US20040097360A1 - Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic - Google Patents

Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic Download PDF

Info

Publication number
US20040097360A1
US20040097360A1 US10/662,625 US66262503A US2004097360A1 US 20040097360 A1 US20040097360 A1 US 20040097360A1 US 66262503 A US66262503 A US 66262503A US 2004097360 A1 US2004097360 A1 US 2004097360A1
Authority
US
United States
Prior art keywords
composite ceramic
fiber
density
graphite
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/662,625
Inventor
Bodo Benitsch
Udo Gruber
Oswin Ottinger
Eugen Pfitzmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20040097360A1 publication Critical patent/US20040097360A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • F27D1/0009Comprising ceramic fibre elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to fiber-reinforced composite ceramic with a matrix containing silicon carbide (SiC) and/or silicon (Si).
  • SiC silicon carbide
  • Si silicon
  • the invention also relates to a method for fabrication of the composite ceramic.
  • the invention additionally relates to lining material, armor, reflective surfaces and components having the composite ceramic.
  • German Published, Non-Prosecuted Patent Application DE 197 10 105 A1 corresponding to U.S. Pat. No. 6,030,913, describes a composite ceramic that is reinforced with high-tenacity graphite short fibers.
  • the ceramic has a matrix substantially formed of SiC, in other words a C/SiC material.
  • the matrix of the ceramic composite material is formed substantially through the use of the liquid silication of a carbon prebody with a silicon melt.
  • the reinforcing short fibers are surrounded by at least two sheathes formed of graphited carbon, which is formed by carbonizing and graphiting impregnation agents, particularly synthetic resin or pitch. At least the outermost sheathe thereof is converted into silicon carbide by reaction with liquid silicon.
  • the fiber bundles that are utilized for reinforcement are obtained by compressing fiber prepregs at least once with a carbonizable impregnating agent, carbonizing and graphiting them, and then milling them into short-fiber bundles.
  • the milled fiber bundles are mixed with fillers and binders and pressed into green bodies, which are then carbonized and infiltrated with liquid silicon.
  • the resulting composite material exhibits a quasi-ductile fracture behavior with an elongation at break of approximately 0.25 to 0.5%.
  • the density of the composite material equals 2.27 g/cm 3 .
  • a high density (i.e. a low porosity) and high elongation at break (or tenacity behavior) of the C/SiC material are critical.
  • low porosity and high ceramic content are important when utilizing composite materials for ballistic protection, for instance as flak plates, in order to achieve a shot refracting effect.
  • a high elongation at break is desirable for the material in order to prevent brittle fractures when the projectiles hit.
  • a low porosity (high density) plays an important role in high-temperature applications, because air can reach the carbon fibers through open pores and cause oxidation damage.
  • a fiber-reinforced composite ceramic comprising a matrix containing SiC and/or Si.
  • a density of greater than 2.5 g/cm 3 and an elongation at break of greater than 0.3% are provided.
  • a method for producing fiber-reinforced composite ceramic which comprises providing a matrix containing SiC and/or Si in a step a).
  • a blend containing carbon fibers, carbonizable bonding resin, and additional carbon material having a raw density in a range of 0.7 to 1.8 g/cm 3 is produced in a step b).
  • the blend is molded or pressed into a fiber-reinforced green body in a step c).
  • the green body is carbonized to produce a C/C body in a step d).
  • the C/C body is infiltrated with a silicon melt in a step e).
  • Raw density means the geometric density derivable by measuring the mass of a precise sample volume. Density as used below refers to raw density.
  • the method for fabricating the carbon-fiber-reinforced SiC ceramic composite material with high density and a high elongation at break includes, first, according to step b), the fabricating of a pressable blend containing carbon fibers, particularly carbon fiber bundles, carbonizable bonding resin and additional carbon material.
  • the carbon fiber bundles are preferably formed by layered carbon short fibers, which are typically held together in bundles by polymer or carbon.
  • Phenol or furfuryl alcohol resins are preferably used as the carbonizable bonding resin.
  • Unprotected fiber material, graphite, carbonized bonding agents, carbonization residue, or the like, are preferably used as the additional carbon material.
  • the purpose of the additional carbon material is to convert into SiC as a “sacrificial material” at the outset of the silicon melt infiltration.
  • a high SiC yield is the object of the liquid silication process. Prior attempts to achieve high composite material densities were based on the assumption that the carbon material must include the highest possible carbon content, such as graphite, for instance, in order to be able to develop as much SiC as possible.
  • the density of the carbon material in the C/C body that is provided for silicon melt infiltration is specifically responsible for the density of the SiC matrix that is formed therefrom and the residual porosity of the ceramic composite material. It was determined that the conversion of the carbon material by the liquid silication leads to dense SiC, and the filling of the residual porosity of the C/SiC body it forms, only when the density of the carbon material is within defined limits. Additional carbon material with an average density in a range from 0.7 to 1.8 g/cm 3 , preferably from 0.7 to 1.6 g/cm 3 and particularly from 0.7 to 1.3 g/cm 3 , is added to the pressable blend, according to the invention.
  • the density of the suitable carbon material is thus appreciably below the density of natural graphite (2.25 g/cm 3 ).
  • the utilization of a carbon material with a density within the range according to the invention also guarantees that the conversion into SiC does not lead to a volume increase that would damage the composite material.
  • Expanded graphite preferably following an intermediate compressing process, has a density within the cited range. Another advantage of expanded graphite is its high reactivity in relation to the silicon melt, which leads to uniform silication and short reaction time.
  • the expanded graphite is obtained by the thermal decomposition of a graphite-intercalation product. Compounds based on graphite/sulfuric acid, graphite/nitric acid, or graphite/perchloric acid are particularly relevant in this regard.
  • Expanded graphite is also obtained in the form of a loose vermiform substance from the short-term heating of graphite salts or graphite inclusion compounds such as graphite hydrogen sulfates or graphite nitrates or graphite perchlorates, as described in European Patent Application EP 1 120 378 A2, corresponding to U.S. patent Application Publication No. U.S. 2001/0018040 A1, for example.
  • Graphite films or plates can be generated by compressing the expanded graphite. These films or plates of expanded graphite have a raw density between 0.7 and 1.8 g/cm 3 .
  • An expanded graphite powder can be produced which processes well and which can be mixed into molding materials homogenously in a dispersed fashion, by pulverizing the precompressed expanded graphite with the aid of a cutting mill, impact mill, or jet mill.
  • the raw density of the crushed powder generally only negligibly deviates from that of the graphite films.
  • the crushed powder of precompressed expanded graphite typically has a bulk density between 0.04 and 0.18 g/cm 3 .
  • uncompressed and unmilled powder of expanded graphite generally has a substantially lower bulk density of approximately 0.002 to 0.008 g/cm 3 . That low density makes processing subsequent to the cited process for fabricating composite ceramics extraordinarily difficult.
  • a platelet-shaped carbon material is used. It is preferably formed from expanded graphite. Expanded graphite that has been precompressed to a density of approximately 1 g/cm 3 is particularly preferred. The precompression can be achieved by pressing the graphite into films, for example. For their part, the graphite films can be easily crushed to a defined particle size.
  • the platelet-shaped particles having a height/diameter ratio of over 50, preferably over 80, and particularly over 120, are preferred.
  • the morphology of the preferred platelet-shaped carbon particles with a density of approximately 1 g/cm 3 is represented in FIG. 1.
  • the additional carbon material can also have a fiber-shaped configuration.
  • carbon nanotubes are fiber-shaped carbon materials with a suitable density and reactivity.
  • the suitable average particle size of the carbon material, particularly the platelet material is under 500 ⁇ m, preferably in a range between 0.1 and 300 ⁇ m, and particularly in a range between 0.1 and 100 ⁇ m. Particle size refers to the agglomeration-free primary particle.
  • the mass % of carbon material is advantageously less than 45% in the moldable blend. Mass percents in the range between 2 and 35% are particularly preferred.
  • the molding of the moldable material according to step c) usually occurs in a press, with it being possible to cure the material thermally or catalytically.
  • Other pressure molding methods can also be used, depending on the consistency of the material.
  • expanded graphite in particular, leads to a relatively good sliding and flowing capability, so that injection molding or related molding techniques can also be carried out.
  • step d the resulting green body is baked (i.e. carbonized) at temperatures between 750 and 1200° C. in the absence of air in order to produce the carbonaceous porous prebody (C/C body).
  • the bonding resin is broken down into carbon.
  • the carbonization may also be carried out at temperatures near 2400° C. At these temperatures, the graphiting of carbon that has not yet been graphited occurs.
  • the C/C body is infiltrated with a silicon melt according to the conventional technique, preferably through the use of wicks. At least part of the carbon of the C/C body is converted into SiC. A ceramic composite material with a matrix composed predominantly of SiC is thereby formed. Residual silicon and residual carbon occur in the ceramic composite material as additional matrix components. When expanded graphite is used as the preferred added carbon material, a relatively low residual silicon content can be set. The proportion of free silicon (residual silicon) in the ceramic composite material according to the invention is thus advantageously under 10% by mass. In the case of an application as an anti-ballistic material or as a component of armor plating, the mass % of Si is preferably set at less than 7%.
  • High SiC contents can be achieved in correspondence to the low residual silicon content.
  • the proportion of SiC in the ceramic composite material is advantageously more than 60% by mass.
  • a high SiC content is important particularly in anti-ballistic applications.
  • the proportion of SiC is preferably above 70% by mass.
  • the ceramic composite material that is produced with the method according to the invention has a density of over 2.5 g/cm 3 . This value refers to infiltration with pure silicon. When silicon alloys containing metals of greater or lesser density than silicon are used, these density ranges must be adapted according to the theoretical values.
  • the open porosity of the fiber-reinforced ceramic composite material is under 5% and the elongation at break is greater than 0.3%.
  • the composite material that is produced by the method according to the invention thus advantageously combines a high material density (i.e. low porosity) with a relatively high elongation at break.
  • the composite material is particularly well suited for thermally loaded components under oxidizing or corrosive conditions by virtue of the high density (low porosity).
  • the low porosity prevents air from diffusing in and causing oxidative damage to the carbon reinforcing fibers.
  • Typical fields of application are thus linings for combustion chambers or furnaces.
  • Another application of the fiber-reinforced composite ceramic according to the invention is in the field of armor materials. It is known that ceramic materials make good plating materials for armor and for protection against projectiles. More specifically, the high material density of the composite material that is produced by the method according to the invention results in a favorable refracting effect. Material densities above 2.6 g/cm 3 are preferred for anti-ballistic applications.
  • the fiber-reinforced ceramics according to the invention have a substantially higher fracture toughness as compared to monolithic ceramics.
  • a further application advantageously exploits the good polishability of the composite material surfaces that comes from the high material density. This permits the ceramic composite material to be used in the fabrication of mirrors in lightweight structures, particularly satellite mirrors. The mirror surfaces then need not be coated with high-polishing glasses or silicon in the customary manner.
  • the invention can also be applied to components for precision machines and calibration bodies.
  • the very small and uniform thermal expansion of the composite material according to the invention across a large temperature range is of critical importance. Due to its high stability, rigidity, and wear resistance, the composite material can also be used directly as a structural element of heavily loaded machine components.
  • Table 1 represents mechanical characteristics such as ultimate breaking strength, elongation at break, and density of composite ceramics (specimens PF 413, 414, 450, 460) produced according to the invention in comparison with a composite ceramic that was produced by another method (specimens PF 420, 444), as a function of the starting substances that were used in the blend and the quantities thereof.
  • Carbon-coated short-fiber bundles, bonding resin in the form of phenol resin, and expanded graphite with a density of approximately 1 g/cm 3 were utilized as the additional carbon material for producing the blend in specimens PF 413, 414, 450 and 460, respectively.
  • the specimens differ with respect to the quantity of carbon-coated short-fiber bundles, carbon fibers, expanded graphite and bonding resin.
  • the different types of short-fiber bundles (Type A and Type B) differ only in the filament number and morphology of the fiber strands that are used to make the fiber bundle.
  • the specimens PF 420 and 444 were produced with natural graphite with a density of 2.25 g/cm 3 . Like the specimens produced according to the method according to the invention, carbon-coated short-fiber bundles were utilized in these specimens as well.
  • FIG. 1 is a raster electron microscopy image of platelet-shaped carbon particles with a density of approx. 1 g/cm 3 ;
  • FIG. 2 is a micrograph of a control specimen without an addition of carbon material, representing regions of silicon carbide, silicon, carbon fibers, and pores;
  • FIG. 3 shows a specimen PF 460, which is produced with expanded graphite.
  • FIG. 2 there is seen a micrograph which shows regions of silicon carbide 1 , silicon 2 , carbon fibers 3 and pores 4 .
  • the specimen PF 460 with an addition of 15% expanded graphite shown in FIG. 3 still exhibits only very small regions with Si phases 2 . Furthermore, the number of pores 4 as well as their cross-sectional area are substantially reduced. The carbon fiber bundles are advantageously completely surrounded by a dense SiC matrix almost without exception.

Abstract

A fiber-reinforced composite ceramic has a matrix containing SiC and/or Si with a density of greater than 2.5 g/cm3 and an elongation at break of more than 0.3%. A method for fabricating the composite ceramic includes producing a blend containing carbon fibers, carbonizable bonding resin and additional carbon material which has a raw density in a range between 0.7 and 1.8 g/cm3, pressing the blend into a fiber-reinforced green body, carbonizing the green body in order to produce a C/C body, and infiltrating the C/C body with a silicon melt. The fabricated composite ceramic is used as a lining material or armor plating, or for producing reflective surfaces.

Description

    BACKGROUND OF THE INVENTION
  • Field of the Invention [0001]
  • The invention relates to fiber-reinforced composite ceramic with a matrix containing silicon carbide (SiC) and/or silicon (Si). The invention also relates to a method for fabrication of the composite ceramic. The invention additionally relates to lining material, armor, reflective surfaces and components having the composite ceramic. [0002]
  • German Published, Non-Prosecuted Patent Application DE 197 10 105 A1, corresponding to U.S. Pat. No. 6,030,913, describes a composite ceramic that is reinforced with high-tenacity graphite short fibers. The ceramic has a matrix substantially formed of SiC, in other words a C/SiC material. The matrix of the ceramic composite material is formed substantially through the use of the liquid silication of a carbon prebody with a silicon melt. The reinforcing short fibers are surrounded by at least two sheathes formed of graphited carbon, which is formed by carbonizing and graphiting impregnation agents, particularly synthetic resin or pitch. At least the outermost sheathe thereof is converted into silicon carbide by reaction with liquid silicon. The fiber bundles that are utilized for reinforcement are obtained by compressing fiber prepregs at least once with a carbonizable impregnating agent, carbonizing and graphiting them, and then milling them into short-fiber bundles. The milled fiber bundles are mixed with fillers and binders and pressed into green bodies, which are then carbonized and infiltrated with liquid silicon. The resulting composite material exhibits a quasi-ductile fracture behavior with an elongation at break of approximately 0.25 to 0.5%. The density of the composite material equals 2.27 g/cm[0003] 3.
  • When using the known method, it is impossible to increase the density significantly through the use of increased SiC formation, without substantially reducing the elongation at break. However, for a series of applications, a high density (i.e. a low porosity) and high elongation at break (or tenacity behavior) of the C/SiC material are critical. For instance, low porosity and high ceramic content are important when utilizing composite materials for ballistic protection, for instance as flak plates, in order to achieve a shot refracting effect. At the same time, a high elongation at break is desirable for the material in order to prevent brittle fractures when the projectiles hit. Besides that, a low porosity (high density) plays an important role in high-temperature applications, because air can reach the carbon fibers through open pores and cause oxidation damage. [0004]
  • SUMMARY OF THE INVENTION
  • It is accordingly an object of the invention to provide a fiber-reinforced composite ceramic, a fabrication method and a lining material, an armor, a reflective surface and a component having the composite ceramic, which overcome the hereinafore-mentioned disadvantages of the heretofore-known products and methods of this general type and in which the composite material exhibits a high tenacity in addition to its high density. [0005]
  • With the foregoing and other objects in view there is provided, in accordance with the invention, a fiber-reinforced composite ceramic, comprising a matrix containing SiC and/or Si. A density of greater than 2.5 g/cm[0006] 3 and an elongation at break of greater than 0.3% are provided.
  • With the objects of the invention in view, there is also provided a method for producing fiber-reinforced composite ceramic, which comprises providing a matrix containing SiC and/or Si in a step a). A blend containing carbon fibers, carbonizable bonding resin, and additional carbon material having a raw density in a range of 0.7 to 1.8 g/cm[0007] 3 is produced in a step b). The blend is molded or pressed into a fiber-reinforced green body in a step c). The green body is carbonized to produce a C/C body in a step d). The C/C body is infiltrated with a silicon melt in a step e).
  • Raw density means the geometric density derivable by measuring the mass of a precise sample volume. Density as used below refers to raw density. [0008]
  • The method for fabricating the carbon-fiber-reinforced SiC ceramic composite material with high density and a high elongation at break includes, first, according to step b), the fabricating of a pressable blend containing carbon fibers, particularly carbon fiber bundles, carbonizable bonding resin and additional carbon material. [0009]
  • The carbon fiber bundles are preferably formed by layered carbon short fibers, which are typically held together in bundles by polymer or carbon. [0010]
  • Phenol or furfuryl alcohol resins are preferably used as the carbonizable bonding resin. [0011]
  • Unprotected fiber material, graphite, carbonized bonding agents, carbonization residue, or the like, are preferably used as the additional carbon material. The purpose of the additional carbon material is to convert into SiC as a “sacrificial material” at the outset of the silicon melt infiltration. A high SiC yield is the object of the liquid silication process. Prior attempts to achieve high composite material densities were based on the assumption that the carbon material must include the highest possible carbon content, such as graphite, for instance, in order to be able to develop as much SiC as possible. [0012]
  • However, experiments conducted by the applicant of the instant application have shown that natural graphite cannot be added in sufficient quantities to generate a body with high density. The sharp volume increase of the reaction product relative to the starting substances Si and C that is associated with the reaction of natural graphite into SiC would lead to swelling or exploding of the composite material body given larger graphite quantities. That is because a sharp volume increase of approximately 135% occurs in the reaction between natural graphite and silicon into SiC. With higher graphite quantities, that behavior can lead to a change in geometry or even destruction of the molding body. [0013]
  • It was observed that, besides its chemical reactivity, the density of the carbon material in the C/C body that is provided for silicon melt infiltration is specifically responsible for the density of the SiC matrix that is formed therefrom and the residual porosity of the ceramic composite material. It was determined that the conversion of the carbon material by the liquid silication leads to dense SiC, and the filling of the residual porosity of the C/SiC body it forms, only when the density of the carbon material is within defined limits. Additional carbon material with an average density in a range from 0.7 to 1.8 g/cm[0014] 3, preferably from 0.7 to 1.6 g/cm3 and particularly from 0.7 to 1.3 g/cm3, is added to the pressable blend, according to the invention. The density of the suitable carbon material is thus appreciably below the density of natural graphite (2.25 g/cm3). The utilization of a carbon material with a density within the range according to the invention also guarantees that the conversion into SiC does not lead to a volume increase that would damage the composite material.
  • Expanded graphite, preferably following an intermediate compressing process, has a density within the cited range. Another advantage of expanded graphite is its high reactivity in relation to the silicon melt, which leads to uniform silication and short reaction time. The expanded graphite is obtained by the thermal decomposition of a graphite-intercalation product. Compounds based on graphite/sulfuric acid, graphite/nitric acid, or graphite/perchloric acid are particularly relevant in this regard. Expanded graphite is also obtained in the form of a loose vermiform substance from the short-term heating of graphite salts or graphite inclusion compounds such as graphite hydrogen sulfates or graphite nitrates or graphite perchlorates, as described in European [0015] Patent Application EP 1 120 378 A2, corresponding to U.S. patent Application Publication No. U.S. 2001/0018040 A1, for example. Graphite films or plates can be generated by compressing the expanded graphite. These films or plates of expanded graphite have a raw density between 0.7 and 1.8 g/cm3. An expanded graphite powder can be produced which processes well and which can be mixed into molding materials homogenously in a dispersed fashion, by pulverizing the precompressed expanded graphite with the aid of a cutting mill, impact mill, or jet mill. The raw density of the crushed powder generally only negligibly deviates from that of the graphite films.
  • The crushed powder of precompressed expanded graphite typically has a bulk density between 0.04 and 0.18 g/cm[0016] 3. A powder with a bulk density between 0.05 and 0.14, and particularly between 0.06 and 0.1 g/cm3, is preferred.
  • In contrast, uncompressed and unmilled powder of expanded graphite generally has a substantially lower bulk density of approximately 0.002 to 0.008 g/cm[0017] 3. That low density makes processing subsequent to the cited process for fabricating composite ceramics extraordinarily difficult.
  • Besides the density of the material, the particle size and morphology of the additional carbon material are also important. In particular, fiber-shaped or platelet-shaped reinforcing materials lead to high reinforcing effects in composite materials. In a preferred development of the invention, a platelet-shaped carbon material is used. It is preferably formed from expanded graphite. Expanded graphite that has been precompressed to a density of approximately 1 g/cm[0018] 3 is particularly preferred. The precompression can be achieved by pressing the graphite into films, for example. For their part, the graphite films can be easily crushed to a defined particle size. The platelet-shaped particles having a height/diameter ratio of over 50, preferably over 80, and particularly over 120, are preferred. The morphology of the preferred platelet-shaped carbon particles with a density of approximately 1 g/cm3 is represented in FIG. 1.
  • Beyond that, the additional carbon material can also have a fiber-shaped configuration. Specifically, carbon nanotubes are fiber-shaped carbon materials with a suitable density and reactivity. [0019]
  • The suitable average particle size of the carbon material, particularly the platelet material, is under 500 μm, preferably in a range between 0.1 and 300 μm, and particularly in a range between 0.1 and 100 μm. Particle size refers to the agglomeration-free primary particle. The mass % of carbon material is advantageously less than 45% in the moldable blend. Mass percents in the range between 2 and 35% are particularly preferred. [0020]
  • The molding of the moldable material according to step c) usually occurs in a press, with it being possible to cure the material thermally or catalytically. Other pressure molding methods can also be used, depending on the consistency of the material. The addition of expanded graphite, in particular, leads to a relatively good sliding and flowing capability, so that injection molding or related molding techniques can also be carried out. [0021]
  • In step d), the resulting green body is baked (i.e. carbonized) at temperatures between 750 and 1200° C. in the absence of air in order to produce the carbonaceous porous prebody (C/C body). During this process, the bonding resin is broken down into carbon. The carbonization may also be carried out at temperatures near 2400° C. At these temperatures, the graphiting of carbon that has not yet been graphited occurs. [0022]
  • In the final step e), the C/C body is infiltrated with a silicon melt according to the conventional technique, preferably through the use of wicks. At least part of the carbon of the C/C body is converted into SiC. A ceramic composite material with a matrix composed predominantly of SiC is thereby formed. Residual silicon and residual carbon occur in the ceramic composite material as additional matrix components. When expanded graphite is used as the preferred added carbon material, a relatively low residual silicon content can be set. The proportion of free silicon (residual silicon) in the ceramic composite material according to the invention is thus advantageously under 10% by mass. In the case of an application as an anti-ballistic material or as a component of armor plating, the mass % of Si is preferably set at less than 7%. High SiC contents can be achieved in correspondence to the low residual silicon content. The proportion of SiC in the ceramic composite material is advantageously more than 60% by mass. A high SiC content is important particularly in anti-ballistic applications. In this case, the proportion of SiC is preferably above 70% by mass. [0023]
  • Beyond this, other metals besides silicon can be present in the silicon melt that is provided for the infiltration, such as Fe, Cr, W or Mo, the proportion of which in the melt typically does not exceed 20%. Ti is particularly preferred as an additional carbide forming metal. Silicon is also characterized as a metal in the context of this application. The ceramic composite material that is produced with the method according to the invention has a density of over 2.5 g/cm[0024] 3. This value refers to infiltration with pure silicon. When silicon alloys containing metals of greater or lesser density than silicon are used, these density ranges must be adapted according to the theoretical values. The open porosity of the fiber-reinforced ceramic composite material is under 5% and the elongation at break is greater than 0.3%. The composite material that is produced by the method according to the invention thus advantageously combines a high material density (i.e. low porosity) with a relatively high elongation at break.
  • The composite material is particularly well suited for thermally loaded components under oxidizing or corrosive conditions by virtue of the high density (low porosity). The low porosity prevents air from diffusing in and causing oxidative damage to the carbon reinforcing fibers. Typical fields of application are thus linings for combustion chambers or furnaces. [0025]
  • Another application of the fiber-reinforced composite ceramic according to the invention is in the field of armor materials. It is known that ceramic materials make good plating materials for armor and for protection against projectiles. More specifically, the high material density of the composite material that is produced by the method according to the invention results in a favorable refracting effect. Material densities above 2.6 g/cm[0026] 3 are preferred for anti-ballistic applications. The fiber-reinforced ceramics according to the invention have a substantially higher fracture toughness as compared to monolithic ceramics.
  • A further application advantageously exploits the good polishability of the composite material surfaces that comes from the high material density. This permits the ceramic composite material to be used in the fabrication of mirrors in lightweight structures, particularly satellite mirrors. The mirror surfaces then need not be coated with high-polishing glasses or silicon in the customary manner. [0027]
  • The invention can also be applied to components for precision machines and calibration bodies. In this case, the very small and uniform thermal expansion of the composite material according to the invention across a large temperature range is of critical importance. Due to its high stability, rigidity, and wear resistance, the composite material can also be used directly as a structural element of heavily loaded machine components. [0028]
  • Other features which are considered as characteristic for the invention are set forth in the appended claims. [0029]
  • Although the invention is illustrated and described herein as embodied in a fiber-reinforced composite ceramic, a fabrication method and a lining material, an armor, a reflective surface and a component having the composite ceramic, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. [0030]
  • The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the following examples and accompanying drawings. [0031]
  • Table 1 represents mechanical characteristics such as ultimate breaking strength, elongation at break, and density of composite ceramics (specimens PF 413, 414, 450, 460) produced according to the invention in comparison with a composite ceramic that was produced by another method (specimens PF 420, 444), as a function of the starting substances that were used in the blend and the quantities thereof. [0032]
  • Carbon-coated short-fiber bundles, bonding resin in the form of phenol resin, and expanded graphite with a density of approximately 1 g/cm[0033] 3 were utilized as the additional carbon material for producing the blend in specimens PF 413, 414, 450 and 460, respectively. The specimens differ with respect to the quantity of carbon-coated short-fiber bundles, carbon fibers, expanded graphite and bonding resin. The different types of short-fiber bundles (Type A and Type B) differ only in the filament number and morphology of the fiber strands that are used to make the fiber bundle.
  • The specimens PF 420 and 444 were produced with natural graphite with a density of 2.25 g/cm[0034] 3. Like the specimens produced according to the method according to the invention, carbon-coated short-fiber bundles were utilized in these specimens as well.
  • The results show that, with the addition of expanded graphite, there is an increase in the density of the composite material from 2.26 g/cm[0035] 3 to 2.75 g/cm3 relative to the control specimen PF 420 (5% natural graphite, 47% phenol resin), without a reduction in elongation at break or ultimate breaking strength. The control specimen PF 444 shows that these results cannot be achieved with the substantially denser natural graphite (2.25 g/cm3). The specimens of the test series PF 444, which contain 10% natural graphite, were sharply swollen and in part completely destroyed by the reaction of the graphite into SiC.
    TABLE 1
    Mechanical Characteristics of Specimens in
    Dependence on Type and Amount of Starting Substance
    Proportion Density Proportion Ultimate
    Specimen of Carbon Carbon of Phenol Breaking Elongation
    No. Carbon Carbon Material Material Resin Strength at Break Density
    PF . . . Fiber Material (%) (g/cm3) (%) (MFa) (%) (g/cm3)
    413 Type A Expanded 4 1 48 44 0.25 2.56
    48% graphite
    414 Type A Expanded 10 1 40 55 0.3 2.52
    50% graphite
    450 Type B Expanded 10 1 30 2.60
    60% graphite
    460 Type B Expanded 15 1 30 2.75
    55% graphite
    444 Type A Natural 10 2.25 40 Specimen body swelled
    50% graphite and destroyed
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a raster electron microscopy image of platelet-shaped carbon particles with a density of approx. 1 g/cm[0036] 3;
  • FIG. 2 is a micrograph of a control specimen without an addition of carbon material, representing regions of silicon carbide, silicon, carbon fibers, and pores; and [0037]
  • FIG. 3 shows a specimen PF 460, which is produced with expanded graphite.[0038]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the figures of the drawings in detail and first, particularly, to FIG. 2 thereof, there is seen a micrograph which shows regions of [0039] silicon carbide 1, silicon 2, carbon fibers 3 and pores 4.
  • The influence of the expanded graphite is evident particularly from a comparison of the microstructure (represented as a micrograph) of the C/SiC ceramics with a graphite addition to those without the addition of carbon material. Besides showing phases of [0040] SiC 1 and carbon fibers or fiber bundles 3, the control specimen in FIG. 2, in which no carbon material whatsoever was added, shows relatively large regions of Si phases 2 or pores 4, both of which are undesirable with respect to the required material characteristics.
  • In contrast, the specimen PF 460 with an addition of 15% expanded graphite shown in FIG. 3 still exhibits only very small regions with Si phases [0041] 2. Furthermore, the number of pores 4 as well as their cross-sectional area are substantially reduced. The carbon fiber bundles are advantageously completely surrounded by a dense SiC matrix almost without exception.

Claims (20)

We claim:
1. A fiber-reinforced composite ceramic, comprising:
a matrix containing at least one of SiC and Si;
a density of greater than 2.5 g/cm3; and
an elongation at break of greater than 0.3%.
2. The fiber-reinforced composite ceramic according to claim 1, which further comprises carbon reinforcing fibers.
3. The fiber-reinforced composite ceramic according to claim 1, which further comprises a porosity of less than 5%.
4. The fiber-reinforced composite ceramic according to claim 1, which further comprises a SiC proportion of greater than 60%.
5. A method for producing fiber-reinforced composite ceramic, which comprises the following steps:
a) providing a matrix containing at least one of SiC and Si;
b) producing a blend containing carbon fibers, carbonizable bonding resin, and additional carbon material having a raw density in a range of 0.7 to 1.8 g/cm3;
c) molding the blend into a fiber-reinforced green body;
d) carbonizing the green body to produce a C/C body; and
e) infiltrating the C/C body with a silicon melt.
6. The method according to claim 5, which further comprises initially reacting the additional carbon material with the silicon in step e), before the carbon fibers and the carbonized bonding resin.
7. The method according to claim 5, which further comprises providing the additional carbon material in the blend in step b) in a proportion of between 2 and 35% by mass.
8. The method according to claim 5, which further comprises forming the additional carbon material by pressing expanded graphite into films and subsequently pulverizing the films.
9. The method according to claim 5, which further comprises providing the additional carbon material as platelet-shaped carbonaceous particles.
10. The method according to claim 9, which further comprises providing the platelet-shaped particles with an average size of under 500 μm.
11. The method according to claim 9, which further comprises providing the platelet-shaped particles with a height/diameter ratio of greater than 50.
12. The method according to claim 8, which further comprises forming the expanded graphite by the thermal decomposing of intercalation compounds formed of graphite and at least one acid selected from the group consisting of sulfuric acid, nitric acid and perchloric acid.
13. The method according to claim 8, which further comprises providing the expanded graphite with a raw density in a range of 0.7 to 1.3 g/cm3.
14. The method according to claim 8, which further comprises providing crushed powder of precompressed expanded graphite with a bulk density of 0.04 to 0.18 g/cm3.
15. The method according to claim 5, which further comprises post-compressing the additional carbon material up to a maximum density of 1.6 g/cm3 under pressing conditions for producing the green body.
16. The method according to claim 5, which further comprises providing bundled carbon fibers with an average length of less than 80 mm.
17. A lining material for combustion chambers or furnaces, comprising a composite ceramic according to claim 1.
18. An armor protecting against ballistic effects or projectile shots, comprising a composite ceramic according to claim 1.
19. A reflective surface, comprising a composite ceramic according to claim 1.
20. A component for precision machines or calibration elements, comprising a composite ceramic according to claim 1.
US10/662,625 2002-09-13 2003-09-15 Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic Abandoned US20040097360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10242566.3 2002-09-13
DE10242566A DE10242566A1 (en) 2002-09-13 2002-09-13 Fiber-reinforced composite ceramics and process for their production

Publications (1)

Publication Number Publication Date
US20040097360A1 true US20040097360A1 (en) 2004-05-20

Family

ID=31895952

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/662,625 Abandoned US20040097360A1 (en) 2002-09-13 2003-09-15 Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic

Country Status (5)

Country Link
US (1) US20040097360A1 (en)
EP (1) EP1400499B1 (en)
AT (1) ATE364583T1 (en)
DE (2) DE10242566A1 (en)
ES (1) ES2287393T3 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215059A1 (en) * 2003-04-25 2004-10-28 Olympus Corporation Capsule endoscope apparatus
US20050235818A1 (en) * 2001-07-25 2005-10-27 Lucuta Petru G Ceramic components, ceramic component systems, and ceramic armour systems
US20060060077A1 (en) * 2001-07-25 2006-03-23 Aceram Technologies, Inc. Ceramic components, ceramic component systems, and ceramic armour systems
US20060062985A1 (en) * 2004-04-26 2006-03-23 Karandikar Prashant G Nanotube-containing composite bodies, and methods for making same
WO2006066743A1 (en) * 2004-12-17 2006-06-29 Sgl Carbon Ag Calibration body, caliber or measuring device, preferably screw thread gauge and method for producing the same
US20070234894A1 (en) * 2004-09-30 2007-10-11 Aceram Technologies Inc. Ceramic components with diamond coating for armor applications
US20100047549A1 (en) * 2008-08-20 2010-02-25 Lockheed Martin Corporation Ballistic Material with Enhanced Polymer Matrix and Method for Production Thereof
WO2011005724A1 (en) * 2009-07-08 2011-01-13 Husky Injection Molding Systems Ltd Hot-runner system having carbon nanotubes
WO2013141756A2 (en) * 2012-03-23 2013-09-26 Bushuev Viacheslav Maksimovich Method for manufacturing articles from composite materials and device for implementing same
US20140100104A1 (en) * 2012-10-09 2014-04-10 Korea Institute Of Energy Research Carbon fiber-reinforced silicon carbide composite material and method of preparing the same
US20150158772A1 (en) * 2013-12-11 2015-06-11 Baker Hughes Incorporated Carbon composites, methods of manufacture, and uses thereof
EP3124814A1 (en) * 2015-07-31 2017-02-01 Brembo SGL Carbon Ceramic Brakes GmbH Ceramic material for brake discs
US9714709B2 (en) 2014-11-25 2017-07-25 Baker Hughes Incorporated Functionally graded articles and methods of manufacture
US9726300B2 (en) 2014-11-25 2017-08-08 Baker Hughes Incorporated Self-lubricating flexible carbon composite seal
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US9840887B2 (en) 2015-05-13 2017-12-12 Baker Hughes Incorporated Wear-resistant and self-lubricant bore receptacle packoff tool
US9962903B2 (en) 2014-11-13 2018-05-08 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US9963395B2 (en) 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites
US10125274B2 (en) 2016-05-03 2018-11-13 Baker Hughes, A Ge Company, Llc Coatings containing carbon composite fillers and methods of manufacture
US10202310B2 (en) 2014-09-17 2019-02-12 Baker Hughes, A Ge Company, Llc Carbon composites
US10300627B2 (en) 2014-11-25 2019-05-28 Baker Hughes, A Ge Company, Llc Method of forming a flexible carbon composite self-lubricating seal
US10315922B2 (en) 2014-09-29 2019-06-11 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
CN114673726A (en) * 2022-03-31 2022-06-28 西安鑫垚陶瓷复合材料有限公司 Ceramic matrix composite material fixing hinge and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005629A1 (en) * 2009-01-21 2010-07-22 Technische Universität Bergakademie Freiberg Carbon-bonded refractory form body/mass, useful for linings in metallurgical vessels, comprises mixture of oxidizing, non-oxidizing and/or carbon-containing refractory granulates, with binder based on e.g. artificial resin, and/or pitch
DE102012220454A1 (en) * 2012-11-09 2014-05-15 Sgl Carbon Se Manufacturing tool comprises mixing crushed carbon fibers with organic binder, forming shaped body, where cutting edges are defined in forming step, carbonizing shaped body, optionally graphitizing shaped body, and the siliconizing body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781993A (en) * 1986-07-16 1988-11-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber reinforced ceramic material
US6030913A (en) * 1997-03-12 2000-02-29 Sgl Technik Gmbh Silicon carbide articles reinforced with short graphite fibers
US6117534A (en) * 1994-01-20 2000-09-12 Research Institute Of Advanced Material Gas-Generator, Ltd. Reinforcement for composite material and composite material using the same
US20010019040A1 (en) * 2000-03-01 2001-09-06 Michihiko Yanagisawa Discharge tube for a local etching apparatus and a local etching apparatus using the discharge tube
US20050181193A1 (en) * 2003-12-04 2005-08-18 Ilka Lenke Porous fiber-ceramic composite

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640258B1 (en) * 1988-05-10 1991-06-07 Europ Propulsion PROCESS FOR PRODUCING COMPOSITE MATERIALS WITH REINFORCEMENT IN SILICON CARBIDE FIBERS AND WITH CERAMIC MATRIX
FR2686874B1 (en) * 1992-02-04 1994-09-23 Europ Propulsion PROCESS FOR MANUFACTURING PARTS OF COMPOSITE MATERIAL WITH CERAMIC MATRIX.
JPH08505355A (en) * 1993-01-11 1996-06-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Thermostructural composite products and methods for their manufacture
DE19730674A1 (en) * 1997-07-17 1999-01-21 Deutsch Zentr Luft & Raumfahrt Combustion chamber and method of manufacturing a combustion chamber
DE19861035C2 (en) * 1998-04-06 2000-11-30 Daimler Chrysler Ag Fiber composite material and process for its production
JP2001199767A (en) * 2000-01-12 2001-07-24 Nippon Carbon Co Ltd Method for producing silicon carbide shaped article
DE10003176C2 (en) * 2000-01-25 2001-11-22 Deutsch Zentr Luft & Raumfahrt Calibration body and use of the same
DE10003927A1 (en) * 2000-01-29 2001-08-02 Sgl Technik Gmbh Process for the preparation of expandable graphite intercalation compounds using phosphoric acids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781993A (en) * 1986-07-16 1988-11-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber reinforced ceramic material
US6117534A (en) * 1994-01-20 2000-09-12 Research Institute Of Advanced Material Gas-Generator, Ltd. Reinforcement for composite material and composite material using the same
US6030913A (en) * 1997-03-12 2000-02-29 Sgl Technik Gmbh Silicon carbide articles reinforced with short graphite fibers
US20010019040A1 (en) * 2000-03-01 2001-09-06 Michihiko Yanagisawa Discharge tube for a local etching apparatus and a local etching apparatus using the discharge tube
US20050181193A1 (en) * 2003-12-04 2005-08-18 Ilka Lenke Porous fiber-ceramic composite

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100101403A1 (en) * 2001-07-25 2010-04-29 Aceram Materials And Technologies Inc. Ceramic components, ceramic component systems, and ceramic armour systems
US20050235818A1 (en) * 2001-07-25 2005-10-27 Lucuta Petru G Ceramic components, ceramic component systems, and ceramic armour systems
US20060060077A1 (en) * 2001-07-25 2006-03-23 Aceram Technologies, Inc. Ceramic components, ceramic component systems, and ceramic armour systems
US20080264243A1 (en) * 2001-07-25 2008-10-30 Petru Grigorie Lucuta Ceramic components, ceramic component systems, and ceramic armour systems
US7562612B2 (en) 2001-07-25 2009-07-21 Aceram Materials & Technologies, Inc. Ceramic components, ceramic component systems, and ceramic armour systems
US8215223B2 (en) 2001-07-25 2012-07-10 Aceram Materials And Technologies Inc. Ceramic components, ceramic component systems, and ceramic armour systems
US20040215059A1 (en) * 2003-04-25 2004-10-28 Olympus Corporation Capsule endoscope apparatus
US20060062985A1 (en) * 2004-04-26 2006-03-23 Karandikar Prashant G Nanotube-containing composite bodies, and methods for making same
US20070234894A1 (en) * 2004-09-30 2007-10-11 Aceram Technologies Inc. Ceramic components with diamond coating for armor applications
US8113104B2 (en) 2004-09-30 2012-02-14 Aceram Materials and Technologies, Inc. Ceramic components with diamond coating for armor applications
WO2006066743A1 (en) * 2004-12-17 2006-06-29 Sgl Carbon Ag Calibration body, caliber or measuring device, preferably screw thread gauge and method for producing the same
US7627953B2 (en) 2004-12-17 2009-12-08 Sgl Carbon Ag Calibrating body, gage or measuring device, preferably screw-thread measuring device and method of production thereof
US20100047549A1 (en) * 2008-08-20 2010-02-25 Lockheed Martin Corporation Ballistic Material with Enhanced Polymer Matrix and Method for Production Thereof
WO2011005724A1 (en) * 2009-07-08 2011-01-13 Husky Injection Molding Systems Ltd Hot-runner system having carbon nanotubes
CN102470586A (en) * 2009-07-08 2012-05-23 赫斯基注塑系统有限公司 Hot-runner system having carbon nanotubes
US8459983B2 (en) 2009-07-08 2013-06-11 Husky Injection Molding Systems Ltd. Hot-runner system having carbon nanotubes
WO2013141756A2 (en) * 2012-03-23 2013-09-26 Bushuev Viacheslav Maksimovich Method for manufacturing articles from composite materials and device for implementing same
WO2013141756A3 (en) * 2012-03-23 2013-11-28 Bushuev Viacheslav Maksimovich Method for manufacturing articles from composite materials and device for implementing same
US9156741B2 (en) * 2012-10-09 2015-10-13 Korea Institute Of Energy Research Carbon fiber-reinforced silicon carbide composite material and method of preparing the same
US20140100104A1 (en) * 2012-10-09 2014-04-10 Korea Institute Of Energy Research Carbon fiber-reinforced silicon carbide composite material and method of preparing the same
US9963395B2 (en) 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites
US9284229B2 (en) * 2013-12-11 2016-03-15 Baker Hughes Incorporated Carbon composites, methods of manufacture, and uses thereof
US20150158772A1 (en) * 2013-12-11 2015-06-11 Baker Hughes Incorporated Carbon composites, methods of manufacture, and uses thereof
US10202310B2 (en) 2014-09-17 2019-02-12 Baker Hughes, A Ge Company, Llc Carbon composites
US10315922B2 (en) 2014-09-29 2019-06-11 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US10501323B2 (en) 2014-09-29 2019-12-10 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US11148950B2 (en) 2014-11-13 2021-10-19 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US9962903B2 (en) 2014-11-13 2018-05-08 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US10119011B2 (en) 2014-11-17 2018-11-06 Baker Hughes, A Ge Company, Llc Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US9726300B2 (en) 2014-11-25 2017-08-08 Baker Hughes Incorporated Self-lubricating flexible carbon composite seal
US10300627B2 (en) 2014-11-25 2019-05-28 Baker Hughes, A Ge Company, Llc Method of forming a flexible carbon composite self-lubricating seal
US9714709B2 (en) 2014-11-25 2017-07-25 Baker Hughes Incorporated Functionally graded articles and methods of manufacture
US9840887B2 (en) 2015-05-13 2017-12-12 Baker Hughes Incorporated Wear-resistant and self-lubricant bore receptacle packoff tool
EP3124814A1 (en) * 2015-07-31 2017-02-01 Brembo SGL Carbon Ceramic Brakes GmbH Ceramic material for brake discs
US10125274B2 (en) 2016-05-03 2018-11-13 Baker Hughes, A Ge Company, Llc Coatings containing carbon composite fillers and methods of manufacture
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications
CN114673726A (en) * 2022-03-31 2022-06-28 西安鑫垚陶瓷复合材料有限公司 Ceramic matrix composite material fixing hinge and preparation method thereof

Also Published As

Publication number Publication date
EP1400499A1 (en) 2004-03-24
DE50307452D1 (en) 2007-07-26
ATE364583T1 (en) 2007-07-15
EP1400499B1 (en) 2007-06-13
DE10242566A1 (en) 2004-03-25
ES2287393T3 (en) 2007-12-16

Similar Documents

Publication Publication Date Title
US20040097360A1 (en) Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
EP1008569B2 (en) Method of making a short carbon fibre-reinforced silicon carbide composite material
US6703117B2 (en) Friction body or sliding body formed from composite materials reinforced with fiber bundles and containing a ceramics matrix and process for the production of a friction or sliding body
KR20010050469A (en) Fiber-bundle-reinforced composite material having a ceramic matrix
US4722817A (en) Method for production of continuous carbon fiber reinforced SiC composite
CZ299421B6 (en) Process for manufacturing fiber-reinforced composite ceramic material and fiber-reinforced composite ceramic material per se
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
US7364794B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
DE69837677T2 (en) FIBER COMPOSITE AND METHOD OF MANUFACTURING
EP1323686B1 (en) Method of production of hollow bodies out of fibre reinforced ceramic materials
US6013371A (en) Carbon artifacts and compositions and processes for their manufacture
EP1300379B1 (en) Process of manufacturing fiber reinforced ceramic hollow bodies
EP0404571B1 (en) Sliding member
US5169718A (en) Sliding member
RU2621241C1 (en) Nanostructured composite material based on boron carbide and the method of its obtaining
US5554328A (en) Method of making heat and impact resistant composite ceramic material
Krenkel et al. Near net shape manufacture of CMC components
US10590044B1 (en) Engineered matrix self-healing composites
JPH0687657A (en) Silicon carbide based inorganic fiber reinforced ceramic composite material
Hunt Metal Matrix Composites
Mentz et al. Improving damage tolerance of C/SiC
Ghaseminejhad et al. Processing and Performance of CFCCs Using Vacuum Assisted Resin Transfer Molding and Blackglas™ Preceramic Polymer Pyrolysis
Okuda Carbon fibers and their composites

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION