US20040112828A1 - Removal of water solubilized organics - Google Patents

Removal of water solubilized organics Download PDF

Info

Publication number
US20040112828A1
US20040112828A1 US10/719,567 US71956703A US2004112828A1 US 20040112828 A1 US20040112828 A1 US 20040112828A1 US 71956703 A US71956703 A US 71956703A US 2004112828 A1 US2004112828 A1 US 2004112828A1
Authority
US
United States
Prior art keywords
composition
water
aha
poly
anionic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/719,567
Inventor
Paul Hart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26677891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040112828(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/719,567 priority Critical patent/US20040112828A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HART, PAUL R.
Publication of US20040112828A1 publication Critical patent/US20040112828A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/908Organic

Definitions

  • the present invention relates to methods and compositions for removing solubilized organic material from water-like fluids, and more particularly relates, in one embodiment, to methods for removing solubilized organic material from water-like liquid phases using compositions having no or low corrosivity, volatility, or scaling potential.
  • O&G comprises those compounds which extract into a non-polar solvent, such as 1,1,2-trichlorotrifluoroethane (Freon 113) or n-Hexane, from water at a pH less than 2 (cf. EPA-600/4-79-020, Methods 413.1 and 413.2).
  • a non-polar solvent such as 1,1,2-trichlorotrifluoroethane (Freon 113) or n-Hexane
  • WSO water solubilized organics
  • silica adsorbing compounds largely comprise carboxylic acids, which naturally occur in crude oil, whose conjugate bases partition to some significant extent to the produced water at the system pH but which partition to some significant extent as acids to the extraction solvent at the more acidic extraction pH. Thus, under system conditions, they are dissolved, rather than dispersed, in the produced water.
  • One of the first steps after removal of the oil well production fluid is to separate the oil from the water by phase separation techniques. Separation is conventionally accomplished using a bulk separator or a free water knock out system. Virtually all of the hydrocarbon is conveniently recovered in this manner. However, such traditional oil-water separation methods do not remove these WSO compounds from produced water.
  • One common, cost-effective method of treatment utilizes mineral acids to lower the pH of the produced water and force the WSO components into the crude oil. Acidification and extraction of the WSO into the crude is simple, cost-effective, and requires very little additional equipment. The mechanism is simple: 1) the more-water-partitioning organic anion salts are converted to the more-oil-partitioning organic acids with protonation by the stronger mineral acid and 2) these more oil partitioning organic acids are extracted into the crude.
  • there are significant disadvantages to this method including, but not limited to, the hazards of handling mineral acid, corrosion problems in storage and processing equipment, scaling of the processing equipment, and reduced effectiveness of conventional water clarifiers.
  • Hydrohalide and hydrocarboxy acids are volatile enough to harm human health and downstream distillation processes.
  • Monoprotic oxy acids HNO x , HClO x
  • Nonvolatile, multiprotic oxy acids H x SO x , H x PO x
  • Nonacidic and cationic compounds have proven unreliable or incompatible with existing water clarifier treatments.
  • U.S. Pat. No. 5,395,536 discloses a process for removing carboxylic acids from aqueous solutions using a composition of a polyaluminum chlorohydrate and a cationic polyelectrolyte. After or during the initial contact of the aqueous solution with the composition, an organic liquid may optionally be added after which separation into an aqueous phase and an organic phase occurs whereby the organic acids are removed in the organic phases.
  • the preferred polyaluminum chlorohydrate is aluminum chlorohydrate
  • the preferred cationic polyelectrolyte is a high molecular weight poly(dimethyl diallyl) ammonium chloride.
  • Suitable organic ammonium salts have the formula: R 1 R 2 R 3 N + HX ⁇ , where R 1 is a saturated or unsaturated alkyl group or an aryl group, or saturated or unsaturated alkyl group or an aryl group substituted with a heteroatom selected from the group consisting of N, O, S, P and halogen; R 2 and R 3 are independently H or a saturated or unsaturated alkyl group or an aryl group, or saturated or unsaturated alkyl group or an aryl group substituted with a heteroatom selected from the group consisting of N, O, S, P and halogen; and X is a halogen atom or an anion of a protic acid.
  • a method for removing water solubilized organics (WSO) from a water-like fluid phase involving contacting the water-like fluid phase with an effective amount of a hydrophilic a-hydroxymonocarboxylic acid (AHA) and separating at least one WSO from the water.
  • WSO water solubilized organics
  • composition for removing solubilized organics from a water-like fluid phase where the only components capable of affecting the removal of solubilized organics from a water-like fluid phase are a hydrophilic ⁇ -hydroxymonocarboxylic acid (AHA) and an anionic polymer.
  • AHA hydrophilic ⁇ -hydroxymonocarboxylic acid
  • composition for removing solubilized organics from a water-like fluid phase that includes a hydrophilic ⁇ -hydroxymonocarboxylic acid (AHA) having a degree of polymerization of above 30 and an anionic polymer.
  • AHA hydrophilic ⁇ -hydroxymonocarboxylic acid
  • the weight ratio of AHA to anionic polymer in the composition ranges from about 50:1 to about 10,000 to 1.
  • composition that includes a water-like fluid phase, at least one solubilized organic in the fluid phase, an anionic polymer, and a hydrophilic ⁇ -hydroxymono-carboxylic acid (AHA), where the weight ratio of AHA to anionic polymer in the composition ranges from about 50:1 to about 10,000 to 1.
  • AHA hydrophilic ⁇ -hydroxymono-carboxylic acid
  • the FIGURE is a chart of the molar efficiency of various compounds at removing WSO over the indicated dosage ranges.
  • O&G oil and grease
  • the discharge limit for O&G is typically 29 ppm, averaged over a year. (Excursions are tolerated but must be compensated for.)
  • the purpose of this invention is the reduction of the O&G in the discharged water to this limit.
  • the present invention involves the use of hydrophilic ⁇ -hydroxymonocarboxylic acids (AHAs), alone or in combination with anionic polymers, to reduce the total oil and grease (O&G). It is applicable to water produced from underground formations with pH greater than about 4, containing solubilized organic compounds that are in contact with any amount of free or emulsified oil.
  • water-like fluid phase includes the produced water described, and also includes, but is not necessarily limited to, a water-free glycol extraction such as would occur in the oilfield, a gas plant, or petrochemical plant. The term generally would include mixtures of water and an oil-like phase, but would not include water-in-oil emulsions.
  • the water solubilized organic (WSO) compounds in O&G are those that partition at least partly to water in their native state but partition at least partly to oil (or at least Freon) in their acidified state.
  • WSO water solubilized organic
  • Such co- or bi-partitioning compounds are more polar than straight hydrocarbon oil and adsorb onto silica gel from the Freon extract.
  • the portion of the O&G removed by silica gel is reported as the WSO.
  • This last group of compounds is reduced by adding hydrophilic a-hydroxymonocarboxylic acids (AHAs).
  • AHAs hydrophilic a-hydroxymonocarboxylic acids
  • the first group of emulsified compounds is reduced by adding the anionic polymers in conjunction with the AHAs. If the anionic polymers are not added, the decrease in WSO resulting from the addition of the AHA can be accompanied by a corresponding increase in the emulsified oil, for no net decrease in the O&G.
  • the hydrophilic AHAs are weak organic acids, with pKa's of greater than 3.8, having the structure: RR′C(OH)COOH, where R and/or R′ can be hydrogen or any nonacidic hydrocarbonaceous group provided that the total number of H's on C's plus 1 ⁇ 2 the number of C's minus 7 times any O's not attached to H's is less than 15 per OH group (including the ⁇ -OH). Otherwise, it is insufficiently hydrophilic to stay in the water.
  • the hydrophilic condition of the AHA, RR′C(OH)COOH may also be expressed as follows, where:
  • R and R′ are independently selected from the group consisting of hydrogen and nonacidic hydrocarbonaceous groups
  • n H the total number of hydrogens on carbons
  • n C the total number of carbons
  • n O the total number of oxygens not attached to hydrogens
  • n OH the total number of —OH groups on molecule (i.e. including the ⁇ -OH)
  • suitable AHAs that meet the above definition include, but are not necessarily limited to: ⁇ -hydroxyheptanoic acid (R ⁇ C 5 H 11 , R′ ⁇ H), ⁇ , ⁇ -dihydroxytridecanoic acid, and polypropylene glycol glycidyl acid (R ⁇ HO[C 3 H 6 O] n CH 2 , R′ ⁇ H). Hydrophobic AHAs are inapplicable because they would contribute to the WSO count themselves.
  • AHAs are effective at dosages ranging from about 20 to about 2000 ppm, preferably from about 50 to about 500 ppm, based on the total water-like fluid treated.
  • the water-like fluid treated might be any oil-immiscible, water-miscible phase such as brine or glycol.
  • AHAs are relatively weak acids, with pK a 's >3.8, several hundred times less acidic than the best currently-practiced art, which is phosphorous acid, HPO(OH) 2 .
  • these AHAs are effective at dosages similar to the current art, ranging from 20 to 2000 ppm based on water, when added to any produced water with pH greater than about 4.
  • the current art treats water with pH as low as 2, but most produced water has pH >4.
  • the invented compounds have a wide treatment range and are compatible with existing water clarifier treatments.
  • anionic polymers are those that dissociate in water to polymeric anions and individual cations. Examples include poly-(acrylic or methacrylic acids or salts), poly(acroyl or vinyl sulfonic acids or salts) and co-polymers of these with acrylic amides or esters.
  • the preferred anionic polymers are co- or ter-polymers of (meth)acrylic acid and methyl and/or ethyl (meth)acrylate.
  • the co-addition of anionic polymer is effective at dosages ranging from about 0.2 to about 20 ppm active, preferably from about 1 to about 5 ppm, based on the total water-like fluid treated.
  • the anionic polymer components of the invention are true polymers because they have degrees of polymerization above 30.
  • the anionic polymers have degrees of polymerization equal to or greater than about 300, and in an alternate, non-limiting embodiment of the invention, the anionic polymers have degrees of polymerization equal to or greater than about 3000.
  • the degree of polymerization may be about 300,000 or lower.
  • the AHA and the anionic polymer are the only components present in the inventive compositions that affect the characteristic or property of removing solubilized organics from water-like fluids. No other active components for this purpose are needed. That is, some inventive compositions consist essentially of the AHA as defined herein and the anionic polymers as defined herein.
  • anionic polymer may have hydroxyl and carboxylic acid functionality similar to the AHA, it must be understood that the AHA is a separate species or component from the anionic polymer.
  • the relative proportions of AHA to anionic polymer, in the cases where both are used, may vary over a wide range.
  • the weight ratio of AHA to anionic polymer may range from about 1:1 to about 10,000:1.
  • the weight ratio of AHA to anionic polymer may range from over 50:1 to about 10,000:1.
  • Other, non-limiting embodiments of the invention may have the range variously at from about 60:1 to 10,000:1; about 75:1 to about 10,000:1; and 100:1 to about 10,000:1.
  • the AHA is most conveniently added to the mixed oil and water production. Alternatively, it can be added to the separated produced water and then some or all of the produced oil or some other convenient oil or oil-like, water-immiscible fluid mixed back in.
  • An “oil-like fluid phase” is defined herein as any oil phase or phase that behaves like an oil phase by being water-immiscible. It could be added prophylactically to water that would later contact the separated produced oil, as, for example, in a downstream desalter, to reduce O&G in that effluent water. In the water contacting the oil, it converts a portion of the native water partitioning organic anions into at least partly oil partitioning acids.
  • the so converted acids after entering the oil, dimerize into a more oil-partitioning state. Some of the oil is then separated from the water. These more oil soluble dimers leave the system with the oil. This depletes the remaining oil-water interfacial region of the acid monomer, which then draws more acid from the water into the oil. As the native acid leaves the water for the oil, more of the acid's anion is converted to acid to maintain the equilibrium. This process is repeated in a multiple batch or preferably continuous manner. In this way, even the small shift in equilibrium by the weak organic acids of this invention results in a surprisingly large depletion of WSO.
  • the hydroxyl (—OH) group on the AHA keeps it in the water even at pH ⁇ 2, so that it is not counted as oil and grease for the purpose of environmental discharge regulations. It also renders it non-toxic to and readily biodegradable by aquatic organisms, so that it is not, in fact, harmful to discharge (i.e., it is both legal and ethical). It also renders it non-volatile. Volatile acids corrode people's lungs and downstream distillation equipment.
  • the removal of emulsified oil from water is known as clarification. This is typically a multi-step process. First the mixed oil and water production is separated into two bulk phases. Then the emulsified oil in water is destabilized or “treated” chemically and the oil that is “broken” out separated gravitationally or centrifugally (e.g. cyclonically). Then the residual emulsion is perhaps further treated chemically and the oil droplets reduced in density by attaching them to gas bubbles. The bubbles float and thereby “flote” the oil to the surface to be skimmed. Finally the water can be passed through filters or absorbers of various media prior to discharge. The anionic polymer can be added to the water at any point prior to the final clarification unit. The preferred addition point is prior to the flotation unit, but addition coincident with the acid addition or as part of a single product addition also has advantages in simplifying application and marketing.
  • Test Method The following test method was developed and employed to evaluate candidate treatments.
  • the amount of WSO in the water is defined as the difference between SG Treated and the Total Acidified Extracted O&G.
  • a hydrophilic AHA of this invention ( 60 -OH acetic acid) was added to actual produced water with a pH of 7 on a platform in the Gulf of Mexico. The result of this trial was as follows: TABLE III GoM Trial Result HOAcOH WSO O&G ppm ppm ppm 0 47 56 245 22 33
  • a hydrophilic AHA of this invention ( ⁇ -OH acetic acid) was added to actual produced water with a pH of 6.9 on another platform in the Gulf of Mexico.
  • the result of this trial was as follows: TABLE IV GoM Trial Result II Cationic Anionic HOAcOH REB Polymer WSO O&G ppm ppm ppm ppm ppm 0 3.0 3.0 27 34 175 3.0 3.0 19 25 210 3.0 3.0 13 26 210 2.5 3.5 13 20 305 2.0 4.0 9 16

Abstract

Methods and compositions for removing organics solubilized in a water-like fluid (WSO), such as the water produced in connection with the production of hydrocarbons from subterranean formations, are described. Hydrophilic α-hydroxy-monocarboxylic acids (AHAs), such as hydroxyacetic (glycolic) acid, alone or optionally together with anionic polymers, have been found to be effective. The compositions and methods of this invention have reduced corrosion and scale formation problems as compared with other methods employing stronger acids to remove WSO. The AHAs have pKa's of greater than 3.8.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 10/008,173 filed Nov. 13, 2001, now allowed.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to methods and compositions for removing solubilized organic material from water-like fluids, and more particularly relates, in one embodiment, to methods for removing solubilized organic material from water-like liquid phases using compositions having no or low corrosivity, volatility, or scaling potential. [0002]
  • BACKGROUND OF THE INVENTION
  • The production of petroleum hydrocarbons from underground formations usually produces varying amounts of formation or connate water. The production ratio of “produced water” as it is often called, to petroleum hydrocarbons usually increases over the lifetime of a well. It is not uncommon that oil well production fluids are composed of 90% or more of water and only 10% or less of crude oil. Produced oilfield water contains a diverse mixture of compounds that varies from formation to formation. Of particular importance is the “oil and grease” (O&G), a conventional pollutant defined in the Clean Water Act and codified at 40 CFR 401.16. O&G comprises those compounds which extract into a non-polar solvent, such as 1,1,2-trichlorotrifluoroethane (Freon 113) or n-Hexane, from water at a pH less than 2 (cf. EPA-600/4-79-020, Methods 413.1 and 413.2). The term “water solubilized organics” (WSO) has been used to describe a group of these components which are not so extractable when the extract is subsequently treated with silica gel (cf. EPA-821-B-94-004b, Method 1664). These silica adsorbing compounds largely comprise carboxylic acids, which naturally occur in crude oil, whose conjugate bases partition to some significant extent to the produced water at the system pH but which partition to some significant extent as acids to the extraction solvent at the more acidic extraction pH. Thus, under system conditions, they are dissolved, rather than dispersed, in the produced water. [0003]
  • The discharge of WSO has never been desirable. While their concentration may be relatively small, up to 1,000 ppm, they nevertheless give rise to environmental problems when the aqueous phase is discharged into the environment without their removal. These compounds are included in the discharge limits for O&G mandated by Congress in the Clean Water Act. In order to meet those ever more stringent limits, a process to reduce the level of dissolved or usolubilized” organics in the discharged water streams is needed. As discharge limits become more stringent, the need for WSO removal is expected to increase. Furthermore, the water solubilized organics are valuable substances to recover in the produced oil. [0004]
  • One of the first steps after removal of the oil well production fluid is to separate the oil from the water by phase separation techniques. Separation is conventionally accomplished using a bulk separator or a free water knock out system. Virtually all of the hydrocarbon is conveniently recovered in this manner. However, such traditional oil-water separation methods do not remove these WSO compounds from produced water. [0005]
  • Conventional water clarifiers predominantly remove dispersed or “in-soluble” (not solubilized) oil and generally remove very little, if any, WSO. Cationic polymers might remove the 10-20% of the WSO associated with microemulsions in the produced water, where such emulsions exist. [0006]
  • Over the past several years, many other methods have been utilized to remove WSO from produced water. A variety of filtration and adsorbent media, including ceramics and activated charcoals, reverse osmosis membranes, ion exchange resins, bacterial degradation or other biological treatment, oxidation, distillation, and acidification have all been tried with various degrees of success. [0007]
  • One common, cost-effective method of treatment utilizes mineral acids to lower the pH of the produced water and force the WSO components into the crude oil. Acidification and extraction of the WSO into the crude is simple, cost-effective, and requires very little additional equipment. The mechanism is simple: 1) the more-water-partitioning organic anion salts are converted to the more-oil-partitioning organic acids with protonation by the stronger mineral acid and 2) these more oil partitioning organic acids are extracted into the crude. However, there are significant disadvantages to this method, including, but not limited to, the hazards of handling mineral acid, corrosion problems in storage and processing equipment, scaling of the processing equipment, and reduced effectiveness of conventional water clarifiers. [0008]
  • None of the materials in prior use have proven satisfactory. Hydrohalide and hydrocarboxy acids (HX, H[0009] 2(CO2)x) are volatile enough to harm human health and downstream distillation processes. Monoprotic oxy acids (HNOx, HClOx) have dangerous oxidation potentials. Nonvolatile, multiprotic oxy acids (HxSOx, HxPOx) are less harmful and less dangerous, but have the additional disadvantage of forming insoluble scale deposits on the production equipment. Nonacidic and cationic compounds have proven unreliable or incompatible with existing water clarifier treatments.
  • U.S. Pat. No. 5,395,536 discloses a process for removing carboxylic acids from aqueous solutions using a composition of a polyaluminum chlorohydrate and a cationic polyelectrolyte. After or during the initial contact of the aqueous solution with the composition, an organic liquid may optionally be added after which separation into an aqueous phase and an organic phase occurs whereby the organic acids are removed in the organic phases. The preferred polyaluminum chlorohydrate is aluminum chlorohydrate, and the preferred cationic polyelectrolyte is a high molecular weight poly(dimethyl diallyl) ammonium chloride. [0010]
  • Another method for removing organics, such as water soluble organics (WSO) from fluids containing water, such as oil process water is described in U.S. Pat. No. 6,159,379 that involves contacting the fluid with an effective amount of an organic ammonium salt. No added acid is necessary, although in some embodiments, weak acids such as glycolic acid, can be used to give synergistic improvement in organic removal. Suitable organic ammonium salts have the formula: R[0011] 1R2R3N+HX, where R1 is a saturated or unsaturated alkyl group or an aryl group, or saturated or unsaturated alkyl group or an aryl group substituted with a heteroatom selected from the group consisting of N, O, S, P and halogen; R2 and R3 are independently H or a saturated or unsaturated alkyl group or an aryl group, or saturated or unsaturated alkyl group or an aryl group substituted with a heteroatom selected from the group consisting of N, O, S, P and halogen; and X is a halogen atom or an anion of a protic acid.
  • It would be desirable if a simple, economical procedure for removing WSO compounds from water without the disadvantages of using strongly acidic materials could be devised. [0012]
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a composition and method for removing WSO from produced water that does not require the use of strong acids. [0013]
  • It is another object of the present invention to provide a method and composition for removing WSO from produced water that does not create scaling problems and that is compatible with conventional water clarifier treatments. [0014]
  • In carrying out these and other objects of the invention, there is provided, in one form, a method for removing water solubilized organics (WSO) from a water-like fluid phase involving contacting the water-like fluid phase with an effective amount of a hydrophilic a-hydroxymonocarboxylic acid (AHA) and separating at least one WSO from the water. [0015]
  • There is provided in another non-limiting embodiment form of the invention a composition for removing solubilized organics from a water-like fluid phase where the only components capable of affecting the removal of solubilized organics from a water-like fluid phase are a hydrophilic α-hydroxymonocarboxylic acid (AHA) and an anionic polymer. [0016]
  • In an alternate, non-limiting embodiment of the invention there is provided composition for removing solubilized organics from a water-like fluid phase that includes a hydrophilic α-hydroxymonocarboxylic acid (AHA) having a degree of polymerization of above 30 and an anionic polymer. The weight ratio of AHA to anionic polymer in the composition ranges from about 50:1 to about 10,000 to 1. [0017]
  • In yet another non-limiting embodiment of the invention there is provided composition that includes a water-like fluid phase, at least one solubilized organic in the fluid phase, an anionic polymer, and a hydrophilic α-hydroxymono-carboxylic acid (AHA), where the weight ratio of AHA to anionic polymer in the composition ranges from about 50:1 to about 10,000 to 1.[0018]
  • BRIEF DESCRIPTION OF THE DRAWING
  • The FIGURE is a chart of the molar efficiency of various compounds at removing WSO over the indicated dosage ranges.[0019]
  • DETAILED DESCRIPTION OF THE INVENTION
  • When water is produced from underground formations along with petroleum it contains numerous impurities. One type of impurity is called oil and grease (O&G). This includes, by definition, compounds that will extract into n-hexane or Freon 1 13 (1,1,2-trichlorotrifluoroethane) from water acidified to pH <2. The discharge limit for O&G is typically 29 ppm, averaged over a year. (Excursions are tolerated but must be compensated for.) The purpose of this invention is the reduction of the O&G in the discharged water to this limit. [0020]
  • The present invention involves the use of hydrophilic α-hydroxymonocarboxylic acids (AHAs), alone or in combination with anionic polymers, to reduce the total oil and grease (O&G). It is applicable to water produced from underground formations with pH greater than about 4, containing solubilized organic compounds that are in contact with any amount of free or emulsified oil. The term “water-like fluid phase” includes the produced water described, and also includes, but is not necessarily limited to, a water-free glycol extraction such as would occur in the oilfield, a gas plant, or petrochemical plant. The term generally would include mixtures of water and an oil-like phase, but would not include water-in-oil emulsions. [0021]
  • The water solubilized organic (WSO) compounds in O&G are those that partition at least partly to water in their native state but partition at least partly to oil (or at least Freon) in their acidified state. Such co- or bi-partitioning compounds are more polar than straight hydrocarbon oil and adsorb onto silica gel from the Freon extract. The portion of the O&G removed by silica gel is reported as the WSO. This includes compounds, such as butanol or benzene, which partition to some extent both ways regardless of the pH, and those, like organic acids, which partition more to water at the native pH than at the test pH. This last group of compounds is reduced by adding hydrophilic a-hydroxymonocarboxylic acids (AHAs). The first group of emulsified compounds is reduced by adding the anionic polymers in conjunction with the AHAs. If the anionic polymers are not added, the decrease in WSO resulting from the addition of the AHA can be accompanied by a corresponding increase in the emulsified oil, for no net decrease in the O&G. [0022]
  • Unlike the current art using mineral acids, the hydrophilic AHAs are weak organic acids, with pKa's of greater than 3.8, having the structure: RR′C(OH)COOH, where R and/or R′ can be hydrogen or any nonacidic hydrocarbonaceous group provided that the total number of H's on C's plus ½ the number of C's minus 7 times any O's not attached to H's is less than 15 per OH group (including the α-OH). Otherwise, it is insufficiently hydrophilic to stay in the water. The hydrophilic condition of the AHA, RR′C(OH)COOH, may also be expressed as follows, where: [0023]
  • R and R′ are independently selected from the group consisting of hydrogen and nonacidic hydrocarbonaceous groups, [0024]
  • with the proviso that [0025]
  • n H+0.5(n C)−7(n O)<15(n OH)
  • where [0026]
  • n[0027] H=the total number of hydrogens on carbons,
  • n[0028] C=the total number of carbons,
  • n[0029] O=the total number of oxygens not attached to hydrogens, and
  • n[0030] OH=the total number of —OH groups on molecule (i.e. including the α-OH)
  • One preferred hydrophilic AHA is hydroxyacetic (glycolic) acid (R and R′=H). This is also expected to be the least expensive one. Other suitable AHAs that meet the above definition include, but are not necessarily limited to: α-hydroxyheptanoic acid (R═C[0031] 5H11, R′═H), α,β-dihydroxytridecanoic acid, and polypropylene glycol glycidyl acid (R═HO[C3H6O]nCH2, R′═H). Hydrophobic AHAs are inapplicable because they would contribute to the WSO count themselves. These AHAs are effective at dosages ranging from about 20 to about 2000 ppm, preferably from about 50 to about 500 ppm, based on the total water-like fluid treated. The water-like fluid treated might be any oil-immiscible, water-miscible phase such as brine or glycol.
  • Unlike the current art using strong acids, AHAs are relatively weak acids, with pK[0032] a's >3.8, several hundred times less acidic than the best currently-practiced art, which is phosphorous acid, HPO(OH)2. Despite their relative weakness, however, these AHAs are effective at dosages similar to the current art, ranging from 20 to 2000 ppm based on water, when added to any produced water with pH greater than about 4. The current art treats water with pH as low as 2, but most produced water has pH >4.
  • Moreover, the best currently-practiced art, phosphorous acid, corrodes carbon steel even after dilution in the process and forms CaHPO[0033] 3 scale deposits above 100 ppm. Compared to this, the inventive compounds are far less corrosive under usage conditions, equally non-volatile, and completely non-scaling. Unlike amines and other cationic compounds, the invented compounds have a wide treatment range and are compatible with existing water clarifier treatments.
  • Unlike the current art that uses cationic compounds in combination with acids, or anionic compounds without acids, this invention optionally employs anionic polymers in combination with acids. Anionic polymers are those that dissociate in water to polymeric anions and individual cations. Examples include poly-(acrylic or methacrylic acids or salts), poly(acroyl or vinyl sulfonic acids or salts) and co-polymers of these with acrylic amides or esters. The preferred anionic polymers are co- or ter-polymers of (meth)acrylic acid and methyl and/or ethyl (meth)acrylate. The co-addition of anionic polymer is effective at dosages ranging from about 0.2 to about 20 ppm active, preferably from about 1 to about 5 ppm, based on the total water-like fluid treated. [0034]
  • The anionic polymer components of the invention are true polymers because they have degrees of polymerization above 30. In another non-limiting embodiment of the invention, the anionic polymers have degrees of polymerization equal to or greater than about 300, and in an alternate, non-limiting embodiment of the invention, the anionic polymers have degrees of polymerization equal to or greater than about 3000. Furthermore, in another non-limiting embodiment of the inventive compositions herein, the degree of polymerization may be about 300,000 or lower. [0035]
  • In one non-limiting embodiment of the invention, the AHA and the anionic polymer are the only components present in the inventive compositions that affect the characteristic or property of removing solubilized organics from water-like fluids. No other active components for this purpose are needed. That is, some inventive compositions consist essentially of the AHA as defined herein and the anionic polymers as defined herein. [0036]
  • Furthermore, although the anionic polymer may have hydroxyl and carboxylic acid functionality similar to the AHA, it must be understood that the AHA is a separate species or component from the anionic polymer. [0037]
  • The relative proportions of AHA to anionic polymer, in the cases where both are used, may vary over a wide range. In one non-limiting embodiment of the invention, the weight ratio of AHA to anionic polymer may range from about 1:1 to about 10,000:1. In an alternate non-limiting embodiment of the invention, the weight ratio of AHA to anionic polymer may range from over 50:1 to about 10,000:1. Other, non-limiting embodiments of the invention may have the range variously at from about 60:1 to 10,000:1; about 75:1 to about 10,000:1; and 100:1 to about 10,000:1. [0038]
  • The AHA is most conveniently added to the mixed oil and water production. Alternatively, it can be added to the separated produced water and then some or all of the produced oil or some other convenient oil or oil-like, water-immiscible fluid mixed back in. An “oil-like fluid phase” is defined herein as any oil phase or phase that behaves like an oil phase by being water-immiscible. It could be added prophylactically to water that would later contact the separated produced oil, as, for example, in a downstream desalter, to reduce O&G in that effluent water. In the water contacting the oil, it converts a portion of the native water partitioning organic anions into at least partly oil partitioning acids. The so converted acids, after entering the oil, dimerize into a more oil-partitioning state. Some of the oil is then separated from the water. These more oil soluble dimers leave the system with the oil. This depletes the remaining oil-water interfacial region of the acid monomer, which then draws more acid from the water into the oil. As the native acid leaves the water for the oil, more of the acid's anion is converted to acid to maintain the equilibrium. This process is repeated in a multiple batch or preferably continuous manner. In this way, even the small shift in equilibrium by the weak organic acids of this invention results in a surprisingly large depletion of WSO. The hydroxyl (—OH) group on the AHA keeps it in the water even at pH <2, so that it is not counted as oil and grease for the purpose of environmental discharge regulations. It also renders it non-toxic to and readily biodegradable by aquatic organisms, so that it is not, in fact, harmful to discharge (i.e., it is both legal and ethical). It also renders it non-volatile. Volatile acids corrode people's lungs and downstream distillation equipment. [0039]
  • The shift in equilibrium also consistently results, ceters parabis, in more stable reverse emulsions and microemulsions, which partly or even more than offset the reduction of WSOs in the O&G. It is the O&G, not the WSO, that is actually controlled by regulation. This occurs because the AHA neutralizes the charge on the native anionic surfactants and intensifies the charge on the native cationic surfactants, reducing or even flipping the extant charge on the emulsion from negative to positive. The standard cationic reverse breaker used to remove these emulsions is then no longer as complementary, and may then go from being destabilizing to being restabilizing (overtreated). It is believed that adding an anionic polymer, instead of or in addition to the standard cationic reverse emulsion breaker, along with the AHA overcomes this problem and minimizes the O&G. [0040]
  • The removal of emulsified oil from water is known as clarification. This is typically a multi-step process. First the mixed oil and water production is separated into two bulk phases. Then the emulsified oil in water is destabilized or “treated” chemically and the oil that is “broken” out separated gravitationally or centrifugally (e.g. cyclonically). Then the residual emulsion is perhaps further treated chemically and the oil droplets reduced in density by attaching them to gas bubbles. The bubbles float and thereby “flote” the oil to the surface to be skimmed. Finally the water can be passed through filters or absorbers of various media prior to discharge. The anionic polymer can be added to the water at any point prior to the final clarification unit. The preferred addition point is prior to the flotation unit, but addition coincident with the acid addition or as part of a single product addition also has advantages in simplifying application and marketing. [0041]
  • The invention will be further described with respect to more specific examples that are not intended to limit its scope, but rather to more fully illuminate it. [0042]
  • Test Method—The following test method was developed and employed to evaluate candidate treatments. [0043]
  • Water Solubilized Organics Removal Total System Bottle Test [0044]
  • 1. Pour 100 mL of untreated low pressure (LP) separator effluent water and a production proportionate amount of LP separator effluent oil into a 6 oz. (180 mL) prescription bottle. Adjust total volume to leave at least 50-mL head-space. [0045]
  • 2. Inject the WSO test product at at least one realistic rate (typically from 50 ppm to 1000 ppm). Include a blank. [0046]
  • 3. Shake the samples with an overhand 3″ (8 cm) stroke 4 times per second for 12.5 seconds (50 strokes). [0047]
  • 4. Inject the current reverse emulsion breaker (REB) product at its current treatment rate. [0048]
  • 5. Shake the samples with an overhand 3″ (8 cm) stroke 4 times per second for 12.5 seconds (50 strokes). [0049]
  • 6. Let settle for the residence time of the gravity separation system. [0050]
  • 7. Inject the current flotation aid product at its current treatment rate. [0051]
  • 8. Shake the samples with an overhand 3″ (8 cm) stroke 4 times per second for 12.5 seconds (50 strokes). [0052]
  • 9. Let settle for the residence time of the flotation separation system. [0053]
  • 10. Observe and record the clarity of the water. [0054]
  • 11. If the water is clear, stopper the bottle with a clean, gloved thumb, invert it and drain the contents into a separatory funnel. (If the water is not clear, a new clarification treatment will need to be developed to evaluate the WSO candidate.) [0055]
  • 12. Let settle briefly then drain the water into another prescription bottle. [0056]
  • 13. Add 1 mL of 15% HCl acid to the water sample and shake a few times to mix. [0057]
  • 14. Observe the volume of water in the bottle and add 20% of that amount of Freon. [0058]
  • 15. Shake the samples with an overhand 3″ (8 cm) stroke 4 times per second for 12.5 seconds (50 strokes). [0059]
  • 16. Stopper the bottle with a clean, gloved thumb and invert it (or pour it into a separatory funnel) and drain the Freon through an analytical grade paper filter into a beaker. [0060]
  • 17. Pour filtered Freon into a quartz IR cell and measure IR absorbance on an instrument calibrated to ppm of the local Oil & Grease. Record value as “Total Acidified Extracted O&G”. [0061]
  • 18. Return Freon to beaker and immediately rinse cell with clean Freon. [0062]
  • 19. Fill cell with clean Freon and re-verify absorbance blank. [0063]
  • 20. Add % tsp. (1.5 g) silica gel (SG) to the beaker and swirl thoroughly but carefully. [0064]
  • 21. Pour the SG treated Freon through a new paper filter into the emptied IR cell. [0065]
  • 22. Re-measure IR absorbance. Record value as “SG Treated Acidified Extracted O&G”. [0066]
  • 23. The amount of WSO in the water is defined as the difference between SG Treated and the Total Acidified Extracted O&G. [0067]
  • Note: Because of imperfect modeling of the dynamics of the water clarfication system in the test, the total oil and grease is not as well predicted by these test results as is the WSO, which more reflects a shift in equilibrium. Nevertheless, a minimal level of total oil and grease removal must be achieved in the test for the results to be valid. [0068]
  • Treatment Tested. A large number of experimental treatments, of several different chemical types, reflecting various theoretical mechanisms of actions, were tested. Results are summarized in Tables I and II and the FIGURE and discussed below. [0069]
    TABLE I
    Chemical Response, in ppm
    Water Clarity O&G
    Acid Dose No With WSO Post-
    Type ppm Anionic Anionic Pre-Flote Flote*
    HPO(OH)2 700 dirty clear 4.1 67.5 14.1
    HCl 370 dirty clear 2.2 86.6 12.2
    HOAcOH (inv.) 700 dirty clear 1.1 90.9 11.1
    MeSO2(OH) 700 dirty clear 3.2 83.4 13.2
    HPO(OH) 500 dirty clear 6.0 74.2 16.0
    Blank  0 clear clear 27.8  50.5 37.8
  • [0070]
    TABLE II
    Dose Response of Acidic Chemicals
    (inventive)
    H2(HPO3) HCl H(HOAcO) H(MeSO3) H(H2PO2)
    Dose Active WSO Active WSO Active WSO Active WSO Active WSO
    Sample mg/L mEq/L mg/L mg/L mEq/L mg/L mg/L mEq/L mg/L mg/L mEq/L mg/L mg/L mEq/L mg/L
    0 0 0 27.8 0 0 27.8 0 0 27.8 0 0 27.8 0 0 27.8
    250 175 4.3 12.7 93 2.5 18.0 175 2.3 14.7 175 1.8 125 1.9
    500 350 8.5 8.9 185 5.1 11.4 350 4.6 11.7 350 3.6 14.8 250 3.8 16.2
    750 525 12.8 4.8 278 7.6 6.4 525 6.9 2.2 525 5.5 375 5.7
    1,000 700 17.1 4.1 370 10.1 2.2 700 9.2 1.1 700 7.3 3.2 500 7.6 6.0
  • A hydrophilic AHA of this invention ([0071] 60 -OH acetic acid) was added to actual produced water with a pH of 7 on a platform in the Gulf of Mexico. The result of this trial was as follows:
    TABLE III
    GoM Trial Result
    HOAcOH WSO O&G
    ppm ppm ppm
     0 47 56
    245 22 33
  • A hydrophilic AHA of this invention (α-OH acetic acid) was added to actual produced water with a pH of 6.9 on another platform in the Gulf of Mexico. The result of this trial was as follows: [0072]
    TABLE IV
    GoM Trial Result II
    Cationic Anionic
    HOAcOH REB Polymer WSO O&G
    ppm ppm ppm ppm ppm
    0 3.0 3.0 27 34
    175 3.0 3.0 19 25
    210 3.0 3.0 13 26
    210 2.5 3.5 13 20
    305 2.0 4.0 9 16
  • After reducing the O&G from 34 ppm to 25 ppm with 175 ppm AHA through reductions in WSO, further reductions in WSO were met with a corresponding increase in insoluble oil, from 6 ppm to 13 ppm. Feeding additional anionic polymer (a methacrylic acid:methylmethacrylate:ethylacrylate terpolymer) at the expense of the cationic REB brought the insoluble oil back down to 7 ppm and allowed further reductions in the total O&G. [0073]
  • Corrosivity. Acid treatments are injected at high concentration into carbon steel (1018) produced water lines using stainless steel (316) or better quills. The resultant concentration in the carbon steel line is typically several hundred ppm. Under these conditions of actual use, the AHAs of this invention are appreciably less corrosive then even the mildest, inhibited mineral acid in use. [0074]
    TABLE V
    Corrosion Data (conditions unreported)
    Acid Conc. C1018 Steel 316L SS
    H2(HPO3), inhibited 70% 2.58 mpy 5.27 mpy
    H(HOAcO), uninhibited 50% 8.25 mpy 0.27 mpy
    H2(HPO3), inhibited 420 ppm 1.58 mpy
    H(HOAcO), uninhibited 300 ppm <0.01 mpy  
  • [0075]
    TABLE VI
    Mud Bomb Corrosion Data
    Test Temp. 150 F (66° C.)
    Pressure 500 psi (3,400 kPa) N2
    Duration 41 hrs
    Acid Conc. C1018 Steel 316 SS
    H2(HPO3), inhibited 70% 36.4 mpy 50.5 mpy
    H(HOAcO), inhibited 70% 15.8 mpy 22.9 mpy
  • Scale Formation. The Ca complex of hydroxyacetic acid is 150 times more soluble than the 100 ppm limit of phosphorous acid. Other metal salts are even more soluble, as shown below. [0076]
    TABLE VII
    Aqueous Solubility of Hydroxyacetate
    Metal Complexes
    Metal Temp. ° F. (° C.) Solubility, wt %
    Na 68 (20) 40.9
    K 68 (20) 56.6
    Mg 64 (18) 7.3
    82 (28) 7.7
    140 (60)  10.8
    212 (100) 23.0
    Ca 63 (17) 1.2
    82 (28) 1.5
    140 (60)  3.8
    212 (100) 4.4
    Pb 59 (15) 20.6
    212 (100) 3.3
    Zn 68 (20) 3.3
  • In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It has been demonstrated as effective in providing methods and compositions for removing WSO from water that has low corrosivity with respect to the iron-alloy materials and equipment it comes into contact with, as well as reduced scaling potential. However, it will be evident that various modifications and changes can be made thereto without departing from the broader spirit or scope of the invention as set forth in the appended claims. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific combinations of AHAs, anionic polymers and other components falling within the claimed parameters, but not specifically identified or tried in a particular composition or under specific conditions, are anticipated to be within the scope of this invention. [0077]

Claims (18)

I claim:
1. A composition for removing solubilized organics from a water-like fluid phase consisting essentially of:
a hydrophilic a-hydroxymonocarboxylic acid (AHA); and
an anionic polymer.
2. The composition of claim 1 where the AHA has a pKa of greater than 3.8.
3. The composition of claim 1 where the AHA has the structure RR′C(OH)COOH where
R and R′ are independently selected from the group consisting of hydrogen and nonacidic hydrocarbonaceous groups,
with the proviso that
n H+0.5(n C)−7(n O)<15(n OH)
where
nH=the total number of hydrogens on carbons,
nC=the total number of carbons,
nO=the total number of oxygens not attached to hydrogens, and
nOH=the total number of —OH groups in the molecule.
4. The composition of claim 1 where the anionic polymer is selected from the group consisting of poly(acrylic acid) and poly(methacrylic acid) and salts thereof, poly(acroyl sulfonic acid) and poly(vinyl sulfonic acid) and salts thereof, and copolymers of the aforementioned polymers with acrylic amides and esters, and mixtures thereof.
5. The composition of claim 1 where the anionic polymer has a degree of polymerization of above 30.
6. The composition of claim 1 where the anionic polymer has a degree of polymerization between about 3000 and about 300,000.
7. The composition of claim 1 where the anionic polymer is selected from the group consisting of poly(acrylic acid) and poly(methacrylic acid) and salts thereof, poly(acroyl sulfonic acid) and poly(vinyl sulfonic acid) and salts thereof, and copolymers of the aforementioned polymers with acrylic amides and esters, and mixtures thereof.
8. The composition of claim 1 where the weight ratio of AHA to anionic polymer in the composition ranges from about 1:1 to about 10,000 to 1.
9. The composition of claim 1 where the weight ratio of AHA to anionic polymer in the composition ranges from over 50:1 to about 10,000 to 1.
10. A composition for removing solubilized organics from a water-like fluid phase comprising:
a hydrophilic α-hydroxymonocarboxylic acid (AHA) having a degree of polymerization of above 30; and
an anionic polymer,
where the weight ratio of AHA to anionic polymer in the composition ranges from over 50:1 to about 10,000 to 1.
11. The composition of claim 10 where the AHA has a pKa of greater than 3.8.
12. The composition of claim 10 where the AHA has the structure RR′C(OH)COOH where
R and R′ are independently selected from the group consisting of hydrogen and nonacidic hydrocarbonaceous groups,
with the proviso that
n H+0.5(n C)−7(n O)<15(n OH)
where
nH=the total number of hydrogens on carbons,
nC=the total number of carbons,
nO=the total number of oxygens not attached to hydrogens, and
nOH=the total number of -OH groups in the molecule.
13. The composition of claim 10 where the anionic polymer is selected from the group consisting of poly(acrylic acid) and poly(methacrylic acid) and salts thereof, poly(acroyl sulfonic acid) and poly(vinyl sulfonic acid) and salts thereof, and copolymers of the aforementioned polymers with acrylic amides and esters, and mixtures thereof.
14. The composition of claim 10 where the anionic polymer has a degree of polymerization between about 3000 and about 300,000.
15. A composition comprising:
a water-like fluid phase;
at least one solubilized organic in the water-like fluid phase;
an anionic polymer; and
a hydrophilic α-hydroxymonocarboxylic acid (AHA),
where the weight ratio of AHA to anionic polymer in the composition ranges from over 50:1 to about 10,000 to 1.
16. The composition of claim 15 where the AHA has a pKa of greater than 3.8.
17. The composition of claim 15 where the AHA has the structure RR′C(OH)COOH where
R and R′ are independently selected from the group consisting of hydrogen and nonacidic hydrocarbonaceous groups,
with the proviso that
n H+0.5(n C)−7(n O)<15(n OH)
where
nH=the total number of hydrogens on carbons,
nC=the total number of carbons,
nO=the total number of oxygens not attached to hydrogens, and
nOH=the total number of —OH groups in the molecule.
18. The composition of claim 15 where the anionic polymer is selected from the group consisting of poly(acrylic acid) and poly(methacrylic acid) and salts thereof, poly(acroyl sulfonic acid) and poly(vinyl sulfonic acid) and salts thereof, and copolymers of the aforementioned polymers with acrylic amides and esters, and mixtures thereof.
US10/719,567 2001-09-10 2003-11-21 Removal of water solubilized organics Abandoned US20040112828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/719,567 US20040112828A1 (en) 2001-09-10 2003-11-21 Removal of water solubilized organics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32224901P 2001-09-10 2001-09-10
US10/008,173 US6695968B2 (en) 2001-09-10 2001-11-13 Removal of water solubilized organics
US10/719,567 US20040112828A1 (en) 2001-09-10 2003-11-21 Removal of water solubilized organics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/008,173 Continuation-In-Part US6695968B2 (en) 2001-09-10 2001-11-13 Removal of water solubilized organics

Publications (1)

Publication Number Publication Date
US20040112828A1 true US20040112828A1 (en) 2004-06-17

Family

ID=26677891

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/008,173 Expired - Lifetime US6695968B2 (en) 2001-09-10 2001-11-13 Removal of water solubilized organics
US10/719,567 Abandoned US20040112828A1 (en) 2001-09-10 2003-11-21 Removal of water solubilized organics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/008,173 Expired - Lifetime US6695968B2 (en) 2001-09-10 2001-11-13 Removal of water solubilized organics

Country Status (6)

Country Link
US (2) US6695968B2 (en)
EP (2) EP1425246B1 (en)
BR (1) BR0212160B1 (en)
CA (1) CA2459977C (en)
OA (1) OA13059A (en)
WO (1) WO2003022747A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520993B1 (en) * 2007-12-06 2009-04-21 Water & Power Technologies, Inc. Water treatment process for oilfield produced water
US7947182B2 (en) * 2008-08-29 2011-05-24 Conocophillips Company Naphthenic acid removal process
MX2014014145A (en) * 2012-05-21 2015-07-06 Solex Water Ltd Methods and systems for water recovery.
US11655168B2 (en) 2020-05-22 2023-05-23 Halliburton Energy Services, Inc. Methods for wastewater treatment using alcohol ethoxylate surfactants

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687845A (en) * 1970-05-15 1972-08-29 Dow Chemical Co Separating tramp oils from oil-in-water emulsions
USRE29908E (en) * 1977-03-18 1979-02-13 Betz Laboratories, Inc. Process for clarification of oil-containing waste
US4401570A (en) * 1982-05-26 1983-08-30 Shell Oil Company Removal of organic contaminants from waste water
US4532052A (en) * 1978-09-28 1985-07-30 Halliburton Company Polymeric well treating method
US4609475A (en) * 1984-02-24 1986-09-02 Halliburton Company Method of improving the permeability of a subterranean formation by removal of polymeric materials therefrom
US4657080A (en) * 1986-02-19 1987-04-14 Dowell Schlumberger Incorporated Method of fracturing a subterranean formation using delayed crosslinker compositions containing organic titanium complexes
US4818410A (en) * 1988-01-14 1989-04-04 Petrolite Corporation Method of removing water soluble organics from oil process water
US4835234A (en) * 1986-09-08 1989-05-30 Exxon Research And Engineering Company Hydrophobically functionalized cationic polymers
US4839054A (en) * 1987-10-23 1989-06-13 Chevron Research Company Process for removing water-soluble organics from produced water
US5045212A (en) * 1990-03-27 1991-09-03 Bayer Aktiengesellschaft Process for the separation of oil-in-water emulsions
US5236591A (en) * 1992-02-28 1993-08-17 Betz Laboratories, Inc. Method of removing benzene from petroleum desalter brine
US5282974A (en) * 1993-05-24 1994-02-01 Betz Laboratories Method for removing soluble benzene from effluent water
US5395536A (en) * 1993-05-07 1995-03-07 Baker Hughes, Inc. Wastewater organic acid removal process
US5804078A (en) * 1996-03-14 1998-09-08 Texaco Inc. Method of removing water soluble organics from oil process water
US5853592A (en) * 1992-09-03 1998-12-29 Baker Hughes Incorporated Method of removing water soluble organics from oil process water with an organic acid and a mineral acid having a plurality of pKa's
US6143310A (en) * 1996-06-27 2000-11-07 The Procter & Gamble Company Cosmetic compositions
US6153656A (en) * 1999-02-26 2000-11-28 Phillips Petroleum Company Demulsification of oil and water emulsions
US6159379A (en) * 1999-05-04 2000-12-12 Baker Hughes Incorporated Organic ammonium salts for the removal of water soluble organics in produced water
US6323307B1 (en) * 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118854A (en) 1977-03-25 1978-10-17 Mitsubishi Chem Ind Ltd Method of treating waste water
JPS5892499A (en) 1981-11-28 1983-06-01 Nippon Nohyaku Co Ltd Descaling agent
US5128046A (en) * 1990-04-16 1992-07-07 Nalco Chemical Company Water clarification through chelation
US5354477A (en) 1992-04-07 1994-10-11 Champion Technologies Low molecular weight amines and amine quaternaries for the removal of soluble organics in oil field produced water
DE4414261A1 (en) 1994-04-23 1995-10-26 Tomas Burmester Decontamination of solids contg. heavy metals and/or organics
ES2142591T3 (en) * 1995-06-07 2000-04-16 Fuller H B Licensing Financ AQUEOUS, NON-GELIFYING DISPERSIONS OF ANIONIC POLYURETHANES AND THE PROCESS FOR THEIR MANUFACTURE.

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687845A (en) * 1970-05-15 1972-08-29 Dow Chemical Co Separating tramp oils from oil-in-water emulsions
USRE29908E (en) * 1977-03-18 1979-02-13 Betz Laboratories, Inc. Process for clarification of oil-containing waste
US4532052A (en) * 1978-09-28 1985-07-30 Halliburton Company Polymeric well treating method
US4401570A (en) * 1982-05-26 1983-08-30 Shell Oil Company Removal of organic contaminants from waste water
US4609475A (en) * 1984-02-24 1986-09-02 Halliburton Company Method of improving the permeability of a subterranean formation by removal of polymeric materials therefrom
US4657080A (en) * 1986-02-19 1987-04-14 Dowell Schlumberger Incorporated Method of fracturing a subterranean formation using delayed crosslinker compositions containing organic titanium complexes
US4835234A (en) * 1986-09-08 1989-05-30 Exxon Research And Engineering Company Hydrophobically functionalized cationic polymers
US4839054A (en) * 1987-10-23 1989-06-13 Chevron Research Company Process for removing water-soluble organics from produced water
US4818410B1 (en) * 1988-01-14 1998-06-30 Petrolite Corp Method of removing water soluble organics from oil process water
US4818410A (en) * 1988-01-14 1989-04-04 Petrolite Corporation Method of removing water soluble organics from oil process water
US6323307B1 (en) * 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials
US5045212A (en) * 1990-03-27 1991-09-03 Bayer Aktiengesellschaft Process for the separation of oil-in-water emulsions
US5236591A (en) * 1992-02-28 1993-08-17 Betz Laboratories, Inc. Method of removing benzene from petroleum desalter brine
US5853592A (en) * 1992-09-03 1998-12-29 Baker Hughes Incorporated Method of removing water soluble organics from oil process water with an organic acid and a mineral acid having a plurality of pKa's
US5395536A (en) * 1993-05-07 1995-03-07 Baker Hughes, Inc. Wastewater organic acid removal process
US5282974A (en) * 1993-05-24 1994-02-01 Betz Laboratories Method for removing soluble benzene from effluent water
US5804078A (en) * 1996-03-14 1998-09-08 Texaco Inc. Method of removing water soluble organics from oil process water
US6143310A (en) * 1996-06-27 2000-11-07 The Procter & Gamble Company Cosmetic compositions
US6153656A (en) * 1999-02-26 2000-11-28 Phillips Petroleum Company Demulsification of oil and water emulsions
US6159379A (en) * 1999-05-04 2000-12-12 Baker Hughes Incorporated Organic ammonium salts for the removal of water soluble organics in produced water

Also Published As

Publication number Publication date
EP2233440B1 (en) 2018-09-26
EP1425246A1 (en) 2004-06-09
EP1425246B1 (en) 2018-09-26
EP2233440A1 (en) 2010-09-29
US20030094413A1 (en) 2003-05-22
US6695968B2 (en) 2004-02-24
CA2459977A1 (en) 2003-03-20
BR0212160A (en) 2004-07-13
WO2003022747A1 (en) 2003-03-20
OA13059A (en) 2006-11-10
BR0212160B1 (en) 2011-05-31
CA2459977C (en) 2009-10-20

Similar Documents

Publication Publication Date Title
US5730882A (en) Method for remediation of water containing emulsified oils
US5395536A (en) Wastewater organic acid removal process
EP0595156A1 (en) Process for oil field water clarification using cationic dispersion polymers
US5294347A (en) Dispersion polymers for ethylene quench water clarification
CN103608425A (en) Low dosage polymeric naphthenate inhibitors
US5693216A (en) Method of and composition for breaking oil and water emulsions in crude oil processing operations
US5332506A (en) Water clarification
CA2105514C (en) Method of removing water soluble organics from oil process water
US6695968B2 (en) Removal of water solubilized organics
US4383933A (en) Organo titanium complexes
US5853592A (en) Method of removing water soluble organics from oil process water with an organic acid and a mineral acid having a plurality of pKa&#39;s
CA2355951C (en) Demulsification of oil and water emulsions
US5282974A (en) Method for removing soluble benzene from effluent water
US9943782B2 (en) Cationic vinyl imidazolium-based copolymer for separating an oil-in-water emulsion
AU2013296612B2 (en) N-vinylpyrrolidone-based cationic copolymer for separating an oil-in-water emulsion
NO331867B1 (en) Composition for removing dissolved organic matter from a water-like liquid phase.
CA2156444A1 (en) Method of resolving oil and brine emulsions

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HART, PAUL R.;REEL/FRAME:014747/0138

Effective date: 20031120

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION