US20040121098A1 - Metallocene-produced polyethylene for glossy plastic containers - Google Patents

Metallocene-produced polyethylene for glossy plastic containers Download PDF

Info

Publication number
US20040121098A1
US20040121098A1 US10/333,175 US33317503A US2004121098A1 US 20040121098 A1 US20040121098 A1 US 20040121098A1 US 33317503 A US33317503 A US 33317503A US 2004121098 A1 US2004121098 A1 US 2004121098A1
Authority
US
United States
Prior art keywords
polyethylene
produced
metallocene
bottles
plastic containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/333,175
Inventor
Eric Maziers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Petrochemicals Research Feluy SA
Original Assignee
Atofina Research SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina Research SA filed Critical Atofina Research SA
Assigned to ATOFINA RESEARCH reassignment ATOFINA RESEARCH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAZIERS, ERIC
Publication of US20040121098A1 publication Critical patent/US20040121098A1/en
Assigned to TOTAL PETROCHEMICALS RESEARCH FELUY reassignment TOTAL PETROCHEMICALS RESEARCH FELUY CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ATOFINA RESEARCH
Priority to US13/285,261 priority Critical patent/US20120068385A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/60Bottles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • This invention is related to plastic containers having a glossy outer surface and in particular to the production high gloss bottles, jars, etc. formed of polyethylene.
  • High gloss high density polyethylene has been used: it is characterised by a very narrow molecular weight distribution that is typically inferior to 8.
  • the molecular weight distribution can be completely defined by means of a curve obtained by gel permeation chromatography.
  • the molecular weight distribution is more simply defined by a parameter, known as the dispersion index D, which is the ratio between the average molecular weight by weight (Mw) and the average molecular weight by number (Mn).
  • the dispersion index constitutes a measure of the width of the molecular weight distribution. It is known that a resin of narrow molecular weight distribution will produce plastic containers of very high gloss but simultaneously, that such resin will be very difficult to process and will be characterised by very poor mechanical properties. It has also been observed that said resins have poor mechanical properties, particularly, a very low environmental stress crack resistance (Modern Plastic International, August 1993, p. 45).
  • HDPE high density polyethylene
  • polyamide polyamide
  • high gloss plastic containers comprise an internal layer including a polyolefin and an external layer including a styrenic component containing from 40 to 85 wt % of styrene, based on the weight of the external layer.
  • An aim of the present invention is to produce plastic containers that offer simultaneously the desired glossy appearance, a good resistance to scratching and very low swell.
  • the present invention provides single layer or multi-layer plastic containers, for which the external layer consists essentially of a metallocene-produced polyethylene having a density of from 0.930 to 0.966 g/cm 3 and a melt index MI2 of from 0.5 to 2.5 g/10min.
  • the density of the polyethylene is measured at 23 ° C. using the procedures of ASTM D 1505.
  • the melt index MI2 is measured using the procedures of ASTM D 1238 at 190° C. using a load of 2.16 kg.
  • the high load melt index HLMI is measured using the procedures of ASTM D 1238 at 190 ° C. using a load of 21.6 kg.
  • the external layer is prepared with a metallocene-produced polyethylene resin
  • the inner layer(s) is(are) prepared with any one of the known catalysts, such as a chromium or a Ziegler-Natta or a metallocene catalyst, said metallocene catalyst being either the same as or different from the metallocene catalyst used to prepare the external layer.
  • a number of different catalyst systems have been disclosed for the manufacture of polyethylene, in particular medium-density polyethylene (MDPE) and high-density polyethylene (HDPE) suitable for blow moulding. It is known in the art that the physical properties, in particular the mechanical properties, of a polyethylene product vary depending on what catalytic system was employed to make the polyethylene. This is because different catalyst systems tend to yield different molecular weight distributions in the polyethylene produced
  • EP-A-0,291,824, EP-A-0,591,968 and U.S. Pat. No. 5,310,834 each disclose mixed catalyst compositions, incorporating chromium-based catalysts, for the polymerisation of polyethylene.
  • the HDPE can be produced using a conventional Ziegler-Natta catalyst or a supported Ziegler-Natta catalyst comprising metallocene sites such as described in EP-A-0,585,512.
  • the HDPE can further be polymerised with a metallocene catalyst capable of producing a mono- or bi- or multimodal distribution, either in a two step process such as described for example in EP-A-0,881,237, or as a dual or multiple site catalyst in a single reactor such as described for example in EP-A-0,619,325.
  • a metallocene catalyst capable of producing a mono- or bi- or multimodal distribution, either in a two step process such as described for example in EP-A-0,881,237, or as a dual or multiple site catalyst in a single reactor such as described for example in EP-A-0,619,325.
  • Any metallocene catalyst known in the art can be used in the present invention. It is represented by the general formula:
  • Cp is a cyclopentadienyl ring
  • M is a group 4 b , 5 b or 6 b transition metal
  • R is a hydrocarbyl group or hydrocarboxy having from 1 to 20 carbon atoms
  • X is a halogen
  • (C 5 R′ k ) is a cyclopentadienyl or substituted cyclopentadienyl
  • each R′ is the same or different and is hydrogen or a hydrocarbyl radical such as alkyl, alkenyl, aryl, alkylaryl, or arylalkyl radical containing from 1 to 20 carbon atoms or two carbon atoms are joined together to form a C 4 -C 6 ring
  • R′′ is a C 1 -C 4 alkylene radical, a dialkyl germanium or silicon or siloxane, or a alkyl phosphine or amine radical bridging two (C 5 R′ k ) rings
  • Q is a hydrocarbyl radical such as aryl, alkyl, alkenyl, alkylaryl, or aryl alkyl radical having from 1-20 carbon atoms, hydrocarboxy radical having 1-20 carbon atoms or halogen and can be the same or different from each other
  • Q′ is
  • metallocenes used in the present invention one can cite among others ethylene bis-(tetrahydroindenyl) zirconium dichloride and ethylene bis-(indenyl) zirconium dichloride as disclosed for example in WO 96/35729.
  • the metallocene may be supported according to any method known in the art.
  • the support used in the present invention can be any organic or inorganic solids, particularly porous supports such as talc, inorganic oxides, and resinous support material such as polyolefin.
  • the support material is an inorganic oxide in its finely divided form.
  • An active site must be created by adding a cocatalyst having an ionising action.
  • alumoxane is used as cocatalyst during the polymerization procedure, and any alumoxane known in the art is suitable.
  • the preferred alumoxanes comprise oligomeric linear and/or cyclic alkyl alumoxanes represented by the formula:
  • n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C 1 -C 8 alkyl group and preferably methyl.
  • Methylalumoxane is preferably used.
  • AIR x When alumoxane is not used as a cocatalyst, one or more aluminiumalkyl represented by the formula AIR x are used wherein each R is the same or different and is selected from halides or from alkoxy or alkyl groups having from 1 to 12 carbon atoms and x is from 1 to 3.
  • Especially suitable aluminiumalkyl are trialkylaluminium, the most preferred being triisobutylaluminium (TIBAL).
  • the metallocene catalyst utilised to produce a polyethylene can be used in gas, solution or slurry polymerisation.
  • the polymerization process is conducted under slurry phase polymerization conditions.
  • the polymerisation temperature ranges from 20 to 125° C., preferably from 60 to 95° C. and the pressure ranges from 0.1 to 5.6 Mpa, preferably from 2 to 4 Mpa, for a time ranging from 10 minutes to 4 hours, preferably from 1 and 2.5 hours).
  • the polymerization reaction be run in a diluent at a temperature at which the polymer remains as a suspended solid in the diluent.
  • a continuous loop reactor is preferably used for conducting the polymerisation.
  • the average molecular weight is controlled by adding hydrogen during polymerisation.
  • the relative amounts of hydrogen and olefin introduced into the polymerisation reactor are from 0.001 to 15 mole percent hydrogen and from 99.999 to 85 mole percent olefin based on total hydrogen and olefin present, preferably from 0.2 to 3 mole percent hydrogen and from 99.8 to 97 mole percent olefin.
  • the density of the polyethylene is regulated by the amount of comonomer injected into the reactor; examples of comonomer which can be used include 1-olefins butene, hexene, octene, 4-methyl-pentene, and the like, the most preferred being hexene.
  • the densities of the polyethylenes required for preparing the plastic containers of the present invention range from 0.930 g/cm 3 to 0.966 g/cm 3 .
  • the melt index of polyethylene is regulated by the amount of hydrogen injected into the reactor.
  • the melt indexes useful in the present invention range from 0.5 g/10′ to 2.5 g/10′.
  • the polyethylene resin used in the present invention can be prepared with either a single site metallocene catalyst or with a multiple site metallocene catalyst and it has therefore either a monomodal or a bimodal molecular weight distribution.
  • the molecular weight distribution is of from 2 to 20, preferably, of from 2 to 7 and more preferably of from 2 to 5.
  • polyethylene resins produced in accordance with the above-described processes have physical properties making them particularly suitable for use as blow moulding grade polyethylenes.
  • the polyethylene resins of the present invention are used preferably for producing containers of a capacity ranging from 0.005 to 5 l. They are more preferably used for producing food packaging, particularly milk bottles and juice bottles, cosmetic packaging and household packaging such as detergent packaging.
  • the blow moulding machine incorporating a coextrusion die for extruding a parison to be blow moulded, can be any one of the machines generally used for blow moulding. The following have been used for processing the polyethylene:
  • a Battenfeld Fisher VK1-4 available from Battenfeld this is a continuous extrusion or co-extrusion blow moulding machine with up to 6 extruders for the production of polyethylene bottles of 0.5 litre capacity, the bottles being either single layer or multi-layer with up to 6 layers;
  • the plastic containers of the present invention are characterised by a very high gloss, as measured using the ASTM D 2457-90 test, a low haze as measured by ASTM D 1003-92, a very low swell and a outstanding resistance to drop.
  • the swell is measured with the Gottfert 2002 capillary rheometer: it measures the diameter of the extruded product for different shear velocities.
  • the capillary selection corresponds to a die having an effective length of 10 mm, a diameter of 2 mm and an aperture of 180 °.
  • the temperature is 210 ° C.
  • Shear velocities range from 7 to 725 sec ⁇ 1 , selected in decreasing order in order to reduce the time spent in the cylinder; 7 velocities are usually tested.
  • the extruded product has a length of about 7cm, it is cut, after the pressure has been stabilised and the next velocity is selected.
  • the extruded product (sample) is allowed to cool down in a rectilinear position.
  • the diameter of the extruded product is then measured with an accuracy of 0.01 mm using a vernier, at 2.5 cm (d 2.5 ) and at 5 cm (d 5 ) from one end of the sample, making at each position d 2.5 and d 5 two measurements separated by an angle of 90 °.
  • the swell G is determined as
  • the swell value is measured for each of the selected shear velocities and a graph representing the swell as a function of shear velocity can be obtained.
  • the drop resistance test is performed on one-litre bottles prepared in accordance with the present invention.
  • the drop resistance is measured using the following procedure:
  • the bottles had a fairly homogeneous thickness
  • the empty bottles were stored at room temperature for about 20 hrs;
  • the bottles were then filled with fluid, closed and brought to the desired conditioning as follows: 1) room temperature, water, 24+ ⁇ 3 hrs;
  • a test run on a sample of 20 bottles included the following steps:
  • H F H o +[ ⁇ H ( A/N ⁇ 0.5)]
  • H o is the minimum height
  • ⁇ H is the step distance
  • A is given by the product (i*n i ) wherein n i represents the number of ruptures at each height considering only the last 7 ruptures and i is an integer 0,1,2, . . . indicating the number of steps above the minimum height H o ,
  • N is the total number of ruptures.
  • the typical weight of the container can be reduced by as much as 50% if so desired.
  • the external layer is a metallocene-produced polyethylene and the internal layer is a polyethylene produced by any conventional method.
  • the external layer represents from 5 to 14%, preferably about 10%, of the total wall thickness.
  • the transformation temperatures are higher than on the VK1-4 machine, they range from 170 to 190 ° C.
  • the polyethylene resin was obtained by continuous polymerisation in a loop slurry reactor with a supported and ionised metallocene catalyst prepared in two steps by first reacting SiO 2 with MAO to produce SiO 2 .MAO and then reacting 94 wt % of the SiO 2 .MAO produced in the first step with 6 wt % of ethylene bis-(tetrahydroindenyl) zirconium dichloride.
  • the dry catalyst was slurried in isobutane and pre-contacted with triisobutylaluminium (TIBAI, 10 wt % in hexane) before injection in the reactor.
  • TIBAI triisobutylaluminium
  • the polyethylene resin was obtained by continuous polymerisation in a loop slurry reactor with a supported and ionised metallocene catalyst prepared in two steps by first reacting SiO 2 with MAO to produce SiO 2 .MAO and then reacting 96 wt % of the SiO 2 .MAO produced in the first step with 4 wt % of ethylene bis-(indenyl) zirconium.
  • the dry catalyst was slurried in isobutane and pre-contacted with triisobutylaluminium (TiBAI, 10 wt % in hexane) before injection in the reactor. The reaction was conducted in a 70 l capacity loop reactor during ?
  • RPM 1 is the number of rotations per minute.
  • Nb*/min is the number of bottles produced per minute
  • FIG. 1 displays the bottle's weight for the five resins tested.
  • FIG. 2 represents the swell in % as a function of shear rate.
  • FIG. 3 represents the production rate for the five resins tested.
  • FIG. 4 represents the gloss in % for resins R4 and R1 when used as external layer or as internal layer.
  • FIGURES show unambiguously the improved qualities of swell and gloss of the plastic containers obtained with metallocene-produced polyethylene.

Abstract

A high gloss plastic container prepared from a metallocene-produced polyethylene having a density of from 0.930 to 0.966 g/cm3 and a melt index MI2 of from 0.5 to 2.5 g/10 min.

Description

  • This invention is related to plastic containers having a glossy outer surface and in particular to the production high gloss bottles, jars, etc. formed of polyethylene. [0001]
  • Several methods have been sought to produce high gloss bottles presenting good processability and good mechanical properties but all the blends and techniques used so far present various disadvantages. [0002]
  • High gloss high density polyethylene (HDPE) has been used: it is characterised by a very narrow molecular weight distribution that is typically inferior to 8. The molecular weight distribution can be completely defined by means of a curve obtained by gel permeation chromatography. Generally, the molecular weight distribution (MWD) is more simply defined by a parameter, known as the dispersion index D, which is the ratio between the average molecular weight by weight (Mw) and the average molecular weight by number (Mn). The dispersion index constitutes a measure of the width of the molecular weight distribution. It is known that a resin of narrow molecular weight distribution will produce plastic containers of very high gloss but simultaneously, that such resin will be very difficult to process and will be characterised by very poor mechanical properties. It has also been observed that said resins have poor mechanical properties, particularly, a very low environmental stress crack resistance (Modern Plastic International, August 1993, p. 45). [0003]
  • The coextrusion of high density polyethylene (HDPE) with a thin external layer of polyamide has been used to produce bottles of very high gloss but that method suffers the major drawback of necessitating an adhesive layer between the HDPE and the polyamide layers. [0004]
  • The coextrusion of high density polyethylene and an external layer of low density polyethylene leads to bottles with a fair gloss. These bottles however have an unpleasant greasy touch and offer a very poor resistance to scratching. [0005]
  • Metallocene-catalysed polyolefins have been used in transparent multilayer films suitable for packaging, for example in EP-A-756,931, WO-98-32601, WO99-10430, WO-95-21743, Wo-97-02294. None of these prior art documents has addressed the problem of this invention: the production of plastic container having a-glossy outer surface. [0006]
  • In another method, disclosed in co-pending patent application, high gloss plastic containers comprise an internal layer including a polyolefin and an external layer including a styrenic component containing from 40 to 85 wt % of styrene, based on the weight of the external layer. [0007]
  • There is thus a need for a method for efficiently producing plastic containers of very high gloss as well as good processability and mechanical properties. [0008]
  • An aim of the present invention is to produce plastic containers that offer simultaneously the desired glossy appearance, a good resistance to scratching and very low swell. [0009]
  • It is also an aim of the present invention to obtain glossy plastic containers with good processability and good mechanical properties. [0010]
  • It is another aim of the present invention to produce a resin that can be utilised in coextrusion. [0011]
  • The present invention provides single layer or multi-layer plastic containers, for which the external layer consists essentially of a metallocene-produced polyethylene having a density of from 0.930 to 0.966 g/cm[0012] 3 and a melt index MI2 of from 0.5 to 2.5 g/10min.
  • In this specification, the density of the polyethylene is measured at 23 ° C. using the procedures of ASTM D 1505. [0013]
  • The melt index MI2 is measured using the procedures of ASTM D 1238 at 190° C. using a load of 2.16 kg. The high load melt index HLMI is measured using the procedures of ASTM D 1238 at 190 ° C. using a load of 21.6 kg. [0014]
  • When multi-layer plastic containers are produced, the external layer is prepared with a metallocene-produced polyethylene resin, the inner layer(s) is(are) prepared with any one of the known catalysts, such as a chromium or a Ziegler-Natta or a metallocene catalyst, said metallocene catalyst being either the same as or different from the metallocene catalyst used to prepare the external layer. [0015]
  • A number of different catalyst systems have been disclosed for the manufacture of polyethylene, in particular medium-density polyethylene (MDPE) and high-density polyethylene (HDPE) suitable for blow moulding. It is known in the art that the physical properties, in particular the mechanical properties, of a polyethylene product vary depending on what catalytic system was employed to make the polyethylene. This is because different catalyst systems tend to yield different molecular weight distributions in the polyethylene produced [0016]
  • It is known in the art to use chromium-based catalysts to polymerise HDPE and in particular to produce high-.density polyethylene having high resistance to environmental stress cracking. For example, EP-A-0,291,824, EP-A-0,591,968 and U.S. Pat. No. 5,310,834 each disclose mixed catalyst compositions, incorporating chromium-based catalysts, for the polymerisation of polyethylene. [0017]
  • Alternatively, the HDPE can be produced using a conventional Ziegler-Natta catalyst or a supported Ziegler-Natta catalyst comprising metallocene sites such as described in EP-A-0,585,512. [0018]
  • The HDPE can further be polymerised with a metallocene catalyst capable of producing a mono- or bi- or multimodal distribution, either in a two step process such as described for example in EP-A-0,881,237, or as a dual or multiple site catalyst in a single reactor such as described for example in EP-A-0,619,325. Any metallocene catalyst known in the art can be used in the present invention. It is represented by the general formula:[0019]
  • (CP)mMRnXq   I.
  • wherein Cp is a cyclopentadienyl ring, M is a group [0020] 4 b, 5 b or 6 b transition metal, R is a hydrocarbyl group or hydrocarboxy having from 1 to 20 carbon atoms, X is a halogen, and m−1−3, n=0−3, q=0−3 and the sum m+n+q is equal to the oxidation state of the metal.
  • (C5R′k)gR″s(C5R′k)MQ3−g  II.
  • R″s(C5R+k)2MQ′  III.
  • wherein (C[0021] 5R′k) is a cyclopentadienyl or substituted cyclopentadienyl, each R′ is the same or different and is hydrogen or a hydrocarbyl radical such as alkyl, alkenyl, aryl, alkylaryl, or arylalkyl radical containing from 1 to 20 carbon atoms or two carbon atoms are joined together to form a C4-C6 ring, R″ is a C1-C4 alkylene radical, a dialkyl germanium or silicon or siloxane, or a alkyl phosphine or amine radical bridging two (C5R′k) rings, Q is a hydrocarbyl radical such as aryl, alkyl, alkenyl, alkylaryl, or aryl alkyl radical having from 1-20 carbon atoms, hydrocarboxy radical having 1-20 carbon atoms or halogen and can be the same or different from each other, Q′ is an alkylidene radical having from 1 to about 20 carbon atoms, s is 0 or 1, g is 0, 1 or 2, s is 0 when g is 0, k is 4 when s is 1 and k is 5 when s is 0, and M is as defined above.
  • Among the preferred metallocenes used in the present invention, one can cite among others ethylene bis-(tetrahydroindenyl) zirconium dichloride and ethylene bis-(indenyl) zirconium dichloride as disclosed for example in WO 96/35729. [0022]
  • The metallocene may be supported according to any method known in the art. In the event it is supported, the support used in the present invention can be any organic or inorganic solids, particularly porous supports such as talc, inorganic oxides, and resinous support material such as polyolefin. Preferably, the support material is an inorganic oxide in its finely divided form. [0023]
  • An active site must be created by adding a cocatalyst having an ionising action. [0024]
  • Preferably, alumoxane is used as cocatalyst during the polymerization procedure, and any alumoxane known in the art is suitable. [0025]
  • The preferred alumoxanes comprise oligomeric linear and/or cyclic alkyl alumoxanes represented by the formula: [0026]
    Figure US20040121098A1-20040624-C00001
  • for oliomeric, linear alumoxanes and [0027]
    Figure US20040121098A1-20040624-C00002
  • for oliomeric, cyclic alumoxanes, [0028]
  • wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C[0029] 1-C8 alkyl group and preferably methyl.
  • Methylalumoxane is preferably used. [0030]
  • When alumoxane is not used as a cocatalyst, one or more aluminiumalkyl represented by the formula AIR[0031] x are used wherein each R is the same or different and is selected from halides or from alkoxy or alkyl groups having from 1 to 12 carbon atoms and x is from 1 to 3. Especially suitable aluminiumalkyl are trialkylaluminium, the most preferred being triisobutylaluminium (TIBAL).
  • The metallocene catalyst utilised to produce a polyethylene, as required for preparing the high gloss plastic containers of the present invention, can be used in gas, solution or slurry polymerisation. Preferably, the polymerization process is conducted under slurry phase polymerization conditions. The polymerisation temperature ranges from 20 to 125° C., preferably from 60 to 95° C. and the pressure ranges from 0.1 to 5.6 Mpa, preferably from 2 to 4 Mpa, for a time ranging from 10 minutes to 4 hours, preferably from 1 and 2.5 hours). [0032]
  • It is preferred that the polymerization reaction be run in a diluent at a temperature at which the polymer remains as a suspended solid in the diluent. [0033]
  • A continuous loop reactor is preferably used for conducting the polymerisation. [0034]
  • The average molecular weight is controlled by adding hydrogen during polymerisation. The relative amounts of hydrogen and olefin introduced into the polymerisation reactor are from 0.001 to 15 mole percent hydrogen and from 99.999 to 85 mole percent olefin based on total hydrogen and olefin present, preferably from 0.2 to 3 mole percent hydrogen and from 99.8 to 97 mole percent olefin. [0035]
  • The density of the polyethylene is regulated by the amount of comonomer injected into the reactor; examples of comonomer which can be used include 1-olefins butene, hexene, octene, 4-methyl-pentene, and the like, the most preferred being hexene. [0036]
  • The densities of the polyethylenes required for preparing the plastic containers of the present invention range from 0.930 g/cm[0037] 3 to 0.966 g/cm3.
  • The melt index of polyethylene is regulated by the amount of hydrogen injected into the reactor. The melt indexes useful in the present invention range from 0.5 g/10′ to 2.5 g/10′. [0038]
  • The polyethylene resin used in the present invention can be prepared with either a single site metallocene catalyst or with a multiple site metallocene catalyst and it has therefore either a monomodal or a bimodal molecular weight distribution. The molecular weight distribution is of from 2 to 20, preferably, of from 2 to 7 and more preferably of from 2 to 5. [0039]
  • The polyethylene resins produced in accordance with the above-described processes have physical properties making them particularly suitable for use as blow moulding grade polyethylenes. In addition, it has surprisingly been observed that they have good processability even when their molecular weight distribution is narrow. [0040]
  • The polyethylene resins of the present invention are used preferably for producing containers of a capacity ranging from 0.005 to 5 l. They are more preferably used for producing food packaging, particularly milk bottles and juice bottles, cosmetic packaging and household packaging such as detergent packaging. [0041]
  • The blow moulding machine, incorporating a coextrusion die for extruding a parison to be blow moulded, can be any one of the machines generally used for blow moulding. The following have been used for processing the polyethylene: [0042]
  • a Battenfeld Fisher VK1-4 available from Battenfeld: this is a continuous extrusion or co-extrusion blow moulding machine with up to 6 extruders for the production of polyethylene bottles of 0.5 litre capacity, the bottles being either single layer or multi-layer with up to 6 layers; [0043]
  • a high productivity wheel configuration machine with 6 cavities for continuous extrusion. [0044]
  • The plastic containers of the present invention are characterised by a very high gloss, as measured using the ASTM D 2457-90 test, a low haze as measured by ASTM D 1003-92, a very low swell and a outstanding resistance to drop. [0045]
  • The swell is measured with the Gottfert 2002 capillary rheometer: it measures the diameter of the extruded product for different shear velocities. The capillary selection corresponds to a die having an effective length of 10 mm, a diameter of 2 mm and an aperture of 180 °. The temperature is 210 ° C. Shear velocities range from 7 to 725 sec[0046] −1, selected in decreasing order in order to reduce the time spent in the cylinder; 7 velocities are usually tested. When the extruded product has a length of about 7cm, it is cut, after the pressure has been stabilised and the next velocity is selected. The extruded product (sample) is allowed to cool down in a rectilinear position.
  • The diameter of the extruded product is then measured with an accuracy of 0.01 mm using a vernier, at 2.5 cm (d[0047] 2.5) and at 5 cm (d5) from one end of the sample, making at each position d2.5 and d5 two measurements separated by an angle of 90 °.
  • The diameter d[0048] o at the one end of the sample selected for the test is extrapolated:
  • d o =d 2.5+(d 2.5 −d 5)
  • The swell G is determined as[0049]
  • G=100×(d o −d f)/d f
  • wherein d[0050] f is the die diameter.
  • The test is carried out only on the samples that are free of melt fracture. [0051]
  • The swell value is measured for each of the selected shear velocities and a graph representing the swell as a function of shear velocity can be obtained. [0052]
  • The drop resistance test is performed on one-litre bottles prepared in accordance with the present invention. The drop resistance is measured using the following procedure: [0053]
  • A. Preparation of the equipment and bottles: [0054]
  • the die and pin of the blow moulding equipment was cleaned on the day of production of the bottles; [0055]
  • the bottles had a fairly homogeneous thickness; [0056]
  • the net weight of bottles was 0.8 kg [0057]
  • the empty bottles were stored at room temperature for about 20 hrs; [0058]
  • the bottles were then filled with fluid, closed and brought to the desired conditioning as follows: 1) room temperature, water, 24+−3 hrs; [0059]
  • 2) −18 ° C., water+anti-freeze, 24+−3 hrs; [0060]
  • B. A test run on a sample of 20 bottles included the following steps: [0061]
  • definition of the zero height; [0062]
  • selection of a starting height for the drop test; [0063]
  • selection of a homogeneous step distance in order to ensure the use of at least three different heights for each bottle tested; [0064]
  • rejection of the test if the impact was equivocal or if the cap was leaky; [0065]
  • recording of the result in a grid shown in Table 1; [0066]
  • modification of the height by subtracting or adding one step distance depending upon whether the bottle broke or not; [0067]
  • after 14 bottles were tested, [0068]
  • 1) the test was interrupted if the number of ruptures N=7; [0069]
  • [0070] 2) the test was continued until N=7, if N was <7;
  • [0071] 3) the test was continued until the number of non-ruptures is7, if N was>7
  • the calculation of the height of rupture H[0072] F was then given by the formula
  • H F =H o +[ΔH(A/N−0.5)]
  • wherein [0073]
  • H[0074] o is the minimum height,
  • ΔH is the step distance, [0075]
  • A is given by the product (i*n[0076] i) wherein ni represents the number of ruptures at each height considering only the last 7 ruptures and i is an integer 0,1,2, . . . indicating the number of steps above the minimum height Ho,
  • N is the total number of ruptures. [0077]
  • In all the tests performed either on the resins of the present invention or on the comparative resins, the bottles were dropped from a maximum height of 6.5 m. No ruptures occurred (n[0078] i=0 and i*ni=0).
  • On the VK1-4 machine, it is possible to incorporate fluoroelastomer in the resin allowing for very low transformation temperatures of from 140 to 180 ° C., preferably, around 160 ° C. These temperatures are 30 to 40 ° C. lower than the transformation temperature normally used. [0079]
  • The typical weight of the container can be reduced by as much as 50% if so desired. [0080]
  • It is also possible to produce coextruded plastic containers wherein the external layer is a metallocene-produced polyethylene and the internal layer is a polyethylene produced by any conventional method. The external layer represents from 5 to 14%, preferably about 10%, of the total wall thickness. [0081]
  • On the wheel machine, the transformation temperatures are higher than on the VK1-4 machine, they range from 170 to 190 ° C. [0082]
  • Additionally and quite surprisingly, the production rate is very high even though the melt index is low. [0083]
  • EXAMPLES
  • Several polyethylene resins were prepared and tested for swell, gloss, haze and drop. [0084]
  • Resins R1 and R2. [0085]
  • They are monomodal polyethylene resins produced with a chromium catalyst. Resin R1, commercialised under the name Finathène SR572, was prepared with a titanated supported chromium catalyst and resin R2, commercialised under the name Finathène 5502 was prepared with a supported chromium catalyst [0086]
  • Resin R3. [0087]
  • This is a bimodal polyethylene resin that was prepared with a conventional Ziegler-Natta catalyst. [0088]
  • Resin R4. [0089]
  • The polyethylene resin was obtained by continuous polymerisation in a loop slurry reactor with a supported and ionised metallocene catalyst prepared in two steps by first reacting SiO[0090] 2 with MAO to produce SiO2.MAO and then reacting 94 wt % of the SiO2.MAO produced in the first step with 6 wt % of ethylene bis-(tetrahydroindenyl) zirconium dichloride. The dry catalyst was slurried in isobutane and pre-contacted with triisobutylaluminium (TIBAI, 10 wt % in hexane) before injection in the reactor. The reaction was conducted in a 70 l capacity loop reactor during ? hour with the polymerisation temperature being maintained at 85 ° C.,. The operating conditions are summarised in Table 1.
  • Resin R5. [0091]
  • The polyethylene resin was obtained by continuous polymerisation in a loop slurry reactor with a supported and ionised metallocene catalyst prepared in two steps by first reacting SiO[0092] 2 with MAO to produce SiO2.MAO and then reacting 96 wt % of the SiO2.MAO produced in the first step with 4 wt % of ethylene bis-(indenyl) zirconium. The dry catalyst was slurried in isobutane and pre-contacted with triisobutylaluminium (TiBAI, 10 wt % in hexane) before injection in the reactor. The reaction was conducted in a 70 l capacity loop reactor during ? hour with the polymerisation temperature being maintained at 90 ° C. The operating conditions are summarised in Table 1.
    TABLE I
    Pol.
    Temp. TiBAI iC4 C2 C6 H2
    Resin ° C. cm3/h kg/h Kg/h cm3/h NI/h
    R4 90 120 26  9  50 1.2
    R5 85 140 26 10 760 4.0
  • All these resins were prepared with hexene as comonomer. [0093]
  • The properties of these resins are summarised in Table II. [0094]
    TABLE II
    Density HLMI MI2
    Resin g/cm3 g/10′ g/10′ Mn Mw Mz MW D
    R4 0.934 25.1 0.96 34083  88134  167888 2.6
    R5 0.951 30.8 0.63 29037 134438  520624 4.6
    R1 0.955 20 0.18 16222 212677 2198839 13.1
    R2 0.953 17.65 0.19 19620 153558 1333100 7.8
    R3 0.959 18.7 0.19 12100 214000 1528000 17.7
  • These five resins were extruded or coextruded with the VK-14 Battenfeld extruder or with the wheel configuration extruder under conditions summarised in Tables III and IV respectively. The die was 10 mm for all examples. The properties of the extruded articles so produced are also described in Tables III and IV. [0095]
    TABLE III
    Processing Bottle
    Temp. weight Int. gloss Ext. gloss Haze
    Resin ° C. g % % %
    R4 155 65 45 37 49
    R4 155 30 51 44 40
    R1 200 65 8.4 9.1 64
  • During processing, resin R4 showed very low swell and a transparent parison. The bottles obtained were very glossy and transparent as compared to those obtained with resin R1, R2 and R3. [0096]
    TABLE IV
    Process. Die Product. Bottle Swell in
    Temp Amper. gap rate weight diam.
    Resin ° C. A RPM1 mm Nb*/min g Mm
    R1 215 53 34 2.05 26 45 50
    R2 190 53 34 2.05 28 41 47
    R3 170 45 32 2.05 40 31 41
    R4 205 45 30 2.05 40 28 38
    R5 215 48 43 2.05 44 22 34
    R4 190 55 56 2.71 40 39 41
  • RPM[0097] 1 is the number of rotations per minute.
  • Nb*/min is the number of bottles produced per minute [0098]
  • All the bottles produced from resins R4 and R5 had a very high gloss and it was observed that adjusting the equipment accordingly could have increased the rate of production.[0099]
  • The resins' properties are further displayed in FIGS. [0100] 1 to 4.
  • FIG. 1 displays the bottle's weight for the five resins tested. [0101]
  • FIG. 2 represents the swell in % as a function of shear rate. [0102]
  • FIG. 3 represents the production rate for the five resins tested. [0103]
  • FIG. 4 represents the gloss in % for resins R4 and R1 when used as external layer or as internal layer.[0104]
  • These four FIGURES show unambiguously the improved qualities of swell and gloss of the plastic containers obtained with metallocene-produced polyethylene. [0105]

Claims (9)

1. A plastic container comprising one or more layers characterised in that the external layer is prepared essentially from a metallocene-produced polyethylene resin and has a gloss of at least 40.
2. A plastic container according to claim 1, wherein the metalloce-neproduced polyethylene has a density of from 0.930 to 0.966 g/cm3 and a melt index MI2 of from 0.5 to 2.5 g/10 min.
3. A plastic container according to claim 1 or claim 2 wherein the metallocene-produced polyethylene has a molecular weight distribution of from 2 to 7.
4. A plastic container according to any one of the preceding claims that is produced by blow moulding an extruded or coextruded parison.
5. A plastic container according to any one of the preceding claims wherein the container is a single layer container.
6. A plastic container according to any one of claims 1 to 4 wherein the container is a multi-layer container, each layer being the same or different.
7. Milk bottles produced according to any one of the preceding claims.
8. Cosmetic packaging produced according to any one of claims 1 to 6.
9. Household packaging produced according to any one of claims 1 to 6.
US10/333,175 2000-03-30 2001-03-28 Metallocene-produced polyethylene for glossy plastic containers Abandoned US20040121098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/285,261 US20120068385A1 (en) 2000-03-30 2011-10-31 Metallocene-Produced Polyethylene For Glossy Plastic Containers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00201154A EP1138702A1 (en) 2000-03-30 2000-03-30 Metallocene-produced polyethylene for glossy plastic containers
EP00201154.2 2000-03-30
PCT/EP2001/003525 WO2001072856A1 (en) 2000-03-30 2001-03-28 Metallocene-produced polyethylene for glossy plastic containers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/003525 A-371-Of-International WO2001072856A1 (en) 2000-03-30 2001-03-28 Metallocene-produced polyethylene for glossy plastic containers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/285,261 Continuation US20120068385A1 (en) 2000-03-30 2011-10-31 Metallocene-Produced Polyethylene For Glossy Plastic Containers

Publications (1)

Publication Number Publication Date
US20040121098A1 true US20040121098A1 (en) 2004-06-24

Family

ID=8171275

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/333,175 Abandoned US20040121098A1 (en) 2000-03-30 2001-03-28 Metallocene-produced polyethylene for glossy plastic containers
US13/285,261 Abandoned US20120068385A1 (en) 2000-03-30 2011-10-31 Metallocene-Produced Polyethylene For Glossy Plastic Containers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/285,261 Abandoned US20120068385A1 (en) 2000-03-30 2011-10-31 Metallocene-Produced Polyethylene For Glossy Plastic Containers

Country Status (7)

Country Link
US (2) US20040121098A1 (en)
EP (3) EP1138702A1 (en)
AT (2) ATE520722T1 (en)
AU (1) AU2001254749A1 (en)
DE (1) DE60117774T2 (en)
ES (1) ES2259027T3 (en)
WO (1) WO2001072856A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255264A1 (en) * 2002-04-26 2005-11-17 Eric Maziers Rotomoulded articles prepared with polyethylene
US20060051538A1 (en) * 2001-10-02 2006-03-09 Eric Maziers High escr glossy plastic containers
US20070042149A1 (en) * 2005-08-16 2007-02-22 S.C. Johnson & Son, Inc. Bottles made from metallocene polypropylene for delivery of fragrances
US20070129518A1 (en) * 2002-04-26 2007-06-07 Eric Maziers High dimension stability and high processability polyethylene in injection molding
US20080287618A1 (en) * 2004-11-19 2008-11-20 Total Petrochemicals Research Feluy Solid State Properties Of Polyethylene Prepared With Tetrahydroindenyl-Based Catalyst System
US20090081397A1 (en) * 2007-09-26 2009-03-26 Carvell Lee A System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer
US9827705B2 (en) 2015-04-16 2017-11-28 The Procter & Gamble Company High gloss high density polyethylene containers
WO2023192846A1 (en) 2022-03-31 2023-10-05 Exxonmobil Chemical Patents Inc. Linear low density polyethylenes, polymerizations thereof, and films thereof
WO2024044423A1 (en) 2022-08-22 2024-02-29 Exxonmobil Chemical Patents, Inc. Polyethylene compositions and films made therefrom
WO2024054736A1 (en) 2022-09-07 2024-03-14 Exxonmobil Chemical Patents Inc. Polyethylenes and articles thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287969A1 (en) * 2001-08-24 2003-03-05 Atofina Research S.A. Injection blow moulded metallocene polyethylene container
US20040043165A1 (en) * 2002-08-27 2004-03-04 Van Hulle Keith Eugene Lidding components for containers
EP1674523A1 (en) * 2004-12-22 2006-06-28 Total Petrochemicals Research Feluy Caps and closures
US7592395B2 (en) 2006-08-01 2009-09-22 Exxonmobil Chemical Patents Inc. Multimodal polyethylene for use in single piece beverage bottle caps and closures
EP2075125A1 (en) * 2007-12-19 2009-07-01 Total Petrochemicals Research Feluy Corona treated polyethylene films
US8797540B2 (en) * 2010-09-08 2014-08-05 The Board Of Trustees Of The Leland Stanford Junior University Slow-light fiber Bragg grating sensor
US9284391B2 (en) 2011-09-02 2016-03-15 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9018329B2 (en) 2011-09-02 2015-04-28 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US20130059140A1 (en) * 2011-09-02 2013-03-07 Chevron Phillips Chemical Company Lp Multilayer Polymer Films Having Improved Barrier Properties
WO2016053483A1 (en) 2014-10-03 2016-04-07 Exxonmobil Chemical Patents Inc. Polyethylene polymers, films made therefrom, and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989725A (en) * 1997-01-16 1999-11-23 Tenneco Packaging Clear high molecular weight film
US6042906A (en) * 1996-08-12 2000-03-28 Toyo Seikan Kaisha, Ltd. Flavor-retaining plastic multi-layer container
US6255426B1 (en) * 1997-04-01 2001-07-03 Exxon Chemical Patents, Inc. Easy processing linear low density polyethylene

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619325B1 (en) 1993-04-07 2001-08-29 ATOFINA Research Process for preparing polyolefin catalysts
GB9402430D0 (en) * 1994-02-08 1994-03-30 Du Pont Canada Multilayer ethylene copolymer film
US5629253A (en) * 1994-04-26 1997-05-13 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
US6419966B1 (en) * 1994-12-22 2002-07-16 Exxonmobil Chemical Patents Inc. Polyethylene articles with improved resistance to water vapor transmission
JP3570809B2 (en) * 1995-05-02 2004-09-29 三井化学株式会社 Method for producing polyethylene
UA47394C2 (en) * 1995-05-16 2002-07-15 Юнівейшн Текнолоджіз, Ллс Ethylene polymer with improved processability and an article containing the ethylene polymer
US5882750A (en) * 1995-07-03 1999-03-16 Mobil Oil Corporation Single reactor bimodal HMW-HDPE film resin with improved bubble stability
EP0756931B2 (en) * 1995-07-31 2011-06-22 Kureha Corporation Multilayer film
JPH0958648A (en) 1995-08-16 1997-03-04 Toyo Seikan Kaisha Ltd Plastic bottle and manufacture thereof
AU5713998A (en) * 1997-01-29 1998-08-18 Tetra Laval Holdings & Finance Sa Transparent high barrier multilayer structure
EP0881237A1 (en) 1997-05-26 1998-12-02 Fina Research S.A. Process to produce bimodal polyolefins with metallocene catalysts using two reaction zones
US6416833B1 (en) * 1997-08-22 2002-07-09 Dupont Canada Inc. Interpolymer film pouch
EP1034076B2 (en) * 1997-11-26 2010-12-15 Cryovac, Inc. Flexible container of a multilayer heat-shrinkable thermoplastic film
JP2000129045A (en) * 1998-10-27 2000-05-09 Asahi Chem Ind Co Ltd Clean vessel made of polyethylene
JP2000129044A (en) * 1998-10-27 2000-05-09 Asahi Chem Ind Co Ltd Vessel made of polyethylene for high-purity chemicals
EP1062257A1 (en) * 1999-01-08 2000-12-27 The Board Of Trustees Of The Leland Stanford Junior University Ethylene copolymers with narrow composition distribution and high melting temperatures, and methods of production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042906A (en) * 1996-08-12 2000-03-28 Toyo Seikan Kaisha, Ltd. Flavor-retaining plastic multi-layer container
US5989725A (en) * 1997-01-16 1999-11-23 Tenneco Packaging Clear high molecular weight film
US6255426B1 (en) * 1997-04-01 2001-07-03 Exxon Chemical Patents, Inc. Easy processing linear low density polyethylene

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514130B2 (en) 2001-10-02 2009-04-07 Fina Technology, Inc. High ESCR glossy plastic containers
US20060051538A1 (en) * 2001-10-02 2006-03-09 Eric Maziers High escr glossy plastic containers
US20050255264A1 (en) * 2002-04-26 2005-11-17 Eric Maziers Rotomoulded articles prepared with polyethylene
US20070129518A1 (en) * 2002-04-26 2007-06-07 Eric Maziers High dimension stability and high processability polyethylene in injection molding
US8420194B2 (en) * 2002-04-26 2013-04-16 Total Petrochemicals Research Feluy Rotomoulded articles prepared with polyethylene
US20120128908A1 (en) * 2002-04-26 2012-05-24 Total Petrochemical Research Feluy Rotomoulded Articles Prepared With Polyethylene
US8822611B2 (en) * 2004-11-19 2014-09-02 Total Research & Technology Feluy Solid state properties of polyethylene prepared with tetrahydroindenyl-based catalyst system
US20110059278A1 (en) * 2004-11-19 2011-03-10 Total Petrochemicals Research Feluy Solid state properties of polyethylene prepared with tetrahydroindenyl-based catalyst system
US20080287618A1 (en) * 2004-11-19 2008-11-20 Total Petrochemicals Research Feluy Solid State Properties Of Polyethylene Prepared With Tetrahydroindenyl-Based Catalyst System
US7416766B2 (en) 2005-08-16 2008-08-26 S.C. Johnson & Son, Inc. Bottles made from metallocene polypropylene for delivery of fragrances
US20070042149A1 (en) * 2005-08-16 2007-02-22 S.C. Johnson & Son, Inc. Bottles made from metallocene polypropylene for delivery of fragrances
US20090081397A1 (en) * 2007-09-26 2009-03-26 Carvell Lee A System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer
US8263198B2 (en) 2007-09-26 2012-09-11 Chevron Phillips Chemical Company Lp System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer
US9289955B2 (en) * 2007-09-26 2016-03-22 Chevron Phillips Chemical Company Lp System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer
US9827705B2 (en) 2015-04-16 2017-11-28 The Procter & Gamble Company High gloss high density polyethylene containers
WO2023192846A1 (en) 2022-03-31 2023-10-05 Exxonmobil Chemical Patents Inc. Linear low density polyethylenes, polymerizations thereof, and films thereof
WO2024044423A1 (en) 2022-08-22 2024-02-29 Exxonmobil Chemical Patents, Inc. Polyethylene compositions and films made therefrom
WO2024054736A1 (en) 2022-09-07 2024-03-14 Exxonmobil Chemical Patents Inc. Polyethylenes and articles thereof

Also Published As

Publication number Publication date
EP1268576A1 (en) 2003-01-02
AU2001254749A1 (en) 2001-10-08
DE60117774D1 (en) 2006-05-04
ATE520722T1 (en) 2011-09-15
EP1138702A1 (en) 2001-10-04
EP1593696A2 (en) 2005-11-09
WO2001072856A1 (en) 2001-10-04
ES2259027T3 (en) 2006-09-16
DE60117774T2 (en) 2006-11-16
EP1593696B1 (en) 2011-08-17
EP1268576B1 (en) 2006-03-08
ATE319752T1 (en) 2006-03-15
EP1593696A3 (en) 2006-01-04
US20120068385A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US20120068385A1 (en) Metallocene-Produced Polyethylene For Glossy Plastic Containers
US7807096B2 (en) Injection blow molded single layer metallocene polyethylene container
US7250474B2 (en) Physical blends of polyethylenes
CN1957003B (en) Chromium based polymerization catalyst, the method to prepare it and polymers prepared therewith
US7514130B2 (en) High ESCR glossy plastic containers
JP2008544042A (en) ESCR reinforced bimodal HDPE for blow molding applications
WO2007018720A1 (en) Polyethylene compositions for injection molding
CN102321203B (en) Catalyst systems for producing polymers having broad molecular weight distributions and methods of making the same
US7514504B2 (en) Polyethylene blends with good contact transparency
EP1730230B1 (en) Polyethylene blends with good contact transparency
AU6584200A (en) Container production process
EP2130860A1 (en) Polymer
EP1805224B1 (en) Catalyst component comprising three or more bridged bisindenyl metallocene components
US20090136699A1 (en) Glossy Tubes and Pipes
EP1273436A1 (en) Glossy tubes and pipes
EP3651959B1 (en) Injection-molded articles comprising metallocene-catalyzed polyethylene resin

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATOFINA RESEARCH, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAZIERS, ERIC;REEL/FRAME:014611/0422

Effective date: 20030610

AS Assignment

Owner name: TOTAL PETROCHEMICALS RESEARCH FELUY, BELGIUM

Free format text: CHANGE OF NAME;ASSIGNOR:ATOFINA RESEARCH;REEL/FRAME:016470/0203

Effective date: 20041001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION