US20040106526A1 - Method for marking liquid hydrocarbons - Google Patents

Method for marking liquid hydrocarbons Download PDF

Info

Publication number
US20040106526A1
US20040106526A1 US10/706,198 US70619803A US2004106526A1 US 20040106526 A1 US20040106526 A1 US 20040106526A1 US 70619803 A US70619803 A US 70619803A US 2004106526 A1 US2004106526 A1 US 2004106526A1
Authority
US
United States
Prior art keywords
range
absorption maximum
dye
anthraquinone
heterocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/706,198
Inventor
David Baxter
Peter Cranmer
Kim Ho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/706,198 priority Critical patent/US20040106526A1/en
Publication of US20040106526A1 publication Critical patent/US20040106526A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/003Marking, e.g. coloration by addition of pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • C09B1/16Amino-anthraquinones
    • C09B1/20Preparation from starting materials already containing the anthracene nucleus
    • C09B1/26Dyes with amino groups substituted by hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B5/00Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings
    • C09B5/24Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings the heterocyclic rings being only condensed with an anthraquinone nucleus in 1-2 or 2-3 position
    • C09B5/44Azines of the anthracene series
    • C09B5/46Para-diazines
    • C09B5/48Bis-anthraquinonediazines (indanthrone)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • C10L1/2235Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/20Organic compounds containing halogen
    • C10L1/202Organic compounds containing halogen aromatic bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/20Colour, e.g. dyes

Definitions

  • This invention relates generally to a method for marking petroleum hydrocarbons with combinations of marker compounds for subsequent identification.
  • U.S. Pat. No. 6,274,381 discloses a method for marking a petroleum hydrocarbon with at least two dyes having absorption maxima between 500 nm and 700 nm, thus allowing for creation of multiple absorption patterns which can be used to identify the hydrocarbon.
  • This reference does not suggest a method for marking petroleum hydrocarbons with dyes absorbing in other wavelength ranges.
  • Visible dyes having absorption maxima between 500 nm and 700 nm suffer from disadvantages as markers, including interference from other colored substances in the petroleum hydrocarbon, especially when the dyes are present at low levels.
  • the problem addressed by this invention is to find an improved method for marking petroleum hydrocarbons with multiple markers.
  • the present invention is directed to a method for marking a liquid petroleum hydrocarbon.
  • the method comprises adding to the liquid petroleum hydrocarbon: (i) at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm selected from the group consisting of 1,4,5,8-tetrasubstituted anthraquinones and anthraquinone dimers; and (ii) at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm.
  • ppm parts per million
  • the term “petroleum hydrocarbons” refers to products having a predominantly hydrocarbon composition that are derived from petroleum, preferably lubricating oil, hydraulic fluid, brake fluid, gasoline, diesel fuel, kerosene, jet fuel and heating oil.
  • An “alkyl” group is a hydrocarbyl group having from one to twenty carbon atoms in a linear, branched or cyclic arrangement. Alkyl groups optionally have one or more double or triple bonds.
  • alkyl groups are substituted by one or more halo substituents.
  • alkyl groups have no halo or alkoxy substituents.
  • a “heteroalkyl” group is an alkyl group having at least one carbon which has been replaced by O, NR, or S, wherein R is hydrogen, alkyl, aryl or aralkyl.
  • An “aryl” group is a substituent derived from an aromatic hydrocarbon compound. An aryl group has a total of from six to twenty ring atoms, and has one or more rings which are separate or fused.
  • An “aralkyl” group is an “alkyl” group substituted by an “aryl” group.
  • a “heterocyclic” group is a substituent derived from a heterocyclic compound having from five to twenty ring atoms, at least one of which is nitrogen, oxygen or sulfur. Preferably, heterocyclic groups do not contain sulfur. Substitution on aryl or heterocyclic groups of one or more halo, cyano, nitro, alkoxycarbonyl, dialkylamino, alkylamino, amino, hydroxy, alkyl, heteroalkyl, alkanoyl or alkoxy groups is permitted, with substitution by one or more halo groups being possible on alkyl, heteroalkyl, alkanoyl or alkoxy groups. Preferably, aryl and heterocyclic groups do not contain halogen atoms.
  • An “aromatic heterocyclic” group is a heterocyclic group derived from an aromatic heterocyclic compound.
  • a 1,4,5,8-tetrasubstituted anthraquinone dye having formula (I) is added to a petroleum hydrocarbon.
  • X is R 4 NH, NH 2 , OH or halo; and R 1 , R 2 , R 3 and R 4 independently are alkyl, aryl, aralkyl, heteroalkyl or heterocyclic. Preferably, at least two of R 1 , R 2 , and R 3 are aryl or aromatic heterocyclic. More preferably, X is R 4 NH, and at least three of R 1 , R 2 , R 3 and R 4 are aryl or aromatic heterocyclic, more preferably all four. Most preferably, all of R 1 , R 2 , R 3 and R 4 are aryl.
  • an anthraquinone dye which is an anthraquinone dimer is added to a petroleum hydrocarbon.
  • Anthraquinone dimers include: (i) substituted derivatives, having ⁇ max from 710 to 850 nm, of 6,15-dihydro-5,9,14,18-anthrazinetetrone, shown below,
  • anthraquinone dimer is a substituted 6,15-dihydro-5,9,14,18-anthrazinetetrone of formula (II).
  • R 1 , R 2 , R 3 , and R 4 independently are hydrogen, alkyl, heteroalkyl or alkylamino;
  • R 5 is hydrogen, alkyl, heteroalkyl, alkylamino, arylamino or aromatic-heterocyclic-amino; and
  • R is hydrogen, alkyl, arylamino or aromatic-heterocyclic-amino; provided that one of R and R 5 is arylamino or aromatic-heterocyclic-amino.
  • R 1 , R 2 , R 3 , and R 4 are hydrogen.
  • R 1 , R 2 , R 3 , R 4 and R 5 are hydrogen and R is arylamino.
  • R is a hydrogen-bond donor arylamino group, e.g., phenylamino.
  • R is phenylamino, such that the compound is of formula (III).
  • This compound has a ⁇ max of 790 nm.
  • R, R 1 , R 2 , R 3 , and R 4 are hydrogen; and R 5 is phenylamino, such that the compound is of formula (IV).
  • This compound is 6,15-dihydro-8,17-bis(phenylamino)-5,9,14,18-anthrazinetetrone, and has been sold commercially under the trade names C.I. VAT GREEN 6 and CALEDON GREEN RC.
  • each anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm which is added to the petroleum hydrocarbon is at least 0.01 ppm, more preferably at least 0.02 ppm, and most preferably at least 0.03 ppm.
  • the amount of each dye is less than 10 ppm, more preferably less than 2 ppm, and most preferably less than 1 ppm.
  • the marking is invisible, i.e., the dye cannot be detected by simple visual observation of the marked hydrocarbon.
  • an anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm used in the method of this invention has an absorption maximum in the range from 720 nm to 850 nm, more preferably from 720 nm to 810 nm, and most preferably from 730 nm to 800 nm.
  • at least two anthraquinone dyes having absorption maxima at differential wavelengths within one of the aforementioned ranges are added to the petroleum hydrocarbon.
  • the anthraquinone dyes and the visible dyes are detected by exposing the marked hydrocarbon to electromagnetic radiation having wavelengths in the portion of the spectrum containing the absorption maxima of the dyes and detecting the absorption of light or fluorescent emissions. It is preferred that the detection equipment is capable of calculating dye concentrations and concentration ratios in a marked hydrocarbon. Typical spectrophotometers known in the art are capable of detecting the anthraquinone dyes used in the method of this invention which absorb in the 710 nm to 850 nm range when they are present at a level of at least 0.01 ppm. It is preferred to use the detectors described in U.S. Pat. No.
  • the sample may be returned to its source after testing, eliminating the need for handling and disposal of hazardous chemicals. This is the case, for example, when the dyes are detected simply by measuring light absorption by a sample of the marked hydrocarbon.
  • the dye is formulated in a solvent to facilitate its addition to the liquid hydrocarbon.
  • the preferred solvents for tetra-substituted anthraquinones are N-methylpyrrolidinone, N,N-dimethyl propylene urea, nitrobenzene, toluene and N,N-dimethylformamide.
  • the dye is present in the solvent at a concentration of from 0.1% to 10%.
  • each visible dye i.e., a dye having an absorption maximum in the range from 500 nm to 700 nm, preferably from 550 nm to 700 nm, and most preferably from 550 nm to 680 nm; is added in an amount of at least 0.1 ppm, preferably at least 0.2 ppm, and most preferably at least 0.5 ppm.
  • the amount of each visible dye is no more than 10 ppm, more preferably no more than 5 ppm, more preferably no more than 3 ppm, and most preferably no more than 2 ppm.
  • the visible dyes are selected from the classes of anthraquinone dyes and azo dyes.
  • Suitable anthraquinone dyes having an absorption maximum in this region include, for example, 1,4-disubstituted anthraquinones having alkylamino, arylamino or aromatic-heterocyclic-amino substituents.
  • Suitable azo dyes having an absorption maximum in this region include the bisazo dyes, for example, those having the structure Ar—N ⁇ N—Ar—N ⁇ N—Ar, in which Ar is an aryl group, and each Ar may be different.
  • Specific examples of suitable commercial anthraquinone and bisazo dyes having an absorption maximum in this region are listed in the Colour Index, including C.I. Solvent Blue 98, C.I. Solvent Blue 79, C.I. Solvent Blue 99 and C.I. Solvent Blue 100.
  • incorporación of at least one anthraquinone dye having an absorption maximum in the region from 710 nm to 850 nm allows identification of the liquid hydrocarbon by spectrophotometric means in a spectral region relatively free of interference. Low levels of these dyes are detectable in this region, allowing for a cost-effective marking process. Use of higher levels of at least one visible dye having an absorption maximum in the region from 500 nm to 700 nm facilitates quantitative spectrophotometric determination in this region. Accurate determination of the dye levels allows the amounts and ratios of the dyes to serve as parts of a code identifying the hydrocarbon.
  • the markers are “silent markers.”
  • a mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone, 50 g of aniline, 13.4 g of potassium acetate, 1.24 g of copper sulfate, and 3.41 g of benzyl alcohol was heated to 130° C. under nitrogen and maintained at this temperature for 6.5 hours, followed by another holding period at 170° C. for 6 hours.
  • the reaction mixture was cooled to ambient temperature and the precipitate was filtered to give black solids.
  • a mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone and 95 g of 4-n-butylaniline was allowed to react at 190° C. for 12 hours.
  • the reaction mixture was then cooled to 70° C. and diluted with an equal amount of ethanol. On standing and further cooling to ambient temperature, some precipitate was formed.
  • the mixture was filtered, washed and recrystallized from xylenes/isopropanol to give 6.6 g of a dark green crystalline material (>95% purity) with the structure confirmed by proton NMR as the desired product of 1,4,5,8-tetra(4-n-butylphenylamino)anthraquinone.
  • This material had a maximum absorption band ( ⁇ max ) at a wavelength of 762 nm in toluene.
  • the molar extinction coefficient ( ⁇ ) was determined to be ⁇ 36,900.
  • TPAAQ 1,4,5,8-tetra(phenylamino)anthraquinone

Abstract

A method for marking a liquid petroleum hydrocarbon. The method comprises adding to the liquid petroleum hydrocarbon: (i) at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm selected from the group consisting of 1,4,5,8-tetrasubstituted anthraquinones and anthraquinone dimers; and (ii) at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm.

Description

    BACKGROUND
  • This invention relates generally to a method for marking petroleum hydrocarbons with combinations of marker compounds for subsequent identification. [0001]
  • U.S. Pat. No. 6,274,381 discloses a method for marking a petroleum hydrocarbon with at least two dyes having absorption maxima between 500 nm and 700 nm, thus allowing for creation of multiple absorption patterns which can be used to identify the hydrocarbon. This reference, however, does not suggest a method for marking petroleum hydrocarbons with dyes absorbing in other wavelength ranges. [0002]
  • Visible dyes having absorption maxima between 500 nm and 700 nm suffer from disadvantages as markers, including interference from other colored substances in the petroleum hydrocarbon, especially when the dyes are present at low levels. The problem addressed by this invention is to find an improved method for marking petroleum hydrocarbons with multiple markers. [0003]
  • STATEMENT OF INVENTION
  • The present invention is directed to a method for marking a liquid petroleum hydrocarbon. The method comprises adding to the liquid petroleum hydrocarbon: (i) at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm selected from the group consisting of 1,4,5,8-tetrasubstituted anthraquinones and anthraquinone dimers; and (ii) at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm. [0004]
  • DETAILED DESCRIPTION
  • All percentages are weight percentages, unless otherwise indicated. Concentrations in parts per million (“ppm”) are calculated on a weight/volume basis. The term “petroleum hydrocarbons” refers to products having a predominantly hydrocarbon composition that are derived from petroleum, preferably lubricating oil, hydraulic fluid, brake fluid, gasoline, diesel fuel, kerosene, jet fuel and heating oil. An “alkyl” group is a hydrocarbyl group having from one to twenty carbon atoms in a linear, branched or cyclic arrangement. Alkyl groups optionally have one or more double or triple bonds. Substitution on alkyl groups of one or more halo, hydroxy or alkoxy groups is permitted; alkoxy groups may in turn be substituted by one or more halo substituents. Preferably, alkyl groups have no halo or alkoxy substituents. A “heteroalkyl” group is an alkyl group having at least one carbon which has been replaced by O, NR, or S, wherein R is hydrogen, alkyl, aryl or aralkyl. An “aryl” group is a substituent derived from an aromatic hydrocarbon compound. An aryl group has a total of from six to twenty ring atoms, and has one or more rings which are separate or fused. An “aralkyl” group is an “alkyl” group substituted by an “aryl” group. A “heterocyclic” group is a substituent derived from a heterocyclic compound having from five to twenty ring atoms, at least one of which is nitrogen, oxygen or sulfur. Preferably, heterocyclic groups do not contain sulfur. Substitution on aryl or heterocyclic groups of one or more halo, cyano, nitro, alkoxycarbonyl, dialkylamino, alkylamino, amino, hydroxy, alkyl, heteroalkyl, alkanoyl or alkoxy groups is permitted, with substitution by one or more halo groups being possible on alkyl, heteroalkyl, alkanoyl or alkoxy groups. Preferably, aryl and heterocyclic groups do not contain halogen atoms. An “aromatic heterocyclic” group is a heterocyclic group derived from an aromatic heterocyclic compound. [0005]
  • In a preferred embodiment of the invention, a 1,4,5,8-tetrasubstituted anthraquinone dye having formula (I) is added to a petroleum hydrocarbon. [0006]
    Figure US20040106526A1-20040603-C00001
  • In formula (I), X is R[0007] 4NH, NH2, OH or halo; and R1, R2, R3 and R4 independently are alkyl, aryl, aralkyl, heteroalkyl or heterocyclic. Preferably, at least two of R1, R2, and R3 are aryl or aromatic heterocyclic. More preferably, X is R4NH, and at least three of R1, R2, R3 and R4 are aryl or aromatic heterocyclic, more preferably all four. Most preferably, all of R1, R2, R3 and R4 are aryl.
  • In another preferred embodiment of the invention, an anthraquinone dye which is an anthraquinone dimer is added to a petroleum hydrocarbon. Anthraquinone dimers include: (i) substituted derivatives, having λ[0008] max from 710 to 850 nm, of 6,15-dihydro-5,9,14,18-anthrazinetetrone, shown below,
    Figure US20040106526A1-20040603-C00002
  • also known by the trade name INDANTHRENE; and (ii) other fused dimers of anthraquinones having extended conjugation throughout their ring systems and having λ[0009] max from 710 to 850 nm. Preferably, the anthraquinone dimer is a substituted 6,15-dihydro-5,9,14,18-anthrazinetetrone of formula (II).
    Figure US20040106526A1-20040603-C00003
  • In formula (II), R[0010] 1, R2, R3, and R4 independently are hydrogen, alkyl, heteroalkyl or alkylamino; R5 is hydrogen, alkyl, heteroalkyl, alkylamino, arylamino or aromatic-heterocyclic-amino; and R is hydrogen, alkyl, arylamino or aromatic-heterocyclic-amino; provided that one of R and R5 is arylamino or aromatic-heterocyclic-amino. Preferably, R1, R2, R3, and R4 are hydrogen.
  • In one preferred embodiment, R[0011] 1, R2, R3, R4 and R5 are hydrogen and R is arylamino. Preferably, R is a hydrogen-bond donor arylamino group, e.g., phenylamino. Most preferably, R is phenylamino, such that the compound is of formula (III).
    Figure US20040106526A1-20040603-C00004
  • This compound has a λ[0012] max of 790 nm.
  • In another preferred embodiment, R, R[0013] 1, R2, R3, and R4 are hydrogen; and R5 is phenylamino, such that the compound is of formula (IV).
    Figure US20040106526A1-20040603-C00005
  • This compound is 6,15-dihydro-8,17-bis(phenylamino)-5,9,14,18-anthrazinetetrone, and has been sold commercially under the trade names C.I. VAT GREEN 6 and CALEDON GREEN RC. [0014]
  • Preferably the amount of each anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm which is added to the petroleum hydrocarbon is at least 0.01 ppm, more preferably at least 0.02 ppm, and most preferably at least 0.03 ppm. Preferably the amount of each dye is less than 10 ppm, more preferably less than 2 ppm, and most preferably less than 1 ppm. Preferably, the marking is invisible, i.e., the dye cannot be detected by simple visual observation of the marked hydrocarbon. Preferably, an anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm used in the method of this invention has an absorption maximum in the range from 720 nm to 850 nm, more preferably from 720 nm to 810 nm, and most preferably from 730 nm to 800 nm. In one embodiment, at least two anthraquinone dyes having absorption maxima at differential wavelengths within one of the aforementioned ranges are added to the petroleum hydrocarbon. Preferably, the anthraquinone dyes and the visible dyes are detected by exposing the marked hydrocarbon to electromagnetic radiation having wavelengths in the portion of the spectrum containing the absorption maxima of the dyes and detecting the absorption of light or fluorescent emissions. It is preferred that the detection equipment is capable of calculating dye concentrations and concentration ratios in a marked hydrocarbon. Typical spectrophotometers known in the art are capable of detecting the anthraquinone dyes used in the method of this invention which absorb in the 710 nm to 850 nm range when they are present at a level of at least 0.01 ppm. It is preferred to use the detectors described in U.S. Pat. No. 5,225,679, especially the SpecTrace™ analyzer available from Rohm and Haas Company, Philadelphia, Pa. These analyzers use a filter selected based on the absorption spectrum of the dye, and use chemometric analysis of the signal by multiple linear regression methods to reduce the signal-to-noise ratio. [0015]
  • When the detection method does not involve performing any chemical manipulation of the marked hydrocarbon, the sample may be returned to its source after testing, eliminating the need for handling and disposal of hazardous chemicals. This is the case, for example, when the dyes are detected simply by measuring light absorption by a sample of the marked hydrocarbon. [0016]
  • In one embodiment of the invention, the dye is formulated in a solvent to facilitate its addition to the liquid hydrocarbon. The preferred solvents for tetra-substituted anthraquinones are N-methylpyrrolidinone, N,N-dimethyl propylene urea, nitrobenzene, toluene and N,N-dimethylformamide. Preferably, the dye is present in the solvent at a concentration of from 0.1% to 10%. [0017]
  • Preferably, each visible dye; i.e., a dye having an absorption maximum in the range from 500 nm to 700 nm, preferably from 550 nm to 700 nm, and most preferably from 550 nm to 680 nm; is added in an amount of at least 0.1 ppm, preferably at least 0.2 ppm, and most preferably at least 0.5 ppm. Preferably, the amount of each visible dye is no more than 10 ppm, more preferably no more than 5 ppm, more preferably no more than 3 ppm, and most preferably no more than 2 ppm. In a preferred embodiment, the visible dyes are selected from the classes of anthraquinone dyes and azo dyes. Suitable anthraquinone dyes having an absorption maximum in this region include, for example, 1,4-disubstituted anthraquinones having alkylamino, arylamino or aromatic-heterocyclic-amino substituents. Suitable azo dyes having an absorption maximum in this region include the bisazo dyes, for example, those having the structure Ar—N═N—Ar—N═N—Ar, in which Ar is an aryl group, and each Ar may be different. Specific examples of suitable commercial anthraquinone and bisazo dyes having an absorption maximum in this region are listed in the Colour Index, including C.I. Solvent Blue 98, C.I. Solvent Blue 79, C.I. Solvent Blue 99 and C.I. Solvent Blue 100. [0018]
  • Incorporation of at least one anthraquinone dye having an absorption maximum in the region from 710 nm to 850 nm allows identification of the liquid hydrocarbon by spectrophotometric means in a spectral region relatively free of interference. Low levels of these dyes are detectable in this region, allowing for a cost-effective marking process. Use of higher levels of at least one visible dye having an absorption maximum in the region from 500 nm to 700 nm facilitates quantitative spectrophotometric determination in this region. Accurate determination of the dye levels allows the amounts and ratios of the dyes to serve as parts of a code identifying the hydrocarbon. Since dyes absorbing in this region often are less costly, use of a higher level will not greatly increase the overall cost of the marking process. Thus, the combination of the two kinds of dyes increases the flexibility and minimizes the cost of the marking process. Preferably, there is no visible change in the color of the marked liquid hydrocarbon, i.e., the markers are “silent markers.”[0019]
  • EXAMPLES Example 1 Synthesis of 1,4,5,8-tetra(phenylamino)anthraquinone
  • A mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone, 50 g of aniline, 13.4 g of potassium acetate, 1.24 g of copper sulfate, and 3.41 g of benzyl alcohol was heated to 130° C. under nitrogen and maintained at this temperature for 6.5 hours, followed by another holding period at 170° C. for 6 hours. The reaction mixture was cooled to ambient temperature and the precipitate was filtered to give black solids. Recrystallization of the crude product from toluene afforded 6.0 g of a dark green crystalline material (>95% purity with the structure confirmed by proton NMR as the desired product: 1,4,5,8-tetra(phenylamino)anthraquinone. This material had a maximum absorption band (λ[0020] max) at a wavelength of 750 nm in toluene. The molar extinction coefficient (ε) was determined to be ˜30,500.
  • Example 2 Synthesis of 1,4,5,8-tetra(4-n-butylphenylamino)anthraquinone
  • A mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone and 95 g of 4-n-butylaniline was allowed to react at 190° C. for 12 hours. The reaction mixture was then cooled to 70° C. and diluted with an equal amount of ethanol. On standing and further cooling to ambient temperature, some precipitate was formed. The mixture was filtered, washed and recrystallized from xylenes/isopropanol to give 6.6 g of a dark green crystalline material (>95% purity) with the structure confirmed by proton NMR as the desired product of 1,4,5,8-tetra(4-n-butylphenylamino)anthraquinone. This material had a maximum absorption band (λ[0021] max) at a wavelength of 762 nm in toluene. The molar extinction coefficient (ε) was determined to be ˜36,900.
  • Example 3 Detection of Tetra-Substituted Anthraquinone Dyes in Petroleum Hydrocarbons
  • Solutions of 1,4,5,8-tetra(phenylamino)anthraquinone (TPAAQ) in xylenes, Texaco™ diesel fuel and Mobil™ regular gasoline at varying concentrations were prepared and analyzed with a laboratory spectrophotometer. The results are presented in the Table below, with expected and actual readings expressed as a percentage of the reading for 1 mg/mL. [0022]
    TABLE
    concentration,
    mg/mL expected reading actual reading
    TPAAQ in xylenes
    2.045 204 208
    1.063 106 105
    0.983 98 98
    0.703 70 71
    0.402 40 40
    0.073 7 8
    0.035 4 3
    TPAAQ in Texaco ™ diesel fuel
    1.35 135 135
    1.09 109 109
    0.84 84 85
    0.58 58 56
    0.33 33 33
    0.05 5 4
    TPAAQ in Mobil ™ regular gasoline
    1.335 133 134
    0.934 93 92
    0.565 56 57
    0.389 39 38
    0.059 6 5
    0.048 5 5

Claims (10)

1. A method for marking a liquid petroleum hydrocarbon; said method comprising adding to said liquid petroleum hydrocarbon: (i) at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm selected from the group consisting of 1,4,5,8-tetrasubstituted anthraquinones and anthraquinone dimers; and (ii) at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm.
2. The method of claim 1 in which the liquid petroleum hydrocarbon is selected from the group consisting of lubricating oil, hydraulic fluid, brake fluid, gasoline, diesel fuel, kerosene, jet fuel and heating oil.
3. The method of claim 2 in which said at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm has formula (I)
Figure US20040106526A1-20040603-C00006
wherein X is R4NH, NH2, OH or halo; and R1, R2, R3 and R4 independently are alkyl, aryl, aralkyl, heteroalkyl or heterocyclic.
4. The method of claim 3 in which X is R4NH, and at least three of R1, R2, R3 and R4 are aryl or aromatic heterocyclic.
5. The method of claim 2 in which said at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm has formula (II)
Figure US20040106526A1-20040603-C00007
wherein R1, R2, R3, and R4 independently are hydrogen, alkyl, heteroalkyl or alkylamino; R5 is hydrogen, alkyl, heteroalkyl, alkylamino, arylamino or aromatic-heterocyclic-amino; and R is hydrogen, alkyl, arylamino or aromatic-heterocyclic-amino; provided that at least one of R and R5 is arylamino or aromatic-heterocyclic-amino.
6. The method of claim 2 in which said at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm is selected from the group consisting of anthraquinone dyes and diazo dyes.
7. The method of claim 6 in which said at least one visible dye has an absorption maximum in the range from 550 nm to 700 nm.
8. The method of claim 1 in which said at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm, and said at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm are detected without performing any chemical manipulation of the liquid petroleum hydrocarbon.
9. The method of claim 8 in which said at least one anthraquinone dye having an absorption maximum in the range from 710 nm to 850 nm is present in an amount from 0.02 ppm to 1 ppm and said at least one visible dye having an absorption maximum in the range from 500 nm to 700 nm is present in an amount from 0.2 ppm to 2 ppm.
10. The method of claim 9 in which said at least one anthraquinone dye has an absorption maximum in the range from 720 nm to 810 nm.
US10/706,198 2002-12-03 2003-11-12 Method for marking liquid hydrocarbons Abandoned US20040106526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/706,198 US20040106526A1 (en) 2002-12-03 2003-11-12 Method for marking liquid hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43061402P 2002-12-03 2002-12-03
US10/706,198 US20040106526A1 (en) 2002-12-03 2003-11-12 Method for marking liquid hydrocarbons

Publications (1)

Publication Number Publication Date
US20040106526A1 true US20040106526A1 (en) 2004-06-03

Family

ID=32313155

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/706,198 Abandoned US20040106526A1 (en) 2002-12-03 2003-11-12 Method for marking liquid hydrocarbons

Country Status (8)

Country Link
US (1) US20040106526A1 (en)
EP (1) EP1426434A3 (en)
JP (1) JP3806114B2 (en)
KR (1) KR20040050715A (en)
CN (1) CN1258083C (en)
BR (1) BR0305751A (en)
IN (1) IN2003MU01183A (en)
TW (1) TWI247037B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040250469A1 (en) * 2003-06-13 2004-12-16 Baxter David Roderick Method for marking hydrocarbons with substituted anthraquinones
US20060128025A1 (en) * 2004-12-15 2006-06-15 Banavali Rajiv M Method for monitoring degradation of lubricating oils
US20080118982A1 (en) * 2006-11-17 2008-05-22 Authentix, Inc. Tagged Petroleum Products and Methods of Detecting Same
US9903988B2 (en) 2012-12-11 2018-02-27 3M Innovative Properties Company Stabilized infrared absorbing dispersions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971254B1 (en) * 2011-02-08 2014-05-30 Total Raffinage Marketing LIQUID COMPOSITIONS FOR MARKING LIQUID HYDROCARBON FUELS AND FUELS, FUELS AND FUELS CONTAINING THEM, AND METHOD OF DETECTING MARKERS
GB201120924D0 (en) * 2011-12-06 2012-01-18 Johnson Matthey Plc Tracers and method of marking hydrocarbon liquids
KR101418655B1 (en) * 2012-12-17 2014-07-10 경북대학교 산학협력단 Novel compound and detection method of iron ion using the same
CN112079737B (en) * 2020-09-29 2023-08-11 郑州原理生物科技有限公司 Preparation method of 1,4,5, 8-tetra (4-n-butylphenylamino) anthraquinone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051052A (en) * 1970-04-28 1977-09-27 Mita Industrial Company Ltd. Liquid developer
US5880287A (en) * 1990-05-15 1999-03-09 Hyperion, Inc. Polyoxyhydrocarbyl related products and methods for fluorescence assays

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164449A (en) * 1961-03-01 1965-01-05 Du Pont Anthraquinone dyes for gasoline
JPS62903A (en) * 1985-06-05 1987-01-06 Sumitomo Chem Co Ltd Near infrared ray absorbing filter
DE3835489A1 (en) * 1988-05-06 1990-04-19 Alfred Dr Rer Nat Flath Use of additive mixtures as a means for increasing the vaporisation rate and combustion rate and also the combustion stability of liquid propellants and fuels injected into rocket combustion chambers or high-performance combustion installations
US5525516B1 (en) * 1994-09-30 1999-11-09 Eastman Chem Co Method for tagging petroleum products
US6274381B1 (en) * 1998-11-09 2001-08-14 Rohm And Haas Company Method for invisibly tagging petroleum products using visible dyes
ATE303597T1 (en) * 2000-07-07 2005-09-15 Medmira Inc HCV MOSAIC ANTIGEN COMPOSITION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051052A (en) * 1970-04-28 1977-09-27 Mita Industrial Company Ltd. Liquid developer
US5880287A (en) * 1990-05-15 1999-03-09 Hyperion, Inc. Polyoxyhydrocarbyl related products and methods for fluorescence assays

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040250469A1 (en) * 2003-06-13 2004-12-16 Baxter David Roderick Method for marking hydrocarbons with substituted anthraquinones
US7915048B2 (en) 2003-06-13 2011-03-29 Rohm And Haas Company Method for marking hydrocarbons with substituted anthraquinones
US20060128025A1 (en) * 2004-12-15 2006-06-15 Banavali Rajiv M Method for monitoring degradation of lubricating oils
US7635596B2 (en) * 2004-12-15 2009-12-22 Rohm And Haas Company Method for monitoring degradation of lubricating oils
US20080118982A1 (en) * 2006-11-17 2008-05-22 Authentix, Inc. Tagged Petroleum Products and Methods of Detecting Same
US8129190B2 (en) 2006-11-17 2012-03-06 Applied Nanotech Holdings, Inc. Tagged petroleum products and methods of detecting same
US9903988B2 (en) 2012-12-11 2018-02-27 3M Innovative Properties Company Stabilized infrared absorbing dispersions
US10895673B2 (en) 2012-12-11 2021-01-19 3M Innovative Properties Company Stabilized infrared absorbing dispersions

Also Published As

Publication number Publication date
JP2004197085A (en) 2004-07-15
TW200422396A (en) 2004-11-01
JP3806114B2 (en) 2006-08-09
BR0305751A (en) 2004-12-21
IN2003MU01183A (en) 2006-01-06
EP1426434A3 (en) 2004-11-17
CN1258083C (en) 2006-05-31
TWI247037B (en) 2006-01-11
CN1504739A (en) 2004-06-16
EP1426434A2 (en) 2004-06-09
KR20040050715A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US6811575B2 (en) Method for marking hydrocarbons with anthraquinones
EP1479749B1 (en) Method for marking hydrocarbons with substituted anthraquinones
EP1486554B1 (en) Method for marking hydrocarbons with substituted anthraquinones
KR100992947B1 (en) Pyrazinoporphyrazines As Markers For Liquid Hydrocarbons
US20040106526A1 (en) Method for marking liquid hydrocarbons
US6977177B1 (en) Method for marking hydrocarbons with substituted anthraquinones
US20040102340A1 (en) Method for marking hydrocarbons with anthraquinone imines
US20040110997A1 (en) Method for marking liquid petroleum hydrocarbons

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION