US20040112862A1 - Planarization composition and method of patterning a substrate using the same - Google Patents

Planarization composition and method of patterning a substrate using the same Download PDF

Info

Publication number
US20040112862A1
US20040112862A1 US10/318,319 US31831902A US2004112862A1 US 20040112862 A1 US20040112862 A1 US 20040112862A1 US 31831902 A US31831902 A US 31831902A US 2004112862 A1 US2004112862 A1 US 2004112862A1
Authority
US
United States
Prior art keywords
component
layer
substrate
silicon
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/318,319
Inventor
C. Willson
Britain Smith
Nicholas Stacey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Nanotechnologies Inc
University of Texas System
Original Assignee
Molecular Imprints Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molecular Imprints Inc filed Critical Molecular Imprints Inc
Priority to US10/318,319 priority Critical patent/US20040112862A1/en
Assigned to TEXAS SYSTEM, UNIVERSITY OF reassignment TEXAS SYSTEM, UNIVERSITY OF ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, BRITAIN J., STACEY, NICHOLAS A., WILLSON, C. GRANT
Assigned to UNIVERSITY OF TEXAS SYSTEM reassignment UNIVERSITY OF TEXAS SYSTEM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, BRITAIN J.
Publication of US20040112862A1 publication Critical patent/US20040112862A1/en
Priority to US11/026,821 priority patent/US20050156357A1/en
Priority to US11/535,889 priority patent/US20070034600A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • G03F7/0955Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer one of the photosensitive systems comprising a non-macromolecular photopolymerisable compound having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/015Imprinting
    • B81C2201/0152Step and Flash imprinting, UV imprinting

Definitions

  • the field of invention relates generally to micro-fabrication of structures. More particularly, the present invention is directed to patterning substrates in furtherance of the formation of structures.
  • Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller.
  • One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits.
  • micro-fabrication becomes increasingly important.
  • Micro-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed.
  • Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
  • Willson et al. disclose a method of forming a relief image in a structure.
  • the method includes providing a substrate having a transfer layer.
  • the transfer layer is covered with a polymerizable fluid composition.
  • a mold makes mechanical contact with the polymerizable fluid.
  • the mold includes a relief structure, and the polymerizable fluid composition fills the relief structure.
  • the polymerizable fluid composition is then subjected to conditions to solidify and polymerize the same, forming a solidified polymeric material on the transfer layer that contains a relief structure complimentary to that of the mold.
  • the mold is then separated from the solid polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material.
  • the transfer layer and the solidified polymeric material are subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer.
  • the time required and the minimum feature dimension provided by this technique is dependent upon, inter alia, the composition of the polymerizable material.
  • the present invention includes a composition and a method for forming a pattern on a substrate with the composition by forming a cross-linked polymer from the composition upon exposing the same to radiation.
  • the composition includes a non-silicon-containing acrylate component, and an initiator component combined with the non-silicon-containing acrylate to provide a viscosity no greater than 5 cps.
  • the initiator component is responsive to radiation to initiate a free radical reaction and cause the non-silicon containing acrylate component to polymerize and cross-link.
  • One embodiment of the non-silicon-containing acrylate component includes ethylene glycol diacrylate.
  • the method includes depositing the composition to function as a planarization layer. Thereafter, a layer of polymerizable material into which a pattern is to be recorded is deposited.
  • FIG. 1 is a simplified elevation view of a lithographic system in accordance with the present invention
  • FIG. 2 is a simplified representation of material from which an imprinting layer, shown in FIG. 1, is comprised before being polymerized and cross-linked;
  • FIG. 3 is a simplified representation of cross-linked polymer material into which the material shown in FIG. 2 is transformed after being subjected to radiation;
  • FIG. 4 is a simplified elevation view of an imprint device, shown in FIG. 1, in mechanical contact with an imprint layer disposed on a substrate, in accordance with one embodiment of the present invention
  • FIG. 5 is a simplified elevation view of the imprint device spaced-apart from the imprint layer, shown in FIG. 4, after patterning of the imprint layer;
  • FIG. 6 is a simplified elevation view of the imprint device and imprint layer shown in FIG. 5, with residue remaining in the pattern;
  • FIG. 7 is a simplified elevation view of material in an imprint device and substrate employed with the present invention in accordance with an alternate embodiment.
  • a lithographic system in accordance with an embodiment of the present invention includes a substrate 10 , having a substantially planar region shown as surface 12 . Disposed opposite substrate 10 is an imprint device 14 having a plurality of features thereon, forming a plurality of spaced-apart recesses 16 and protrusions 18 .
  • the recesses 16 are a plurality of grooves extending along a direction parallel to protrusions 18 that provide a cross-section of imprint device 14 with a shape of a battlement.
  • the recesses 16 may correspond to virtually any feature required to create an integrated circuit.
  • a translation mechanism 20 is connected between imprint device 14 and substrate 10 to vary a distance “d” between imprint device 14 and substrate 10 .
  • a radiation source 22 is located so that imprint device 14 is positioned between radiation source 22 and substrate 10 . Radiation source 22 is configured to impinge radiation on substrate 10 . To realize this, imprint device 14 is fabricated from material that allows it to be substantially transparent to the radiation produced by radiation source 22 .
  • an imprinting layer 24 is disposed adjacent to surface 12 , between substrate 10 and imprint device 14 .
  • imprinting layer 24 may be deposited using any known technique, in the present embodiment, imprinting layer 24 is deposited as a plurality of spaced-apart discrete beads 25 of material 25 a on substrate 10 , discussed more fully below.
  • Imprinting layer 24 is formed from a material 25 a that may be selectively polymerized and cross-linked to record a desired pattern. Material 25 a is shown in FIG. 3 as being cross-linked at points 25 b , forming cross-linked polymer material 25 c.
  • the pattern recorded by imprinting layer 24 is produced, in part, by mechanical contact with imprint device 14 .
  • translation mechanism 20 reduces the distance “d” to allow imprinting layer 24 to come into mechanical contact with imprint device 14 , spreading beads 25 so as to form imprinting layer 24 with a contiguous formation of material 25 a , shown in FIG. 2, over surface 12 .
  • distance “d” is reduced to allow sub-portions 24 a of imprinting layer 24 to ingress into and fill recesses 16 .
  • material 25 a is provided with the requisite viscosity to completely fill recesses 16 in a timely manner, while covering surface 12 with a contiguous formation of material 25 a , on the order of a few milliseconds to a few seconds.
  • sub-portions 24 b of imprinting layer 24 in superimposition with protrusions 18 remain after the desired, usually minimum distance “d” has reached a minimum distance, leaving sub-portions 24 a with a thickness t 1 , and sub-portions 24 b with a thickness, t 2 .
  • Thicknesses “t 1 ” and “t 2 ” may be any thickness desired, dependent upon the application. Further, in another embodiment, sub-portions 24 b may be abrogated entirely whereby the only remaining material from imprinting layer 24 are sub-portions 24 a , after distance, “d” has reached a minimum value.
  • radiation source 22 produces actinic radiation that polymerizes and cross-links material 25 a , forming cross-linked polymer material 25 c .
  • the composition of imprinting layer 24 transforms from material 25 a to material 25 c , which is a solid.
  • material 25 c is solidified to provide surface 24 c of imprinting layer 24 with a shape conforming to a shape of a surface 14 a of imprint device 14 , shown more clearly in FIG. 5.
  • an exemplary radiation source 22 may produce ultraviolet radiation.
  • Other radiation sources may be employed, such as thermal, electromagnetic and the like.
  • the selection of radiation employed to initiate the polymerization of the material in imprinting layer 24 is known to one skilled in the art and typically depends on the specific application which is desired.
  • translation mechanism 20 increases the distance “d” so that imprint device 14 and imprinting layer 24 are spaced-apart.
  • substrate 10 and imprinting layer 24 may be selectively etched to increase the aspect ratio of recesses 30 in imprinting layer 24 .
  • the material from which imprinting layer 24 is formed may be varied to define a relative etch rate with respect to substrate 10 , as desired.
  • the relative etch rate of imprinting layer 24 to substrate 10 may be in a range of about 1.5:1 to about 100:1.
  • imprinting layer 24 may be provided with an etch differential with respect to photo-resist material (not shown) selectively disposed on surface 24 c .
  • the photo-resist material (not shown) may be provided to further pattern imprinting layer 24 , using known techniques. Any etch process may be employed, dependent upon the etch rate desired and the underlying constituents that form substrate 10 and imprinting layer 24 . Exemplary etch processes may include plasma etching, reactive ion etching and the like.
  • residual material 26 may be present on imprinting layer 24 after patterning has been completed.
  • Residual material 26 may consist of un-polymerized material 25 a , solid polymerized and cross-linked material 25 c , substrate 10 or a combination thereof.
  • Further processing may be included to remove residual material 26 using well known techniques, e.g., argon ion milling, a plasma etch, reactive ion etching or a combination thereof. Further, removal of residual material 26 may be accomplished during any stage of the patterning. For example, removal of residual material 26 may be carried out before etching the polymerized and cross-linked imprinting layer 24 .
  • the aspect ratio of recesses 30 formed from the aforementioned patterning technique may be as great as 30:1.
  • one embodiment of imprint device 14 has recesses 16 defining an aspect ratio in a range of 1:1 to 10:1.
  • protrusions 18 have a width W 1 in a range of about 10 nm to about 5000 ⁇ m
  • recesses 16 have a width W 2 in a range of 10 nm to about 5000 ⁇ m.
  • imprint device 14 may be formed from various conventional materials, such as, but not limited to, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and combinations of the above.
  • material 25 a is important to efficiently pattern substrate 10 in light of the unique deposition process employed.
  • material 25 a is deposited on substrate 10 as a plurality of discrete and spaced-apart beads 25 .
  • the combined volume of beads 25 is such that the material 25 a is distributed appropriately over area of surface 12 where imprinting layer 24 is to be formed.
  • imprinting layer 24 is spread and patterned concurrently, with the pattern being subsequently set by exposure to radiation, such as ultraviolet radiation.
  • material 25 a have certain characteristics to facilitate rapid and even spreading of material 25 a in beads 25 over surface 12 so that the all thicknesses t 1 are substantially uniform and all thickness t 2 are substantially uniform.
  • the desirable characteristics include having a viscosity approximately that of water, (H 2 O), 1 to 2 centepoise (cps), or less, as well as the ability to wet surface of substrate 10 to avoid subsequent pit or hole formation after polymerization.
  • the wettability of imprinting layer 24 should be such that the angle, ⁇ 1 , is defined as follows:
  • imprinting layer 24 may be made sufficiently thin while avoiding formation of pits or holes in the thinner regions, such as sub-portions 24 b , shown in FIG. 4.
  • material 25 a another desirable characteristic that it is desired for material 25 a to possess is thermal stability such that the variation in an angle ⁇ , measured between a nadir 30 a of a recess 30 and a sidewall 30 b thereof, does not vary more than 10% after being heated to 75° C. for thirty (30) minutes. Additionally, material 25 a should transform to material 25 c , i.e., polymerize and cross-link, when subjected to a pulse of radiation containing less than 5 J cm ⁇ 2. In the present example, polymerization and cross-linking was determined by analyzing the infrared absorption of the “C ⁇ C” bond contained in material 25 a .
  • substrate surface 12 be relatively inert toward material 25 a , such that less than 500 nm of surface 12 be dissolved as a result of sixty seconds of contact with material 25 a . It is further desired that the wetting of imprint device 14 by imprinting layer 24 be minimized. To that end, the wetting angle, ⁇ 2 , should be greater than 75°. Finally, should it be desired to vary an etch rate differential between imprinting layer 24 and substrate 10 , an exemplary embodiment of the present invention would demonstrate an etch rate that is 20% less than the etch rate of an optical photo-resist (not shown) exposed to an oxygen plasma.
  • substrate 10 may be formed from a number of different materials.
  • the chemical composition of surface 12 varies dependent upon the material from which substrate 10 is formed.
  • substrate 10 may be formed from silicon, plastics, gallium arsenide, mercury telluride, and composites thereof.
  • substrate 10 may include one or more layers in region, e.g., dielectric layer, metal layers, semiconductor layer and the like.
  • the constituent components of material 25 a consist of acrylated monomers or methacrylated monomers that are not silyated, a cross-linking agent, and an initiator.
  • the non-silyated acryl or methacryl monomers are selected to provide material 25 a with a minimal viscosity, e.g., viscosity approximating the viscosity of water (1-2 cps) or less.
  • the cross-linking agent is included, even though the size of these molecules increases the viscosity of material 25 a , to cross-link the molecules of the non-silyated monomers, providing material 25 a with the properties to record a pattern thereon having very small feature sizes, on the order of a few nanometers and to provide the aforementioned thermal stability for further processing.
  • the initiator is provided to produce a free radical reaction in response to radiation, causing the non-silyated monomers and the cross-linking agent to polymerize and cross-link, forming a cross-linked polymer material 25 c .
  • a photo-initiator responsive to ultraviolet radiation is employed.
  • a silyated monomer may also be included in material 25 a to control the etch rate of the resulting cross-linked polymer material 25 c , without substantially affecting the viscosity of material 25 a.
  • non-silyated monomers include, but are not limited to, butyl acrylate, methyl acrylate, methyl methacrylate, or mixtures thereof.
  • the non-silyated monomer may make up approximately 25 to 60% by weight of material 25 a . It is believed that the monomer provides adhesion to an underlying organic transfer layer, discussed more fully below.
  • the cross-linking agent is a monomer that includes two or more polymerizable groups.
  • polyfunctional siloxane derivatives may be used as a cross-linking agent.
  • An example of a polyfunctional siloxane derivative is 1,3-bis(3-methacryloxypropyl)-tetramethyl disiloxane.
  • Another suitable cross-linking agent consists of ethylene diol diacrylate.
  • the cross-linking agent may be present in material 25 a in amounts of up to 20% by weight, but is more typically present in an amount of 5 to 15% by weight.
  • the initiator may be any component that initiates a free radical reaction in response to radiation, produced by radiation source 22 , shown in FIG. 1, impinging thereupon and being absorbed thereby.
  • Suitable initiators may include, but are not limited to, photo-initiators such as 1-hydroxycyclohexyl phenyl ketone or phenylbis(2,4,6-trimethyl benzoyl) phosphine oxide.
  • the initiator may be present in material 25 a in amounts of up to 5% by weight, but is typically present in an amount of 1 to 4% by weight.
  • suitable silylated monomers may include, but are not limited to, silyl-acryloxy and silyl methacryloxy derivatives. Specific examples are methacryloxypropyl tris(tri-methylsiloxy)silane and (3-acryloxypropyl)tris(tri-methoxysiloxy)-silane. Silylated monomers may be present in material 25 a in amounts from 25 to 50% by weight.
  • the curable liquid may also include a dimethyl siloxane derivative. Examples of dimethyl siloxane derivatives include, but are not limited to, (acryloxypropyl) methylsiloxane dimethylsiloxane copolymer.
  • exemplary compositions for material 25 a are as follows:
  • compositions also include stabilizers that are well known in the chemical art to increase the operational life, as well as initiators.
  • planarization layer 32 may be formed from a number of differing materials, such as, for example, thermoset polymers, thermoplastic polymers, polyepoxies, polyamides, polyurethanes, polycarbonates, polyesters, and combinations thereof.
  • planarization layer 32 be formed from material that polymerizes, or cures, in response to the actinic radiation employed to cure imprinting layer 24 and adheres well thereto and other adjacent layers and experiences less than 15% shrinkage during curing. Planarization layer 32 should not substantially penetrate imprinting layer 24 . Specifically, it is desired that planarization layer 32 is not swelled by the imprinting layer 24 to the extent where there is more than 5% of imprinting material 25 a penetrating the planarization layer 32 . Additionally, it is desired that the material have a viscosity of less than 5 cps and more particularly less than 2 cps at 20° C. A class of material that demonstrates these characteristics is non-silicon-containing acrylates.
  • An exemplary material is ethylene glycol diacrylate combined with an initiator and stabilizers for long shelf life.
  • the initiator may be any of those discussed above and is responsive to actinic radiation, such as UV light and causes a free radical which facilitates polymerization and cross-linking of the ethylene glycol acrylate. Typically, the initiator does not constitute more than 5% of the mixture.
  • An exemplary initiator may consist of molecules selected from a set consisting of 1-hydroxycyclohexyl phenyl ketone, 2-(2-hydroxypropyl) phenyl ketone, available from Ciba Corporation under the trade name Darocur 1173 and phenylbis (2,4,6-trimethyl benzoyl) phosphine oxide.
  • planarization layer 32 is fabricated in a manner similar to imprinting layer 24 using a featureless mold having a planar surface. In this manner, planarization layer 32 is fabricated to possess a continuous, smooth, relatively defect-free surface that may exhibit excellent adhesion to the imprinting layer 24 .
  • surface 14 a may be treated with a modifying agent.
  • a modifying agent is a release layer 34 formed from a fluorocarbon silylating agent.
  • Release layer 34 and other surface modifying agents may be applied using any known process. For example, processing techniques that may include chemical vapor deposition method, physical vapor deposition, atomic layer deposition or various other techniques, brazing and the like. In this configuration, imprinting layer 24 is located between planarization layer 32 and release layer 34 during imprint lithography processes.

Abstract

The present invention includes a composition and a method for forming a pattern on a substrate with the composition by forming a cross-linked polymer from the composition upon exposing the same to radiation. To that end, in one embodiment of the present invention the composition includes a non-silicon-containing acrylate component, and an initiator component combined with said non-silicon-containing acrylate to provide a viscosity no greater than 5 cps. The initiator component is responsive to radiation to initiate a free radical reaction and cause the non-silicon containing acrylate component to polymerize and cross-link. One embodiment of the non-silicon-containing acrylate component includes ethylene glycol diacrylate. The method includes depositing the composition to function as a planarization layer. Thereafter, a layer of polymerizable material into which a pattern is to be recorded is deposited.

Description

    BACKGROUND OF THE INVENTION
  • The field of invention relates generally to micro-fabrication of structures. More particularly, the present invention is directed to patterning substrates in furtherance of the formation of structures. [0001]
  • Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller. One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, micro-fabrication becomes increasingly important. Micro-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed. Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like. [0002]
  • An exemplary micro-fabrication technique is shown in U.S. Pat. No. 6,334,960 to Willson et al. Willson et al. disclose a method of forming a relief image in a structure. The method includes providing a substrate having a transfer layer. The transfer layer is covered with a polymerizable fluid composition. A mold makes mechanical contact with the polymerizable fluid. The mold includes a relief structure, and the polymerizable fluid composition fills the relief structure. The polymerizable fluid composition is then subjected to conditions to solidify and polymerize the same, forming a solidified polymeric material on the transfer layer that contains a relief structure complimentary to that of the mold. The mold is then separated from the solid polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material. The transfer layer and the solidified polymeric material are subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer. The time required and the minimum feature dimension provided by this technique is dependent upon, inter alia, the composition of the polymerizable material. [0003]
  • It is desired, therefore, to provide improved compositions of polymerizable materials for use in micro-fabrication. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention includes a composition and a method for forming a pattern on a substrate with the composition by forming a cross-linked polymer from the composition upon exposing the same to radiation. To that end, in one embodiment of the present invention the composition includes a non-silicon-containing acrylate component, and an initiator component combined with the non-silicon-containing acrylate to provide a viscosity no greater than 5 cps. The initiator component is responsive to radiation to initiate a free radical reaction and cause the non-silicon containing acrylate component to polymerize and cross-link. One embodiment of the non-silicon-containing acrylate component includes ethylene glycol diacrylate. The method includes depositing the composition to function as a planarization layer. Thereafter, a layer of polymerizable material into which a pattern is to be recorded is deposited. These and other embodiments are described herein.[0005]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified elevation view of a lithographic system in accordance with the present invention; [0006]
  • FIG. 2 is a simplified representation of material from which an imprinting layer, shown in FIG. 1, is comprised before being polymerized and cross-linked; [0007]
  • FIG. 3 is a simplified representation of cross-linked polymer material into which the material shown in FIG. 2 is transformed after being subjected to radiation; [0008]
  • FIG. 4 is a simplified elevation view of an imprint device, shown in FIG. 1, in mechanical contact with an imprint layer disposed on a substrate, in accordance with one embodiment of the present invention; [0009]
  • FIG. 5 is a simplified elevation view of the imprint device spaced-apart from the imprint layer, shown in FIG. 4, after patterning of the imprint layer; [0010]
  • FIG. 6 is a simplified elevation view of the imprint device and imprint layer shown in FIG. 5, with residue remaining in the pattern; and [0011]
  • FIG. 7 is a simplified elevation view of material in an imprint device and substrate employed with the present invention in accordance with an alternate embodiment.[0012]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, a lithographic system in accordance with an embodiment of the present invention includes a [0013] substrate 10, having a substantially planar region shown as surface 12. Disposed opposite substrate 10 is an imprint device 14 having a plurality of features thereon, forming a plurality of spaced-apart recesses 16 and protrusions 18. In the present embodiment, the recesses 16 are a plurality of grooves extending along a direction parallel to protrusions 18 that provide a cross-section of imprint device 14 with a shape of a battlement. However, the recesses 16 may correspond to virtually any feature required to create an integrated circuit. A translation mechanism 20 is connected between imprint device 14 and substrate 10 to vary a distance “d” between imprint device 14 and substrate 10. A radiation source 22 is located so that imprint device 14 is positioned between radiation source 22 and substrate 10. Radiation source 22 is configured to impinge radiation on substrate 10. To realize this, imprint device 14 is fabricated from material that allows it to be substantially transparent to the radiation produced by radiation source 22.
  • Referring to both FIGS. 1 and 2, an [0014] imprinting layer 24 is disposed adjacent to surface 12, between substrate 10 and imprint device 14. Although imprinting layer 24 may be deposited using any known technique, in the present embodiment, imprinting layer 24 is deposited as a plurality of spaced-apart discrete beads 25 of material 25 a on substrate 10, discussed more fully below. Imprinting layer 24 is formed from a material 25 a that may be selectively polymerized and cross-linked to record a desired pattern. Material 25 a is shown in FIG. 3 as being cross-linked at points 25 b, forming cross-linked polymer material 25 c.
  • Referring to both FIGS. 1 and 4, the pattern recorded by [0015] imprinting layer 24 is produced, in part, by mechanical contact with imprint device 14. To that end, translation mechanism 20 reduces the distance “d” to allow imprinting layer 24 to come into mechanical contact with imprint device 14, spreading beads 25 so as to form imprinting layer 24 with a contiguous formation of material 25 a, shown in FIG. 2, over surface 12. In one embodiment, distance “d” is reduced to allow sub-portions 24 a of imprinting layer 24 to ingress into and fill recesses 16.
  • Referring to FIGS. 1, 2 and [0016] 4, to facilitate filling of recesses 16, material 25 a is provided with the requisite viscosity to completely fill recesses 16 in a timely manner, while covering surface 12 with a contiguous formation of material 25 a, on the order of a few milliseconds to a few seconds. In the present embodiment, sub-portions 24 b of imprinting layer 24 in superimposition with protrusions 18 remain after the desired, usually minimum distance “d” has reached a minimum distance, leaving sub-portions 24 a with a thickness t1, and sub-portions 24 b with a thickness, t2. Thicknesses “t1” and “t2” may be any thickness desired, dependent upon the application. Further, in another embodiment, sub-portions 24 b may be abrogated entirely whereby the only remaining material from imprinting layer 24 are sub-portions 24 a, after distance, “d” has reached a minimum value.
  • Referring to FIGS. 1, 2 and [0017] 3, after a desired distance “d” has been reached, radiation source 22 produces actinic radiation that polymerizes and cross-links material 25 a, forming cross-linked polymer material 25 c. As a result, the composition of imprinting layer 24 transforms from material 25 a to material 25 c, which is a solid. Specifically, material 25 c is solidified to provide surface 24 c of imprinting layer 24 with a shape conforming to a shape of a surface 14 a of imprint device 14, shown more clearly in FIG. 5.
  • Referring to FIGS. 1, 2 and [0018] 3 an exemplary radiation source 22 may produce ultraviolet radiation. Other radiation sources may be employed, such as thermal, electromagnetic and the like. The selection of radiation employed to initiate the polymerization of the material in imprinting layer 24 is known to one skilled in the art and typically depends on the specific application which is desired. After imprinting layer 24 is transformed to consist of material 25 c, translation mechanism 20 increases the distance “d” so that imprint device 14 and imprinting layer 24 are spaced-apart.
  • Referring to FIG. 5, additional processing may be employed to complete the patterning of [0019] substrate 10. For example, substrate 10 and imprinting layer 24 may be selectively etched to increase the aspect ratio of recesses 30 in imprinting layer 24. To facilitate etching, the material from which imprinting layer 24 is formed may be varied to define a relative etch rate with respect to substrate 10, as desired. The relative etch rate of imprinting layer 24 to substrate 10 may be in a range of about 1.5:1 to about 100:1. Alternatively, or in addition to, imprinting layer 24 may be provided with an etch differential with respect to photo-resist material (not shown) selectively disposed on surface 24 c. The photo-resist material (not shown) may be provided to further pattern imprinting layer 24, using known techniques. Any etch process may be employed, dependent upon the etch rate desired and the underlying constituents that form substrate 10 and imprinting layer 24. Exemplary etch processes may include plasma etching, reactive ion etching and the like.
  • Referring to FIGS. 2, 3 and [0020] 6, residual material 26 may be present on imprinting layer 24 after patterning has been completed. Residual material 26 may consist of un-polymerized material 25 a, solid polymerized and cross-linked material 25 c, substrate 10 or a combination thereof. Further processing may be included to remove residual material 26 using well known techniques, e.g., argon ion milling, a plasma etch, reactive ion etching or a combination thereof. Further, removal of residual material 26 may be accomplished during any stage of the patterning. For example, removal of residual material 26 may be carried out before etching the polymerized and cross-linked imprinting layer 24.
  • Referring to FIGS. 1 and 5, the aspect ratio of [0021] recesses 30 formed from the aforementioned patterning technique may be as great as 30:1. To that end, one embodiment of imprint device 14 has recesses 16 defining an aspect ratio in a range of 1:1 to 10:1. Specifically, protrusions 18 have a width W1 in a range of about 10 nm to about 5000 μm, and recesses 16 have a width W2 in a range of 10 nm to about 5000 μm. As a result, imprint device 14 may be formed from various conventional materials, such as, but not limited to, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and combinations of the above.
  • Referring to FIGS. 1 and 2, the characteristics of material [0022] 25 a are important to efficiently pattern substrate 10 in light of the unique deposition process employed. As mentioned above, material 25 a is deposited on substrate 10 as a plurality of discrete and spaced-apart beads 25. The combined volume of beads 25 is such that the material 25 a is distributed appropriately over area of surface 12 where imprinting layer 24 is to be formed. As a result, imprinting layer 24 is spread and patterned concurrently, with the pattern being subsequently set by exposure to radiation, such as ultraviolet radiation. As a result of the deposition process it is desired that material 25 a have certain characteristics to facilitate rapid and even spreading of material 25 a in beads 25 over surface 12 so that the all thicknesses t1 are substantially uniform and all thickness t2 are substantially uniform. The desirable characteristics include having a viscosity approximately that of water, (H2O), 1 to 2 centepoise (cps), or less, as well as the ability to wet surface of substrate 10 to avoid subsequent pit or hole formation after polymerization. To that end, in one example, the wettability of imprinting layer 24, as defined by the contact angle method, should be such that the angle, θ1, is defined as follows:
  • 0≧θ1<75°
  • With these two characteristics being satisfied, imprinting [0023] layer 24 may be made sufficiently thin while avoiding formation of pits or holes in the thinner regions, such as sub-portions 24 b, shown in FIG. 4.
  • Referring to FIGS. 2, 3 and [0024] 5, another desirable characteristic that it is desired for material 25 a to possess is thermal stability such that the variation in an angle Φ, measured between a nadir 30 a of a recess 30 and a sidewall 30 b thereof, does not vary more than 10% after being heated to 75° C. for thirty (30) minutes. Additionally, material 25 a should transform to material 25 c, i.e., polymerize and cross-link, when subjected to a pulse of radiation containing less than 5 J cm−2. In the present example, polymerization and cross-linking was determined by analyzing the infrared absorption of the “C═C” bond contained in material 25 a. Additionally, it is desired that substrate surface 12 be relatively inert toward material 25 a, such that less than 500 nm of surface 12 be dissolved as a result of sixty seconds of contact with material 25 a. It is further desired that the wetting of imprint device 14 by imprinting layer 24 be minimized. To that end, the wetting angle, θ2, should be greater than 75°. Finally, should it be desired to vary an etch rate differential between imprinting layer 24 and substrate 10, an exemplary embodiment of the present invention would demonstrate an etch rate that is 20% less than the etch rate of an optical photo-resist (not shown) exposed to an oxygen plasma.
  • The constituent components that form material [0025] 25 a to provide the aforementioned characteristics may differ. This results from substrate 10 being formed from a number of different materials. As a result, the chemical composition of surface 12 varies dependent upon the material from which substrate 10 is formed. For example, substrate 10 may be formed from silicon, plastics, gallium arsenide, mercury telluride, and composites thereof. Additionally, substrate 10 may include one or more layers in region, e.g., dielectric layer, metal layers, semiconductor layer and the like.
  • Referring to FIGS. 2 and 3, in one embodiment of the present invention the constituent components of material [0026] 25 a consist of acrylated monomers or methacrylated monomers that are not silyated, a cross-linking agent, and an initiator. The non-silyated acryl or methacryl monomers are selected to provide material 25 a with a minimal viscosity, e.g., viscosity approximating the viscosity of water (1-2 cps) or less. The cross-linking agent is included, even though the size of these molecules increases the viscosity of material 25 a, to cross-link the molecules of the non-silyated monomers, providing material 25 a with the properties to record a pattern thereon having very small feature sizes, on the order of a few nanometers and to provide the aforementioned thermal stability for further processing. To that end, the initiator is provided to produce a free radical reaction in response to radiation, causing the non-silyated monomers and the cross-linking agent to polymerize and cross-link, forming a cross-linked polymer material 25 c. In the present example, a photo-initiator responsive to ultraviolet radiation is employed. In addition, if desired, a silyated monomer may also be included in material 25 a to control the etch rate of the resulting cross-linked polymer material 25 c, without substantially affecting the viscosity of material 25 a.
  • Examples of non-silyated monomers include, but are not limited to, butyl acrylate, methyl acrylate, methyl methacrylate, or mixtures thereof. The non-silyated monomer may make up approximately 25 to 60% by weight of material [0027] 25 a. It is believed that the monomer provides adhesion to an underlying organic transfer layer, discussed more fully below.
  • The cross-linking agent is a monomer that includes two or more polymerizable groups. In one embodiment, polyfunctional siloxane derivatives may be used as a cross-linking agent. An example of a polyfunctional siloxane derivative is 1,3-bis(3-methacryloxypropyl)-tetramethyl disiloxane. Another suitable cross-linking agent consists of ethylene diol diacrylate. The cross-linking agent may be present in material [0028] 25 a in amounts of up to 20% by weight, but is more typically present in an amount of 5 to 15% by weight.
  • The initiator may be any component that initiates a free radical reaction in response to radiation, produced by [0029] radiation source 22, shown in FIG. 1, impinging thereupon and being absorbed thereby. Suitable initiators may include, but are not limited to, photo-initiators such as 1-hydroxycyclohexyl phenyl ketone or phenylbis(2,4,6-trimethyl benzoyl) phosphine oxide. The initiator may be present in material 25 a in amounts of up to 5% by weight, but is typically present in an amount of 1 to 4% by weight.
  • Were it desired to include silylated monomers in material [0030] 25 a, suitable silylated monomers may include, but are not limited to, silyl-acryloxy and silyl methacryloxy derivatives. Specific examples are methacryloxypropyl tris(tri-methylsiloxy)silane and (3-acryloxypropyl)tris(tri-methoxysiloxy)-silane. Silylated monomers may be present in material 25 a in amounts from 25 to 50% by weight. The curable liquid may also include a dimethyl siloxane derivative. Examples of dimethyl siloxane derivatives include, but are not limited to, (acryloxypropyl) methylsiloxane dimethylsiloxane copolymer.
  • Referring to both FIGS. 1 and 2, exemplary compositions for material [0031] 25 a are as follows:
  • Composition 1 n-butyl acrylate+(3-acryloxypropyltristrimethylsiloxy)silane+1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane Composition 2 t-n-butyl acrylate+(3-acryloxypropyltristrimethylsiloxy)silane+Ethylene diol diacrylate Composition 3 t-butyl acrylate+methacryloxypropylpentamethyldisiloxane+1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane
  • The above-identified compositions also include stabilizers that are well known in the chemical art to increase the operational life, as well as initiators. [0032]
  • Referring to FIGS. 2 and 7, employing the compositions described above in material [0033] 25 a to facilitate imprint lithography was achieved by defining a surface 112 of substrate 110 with a planarization layer 32 disposed adjacent to a wafer 33. The primary function of planarization layer 32 is to ensure surface 112 is planar. To that end, planarization layer 32 may be formed from a number of differing materials, such as, for example, thermoset polymers, thermoplastic polymers, polyepoxies, polyamides, polyurethanes, polycarbonates, polyesters, and combinations thereof. It is desired that planarization layer 32 be formed from material that polymerizes, or cures, in response to the actinic radiation employed to cure imprinting layer 24 and adheres well thereto and other adjacent layers and experiences less than 15% shrinkage during curing. Planarization layer 32 should not substantially penetrate imprinting layer 24. Specifically, it is desired that planarization layer 32 is not swelled by the imprinting layer 24 to the extent where there is more than 5% of imprinting material 25 a penetrating the planarization layer 32. Additionally, it is desired that the material have a viscosity of less than 5 cps and more particularly less than 2 cps at 20° C. A class of material that demonstrates these characteristics is non-silicon-containing acrylates. An exemplary material is ethylene glycol diacrylate combined with an initiator and stabilizers for long shelf life. The initiator, may be any of those discussed above and is responsive to actinic radiation, such as UV light and causes a free radical which facilitates polymerization and cross-linking of the ethylene glycol acrylate. Typically, the initiator does not constitute more than 5% of the mixture. An exemplary initiator may consist of molecules selected from a set consisting of 1-hydroxycyclohexyl phenyl ketone, 2-(2-hydroxypropyl) phenyl ketone, available from Ciba Corporation under the trade name Darocur 1173 and phenylbis (2,4,6-trimethyl benzoyl) phosphine oxide.
  • Employing ethylene glycol diacrylate, [0034] planarization layer 32 is fabricated in a manner similar to imprinting layer 24 using a featureless mold having a planar surface. In this manner, planarization layer 32 is fabricated to possess a continuous, smooth, relatively defect-free surface that may exhibit excellent adhesion to the imprinting layer 24.
  • Additionally, to ensure that [0035] imprinting layer 24 does not adhere to imprint device 14, surface 14 a may be treated with a modifying agent. One such modifying agent is a release layer 34 formed from a fluorocarbon silylating agent. Release layer 34 and other surface modifying agents, may be applied using any known process. For example, processing techniques that may include chemical vapor deposition method, physical vapor deposition, atomic layer deposition or various other techniques, brazing and the like. In this configuration, imprinting layer 24 is located between planarization layer 32 and release layer 34 during imprint lithography processes.
  • The embodiments of the present invention described above are exemplary. Many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents. [0036]

Claims (12)

What is claimed is:
1. A composition polymerizable in response to radiation being incident thereupon, said composition comprising:
a non-silicon-containing acrylate component; and
an initiator component combined with said non-silicon-containing acrylate to provide a viscosity no greater than 5 cps, with said initiator component being responsive to said radiation to initiate a free radical reaction to cause said non-silicon containing acrylate component to polymerize and cross-link.
2. The composition as recited in claim 1 wherein said non-silicon-containing acrylate component includes ethylene glycol diacrylate.
3. A method of patterning a layer on a substrate, said method comprising:
forming a layer of polymerizable material on said substrate;
forming a planarization layer on said substrate, positioned between said substrate and said layer of polymerizable material, from a composition of a non-silicon-containing acrylate component and an initiator component combined with said non-silicon-containing acrylate to provide a viscosity no greater than 5 cps, and swelling to no greater extent than to have greater than 5% of said layer of polymerizable material penetrate said planarization layer;
contacting said layer of polymerizable material with a surface of a mold to conform said layer of polymerizable material to said surface;
polymerizing said planarization layer and said layer of polymerizable material by impinging actinic radiation thereupon, to form polymerized layers.
4. The method as recited in claim 3 wherein forming said planarization layer further includes depositing a mixture of ethylene glycol diacrylate and said initiator on said substrate and contacting said mixture with a surface of a mold, with said surface being substantially planar.
5. The method as recited in claim 3 further including providing said mold with a pattern, with contacting said layer of polymerizable material further including forming said pattern in said layer of polymerizable material.
6. The method as recited in claim 5 further including separating said mold from said polymerized layers and subjecting said polymerized layers to an etching environment to transfer said pattern into said substrate.
7. The method as recited in claim 3 wherein forming said layer of polymerizable material further includes depositing, on said substrate, a mixture having a mono-functional acrylate component, a poly-functional molecule component; and a second initiator component, an initiator component combined with said mono-functional acrylate component and said poly-functional molecule component to provide a viscosity no greater than 2 cps to preferentially wet said surface forming a contact angle therewith no greater than 75°, with said additional initiator component being responsive to said radiation to initiate a free radical reaction to cause said mono-functional acrylate component and said poly-functional molecule component to polymerize and cross-link.
8. The method as recited in claim 7 further including providing said mixture with a silicon-containing acrylate component, wherein said mono-functional acrylate component is less than 60% of said composition, said silicon-containing acrylate component is less than 50% of said solution, said poly-functional molecule component is less than 20% of said solution and said initiator component is less than 5% of said solution.
9. The method as recited in claim 7 wherein said mono-functional acrylate component is selected from a set of acrylates consisting of n-butyl acrylate, t-butyl acrylate and methyl methacrylate.
10. The method as recited in claim 7 wherein said poly-functional molecule component includes a plurality of di-functional molecules.
11. The method as recited in claim 7 wherein said poly-functional molecule component is selected from a set of di-functional molecules consisting of 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane and ethylene diol diacrylate.
12. The method as recited in claim 7 wherein said initiator component consists of molecules selected from a set consisting of 1-hydroxycyclohexyl phenyl ketone, 2-(2-hydroxypropyl) phenyl ketone and phenylbis (2,4,6-trimethyl benzoyl) phosphine oxide.
US10/318,319 2002-12-12 2002-12-12 Planarization composition and method of patterning a substrate using the same Abandoned US20040112862A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/318,319 US20040112862A1 (en) 2002-12-12 2002-12-12 Planarization composition and method of patterning a substrate using the same
US11/026,821 US20050156357A1 (en) 2002-12-12 2004-12-30 Planarization method of patterning a substrate
US11/535,889 US20070034600A1 (en) 2002-12-12 2006-09-27 Planarization Method of Patterning a Substratte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/318,319 US20040112862A1 (en) 2002-12-12 2002-12-12 Planarization composition and method of patterning a substrate using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/026,821 Division US20050156357A1 (en) 2002-12-12 2004-12-30 Planarization method of patterning a substrate

Publications (1)

Publication Number Publication Date
US20040112862A1 true US20040112862A1 (en) 2004-06-17

Family

ID=32506314

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/318,319 Abandoned US20040112862A1 (en) 2002-12-12 2002-12-12 Planarization composition and method of patterning a substrate using the same
US11/026,821 Abandoned US20050156357A1 (en) 2002-12-12 2004-12-30 Planarization method of patterning a substrate
US11/535,889 Abandoned US20070034600A1 (en) 2002-12-12 2006-09-27 Planarization Method of Patterning a Substratte

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/026,821 Abandoned US20050156357A1 (en) 2002-12-12 2004-12-30 Planarization method of patterning a substrate
US11/535,889 Abandoned US20070034600A1 (en) 2002-12-12 2006-09-27 Planarization Method of Patterning a Substratte

Country Status (1)

Country Link
US (3) US20040112862A1 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US20040046288A1 (en) * 2000-07-18 2004-03-11 Chou Stephen Y. Laset assisted direct imprint lithography
US20040116548A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US20050280147A1 (en) * 2004-06-16 2005-12-22 Yong Chen Imprinting lithography using the liquid/solid transition of metals and their alloys
US20060036051A1 (en) * 2004-08-16 2006-02-16 Molecular Imprints, Inc. Composition to provide a layer with uniform etch characteristics
US20060062922A1 (en) * 2004-09-23 2006-03-23 Molecular Imprints, Inc. Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
US20060081557A1 (en) * 2004-10-18 2006-04-20 Molecular Imprints, Inc. Low-k dielectric functional imprinting materials
US20060111454A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Composition to reduce adhesion between a conformable region and a mold
US7759407B2 (en) 2005-07-22 2010-07-20 Molecular Imprints, Inc. Composition for adhering materials together
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US8349241B2 (en) 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US20130189850A1 (en) * 2005-04-19 2013-07-25 Nissan Chemical Industries, Ltd. Resist underlayer coating forming composition for forming photo-crosslinking cured resist underlayer coating
CN103309162A (en) * 2012-03-06 2013-09-18 第一毛织株式会社 Photocurable composition, and encapsulated apparatus including a barrier layer including the same
US8557351B2 (en) 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
KR101758570B1 (en) 2012-03-06 2017-07-14 삼성에스디아이 주식회사 Photocurable composition, barrier layer comprising the same and encapsulated apparatus comprising the same
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270592B1 (en) 2000-07-17 2015-09-02 Board of Regents, The University of Texas System Method of forming a pattern on a substrate
US7256435B1 (en) * 2003-06-02 2007-08-14 Hewlett-Packard Development Company, L.P. Multilevel imprint lithography
US20060108710A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Method to reduce adhesion between a conformable region and a mold
KR101193918B1 (en) * 2004-06-03 2012-10-29 몰레큘러 임프린츠 인코퍼레이티드 Fluid dispensing and drop-on-demand dispensing for nano-scale menufacturing
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction
US7939131B2 (en) 2004-08-16 2011-05-10 Molecular Imprints, Inc. Method to provide a layer with uniform etch characteristics
US8808808B2 (en) 2005-07-22 2014-08-19 Molecular Imprints, Inc. Method for imprint lithography utilizing an adhesion primer layer
US8142850B2 (en) * 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
DE102006058817B4 (en) * 2006-06-30 2017-04-27 Lg Display Co., Ltd. Method for producing a substrate with a flat layer
US20090053535A1 (en) * 2007-08-24 2009-02-26 Molecular Imprints, Inc. Reduced Residual Formation in Etched Multi-Layer Stacks
JP5121549B2 (en) * 2008-04-21 2013-01-16 株式会社東芝 Nanoimprint method
US20200247017A1 (en) * 2019-02-05 2020-08-06 Digilens Inc. Methods for Compensating for Optical Surface Nonuniformity

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271258A (en) * 1980-06-11 1981-06-02 Tamura Kaken Co., Ltd. Photopolymerizable ink compositions
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4514439A (en) * 1983-09-16 1985-04-30 Rohm And Haas Company Dust cover
US4617238A (en) * 1982-04-01 1986-10-14 General Electric Company Vinyloxy-functional organopolysiloxane compositions
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US4826943A (en) * 1986-07-25 1989-05-02 Oki Electric Industry Co., Ltd. Negative resist material
US4931351A (en) * 1987-01-12 1990-06-05 Eastman Kodak Company Bilayer lithographic process
US4988274A (en) * 1987-12-21 1991-01-29 Dresser Industries, Inc. Method and apparatus for producing an optical element
US5028366A (en) * 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5169494A (en) * 1989-03-27 1992-12-08 Matsushita Electric Industrial Co., Ltd. Fine pattern forming method
US5331020A (en) * 1991-11-14 1994-07-19 Dow Corning Limited Organosilicon compounds and compositions containing them
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5529095A (en) * 1993-04-01 1996-06-25 Felts; James D. Uniform tobacco distribution system and method for a tobacco press
US5594042A (en) * 1993-05-18 1997-01-14 Dow Corning Corporation Radiation curable compositions containing vinyl ether functional polyorganosiloxanes
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5747102A (en) * 1995-11-16 1998-05-05 Nordson Corporation Method and apparatus for dispensing small amounts of liquid material
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US5849209A (en) * 1995-03-31 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold material made with additives
US5849222A (en) * 1995-09-29 1998-12-15 Johnson & Johnson Vision Products, Inc. Method for reducing lens hole defects in production of contact lens blanks
US5861467A (en) * 1993-05-18 1999-01-19 Dow Corning Corporation Radiation curable siloxane compositions containing vinyl ether functionality and methods for their preparation
US5948470A (en) * 1997-04-28 1999-09-07 Harrison; Christopher Method of nanoscale patterning and products made thereby
US6114404A (en) * 1998-03-23 2000-09-05 Corning Incorporated Radiation curable ink compositions and flat panel color filters made using same
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US20010044075A1 (en) * 2000-04-25 2001-11-22 Jsr Corporation Radiation sensitive resin composition for forming barrier ribs for an EL display element, barrier rib and EL display element
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US20020042027A1 (en) * 1998-10-09 2002-04-11 Chou Stephen Y. Microscale patterning and articles formed thereby
US6391217B2 (en) * 1999-12-23 2002-05-21 University Of Massachusetts Methods and apparatus for forming submicron patterns on films
US20020132482A1 (en) * 2000-07-18 2002-09-19 Chou Stephen Y. Fluid pressure imprint lithography
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US20030080472A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
US6580172B2 (en) * 2001-03-02 2003-06-17 Motorola, Inc. Lithographic template and method of formation and use
US6583248B1 (en) * 1997-01-06 2003-06-24 American Dental Association Health Foundation Polymerizable cyclodextrin derivatives
US6646662B1 (en) * 1998-05-26 2003-11-11 Seiko Epson Corporation Patterning method, patterning apparatus, patterning template, and method for manufacturing the patterning template
US20040016406A1 (en) * 2000-11-14 2004-01-29 Oleg Siniaguine Plasma processing comprising three rotational motions of an article being processed
US6696220B2 (en) * 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US20040046286A1 (en) * 2001-08-28 2004-03-11 Akikazu Seko Method and device for vulcanizing tire
US20040065252A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method of forming a layer on a substrate to facilitate fabrication of metrology standards
US20040110856A1 (en) * 2002-12-04 2004-06-10 Young Jung Gun Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20040116548A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US20040131718A1 (en) * 2000-07-18 2004-07-08 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US20040137734A1 (en) * 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US20040197843A1 (en) * 2001-07-25 2004-10-07 Chou Stephen Y. Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20050051698A1 (en) * 2002-07-08 2005-03-10 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US42027A (en) * 1864-03-22 Improvement in huller and screen
US22888A (en) * 1859-02-08 Process op manueacttrkeng catistic alkalis
US7799A (en) * 1850-11-26 Improved method of securing rails of railroads
US36201A (en) * 1862-08-19 Napoleon aubin
US46271A (en) * 1865-02-07 Improvement in seeding-machines
US9673A (en) * 1853-04-19 Machine for rolling- bar-iron
US192041A (en) * 1877-06-12 Improvement in steam-engine valves
US177319A (en) * 1876-05-16 Improvement in rolling-pins
US65252A (en) * 1867-05-28 Improved paddle-wheel
US132482A (en) * 1872-10-22 Improvement in buckles
US156108A (en) * 1874-10-20 Improvement in methods of
US124566A (en) * 1872-03-12 Improvement in combined tools
US112862A (en) * 1871-03-21 Improvement in cultivators
US235787A (en) * 1880-12-21 Incubator
US170770A (en) * 1875-12-07 Improvement in butter-carriers
US21254A (en) * 1858-08-24 Improvement in machines for cutting up cornstalks in the field
US197843A (en) * 1877-12-04 Improvement in weather-strips
US131718A (en) * 1872-09-24 Improvement in machines for stripping broom-corn
US8334A (en) * 1851-09-02 Drying and oxidizing colored goods
US80472A (en) * 1868-07-28 Thomas gibson
US46288A (en) * 1865-02-07 Improvement in clasps for wearing apparel
US34329A (en) * 1862-02-04 Improved iron ponton
US137734A (en) * 1873-04-08 Improvement in fertilizing-distributers
US80471A (en) * 1868-07-28 Improved lubricating compound
US118809A (en) * 1871-09-12 Improvement in blacking apparatus and bootjack combined
US167117A (en) * 1875-08-24 piper
US3810874A (en) * 1969-03-10 1974-05-14 Minnesota Mining & Mfg Polymers prepared from poly(perfluoro-alkylene oxide) compounds
US4614667A (en) * 1984-05-21 1986-09-30 Minnesota Mining And Manufacturing Company Composite low surface energy liner of perfluoropolyether
US6174931B1 (en) * 1991-02-28 2001-01-16 3M Innovative Properties Company Multi-stage irradiation process for production of acrylic based compositions and compositions made thereby
US5206983A (en) * 1991-06-24 1993-05-04 Wisconsin Alumni Research Foundation Method of manufacturing micromechanical devices
DE4228853C2 (en) * 1991-09-18 1993-10-21 Schott Glaswerke Optical waveguide with a planar or only slightly curved substrate and method for its preparation and use of such
US5298556A (en) * 1992-07-21 1994-03-29 Tse Industries, Inc. Mold release composition and method coating a mold core
US5389696A (en) * 1993-09-17 1995-02-14 Miles Inc. Process for the production of molded products using internal mold release agents
US5837314A (en) * 1994-06-10 1998-11-17 Johnson & Johnson Vision Products, Inc. Method and apparatus for applying a surfactant to mold surfaces
US5542978A (en) * 1994-06-10 1996-08-06 Johnson & Johnson Vision Products, Inc. Apparatus for applying a surfactant to mold surfaces
US6468642B1 (en) * 1995-10-03 2002-10-22 N.V. Bekaert S.A. Fluorine-doped diamond-like coatings
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US6204343B1 (en) * 1996-12-11 2001-03-20 3M Innovative Properties Company Room temperature curable resin
US6132632A (en) * 1997-09-11 2000-10-17 International Business Machines Corporation Method and apparatus for achieving etch rate uniformity in a reactive ion etcher
US6475704B1 (en) * 1997-09-12 2002-11-05 Canon Kabushiki Kaisha Method for forming fine structure
US6117708A (en) * 1998-02-05 2000-09-12 Micron Technology, Inc. Use of residual organic compounds to facilitate gate break on a carrier substrate for a semiconductor device
WO2000076738A1 (en) * 1999-06-11 2000-12-21 Bausch & Lomb Incorporated Lens molds with protective coatings for production of contact lenses and other ophthalmic products
US6344105B1 (en) * 1999-06-30 2002-02-05 Lam Research Corporation Techniques for improving etch rate uniformity
US6190929B1 (en) * 1999-07-23 2001-02-20 Micron Technology, Inc. Methods of forming semiconductor devices and methods of forming field emission displays
AU7361200A (en) * 1999-09-10 2001-04-10 Nano-Tex, Llc Water-repellent and soil-resistant finish for textiles
US6774183B1 (en) * 2000-04-27 2004-08-10 Bostik, Inc. Copolyesters having improved retained adhesion
US20050037143A1 (en) * 2000-07-18 2005-02-17 Chou Stephen Y. Imprint lithography with improved monitoring and control and apparatus therefor
US6448301B1 (en) * 2000-09-08 2002-09-10 3M Innovative Properties Company Crosslinkable polymeric compositions and use thereof
US6503914B1 (en) * 2000-10-23 2003-01-07 Board Of Regents, The University Of Texas System Thienopyrimidine-based inhibitors of the Src family
US6809244B1 (en) * 2001-02-16 2004-10-26 Dekalb Genetics Corporation Plants and seeds of corn variety I363128
US6737489B2 (en) * 2001-05-21 2004-05-18 3M Innovative Properties Company Polymers containing perfluorovinyl ethers and applications for such polymers
US6736857B2 (en) * 2001-05-25 2004-05-18 3M Innovative Properties Company Method for imparting soil and stain resistance to carpet
US6721529B2 (en) * 2001-09-21 2004-04-13 Nexpress Solutions Llc Release agent donor member having fluorocarbon thermoplastic random copolymer overcoat
CN100347608C (en) * 2001-09-25 2007-11-07 米卢塔技术株式会社 Method for forming a micro-pattern on a substrate by using capillary force
US6790905B2 (en) * 2001-10-09 2004-09-14 E. I. Du Pont De Nemours And Company Highly repellent carpet protectants
US6649272B2 (en) * 2001-11-08 2003-11-18 3M Innovative Properties Company Coating composition comprising fluorochemical polyether silane polycondensate and use thereof
US7309560B2 (en) * 2002-02-19 2007-12-18 Nissan Chemical Industries, Ltd. Composition for forming anti-reflective coating
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US6713236B2 (en) * 2002-07-03 2004-03-30 Infineon Technologies North America Corp. Lithography method for preventing lithographic exposure of peripheral region of semiconductor wafer
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6916584B2 (en) * 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US6830819B2 (en) * 2003-03-18 2004-12-14 Xerox Corporation Fluorosilicone release agent for fluoroelastomer fuser members
TWI228638B (en) * 2003-06-10 2005-03-01 Ind Tech Res Inst Method for and apparatus for bonding patterned imprint to a substrate by adhering means
US7157036B2 (en) * 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
US7122482B2 (en) * 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271258A (en) * 1980-06-11 1981-06-02 Tamura Kaken Co., Ltd. Photopolymerizable ink compositions
US4617238A (en) * 1982-04-01 1986-10-14 General Electric Company Vinyloxy-functional organopolysiloxane compositions
US4514439A (en) * 1983-09-16 1985-04-30 Rohm And Haas Company Dust cover
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4826943A (en) * 1986-07-25 1989-05-02 Oki Electric Industry Co., Ltd. Negative resist material
US4931351A (en) * 1987-01-12 1990-06-05 Eastman Kodak Company Bilayer lithographic process
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US4988274A (en) * 1987-12-21 1991-01-29 Dresser Industries, Inc. Method and apparatus for producing an optical element
US5028366A (en) * 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5169494A (en) * 1989-03-27 1992-12-08 Matsushita Electric Industrial Co., Ltd. Fine pattern forming method
US5331020A (en) * 1991-11-14 1994-07-19 Dow Corning Limited Organosilicon compounds and compositions containing them
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5529095A (en) * 1993-04-01 1996-06-25 Felts; James D. Uniform tobacco distribution system and method for a tobacco press
US5861467A (en) * 1993-05-18 1999-01-19 Dow Corning Corporation Radiation curable siloxane compositions containing vinyl ether functionality and methods for their preparation
US5594042A (en) * 1993-05-18 1997-01-14 Dow Corning Corporation Radiation curable compositions containing vinyl ether functional polyorganosiloxanes
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US5849209A (en) * 1995-03-31 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold material made with additives
US5849222A (en) * 1995-09-29 1998-12-15 Johnson & Johnson Vision Products, Inc. Method for reducing lens hole defects in production of contact lens blanks
US6828244B2 (en) * 1995-11-15 2004-12-07 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6809356B2 (en) * 1995-11-15 2004-10-26 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US20040137734A1 (en) * 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US5747102A (en) * 1995-11-16 1998-05-05 Nordson Corporation Method and apparatus for dispensing small amounts of liquid material
US6583248B1 (en) * 1997-01-06 2003-06-24 American Dental Association Health Foundation Polymerizable cyclodextrin derivatives
US5948470A (en) * 1997-04-28 1999-09-07 Harrison; Christopher Method of nanoscale patterning and products made thereby
US6114404A (en) * 1998-03-23 2000-09-05 Corning Incorporated Radiation curable ink compositions and flat panel color filters made using same
US6646662B1 (en) * 1998-05-26 2003-11-11 Seiko Epson Corporation Patterning method, patterning apparatus, patterning template, and method for manufacturing the patterning template
US20030034329A1 (en) * 1998-06-30 2003-02-20 Chou Stephen Y. Lithographic method for molding pattern with nanoscale depth
US20020167117A1 (en) * 1998-06-30 2002-11-14 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US20040118809A1 (en) * 1998-10-09 2004-06-24 Chou Stephen Y. Microscale patterning and articles formed thereby
US6713238B1 (en) * 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
US20020042027A1 (en) * 1998-10-09 2002-04-11 Chou Stephen Y. Microscale patterning and articles formed thereby
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6391217B2 (en) * 1999-12-23 2002-05-21 University Of Massachusetts Methods and apparatus for forming submicron patterns on films
US20010044075A1 (en) * 2000-04-25 2001-11-22 Jsr Corporation Radiation sensitive resin composition for forming barrier ribs for an EL display element, barrier rib and EL display element
US20020177319A1 (en) * 2000-07-18 2002-11-28 Chou Stephen Y. Fluid pressure bonding
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US20020132482A1 (en) * 2000-07-18 2002-09-19 Chou Stephen Y. Fluid pressure imprint lithography
US6482742B1 (en) * 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
US20040131718A1 (en) * 2000-07-18 2004-07-08 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US6696220B2 (en) * 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US20040016406A1 (en) * 2000-11-14 2004-01-29 Oleg Siniaguine Plasma processing comprising three rotational motions of an article being processed
US6580172B2 (en) * 2001-03-02 2003-06-17 Motorola, Inc. Lithographic template and method of formation and use
US20040197843A1 (en) * 2001-07-25 2004-10-07 Chou Stephen Y. Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20040046286A1 (en) * 2001-08-28 2004-03-11 Akikazu Seko Method and device for vulcanizing tire
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US20030080472A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
US20030080471A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method for molding pattern with nanoscale features
US20050051698A1 (en) * 2002-07-08 2005-03-10 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates
US20040065252A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method of forming a layer on a substrate to facilitate fabrication of metrology standards
US20040110856A1 (en) * 2002-12-04 2004-06-10 Young Jung Gun Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20040116548A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Compositions for dark-field polymerization and method of using the same for imprint lithography processes

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211214B2 (en) 2000-07-18 2007-05-01 Princeton University Laser assisted direct imprint lithography
US20040046288A1 (en) * 2000-07-18 2004-03-11 Chou Stephen Y. Laset assisted direct imprint lithography
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US8349241B2 (en) 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US7365103B2 (en) 2002-12-12 2008-04-29 Board Of Regents, The University Of Texas System Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US20040116548A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US20050280147A1 (en) * 2004-06-16 2005-12-22 Yong Chen Imprinting lithography using the liquid/solid transition of metals and their alloys
US7282550B2 (en) 2004-08-16 2007-10-16 Molecular Imprints, Inc. Composition to provide a layer with uniform etch characteristics
US20060036051A1 (en) * 2004-08-16 2006-02-16 Molecular Imprints, Inc. Composition to provide a layer with uniform etch characteristics
US20060062922A1 (en) * 2004-09-23 2006-03-23 Molecular Imprints, Inc. Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
US20070141271A1 (en) * 2004-09-23 2007-06-21 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US7981481B2 (en) 2004-09-23 2011-07-19 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US20060081557A1 (en) * 2004-10-18 2006-04-20 Molecular Imprints, Inc. Low-k dielectric functional imprinting materials
US20060111454A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Composition to reduce adhesion between a conformable region and a mold
US20130189850A1 (en) * 2005-04-19 2013-07-25 Nissan Chemical Industries, Ltd. Resist underlayer coating forming composition for forming photo-crosslinking cured resist underlayer coating
US9134610B2 (en) * 2005-04-19 2015-09-15 Nissan Chemical Industries, Ltd. Resist underlayer coating forming composition for forming photo-crosslinking cured resist underlayer coating
US8557351B2 (en) 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
US7759407B2 (en) 2005-07-22 2010-07-20 Molecular Imprints, Inc. Composition for adhering materials together
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10725312B2 (en) 2007-07-26 2020-07-28 Digilens Inc. Laser illumination device
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11175512B2 (en) 2009-04-27 2021-11-16 Digilens Inc. Diffractive projection apparatus
US11487131B2 (en) 2011-04-07 2022-11-01 Digilens Inc. Laser despeckler based on angular diversity
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US11287666B2 (en) 2011-08-24 2022-03-29 Digilens, Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11874477B2 (en) 2011-08-24 2024-01-16 Digilens Inc. Wearable data display
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10459311B2 (en) 2012-01-06 2019-10-29 Digilens Inc. Contact image sensor using switchable Bragg gratings
TWI613247B (en) * 2012-03-06 2018-02-01 第一毛織股份有限公司 Photocurable composition, barrier layer including the same, and encapsulated apparatus including the same
CN103309162A (en) * 2012-03-06 2013-09-18 第一毛织株式会社 Photocurable composition, and encapsulated apparatus including a barrier layer including the same
US10815391B2 (en) 2012-03-06 2020-10-27 Cheil Industries, Inc. Apparatus comprising an encapsulated member
KR101758570B1 (en) 2012-03-06 2017-07-14 삼성에스디아이 주식회사 Photocurable composition, barrier layer comprising the same and encapsulated apparatus comprising the same
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US20230114549A1 (en) * 2012-11-16 2023-04-13 Rockwell Collins, Inc. Transparent waveguide display
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11815781B2 (en) * 2012-11-16 2023-11-14 Rockwell Collins, Inc. Transparent waveguide display
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US11662590B2 (en) 2013-05-20 2023-05-30 Digilens Inc. Holographic waveguide eye tracker
US10423813B2 (en) 2013-07-31 2019-09-24 Digilens Inc. Method and apparatus for contact image sensing
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US11726329B2 (en) 2015-01-12 2023-08-15 Digilens Inc. Environmentally isolated waveguide display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10527797B2 (en) 2015-02-12 2020-01-07 Digilens Inc. Waveguide grating device
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11726261B2 (en) 2018-03-16 2023-08-15 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11150408B2 (en) 2018-03-16 2021-10-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing

Also Published As

Publication number Publication date
US20050156357A1 (en) 2005-07-21
US20070034600A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US7365103B2 (en) Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US20040112862A1 (en) Planarization composition and method of patterning a substrate using the same
US20030235787A1 (en) Low viscosity high resolution patterning material
US7071088B2 (en) Method for fabricating bulbous-shaped vias
US8066930B2 (en) Forming a layer on a substrate
US7179079B2 (en) Conforming template for patterning liquids disposed on substrates
US8021594B2 (en) Preserving filled features when vacuum wiping
EP1656242B1 (en) Capillary imprinting technique
US8349241B2 (en) Method to arrange features on a substrate to replicate features having minimal dimensional variability
US7452574B2 (en) Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer
EP1633545B1 (en) Method to reduce adhesion between a conformable region and a pattern of a mold
US20040168613A1 (en) Composition and method to form a release layer
US20060035029A1 (en) Method to provide a layer with uniform etch characteristics
US20060036051A1 (en) Composition to provide a layer with uniform etch characteristics
Stacey et al. Compositions for dark-field polymerization and method of using the same for imprint lithography processes

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS SYSTEM, UNIVERSITY OF, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILLSON, C. GRANT;SMITH, BRITAIN J.;STACEY, NICHOLAS A.;REEL/FRAME:014069/0099

Effective date: 20030423

AS Assignment

Owner name: UNIVERSITY OF TEXAS SYSTEM, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMITH, BRITAIN J.;REEL/FRAME:014249/0081

Effective date: 20030612

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION