US20040090608A1 - Illumination optical apparatus and exposure apparatus - Google Patents

Illumination optical apparatus and exposure apparatus Download PDF

Info

Publication number
US20040090608A1
US20040090608A1 US10/609,557 US60955703A US2004090608A1 US 20040090608 A1 US20040090608 A1 US 20040090608A1 US 60955703 A US60955703 A US 60955703A US 2004090608 A1 US2004090608 A1 US 2004090608A1
Authority
US
United States
Prior art keywords
light beam
integrator
optical
light
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/609,557
Inventor
Osamu Tanitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to US10/609,557 priority Critical patent/US20040090608A1/en
Publication of US20040090608A1 publication Critical patent/US20040090608A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0911Anamorphotic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes

Definitions

  • the present invention relates to an illumination optical apparatus and an exposure apparatus provided with the illumination optical apparatus, and more particularly relates to illumination optical apparatus employing light pipe optical integrators.
  • Japanese Patent Application Kokai No. Hei 8-6175 discloses an illumination optical apparatus suited to exposure apparatus for manufacturing semiconductor devices.
  • This illumination optical apparatus uses an internal reflection, elongate (i.e., rod-type) optical integrator to form a plurality of light source images from a primary light beam from a light source.
  • Such integrators are referred to in the art as “light pipes” and so this term is used hereinafter.
  • the above-mentioned prior art illumination optical apparatus includes a condenser lens which condenses the primary light beam onto the incident surface of the integrator. This beam is then split by internal reflection within the light pipe into a plurality of secondary light beams. These secondary light beams proceed in predetermined angular directions based on the geometry of the integrator.
  • a plurality of light source images i.e., virtual light sources
  • the plurality of secondary light beams, each appearing to emanate from a corresponding light source image pass through a condenser lens and illuminate a surface to be irradiated, such as a mask.
  • the present invention relates to an illumination optical apparatus and an exposure apparatus provided with the illumination optical apparatus, and more particularly relates to illumination optical apparatus employing light pipe optical integrators.
  • the present invention takes the abovementioned problems into consideration, and has the goal of providing an illumination optical apparatus wherein the integrator is not prone to breaking when used with a high-output light source like an excimer laser.
  • a further goal is to provide an exposure apparatus provided with the aforesaid illumination optical apparatus.
  • a first aspect of the present invention is an illumination optical apparatus for illuminating an illumination surface.
  • the apparatus comprises, in order along an optical axis, a light source capable of providing a primary light beam having a cross-section, and a condenser optical system to condense the primary light beam so as to form a convergence point adjacent the condenser optical system.
  • Adjacent the condenser optical system is a light-pipe optical integrator having a rectangular cross-sectional shape with a first side of length dx, a second side of length dy, and a most light-source-wise incident surface axially spaced from the convergence point by a spacing L.
  • the integrator is capable of forming a plurality of secondary light sources and corresponding secondary light beams from the primary light beam. Adjacent the light pipe optical integrator is an imaging optical system to converge the primary and secondary light beams to illuminate the illumination surface. The following conditions are also preferably satisfied:
  • ⁇ x is an angle of the primary light beam incident the incident surface, as measured in a first plane that includes the optical axis
  • ⁇ y is an angle of the primary light beam incident the incident surface, as measured in a second plane orthogonal to the first plane.
  • a second aspect of the present invention is the optical apparatus as described above, further including first and second variable optical members capable of shaping the primary light beam cross-section so as to make this cross-section and the integrator cross-section have a substantially similar size and shape.
  • a third aspect of the present invention is exposure apparatus for exposing a pattern present on a mask onto a photosensitive substrate.
  • the exposure apparatus comprises, in order along an optical axis, the illumination optical system as described above, and a projection optical system arranged adjacent the illumination surface so as to project an image of the mask arranged at the illumination surface to expose the mask pattern onto the photosensitive substrate.
  • a fourth aspect of the invention is a method of uniformly illuminating a surface with an illumination optical apparatus having a light pipe optical integrator with a cross-section, an incident surface and an exit surface.
  • the method comprises the steps of first providing a primary light beam having a primary light beam cross-section, then condensing the primary light beam and forming a convergence point at a position spaced apart from the incident surface, then collecting light emanating from the convergence point at an angle ⁇ using the light pipe optical integrator, then forming a plurality of secondary light sources and associated secondary light beams by multiply internally reflecting the light within the light pipe optical integrator, and then finally converging the primary and secondary light beams emanating from the exit surface so as to uniformly illuminate the illumination surface.
  • FIG. 1A is a schematic optical diagram in the Y-Z plane of a first embodiment of the exposure apparatus of the present invention provided with a first embodiment of the illumination optical apparatus of the present invention;
  • FIG. 1B is a schematic optical diagram in the X-Z plane of the exposure apparatus of FIG. 1A;
  • FIG. 2 is a schematic optical diagram, perspective view, of the exposure apparatus of FIG. 1A;
  • FIG. 3 is a schematic optical diagram, perspective view, of a section of exposure apparatus in FIG. 1 showing only a section of the illumination optical apparatus;
  • FIG. 4A is a schematic optical diagram in the Y-Z plane of a second embodiment of the exposure apparatus of the present invention provided with a second embodiment of the illumination optical apparatus of the present invention.
  • FIG. 4B is a schematic optical diagram in the X-Z plane of the exposure apparatus of FIG. 4A.
  • the present invention relates to an illumination optical apparatus and an exposure apparatus provided with the illumination optical apparatus, and more particularly relates to illumination optical apparatus employing light pipe integrators.
  • exposure apparatus 10 comprises, in order along an optical axis A, a light source 14 capable of providing a primary light beam B having a given cross-sectional shape such as, for example, rectangular.
  • Light source 14 may be, for example, an excimer laser providing laser light having a wavelength of 248 nm or 193 nm.
  • a cylindrical expander 16 is disposed at a predetermined position to receive light beam B from the light source. Cylindrical expander 16 comprises a pair of cylindrical lenses 16 a and 16 b having negative refractive power and positive refractive power, respectively, in the X-Z plane (FIG. 1B).
  • Lenses 16 a and 16 b function as a plane parallel plate in the Y-Z plane (FIG. 1A). It is preferred that cylindrical lenses 16 a and 16 b constitute a focal zoom lens so that the rectangular ratio of the cross-section of light beam B can be properly modified.
  • a light beam shape changing system is disposed at a predetermined position to receive light beam B from cylindrical expander 16 .
  • the light beam shape changing system forms an annular light beam or a plurality light beams eccentric to optical axis A based on light beam B from the cylindrical expander 16 .
  • the light beam shape changing system comprises first variable optical member 18 comprising a pair of conical prisms 18 a and 18 b , and a second variable optical member 24 comprising a pair of pyramidal prisms 24 a and 24 b .
  • the construction of first and second variable optical members 18 and 24 are discussed in greater detail below.
  • a condenser optical system 30 is disposed at a predetermined position to receive light beam B from the light beam shape changing system ( 18 , 24 ).
  • the condenser optical system 30 has a pupil plane P 1 and a variable focal length, and a light pipe optical integrator (i.e., a rod-type integrator or a internal reflection-type glass rod) 36 disposed at a predetermined position to receive light beam B from condenser optical system 30 .
  • the light pipe optical integrator includes an incident surface 36 a , an exit surface 36 b , and an outer surface 36 S.
  • Integrator 36 has, in the first embodiment, a substantially square cross-section. Integrator 36 also preferably is made of a glass material, such as quartz glass or fluorite.
  • Adjacent integrator 36 is an imaging optical system 40 with a pupil plane P 2 and two lens elements 40 a and 40 b , a mask 48 with pattern (not shown) thereon, a projection optical system 54 and a wafer 60 serving as a photosensitive substrate.
  • integrator exit surface 36 b and mask 48 are optically conjugate
  • mask 48 and wafer 60 are optically conjugate.
  • Elements 14 - 40 of exposure apparatus 10 constitute a first embodiment of the illumination optical apparatus of the present invention.
  • Light source 14 emits light beam B having a rectangular cross-section that extends lengthwise along the Y-direction.
  • Light beam B enters cylindrical expander 16 , which expands the light beam in the X-Z plane (FIG. 1B and FIG. 2), so that the light beam has a substantially square cross-section.
  • Light beam B exits from cylindrical expander 16 , passes through conical prisms 18 a and 18 b , and pyramidal prisms 24 a and 24 b , and enters condenser optical system 30 .
  • conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b constituting first and second variable optical members 18 and 24 , respectively, is explained in greater detail below. It is assumed in the explanation below that light beam B exiting cylindrical expander 16 maintains its cross-sectional shape upon passing through conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b.
  • Light beam B passes through condenser optical system 30 and converges at a convergence point F on optical axis A, whereupon the beam then diverges from convergence point F at an angle ⁇ (measured with respect to optical axis A), and then enters integrator 36 .
  • Multiple light source images (not shown) are formed by light beam B entering integrator 36 through incident surface 36 a and multiply internally reflecting from outer surfaces 36 S of integrator 36 .
  • the number of light source images so formed corresponds to the number of internal reflections.
  • the light source images are formed along a surface 64 that passes through convergence point F and that is parallel to incident surface 36 a of integrator 36 . Accordingly, the light source images are nearly all virtual images, with only the center (i.e., convergence point F) light source image being a real image.
  • the light source images form a plurality of secondary light beams B′ which superimpose at exit surface 36 b of integrator 36 .
  • Light beams B′ then pass through imaging optical system 40 , which directs the light beams to uniformly illuminate mask 48 .
  • a substantially square illumination field (not shown) is formed on mask 48 .
  • This illumination field is similar to the cross-sectional shape of integrator 36 .
  • Light beam s B′ passing through mask 48 then pass through projection optical system 54 , which forms an image of the mask pattern on wafer 60 .
  • the pattern of mask 48 is successively exposed on each exposure region (not shown) of wafer 60 by performing exposures while driving and controlling (i.e., “stepping”) wafer 60 in the X-Y plane.
  • convergence point F is spaced apart from incident surface 36 a of integrator 36 by a distance L 1 .
  • the convergence point is formed on the incident surface of the integrator.
  • such a concentration of energy on incident surface 36 a integrator 36 is avoided.
  • solarization is satisfactorily controlled, and the formation of contaminants due to photochemical reactions is reduced. This prevents integrator 36 from being damaged or from breaking when used in conjunction with a high-output light source like an excimer laser.
  • spacing L 1 satisfy the following condition:
  • d is the length (mm) of one side of the square cross-sectional surface of integrator 36 .
  • spacing L 1 falls below the lower limit in condition (1), the spacing narrows excessively, increasing the concentration of energy on incident surface 36 a . This, in turn, greatly increases the likelihood of integrator 36 being damaged or breaking.
  • spacing L 1 exceeds the upper limit in condition (1), the spacing widens excessively. In this case, incident light beam B no longer entirely passes through incident surface 36 a , resulting in a loss of light (and thus exposure, energy).
  • the optimal spacing L 1 is specified within the range of condition (1) in accordance with the magnitude of the output energy of the light source used and the cross-sectional shape of light beam B.
  • spacing L 1 should be set within the range of 0.1 mm to 31.25 mm. To maintain a predetermined optical performance and to make exposure apparatus 10 compact, it is preferable to set length L IN ⁇ 1500 mm.
  • Conical prism 18 includes a most light-source-wise incident surface 18 ai , which is planar and perpendicular to optical axis A.
  • Conical prism 18 a further includes an exit surface 18 ae on the mask side (i.e., opposite incident surface 18 i ) which is formed in the shape of a conical concave surface (i.e., a frustrum) symmetric about optical axis A and whose concavity faces mask 48 .
  • Conical prism 18 b includes a most light-source-wise incident surface 18 bi , which is formed in the shape of a conical convex surface symmetric about optical axis A and whose convexity faces light source 14 .
  • Conical prism 18 b further includes an exit surface 18 be , opposite incident surface 18 bi , which is planar and perpendicular to optical axis A.
  • first conical prism 18 a and surface 18 be of second conical prism 18 b are parallel to one another. Further, at least one of first conical prism 18 a and second conical prism 18 b is constructed so as to be moveable along optical axis A (i.e, axially moveable). Accordingly, there is a first state wherein surface 18 ae conformably contacts surface 18 bi . In this first state, conical prisms 18 a and 18 b function as a plane parallel plate, and the cross-sectional shape of light beam B is maintained upon passing through conical prisms 18 a and 18 b.
  • pyramidal prism 24 a includes a most light-source-wise incident surface 24 ai , which is planar and perpendicular to optical axis A.
  • Pyramidal prism 24 a further includes an exit surface 24 ae opposite surface 24 ai , which is formed in the shape of a regular square pyramidal surface (i.e., the side face of a regular square pyramid) symmetric about optical axis A and whose concavity faces mask 48 .
  • Pyramidal prism 24 b includes a most light-source-wise incident surface 24 bi , which is formed in the shape of a regular square pyramidal convex surface symmetric about optical axis A and whose convexity faces light source 14 .
  • Pyramidal prism 24 b further includes an exit surface 24 be , opposite surface 24 bi , which is planar and perpendicular to:optical axis A.
  • Surface 24 ae includes four facets 84 and surface 24 bi includes four facets 90 . Facets 84 and 90 are parallel to one another. Further, at least one of first pyramidal prism 24 a and second pyramidal prism 24 b is constructed so as to be moveable along optical axis A. Accordingly, in a first state, pyramidal prisms 24 a and 24 b conformably contact one another with contacting facets 84 and 90 . In this first state, pyramidal prisms 24 a and 24 b function as a plane parallel plate, and the cross-sectional shape of light beam B is maintained upon passing through pyramidal prisms 24 a and 24 b.
  • Pyramidal prism 24 a is spaced apart from pyramidal prism 24 b .
  • light beam B enters pyramidal prisms 24 a and 24 b and moves parallel from optical axis A toward the four corners along four radial axes (not shown) each inclined at 45 degrees with respect to the X-axis and Y-axis.
  • incident light beam B having a square cross-section, passes through spaced apart pyramidal prisms 24 a and 24 b and is shaped into a light beam group comprising four light beams (not shown) each having a substantially square cross-section 92 (FIG. 3), with the center of each light beam substantially coincident with the four corners of a square about optical axis A.
  • conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b By setting conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b to their respective first states, a square light source is formed in the pupil plane P 1 of condenser optical system 30 , and so-called normal illumination can be obtained.
  • a quadrupole light source i.e., a light source comprising four light beams having a square cross-section or hollow square cross-section
  • quadrupole modified illumination can be obtained.
  • annular modified illumination can be obtained.
  • conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b constitute a light beam shaping apparatus for forming an annular light source in pupil plane P 1 of condenser optical system 30 , or a plurality of light sources (four, in this case) eccentric with respect to optical axis A.
  • conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b in exposure apparatus 10 of FIG. 1 in the optical path between cylindrical expander 16 and plane P 1 of condenser optical system 30 , a modified light source is capable of being formed in pupil plane P 1 .
  • a modified light source is capable of being formed in pupil plane P 2 .
  • the number of light source images formed in surface 64 depends upon the number of internal reflections in integrator 36 . Furthermore, the number of internal reflections depends upon the axial length of integrator 36 and the numerical aperture (NA) of incident light beam B.
  • the NA of incident light beam B changes depending on the focal length of condenser optical system 30 .
  • angle ⁇ i.e., the NA
  • the number of light source images formed can be adjusted while reliably avoiding concentrating too much light onto surface 36 a , and thereby avoiding the risk of breaking integrator 36 .
  • exposure apparatus 100 represents a second embodiment of the present invention and has a construction similar to that of exposure apparatus 10 of FIGS. 1A and 1B. However, whereas integrator 36 in exposure apparatus 10 has a substantially square cross-section, integrator 160 of exposure apparatus 100 has a substantially rectangular cross-section extending lengthwise along the Y-direction. In the description below, elements in exposure apparatus 100 having the same function as those in exposure apparatus 10 are assigned the same reference symbols. Exposure apparatus 100 is now explained below, with attention to the differences between exposure apparatus 10 .
  • light source 14 emits a substantially parallel light beam B having a rectangular cross-section extending lengthwise along the Y-direction.
  • Rectangular light beam B enters a cylindrical expander 120 comprising, for example, a pair of cylindrical lenses 16 a and 16 b (not shown in FIGS. 4A and 4B), such as those in exposure apparatus 10 (FIGS. 1A and 1B).
  • each cylindrical lens cylindrical expander 120 respectively has negative refractive power and positive refractive power in the Y-Z plane (FIG. 4A), and functions as a plane parallel plate in the X-Z plane (FIG. 4B). Accordingly, light beam B entering cylindrical expander 120 is expanded in the Y-direction, and is shaped to have a rectangular cross-section extending lengthwise along the Y-direction.
  • Light beam B passing through cylindrical expander 120 then passes through conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b , and enters condenser optical system 30 .
  • Light beam B converges at convergence point F on optical axis A, and subsequently diverges at angle ⁇ and enters integrator 160 .
  • the latter includes an incident surface 160 a , an exit surface 160 b , outer surfaces 160 S, and has a rectangular cross-section extending lengthwise along the Y-direction.
  • light beam B enters integrator 160 and, through multiple internal reflections, forms a plurality of light beams B′ .
  • a plurality of light source images are formed in surface 64 passing through convergence point F and parallel to incident surface 160 a .
  • Light beams B′ which appear to emanate from the plurality of light source images pass through imaging optical system 40 and uniformly illuminate mask 48 .
  • a rectangular illumination field (not shown) similar to the cross-sectional shape of integrator 160 is formed on mask 48 .
  • elements 14 - 40 and 120 and 160 constitute a second embodiment of the illumination optical apparatus of the present invention.
  • convergence point F and incident surface 160 a of integrator 160 are spaced apart by a distance L 2 , similar to spacing L 1 of exposure apparatus 10 (FIGS. 1A and 1B). Accordingly, unlike the prior art, a concentration of energy on incident surface 160 a is avoided. As a result, solarization is satisfactorily controlled, and the formation of contaminants due to photochemical reactions is also reduced. This prevents integrator 160 from being damaged or breaking when used in conjunction with a high-output light source like an excimer laser.
  • dx is the length (mm) of one side of integrator 160 along the X-direction
  • dy is the length (mm) of the other side of integrator 160 along the Y-direction
  • ⁇ x is the divergence angle of light beam B as measured in the X-Z plane
  • ⁇ y is the divergence incident angle in light beam B as measured in the Y-Z plane.
  • a modified light source can also be formed in pupil plane P 2 of imaging optical system 40 by arranging conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b in the optical path between integrator 160 and pupil plane P 2 .
  • the number of light source images formed in surface 64 depends upon the number of internal reflections in integrator 36 or 160 . Furthermore, the number of internal reflections depends upon the length of the integrator and the NA (i.e., angle ⁇ ) of the incident light beam, which can be changed by varying the focal length of condenser optical system 30 . Accordingly, if the cross-section of the integrator (namely, the shape of incident surface) is not similar to the cross-section of light beam B incident integrator 36 of exposure apparatus 10 or integrater 160 of exposure apparatus 100 , then the number of light source images formed along the X-direction of surface 64 will differ from the number of light source images formed along the Y-direction.
  • a cylindrical expander 16 which allows for the cross-section of integrator 160 and the cross-section of incident beam B incident surface 160 a to be substantially similar in shape and size.
  • a wafer e.g., wafer 60 that has undergone the exposure process (photolithography process) by exposure apparatus 10 (FIGS. 1A and 1B) or 100 (FIGS. 4A and 4B) afterward undergoes a photoresist development process, and then an etching process that removes undeveloped resist and etches the wafer so as to pattern the wafer, and then a resist removal process that removes the unneeded resist after the etching process.
  • further processes are performed in the actual assembly of the semiconductor device, such as dicing the wafer into its constituent printed circuits to create chips, bonding that assigns wiring and the like to each chip, and packaging that packages each chip.
  • Each exposure apparatus of the present invention may include an illumination optical apparatus provided with a high-output light source other than an excimer laser light source.
  • a high-output light source other than an excimer laser light source.
  • a light source unit comprising a laser light source like an F 2 laser that supplies light having a wavelength of 157 nm.
  • a combination of a laser light source that provides light of a predetermined wavelength and a nonlinear optical element that converts the light from that laser light source to light of a short wavelength of ⁇ 200 nm may also be used.
  • each exposure apparatus of the present invention is provided with an illumination optical apparatus of the present invention.
  • the illumination optical apparatus can also be applied to a general illumination optical apparatus for uniformly illuminating a surface to be irradiated other than a mask.
  • the energy acting upon the incident surface of the integrator is significantly reduced compared with the prior art.
  • the illumination optical apparatus of the present invention provides light to the integrator while avoiding an energy concentration occurring on the incident surface of the integrator sufficient to damage or break the integrator. Accordingly, solarization is satisfactorily controlled and the formation of contaminants due to photochemical reactions is also reduced, without the risk of the integrator breaking due to the use of a high-output light source. This differs significantly from the prior art, wherein the convergence point is formed on the incident surface of the integrator, creating an energy concentration sufficient to damage or break the integrator.
  • the semiconductor device manufacturing method of the present invention includes a process that uses the illumination optical apparatus and exposure apparatus according to the present invention to pattern a photosensitive substrate. In this manner, satisfactory semiconductor devices and the like can be manufactured, since projection and exposure can be performed under stable and satisfactory exposure conditions.

Abstract

An illumination optical apparatus (14-40) and exposure apparatus (10) provided with the illumination apparatus, capable of employing a high-output light source. The illumination apparatus comprises, in order along an optical axis, a light source (14) capable of providing a primary light beam (B) having a cross-section, a condenser optical system (30) to condense the primary light beam so as to form a convergence point (F) adjacent the condenser optical system, a light-pipe optical integrator (160) having a rectangular cross-sectional shape with a first side of length dx, a second side of length dy, and a most light-source-wise incident surface (160 a) axially spaced from the convergence point by a spacing (L2). The integrator is capable of forming a plurality of secondary light sources and corresponding secondary light beams (B′) from the primary light beam. Adjacent the integrator is an imaging optical system (40) to converge the primary and secondary light beams to illuminate the illumination surface. The apparatus preferably satisfies the following conditions:
0.1 ≦L 2 ≦dx/(2×tan αx)
0.1 ≦L 2 ≦dy/(2×tan αy),
wherein αx is the divergence angle of the primary light beam when incident the integrator incident surface, as measured in a first plane that includes the optical axis. Likewise, αy is the corresponding angle as measured in a second plane orthogonal to the first plane. These conditions ensure that the integrator will not be damaged or otherwise broken by high concentrations of light on the integrator incident surface.
The exposure apparatus comprises the above-described illumination optical system and further includes a projection optical system (54) arranged adjacent the illumination surface so as to project an image of a pattern on a mask (48) onto a photosensitive substrate (60), thereby patterning the substrate.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an illumination optical apparatus and an exposure apparatus provided with the illumination optical apparatus, and more particularly relates to illumination optical apparatus employing light pipe optical integrators. [0001]
  • BACKGROUND OF THE INVENTION
  • Japanese Patent Application Kokai No. Hei 8-6175 discloses an illumination optical apparatus suited to exposure apparatus for manufacturing semiconductor devices. This illumination optical apparatus uses an internal reflection, elongate (i.e., rod-type) optical integrator to form a plurality of light source images from a primary light beam from a light source. Such integrators are referred to in the art as “light pipes” and so this term is used hereinafter. [0002]
  • The above-mentioned prior art illumination optical apparatus includes a condenser lens which condenses the primary light beam onto the incident surface of the integrator. This beam is then split by internal reflection within the light pipe into a plurality of secondary light beams. These secondary light beams proceed in predetermined angular directions based on the geometry of the integrator. A plurality of light source images (i.e., virtual light sources) associated with the plurality of secondary light beams are formed along the plane of the incident surface of the integrator. The plurality of secondary light beams, each appearing to emanate from a corresponding light source image, pass through a condenser lens and illuminate a surface to be irradiated, such as a mask. [0003]
  • The increasing degree of integration of semiconductor devices has lead to the commercialization and development of excimer lasers and other intense light sources for use in exposure apparatus for manufacturing semiconductor devices. Excimer lasers, for example, operate at an oscillation wavelength of 248 nm or 193 nm and have a high power output. Accordingly, conventional illumination optical apparatus, such as discussed immediately above, are not generally amenable for use in an exposure apparatus employing such a high-output light source. This is because a light pipe formed of glass material is prone to breaking due to the concentration of light energy at a convergence point formed on the incident surface of the integrator. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention relates to an illumination optical apparatus and an exposure apparatus provided with the illumination optical apparatus, and more particularly relates to illumination optical apparatus employing light pipe optical integrators. [0005]
  • The present invention takes the abovementioned problems into consideration, and has the goal of providing an illumination optical apparatus wherein the integrator is not prone to breaking when used with a high-output light source like an excimer laser. A further goal is to provide an exposure apparatus provided with the aforesaid illumination optical apparatus. [0006]
  • Accordingly, a first aspect of the present invention is an illumination optical apparatus for illuminating an illumination surface. The apparatus comprises, in order along an optical axis, a light source capable of providing a primary light beam having a cross-section, and a condenser optical system to condense the primary light beam so as to form a convergence point adjacent the condenser optical system. Adjacent the condenser optical system is a light-pipe optical integrator having a rectangular cross-sectional shape with a first side of length dx, a second side of length dy, and a most light-source-wise incident surface axially spaced from the convergence point by a spacing L. The integrator is capable of forming a plurality of secondary light sources and corresponding secondary light beams from the primary light beam. Adjacent the light pipe optical integrator is an imaging optical system to converge the primary and secondary light beams to illuminate the illumination surface. The following conditions are also preferably satisfied:[0007]
  • 0.1≦L≦dx/(2×tan αx)
  • 0.1≦L≦dy/(2×tan αy),
  • wherein αx is an angle of the primary light beam incident the incident surface, as measured in a first plane that includes the optical axis, and αy is an angle of the primary light beam incident the incident surface, as measured in a second plane orthogonal to the first plane. [0008]
  • A second aspect of the present invention is the optical apparatus as described above, further including first and second variable optical members capable of shaping the primary light beam cross-section so as to make this cross-section and the integrator cross-section have a substantially similar size and shape. [0009]
  • A third aspect of the present invention is exposure apparatus for exposing a pattern present on a mask onto a photosensitive substrate. The exposure apparatus comprises, in order along an optical axis, the illumination optical system as described above, and a projection optical system arranged adjacent the illumination surface so as to project an image of the mask arranged at the illumination surface to expose the mask pattern onto the photosensitive substrate. [0010]
  • A fourth aspect of the invention is a method of uniformly illuminating a surface with an illumination optical apparatus having a light pipe optical integrator with a cross-section, an incident surface and an exit surface. The method comprises the steps of first providing a primary light beam having a primary light beam cross-section, then condensing the primary light beam and forming a convergence point at a position spaced apart from the incident surface, then collecting light emanating from the convergence point at an angle α using the light pipe optical integrator, then forming a plurality of secondary light sources and associated secondary light beams by multiply internally reflecting the light within the light pipe optical integrator, and then finally converging the primary and secondary light beams emanating from the exit surface so as to uniformly illuminate the illumination surface.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic optical diagram in the Y-Z plane of a first embodiment of the exposure apparatus of the present invention provided with a first embodiment of the illumination optical apparatus of the present invention; [0012]
  • FIG. 1B is a schematic optical diagram in the X-Z plane of the exposure apparatus of FIG. 1A; [0013]
  • FIG. 2 is a schematic optical diagram, perspective view, of the exposure apparatus of FIG. 1A; [0014]
  • FIG. 3 is a schematic optical diagram, perspective view, of a section of exposure apparatus in FIG. 1 showing only a section of the illumination optical apparatus; [0015]
  • FIG. 4A is a schematic optical diagram in the Y-Z plane of a second embodiment of the exposure apparatus of the present invention provided with a second embodiment of the illumination optical apparatus of the present invention; and [0016]
  • FIG. 4B is a schematic optical diagram in the X-Z plane of the exposure apparatus of FIG. 4A.[0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to an illumination optical apparatus and an exposure apparatus provided with the illumination optical apparatus, and more particularly relates to illumination optical apparatus employing light pipe integrators. [0018]
  • With reference now to FIGS. 1A, 1B and FIG. 2, [0019] exposure apparatus 10 comprises, in order along an optical axis A, a light source 14 capable of providing a primary light beam B having a given cross-sectional shape such as, for example, rectangular. Light source 14 may be, for example, an excimer laser providing laser light having a wavelength of 248 nm or 193 nm. A cylindrical expander 16 is disposed at a predetermined position to receive light beam B from the light source. Cylindrical expander 16 comprises a pair of cylindrical lenses 16 a and 16 b having negative refractive power and positive refractive power, respectively, in the X-Z plane (FIG. 1B). Lenses 16 a and 16 b function as a plane parallel plate in the Y-Z plane (FIG. 1A). It is preferred that cylindrical lenses 16 a and 16 b constitute a focal zoom lens so that the rectangular ratio of the cross-section of light beam B can be properly modified.
  • A light beam shape changing system is disposed at a predetermined position to receive light beam B from [0020] cylindrical expander 16. The light beam shape changing system forms an annular light beam or a plurality light beams eccentric to optical axis A based on light beam B from the cylindrical expander 16. The light beam shape changing system comprises first variable optical member 18 comprising a pair of conical prisms 18 a and 18 b, and a second variable optical member 24 comprising a pair of pyramidal prisms 24 a and 24 b. The construction of first and second variable optical members 18 and 24 are discussed in greater detail below. A condenser optical system 30 is disposed at a predetermined position to receive light beam B from the light beam shape changing system (18, 24). The condenser optical system 30 has a pupil plane P1 and a variable focal length, and a light pipe optical integrator (i.e., a rod-type integrator or a internal reflection-type glass rod) 36 disposed at a predetermined position to receive light beam B from condenser optical system 30. The light pipe optical integrator includes an incident surface 36 a, an exit surface 36 b, and an outer surface 36S. Integrator 36 has, in the first embodiment, a substantially square cross-section. Integrator 36 also preferably is made of a glass material, such as quartz glass or fluorite.
  • [0021] Adjacent integrator 36 is an imaging optical system 40 with a pupil plane P2 and two lens elements 40 a and 40 b, a mask 48 with pattern (not shown) thereon, a projection optical system 54 and a wafer 60 serving as a photosensitive substrate. In exposure apparatus 10, integrator exit surface 36 b and mask 48 are optically conjugate, and mask 48 and wafer 60 are optically conjugate. Elements 14-40 of exposure apparatus 10 constitute a first embodiment of the illumination optical apparatus of the present invention.
  • With continuing reference to FIGS. 1A and 1B, the operation of [0022] exposure apparatus 10 is now described. Light source 14 emits light beam B having a rectangular cross-section that extends lengthwise along the Y-direction. Light beam B enters cylindrical expander 16, which expands the light beam in the X-Z plane (FIG. 1B and FIG. 2), so that the light beam has a substantially square cross-section. Light beam B exits from cylindrical expander 16, passes through conical prisms 18 a and 18 b, and pyramidal prisms 24 a and 24 b, and enters condenser optical system 30. The action of conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b constituting first and second variable optical members 18 and 24, respectively, is explained in greater detail below. It is assumed in the explanation below that light beam B exiting cylindrical expander 16 maintains its cross-sectional shape upon passing through conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b.
  • Light beam B passes through condenser [0023] optical system 30 and converges at a convergence point F on optical axis A, whereupon the beam then diverges from convergence point F at an angle α (measured with respect to optical axis A), and then enters integrator 36. Multiple light source images (not shown) are formed by light beam B entering integrator 36 through incident surface 36 a and multiply internally reflecting from outer surfaces 36S of integrator 36. The number of light source images so formed corresponds to the number of internal reflections. The light source images are formed along a surface 64 that passes through convergence point F and that is parallel to incident surface 36 a of integrator 36. Accordingly, the light source images are nearly all virtual images, with only the center (i.e., convergence point F) light source image being a real image.
  • Thus, the light source images (or, the multiple reflections) form a plurality of secondary light beams B′ which superimpose at [0024] exit surface 36 b of integrator 36. Light beams B′ then pass through imaging optical system 40, which directs the light beams to uniformly illuminate mask 48. Accordingly, a substantially square illumination field (not shown) is formed on mask 48. This illumination field is similar to the cross-sectional shape of integrator 36. Light beam s B′ passing through mask 48 then pass through projection optical system 54, which forms an image of the mask pattern on wafer 60. In this manner, the pattern of mask 48 is successively exposed on each exposure region (not shown) of wafer 60 by performing exposures while driving and controlling (i.e., “stepping”) wafer 60 in the X-Y plane.
  • With continuing reference to FIGS. 1A and 1B, convergence point F is spaced apart from incident surface [0025] 36 a of integrator 36 by a distance L1. In prior art apparatus, the convergence point is formed on the incident surface of the integrator. However, in the present invention, such a concentration of energy on incident surface 36 a integrator 36 is avoided. As a result, solarization is satisfactorily controlled, and the formation of contaminants due to photochemical reactions is reduced. This prevents integrator 36 from being damaged or from breaking when used in conjunction with a high-output light source like an excimer laser.
  • To ensure the risk of damaging or breaking [0026] integrator 36 is minimized, and to avoid optical losses at incident surface 36 a, it is preferred that spacing L1 satisfy the following condition:
  • 0.1 mm≦L1≦d/(2×tan α)  (1)
  • wherein d is the length (mm) of one side of the square cross-sectional surface of [0027] integrator 36.
  • If spacing L[0028] 1 falls below the lower limit in condition (1), the spacing narrows excessively, increasing the concentration of energy on incident surface 36 a. This, in turn, greatly increases the likelihood of integrator 36 being damaged or breaking. On the other hand, if spacing L1 exceeds the upper limit in condition (1), the spacing widens excessively. In this case, incident light beam B no longer entirely passes through incident surface 36 a, resulting in a loss of light (and thus exposure, energy). The optimal spacing L1 is specified within the range of condition (1) in accordance with the magnitude of the output energy of the light source used and the cross-sectional shape of light beam B.
  • The following is a numerical example associated with a [0029] exposure apparatus 10, representing a Working Example of the first embodiment of the present invention. Let LIN be the axial length of integrator 36. If LIN=1000 mm, the number of light source images formed (i.e., the number of light beams B′ into which light beam B is split due internal reflections in integrator 36) is 1024 (i.e., 32×32). If length d of one side of the cross-section of integrator 36 is 10 mm, then α=tan−1 [32×(d/2)/LIN]=9.1°.
  • In this case, in view of condition (1), spacing L[0030] 1 should be set within the range of 0.1 mm to 31.25 mm. To maintain a predetermined optical performance and to make exposure apparatus 10 compact, it is preferable to set length LIN≦1500 mm.
  • With reference now to FIGS. 1A, 1B and [0031] 3, the construction and action of conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b constituting variable optical members 18 and 24, respectively, is explained. Conical prism 18 includes a most light-source-wise incident surface 18 ai, which is planar and perpendicular to optical axis A. Conical prism 18 a further includes an exit surface 18 ae on the mask side (i.e., opposite incident surface 18 i) which is formed in the shape of a conical concave surface (i.e., a frustrum) symmetric about optical axis A and whose concavity faces mask 48.
  • [0032] Conical prism 18 b includes a most light-source-wise incident surface 18 bi, which is formed in the shape of a conical convex surface symmetric about optical axis A and whose convexity faces light source 14. Conical prism 18 b further includes an exit surface 18 be, opposite incident surface 18 bi, which is planar and perpendicular to optical axis A.
  • [0033] Surface 18 ai of first conical prism 18 a and surface 18 beof second conical prism 18 b are parallel to one another. Further, at least one of first conical prism 18 a and second conical prism 18 b is constructed so as to be moveable along optical axis A (i.e, axially moveable). Accordingly, there is a first state wherein surface 18 ae conformably contacts surface 18 bi. In this first state, conical prisms 18 a and 18 b function as a plane parallel plate, and the cross-sectional shape of light beam B is maintained upon passing through conical prisms 18 a and 18 b.
  • In contrast, in a second state, [0034] surface 18 ae is spaced apart from surface 18 bi. In this second state, light beam B entering conical prisms 18 a and 18 b is shifted equidistantly outwardly along the radial direction about optical axis A. As a result, the cross-section of incident light beam B, which is initially square, is shaped into a hollow square cross-section 70 upon passing through spaced apart conical prisms 18 a and 18 b (FIG. 3). Hollow square cross-section 70 includes an outer square 70 o, an inner square 70 i, and a common center C through which optical axis A passes.
  • With continuing reference to FIGS. 1A, 1B and [0035] 3, pyramidal prism 24 a includes a most light-source-wise incident surface 24 ai, which is planar and perpendicular to optical axis A.
  • [0036] Pyramidal prism 24 a further includes an exit surface 24 ae opposite surface 24 ai, which is formed in the shape of a regular square pyramidal surface (i.e., the side face of a regular square pyramid) symmetric about optical axis A and whose concavity faces mask 48.
  • [0037] Pyramidal prism 24 b includes a most light-source-wise incident surface 24 bi, which is formed in the shape of a regular square pyramidal convex surface symmetric about optical axis A and whose convexity faces light source 14. Pyramidal prism 24 b further includes an exit surface 24 be, opposite surface 24 bi, which is planar and perpendicular to:optical axis A.
  • [0038] Surface 24 ae includes four facets 84 and surface 24 bi includes four facets 90. Facets 84 and 90 are parallel to one another. Further, at least one of first pyramidal prism 24 a and second pyramidal prism 24 b is constructed so as to be moveable along optical axis A. Accordingly, in a first state, pyramidal prisms 24 a and 24 b conformably contact one another with contacting facets 84 and 90. In this first state, pyramidal prisms 24 a and 24 b function as a plane parallel plate, and the cross-sectional shape of light beam B is maintained upon passing through pyramidal prisms 24 a and 24 b.
  • On the other hand, in a second state, [0039] Pyramidal prism 24 a is spaced apart from pyramidal prism 24 b. In this second state, light beam B enters pyramidal prisms 24 a and 24 b and moves parallel from optical axis A toward the four corners along four radial axes (not shown) each inclined at 45 degrees with respect to the X-axis and Y-axis. As a result, in the second state, incident light beam B, having a square cross-section, passes through spaced apart pyramidal prisms 24 a and 24 b and is shaped into a light beam group comprising four light beams (not shown) each having a substantially square cross-section 92 (FIG. 3), with the center of each light beam substantially coincident with the four corners of a square about optical axis A.
  • By setting [0040] conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b to their respective first states, a square light source is formed in the pupil plane P1 of condenser optical system 30, and so-called normal illumination can be obtained. In addition, by setting conical prisms 18 a and 18 b to the first state or second state and also setting pyramidal prisms 24 a and 24 b to the second state, a quadrupole light source (i.e., a light source comprising four light beams having a square cross-section or hollow square cross-section) is formed in pupil plane P1 of condenser optical system 30. Thus, so-called quadrupole modified illumination can be obtained. Furthermore, by setting conical prisms 18 a and 18 b to the second state and also setting pyramidal prisms 24 a and 24 b to the first state, an annular light source is formed in pupil plane P1 of condenser optical system 30. Thus, so-called annular modified illumination can be obtained.
  • As described above, [0041] conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b constitute a light beam shaping apparatus for forming an annular light source in pupil plane P1 of condenser optical system 30, or a plurality of light sources (four, in this case) eccentric with respect to optical axis A. By arranging conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b in exposure apparatus 10 of FIG. 1 in the optical path between cylindrical expander 16 and plane P1 of condenser optical system 30, a modified light source is capable of being formed in pupil plane P1. However, by arranging the same between integrator 36 and the pupil plane P2 of imaging optical system 40, a modified light source is capable of being formed in pupil plane P2.
  • As mentioned above, the number of light source images formed in [0042] surface 64 depends upon the number of internal reflections in integrator 36. Furthermore, the number of internal reflections depends upon the axial length of integrator 36 and the numerical aperture (NA) of incident light beam B. The NA and angle α are related by the relation NA=n×sin α, where n is the refractive index of the intervening medium, which can be taken as unity. The NA of incident light beam B changes depending on the focal length of condenser optical system 30. Thus, by suitably changing the focal length of condenser optical system 30, angle α (i.e., the NA) can be changed while maintaining convergence point F at a fixed position. Thus, by suitably changing the focal length of condenser optical system 30, the number of light source images formed can be adjusted while reliably avoiding concentrating too much light onto surface 36 a, and thereby avoiding the risk of breaking integrator 36.
  • With reference now to FIG. 4, [0043] exposure apparatus 100 represents a second embodiment of the present invention and has a construction similar to that of exposure apparatus 10 of FIGS. 1A and 1B. However, whereas integrator 36 in exposure apparatus 10 has a substantially square cross-section, integrator 160 of exposure apparatus 100 has a substantially rectangular cross-section extending lengthwise along the Y-direction. In the description below, elements in exposure apparatus 100 having the same function as those in exposure apparatus 10 are assigned the same reference symbols. Exposure apparatus 100 is now explained below, with attention to the differences between exposure apparatus 10.
  • With continuing reference to FIG. 4 and [0044] exposure apparatus 100, light source 14 emits a substantially parallel light beam B having a rectangular cross-section extending lengthwise along the Y-direction. Rectangular light beam B enters a cylindrical expander 120 comprising, for example, a pair of cylindrical lenses 16 a and 16 b (not shown in FIGS. 4A and 4B), such as those in exposure apparatus 10 (FIGS. 1A and 1B). However, each cylindrical lens cylindrical expander 120 respectively has negative refractive power and positive refractive power in the Y-Z plane (FIG. 4A), and functions as a plane parallel plate in the X-Z plane (FIG. 4B). Accordingly, light beam B entering cylindrical expander 120 is expanded in the Y-direction, and is shaped to have a rectangular cross-section extending lengthwise along the Y-direction.
  • Light beam B passing through [0045] cylindrical expander 120 then passes through conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b, and enters condenser optical system 30. Light beam B converges at convergence point F on optical axis A, and subsequently diverges at angle α and enters integrator 160. The latter includes an incident surface 160 a, an exit surface 160 b, outer surfaces 160S, and has a rectangular cross-section extending lengthwise along the Y-direction. As with exposure apparatus 100, light beam B enters integrator 160 and, through multiple internal reflections, forms a plurality of light beams B′ . A plurality of light source images are formed in surface 64 passing through convergence point F and parallel to incident surface 160 a. Light beams B′, which appear to emanate from the plurality of light source images pass through imaging optical system 40 and uniformly illuminate mask 48. In exposure apparatus 100, a rectangular illumination field (not shown) similar to the cross-sectional shape of integrator 160 is formed on mask 48. Also, elements 14-40 and 120 and 160 constitute a second embodiment of the illumination optical apparatus of the present invention.
  • With continuing reference to FIGS. 4A and 4B, convergence point F and [0046] incident surface 160 a of integrator 160 are spaced apart by a distance L2, similar to spacing L1 of exposure apparatus 10 (FIGS. 1A and 1B). Accordingly, unlike the prior art, a concentration of energy on incident surface 160 a is avoided. As a result, solarization is satisfactorily controlled, and the formation of contaminants due to photochemical reactions is also reduced. This prevents integrator 160 from being damaged or breaking when used in conjunction with a high-output light source like an excimer laser.
  • For [0047] integrator 160 in exposure apparatus 100, it is preferable that adequate spacing L2 be ensured by satisfying the following conditions (2) and (3):
  • 0.1 mm≦L2≦dx/(2×tan αx)  (2)
  • 0.1 mm≦L2≦dy/(2×tan αy)  (3)
  • wherein dx is the length (mm) of one side of [0048] integrator 160 along the X-direction, and dy is the length (mm) of the other side of integrator 160 along the Y-direction. In addition, αx is the divergence angle of light beam B as measured in the X-Z plane, and αy is the divergence incident angle in light beam B as measured in the Y-Z plane.
  • If spacing L[0049] 2 falls below the lower limit in conditions (2) and (3), the spacing is too narrow, and the likelihood of integrator being damaged or breaking is greatly increased.
  • On the other hand, if spacing L[0050] 2 exceeds the upper limit in conditions (2) and (3), the spacing widens excessively, and optical losses, i.e., (energy losses) occur at incident surface 160 a.
  • To maintain a predetermined optical performance and to make [0051] exposure apparatus 100 compact, it is preferable to set the axial length LIN≦1500 mm, i.e., the same as in exposure apparatus 10.
  • Also, in [0052] exposure apparatus 100, a modified light source can also be formed in pupil plane P2 of imaging optical system 40 by arranging conical prisms 18 a and 18 b and pyramidal prisms 24 a and 24 b in the optical path between integrator 160 and pupil plane P2.
  • As discussed above, the number of light source images formed in [0053] surface 64 depends upon the number of internal reflections in integrator 36 or 160. Furthermore, the number of internal reflections depends upon the length of the integrator and the NA (i.e., angle α) of the incident light beam, which can be changed by varying the focal length of condenser optical system 30. Accordingly, if the cross-section of the integrator (namely, the shape of incident surface) is not similar to the cross-section of light beam B incident integrator 36 of exposure apparatus 10 or integrater 160 of exposure apparatus 100, then the number of light source images formed along the X-direction of surface 64 will differ from the number of light source images formed along the Y-direction.
  • Generally, in an illumination optical apparatus employing a light pipe optical integrator, it is necessary to make the cross-section of the integrator and the cross-section of the light beam incident the integrator substantially similar. This makes the number of light source images formed in the orthogonal directions on the incident side of the integrator substantially the same, which makes the resolution of the projection optical system substantially the same in the orthogonal directions of the exposure field. Accordingly, even in the case wherein, for example, the light beam from a mercury lamp in an exposure apparatus is converged on the incident surface of the integrator and a light source image is formed on the incident surface, the resolution of the projection optical system can be made to substantially agree in the orthogonal directions of the exposure surface. This is accomplished by making the cross-section of the integrator and the shape of the light source image formed on the incident surface substantially similar in shape and size. [0054]
  • In the case of [0055] exposure apparatus 100, for example, if light beam B having a square cross-section is input into integrator 160 having a rectangular cross-section extending lengthwise along the Y-direction, the number of light source images formed along the X-direction becomes greater than the number of light source images formed along the Y-direction. As a result, the resolution of projection optical system 54 no longer coincides in the orthogonal directions (directions corresponding to the X-axis and Y-axis) of the exposure field. This creates the risk that the line width of the pattern formed on wafer 60 will not be the same along orthogonal directions of the exposure field. Accordingly, to make the number of light source images formed at surface 60 along the X-direction and the number of light source images formed along the Y-direction be substantially the same, it is preferable to provide a cylindrical expander 16 which allows for the cross-section of integrator 160 and the cross-section of incident beam B incident surface 160 a to be substantially similar in shape and size.
  • In each of the [0056] exposure apparatus 10 and 100 described above, satisfactory projection and exposure can be performed under stable and satisfactory exposure conditions without the risk of damaging or breaking the integrator due to a high concentration of energy from a high-output light source, and without optical losses occurring at the integrator's incident surface. A wafer (e.g., wafer 60) that has undergone the exposure process (photolithography process) by exposure apparatus 10 (FIGS. 1A and 1B) or 100 (FIGS. 4A and 4B) afterward undergoes a photoresist development process, and then an etching process that removes undeveloped resist and etches the wafer so as to pattern the wafer, and then a resist removal process that removes the unneeded resist after the etching process. Afterwards, upon completion of wafer processing, further processes are performed in the actual assembly of the semiconductor device, such as dicing the wafer into its constituent printed circuits to create chips, bonding that assigns wiring and the like to each chip, and packaging that packages each chip.
  • The above explanation describes an example wherein semiconductor devices are manufactured by a photolithography process and a wafer process employing an exposure apparatus. However, liquid crystal display devices, thin-film magnetic heads, and image detectors (e.g., CCDs and the like) can also be manufactured as semiconductor devices by a photolithography process that uses the exposure apparatus of the present invention. [0057]
  • Thus, since exposure and patterning of a wafer can be performed under stable and satisfactory exposure conditions when manufacturing semiconductor devices and the like using the illumination optical apparatus of the present invention, satisfactory semiconductor devices and the like can be manufactured with high throughput. [0058]
  • Each exposure apparatus of the present invention may include an illumination optical apparatus provided with a high-output light source other than an excimer laser light source. For example, it is also possible to use, as [0059] light source 14 in the present invention, a light source unit comprising a laser light source like an F2 laser that supplies light having a wavelength of 157 nm. Alternatively, a combination of a laser light source that provides light of a predetermined wavelength and a nonlinear optical element that converts the light from that laser light source to light of a short wavelength of <200 nm may also be used.
  • In addition, each exposure apparatus of the present invention, as discussed above, is provided with an illumination optical apparatus of the present invention. However, the illumination optical apparatus can also be applied to a general illumination optical apparatus for uniformly illuminating a surface to be irradiated other than a mask. [0060]
  • In the illumination optical apparatus of the present invention, as explained above, the energy acting upon the incident surface of the integrator is significantly reduced compared with the prior art. The illumination optical apparatus of the present invention provides light to the integrator while avoiding an energy concentration occurring on the incident surface of the integrator sufficient to damage or break the integrator. Accordingly, solarization is satisfactorily controlled and the formation of contaminants due to photochemical reactions is also reduced, without the risk of the integrator breaking due to the use of a high-output light source. This differs significantly from the prior art, wherein the convergence point is formed on the incident surface of the integrator, creating an energy concentration sufficient to damage or break the integrator. [0061]
  • Accordingly, in an exposure apparatus of the present invention that incorporates the illumination optical apparatus according to the present invention, since there is no damage or breakage of the integrator even if a high-output light source is used, satisfactory projection and exposure can be performed with high throughput under stable and satisfactory exposure conditions. In addition, the semiconductor device manufacturing method of the present invention includes a process that uses the illumination optical apparatus and exposure apparatus according to the present invention to pattern a photosensitive substrate. In this manner, satisfactory semiconductor devices and the like can be manufactured, since projection and exposure can be performed under stable and satisfactory exposure conditions. [0062]
  • While the present invention has been described in connection with preferred embodiments and Working Examples, it will be understood that it is not so limited. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined in the appended claims. [0063]

Claims (73)

What is claimed is:
1. An illumination optical apparatus for illuminating an illumination surface, comprising, in order along an optical axis:
a) a light source capable of providing a primary light beam having a cross-section;
b) a condenser optical system to condense said primary light beam so as to form a convergence point adjacent said condenser optical system;
c) a light-pipe optical integrator having a rectangular cross-sectional shape with a first side of length dx, a second side of length dy, and a most light-source-wise incident surface axially spaced from said convergence point by a spacing L, said integrator capable of forming a plurality of secondary light sources and corresponding secondary light beams from said primary light beam;
d) an imaging optical system to converge said primary and secondary light beams to illuminate the illumination surface; and
e) wherein the following conditions are satisfied:
0.1≦L≦dx/(2×tan αx)0.1≦L≦dy/(2×tan αy),
wherein αx is an angle of said primary light beam incident said incident surface, as measured in a first plane that includes the optical axis, and αy is an angle of said primary light beam incident said incident surface, as measured in a second plane orthogonal to said first plane.
2. An illumination optical apparatus according to claim 1, further including first and second variable optical members, arranged between said light source and said light pipe optical integrator, capable of shaping said primary light beam cross-section so as to make said light beam cross-section and said light pipe optical integrator cross-sectional shape substantially similar.
3. An illumination optical apparatus according to claim 2, wherein said condenser optical system has a variable focal length to allow a change in said at least one of angles αx and ay while maintaining said convergence point at a fixed position.
4. An illumination optical apparatus according to claim 1, further including first and second variable optical members capable of shaping said light beam cross-section.
5. An illumination optical apparatus according to claim 4, wherein said first and second variable optical members are capable of being arranged so as to shape said light beam cross-section to form an annular light source.
6. An illumination optical apparatus according to claim 4, wherein said first and second variable optical members are capable of being arranged so as to shape said light beam cross-section to form a plurality of light sources eccentric to the optical axis.
7. An illumination optical apparatus according to claim 4, wherein said first variable optical member comprises, in order along the optical axis:
a) a first conical prism with a most light-source-wise planar surface and an opposing conical concave surface symmetric with respect to the optical axis;
b) a second conical prism with a most light-source-wise conical convex surface symmetric with respect to the optical axis, and an opposing planar surface; and
c) wherein at least one of said first conical prism and said second conical prism is designed so as to be moveable along the optical axis.
8. An illumination optical apparatus according to claim 7, wherein said second variable optical member comprises, in order along the optical axis:
a) a first pyramidal prism with a most light-source-wise planar surface and an opposing pyramidal concave surface symmetric with respect to the optical axis;
b) a second pyramidal prism with a most light-source-wise pyramidal convex surface symmetric with respect to the optical axis, and an opposing planar surface; and
c) wherein at least one of said first pyramidal prism and said second pyramidal prism is designed so as to be moveable along the optical axis.
9. An illumination optical apparatus, comprising in order along an optical axis:
a) a light source capable of supplying a primary light beam having a first cross-section;
b) a condenser optical system capable of condensing said light beam;
c) a light pipe optical integrator having a most light-source-wise incident surface with an incident surface shape, and capable of forming, from said primary light beam, a plurality of secondary light sources and associated secondary light beams;
d) an imaging optical system designed to converge said secondary light beams to illuminate the surface to be irradiated; and
e) a light beam shaping apparatus designed to shape said light beam first cross-section to form a second light-beam cross-section having a shape substantially similar to said light pipe incident surface shape.
10. An illumination optical apparatus according to claim 9, wherein said condenser optical system is capable of forming a convergence point spaced apart from said light pipe incident surface by spacing L.
11. An illumination optical apparatus according to claim 10, wherein said spacing L satisfied the conditions:
0.1≦L≦dx/(2×tan αx)0.1≦L≦dy/(2×tan αy),
wherein αx is an angle in said primary light beam incident said incident surface, as measured in a first plane that includes the optical axis, and αy is an angle in said incident light beam incident said incident surface, as measured in a second plane orthogonal to said first plane.
12. An exposure apparatus for patterning a photosensitive substrate with pattern present on a mask, comprising in order along an optical axis:
a) an illumination optical system as set forth in claim 1; and
b) a projection optical system arranged adjacent the illumination surface, with the mask arranged at the illumination surface, so as to project the mask pattern onto the photosensitive substrate.
13. An exposure apparatus for exposing a pattern present on a mask onto a photosensitive substrate, comprising in order along an optical axis:
a) an illumination optical system as set forth in claim 9; and
b) a projection optical system arranged adjacent the illumination surface, with the mask arranged at the illumination surface, so as to project the mask pattern onto the photosensitive substrate.
14. A method of uniformly illuminating a surface with an illumination optical apparatus having a light pipe optical integrator with an integrator cross-section, an incident surface and an exit surface, comprising the steps of:
a) providing a primary light beam having a primary light beam cross-section;
b) condensing said primary light beam and forming a convergence point at a position spaced apart from said incident surface;
c) collecting light emanating from said convergence point at an angle α using said light pipe optical integrator;
d) forming a plurality of secondary light sources and associated secondary light beams by multiply internally reflecting said light within said light pipe optical integrator; and
e) converging said primary and secondary light beams emanating from said exit surface to uniformly illuminate the illumination surface.
15. A method-according to claim 14, wherein said condensing step b) further includes the step of varying said angle α while maintaining said convergence point at a fixed position.
16. A method according to claim 14, further including the step after said step a) but before said step b), of varying said primary light beam cross-section to be substantially similar in size and shape to said integrator cross-section.
17. A method of patterning a photosensitive substrate by uniformly illuminating a mask having a pattern thereon with an exposure apparatus including a light pipe optical integrator having an integrator cross-section, an incident surface and an exit surface, comprising the steps of:
a) providing a primary light beam having a primary light beam cross-section;
b) condensing said primary light beam and forming a convergence point at a position spaced apart from said incident surface;
c) collecting light emanating from said convergence point at an angle α using said light pipe optical integrator;
d) forming a plurality of secondary light sources and associated secondary light beams by multiply internally reflecting said light within said light pipe optical integrator;
e) converging said primary and secondary light beams emanating from said exit surface to uniformly illuminate the mask; and
f) projecting an image of the mask onto the photosensitive substrate so as to form a pattern thereon.
18. A method according to claim 17, wherein said condensing step b) further includes the step of varying said angle α while maintaining said convergence point at a fixed position.
19. A method according to claim 17, further including the step after said step a) but before said step b), of varying said primary light beam cross-section to be substantially similar in size and shape to said integrator cross-section.
20. An exposure apparatus for patterning a photosensitive substrate with a pattern formed on a mask, comprising:
an illumination optical system for illuminating the mask; and
a projection optical system arranged in an optical path between the mask and the photosensitive substrate, so as to project an image of the pattern formed on the mask onto the photosensitive substrate;
wherein said illumination optical system comprises:
a light source unit for providing a light beam;
an integrator disposed in the optical path between said light source unit and the mask; and
a light beam shape changing system comprising a first optical system disposed in an optical path between said light source unit and said integrator so as to change the light beam into an annular light beam having an annular cross-sectional shape and vary the annular cross-sectional shape continuously, and a second optical system disposed in the optical path between said light source unit and said integrator so as to change the light beam into a multi-pole light beam having a multi-pole cross-sectional shape and vary the multi-pole cross-sectional shape continuously.
21. An exposure apparatus according to claim 20, wherein said illumination optical system further comprises a changing system disposed in the optical path between said light source unit and said integrator so as to change a numerical aperture of a light beam entering said integrator.
22. An exposure apparatus according to claim 20, wherein said illumination optical system further comprises an energy reducing system disposed in the optical path between said light source unit and said integrator so as to reduce an intensive energy with respect to said integrator.
23. An exposure apparatus according to claim 22, wherein said energy reducing system forms a convergence point spaced from an incident surface of said integrator so as to prevent said integrator from being damaged.
24. An exposure apparatus according to claim 22, wherein said energy reducing system comprises a changing system disposed in the optical path between said light source unit and said integrator so as to change a numerical aperture of a light beam entering said integrator.
25. An exposure apparatus according to claim 20, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
26. An exposure apparatus according to claim 21, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
27. An exposure apparatus according to claim 22, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
28. An exposure apparatus according to claim 24, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
29. An exposure apparatus according to claim 20, wherein said integrator comprises an internal reflection-type integrator made from fluorite.
30. An exposure apparatus according to claim 21, wherein said integrator comprises an internal reflection-type integrator made from fluorite.
31. An exposure apparatus according to claim 22, wherein said integrator comprises an internal reflection-type integrator made from fluorite.
32. A method of manufacturing a semiconductor device, comprising the steps of:
providing a light beam;
adjusting the light beam by using at least one of a beam changing system including a first sub-changing system that changes the light beam into an annular light beam having an annular cross-sectional shape and varies the annular cross-sectional shape continuously, and a second sub-changing system that changes the light beam into a multi-pole light beam having a multi-pole cross-sectional shape and varies the multi-pole cross-sectional shape continuously;
guiding the adjusted light beam to an integrator;
directing the light beam that has passed through said integrator to a mask; and
projecting an image of a pattern formed on the mask onto a photosensitive substrate.
33. A method according to claim 32, wherein said adjusting step further comprises the step of changing a numerical aperture of a light beam entering said integrator by using a changing system disposed in an optical path between a light source unit that provides said light beam and said integrator.
34. A method according to claim 32, wherein said adjusting step further comprises the step of reducing an intensive energy with respect to said integrator by using an energy reducing system disposed in an optical path between a light source unit that provides said light beam and said integrator.
35. A method according to claim 34, wherein the reducing step includes the step of forming a convergence point spaced from an incident surface of said integrator so as to prevent said integrator from being damaged by using said energy reducing system.
36. A method according to claim 34, wherein the reducing step comprises the step of changing a numerical aperture of a light beam entering said integrator by using a changing system disposed in the optical path between said light source unit and said integrator so as to change a numerical aperture of a light beam entering said integrator.
37. A method according to claim 32, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
38. A method according to claim 33, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
39. A method according to claim 34, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
40. A method according to claim 36, wherein said integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
41. A method according to claim 32, wherein said integrator comprises an internal reflection-type integrator made from fluorite.
42. A method according to claim 33, wherein said integrator comprises an internal reflection-type integrator made from fluorite.
43. A method according to claim 34, wherein said integrator comprises an internal reflection-type integrator made from fluorite.
44. A method of exposing a pattern formed on a mask onto a photosensitive substrate, comprising the steps of:
providing a light beam;
adjusting the light beam by using at least one of a first sub-changing system within a beam changing system that changes the light beam into an annular light beam having an annular cross-sectional shape and varies the annular cross-sectional shape continuously, and a second sub-changing system within said beam changing system that changes the light beam into a multi-pole light beam having a multi-pole cross-sectional shape and varies the multi-pole cross-sectional shape continuously;
guiding the adjusted light beam to an integrator;
directing the light beam that has passed through said integrator to the mask; and
projecting an image of a pattern formed on the mask onto the photosensitive substrate.
45. A method according to claim 44, wherein said adjusting step further comprises the step of changing a numerical aperture of a light beam entering said integrator by using a changing system disposed in an optical path between a light source unit that provides said light beam and said integrator.
46. A method according to claim 44, wherein said adjusting step further comprises the step of reducing an intensive energy with respect to said integrator by using an energy reducing system disposed in an optical path between a light source unit that provides said light beam and said integrator.
47. An exposure apparatus for patterning a photosensitive substrate with a pattern formed on a mask, comprising:
an illumination optical system for illuminating the mask; and
a projection optical system arranged in an optical path between the mask and the photosensitive substrate, so as to project an image of the pattern formed on the mask onto the photosensitive substrate;
wherein said illumination optical system comprises:
a light source unit for providing a light beam;
an integrator disposed in the optical path between said light source unit and the mask; and
an energy reducing system disposed in the optical path between said light source unit and said integrator so as to reduce an intensive energy with respect to said integrator,
wherein said integrator comprises an internal reflection-type integrator made from fluorite.
48. A method of manufacturing a semiconductor device, comprising the steps of:
providing a light beam;
guiding the light beam to an integrator that comprises an internal reflection-type integrator made from fluorite;
directing the light beam that has passed through said integrator to a mask; and
projecting an image of a pattern formed on the mask onto a photosensitive substrate,
wherein said guiding step comprises the step of reducing an intensive energy with respect to said integrator.
49. A method of exposing a pattern formed on a mask onto a photosensitive substrate, comprising the steps of:
providing a light beam;
guiding the light beam to an integrator that comprises an internal reflection-type integrator made from fluorite;
directing the light beam that has passed through said integrator to a mask; and
projecting an image of a pattern formed on the mask onto a photosensitive substrate,
wherein said guiding step comprises the step of reducing an intensive energy with respect to said integrator.
50. An exposure apparatus for patterning a photosensitive substrate with a pattern formed on a mask, comprising:
a light source;
an optical integrator;
an optical system arranged in an optical path between the light source and the optical integrator; and
a light guide optical system arranged in the optical path between the light source and the optical integrator;
wherein the optical system includes a first optical system disposed to change a light beam into an annular light beam with an annular cross-sectional shape, and a second optical system disposed to change the light beam into a multipole light beam with a multipole cross-sectional shape; and
wherein the light guide optical system includes a first optical element with a positive power, and a second optical element with a negative power.
51. An exposure apparatus according to claim 50, wherein the optical integrator comprises an internal reflection-type integrator that has an axial length Lin≦1500 mm.
52. An exposure apparatus according to claim 51, wherein the internal reflection-type integrator is made from fluorite.
53. A method for exposing a pattern formed on a mask onto a photosensitive substrate, comprising the steps of:
providing a light beam;
adjusting the light beam by using at least one of a first optical system within an optical system that changes the light beam into an annular light beam with an annular cross-sectional shape, and a second optical system within the optical system that changes the light beam into a multipole light beam with a multipole cross-sectional shape;
guiding the light beam to an optical integrator;
directing the light beam that has passed through the optical integrator to the mask; and
projecting an image of a pattern formed on the mask onto the photosensitive substrate;
wherein the method further comprises:
directing the light beam to the optical integrator by using a light guide optical system that includes a first element with a positive power and a second element with a negative power.
54. A method according to claim 53, wherein the optical integrator is an internal reflection-type integrator.
55. A method according to claim 54, wherein the directing step is performed prior to the guiding step.
56. An illumination system comprising:
a light source that provides a light beam;
a guiding optical system disposed in an optical path between the light source and a mask plane and directing the light beam to the mask plane; and
a converting system in the optical path between the light source and the guiding optical system;
wherein the converting system comprises a first optical system disposed in the optical path between the light source and the mask plane so as to change a size of the light beam continuously, a second optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into an annular light beam having an annular cross-sectional shape under high efficiency, and a third optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into a multipole light beam having a multipole cross-sectional shape under high efficiency and change a condition of the multipole light beam;
wherein the second optical system includes at least one movable optical element so as to change a condition of the annular light beam continuously.
57. An illumination system according to claim 56, wherein the third optical system comprises at least one movable optical element so as to change the multipole light beam continuously.
58. An illumination system according to claim 57, further comprising an integrator disposed in the optical path between the converting system and the guiding optical system, the integrator including a rectangular entrance surface having a long edge and a short edge.
59. An illumination system according to claim 58, wherein the first optical system includes a variable focal length system to change an entrance angle of the light beam at the rectangular entrance surface of the integrator.
60. An illumination system according to claim 57, wherein the first optical system includes a zoom expander to expand the light beam from the light source.
61. An exposure apparatus comprising:
a light source that provides a light beam having a wavelength less than 200 nm;
an illumination system including a converting system in an optical path between the light source and a mask plane; and
a projection system disposed in an optical path between the mask plane and a substrate plane;
wherein the converting system comprises a first optical system disposed in the optical path between the light source and the mask plane so as to change a size of the light beam under high efficiency, a second optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into an annular light beam having an annular cross-sectional shape under high efficiency and change a condition of the annular light beam under high efficiency, and a third optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into a multipole light beam having a multipole cross-sectional shape under high efficiency and change a condition of the multipole light beam under high efficiency.
62. An exposure apparatus according to claim 61, wherein the illumination system further includes an optical integrator disposed in the optical path between the converting system and the mask plane, and
wherein the illumination system forms a rectangular illumination field having a long edge and a short edge at the mask plane and the converting system changes an illumination distribution at a pupil of the illumination system without changing the illumination field.
63. An exposure apparatus comprising:
a light source that provides a light beam;
a converting system disposed in an optical path between the light source and a mask plane;
an integrator disposed in an optical path between the converting system and the mask plane, and which has a rectangular cross-sectional shape having a long edge and a short edge; and
a projection system disposed in an optical path between the mask plane and a substrate plane;
wherein the converting system comprises a first optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into an annular light beam having an annular cross-sectional shape and change an annular ratio of the annular light beam, a second optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into a multipole light beam having a multipole cross-sectional shape and change a condition of the multipole light beam, and a third optical system disposed in the optical path between the light source and the mask plane so as to change an entrance angle of the light beam at an entrance surface of the integrator.
64. An exposure apparatus comprising:
a light source that provides a light beam;
a beam expander disposed in an optical path between the light source and a mask plane;
a converting system disposed in the optical path between the beam expander and the mask plane;
an integrator disposed in an optical path between the converting system and the mask plane, and which has a rectangular cross-sectional shape having a long edge and a short edge; and
a projection system disposed in an optical path between the mask plane and a substrate plane;
wherein the long edge of the rectangular cross-sectional shape is disposed along a predetermined beam expanding direction; and
wherein the converting system comprises a first optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into an annular light beam having an annular cross-sectional shape under high efficiency and change an annular ratio of the annular light beam under high efficiency, a second optical system disposed in the optical path between the light source and the mask plane so as to convert the light beam into a multipole light beam having a multipole cross-sectional shape under high efficiency and change a condition of the multipole light beam under high efficiency, and a third optical system disposed in the optical path between the light source and the mask plane so as to change an entrance angle of the light beam at an entrance surface of the integrator under high efficiency.
65. An exposure apparatus comprising:
a light source that provides a light beam;
a first axicon disposed in an optical path between the light source and a mask plane and having a first variable space;
a second axicon disposed in an optical path between the first axicon and the mask plane having a second variable space;
an integrator disposed in an optical path between the second axicon and the mask plane; and
a variable system disposed in the optical path between the light source and the mask plane so as to change an entrance angle of the light beam at an entrance surface of the integrator.
66. An exposure apparatus according to claim 65, wherein at least one of the first axicon and the second axicon converts the light beam into a multipole light beam having a multipole cross-sectional shape and changes a condition of the multipole light beam continuously.
67. An exposure apparatus comprising:
a light source that provides a light beam;
a converting system disposed in an optical path between the light source and a mask plane; and
a projection system disposed in an optical path between the mask plane and a substrate plane;
wherein the converting system comprises a converting unit disposed in the optical path between the light source and the mask plane so as to convert the light beam into a multipole light beam having a multipole cross-sectional shape under high efficiency and change a condition of the multipole light beam under high efficiency, a zoom optical system disposed in the optical path between the light source and the mask plane so as to change a size of the light beam under high efficiency, and a variable optical system disposed in the optical path between the light source and the mask plane so as to change a focal length of the variable optical system.
68. An exposure apparatus according to claim 67, further comprising an integrator disposed in an optical path between the variable optical system and the mask plane,
wherein the zoom optical system includes a beam expander disposed in an optical path between the light source and converting unit, and the variable optical system includes a variable unit disposed in an optical path between the converting unit and the integrator so as to change an entrance angle of the light beam at an entrance surface of the integrator.
69. An exposure apparatus according to claim 67, wherein the converting unit includes two pyramidal surfaces forming a variable space to change a condition of the multipole light beam continuously.
70. An exposure apparatus comprising:
a light source that provides a light beam;
a converting system disposed in an optical path between the light source and a mask plane so as to convert the light beam into a multipole light beam having a multipole cross-sectional shape under high efficiency and change a condition of the multipole light beam under high efficiency;
a zoom optical system disposed in an optical path between the light source and the converting system so as to change a size of the light beam under high efficiency;
a variable optical system disposed in an optical path between the zoom optical system and the mask plane so as to change a focal length of the variable optical system; and
a projection system disposed in an optical path between the mask plane and a substrate plane.
71. An exposure apparatus according to claim 70, wherein the converting system includes two pyramidal surfaces forming a variable space to change a condition of the multipole light beam continuously.
72. An exposure apparatus comprising:
a light source that provides a light beam;
an input optical system disposed in an optical path between the light source and a mask plane;
an internal reflection type integrator disposed in an optical path between the input optical system and the mask plane, and which has a rectangular cross-sectional shape having a long edge and a short edge; and
a projection system disposed in an optical path between the mask plane and a substrate plane;
wherein the input optical system has an optical unit that allows for a cross-section of the integrator and a cross-section of an incident beam from the input optical system to be substantially similar.
73. An exposure apparatus according to claim 72, wherein the optical unit of the input optical system includes a cylindrical expander.
US10/609,557 1998-03-19 2003-07-01 Illumination optical apparatus and exposure apparatus Abandoned US20040090608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/609,557 US20040090608A1 (en) 1998-03-19 2003-07-01 Illumination optical apparatus and exposure apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10-090,959 1998-03-19
JP10090959A JPH11271619A (en) 1998-03-19 1998-03-19 Illumination optical device and exposure device provided with illumination optical device
US09/271,081 US6236449B1 (en) 1998-03-19 1999-03-17 Illumination optical apparatus and exposure apparatus
US09/824,056 US20010017692A1 (en) 1998-03-19 2001-04-03 Illumination optical apparatus and exposure apparatus
US10/609,557 US20040090608A1 (en) 1998-03-19 2003-07-01 Illumination optical apparatus and exposure apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/824,056 Continuation US20010017692A1 (en) 1998-03-19 2001-04-03 Illumination optical apparatus and exposure apparatus

Publications (1)

Publication Number Publication Date
US20040090608A1 true US20040090608A1 (en) 2004-05-13

Family

ID=14013043

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/271,081 Expired - Fee Related US6236449B1 (en) 1998-03-19 1999-03-17 Illumination optical apparatus and exposure apparatus
US09/824,056 Abandoned US20010017692A1 (en) 1998-03-19 2001-04-03 Illumination optical apparatus and exposure apparatus
US10/305,961 Abandoned US20040012766A1 (en) 1998-03-19 2002-11-29 Illumination optical apparatus and exposure apparatus
US10/609,557 Abandoned US20040090608A1 (en) 1998-03-19 2003-07-01 Illumination optical apparatus and exposure apparatus

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/271,081 Expired - Fee Related US6236449B1 (en) 1998-03-19 1999-03-17 Illumination optical apparatus and exposure apparatus
US09/824,056 Abandoned US20010017692A1 (en) 1998-03-19 2001-04-03 Illumination optical apparatus and exposure apparatus
US10/305,961 Abandoned US20040012766A1 (en) 1998-03-19 2002-11-29 Illumination optical apparatus and exposure apparatus

Country Status (3)

Country Link
US (4) US6236449B1 (en)
JP (1) JPH11271619A (en)
DE (1) DE19912464A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030203549A1 (en) * 1996-02-28 2003-10-30 Semiconductor Energy Laboratory Co. Ltd. Laser irradiation apparatus
CN110799892A (en) * 2017-06-23 2020-02-14 业纳光学系统有限公司 Method for assisting in adjusting a beam expander, adjustment assisting device and beam expander

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329886B2 (en) * 1998-05-05 2008-02-12 Carl Zeiss Smt Ag EUV illumination system having a plurality of light sources for illuminating an optical element
DE19935404A1 (en) * 1999-07-30 2001-02-01 Zeiss Carl Fa Lighting system with multiple light sources
US6563567B1 (en) * 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
TW498184B (en) * 1999-06-04 2002-08-11 Asm Lithography Bv Method of manufacturing a device using a lithographic projection apparatus, and device manufactured in accordance with said method
WO2001006295A1 (en) 1999-07-14 2001-01-25 Eiki Matsuo Image-forming optical system
JP3814444B2 (en) * 1999-07-26 2006-08-30 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
JP2001236673A (en) * 2000-02-17 2001-08-31 Minolta Co Ltd Optical head and optical recording and reproducing device
US6944401B2 (en) * 2000-04-24 2005-09-13 Lucent Technologies Inc. Gain equalization in DWDM networks
JP2002231619A (en) * 2000-11-29 2002-08-16 Nikon Corp Optical illumination equipment and aligner equipped with the same
DE10065198A1 (en) * 2000-12-20 2002-07-11 Zeiss Carl Light integrator for a lighting device
US6683728B2 (en) * 2001-03-20 2004-01-27 Carl-Zeiss-Stiftung Illumination system with reduced energy loading
KR100408742B1 (en) * 2001-05-10 2003-12-11 삼성전자주식회사 Capacitor in integrated circuits device and method therefor
US6868223B2 (en) * 2001-05-11 2005-03-15 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus using the same and device fabrication method
US6775069B2 (en) * 2001-10-18 2004-08-10 Asml Holding N.V. Advanced illumination system for use in microlithography
KR100431883B1 (en) * 2001-11-05 2004-05-17 삼성전자주식회사 Projection Method and projection system
JP3682961B2 (en) * 2002-02-07 2005-08-17 フジノン株式会社 Rod integrator holder
JP4332331B2 (en) * 2002-08-05 2009-09-16 キヤノン株式会社 Exposure method
TWI332682B (en) * 2002-09-19 2010-11-01 Semiconductor Energy Lab Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
SG137674A1 (en) 2003-04-24 2007-12-28 Semiconductor Energy Lab Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
WO2004106980A2 (en) * 2003-05-21 2004-12-09 Jds Uniphase Corporation System and method for providing a uniform source of light
TW200508812A (en) * 2003-06-16 2005-03-01 Nikon Corp Optical illumination device, exposure device and exposure method
US7245802B2 (en) * 2003-08-04 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus and method for manufacturing semiconductor device
WO2005024516A2 (en) 2003-08-14 2005-03-17 Carl Zeiss Smt Ag Illuminating device for a microlithographic projection illumination system
US7664365B2 (en) * 2004-10-27 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, and laser irradiation method, laser irradiation apparatus, and laser annealing method of non-single crystalline semiconductor film using the same
DE102004063314A1 (en) 2004-12-23 2006-07-13 Carl Zeiss Smt Ag Filter device for compensating an asymmetrical pupil illumination
US20070153392A1 (en) * 2005-01-21 2007-07-05 Meritt Reynolds Apparatus and method for illumination of light valves
JP2007214527A (en) * 2006-01-13 2007-08-23 Ihi Corp Laser annealing method and laser annealer
US8071136B2 (en) 2006-04-21 2011-12-06 Bioactives, Inc. Water-soluble pharmaceutical compositions of hops resins
JP2008071791A (en) * 2006-09-12 2008-03-27 Canon Inc Illumination optical system, exposure apparatus, and method of manufacturing device
TW200903138A (en) * 2007-07-12 2009-01-16 Young Optics Inc Illumination system
DE102008040181A1 (en) 2007-07-27 2009-01-29 Carl Zeiss Illumination system for microlithographic projection exposure system, has astigmatic refractive optical element astigmatically changing intensity distribution in pupil surface by arrangement on different positions along optical axis
JP5582287B2 (en) * 2007-11-06 2014-09-03 株式会社ニコン Illumination optical apparatus and exposure apparatus
JP2009130091A (en) * 2007-11-22 2009-06-11 Canon Inc Illumination optical device, aligner, and device manufacturing method
US9052497B2 (en) 2011-03-10 2015-06-09 King Abdulaziz City For Science And Technology Computing imaging data using intensity correlation interferometry
US9099214B2 (en) * 2011-04-19 2015-08-04 King Abdulaziz City For Science And Technology Controlling microparticles through a light field having controllable intensity and periodicity of maxima thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744615A (en) * 1986-01-29 1988-05-17 International Business Machines Corporation Laser beam homogenizer
US4918583A (en) * 1988-04-25 1990-04-17 Nikon Corporation Illuminating optical device
US5059013A (en) * 1988-08-29 1991-10-22 Kantilal Jain Illumination system to produce self-luminous light beam of selected cross-section, uniform intensity and selected numerical aperture
US5357312A (en) * 1992-10-01 1994-10-18 Nec Corporation Illuminating system in exposure apparatus for photolithography
US5675401A (en) * 1994-06-17 1997-10-07 Carl-Zeiss-Stiftung Illuminating arrangement including a zoom objective incorporating two axicons
US5757470A (en) * 1993-03-01 1998-05-26 General Signal Corporation Variable annular illuminator for photolithographic projection imager
US6067146A (en) * 1996-04-10 2000-05-23 Asm Lithography B.V. Photolithographic apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461716A (en) * 1987-08-31 1989-03-08 Canon Kk Illuminator
US5719704A (en) * 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
US5659409A (en) * 1992-10-09 1997-08-19 Ag Technology Co., Ltd. Light source apparatus using a cone-like material and an applied apparatus thereof
US5477304A (en) * 1992-10-22 1995-12-19 Nikon Corporation Projection exposure apparatus
US5517279A (en) * 1993-08-30 1996-05-14 Hugle; William B. Lens array photolithography
JP3255312B2 (en) * 1993-04-28 2002-02-12 株式会社ニコン Projection exposure equipment
US6285443B1 (en) * 1993-12-13 2001-09-04 Carl-Zeiss-Stiftung Illuminating arrangement for a projection microlithographic apparatus
US5712698A (en) * 1996-03-04 1998-01-27 Siemens Aktiengesellschaft Independently controllable shutters and variable area apertures for off axis illumination
JP4310816B2 (en) * 1997-03-14 2009-08-12 株式会社ニコン Illumination apparatus, projection exposure apparatus, device manufacturing method, and projection exposure apparatus adjustment method
JP3264224B2 (en) * 1997-08-04 2002-03-11 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
DE69931690T2 (en) * 1998-04-08 2007-06-14 Asml Netherlands B.V. Lithographic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744615A (en) * 1986-01-29 1988-05-17 International Business Machines Corporation Laser beam homogenizer
US4918583A (en) * 1988-04-25 1990-04-17 Nikon Corporation Illuminating optical device
US5059013A (en) * 1988-08-29 1991-10-22 Kantilal Jain Illumination system to produce self-luminous light beam of selected cross-section, uniform intensity and selected numerical aperture
US5357312A (en) * 1992-10-01 1994-10-18 Nec Corporation Illuminating system in exposure apparatus for photolithography
US5757470A (en) * 1993-03-01 1998-05-26 General Signal Corporation Variable annular illuminator for photolithographic projection imager
US5675401A (en) * 1994-06-17 1997-10-07 Carl-Zeiss-Stiftung Illuminating arrangement including a zoom objective incorporating two axicons
US6067146A (en) * 1996-04-10 2000-05-23 Asm Lithography B.V. Photolithographic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030203549A1 (en) * 1996-02-28 2003-10-30 Semiconductor Energy Laboratory Co. Ltd. Laser irradiation apparatus
US6961184B2 (en) * 1996-02-28 2005-11-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US20060114768A1 (en) * 1996-02-28 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7760433B2 (en) 1996-02-28 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
CN110799892A (en) * 2017-06-23 2020-02-14 业纳光学系统有限公司 Method for assisting in adjusting a beam expander, adjustment assisting device and beam expander

Also Published As

Publication number Publication date
US20010017692A1 (en) 2001-08-30
JPH11271619A (en) 1999-10-08
DE19912464A1 (en) 1999-09-23
US20040012766A1 (en) 2004-01-22
US6236449B1 (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US6236449B1 (en) Illumination optical apparatus and exposure apparatus
JP6493325B2 (en) Flux conversion element, illumination optical device, exposure apparatus, and exposure method
JP4849165B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
KR20030017431A (en) Illuminaire optical apparatus, exposure apparatus, exposure method, and method for fabricating micro device
US20010043318A1 (en) Illumination optical system for use in projection exposure apparatus
JPH10209028A (en) Manufacturing method for illumination optical device and semiconductor element
JP2001135560A (en) Illuminating optical device, exposure, and method of manufacturing micro-device
US6285440B1 (en) Illumination system and projection exposure apparatus using the same
KR101789855B1 (en) Illuminating optical system and expose device
JP2002075835A (en) Illumination optical device and exposure system with the same
JP2000182933A (en) Illumination optical device and aligner equipped therewith
JP4883482B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2003178952A (en) Illuminating optical device, exposure system and exposure method
JPH11274060A (en) Lighting optical device and aligner provided therewith
JP2005302826A (en) Lighting optical device, exposure system and method
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP3367569B2 (en) Illumination optical device, exposure device, and transfer method using the exposure device
JP2001035777A (en) Illumination optical apparatus and aligner having the same
JPH07104563B2 (en) Illumination optical device for exposure equipment
JPH07135145A (en) Aligner
KR19990030944A (en) Reflective Refractive Imaging System for Lithography
KR100284906B1 (en) Semiconductor exposure system
JP2002025897A (en) Illuminating optical device, aligner provided with the illuminating optical device, and microdevice manufacturing method using the aligner
JP2007048851A (en) Lighting optical device, exposure apparatus, and process for fabricating device
JP2001085293A (en) Illumination optical system and exposure system provided therewith

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION