US20040095162A1 - Pseudo-NMOS logic having a feedback controller - Google Patents

Pseudo-NMOS logic having a feedback controller Download PDF

Info

Publication number
US20040095162A1
US20040095162A1 US10/700,150 US70015003A US2004095162A1 US 20040095162 A1 US20040095162 A1 US 20040095162A1 US 70015003 A US70015003 A US 70015003A US 2004095162 A1 US2004095162 A1 US 2004095162A1
Authority
US
United States
Prior art keywords
pfet
circuit
output node
feedback
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/700,150
Inventor
Michael McCurdy
Edward Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/700,150 priority Critical patent/US20040095162A1/en
Publication of US20040095162A1 publication Critical patent/US20040095162A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • H03K19/01721Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits by means of a pull-up or down element

Definitions

  • the present invention generally relates to CMOS logic circuits, and more particularly to a pseudo-NMOS logic circuit with numerous inputs.
  • a pseudo-NMOS logic implemented in a CMOS circuit typically includes a load PFET (PMOS) with its gate tied to ground (GND), so that the load PFET is always ON.
  • the source and the drain of the load PFET are connected between the supply voltage (VDD) and a “pulldown” NFET tree or circuit, respectively.
  • a typical conventional pseudo-NMOS logic implemented in a CMOS circuit is shown in FIG. 3, where Z is the output node of the pseudo-NMOS logic.
  • the pulldown NFET tree implements the desired equations of the pseudo-NMOS logic.
  • a conventional pseudo-NMOS logic implementing a NOR equation, for example, is shown in FIG. 4.
  • the size (i.e., the width) of the load PFET can be increased to counter input noise and NFET leakage. In this manner the PFET becomes stronger (i.e., able to drive more current) so that there is less impact on the PFET by the leakage.
  • this approach undesirably increases the voltage output level (VOL) when the NFETs are turned ON to produce a logical LOW value at the output Z.
  • VOL voltage output level
  • the size of the NFETs can be decreased. However, this method also results in increasing VOL.
  • a pseudo-NMOS circuit includes a first PFET electrically connected between a power supply and an output node.
  • An NFET circuit is connected between the output node and ground and has a plurality of inputs.
  • a second PFET is electrically connected between the power supply and the output node, and has a gate which is controlled by a signal at the output node.
  • FIG. 1 is a circuit diagram of a pseudo-NMOS logic circuit in accordance with one embodiment of the present invention
  • FIG. 2 is the pseudo-NMOS logic circuit of FIG. 1 implementing a large high fan-in input NOR gate
  • FIG. 3 is a conventional pseudo-NMOS logic circuit; and, FIG. 4 is a conventional pseudo-NMOS logic circuit of FIG. 3 implementing a high fan-in input NOR gate.
  • a pseudo-NMOS circuit in accordance one embodiment of the present invention is indicated generally at 10 and includes a load PFET (or PMOS) 12 having a gate 14 tied to ground (GND) so that the PFET is always ON.
  • a source 16 of the load PFET 12 is connected to the supply voltage (VDD), and a drain 18 is connected to a “pulldown” NFET tree or circuit 20 at an output node Z of the pseudo-NMOS circuit 10 .
  • the NFET tree 20 is also connected to ground GND.
  • the NFET tree 20 implements the desired equation of the pseudo-NMOS logic 10 and produces the result at the output node Z.
  • a feedback PFET (or PMOS) 22 is also connected between VDD and the NFET tree 20 , parallel to the load PFET 12 .
  • a source 24 and a drain 26 of the feedback PFET 22 are connected respectively to VDD and the ouput node Z, as with the load PFET 12 .
  • a gate 28 of the feedback PFET 22 is connected to an output node FB of an inverter circuit 30 .
  • the inverter circuit 30 includes a PFET (or PMOS) 32 connected to an NFET (or NMOS) 34 , with a drain 36 of the PFET 32 connected to a drain 38 of the NFET 34 at the output node FB.
  • a source 40 of the PFET 32 is connected to VDD, and a source 42 of NFET 34 is connected to GND.
  • Gates 44 , 46 of PFET 32 and NFET 34 are both commonly connected to the output node Z.
  • the NFET tree 20 is shown implementing a NOR gate 49 , for example, having a plurality of inputs IN_ 1 to IN_N for corresponding NFETs 48 that make up the NOR gate.
  • the NFETs 48 are connected in parallel to each other with their gates 50 tied to the corresponding inputs IN_ 1 to IN_N. Drains 52 of the NFETs 48 are all connected to the output node Z, and sources 54 are connected to GND.
  • the feedback PFET 22 helps to maintain VOH (i.e., the voltage output level at the output node Z) when the NFETs 48 of the NOR gate 49 are turned OFF to produce a logical HIGH value in the presence of input noise or GND differentials on the inputs of the NOR gate NFETS.
  • VOH i.e., the voltage output level at the output node Z
  • the output node Z transitions to a LOW voltage (a logical zero).
  • the load PFET 12 continues to conduct current, since its gate 14 is tied to GND. Initially, the feedback PFET 22 will also conduct current. However, as the output node Z transitions LOW past the trip point of the feedback inverter 30 , the node FB goes HIGH. This causes the feedback PFET 22 to turn OFF.
  • the P-N ratio resulting from the sizing of the PFET 32 relative to the NFET 34 of the feedback inverter 30 determines how quickly the feedback PFET will turn OFF.
  • VOL decreases thereby improving the noise margin (i.e., the range of input voltage that is interpreted as being a logical LOW) of a circuit (not shown) that receives its input from the output node Z.
  • a second PFET is connected in parallel to the load PFET and controlled via a feedback signal from the output of the pseudo-NMOS circuit. This arrangement results in improved input/output noise margin and reduced power consumption.

Abstract

A pseudo-NMOS circuit includes a load PFET electrically connected between a power supply and an output node, and an NFET circuit having a plurality of inputs connected between the output node and ground. A feedback PFET is electrically connected between the power supply and the output node, in parallel with the load PFET, and is controlled by a signal at the output node of the pseudo-NMOS circuit.

Description

    FIELD OF INVENTION
  • The present invention generally relates to CMOS logic circuits, and more particularly to a pseudo-NMOS logic circuit with numerous inputs. [0001]
  • BACKGROUND
  • A pseudo-NMOS logic implemented in a CMOS circuit typically includes a load PFET (PMOS) with its gate tied to ground (GND), so that the load PFET is always ON. The source and the drain of the load PFET are connected between the supply voltage (VDD) and a “pulldown” NFET tree or circuit, respectively. A typical conventional pseudo-NMOS logic implemented in a CMOS circuit is shown in FIG. 3, where Z is the output node of the pseudo-NMOS logic. The pulldown NFET tree implements the desired equations of the pseudo-NMOS logic. A conventional pseudo-NMOS logic implementing a NOR equation, for example, is shown in FIG. 4. [0002]
  • In a wide “fan-in” implementation of the pseudo-NMOS logic having numerous inputs to the pulldown tree, such as the NOR circuit shown in FIG. 4, “leakage” in the NFETs of the pulldown tree becomes a problem when the output at the node Z is high. A leakage occurs when there is undesirable current flow from source to drain even when the input voltage to the NFETs is zero or near zero. In other words, the NFETs do not act as a perfect switch. Power differential or noise at the inputs to the NFETs exacerbates the leakage problem, which results in noise being transmitted to other circuits that are connected to the output node Z of the pseudo-NMOS circuit. [0003]
  • The size (i.e., the width) of the load PFET can be increased to counter input noise and NFET leakage. In this manner the PFET becomes stronger (i.e., able to drive more current) so that there is less impact on the PFET by the leakage. However, this approach undesirably increases the voltage output level (VOL) when the NFETs are turned ON to produce a logical LOW value at the output Z. Alternatively, the size of the NFETs can be decreased. However, this method also results in increasing VOL. [0004]
  • SUMMARY OF THE INVENTION
  • In accordance with one embodiment of the present invention, a pseudo-NMOS circuit includes a first PFET electrically connected between a power supply and an output node. An NFET circuit is connected between the output node and ground and has a plurality of inputs. A second PFET is electrically connected between the power supply and the output node, and has a gate which is controlled by a signal at the output node.[0005]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a circuit diagram of a pseudo-NMOS logic circuit in accordance with one embodiment of the present invention; [0006]
  • FIG. 2 is the pseudo-NMOS logic circuit of FIG. 1 implementing a large high fan-in input NOR gate; [0007]
  • FIG. 3 is a conventional pseudo-NMOS logic circuit; and, FIG. 4 is a conventional pseudo-NMOS logic circuit of FIG. 3 implementing a high fan-in input NOR gate.[0008]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Turning now to FIG. 1, a pseudo-NMOS circuit in accordance one embodiment of the present invention is indicated generally at [0009] 10 and includes a load PFET (or PMOS) 12 having a gate 14 tied to ground (GND) so that the PFET is always ON. A source 16 of the load PFET 12 is connected to the supply voltage (VDD), and a drain 18 is connected to a “pulldown” NFET tree or circuit 20 at an output node Z of the pseudo-NMOS circuit 10. The NFET tree 20 is also connected to ground GND. The NFET tree 20 implements the desired equation of the pseudo-NMOS logic 10 and produces the result at the output node Z.
  • A feedback PFET (or PMOS) [0010] 22 is also connected between VDD and the NFET tree 20, parallel to the load PFET 12. A source 24 and a drain 26 of the feedback PFET 22 are connected respectively to VDD and the ouput node Z, as with the load PFET 12. A gate 28 of the feedback PFET 22, however, is connected to an output node FB of an inverter circuit 30.
  • The [0011] inverter circuit 30 includes a PFET (or PMOS) 32 connected to an NFET (or NMOS) 34, with a drain 36 of the PFET 32 connected to a drain 38 of the NFET 34 at the output node FB. A source 40 of the PFET 32 is connected to VDD, and a source 42 of NFET 34 is connected to GND. Gates 44, 46 of PFET 32 and NFET 34, respectively, are both commonly connected to the output node Z.
  • Turning now to FIG. 2, the NFET [0012] tree 20 is shown implementing a NOR gate 49, for example, having a plurality of inputs IN_1 to IN_N for corresponding NFETs 48 that make up the NOR gate. The NFETs 48 are connected in parallel to each other with their gates 50 tied to the corresponding inputs IN_1 to IN_N. Drains 52 of the NFETs 48 are all connected to the output node Z, and sources 54 are connected to GND.
  • In operation, when all inputs IN_[0013] 1 to IN_N transition LOW, voltage at the output node Z rises due to the load PFET 12 conducting current. As the output Z goes HIGH (a logical 1), the inverter circuit 30 outputs a LOW at the node FB, since the gates 44, 46 of the PFET 32 and NFET 34 are connected to the output node Z. As a result, the feedback PFET 22 (the gate 28 of which is connected to the output node FB) turns ON, thereby aiding in the transition of the output node Z to HIGH. In this manner, the feedback PFET 22 helps to maintain VOH (i.e., the voltage output level at the output node Z) when the NFETs 48 of the NOR gate 49 are turned OFF to produce a logical HIGH value in the presence of input noise or GND differentials on the inputs of the NOR gate NFETS.
  • As one or more of the inputs IN_[0014] 1 to IN_N to the NFETs 48 transitions HIGH, the output node Z transitions to a LOW voltage (a logical zero). The load PFET 12 continues to conduct current, since its gate 14 is tied to GND. Initially, the feedback PFET 22 will also conduct current. However, as the output node Z transitions LOW past the trip point of the feedback inverter 30, the node FB goes HIGH. This causes the feedback PFET 22 to turn OFF. Those skilled in the art will recognize that the P-N ratio resulting from the sizing of the PFET 32 relative to the NFET 34 of the feedback inverter 30 determines how quickly the feedback PFET will turn OFF. Turning OFF the feedback PFET 22 allows the output node Z transition going LOW to occur faster, since the pulldown NFET tree 20 (i.e., the NOR gate 49 in the example above) does not have to “fight” with the feedback PFET 22 in an attempt to pull the output to GND. With the feedback PFET 22 turned OFF, VOL decreases thereby improving the noise margin (i.e., the range of input voltage that is interpreted as being a logical LOW) of a circuit (not shown) that receives its input from the output node Z.
  • From the foregoing description, it should be understood that an improved circuit topology of a pseudo-NMOS logic has been shown and described which has many desirable attributes and advantages. In accordance with one embodiment, a second PFET is connected in parallel to the load PFET and controlled via a feedback signal from the output of the pseudo-NMOS circuit. This arrangement results in improved input/output noise margin and reduced power consumption. [0015]
  • While various embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions and alternatives can be made without departing from the spirit and scope of the invention, which should be determined from the appended claims. [0016]
  • Various features of the invention are set forth in the appended claims. [0017]

Claims (14)

What is claimed is:
1. A pseudo-NMOS circuit comprising:
a first PFET electrically connected between a power supply and an output node;
an NFET circuit connected between said output node and ground and having a plurality of inputs; and,
a second PFET electrically connected between said power supply and said output node, said second PFET being controlled by a signal at said output node.
2. The circuit as defined in claim 1 further including a control circuit for turning said second PFET ON and OFF based on said signal at said output node.
3. The circuit as defined in claim 2 wherein said control circuit is electrically connected between said power supply and said ground, and has an input connected to said output node.
4. The circuit as defined in claim 3 wherein said control circuit is an inverter circuit including a PFET connected in series to an NFET, and wherein said PFET is electrically connected to said power supply, said NFET is connected to said ground, and gates of said PFET and NFET are connected to said output node.
5. The circuit as defined in claim 4 wherein a gate to said second PFET is connected to a feedback node connecting a drain of said PFET and a drain of said NFET of said inverter circuit.
6. The circuit as defined in claim 5 wherein a signal at said feedback node transitions LOW to turn ON said second PFET when said signal at said output node is HIGH, and said signal at said feedback node transitions HIGH to turn OFF said second PFET when said signal at said output node is LOW.
7. The circuit as defined in claim 1 wherein a gate of said first PFET is connected to said ground, and a gate of said second PFET is connected to a feedback signal from said output node.
8. The circuit as defined in claim 7 wherein said second PFET is turned ON when a signal at said output node is HIGH, and turned OFF when said signal at said output node is LOW.
9. A pseudo-NMOS circuit for reducing output noise, said circuit comprising:
a load PFET electrically connected between a power supply and an output node;
an NFET circuit having a plurality of inputs connected between said output node and ground for performing a predetermined function based on signals applied to said inputs and outputting a signal to said output node; and,
a feedback PFET electrically connected between said power supply and said output node for reducing noise at said output node based on said signal at said output node.
10. The circuit as defined in claim 9 further including a feedback circuit electrically connected to said feedback PFET, wherein said feedback circuit sets said feedback PFET to ON when said signal at said output node is HIGH, and sets said feedback PFET to OFF when said signal at said output node is LOW.
11. The circuit as defined in claim 10 wherein an output of said feedback circuit is LOW when said signal at said output node is HIGH, and said output of said feedback circuit is HIGH when said signal at said output node is LOW.
12. A method for reducing noise at an output of a pseudo-NMOS circuit having a load PFET and an NFET function circuit, said method comprising the steps of:
providing a second PFET in parallel with the load PFET between a power source and the NFET function circuit; and,
turning said second PFET ON when said output of the pseudo-NMOS circuit is HIGH, and turned OFF said second PFET when said output of the pseudo-NMOS circuit is LOW.
13. The method as defined in claim 12, wherein said second PFET is turned ON and OFF by a feedback circuit connected to an output node of the pseudo-NMOS circuit.
14. The method as defined in claim 13, wherein said feedback circuit is an inverter circuit having an input connected to said output of the pseudo-NMOS circuit and an output connected to said second PFET.
US10/700,150 2002-03-19 2003-11-03 Pseudo-NMOS logic having a feedback controller Abandoned US20040095162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/700,150 US20040095162A1 (en) 2002-03-19 2003-11-03 Pseudo-NMOS logic having a feedback controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/100,781 US6664813B2 (en) 2002-03-19 2002-03-19 Pseudo-NMOS logic having a feedback controller
US10/700,150 US20040095162A1 (en) 2002-03-19 2003-11-03 Pseudo-NMOS logic having a feedback controller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/100,781 Continuation US6664813B2 (en) 2002-03-19 2002-03-19 Pseudo-NMOS logic having a feedback controller

Publications (1)

Publication Number Publication Date
US20040095162A1 true US20040095162A1 (en) 2004-05-20

Family

ID=28039899

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/100,781 Expired - Fee Related US6664813B2 (en) 2002-03-19 2002-03-19 Pseudo-NMOS logic having a feedback controller
US10/700,150 Abandoned US20040095162A1 (en) 2002-03-19 2003-11-03 Pseudo-NMOS logic having a feedback controller

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/100,781 Expired - Fee Related US6664813B2 (en) 2002-03-19 2002-03-19 Pseudo-NMOS logic having a feedback controller

Country Status (2)

Country Link
US (2) US6664813B2 (en)
FR (1) FR2838257A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176081A1 (en) * 2005-02-04 2006-08-10 International Business Machines Corporation Fast pulse powered NOR decode apparatus for semiconductor devices
US7170320B2 (en) 2005-02-04 2007-01-30 International Business Machines Corporation Fast pulse powered NOR decode apparatus with pulse stretching and redundancy steering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972599B2 (en) 2002-08-27 2005-12-06 Micron Technology Inc. Pseudo CMOS dynamic logic with delayed clocks
JP2017063300A (en) * 2015-09-24 2017-03-30 エスアイアイ・セミコンダクタ株式会社 Input circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831452A (en) * 1997-02-20 1998-11-03 International Business Machines Corporation Leak tolerant low power dynamic circuits
US6060910A (en) * 1997-08-08 2000-05-09 Nec Corporation Dynamic logic circuit
US6130559A (en) * 1997-04-04 2000-10-10 Board Of Regents Of The University Of Texas System QMOS digital logic circuits
US6172529B1 (en) * 1998-09-28 2001-01-09 International Business Machines Corporation Compound domino logic circuit having output noise elimination
US6201415B1 (en) * 1999-08-05 2001-03-13 Intel Corporation Latched time borrowing domino circuit
US6208907B1 (en) * 1998-01-30 2001-03-27 International Business Machines Corporation Domino to static circuit technique
US6466057B1 (en) * 2000-01-21 2002-10-15 Hewlett-Packard Company Feedback-induced pseudo-NMOS static (FIPNS) logic gate and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911289A (en) * 1972-08-18 1975-10-07 Matsushita Electric Ind Co Ltd MOS type semiconductor IC device
JPS5178683A (en) * 1974-12-24 1976-07-08 Ibm Cmos toranjisutaronrikairo

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831452A (en) * 1997-02-20 1998-11-03 International Business Machines Corporation Leak tolerant low power dynamic circuits
US6130559A (en) * 1997-04-04 2000-10-10 Board Of Regents Of The University Of Texas System QMOS digital logic circuits
US6060910A (en) * 1997-08-08 2000-05-09 Nec Corporation Dynamic logic circuit
US6208907B1 (en) * 1998-01-30 2001-03-27 International Business Machines Corporation Domino to static circuit technique
US6172529B1 (en) * 1998-09-28 2001-01-09 International Business Machines Corporation Compound domino logic circuit having output noise elimination
US6201415B1 (en) * 1999-08-05 2001-03-13 Intel Corporation Latched time borrowing domino circuit
US6466057B1 (en) * 2000-01-21 2002-10-15 Hewlett-Packard Company Feedback-induced pseudo-NMOS static (FIPNS) logic gate and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176081A1 (en) * 2005-02-04 2006-08-10 International Business Machines Corporation Fast pulse powered NOR decode apparatus for semiconductor devices
US7170320B2 (en) 2005-02-04 2007-01-30 International Business Machines Corporation Fast pulse powered NOR decode apparatus with pulse stretching and redundancy steering
US7176725B2 (en) 2005-02-04 2007-02-13 International Business Machines Corporation Fast pulse powered NOR decode apparatus for semiconductor devices

Also Published As

Publication number Publication date
US20030179013A1 (en) 2003-09-25
FR2838257A1 (en) 2003-10-10
US6664813B2 (en) 2003-12-16

Similar Documents

Publication Publication Date Title
US7902871B2 (en) Level shifter and semiconductor device having off-chip driver
US20020149392A1 (en) Level adjustment circuit and data output circuit thereof
JP2973115B2 (en) Hysteresis input buffer
US6429683B1 (en) Low-power CMOS digital voltage level shifter
US7068063B2 (en) Output buffer circuit
US5498980A (en) Ternary/binary converter circuit
US6664813B2 (en) Pseudo-NMOS logic having a feedback controller
US20100164592A1 (en) Level shift circuit
US20070279091A1 (en) Digital Voltage Level Shifter
US5280204A (en) ECI compatible CMOS off-chip driver using feedback to set output levels
US5541526A (en) Sense amplifier having two intermediate voltage switching levels to increase speed
US5767696A (en) Tri-state devices having exclusive gate output control
CN111404541B (en) Low-complexity near-threshold exclusive-or unit
JP2023547186A (en) level conversion circuit
US6407590B2 (en) High frequency differential receiver
US5495182A (en) Fast-fully restoring polarity control circuit
KR100268050B1 (en) Delay cell and variable wave ring oscillation circuit utilizing thereof
US7698673B2 (en) Circuit and circuit design method
US6580290B1 (en) Open collector/drain and SSTL compliant output driver circuit and method for operating the circuit
CN116505934B (en) Forward and reverse phase input stage circuit
US6198306B1 (en) CMOS waveshaping buffer
US6329842B1 (en) Output circuit for electronic devices
US11949416B2 (en) Composite logic gate circuit
JPH07142968A (en) Semiconductor integrated circuit
KR100186346B1 (en) High-speed latch

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION