⁇ priority CLASS, CFID ⁇ is associated with a session 158 and is unique within a priority class within the network 4 .
  • the MACs 12 , 14 , or 16 select a CFID that is not in use for a given priority class.
  • Session Handoff using the CFSH flag 160 indicates the end of MPDU 100 transmission within each session 158 , and passes control to the next session 164 .
  • Suspension and resumption of a session to allow half-period sessions to transmit at the mid-period mark is indicated by the HPSH flag (not shown). This suspends the normal order of sessions and allows the half-period sessions an opportunity to transmit.
  • the responses always echo the values of CFID, priority Class, CFSH 160 , and HPSH of the MPDU 100 that the responses acknowledge.
  • one MAC (e.g., 12 , 14 , 16 ) contends for the medium 3 using a CSMA/CA mode and starts the periodic session 158 , becoming the Contention Free Leader (CFL). Otherwise, the MAC concatenates to existing PCF-CA sessions based on the priority class 154 of the transmission from the MAC.
  • CFL Contention Free Leader
  • Multiple traffic streams between MACs 12 , 14 , and 16 using PCF-CA are identified by means of their priority Classes.
  • Lower priority CSMA/CA traffic is prevented from interrupting PCF-CA traffic because Contention Free Identifier PCF sessions concatenate with each other. This concatenation is achieved by each PCF-CA session tracking other sessions in the network 4 and by broadcasting session hand over information.
  • One of the PCF traffic sources e.g., MAC 12 , 14 , or 16
  • the CFL initiates the periodic contention free channel access and provides timing information required to synchronize the start of periodic contention free sessions.
  • the CFL starts transmission as soon as Contention Free Period Target Start Time has been reached and after the last CSMA/CA transmission ends.
  • the sets of MPDUs 100 from the same stream are sent consecutively with the same session identifier (CFID), a contention-free session hand-off indicator (CFSH) set to 0 until the last MPDU is sent.
  • the last MPDU 100 is sent with the hand-off indicator (CFSH) set to 1.
  • the response to the last MPDU 100 if present, is sent with CFSH set to 1 irrespective of the reception status of the MPDU payload 60 .
  • a MAC 12 , 14 , or 16 When a MAC 12 , 14 , or 16 detects CFSH set to 1 by its predecessor, the MAC 12 , 14 , or 16 starts transmitting its MPDUs 100 . If the predecessor is of a higher class (Class j) than the station (Class i), then the MAC 12 , 14 , or 16 is the Class Leader (CL) and it waits for at least contention resolution (CR) slot time before transmitting its first MPDU 100 .
  • a CR Slot time is the minimum amount of time needed to detect a previous transmission. This gap allows new streams of Class k, where i ⁇ k ⁇ j, to join at the end of Class j.
  • Half Period Session Flag When half period traffic is present as indicated by the Half Period Session Flag (HPSF), stations must track the half period target start time (HPTST) also. All half period sessions must be allowed to transmit both at the start of the CF Period and at the halfway mark, in order of class and age.
  • a session 158 that is transmitting when this time is reached must suspend transmission of new MPDUs 100 and allow the half period traffic access to the medium by setting the Half Period Session Handoff (HPSH) flag. If it happens to be done with its transmissions for the current period, it will also set the CFSH flag 160 .
  • the first half period session (the Half-Period Leader, HPL) must then start transmission immediately after the Priority Resolution Period.
  • EAF End Of File
  • RTS/CTS Request To Send/Clear To Send
  • HPSH 0b1 for all MPDUs 100 except the last one.
  • the last half period session hands off to the suspended CF sessions, it will reset the HPSH flag to 0b0, to verify that it is the last half period session.
  • the session that passed control to the half period sessions will resume transmission, if CFSH 160 was not set when it handed over control. Otherwise, its successor begins transmission in the same way it would if it had been handed access by its predecessor (i.e., respecting any required waiting period). If there is insufficient periodic traffic to occupy the medium until the HPTST, then the HPL must assert priority and contend for the medium 3 to start the second set of half period session transmissions. The HPL will do this as soon as the HPTST has arrived and after the end of any MPDU 100 that is being sent using CSMA/CA. Note that the HPL may not be the same session as the CFL, if the CFL does not require half-period access.
  • Traffic Classes align based on priority class during the Contention Free interval, with provisions for half period traffic to insert itself at the Contention Free half period.
  • the actual order of contention free sessions depends on the number of traffic sources present, their priority Class and duration. For example, when there are two traffic sources with Class 6 traffic, and Class 7 traffic using half period session, the actual order of transmission can be 7 - 6 - 7 - 6 . Note that there may also be a CSMA/CA access period before the half period traffic begins its second access, if there is insufficient contention free traffic to occupy the medium until then.
  • MACs 12 , 14 , or 16 can use Periodic Contention Free Virtual Carrier Sense (PCF-VCS) mechanism to enable performance in noisy environments.
  • PCF-VCS Periodic Contention Free Virtual Carrier Sense
  • Each MACs 12 , 14 , or 16 maintains an estimate of when the Contention-Free Period is supposed to start. If there are half-period sessions present, then the Half-Period Target Start Time must also be tracked. This is done through the use of the Contention-Free Session Target Start Time (CFSTST) field broadcast using the Frame Control 102 (FIG. 3) or MAC Management Entity.
  • CFSTST is transmitted by the CFL and gossiped by other stations in the network 4 .
  • a station e.g., 12 , 14 , or 16
  • the station must maintain an estimate of the CFSTST to avoid transmission that would delay the start of the Contention-Free Period or prevent a new CF Leader (CFL) from inserting itself before the current CFL.
  • CFL CF Leader
  • CFL should start the CF Period as soon after the CFSTST as possible, and after the end of the last CSMA/CA transmission.
  • the HPTST is just half period after the CFTST.
  • the Half-Period Leader HPL must assert priority and contend for the medium to start the second CF Period.
  • each MAC e.g., 12 , 14 , or 16
  • information such as priority Class, CFID, order, usage parameters about the sessions present in order to know when the MAC may access the medium 3 .
  • the MAC Even if a MAC does not currently have Contention-Free traffic, the MAC must maintain this information in order to know when the MAC can insert a new session (e.g., 164 ).
  • the order starts with the current Contention-Free Leader (CFL) and consists of the ⁇ Class, CFID ⁇ pairs of each of the sessions (e.g., 164 ) in the order that the MACs access the network 4 medium in the CF Period.
  • CFL Contention-Free Leader
  • New sessions are added by transmission in the Contention Resolution (CR) slot that follows the last MPDU 100 and response of the last session of the same class (or the lowest class higher than the new session's class if there is no traffic of the same class present).
  • CR Contention Resolution
  • a new session (e.g., 164 ) joins the CF period with priority higher than that of the first session, it starts transmission before the nominal start time of the CF Period and displaces the leader. All other stations can be notified of the early start using the Frame Control Information 102 .
  • MACs e.g. 12 , 14 , 16 periodically broadcast the CF Session Order information in frame control 102 or using MAC management MPDUs 100 . If a session changes its location in the order due to collisions, the session should broadcast this using Frame Control 102 or MAC Management Entity as soon as possible. Any MACs detecting a change in the CF Session Order should retransmit this information as soon as practical, so that the news is disseminated quickly and completely.
  • a session 164 may terminate by failure or disconnection, or may terminate cleanly. When the session 164 terminates cleanly, the source MAC sends this information in frame control 102 or by means of management MPDUs 100 . If a session 164 terminates due to failure or disconnection, then the other MACs on network 4 must infer that session 164 is no longer a part of the order by observing the persistent absence of session 164 from the CF Session Order. A MAC that suspects that a session (e.g., 164 ) is absent must indicate this using Frame Control 102 or MAC Management MPDUs 100 . If a MAC 12 with a CF session observes another MAC 14 reporting its absence, MAC 12 should report its continued existence in the next CF Period. If a MAC 14 that sent absence information for a session 164 detects the continued presence of session 164 , MAC 14 must send an update transmission.
  • the priority Class and CFID may be reused after a source MAC terminates its session 164 , or after a session 164 has been determined to be terminated through the mechanism described above. If a MAC 12 starts a new CF session 164 , the MAC 12 should pick an unused ⁇ priority Class, CFID ⁇ pair and insert the new session 164 at the end of its class 154 . If an existing session 158 that is already using that ⁇ priority Class, CFID ⁇ pair detects a new session 164 attempting to use the same ⁇ Class, CFID ⁇ pair, the existing session 158 notifies the MAC 14 creating the new session 164 .
  • the MAC 14 receiving a MAC Management entity indicating a conflict in ⁇ priority Class, CFID ⁇ , MM Entry must check its contents to verify the positions of its CF sessions. If the MAC 14 determines that there is different session 158 using the same ⁇ priority Class, CFID ⁇ pair as it is using, MAC 14 must terminate session 164 quietly and restart it using a different ⁇ priority Class, CFID ⁇ pair.
  • Providing guaranteed QoS require MACs to limit the amount of traffic that is admitted into the network 4 .
  • This mechanism commonly referred to as admission control, is done based on a predetermined maximum allocation for each priority Class (e.g., 154 , 156 ) and the total allocation for QoS traffic.
  • a new QoS steam is allowed access to the medium network 4 only if either the maximum allocation for the priority Class or the total allocation for the QoS traffic is not exceeded.
  • traffic streams that exceed their respective priority Class allocations are terminated on a last come first out basis with the priority Class, with traffic streams from the lowest priority Class terminated first.
  • Admission Control is accomplished in a distributed manner based on priority Class, and on a first come first serve basis within a priority class. Admission control can guarantee some minimum amount of access for each traffic priority Class and CSMA traffic.
  • MACs 12 , 14 , 16 track the smoothed amount of time each of its CF sessions uses each CF period.
  • usage values have a 100 microsecond resolution.
  • the Constant Bit Rate (CBR) equivalent usage, average usage and usage average deviation values are sent periodically for each stream using the Frame Control 102 and/or MAC Management Entities.
  • Each MAC also maintains a table with these values for each CF data stream (session), based on the broadcast information.
  • Each MAC also maintains the usage time per CF period of each class, based on its observations.
  • Each MAC updates the usage time per CF period of each class only when the boundaries of the first and last sessions within a class are received. The computations are the same, as those used for tracking a MAC's own streams.
  • Usage values are used in admission control and for Periodic Contention-Free Virtual Carrier Sense (PCF-VCS).
  • PCF-VCS Periodic Contention-Free Virtual Carrier Sense
  • the source Protocol Adaptation Layer sends a request to the source MAC to create a new CF session.
  • the source MAC must determine that there is sufficient time available on the medium each CF period to support the request, and that the destination MAC has the resources needed for the stream.
  • the request contains required data rate, packet loss tolerance, and latency information.
  • the required data rate, packet loss tolerance, and latency information combine with the channel characteristics between the source and destination to arrive at an amount of time required per CF period for the new session. Data rate and latency are used to gauge the resources needed at the receiver MAC.
  • the source MAC denies its PAL's request. Otherwise, the source MAC starts a new session using a unused CFID, and inserts it at the end of its class in the CF session order.
  • E i be the aggregate usage per Contention Free period of existing class i sessions, and let E be the aggregate usage per Contention Free Period of all CF sessions (classes 4 - 7 ).
  • E 0 be the existing usage of CSMA traffic per Contention Free period.
  • the E i values should be computed as sum of the smoothed mean and the smoothed mean deviation. Alternatively, the sum of the CBR Equivalents for each session within the class may be used.
  • a 0 min( G 0 ,(1 +a 0 ) E 0 +0.125) ms.
  • a minimum average time is allowed for CSMA traffic to announce its presence when it is not currently in use.
  • a 0 is a configurable parameter, 0 ⁇ a 0 ⁇ 1.
  • CFP is the Contention Free Period in msec.
  • the per-class fractional guarantees are configurable through MAC Management Entries.
  • the first rule (1) states that if there is capacity available, then the new session can take it.
  • the second rule (2) states that if there is guaranteed allocation available for its class, the new session can take it.
  • some other class j that is oversubscribed i.e., E j >A j ) may have to terminate or adapt the rate of one or more of its existing sessions.
  • Each MAC 12 , 14 , 16 must consider the sessions for which it is the source, and terminate them if required.
  • the newest session in an oversubscribed class (e.g., 154 , 156 ) must be terminated, with this process continuing until the medium is no longer oversubscribed.
  • PCF-VCS Periodic Contention Free Virtual Carrier Sense
  • PCF-CA PCF Virtual Carrier Sense
  • PCF-VCS uses the knowledge of CF session order and usage to obtain reliable performance.
  • Each MAC employs a Contention Free Virtual Carrier Sense (CF-VCS) mechanism to determine when it should start transmission of MPDUs 100 belonging to each of its CF sessions.
  • CF-VCS Contention Free Virtual Carrier Sense
  • each MAC tracks the beginning of each Contention Free Period (CFP) and the Half Period Target Start Time (HPTST), the maximum length first MPDU 100 for each PCF-CA session (e.g., 158 or 164 ), the contention free load for each class (e.g., 154 or 156 ), and the total contention free load, which are used for managing the CF sessions.
  • CCP Contention Free Period
  • HPTST Half Period Target Start Time
  • the contention free load for each class e.g., 154 or 156
  • the total contention free load which are used for managing the CF sessions.
  • Tracking the beginning of each Contention Free Period (CFP) and the Half Period Target Start Time (HPTST) and the maximum length first MPDU 100 for each PCF-CA session is used to determine for a MAC 14 when a session 164 can start transmission if the MAC 14 desiring to start the session 164 does not observe communications from MAC 12 that normally broadcasts its predecessor session 158 .
  • Tracking the contention free load for each class (e.g., 154 or 156 ), and the total contention free load are used to determine when a low priority session must cease transmission to allow other higher priority traffic access to the medium 3 .
  • the PCF-VCS mechanism is used to maintain the integrity of the contention free interval under noisy channel conditions, or in cases of hidden stations, overlapping networks or when an active session is suddenly terminated (such as the MAC 12 being unplugged or disconnected from medium 3 ).
  • the PCF-VCS mechanism is also used for admission control of PCF-CA traffic and timing of CSMA/CA traffic and for fairness.
  • the contention free intervals may be approximately periodic, and approximately synchronized with the 50 or 60 Hz power cycle (e.g., using a 25 msec period between onset of contention free intervals means that each period corresponds to three 8.33 msec half-cycles of a 60 Hz power cycle and two and half 10 msec half-cycles of a 50 Hz power cycle).
  • channel adaptation e.g., tone maps
  • noise on the power line tends to be correlated with the phase of the power cycle.
  • the contention-free intervals may be chosen to synchronize so that each session generally occupies a different portion of a line cycle on a repeating basis (e.g., the occupied portion of the line cycle could repeatedly advance by a quarter of the power cycle).
  • This provides two advantages for short duration traffic. First, the session will not get trapped on a portion of the line cycle that is much worse than another portion, and thus the throughput will be closer to average for the power line channel rather than worst case. Second, a better adaptation can be achieved because the transmitter/receiver pair can adapt based on transmissions to most, if not all, of the line cycle rather than only a small portion.
  • vTDMA virtual TDMA
  • the virtual TDMA implementation can be used in a network with a plurality of stations using a CSMA medium sharing mechanism.
  • Virtual TDMA allows any station to dynamically reserve a periodic slot, of arbitrary pitch (time separation) and duration, during which it will have exclusive access to the medium. These periodic slots allow a station to provide strict guarantees on QoS to its data stream, and to overcome hidden nodes.
  • Multiple vTDMA sessions can be set up by stations in a distributed manner based on their knowledge of other ongoing vTDMA sessions in the network.
  • vTDMA The operation of vTDMA can be conceptually divided into three phases.
  • vTDMA Session Setup Phase This is the first phase. During this phase, the station takes various actions that will ensure that all other stations have knowledge of the new vTDMA session.
  • vTDMA Session Maintenance Phase This is the second phase, and begins generally after the end of the first phase. During this phase, the station takes various actions to update all station on the ongoing vTDMA session.
  • vTDMA Session Termination Phase This is the third and final phase. During this phase, the station takes various actions to ensure that all stations are informed of the termination of the vTDMA session.
  • vTDMA can be tailored for a variety of CSMA systems.
  • the design of vTDMA might take into consideration the underlying CSMA protocol and packet formats, the network environments in which the system is intended to operate (e.g., hidden nodes, interference), and the guarantees on QoS that the station is intended to provide.
  • the session setup information may include: TABLE 5 vTDMA Session Setup Information Session ID Unique session identifier Source Address of the station that initiated the Address session Destination Address of the station that is the intended Address receiver(s) Session Start Time at which the session starts Time Session Periodic interval at which the vTDMA session Period starts Slot Length Length of time for which the vTDMA session will have exclusive access to the channel during each session period
  • This vTDMA session setup information is broadcast to all (or a plurality of) other stations by means of broadcast packets during regular CSMA access periods.
  • Typical CSMA protocols have a packet structure with a header. This header can also be used to propagate the session setup information. Some possible approaches for this involve blasting (channel access without proper contention) or contention in the time slots during which the vTDMA session is intended to be setup.
  • all stations in the network can be configured to understand a fixed number of vTDMA session types (for example, a fixed period for all TDMA sessions eliminates the need for transmitting session period information).
  • the station periodically broadcasts updates on the vTDMA session parameters. This provides a means to dynamically control the vTDMA session. This information can be broadcast to all stations using a broadcast packet during the regular CSMA access period or during the allocated slot. This information can also be propagated as part of the header field of the packet.
  • the session maintenance information may include: TABLE 6 vTDMA Session Maintenance Information Session ID Unique Session identifier Source Address of the station that initiated the Address session Destination Address of the station(s) that is (are) the Address intended receiver(s) Slot Length Length of time for which vTDMA session will have exclusive access to the channel during each session period Slot Start Time at which the vTDMA slot starts Time
  • Alternative implementations can also use a combination of broadcast packets and information in the header field to maintain the vTDMA session.
  • the header can be used to propagate slot length information of current and/or subsequent slots, while the other maintenance information is sent through broadcast packets.
  • the station During the vTDMA session termination phase, the station notifies all other stations about the termination of the active vTDMA session. This can be accomplished by broadcast packets transmitted in the regular CSMA access period or during the allocated slots. This information can also be propagated as part of the header field of the packet.
  • This session termination information may include: TABLE 7 vTDMA Session Termination Information Session ID Unique Session identifier Source Address of the station that initiated the Address session Destination Address of the station that is the intended Address receiver(s) Session Termi- Time at which the vTDMA session ends nation Time
  • Certain network installations in which vTDMA is required to operate can have legacy stations that do not implement vTDMA. In that situation, vTDMA can be tailored to operate in the network by a combination of graceful contention during the period slots with other deference mechanisms to prevent a legacy node from colliding with the vTDMA session. Certain network installations in which vTDMA is required to operate can have hidden stations. In that situation, vTDMA can be tailored to operate efficiency by having the vTDMA session setup, maintenance and termination information propagated (or repeated) using select stations in the network. For example, implementations can choose the designated receiver of the vTDMA transmission to repeat the information, for example in the acknowledgment transmission, thus ensuring all stations that hear the transmitter and/or the receiver from deferring during the vTDMA session.

Abstract

A method of operating in a network in which stations communicate over a shared medium is described. The method provides regularly repeated contention free intervals, CSMA communication during times outside the contention free intervals, and distributed control over the initiation and makeup of the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate transmission within the contention free interval.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application No. 60/420,071, filed Oct. 21, 2002, and U.S. Provisional Application No. 60/504,733, filed Sep. 18, 2003.[0001]
  • TECHNICAL FIELD
  • This invention relates to network protocols, and more particularly to contention-free intervals on a carrier sense multiple access (CSMA) network. [0002]
  • BACKGROUND
  • Various protocols are known for sharing access to a medium, e.g., polling, time division multiple access (TDMA), token passing, and carrier sense multiple access (CSMA). Polling uses a master station to periodically poll other stations (slave stations), giving the slave stations explicit permission to transmit on the medium. TDMA protocols also rely on a master station (network master), which broadcasts a frame synchronization signal before each round of messages to synchronize the clocks of all stations, and, after synchronization occurs, each station transmits during its uniquely allocated time slice. In token passing, access to the transmission medium is determined by possession of a special data unit called a token, which is passed from station to station. CSMA protocols rely on all stations listening to the medium prior to transmission to determine when the medium is idle. After the transmission ends, each station waits a specified interval (also known as an interframe gap) followed by an additional delay of one or more transmission (contention resolution) slots based on an assigned slot number before transmitting. [0003]
  • Carrier sense multiple access (CSMA) protocols because of their simplified access mechanism and robustness in performance under a variety of network conditions are widely used. Multimedia applications require guarantees on such parameters as latency, jitter and packet loss probability. The uncontrolled nature of channel access in CSMA networks makes it difficult to support quality of service (QoS). QoS can be evaluated in terms of latency, jitter, and packet loss probability (PLP) where latency is how much time it takes for a packet of data to get from one device to another, jitter is a random variation in the delay between the arrival of one packet of data and a consecutive packet of data, and PLP is a probability of losing a packet of data transmitted from one device to another device. Several variations to the CSMA mechanism are in use that enable various degrees of control on the QoS parameters. For example, CSMA in the HomePlug® 1.0 protocol, available from Intellon Corp of Ocala, Fla., uses a priority resolution slot mechanism. HomePlug® 1.0 protocol uses four priority levels to classify transmissions on networks. Each transmission is thus classified depending on its QoS requirements. Each class embodies a coherent set of latency, jitter and packet loss probability (PLP) guarantees. Stations having transmissions at various priority levels waiting to be sent contend during priority resolution slots of time between transmissions, causing transmissions with priority that is lower than the highest available priority in the network to defer. Thus, stations having transmissions with highest priority in the network are guaranteed access to the medium before stations having transmissions with lower priority. However, stations having transmissions with the highest priority in the network still contend within themselves for medium access, thus reducing the level of guarantees on QoS parameters. Stations at the same priority level contending for access to the medium enter a “contention window” where the stations randomly select their transmission slot time. [0004]
  • In some network environments, e.g., power line network environments, CSMA protocol operation may be adversely effected by distance between stations and/or channel conditions. Also, CSMA protocols may be susceptible to interference (e.g., collision) caused by overlapping networks, that is, networks that are not intended to communicate with one another but that can, in fact, hear each other's transmission, as well as by hidden stations. A hidden station is a station in a network (or overlapped network) that cannot hear all other stations because of its location and/or channel conditions. Under such conditions, a CSMA protocol may not function effectively to maintain proper network synchronization and provide orderly media access arbitration. And a CSMA protocol may be unable to ensure strict adherence to QoS guarantees. For example, U.S. application Ser. No. 09/632,609 describes a system in which a single contention-free interval can be established on a CSMA network without the use of a master, but this method may be insufficient to handle strict quality of service (QoS) requirements or hidden nodes. [0005]
  • SUMMARY
  • In one aspect, the invention features a method of operating in a network in which a plurality of stations communicate over a shared medium, including using a carrier sense multiple access (CSMA) service for ordinary communication between the plurality of stations, having a first station that desires to establish a first session of regularly repeated (e.g., periodic) contention-free transmission intervals broadcast information descriptive of the first session to the other stations, wherein the first station can be any of the plurality of stations, and having other stations that receive the broadcast from the first station defer from transmitting during the contention-free intervals of the first session. [0006]
  • Implementations may include one or more of the following features. Distributing control over initiation and makeup of transmissions within the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate a transmission within the contention free interval. Distributing control over the maintenance and termination of transmissions within the contention free interval to the plurality of stations so that any of the plurality of stations can independently terminate a transmission within the contention free interval. The plurality of stations may act as peers with respect to one another in initiating, maintaining, and terminating transmissions within the contention free interval. Not all stations on the network that receive the broadcast from the first station may defer from transmitting during the contention-free intervals; e.g., some stations may comprise legacy equipment (e.g., Home Plug 1.0) lacking the capability to defer. [0007]
  • In another aspect, the invention features a method of operating in a network in which stations communicate over a shared medium, including providing regularly repeated contention free intervals, providing CSMA communication during times outside the contention free intervals, and distributing control over the initiation and makeup of the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate a transmission within the contention free interval. [0008]
  • Implementations may include one or more of the following features. Distributing control over the maintenance and termination of transmissions within the contention free interval to the plurality of stations so that any of the plurality of stations can independently terminate a transmission within the contention free interval. The plurality of stations may act as peers with respect to one another in initiating, maintaining, and terminating transmissions within the contention free interval. [0009]
  • Implementations may further include one or more of the following features. The regularly repeated contention free interval may be approximately periodic. The contention free interval may also support a plurality of transmissions, each using a different time segment within the contention free interval, so that a plurality of data streams can be transmitted using the contention free interval, with each data stream generally assigned to one of the different time segments. Any of the plurality of stations may further be capable of independently inserting a further transmission into the contention free interval. At least one data stream can be assigned to a plurality of different time segments spaced apart within the same contention free interval, thereby reducing latency for the at least one data stream. There can be two different time segments from the same contention free interval assigned to the same data stream, with one time segment at or near the start of the interval, and the other time segment at or near the midpoint of the interval. [0010]
  • Implementations may further include one or more of the following features. In some cases, each of the plurality of stations keeps track of the number of transmissions being supported by the contention free interval and the amount of time used by each of the transmissions, so that the station can make a determination whether the contention free interval has sufficient remaining capacity to support a further transmission by the station. Each of the stations sending a transmission during the contention free interval may begin transmitting in response to recognizing that the transmission immediately prior to it has concluded. A transmission that is concluding includes a hand-off indication near the end of its transmission, and the transmission that follows is initiated based on receipt of the hand-off indication and the identity of the transmission that is concluding. Each station may independently keep track of the usage of the contention free interval (e.g., by observation) to determine whether there is sufficient time available in the interval to support a further transmission that the station has been asked to initiate. Information characterizing each of the plurality of transmissions is conveyed to substantially all of the plurality of stations. The information characterizing a transmission can include information characterizing the temporal location of the transmission within the contention free interval. [0011]
  • Implementations may further include one or more of the following features. The information characterizing a particular transmission is conveyed to other stations not only by the station making the particular transmission but by other stations that receive the information and retransmit it to other stations, thereby increasing the likelihood that the information will be conveyed to all stations. Transmissions of different priority classes can share the contention free interval, and access to the contention free interval is given to a transmission of a higher priority class if insufficient time is available within the interval to support all transmissions seeking to use the interval. A transmission can be terminated if transmissions of higher priority consume enough of the contention free interval that insufficient time remains for continuing the transmission. Transmissions are terminated following a last-in, first-out protocol (e.g., last-in, first-out within each priority class). A limit can be set on the fraction of time within the contention free interval that may be used by transmissions of a particular priority class. Different fractions of the contention free interval are assigned to different priority classes, so that some priority classes are allocated more of the contention free interval than other priority classes. [0012]
  • Implementations may further include one or more of the following features. The sequence of transmissions within the contention free interval is ordered by priority class, with transmissions of higher priority classes occurring earlier than transmissions of lower priority classes. The sequence of transmissions within the contention free interval is ordered by sequence in which transmission was initiated, with earlier initiated transmissions occurring earlier than later initiated transmissions. Short time intervals are provided between successive transmissions within the contention free interval, so that a station desiring to initiate a new transmission may begin the transmission during the short time interval, and other stations will learn that the new transmission has been inserted at that location in the contention free interval. A short time interval is provided following the last transmission of each priority class, so that a station desiring to initiate a new transmission with a particular priority class may begin the transmission during the short time interval following the last transmission of that priority class. A station desiring to initiate a transmission of a particular priority class will generally initiate the transmission between the last transmission of the same or higher priority class and the start of the first transmission of a lower priority class, thereby maintaining a priority order to the sequence of transmissions within the contention free interval. A short time interval is provided following the last transmission of each priority class, and the transmission of the particular priority class is initiated during the short time interval between the last transmission of the same or higher priority class and the start of the first transmission of a lower priority class. [0013]
  • Implementations may further include one or more of the following features. Each of the stations can independently follow a set of admission rules common to the plurality of stations. Each transmission is assigned a unique identifier, and the identifier is conveyed to the other stations along with information characterizing the transmission. The length of the contention free interval varies with demand for contention free transmissions. The shared medium may be an alternating current (AC) power line, and the contention-free intervals may be approximately synchronized to the power cycle. The contention free interval duration may be chosen so that at least some of the transmissions within the contention free interval occupy a different portion of the power cycle during successive contention free intervals. Alternatively, the contention free interval duration may be chosen so that the transmissions within the contention free interval are intentionally not synchronized to the line cycle so that each transmission generally occupies a different portion of the power line cycle during successive contention free intervals. [0014]
  • Implementations may further include one or more of the following features. The information descriptive of the first session may comprise the duration of the contention-free intervals. The information descriptive of the first session may comprise a period of the contention-free intervals. The information descriptive of the first session may comprise the time at which the first session will begin. The information descriptive of the first session may comprise the address or addresses of the station or stations that are the intended receivers of the data to be transmitted during the first session. The information descriptive of the first session may comprise the address of the station that is establishing the first session. A second session of regularly-repeated contention-free transmission intervals may be established by a second station, wherein the second station can be any of the plurality of stations, and wherein the method may further comprises having the second station determine the timing of the second session taking into account the information descriptive of the first session, having the second station broadcast information descriptive of the second session to the other stations, and having the other stations that receive the broadcast from the second station defer from transmitting during the contention-free intervals of the first and the second sessions. The method may further comprise having the first station transmit maintenance information during the first session. The maintenance information descriptive of the first session may include a revised duration for the contention-free intervals. The maintenance information descriptive of the first session may include the time at which the subsequent contention-free interval starts. The method may further comprise having the first station transmit termination information during the first session, the termination information including the time at which the first session will end. At least a portion of the information descriptive of the first session may be transmitted in one or more header fields of packets broadcast over the network. At least a portion of the information descriptive of the first session may be transmitted in the packet body of packets broadcast over the network. At least a portion of the information descriptive of the first session may be fixed ahead of time and not included in the information descriptive of the first session. The information descriptive of the first session may be broadcast using the CSMA service. The information descriptive of the first session may be broadcast using the regularly-repeated contention-free session. One or more stations other than the first station may propagate the session information generated by the first station. [0015]
  • This invention provides an integrated set of mechanisms to providing guaranteed QoS in CSMA networks in a highly distributed manner. Using this set of mechanisms, traffic streams requiring QoS obtain periodic access to the medium. Multiple traffic streams coordinate with each other in a distributed manner and align with respect to each other. Distributed admission control is used to prevent the network resources from being over allocated. [0016]
  • Regularly-repeated contention-free network channel access provides a distributed mechanism for guaranteeing QoS in CSMA networks while maintaining network efficiency. Regularly-repeated contention-free network channel access operates in networks with legacy equipment and has an ability to adapt to changing channel and network conditions. Video traffic can be transmitted on the same power line network as used for data. The higher throughput and higher quality of service (QoS) associated with TDMA can be provided on a CSMA network, without the complexity and difficulty of setting up one station as a master. By avoiding the use of a master/slave architecture, the communication system can function even in the presence of hidden stations. [0017]
  • The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will be apparent from the description, drawings, and from the claims.[0018]
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a network configuration. [0019]
  • FIG. 2 is a diagram of a Media Access Controller Service Data Unit (MSDU). [0020]
  • FIG. 3 is a diagram of Media Access Controller Protocol Data Unit (MPDU). [0021]
  • FIG. 4 is a diagram of a regularly repeated contention free communication interval and a period of CSMA/CA communication.[0022]
  • DETAILED DESCRIPTION
  • There are a great many possible implementations of the invention, too many to describe herein. Some possible implementations that are presently preferred are described below. It cannot be emphasized too strongly, however, that these are descriptions of implementations of the invention, and not descriptions of the invention, which is not limited to the detailed implementations described in this section but is described in broader terms in the claims. [0023]
  • A network configuration includes [0024] communications medium 3 and network 4 in which electronic devices 6, 8, and 10 (e.g., audiovisual equipment) communicate over medium 3. Electronic devices 6, 8, and 10 include media access controllers (MAC) 12, 14, and 16 that manage communication access to the network 4 for electronic devices 6, 8, and 10, respectively. MACs 12, 14, and 16 implement the data link layer and connect to the physical layer of the Open Systems Interconnection (OSI) network architecture standard. In a general sense, MACs 12, 14, and 16 represent stations on network 4 that send messages to one another over medium 3. Communications medium 3 is a physical communication link between electronic devices 6, 8, and 10 that includes optical fiber, coaxial cable, unshielded twisted pair, in addition to other media such as power lines. Electronic devices 6, 8, and 10 communicate with one another based on requirements of software applications running on electronic devices 6, 8, and 10. This communication creates traffic of messages on network 4.
  • 1. Traffic Classes [0025]
  • Traffic of messages on [0026] network 4 is divided into eight priority classes depending on the QoS requirements of each message. Each priority class embodies a coherent set of latency, jitter and packet loss probability (PLP) guarantees, which translate into such parameters as access priority and number of message transmission retries at the MACs 12, 14, and 16. For network configuration 2, eight traffic classes are defined. Each of these priority classes embodies a set of Quality of Service (QoS) characteristics for an application and can be translated naturally to such behavior in the MACs 12, 14, and 16 as channel access and number of retries. The characteristics of these priority classes are defined such that each class can support a specific range of QoS parameters. The priority classes are such that 0 is the lowest priority and 7 is the highest priority. Table 1 shows the definition of each class and its associated QoS Parameters.
  • Transmissions from [0027] MACs 12, 14, and 16 with Priority Classes 0 to 3 use carrier sense multiple access/collision avoidance (CSMA/CA) protocols such as HomePlug® 1.0.. Thus, MACs 12, 14, and 16 having transmissions at priority levels 0 to 3 waiting to be sent simply contend during priority resolution slots between transmissions, causing stations transmissions with priority that is lower that the highest available priority in the network to defer. Stations having transmissions with priority 3 in the network are guaranteed access to the medium before stations having transmissions with lower priorities 0-2. However, stations having transmissions with priority 3 in the network contend within themselves for medium access. Transmissions with priority classes 0 to 3 are intended for applications with low QoS requirements such as applications transferring files and applications managing MACs 12, 14, and 16. Such applications can be described to have aperiodic transmission requirements because their transmissions do not typically have to be sent on a regular periodic basis. MACs 12, 14, and 16 use the CSMA/CA protocol when there is no traffic present from priority classes 4 to 7. Transmissions with priority classes 0 to 3 are guaranteed a minimum amount of time to transmit if traffic at those levels is present; otherwise classes 4 through 7 may occupy almost all the capacity of network 4.
  • Transmissions from [0028] MACs 12, 14, and 16 with priority classes 4 to 7 use periodic contention free channel access (PCF-CA) that provides periodic access to network 4 for transmissions to guarantee QoS and prevent bandwidth of network 4 from being over allocated. PCF-CA organizes contention within a given priority class (e.g., classes 4-7) for access to network 4 on a first come, first serve basis to provide guarantees of QoS to transmissions from MACs 12, 14, and 16 subject to bandwidth of network 4. Priority classes 4 to 7 require a Session Setup procedure (described below) and are subject to Admission Control (described below). Priority class 4 is can be used for applications such as network games resulting in a typical data rate of less than 1.0 mega (106) bits per second (Mbps) and QoS requirements of a latency of less than 15 milliseconds (msec). MAC Service Data Units (MSDU) or transmitted data packets for applications at priority class 4 are typically short (less than 500 octets of 8 bits each). The PLP for priority class 4 is quasi error free (QEF) meaning a PLP of 10−10 to 1010 −11. Priority class 5 is used for applications such as internet video and video conferencing resulting in a typical data rate of 0.1 to 2 Mbps and QoS requirements of a latency of 75-100 msecs and a PLP of 10−3 seconds. Priority class 6 is used for applications such as high quality video and home theater audio resulting in a typical data rate of 0.3-25 Mbps with QoS requirements of a latency of 100 to 300 msecs and a jitter of 500 nano seconds. Priority class 6 has a PLP requirement of QEF meaning a PLP of 10−10 to 10−11. Priority class 7 is used for Voice over Internet Protocol (VoIP) applications resulting in a typical data rate of less than 0.064 Mbps but with QoS requirements of a latency of less than 15 msecs and a PLP of 10−2. MSDUs for applications at priority class 7 are typically short (<500 octets).
    TABLE 1
    Traffic Classes with Typical Parameter Values
    Typical
    Data
    Rate Packet
    per Loss
    stream MSDU Latency Probablility Application
    Class CAP (Mbps) (octets) (msec) Jitter (PLP) Examples
    Aperiodic CSMA/CA 0 0
    Only 1 1
    2 2
    3 3
    Periodic Contention 4 3  <1 short low N/A Quasi Error Gaming
    Free (<500) (<15) Free
    (QEF)
    5 3 0.1-2 long medium N/A 10−3 Internet
    (75-100) Video, Video
    Conferencing
    6 3 0.3-25 long high 500 ns QEF High quality
    300 video, audio,
    max Home
    100 Theater
    default Audio, etc.,
    7 3 <0.064 short low N/A 10−2 VoIP
    (<500) (<15)
  • Referring to FIG. 2, MSDU refers to the information payload that the MAC (e.g., [0029] 12, 14, 16)transports on network 4. Each MSDU (FIG. 2) contains a Destination Address (DA) 52, a Source Address (SA) 54, traffic information 56, MAC Management Information 58, and MSDU payload 60. The Destination Address (DA) field 52 and Source Address (SA) field 54 are 6 octets each where an octet is a sequence of eight bits) and are identical to the corresponding fields described in Institute of Electrical and Electronics Engineers (IEEE) Standard 802.3 (i.e. addresses 52 and 54 use the IEEE 48-bit MAC address format).
  • The [0030] 2-octet Traffic Information field 56 contains a 2-bit Protocol Adaptation Layer (PAL) Type (PLT) field 62, a 1-bit MAC Management Flag (MMF) 64, a 1-bit DTS Flag 66, and a 12 bit MAC Stream ID (MSID) field 68. These fields 62, 64, 66, and 68 are listed in Table2.
    TABLE 2
    MSDU Traffic Information
    Length
    Field (bits) Definition
    PLT
    2 PAL Type
    MMF
    1 MAC Management Information Flag
    DTSF
    1 Delivery Time Stamp Flag
    MSID
    12 MAC Stream Identifier
  • The PAL Type (PLT) [0031] field 62 defines the protocol and other characteristics of the MSDU payload. Table 3 shows the interpretation of the PLT field 62.
    TABLE 3
    PAL Type
    PLT
    Value Interpretation
    0b00 Ethernet PAL
    0b01 Isochronous Stream
    0b10 Reserved
    0b11 Reserved
  • The MAC Management Flag (MMF) [0032] 64 is set to 0b1 to indicate that a particular MSDUis associated with an embedded MAC Management Information (MMI) field 58.
  • The Delivery Time Stamp Flag (DTSF) [0033] 66 is set to 0b1 by the PAL to indicate that the MSDU payload 60 should be associated with a Delivery Time Stamp in a Sub-Frame that may contain other MSDU payloads 60 that do not have a DTS (as indicated by a DTSF value of 0b0).
  • The MAC Stream ID (MSID) [0034] 68 is a 12-bit field that is associated with the payload 60 being carried by the MSDU. MSIDs 0 to 3 are used by MSDUs that carry connectionless CSMA/CA traffic at channel access priority CA0 to CA3 respectively. The remaining MSIDs may be used by connection-based services or CSMA/CA traffic, and are assigned by the MAC (e.g. 12, 14, 16) during the connection setup process.
    TABLE 4
    MAC Stream Identifier
    MSID Value Interpretation
    0x000 CA0, CSMA/CA
    0x001 CA1, CSMA/CA
    0x002 CA2, CSMA/CA
    0x003 CA3, CSMA/CA
    0x004-0xfff Negotiated Stream Ids
  • The MSDU can contain [0035] MAC Management Information 58. The presence of MAC Management Information 58 field is indicated by the MMF flag 64 in the Traffic Information field 56. The MSDU Payload field 60 depends on the Protocol Adaptation Layer (PAL) in the MAC (e.g. 12, 14, 16) that generated the MSDU. The MSDU Payload 60 is not interpreted by the MACs 12, 14, or 16.
  • MSDUs are transmitted by [0036] MACs 12, 14, and 16 using MAC Protocol Data Units (MPDUs). FIG. 3 shows the overall format of an MPDU. The MPDU is composed of a Frame Control field 102 followed by a MPDU Payload 104 that includes a MPDU header 106 and one or more Physical Layer (PHY) Blocks (PBs) 108. PB 108 is used by the Automatic Retransmission Request (ARQ) mechanism. ARQ is a protocol for error control in data transmission. When a receiver detects an error in a packet, the receiver automatically requests the transmitter to resend the packet. This process is repeated until the packet is error free or the error continues beyond a predetermined number of transmissions. Each PB 108 has an associated PB Header 112, PB Body (PBB) 114 and a PB Check Sequence (PBCS) 116. Only the PBB 114 is subject to encryption because the PBB 114 is essentially an encrypted fixed size segment. PBBs 114 are encrypted independently of one another. The first (or only) FEC Block 110 in an MPDU Payload 104 is composed of the MPDU header 106, and the first PB 108. The subsequent (if any) FEC Blocks correspond to PB # 2 to PB #n for an MPDU 100 containing n PBs. The last PBB 118 in the last FEC block 120 may not be full, and so may require padding. If the segment in the last PBB 118 is more than one octet smaller than the PBB size, then a length field comprises the last two octets of the PBB 118.
  • Frame Control fields [0037] 102 carry information required by the PHY to demodulate the MPDU payload 104 as well as Channel Access, ARQ, VCS, and Tone Maps information required by the MAC (e.g., 12, 14, 16).
  • MPDUs carry structure information that is necessary for coordinating access to the medium and for proper delivery to the intended receiver. MPDUs are also used in conveying reception status (i.e., for acknowledgment) so that the transmitter can retransmit lost MPDUs. The MPDUs typically contains a broadcast header in the form of [0038] Frame Control 102 that is received by all MACs 12, 14, and 16 in the network 4 defining the extent of the payload that is intended for the destination MAC 12, 14, or 16. Frame Control 102 information can also be used for ARQ.
  • Two MPDU formats are defined, a Long MPDU and a Short MPDU. The long MAC Protocol Data Unit includes a [0039] Frame Control 102 and an MPDU header 106 followed by one or more PBs 108. Long MPDUs carry application data payload. A Short MPDU consists of a Frame Control 102. These are used for MAC level acknowledgments and maintenance.
  • A Long MPDU is processed by the PHY into the MSDU that has a maximum length in time and varying octet capacity determined by its length and channel conditions. The [0040] MPDU header 106 and the first PB 108 are encoded in the first FEC block 110, and the subsequent PBs are each encoded in their own FEC block 110 by the PHY. A Preamble sequence is prepended to the FC 102, and two reference symbols are inserted between the FC 102 and the first FEC block 110 to form the MSDU 50, the physical entity that is transmitted over the medium. The preamble is used for synchronization at the PHY layer.
  • The term Delimiter is also used to refer to a physical entity consisting of a Preamble and Frame Control. The [0041] Frame Control 102 contains information used by MACs 12, 14, and 16 in the network 4 for channel access, as well as information used by the destination. For this reason, Frame Control 102 has specific physical layer encoding and modulation.
  • 2. Periodic Contention Free Channel Access (PCF-CA) [0042]
  • Traffic streams with priority classes [0043] 4-7 between MACs 12, 14, and 16 that require guarantees on QoS parameters use a periodic contention free channel access (PCF-CA) mechanism that is built over the CSMA/CA protocol. Traffic Streams using PCF-CA access obtain periodic access (e.g., every 25 msec) to the medium 3. PCF-CA also provides mechanism for half period PCF-session, where certain streams can access the medium twice in a contention free period. The CSMA/CA mechanism is used by traffic with priority classes 0-3 that do not require QoS guarantees and for transfer of management information.
  • Periodic contention free (PCF) sessions provide QoS for traffic with priority Classes [0044] 4-7. A session is a period of time when one or more MACs 12, 14, or 16 have authorization to transmit without contention on network 4 and this session is repeated on a periodic basis. Multiple sessions concatenate with each other. The necessary information required in maintaining these sessions is carried in the Frame Control 102 and in the MAC Management information 58 (FIG. 2). Each MAC 12, 14, and 16 monitors transmissions in the network 4 to track the existence of PCF-CA sessions. If a PCF-CA session exists, each MAC 12, 14, and 16 tracks the Contention Free Period Target Start Time (CFPTST), as well as the identity (CFID), Class, average usage, average usage deviation, Constant Bit Rate (CBR) equivalent usage, and maximum first MPDU length of each session in its position in the CF period.
  • FIG. 4 shows a interval of message traffic on [0045] network 4 using the PCF-CA mechanism. In FIG. 4, time moves from left to right. The interval with a length of 25 msec begins with a previous CSMA/CA frame 102. The interval is divided into a contention free interval 166 and a CSMA/CA interval 168. The contention-free interval is divided into a plurality of time segments so that a plurality of data streams (sessions) A1, A3, B1, B2 can be transmitted using the contention free interval, with each data stream (session) generally assigned to one of the different time segments of successive contention-free intervals. Each session generally includes a set of MPDUs 100, as shown in the figure for session A1 (also denoted 158). The sessions are preferably grouped by priority class, with sessions A1, A3 in class 154, and sessions B1, B2 in class 156. A unique identifier (e.g., CFID) identifies each data stream (session). The number of PCF-CA sessions (e.g., 158, 164) that network 4 can support is limited only by the available bandwidth and the number of available Contention-Free Identifiers within each priority class (e.g., 154, 156).
  • The Frame Control (FC) [0046] 102 (FIG. 3) of each MPDU 100 carries the fields necessary for supporting the PCF-CA sessions. These include MPDU Class, Contention Free Identifier (CFID), Half Period Session Flag (HPSF), Half Period Session Handoff (HPSH), and Contention Free Session Handoff (CFSH). Additional information about the order of CF sessions within the CF period and the usage patterns for each session are also provided on an intermittent basis in the FC or by means of MAC Management Entities (MME). The {priority CLASS, CFID} is associated with a session 158 and is unique within a priority class within the network 4. The MACs 12, 14, or 16 select a CFID that is not in use for a given priority class.
  • Session Handoff using the [0047] CFSH flag 160 indicates the end of MPDU 100 transmission within each session 158, and passes control to the next session 164. Suspension and resumption of a session to allow half-period sessions to transmit at the mid-period mark is indicated by the HPSH flag (not shown). This suspends the normal order of sessions and allows the half-period sessions an opportunity to transmit. When a MAC Level stop and wait ARQ mechanism is used, the responses always echo the values of CFID, priority Class, CFSH 160, and HPSH of the MPDU 100 that the responses acknowledge.
  • To start a new PCF-CA session when there is no ongoing periodic traffic, one MAC (e.g., [0048] 12, 14, 16) contends for the medium 3 using a CSMA/CA mode and starts the periodic session 158, becoming the Contention Free Leader (CFL). Otherwise, the MAC concatenates to existing PCF-CA sessions based on the priority class 154 of the transmission from the MAC.
  • 2.1 Periodic Contention Free Session Handoff [0049]
  • Multiple traffic streams between [0050] MACs 12, 14, and 16 using PCF-CA are identified by means of their priority Classes. Lower priority CSMA/CA traffic is prevented from interrupting PCF-CA traffic because Contention Free Identifier PCF sessions concatenate with each other. This concatenation is achieved by each PCF-CA session tracking other sessions in the network 4 and by broadcasting session hand over information. One of the PCF traffic sources (e.g., MAC 12, 14, or 16) acts as a contention free leader (CFL). The CFL initiates the periodic contention free channel access and provides timing information required to synchronize the start of periodic contention free sessions.
  • The CFL starts transmission as soon as Contention Free Period Target Start Time has been reached and after the last CSMA/CA transmission ends. The sets of [0051] MPDUs 100 from the same stream are sent consecutively with the same session identifier (CFID), a contention-free session hand-off indicator (CFSH) set to 0 until the last MPDU is sent. The last MPDU 100 is sent with the hand-off indicator (CFSH) set to 1. The response to the last MPDU 100, if present, is sent with CFSH set to 1 irrespective of the reception status of the MPDU payload 60.
  • When a [0052] MAC 12, 14, or 16 detects CFSH set to 1 by its predecessor, the MAC 12, 14, or 16 starts transmitting its MPDUs 100. If the predecessor is of a higher class (Class j) than the station (Class i), then the MAC 12, 14, or 16 is the Class Leader (CL) and it waits for at least contention resolution (CR) slot time before transmitting its first MPDU 100. A CR Slot time is the minimum amount of time needed to detect a previous transmission. This gap allows new streams of Class k, where i<k≦j, to join at the end of Class j.
  • When half period traffic is present as indicated by the Half Period Session Flag (HPSF), stations must track the half period target start time (HPTST) also. All half period sessions must be allowed to transmit both at the start of the CF Period and at the halfway mark, in order of class and age. A [0053] session 158 that is transmitting when this time is reached must suspend transmission of new MPDUs 100 and allow the half period traffic access to the medium by setting the Half Period Session Handoff (HPSH) flag. If it happens to be done with its transmissions for the current period, it will also set the CFSH flag 160. The first half period session (the Half-Period Leader, HPL) must then start transmission immediately after the Priority Resolution Period. Each half-period session will hand off control to the next half-period session in the usual way, by CFSH=0b1 on its last MPDU 100. If a half-period session has no data to send, it must send an End Of File (EOF) or a Request To Send/Clear To Send (RTS/CTS) signal to hand off control to the next session or to end the CF Period as appropriate. During the mid-period access by the half-period sessions, HPSH=0b1 for all MPDUs 100 except the last one. When the last half period session hands off to the suspended CF sessions, it will reset the HPSH flag to 0b0, to verify that it is the last half period session. At this point, the session that passed control to the half period sessions will resume transmission, if CFSH 160 was not set when it handed over control. Otherwise, its successor begins transmission in the same way it would if it had been handed access by its predecessor (i.e., respecting any required waiting period). If there is insufficient periodic traffic to occupy the medium until the HPTST, then the HPL must assert priority and contend for the medium 3 to start the second set of half period session transmissions. The HPL will do this as soon as the HPTST has arrived and after the end of any MPDU 100 that is being sent using CSMA/CA. Note that the HPL may not be the same session as the CFL, if the CFL does not require half-period access.
  • Traffic Classes align based on priority class during the Contention Free interval, with provisions for half period traffic to insert itself at the Contention Free half period. The actual order of contention free sessions depends on the number of traffic sources present, their priority Class and duration. For example, when there are two traffic sources with [0054] Class 6 traffic, and Class 7 traffic using half period session, the actual order of transmission can be 7-6-7-6. Note that there may also be a CSMA/CA access period before the half period traffic begins its second access, if there is insufficient contention free traffic to occupy the medium until then.
  • 2.2 Contention-free Session Target Start Time (CFSTST) and Half Period Target Start Time (HPTST) [0055]
  • [0056] MACs 12, 14, or 16 can use Periodic Contention Free Virtual Carrier Sense (PCF-VCS) mechanism to enable performance in noisy environments. Each MACs 12, 14, or 16 maintains an estimate of when the Contention-Free Period is supposed to start. If there are half-period sessions present, then the Half-Period Target Start Time must also be tracked. This is done through the use of the Contention-Free Session Target Start Time (CFSTST) field broadcast using the Frame Control 102 (FIG. 3) or MAC Management Entity. CFSTST is transmitted by the CFL and gossiped by other stations in the network 4. Even if a station (e.g., 12, 14, or 16) does not currently have Contention-Free traffic, the station must maintain an estimate of the CFSTST to avoid transmission that would delay the start of the Contention-Free Period or prevent a new CF Leader (CFL) from inserting itself before the current CFL.
  • CFL should start the CF Period as soon after the CFSTST as possible, and after the end of the last CSMA/CA transmission. The HPTST is just half period after the CFTST. When there is insufficient CF traffic to occupy the medium until the HPTST, the Half-Period Leader (HPL) must assert priority and contend for the medium to start the second CF Period. [0057]
  • 2.3 Contention-Free Session Order [0058]
  • When there is Contention-Free traffic on [0059] network 4, each MAC (e.g., 12, 14, or 16) must maintain information such as priority Class, CFID, order, usage parameters about the sessions present in order to know when the MAC may access the medium 3. Even if a MAC does not currently have Contention-Free traffic, the MAC must maintain this information in order to know when the MAC can insert a new session (e.g., 164). The order starts with the current Contention-Free Leader (CFL) and consists of the {Class, CFID} pairs of each of the sessions (e.g., 164) in the order that the MACs access the network 4 medium in the CF Period.
  • New sessions (e.g., [0060] 164) are added by transmission in the Contention Resolution (CR) slot that follows the last MPDU 100 and response of the last session of the same class (or the lowest class higher than the new session's class if there is no traffic of the same class present).
  • If a new session (e.g., [0061] 164) joins the CF period with priority higher than that of the first session, it starts transmission before the nominal start time of the CF Period and displaces the leader. All other stations can be notified of the early start using the Frame Control Information 102.
  • MACs (e.g. [0062] 12, 14, 16) periodically broadcast the CF Session Order information in frame control 102 or using MAC management MPDUs 100. If a session changes its location in the order due to collisions, the session should broadcast this using Frame Control 102 or MAC Management Entity as soon as possible. Any MACs detecting a change in the CF Session Order should retransmit this information as soon as practical, so that the news is disseminated quickly and completely.
  • A [0063] session 164 may terminate by failure or disconnection, or may terminate cleanly. When the session 164 terminates cleanly, the source MAC sends this information in frame control 102 or by means of management MPDUs 100. If a session 164 terminates due to failure or disconnection, then the other MACs on network 4 must infer that session 164 is no longer a part of the order by observing the persistent absence of session 164 from the CF Session Order. A MAC that suspects that a session (e.g., 164) is absent must indicate this using Frame Control 102 or MAC Management MPDUs 100. If a MAC 12 with a CF session observes another MAC 14 reporting its absence, MAC 12 should report its continued existence in the next CF Period. If a MAC 14 that sent absence information for a session 164 detects the continued presence of session 164, MAC 14 must send an update transmission.
  • The priority Class and CFID may be reused after a source MAC terminates its [0064] session 164, or after a session 164 has been determined to be terminated through the mechanism described above. If a MAC 12 starts a new CF session 164, the MAC 12 should pick an unused {priority Class, CFID} pair and insert the new session 164 at the end of its class 154. If an existing session 158 that is already using that {priority Class, CFID} pair detects a new session 164 attempting to use the same {Class, CFID} pair, the existing session 158 notifies the MAC 14 creating the new session 164. The MAC 14 receiving a MAC Management entity indicating a conflict in {priority Class, CFID}, MM Entry must check its contents to verify the positions of its CF sessions. If the MAC 14 determines that there is different session 158 using the same {priority Class, CFID} pair as it is using, MAC 14 must terminate session 164 quietly and restart it using a different {priority Class, CFID} pair.
  • 3. Admission Control [0065]
  • Providing guaranteed QoS require MACs to limit the amount of traffic that is admitted into the [0066] network 4. This mechanism, commonly referred to as admission control, is done based on a predetermined maximum allocation for each priority Class (e.g., 154, 156) and the total allocation for QoS traffic. In this mechanism, a new QoS steam is allowed access to the medium network 4 only if either the maximum allocation for the priority Class or the total allocation for the QoS traffic is not exceeded. When the total allocation for the QoS traffic is exceeded, traffic streams that exceed their respective priority Class allocations are terminated on a last come first out basis with the priority Class, with traffic streams from the lowest priority Class terminated first.
  • Admission Control is accomplished in a distributed manner based on priority Class, and on a first come first serve basis within a priority class. Admission control can guarantee some minimum amount of access for each traffic priority Class and CSMA traffic. [0067]
  • 3.1 Station Network Monitoring Functions [0068]
  • [0069] MACs 12, 14, 16 track the smoothed amount of time each of its CF sessions uses each CF period. In some implementations, usage values have a 100 microsecond resolution. The Constant Bit Rate (CBR) equivalent usage, average usage and usage average deviation values are sent periodically for each stream using the Frame Control 102 and/or MAC Management Entities. Each MAC also maintains a table with these values for each CF data stream (session), based on the broadcast information.
  • Each MAC also maintains the usage time per CF period of each class, based on its observations. Each MAC updates the usage time per CF period of each class only when the boundaries of the first and last sessions within a class are received. The computations are the same, as those used for tracking a MAC's own streams. [0070]
  • Usage values are used in admission control and for Periodic Contention-Free Virtual Carrier Sense (PCF-VCS). [0071]
  • 3.2 Admission Control and Maintenance Rules [0072]
  • When a new message stream requiring QoS arrives, the source Protocol Adaptation Layer (PAL) sends a request to the source MAC to create a new CF session. The source MAC must determine that there is sufficient time available on the medium each CF period to support the request, and that the destination MAC has the resources needed for the stream. The request contains required data rate, packet loss tolerance, and latency information. The required data rate, packet loss tolerance, and latency information combine with the channel characteristics between the source and destination to arrive at an amount of time required per CF period for the new session. Data rate and latency are used to gauge the resources needed at the receiver MAC. If there are insufficient resources at the destination MAC or there is insufficient time within the CF period on the [0073] medium 3, then the source MAC denies its PAL's request. Otherwise, the source MAC starts a new session using a unused CFID, and inserts it at the end of its class in the CF session order.
  • Let E[0074] i be the aggregate usage per Contention Free period of existing class i sessions, and let E be the aggregate usage per Contention Free Period of all CF sessions (classes 4-7). Let E0 be the existing usage of CSMA traffic per Contention Free period. The Ei values should be computed as sum of the smoothed mean and the smoothed mean deviation. Alternatively, the sum of the CBR Equivalents for each session within the class may be used. Let ai be the fraction of the CF Access Interval guaranteed to class i, let a0 be the excess allocation for CSMA traffic, and let G0 be the guaranteed allocation per 25 ms period for CSMA traffic when it is always busy. Then E=ΣEi, i=4,5,6,7, and Σai=1, i=4,5,6,7.
  • Since CSMA/CA traffic may not use its guaranteed busy allocation, the current allocation A[0075] 0 for CSMA traffic is computed as the lesser of its guarantee and the current usage scaled by the excess allocation:
  • A 0=min(G 0,(1+a 0)E 0+0.125) ms.
  • A minimum average time is allowed for CSMA traffic to announce its presence when it is not currently in use. Excess allocation a[0076] 0 is a configurable parameter, 0<a0<1. The allocation Ai for class i in a Contention Free period is then Ai=ai (CFP−A0), where CFP is the Contention Free Period in msec. The per-class fractional guarantees are configurable through MAC Management Entries.
  • The following rules are observed for PCF-CA traffic in classes [0077] 4-7 for network 4. A new stream requesting admission provides a source MAC 12 with its QoS parameters. From these, the source MAC 12 must compute an expected usage time per CF period, u. The request is granted if a destination MAC 14 accepts it and either
  • (1) E+u+A[0078] 0<CFP ms., or (2) Ei+u<Ai.
  • The first rule (1) states that if there is capacity available, then the new session can take it. The second rule (2) states that if there is guaranteed allocation available for its class, the new session can take it. In this case, some other class j that is oversubscribed (i.e., E[0079] j>Aj) may have to terminate or adapt the rate of one or more of its existing sessions.
  • If the [0080] medium 3 is oversubscribed, then E+A0>CFP ms and one or more sessions must be terminated. Each MAC 12, 14, 16 must consider the sessions for which it is the source, and terminate them if required. The newest session in an oversubscribed class (e.g., 154, 156) must be terminated, with this process continuing until the medium is no longer oversubscribed.
  • 4. Periodic Contention Free Virtual Carrier Sense (PCF-VCS) [0081]
  • Operation of PCF-CA mechanism can be improved in noisy environments where medium [0082] 3 experiences noise occasionally disrupting communications by using PCF Virtual Carrier Sense (PCF-VCS). PCF-VCS uses the knowledge of CF session order and usage to obtain reliable performance. Each MAC employs a Contention Free Virtual Carrier Sense (CF-VCS) mechanism to determine when it should start transmission of MPDUs 100 belonging to each of its CF sessions. To do this, each MAC tracks the beginning of each Contention Free Period (CFP) and the Half Period Target Start Time (HPTST), the maximum length first MPDU 100 for each PCF-CA session (e.g., 158 or 164), the contention free load for each class (e.g., 154 or 156), and the total contention free load, which are used for managing the CF sessions.
  • Tracking the beginning of each Contention Free Period (CFP) and the Half Period Target Start Time (HPTST) and the maximum length [0083] first MPDU 100 for each PCF-CA session (e.g., 158 or 164) is used to determine for a MAC 14 when a session 164 can start transmission if the MAC 14 desiring to start the session 164 does not observe communications from MAC 12 that normally broadcasts its predecessor session 158. Tracking the contention free load for each class (e.g., 154 or 156), and the total contention free load are used to determine when a low priority session must cease transmission to allow other higher priority traffic access to the medium 3. The PCF-VCS mechanism is used to maintain the integrity of the contention free interval under noisy channel conditions, or in cases of hidden stations, overlapping networks or when an active session is suddenly terminated (such as the MAC 12 being unplugged or disconnected from medium 3). The PCF-VCS mechanism is also used for admission control of PCF-CA traffic and timing of CSMA/CA traffic and for fairness.
  • For communication over an alternating current (AC) power line, the contention free intervals may be approximately periodic, and approximately synchronized with the 50 or 60 Hz power cycle (e.g., using a 25 msec period between onset of contention free intervals means that each period corresponds to three 8.33 msec half-cycles of a 60 Hz power cycle and two and [0084] half 10 msec half-cycles of a 50 Hz power cycle). Approximately synchronizing the contention free intervals to the power cycle has the advantage that channel adaptation (e.g., tone maps) tends to need less adjustment from one contention free interval to the next, as noise on the power line tends to be correlated with the phase of the power cycle.
  • Since some power line noise is synchronous to the power cycle, to avoid a particular session being trapped on a portion of the power cycle with high noise, the contention-free intervals may be chosen to synchronize so that each session generally occupies a different portion of a line cycle on a repeating basis (e.g., the occupied portion of the line cycle could repeatedly advance by a quarter of the power cycle). This provides two advantages for short duration traffic. First, the session will not get trapped on a portion of the line cycle that is much worse than another portion, and thus the throughput will be closer to average for the power line channel rather than worst case. Second, a better adaptation can be achieved because the transmitter/receiver pair can adapt based on transmissions to most, if not all, of the line cycle rather than only a small portion. [0085]
  • 5. Virtual TDMA Implementation [0086]
  • Another implementation that incorporates some features of the invention, and which we refer to as virtual TDMA (vTDMA), is as follows. [0087]
  • The virtual TDMA implementation can be used in a network with a plurality of stations using a CSMA medium sharing mechanism. Virtual TDMA (vTDMA) allows any station to dynamically reserve a periodic slot, of arbitrary pitch (time separation) and duration, during which it will have exclusive access to the medium. These periodic slots allow a station to provide strict guarantees on QoS to its data stream, and to overcome hidden nodes. Multiple vTDMA sessions can be set up by stations in a distributed manner based on their knowledge of other ongoing vTDMA sessions in the network. [0088]
  • The operation of vTDMA can be conceptually divided into three phases. [0089]
  • 1. vTDMA Session Setup Phase: This is the first phase. During this phase, the station takes various actions that will ensure that all other stations have knowledge of the new vTDMA session. [0090]
  • 2. vTDMA Session Maintenance Phase: This is the second phase, and begins generally after the end of the first phase. During this phase, the station takes various actions to update all station on the ongoing vTDMA session. [0091]
  • 3. vTDMA Session Termination Phase: This is the third and final phase. During this phase, the station takes various actions to ensure that all stations are informed of the termination of the vTDMA session. [0092]
  • The specific design of vTDMA can be tailored for a variety of CSMA systems. For example, the design of vTDMA might take into consideration the underlying CSMA protocol and packet formats, the network environments in which the system is intended to operate (e.g., hidden nodes, interference), and the guarantees on QoS that the station is intended to provide. [0093]
  • The following sections include details on each of the three vTDMA phases along with various implementation options. [0094]
  • 5.1 vTDMA Session Setup Phase [0095]
  • During the vTDMA session setup phase, the station propagates the new vTDMA session information to all other stations in the network. The session setup information may include: [0096]
    TABLE 5
    vTDMA Session Setup Information
    Session ID Unique session identifier
    Source Address of the station that initiated the
    Address session
    Destination Address of the station that is the intended
    Address receiver(s)
    Session Start Time at which the session starts
    Time
    Session Periodic interval at which the vTDMA session
    Period starts
    Slot Length Length of time for which the vTDMA session will
    have exclusive access to the channel during each
    session period
  • This vTDMA session setup information is broadcast to all (or a plurality of) other stations by means of broadcast packets during regular CSMA access periods. Typical CSMA protocols have a packet structure with a header. This header can also be used to propagate the session setup information. Some possible approaches for this involve blasting (channel access without proper contention) or contention in the time slots during which the vTDMA session is intended to be setup. [0097]
  • For CSMA protocols where the amount of information that can be transmitted in the header is limited, all stations in the network can be configured to understand a fixed number of vTDMA session types (for example, a fixed period for all TDMA sessions eliminates the need for transmitting session period information). [0098]
  • The end result of this phase is that all nodes that could potentially interfere (i.e., cause collision) with the vTDMA session have knowledge of the new vTDMA session, and hence defer during the exclusive access slots. [0099]
  • 5.2 vTDMA Session Maintenance Phase [0100]
  • During the vTDMA session maintenance phase, the station periodically broadcasts updates on the vTDMA session parameters. This provides a means to dynamically control the vTDMA session. This information can be broadcast to all stations using a broadcast packet during the regular CSMA access period or during the allocated slot. This information can also be propagated as part of the header field of the packet. The session maintenance information may include: [0101]
    TABLE 6
    vTDMA Session Maintenance Information
    Session ID Unique Session identifier
    Source Address of the station that initiated the
    Address session
    Destination Address of the station(s) that is (are) the
    Address intended receiver(s)
    Slot Length Length of time for which vTDMA session will
    have exclusive access to the channel during
    each session period
    Slot Start Time at which the vTDMA slot starts
    Time
  • Alternative implementations can also use a combination of broadcast packets and information in the header field to maintain the vTDMA session. For example, in scenarios where the slot length could potentially vary for each vTDMA slot, the header can be used to propagate slot length information of current and/or subsequent slots, while the other maintenance information is sent through broadcast packets. [0102]
  • The end result of this phase is a dynamic and uninterrupted vTDMA session with all stations in the network properly synchronized to the ongoing vTDMA session. [0103]
  • 5.3 vTDMA Session Termination Phase [0104]
  • During the vTDMA session termination phase, the station notifies all other stations about the termination of the active vTDMA session. This can be accomplished by broadcast packets transmitted in the regular CSMA access period or during the allocated slots. This information can also be propagated as part of the header field of the packet. This session termination information may include: [0105]
    TABLE 7
    vTDMA Session Termination Information
    Session ID Unique Session identifier
    Source Address of the station that initiated the
    Address session
    Destination Address of the station that is the intended
    Address receiver(s)
    Session Termi- Time at which the vTDMA session ends
    nation Time
  • Other implementations can choose to combine various vTDMA phases to provide for efficient implementation. For example, the session maintenance phase can be combined with the session termination phase, thus reducing the overhead required to propagate information. [0106]
  • Other implementations could reduce the overhead associated with the described vTDMA implementation. Apart from the overhead involved in propagation of session setup, maintenance and termination information, all stations may also take steps to defer from accessing the medium if their transmissions could collide with an ongoing vTDMA session. Another implementation could minimize this overhead by concatenating various vTDMA sessions into a single large contiguous (or back to back) vTDMA session. [0107]
  • Certain network installations in which vTDMA is required to operate can have legacy stations that do not implement vTDMA. In that situation, vTDMA can be tailored to operate in the network by a combination of graceful contention during the period slots with other deference mechanisms to prevent a legacy node from colliding with the vTDMA session. Certain network installations in which vTDMA is required to operate can have hidden stations. In that situation, vTDMA can be tailored to operate efficiency by having the vTDMA session setup, maintenance and termination information propagated (or repeated) using select stations in the network. For example, implementations can choose the designated receiver of the vTDMA transmission to repeat the information, for example in the acknowledgment transmission, thus ensuring all stations that hear the transmitter and/or the receiver from deferring during the vTDMA session. [0108]
  • Many other implementations of the invention other than those described above are within the invention, which is defined by the following claims. For example, although periodic contention free intervals have been used in the described implementations, other implementations could have non-periodic but regularly-repeated contention free intervals. [0109]

Claims (57)

what is claimed is:
1. A method of operating in a network in which a plurality stations communicate over a shared medium, comprising
using a carrier sense multiple access (CSMA) service for ordinary communication between the plurality of stations;
having a first station that desires to establish a first session of regularly repeated contention-free transmission intervals broadcast information descriptive of the first session to the other stations, wherein the first station can be any of the plurality of stations; and
having other stations that receive the broadcast from the first station defer from transmitting during the contention-free intervals of the first session.
2. The method of claim 1 further comprising distributing control over initiation and makeup of transmissions within the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate a transmission within the contention free interval.
3. The method of claim 2 further comprising distributing control over the maintenance and termination of transmissions within the contention free interval to the plurality of stations so that any of the plurality of stations can independently terminate a transmission within the contention free interval.
4. The method of claim 3 wherein the plurality of stations act as peers with respect to one another in initiating, maintaining, and terminating transmissions within the contention free interval.
5. A method of operating in a network in which a plurality of stations communicate over a shared medium, comprising
providing regularly repeated contention free intervals;
providing CSMA communication during times outside the contention free intervals; and
distributing control over the initiation and makeup of the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate a transmission within the contention free interval.
6. The method of claim 5 further comprising distributing control over the maintenance and termination of transmissions within the contention free interval to the plurality of stations so that any of the plurality of stations can independently terminate a transmission within the contention free interval.
7. The method of claim 6 wherein the plurality of stations act as peers with respect to one another in initiating, maintaining, and terminating transmissions within the contention free interval.
8. The method of claim 1 or 5 wherein the regularly repeated contention free interval is approximately periodic.
9. The method of claim 1 or 5 wherein the contention free interval supports a plurality of transmissions, each using a different time segment within the contention free interval, so that a plurality of data streams can be transmitted using the contention free interval, with each data stream generally assigned to one of the different time segments.
10. The method of claim 9 wherein any of the plurality of stations is capable of independently inserting a further transmission into the contention free interval.
11. The method of claim 9 wherein at least one data stream is assigned to a plurality of different time segments spaced apart within the same contention free interval, thereby reducing latency for the at least one data stream.
12. The method of claim 11 wherein there are two different time segments from the same contention free interval assigned to the same data stream, with one time segment at or near the start of the interval, and the other time segment at or near the midpoint of the interval.
13. The method of claim 10 wherein each of the plurality of stations keeps track of the number of transmissions being supported by the contention free interval and the amount of time used by each of the transmissions, so that the station can make a determination whether the contention free interval has sufficient remaining capacity to support a further transmission by the station.
14. The method of claim 9 wherein each of the stations sending a transmission during the contention free interval begins transmitting in response to recognizing that the transmission immediately prior to it has concluded.
15. The method of claim 14 wherein a transmission that is concluding includes a hand-off indication near the end of its transmission, and the transmission that follows is initiated based on receipt of the hand-off indication and the identity of the transmission that is concluding.
16. The method of claim 9 wherein each station independently keeps track of the usage of the contention free interval to determine whether there is sufficient time available in the interval to support a further transmission that the station has been asked to initiate.
17. The method of claim 9 wherein information characterizing each of the plurality of transmissions is conveyed to substantially all of the plurality of stations.
18. The method of claim 17 wherein the information characterizing a transmission includes information characterizing the temporal location of the transmission within the contention free interval.
19. The method of claim 16 wherein the information characterizing a particular transmission is conveyed to other stations not only by the station making the particular transmission but by other stations that receive the information and retransmit it to other stations, thereby increasing the likelihood that the information will be conveyed to all stations.
20. The method of claim 9 wherein transmissions of different priority classes can share the contention free interval, and access to the contention free interval is given to a transmission of a higher priority class if insufficient time is available within the interval to support all transmissions seeking to use the interval.
21. The method of claim 20 wherein a transmission can be terminated if transmissions of higher priority consume enough of the contention free interval that insufficient time remains for continuing the transmission.
22. The method of claim 21 wherein the transmissions terminated are terminated following a last-in, first-out protocol.
23. The method of claim 21 wherein a limit is set on the fraction of time within the contention free interval that may be used by transmissions of a particular priority class.
24. The method of claim 23 wherein different fractions of the contention free interval are assigned to different priority classes, so that some priority classes are allocated more of the contention free interval than other priority classes.
25. The method of claim 20 wherein the sequence of transmissions within the contention free interval is ordered by priority class, with transmissions of higher priority classes occurring earlier than transmissions of lower priority classes.
26. The method of claim 20 wherein the sequence of transmissions within the contention free interval is ordered by sequence in which transmission was initiated, with earlier initiated transmissions occurring earlier than later initiated transmissions.
27. The method of claim 9 wherein short time intervals are provided between successive transmissions within the contention free interval, so that a station desiring to initiate a new transmission may begin the transmission during the short time interval, and other stations will learn that the new transmission has been inserted at that location in the contention free interval.
28. The method of claim 25 wherein a short time interval is provided following the last transmission of each priority class, so that a station desiring to initiate a new transmission with a particular priority class may begin the transmission during the short time interval following the last transmission of that priority class.
29. The method of claim 25 wherein a station desiring to initiate a transmission of a particular priority class will generally initiate the transmission between the last transmission of the same or higher priority class and the start of the first transmission of a lower priority class, thereby maintaining a priority order to the sequence of transmissions within the contention free interval.
30. The method of claim 29 wherein a short time interval is provided following the last transmission of each priority class, and the transmission of the particular priority class is initiated during the short time interval between the last transmission of the same or higher priority class and the start of the first transmission of a lower priority class..
31. The method of claim 1 or 5 wherein each of the stations independently follows a set of admission rules common to the plurality of stations.
32. The method of claim 9 wherein each transmission is assigned a unique identifier, and the identifier is conveyed to the other stations along with information characterizing the transmission.
33. The method of claim 9 wherein the length of the contention free interval varies with demand for contention free transmissions.
34. The method of claim 1 wherein in addition to the other stations that defer from transmitting during the contention-free intervals there are a plurality of legacy stations that lack the capability to defer.
35. The method of claim 16 wherein stations rely on observation of the network to independently keep track of the usage of the contention free interval to determine whether there is sufficient time available in the interval to support a further transmission that the station has been asked to initiate.
36. The method of claim 22 wherein the transmissions terminated are terminated following a last-in, first-out protocol within the same priority class.
37. The method of claim 1 or 5 wherein the shared medium is an alternating current (AC) power line.
38. The method of claim 37 wherein the contention free intervals are approximately synchronized to the power cycle.
39. The method of claim 37 wherein the contention free interval supports a plurality of transmissions, each using a different time segment within the contention free interval, so that a plurality of data streams can be transmitted using the contention free interval, with each data stream generally assigned to one of the different time segments, and wherein the contention free interval duration is chosen so that at least some of the transmissions occupy a different portion of the power cycle during successive contention free intervals.
40. The method of claim 38 wherein the contention free interval supports a plurality of transmissions, each using a different time segment within the contention free interval, so that a plurality of data streams can be transmitted using the contention free interval, with each data stream generally assigned to one of the different time segments, and wherein the contention free interval duration is chosen so that at least some of the transmissions occupy a different portion of the power cycle on a repeating basis.
41. The method of claim 37 wherein the contention free interval supports a plurality of transmissions, each using a different time segment within the contention free interval, so that a plurality of data streams can be transmitted using the contention free interval, with each data stream generally assigned to one of the different time segments, and wherein the contention free interval duration is chosen so that the transmissions are intentionally not synchronized to the line cycle so that each transmission generally occupies a different portion of the power line cycle during successive contention free intervals.
42. The method of claim 1 wherein the information descriptive of the first session comprises the duration of the contention-free intervals.
43. The method of claim 1 wherein the information descriptive of the first session comprises a period of the contention-free intervals.
44. The method of claim 1 wherein the information descriptive of the first session comprises the time at which the first session will begin.
45. The method of claim 1 wherein the information descriptive of the first session comprises the address or addresses of the station or stations that are the intended receivers of the data to be transmitted during the first session.
46. The method of claim 1 wherein the information descriptive of the first session comprises the address of the station that is establishing the first session.
47. The method of claim 1 wherein a second station desires to establish a second session of regularly-repeated contention-free transmission intervals, wherein the second station can be any of the plurality of stations, and wherein the method further comprises:
having the second station determine the timing of the second session taking into account the information descriptive of the first session;
having the second station broadcast information descriptive of the second session to the other stations; and
having the other stations that receive the broadcast from the second station defer from transmitting during the contention-free intervals of the first and the second sessions.
48. The method of claim 1 wherein the method further comprises having the first station transmit maintenance information during the first session.
49. The method in claim 48 wherein the maintenance information descriptive of the first session includes a revised duration for the contention-free intervals.
50. The method in claim 48 wherein the maintenance information descriptive of the first session includes the time at which the subsequent contention-free interval starts.
51. The method of claim 1 wherein the method further comprises having the first station transmit termination information during the first session, the termination information including the time at which the first session will end.
52. The method of claims 1, 48, or 49 wherein at least a portion of the information descriptive of the first session is transmitted in one or more header fields of packets broadcast over the network.
53. The method of claims 1, 48, or 49 wherein at least a portion of the information descriptive of the first session is transmitted in the packet body of packets broadcast over the network.
54. The method of claims 1, 48, or 49 wherein at least a portion of the information descriptive of the first session is fixed ahead of time and is not included in the information descriptive of the first session.
55. The method of claims 1, 48, or 49 wherein the information descriptive of the first session is broadcast using the CSMA service.
56. The method of claims 1, 48, or 49 wherein the information descriptive of the first session is broadcast using the regularly-repeated contention-free session.
57. The method of claims 1, 48, or 49 wherein one or more stations other than the first station may propagate the session information generated by the first station.
US10/695,371 2002-10-21 2003-10-21 Contention-free access intervals on a CSMA network Expired - Fee Related US7623542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/695,371 US7623542B2 (en) 2002-10-21 2003-10-21 Contention-free access intervals on a CSMA network

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42007102P 2002-10-21 2002-10-21
US50473303P 2003-09-18 2003-09-18
US10/695,371 US7623542B2 (en) 2002-10-21 2003-10-21 Contention-free access intervals on a CSMA network

Publications (2)

Publication Number Publication Date
US20040136396A1 true US20040136396A1 (en) 2004-07-15
US7623542B2 US7623542B2 (en) 2009-11-24

Family

ID=32179781

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/695,371 Expired - Fee Related US7623542B2 (en) 2002-10-21 2003-10-21 Contention-free access intervals on a CSMA network

Country Status (4)

Country Link
US (1) US7623542B2 (en)
EP (1) EP1554848A4 (en)
AU (1) AU2003284317A1 (en)
WO (1) WO2004038980A2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037853A1 (en) * 2002-05-28 2004-02-26 Gary Borodic Composition for therapeutic and cosmetic botulinum toxin
US20050070317A1 (en) * 2003-09-30 2005-03-31 Intel Corporation Systems and methods for contention control in wireless networks
US20050122904A1 (en) * 2003-12-04 2005-06-09 Kumar Anil K. Preventative congestion control for application support
US20060052088A1 (en) * 2002-10-17 2006-03-09 Pavon Javier D P Scheduler system and method thereof
US20060146753A1 (en) * 2005-01-05 2006-07-06 Samsung Electronics Co., Ltd. Method, apparatus and system for controlling ARQ-related timers in broadband wireless access communication system
US20060187817A1 (en) * 2003-02-14 2006-08-24 Joachim Charzinski Access control for a packet-oriented network, taking into account resilience requirements
US20060226958A1 (en) * 2005-03-16 2006-10-12 Domosys Corporation System and method for power line communication
US20070025386A1 (en) * 2005-07-27 2007-02-01 Neal Riedel Bandwidth management in a powerline network
US20070025383A1 (en) * 2005-07-27 2007-02-01 Srinivas Katar Managing contention-free time allocations in a network
US20070025266A1 (en) * 2005-07-27 2007-02-01 Neal Riedel Communicating schedule and network information in a powerline network
WO2007016034A2 (en) 2005-07-27 2007-02-08 Conexant Systems, Inc. Bandwidth management in a powerline network
US20070058732A1 (en) * 2005-07-27 2007-03-15 Neal Riedel Flexible scheduling of resources in a noisy environment
US20070070896A1 (en) * 2005-09-29 2007-03-29 Alapuranen Pertti O System and method for selecting a medium access technique for transmitting packets over a network
US20070116035A1 (en) * 2005-11-03 2007-05-24 Samsung Electronics Co., Ltd. Method and system for addressing channel access unfairness in IEEE 802.11n wireless networks
US20070153830A1 (en) * 2006-01-05 2007-07-05 Xhafa Ariton E Methods and apparatus to provide fairness for wireless local area networks that use extended physical layer protection mechanisms
US20080056149A1 (en) * 2006-08-30 2008-03-06 Microsoft Corporation Wireless mesh networking with multiple simultaneous transmissions by nearby network nodes
US20090161678A1 (en) * 2007-12-24 2009-06-25 Industrial Technology Research Institute Method and apparatus of transmitting data via a multi-protocol single-medium network
US20100014423A1 (en) * 2004-12-22 2010-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Transmission in a Shared Medium Having Different Access Modes
US20100110911A1 (en) * 2008-11-05 2010-05-06 Zhanping Yin Method and system for conserving power in powerline network having multiple logical networks
US20100135318A1 (en) * 2008-12-03 2010-06-03 Zhanping Yin Enhanced power saving methods and systems for powerline network
US8085775B1 (en) * 2006-07-31 2011-12-27 Sable Networks, Inc. Identifying flows based on behavior characteristics and applying user-defined actions
US20120026931A1 (en) * 2007-03-12 2012-02-02 Conexant Systems Inc. Systems and Methods For Reliable Broadcast and Multicast Transmission Over Wireless Local Area Network
US20130028110A1 (en) * 2011-07-26 2013-01-31 Kabushiki Kaisha Toshiba Transmitting device and transmitting method
US8416887B2 (en) 2005-07-27 2013-04-09 Qualcomm Atheros, Inc Managing spectra of modulated signals in a communication network
US8493995B2 (en) 2007-05-10 2013-07-23 Qualcomm Incorporated Managing distributed access to a shared medium
US20130238922A1 (en) * 2011-10-14 2013-09-12 Curtis Ling Method and System For a Low-Power Client in a Wide Area Network
US20130259005A1 (en) * 2012-03-30 2013-10-03 Sudarshan Kulkarni Controlled Client Roaming
US8660013B2 (en) 2010-04-12 2014-02-25 Qualcomm Incorporated Detecting delimiters for low-overhead communication in a network
US8861514B1 (en) * 2007-09-27 2014-10-14 Marvell International Ltd. Method and apparatus for egress jitter pacer
US20140348150A1 (en) * 2003-05-07 2014-11-27 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US9013989B2 (en) 2003-11-24 2015-04-21 Qualcomm Incorporated Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144735B2 (en) * 2004-02-10 2012-03-27 Qualcomm Incorporated Transmission of signaling information for broadcast and multicast services
US7653034B2 (en) * 2004-11-09 2010-01-26 Hong Kong Applied Science And Technology Research Institute Co., Ltd. System and method for controlling access to a wireless medium
JP4852246B2 (en) * 2005-01-04 2012-01-11 パナソニック株式会社 COMMUNICATION DEVICE, INTEGRATED CIRCUIT, AND COMMUNICATION METHOD
US7558294B2 (en) 2005-07-27 2009-07-07 Intellon Corporation Time synchronization in a network
US7729372B2 (en) 2005-07-27 2010-06-01 Sharp Corporation Communicating in a network that includes a medium having varying transmission characteristics
WO2007012819A1 (en) * 2005-07-29 2007-02-01 British Telecommunications Public Limited Company Bandwidth allocation in a wireless network
JP2007074377A (en) * 2005-09-07 2007-03-22 Matsushita Electric Ind Co Ltd Transmission rate control device and communication system
DE602005022126D1 (en) * 2005-11-17 2010-08-12 Freescale Semiconductor Inc METHOD AND DEVICE FOR MANAGING MULTIPLE FRAMES
US20100020784A1 (en) * 2007-01-29 2010-01-28 Main.Net Communications Ltd. Apparatus, network and method for implementing tdm channels over a csma shared media network
JP5121054B2 (en) 2007-06-01 2013-01-16 パナソニック株式会社 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND COMMUNICATION SYSTEM
US8112358B2 (en) 2007-06-04 2012-02-07 Qualcomm Atheros, Inc. Authorizing customer premise equipment on a sub-network
IL184490A (en) * 2007-07-09 2011-06-30 Mariana Goldhamer Method and apparatus for combining transmissions of different communication protocols in a wireless communication system
JP2011503918A (en) * 2007-09-13 2011-01-27 アント−アドバンスド ネットワーク テクノロジーズ オイ Method and system for real-time wireless collection of multi-channel digital audio
JP5152967B2 (en) 2007-10-12 2013-02-27 パナソニック株式会社 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND COMMUNICATION SYSTEM,
US8385272B2 (en) * 2007-10-24 2013-02-26 Hitachi, Ltd. System and method for burst channel access over wireless local area networks
US8705559B2 (en) 2007-11-14 2014-04-22 Panasonic Corporation Communication apparatus, communication method, and integrated circuit
US8670395B2 (en) * 2008-06-26 2014-03-11 Samsung Electronics Co., Ltd. System and method for priority driven contention scheme for supporting enhanced QoS in a wireless communication network
US7881274B2 (en) * 2008-06-30 2011-02-01 Xg Technology, Inc. Tri-core architecture for reducing MAC layer processing latency in base stations
US8824495B2 (en) * 2008-07-02 2014-09-02 Samsung Electronics Co., Ltd. System and method for reservation of disjoint time intervals in wireless local area networks
US8526464B2 (en) * 2010-01-26 2013-09-03 Kapsch Trafficcom Ag Adaptive contention window in discontinuous wireless communication channels
CN102859895B (en) 2010-04-19 2015-07-08 三星电子株式会社 Method and system for multi-user transmit opportunity for multi-user multiple-input-multiple-output wireless networks
US8953578B2 (en) 2010-06-23 2015-02-10 Samsung Electronics Co., Ltd. Method and system for contention avoidance in multi-user multiple-input-multiple-output wireless networks
US9232543B2 (en) 2010-07-07 2016-01-05 Samsung Electronics Co., Ltd. Method and system for communication in multi-user multiple-input-multiple-output wireless networks
US8917743B2 (en) 2010-10-06 2014-12-23 Samsung Electronics Co., Ltd. Method and system for enhanced contention avoidance in multi-user multiple-input-multiple-output wireless networks
US9807796B2 (en) 2011-09-02 2017-10-31 Qualcomm Incorporated Systems and methods for resetting a network station
US8948081B2 (en) * 2012-04-13 2015-02-03 Intel Corporation Device, system and method of multiple-stream wireless communication
US9232502B2 (en) 2012-10-31 2016-01-05 Samsung Electronics Co., Ltd. Method and system for uplink multi-user multiple-input-multiple-output communication in wireless networks
US9419752B2 (en) 2013-03-15 2016-08-16 Samsung Electronics Co., Ltd. Transmission opportunity operation of uplink multi-user multiple-input-multiple-output communication in wireless networks
US9295074B2 (en) 2013-09-10 2016-03-22 Samsung Electronics Co., Ltd. Acknowledgement, error recovery and backoff operation of uplink multi-user multiple-input-multiple-output communication in wireless networks

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682324A (en) * 1985-10-11 1987-07-21 General Electric Company Implicit preemptive lan
US5432848A (en) * 1994-04-15 1995-07-11 International Business Machines Corporation DES encryption and decryption unit with error checking
US5481535A (en) * 1994-06-29 1996-01-02 General Electric Company Datagram message communication service employing a hybrid network
US5629942A (en) * 1991-07-08 1997-05-13 U.S. Philips Corporation Method and arrangement for channel allocation for data transmission between a main station and a plurality of substations
US5793861A (en) * 1996-06-11 1998-08-11 Executone Information Systems, Inc. Transaction processing system and method
US6074086A (en) * 1999-04-26 2000-06-13 Intellon Corporation Synchronization of OFDM signals with improved windowing
US6097703A (en) * 1994-12-19 2000-08-01 Salbu Research And Development (Proprietary Limited) Multi-hop packet radio networks
US6098179A (en) * 1998-01-22 2000-08-01 Digital Equipment Corporation Method and apparatus for performing error detection
US6111919A (en) * 1999-01-20 2000-08-29 Intellon Corporation Synchronization of OFDM signals
US6245770B1 (en) * 1995-07-05 2001-06-12 E. I. Du Pont De Nemours And Company Fungicidal pyrimidinones
US6263445B1 (en) * 1998-06-30 2001-07-17 Emc Corporation Method and apparatus for authenticating connections to a storage system coupled to a network
US6269132B1 (en) * 1999-04-26 2001-07-31 Intellon Corporation Windowing function for maintaining orthogonality of channels in the reception of OFDM symbols
US20020012320A1 (en) * 2000-03-16 2002-01-31 Ogier Richard G. Mobile ad hoc extensions for the internet
US20020061031A1 (en) * 2000-10-06 2002-05-23 Sugar Gary L. Systems and methods for interference mitigation among multiple WLAN protocols
US6421725B1 (en) * 2000-05-04 2002-07-16 Worldcom, Inc. Method and apparatus for providing automatic notification
US6430192B1 (en) * 1998-05-28 2002-08-06 3Com Technologies Method for transmitting multimedia packet data using a contention-resolution process
US20020115458A1 (en) * 2001-02-21 2002-08-22 Nippon Telegraph And Telephone Corporation Radio communication system
US20020137462A1 (en) * 2001-03-20 2002-09-26 Koninklijke Philips Electronics N.V. Communication system and method
US6469992B1 (en) * 1997-10-22 2002-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Intelligent packet retransmission scheme
US6567416B1 (en) * 1997-10-14 2003-05-20 Lucent Technologies Inc. Method for access control in a multiple access system for communications networks
US20030181204A1 (en) * 2001-11-02 2003-09-25 At&T Corp. Staggered startup for cyclic prioritized multiple access (CPMA) contention-free sessions
US20030217182A1 (en) * 2002-05-15 2003-11-20 Xiaodong Liu Interface architecture
US20040064509A1 (en) * 2002-09-26 2004-04-01 Sharp Laboratories Of America, Inc. Transmitting data across a contention channel in a centralized network
US6907044B1 (en) * 2000-08-04 2005-06-14 Intellon Corporation Method and protocol to support contention-free intervals and QoS in a CSMA network
US6909723B1 (en) * 2000-08-04 2005-06-21 Intellon Corporation Segment bursting with priority pre-emption and reduced latency
US20050192011A1 (en) * 2004-02-13 2005-09-01 Samsung Electronics Co., Ltd. Method and apparatus for performing fast handover through fast ranging in a broadband wireless communication system
US20050190785A1 (en) * 2004-02-26 2005-09-01 Yonge Lawrence W.Iii Channel adaptation synchronized to periodically varying channel
US20070025383A1 (en) * 2005-07-27 2007-02-01 Srinivas Katar Managing contention-free time allocations in a network
US7280517B2 (en) * 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
US7369579B2 (en) * 2002-09-25 2008-05-06 Oleg Logvinov Method and system for timing controlled signal transmission in a point to multipoint power line communications system

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806885A (en) 1972-12-29 1974-04-23 Ibm Polling mechanism for transferring control from one data processing system or subsystem to another
US4593280A (en) 1982-03-05 1986-06-03 Burroughs Corporation Write token regeneration in a timed token ring
US4569044A (en) 1983-05-25 1986-02-04 Case Western Reserve University Distributed data communication system
US4581734A (en) 1984-02-14 1986-04-08 Rosemount Inc. Multipriority communication system
US4677612A (en) 1984-02-14 1987-06-30 Rosemount Inc. Communication system with subdivided transmission cycles
US4630261A (en) 1984-07-30 1986-12-16 International Business Machines Corp. Integrated buffer management and signaling technique
GB8606217D0 (en) 1986-03-13 1986-04-16 Univ Strathclyde Local area network priority control system
US4720850A (en) 1986-03-14 1988-01-19 American Telephone And Telegraph Company At&T Bell Laboratories Communication system control arrangement
JPS62239641A (en) 1986-04-11 1987-10-20 Hitachi Ltd Multiple address communication system
US5003539A (en) 1986-04-11 1991-03-26 Ampex Corporation Apparatus and method for encoding and decoding attribute data into error checking symbols of main data
US4726018A (en) 1986-08-25 1988-02-16 International Business Machines Corporation Method of providing priority access to a transmission communication ring
EP0313707B1 (en) 1987-10-30 1993-03-31 International Business Machines Corporation Data integrity securing means
GB2217152A (en) 1988-02-10 1989-10-18 Plessey Co Plc Data packet switching
US5001472A (en) 1988-02-11 1991-03-19 Datapoint Corporation Uneven token distribution technique for token based local area network
US4881241A (en) 1988-02-24 1989-11-14 Centre National D'etudes Des Telecommunications Method and installation for digital communication, particularly between and toward moving vehicles
US5105423A (en) 1988-05-17 1992-04-14 Ricoh Company, Ltd. Digital transmission device having an error correction mode and method for shifting down a data transmission rate
US5121396A (en) 1988-10-27 1992-06-09 International Business Machines Corp. Preservation of crc integrity upon intentional data alteration during message transmission
US5140584A (en) 1989-03-01 1992-08-18 Kabushiki Kaisha Toshiba Packet communication system and method of controlling same
US5081678A (en) 1989-06-28 1992-01-14 Digital Equipment Corporation Method for utilizing an encrypted key as a key identifier in a data packet in a computer network
US5214646A (en) 1990-01-31 1993-05-25 Amnon Yacoby System and method for interconnecting local area networks
FR2658017B1 (en) 1990-02-06 1992-06-05 France Etat METHOD FOR BROADCASTING DIGITAL DATA, ESPECIALLY FOR BROADBAND BROADCASTING TO MOBILES, WITH TIME-FREQUENCY INTERLACING AND ASSISTING THE ACQUISITION OF AUTOMATIC FREQUENCY CONTROL, AND CORRESPONDING RECEIVER.
FR2658016B1 (en) 1990-02-06 1994-01-21 Etat Francais Cnet METHOD FOR BROADCASTING DIGITAL DATA, ESPECIALLY FOR BROADBAND BROADCASTING TO MOBILES, WITH TIME-FREQUENCY INTERLACING AND CONSISTENT DEMODULATION, AND CORRESPONDING RECEIVER.
FR2660131B1 (en) 1990-03-23 1992-06-19 France Etat DEVICE FOR TRANSMITTING DIGITAL DATA WITH AT LEAST TWO LEVELS OF PROTECTION, AND CORRESPONDING RECEPTION DEVICE.
US5488632A (en) 1990-03-30 1996-01-30 National Transcommunications Limited Transmission and reception in a hostile interference environment
EP0453863A2 (en) 1990-04-27 1991-10-30 National Semiconductor Corporation Methods and apparatus for implementing a media access control/host system interface
CA2018301A1 (en) 1990-06-05 1991-12-05 David P. G. Schenkel Packet communication system and method of clearing communication bus
FR2671923B1 (en) 1991-01-17 1993-04-16 France Etat DEVICE FOR CONSISTENT DEMODULATION OF DIGITAL DATA INTERLACED IN TIME AND IN FREQUENCY, WITH ESTIMATION OF THE FREQUENTIAL RESPONSE OF THE TRANSMISSION AND THRESHOLD CHANNEL, AND CORRESPONDING TRANSMITTER.
US5280480A (en) 1991-02-21 1994-01-18 International Business Machines Corporation Source routing transparent bridge
US5339313A (en) 1991-06-28 1994-08-16 Digital Equipment Corporation Method and apparatus for traffic congestion control in a communication network bridge device
US5231634B1 (en) 1991-12-18 1996-04-02 Proxim Inc Medium access protocol for wireless lans
US5555268A (en) 1994-01-24 1996-09-10 Fattouche; Michel Multicode direct sequence spread spectrum
US5896561A (en) 1992-04-06 1999-04-20 Intermec Ip Corp. Communication network having a dormant polling protocol
FR2690029B1 (en) 1992-04-08 1995-03-31 France Telecom Method for transmitting digital paging data, and corresponding paging receiver.
US5426646A (en) 1992-06-25 1995-06-20 The United States Of America As Represented By The Secretary Of The Navy Instantaneous bit-error-rate meter
JPH0677963A (en) 1992-07-07 1994-03-18 Hitachi Ltd Communication system and terminal equipment
DE69322322T2 (en) 1992-07-08 1999-06-17 Koninkl Philips Electronics Nv Chained coding for OFDM transmission
US5343473A (en) 1992-08-07 1994-08-30 International Business Machines Corporation Method of determining whether to use preempt/resume or alternate protocol for data transmission
GB9218874D0 (en) 1992-09-07 1992-10-21 British Broadcasting Corp Improvements relating to the transmission of frequency division multiplex signals
FI91695C (en) 1992-10-05 1994-07-25 Nokia Telecommunications Oy Procedure for prioritizing traffic between local networks that are connected via a backbone network
US5448565A (en) 1992-11-12 1995-09-05 International Business Machines Corp. Multiport LAN bridge
ES2159540T3 (en) 1993-02-08 2001-10-16 Koninkl Philips Electronics Nv RECEIVER, WITH MULTIPLEXOR OF ORTOGONAL FREQUENCY DIVISION, WITH COMPENSATION FOR DIFFERENTIAL DELAYS.
US5504747A (en) 1993-03-03 1996-04-02 Apple Computer, Inc. Economical payload stream routing in a multiple-ring network
EP0616453B1 (en) 1993-03-17 2000-05-31 Koninklijke Philips Electronics N.V. Receiver for differentially encoded PSK signals
US5384777A (en) 1993-04-19 1995-01-24 International Business Machines Corporation Adaptive medium access control scheme for wireless LAN
US5504785A (en) 1993-05-28 1996-04-02 Tv/Com Technologies, Inc. Digital receiver for variable symbol rate communications
JP2967897B2 (en) 1993-07-22 1999-10-25 エヌ・ティ・ティ移動通信網株式会社 Automatic retransmission request data transmission method
SE515335C2 (en) 1993-09-14 2001-07-16 Nec Corp Speed conversion device which can determine a transmission rate as desired
US5515379A (en) 1993-10-18 1996-05-07 Motorola, Inc. Time slot allocation method
FR2712760B1 (en) 1993-11-19 1996-01-26 France Telecom Method for transmitting bits of information by applying concatenated block codes.
US5473602A (en) 1994-03-04 1995-12-05 Nova-Net Communications, Inc. Wireless radio packet switching network
EP0679000A1 (en) 1994-04-22 1995-10-25 Koninklijke Philips Electronics N.V. Soft quantisation
US5436905A (en) 1994-05-16 1995-07-25 Industrial Technology Research Institute Group randomly addressed polling MAC protocol for wireless data
US5636230A (en) 1994-05-31 1997-06-03 Motorola, Inc. Method for eliminating a receiving data unit as a source of excessive resend requests
US5563883A (en) 1994-07-18 1996-10-08 Cheng; Alexander L. Dynamic channel management and signalling method and apparatus
FR2725573B1 (en) 1994-10-11 1996-11-15 Thomson Csf METHOD AND DEVICE FOR CONTROLLING CONGESTION OF SPORADIC EXCHANGES OF DATA PACKETS IN A DIGITAL TRANSMISSION NETWORK
DE69433872T2 (en) 1994-10-26 2005-07-14 International Business Machines Corp. Medium access control scheme for wireless local area networks with interleaved variable length time division frames
US5568476A (en) 1994-10-26 1996-10-22 3Com Corporation Method and apparatus for avoiding packet loss on a CSMA/CD-type local area network using receive-sense-based jam signal
EP0712220A1 (en) 1994-11-08 1996-05-15 International Business Machines Corporation Hop-by-hop flow control in an ATM network
US5818821A (en) 1994-12-30 1998-10-06 Intelogis, Inc. Universal lan power line carrier repeater system and method
US5884040A (en) 1995-01-11 1999-03-16 Sony Corporation Per-packet jamming in a multi-port bridge for a local area network
EP2302809B1 (en) 1995-02-01 2013-06-05 Sony Corporation Multi-channel transmission with interlacing through in-place addressing of RAM memory
JP3130752B2 (en) 1995-02-24 2001-01-31 株式会社東芝 OFDM transmission receiving method and transmitting / receiving apparatus
US5548649A (en) 1995-03-28 1996-08-20 Iowa State University Research Foundation Network security bridge and associated method
US6006017A (en) 1995-05-02 1999-12-21 Motorola Inc. System for determining the frequency of repetitions of polling active stations relative to the polling of inactive stations
US5651009A (en) 1995-05-02 1997-07-22 Motorola, Inc. System and method for hybrid contention/polling protocol collision resolution using a depth first search technique
US5793307A (en) 1995-05-05 1998-08-11 Motorola, Inc. Method and apparatus for a hybrid limited contention and polling protocol
KR0160700B1 (en) 1995-05-24 1998-12-01 김광호 Multiple connection method by using mono-channel
JPH08331095A (en) 1995-05-31 1996-12-13 Sony Corp Communication system
WO1996042155A1 (en) 1995-06-08 1996-12-27 Motorola Inc. Method of encrypting data packets and detecting decryption errors
EP0753947B1 (en) 1995-07-11 2002-11-27 Alcatel Capacity allocation in a multicarrier system
US5615212A (en) 1995-09-11 1997-03-25 Motorola Inc. Method, device and router for providing a contention-based reservation mechanism within a mini-slotted dynamic entry polling slot supporting multiple service classes
US5717689A (en) 1995-10-10 1998-02-10 Lucent Technologies Inc. Data link layer protocol for transport of ATM cells over a wireless link
US5825807A (en) 1995-11-06 1998-10-20 Kumar; Derek D. System and method for multiplexing a spread spectrum communication system
US5737330A (en) 1996-01-11 1998-04-07 Meteor Communications Corporation System and method for the efficient control of a radio communications network
US5706348A (en) 1996-01-29 1998-01-06 International Business Machines Corporation Use of marker packets for synchronization of encryption/decryption keys in a data communication network
US5828677A (en) 1996-03-20 1998-10-27 Lucent Technologies Inc. Adaptive hybrid ARQ coding schemes for slow fading channels in mobile radio systems
US5790541A (en) 1996-04-01 1998-08-04 Motorola, Inc. Apparatus, method, system and system method for distributed routing in a multipoint communication system
TW317058B (en) 1996-04-23 1997-10-01 Ibm Data communication system for a wireless access to an atm network
US5771235A (en) 1996-05-01 1998-06-23 3Com Corporation Scalable CSMA/CD repeater
US5764931A (en) 1996-05-31 1998-06-09 Sun Microsystems, Inc. Method and apparatus for passing bus mastership between processors using predefined bus mastership states
US5818826A (en) 1996-06-17 1998-10-06 International Business Machines Corporation Media access control protocols in a wireless communication network supporting multiple transmission rates
US5732113A (en) 1996-06-20 1998-03-24 Stanford University Timing and frequency synchronization of OFDM signals
US5940399A (en) 1996-06-20 1999-08-17 Mrv Communications, Inc. Methods of collision control in CSMA local area network
US5956338A (en) 1996-07-09 1999-09-21 Ericsson, Inc. Protocol for broadband data communication over a shared medium
US5892769A (en) 1996-08-28 1999-04-06 Motorola Inc. Method and system for prioritized multiple access using contention signatures for contention-based reservation
US5987011A (en) 1996-08-30 1999-11-16 Chai-Keong Toh Routing method for Ad-Hoc mobile networks
US5914959A (en) 1996-10-31 1999-06-22 Glenayre Electronics, Inc. Digital communications system having an automatically selectable transmission rate
JPH10190612A (en) 1996-12-26 1998-07-21 Sony Corp Communication method and receiving device
JP3684727B2 (en) 1996-12-26 2005-08-17 ソニー株式会社 Communication method and receiving apparatus
US5948060A (en) 1997-01-24 1999-09-07 International Business Machines Corporation Speeding-up communication rates on links transferring data structures by a method of handing scatter/gather of storage blocks in commanded computer systems
US5940438A (en) 1997-02-18 1999-08-17 Mitsubishi Electric Information Technology Center America, Inc (Ita) Universal modem for digital video, audio and data communications
US6005894A (en) 1997-04-04 1999-12-21 Kumar; Derek D. AM-compatible digital broadcasting method and system
US5886993A (en) 1997-05-30 1999-03-23 Motorola, Inc. System, device, and method for sharing contention mini-slots among multiple priority classes
US5966412A (en) 1997-06-30 1999-10-12 Thomson Consumer Electronics, Inc. Apparatus and method for processing a Quadrature Amplitude Modulated (QAM) signal
US5841778A (en) 1997-11-21 1998-11-24 Siemens Business Communication Systems, Inc. System for adaptive backoff mechanisms in CSMA/CD networks
WO2002006986A2 (en) * 2000-07-13 2002-01-24 Sharewave, Inc. Quality of service extensions for multimedia applications in wireless computer networks
US6671284B1 (en) * 2000-08-04 2003-12-30 Intellon Corporation Frame control for efficient media access
US7245605B2 (en) * 2001-11-02 2007-07-17 At&T Corp. Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682324A (en) * 1985-10-11 1987-07-21 General Electric Company Implicit preemptive lan
US5629942A (en) * 1991-07-08 1997-05-13 U.S. Philips Corporation Method and arrangement for channel allocation for data transmission between a main station and a plurality of substations
US5432848A (en) * 1994-04-15 1995-07-11 International Business Machines Corporation DES encryption and decryption unit with error checking
US5481535A (en) * 1994-06-29 1996-01-02 General Electric Company Datagram message communication service employing a hybrid network
US6097703A (en) * 1994-12-19 2000-08-01 Salbu Research And Development (Proprietary Limited) Multi-hop packet radio networks
US6245770B1 (en) * 1995-07-05 2001-06-12 E. I. Du Pont De Nemours And Company Fungicidal pyrimidinones
US5793861A (en) * 1996-06-11 1998-08-11 Executone Information Systems, Inc. Transaction processing system and method
US6567416B1 (en) * 1997-10-14 2003-05-20 Lucent Technologies Inc. Method for access control in a multiple access system for communications networks
US6469992B1 (en) * 1997-10-22 2002-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Intelligent packet retransmission scheme
US6098179A (en) * 1998-01-22 2000-08-01 Digital Equipment Corporation Method and apparatus for performing error detection
US6430192B1 (en) * 1998-05-28 2002-08-06 3Com Technologies Method for transmitting multimedia packet data using a contention-resolution process
US6263445B1 (en) * 1998-06-30 2001-07-17 Emc Corporation Method and apparatus for authenticating connections to a storage system coupled to a network
US6111919A (en) * 1999-01-20 2000-08-29 Intellon Corporation Synchronization of OFDM signals
US6269132B1 (en) * 1999-04-26 2001-07-31 Intellon Corporation Windowing function for maintaining orthogonality of channels in the reception of OFDM symbols
US6074086A (en) * 1999-04-26 2000-06-13 Intellon Corporation Synchronization of OFDM signals with improved windowing
US20020012320A1 (en) * 2000-03-16 2002-01-31 Ogier Richard G. Mobile ad hoc extensions for the internet
US6421725B1 (en) * 2000-05-04 2002-07-16 Worldcom, Inc. Method and apparatus for providing automatic notification
US6907044B1 (en) * 2000-08-04 2005-06-14 Intellon Corporation Method and protocol to support contention-free intervals and QoS in a CSMA network
US6909723B1 (en) * 2000-08-04 2005-06-21 Intellon Corporation Segment bursting with priority pre-emption and reduced latency
US20020061031A1 (en) * 2000-10-06 2002-05-23 Sugar Gary L. Systems and methods for interference mitigation among multiple WLAN protocols
US20020115458A1 (en) * 2001-02-21 2002-08-22 Nippon Telegraph And Telephone Corporation Radio communication system
US20020137462A1 (en) * 2001-03-20 2002-09-26 Koninklijke Philips Electronics N.V. Communication system and method
US20030181204A1 (en) * 2001-11-02 2003-09-25 At&T Corp. Staggered startup for cyclic prioritized multiple access (CPMA) contention-free sessions
US7280517B2 (en) * 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
US20030217182A1 (en) * 2002-05-15 2003-11-20 Xiaodong Liu Interface architecture
US7369579B2 (en) * 2002-09-25 2008-05-06 Oleg Logvinov Method and system for timing controlled signal transmission in a point to multipoint power line communications system
US20040064509A1 (en) * 2002-09-26 2004-04-01 Sharp Laboratories Of America, Inc. Transmitting data across a contention channel in a centralized network
US20050192011A1 (en) * 2004-02-13 2005-09-01 Samsung Electronics Co., Ltd. Method and apparatus for performing fast handover through fast ranging in a broadband wireless communication system
US20050190785A1 (en) * 2004-02-26 2005-09-01 Yonge Lawrence W.Iii Channel adaptation synchronized to periodically varying channel
US20070025383A1 (en) * 2005-07-27 2007-02-01 Srinivas Katar Managing contention-free time allocations in a network

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037853A1 (en) * 2002-05-28 2004-02-26 Gary Borodic Composition for therapeutic and cosmetic botulinum toxin
US7633946B2 (en) * 2002-10-17 2009-12-15 Koninklijke Philips Electronics N.V. Scheduler system and method thereof
US20060052088A1 (en) * 2002-10-17 2006-03-09 Pavon Javier D P Scheduler system and method thereof
US20060187817A1 (en) * 2003-02-14 2006-08-24 Joachim Charzinski Access control for a packet-oriented network, taking into account resilience requirements
US9622271B2 (en) 2003-05-07 2017-04-11 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US20140348150A1 (en) * 2003-05-07 2014-11-27 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US9191965B2 (en) * 2003-05-07 2015-11-17 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US10897762B2 (en) 2003-05-07 2021-01-19 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US10356779B2 (en) 2003-05-07 2019-07-16 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US9723641B2 (en) 2003-05-07 2017-08-01 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US7787487B2 (en) 2003-09-30 2010-08-31 Intel Corporation Systems and methods for contention control in wireless networks
US20050070317A1 (en) * 2003-09-30 2005-03-31 Intel Corporation Systems and methods for contention control in wireless networks
US7376143B2 (en) * 2003-09-30 2008-05-20 Intel Corporation Systems and methods for contention control in wireless networks
US20080212604A1 (en) * 2003-09-30 2008-09-04 Intel Corporation Systems and methods for contention control in wireless networks
US9013989B2 (en) 2003-11-24 2015-04-21 Qualcomm Incorporated Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US20050122904A1 (en) * 2003-12-04 2005-06-09 Kumar Anil K. Preventative congestion control for application support
US7961752B2 (en) * 2004-12-22 2011-06-14 Telefonaktiebolaget L M Ericsson (Publ) Transmission in a shared medium having different access modes
US20100014423A1 (en) * 2004-12-22 2010-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Transmission in a Shared Medium Having Different Access Modes
US20060146753A1 (en) * 2005-01-05 2006-07-06 Samsung Electronics Co., Ltd. Method, apparatus and system for controlling ARQ-related timers in broadband wireless access communication system
US20060226958A1 (en) * 2005-03-16 2006-10-12 Domosys Corporation System and method for power line communication
US8223880B2 (en) * 2005-03-16 2012-07-17 Analog Devices, B.V. System and method for power line communication
EP1908222A2 (en) * 2005-07-27 2008-04-09 Conexant Systems, Inc. Flexible scheduling of resources in a noisy environment
WO2007016034A2 (en) 2005-07-27 2007-02-08 Conexant Systems, Inc. Bandwidth management in a powerline network
US20070025386A1 (en) * 2005-07-27 2007-02-01 Neal Riedel Bandwidth management in a powerline network
EP1908222A4 (en) * 2005-07-27 2009-10-28 Coppergate Comm Ltd Flexible scheduling of resources in a noisy environment
US8737420B2 (en) 2005-07-27 2014-05-27 Sigma Designs Israel S.D.I. Ltd. Bandwidth management in a powerline network
US20070025383A1 (en) * 2005-07-27 2007-02-01 Srinivas Katar Managing contention-free time allocations in a network
US20070025266A1 (en) * 2005-07-27 2007-02-01 Neal Riedel Communicating schedule and network information in a powerline network
WO2007016031A3 (en) * 2005-07-27 2007-06-07 Conexant Systems Inc Flexible scheduling of resources in a noisy environment
WO2007016034A3 (en) * 2005-07-27 2007-11-15 Conexant Systems Inc Bandwidth management in a powerline network
US20070058732A1 (en) * 2005-07-27 2007-03-15 Neal Riedel Flexible scheduling of resources in a noisy environment
US7822059B2 (en) * 2005-07-27 2010-10-26 Atheros Communications, Inc. Managing contention-free time allocations in a network
US8553706B2 (en) 2005-07-27 2013-10-08 Coppergate Communications Ltd. Flexible scheduling of resources in a noisy environment
US8416887B2 (en) 2005-07-27 2013-04-09 Qualcomm Atheros, Inc Managing spectra of modulated signals in a communication network
CN101273580B (en) * 2005-07-27 2013-01-02 科珀格特通信有限公司 Managing spectra of modulated signals in a communication network
US7920586B2 (en) * 2005-09-29 2011-04-05 Meshnetworks, Inc. System and method for selecting a medium access technique for transmitting packets over a network
US20070070896A1 (en) * 2005-09-29 2007-03-29 Alapuranen Pertti O System and method for selecting a medium access technique for transmitting packets over a network
US20070116035A1 (en) * 2005-11-03 2007-05-24 Samsung Electronics Co., Ltd. Method and system for addressing channel access unfairness in IEEE 802.11n wireless networks
US7944897B2 (en) * 2005-11-03 2011-05-17 Samsung Electronics Co., Ltd. Method and system for addressing channel access unfairness in IEEE 802.11n wireless networks
US20070153830A1 (en) * 2006-01-05 2007-07-05 Xhafa Ariton E Methods and apparatus to provide fairness for wireless local area networks that use extended physical layer protection mechanisms
WO2007120943A3 (en) * 2006-01-05 2008-10-16 Texas Instruments Inc Methods and apparatus to provide fairness for wireless local area networks that use extended physical layer protection mechanisms
US8085775B1 (en) * 2006-07-31 2011-12-27 Sable Networks, Inc. Identifying flows based on behavior characteristics and applying user-defined actions
US20120014282A1 (en) * 2006-07-31 2012-01-19 Pappu Surya K Identifying flows based on behavior characteristics and applying user-defined actions
US8817790B2 (en) * 2006-07-31 2014-08-26 Sable Networks, Inc. Identifying flows based on behavior characteristics and applying user-defined actions
US9246711B2 (en) 2006-08-30 2016-01-26 Microsoft Technology Licensing, Llc Wireless mesh networking with multiple simultaneous transmissions by nearby network nodes
US20080056149A1 (en) * 2006-08-30 2008-03-06 Microsoft Corporation Wireless mesh networking with multiple simultaneous transmissions by nearby network nodes
US20120026931A1 (en) * 2007-03-12 2012-02-02 Conexant Systems Inc. Systems and Methods For Reliable Broadcast and Multicast Transmission Over Wireless Local Area Network
US8493995B2 (en) 2007-05-10 2013-07-23 Qualcomm Incorporated Managing distributed access to a shared medium
US9413688B2 (en) 2007-05-10 2016-08-09 Qualcomm Incorporated Managing distributed access to a shared medium
US8861514B1 (en) * 2007-09-27 2014-10-14 Marvell International Ltd. Method and apparatus for egress jitter pacer
US8054838B2 (en) 2007-12-24 2011-11-08 Industrial Technology Research Institute Method and apparatus of transmitting data via a multi-protocol single-medium network
EP2075982A2 (en) 2007-12-24 2009-07-01 Industrial Technology Research Institute Multi-protocols/single-medium network data transmitting method and the apparatus of the same
US20090161678A1 (en) * 2007-12-24 2009-06-25 Industrial Technology Research Institute Method and apparatus of transmitting data via a multi-protocol single-medium network
US20100110911A1 (en) * 2008-11-05 2010-05-06 Zhanping Yin Method and system for conserving power in powerline network having multiple logical networks
US7801167B2 (en) 2008-12-03 2010-09-21 Sharp Laboratories Of America, Inc. Enhanced power saving methods and systems for powerline network
US20100135318A1 (en) * 2008-12-03 2010-06-03 Zhanping Yin Enhanced power saving methods and systems for powerline network
US8693558B2 (en) 2010-04-12 2014-04-08 Qualcomm Incorporated Providing delimiters for low-overhead communication in a network
US9001909B2 (en) 2010-04-12 2015-04-07 Qualcomm Incorporated Channel estimation for low-overhead communication in a network
US8781016B2 (en) 2010-04-12 2014-07-15 Qualcomm Incorporated Channel estimation for low-overhead communication in a network
US9326317B2 (en) 2010-04-12 2016-04-26 Qualcomm Incorporated Detecting delimiters for low-overhead communication in a network
US8660013B2 (en) 2010-04-12 2014-02-25 Qualcomm Incorporated Detecting delimiters for low-overhead communication in a network
US9326316B2 (en) 2010-04-12 2016-04-26 Qualcomm Incorporated Repeating for low-overhead communication in a network
US9295100B2 (en) 2010-04-12 2016-03-22 Qualcomm Incorporated Delayed acknowledgements for low-overhead communication in a network
US9191972B2 (en) * 2011-07-26 2015-11-17 Kabushiki Kaisha Toshiba Transmitting device and transmitting method
US20130028110A1 (en) * 2011-07-26 2013-01-31 Kabushiki Kaisha Toshiba Transmitting device and transmitting method
US9426734B2 (en) * 2011-10-14 2016-08-23 Maxlinear, Inc. Method and system for a low-power client in a wide area network
US20160365968A1 (en) * 2011-10-14 2016-12-15 Maxlinear, Inc. Method And System For A Low-Power Client In A Wide Area Network
US9912466B2 (en) * 2011-10-14 2018-03-06 Maxlinear, Inc. Method and system for a low-power client in a wide area network
US20180191486A1 (en) * 2011-10-14 2018-07-05 Maxlinear, Inc. Method and System for a Low-Power Client in a Wide Area Network
US20130238922A1 (en) * 2011-10-14 2013-09-12 Curtis Ling Method and System For a Low-Power Client in a Wide Area Network
US9137727B2 (en) * 2012-03-30 2015-09-15 Hewlett-Packard Development Company, L.P. Controlled client roaming
US20130259005A1 (en) * 2012-03-30 2013-10-03 Sudarshan Kulkarni Controlled Client Roaming

Also Published As

Publication number Publication date
US7623542B2 (en) 2009-11-24
WO2004038980A2 (en) 2004-05-06
EP1554848A4 (en) 2010-03-03
EP1554848A2 (en) 2005-07-20
AU2003284317A8 (en) 2004-05-13
WO2004038980A3 (en) 2004-08-05
AU2003284317A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US7623542B2 (en) Contention-free access intervals on a CSMA network
AU784918B2 (en) Media access control protocol with priority and contention-free intervals
US6847635B1 (en) Method to transmit silence compressed voice over IP efficiently in DOCSIS cable networks
JP4729073B2 (en) Method for accessing a communication channel of a network including multiple stations
US6907044B1 (en) Method and protocol to support contention-free intervals and QoS in a CSMA network
US6965933B2 (en) Method and apparatus for token distribution
JP4155801B2 (en) Method for securing channel of QoS manager in home plug network
US6909723B1 (en) Segment bursting with priority pre-emption and reduced latency
US8547990B2 (en) Adaptive network to dynamically account for hidden nodes
US7349378B2 (en) Local area network resource manager
US7660327B2 (en) Temporary priority promotion for network communications in which access to a shared medium depends on a priority level
JP4444660B2 (en) System and method for handling long asynchronous data in asynchronous time slots
JP2002158675A (en) Method and protocol to adapting each unique connection in multi-node network to maximum data rate
CN105721414B (en) Multicast communication method
KR19990072953A (en) Flow control method for networks
JPH0133060B2 (en)
WO2002096036A1 (en) Method and apparatus for arbitrating access to a shared channel of a token-based network communication system
US20160183301A1 (en) Multi-destination burst protocol
JPH10126430A (en) Cable network system
WO2002089416A2 (en) Collision avoidance in communication networks
AU2002319625A1 (en) System and method for multipoint to multipoint data communication

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTELLON CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YONGE, LAWRENCE W., III;KATAR, SRINIVAS;KOSTOFF, STANLEY J., II;AND OTHERS;REEL/FRAME:015204/0249

Effective date: 20040322

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: ATHEROS POWERLINE LLC,CALIFORNIA

Free format text: MERGER;ASSIGNOR:INTELLON CORPORAITON;REEL/FRAME:024103/0834

Effective date: 20091215

Owner name: ATHEROS COMMUNICATIONS, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATHEROS POWERLINE LLC;REEL/FRAME:024103/0872

Effective date: 20091215

Owner name: ATHEROS POWERLINE LLC,CALIFORNIA

Free format text: MERGER;ASSIGNOR:INTELLON CORPORATION;REEL/FRAME:024103/0834

Effective date: 20091215

Owner name: ATHEROS POWERLINE LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:INTELLON CORPORATION;REEL/FRAME:024103/0834

Effective date: 20091215

Owner name: ATHEROS COMMUNICATIONS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATHEROS POWERLINE LLC;REEL/FRAME:024103/0872

Effective date: 20091215

AS Assignment

Owner name: QUALCOMM ATHEROS, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:ATHEROS COMMUNICATIONS, INC.;REEL/FRAME:027301/0678

Effective date: 20110524

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM ATHEROS, INC.;REEL/FRAME:029555/0769

Effective date: 20121022

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20211124