US20040076956A1 - Diagnosis of diseases associated with dna repair - Google Patents

Diagnosis of diseases associated with dna repair Download PDF

Info

Publication number
US20040076956A1
US20040076956A1 US10/240,589 US24058903A US2004076956A1 US 20040076956 A1 US20040076956 A1 US 20040076956A1 US 24058903 A US24058903 A US 24058903A US 2004076956 A1 US2004076956 A1 US 2004076956A1
Authority
US
United States
Prior art keywords
dna
recited
genes
oligomer
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/240,589
Other languages
English (en)
Inventor
Alexander Olek
Christian Piepenbrock
Kurt Berlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epigenomics AG
Original Assignee
Epigenomics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10019058A external-priority patent/DE10019058A1/de
Priority claimed from DE10032529A external-priority patent/DE10032529A1/de
Application filed by Epigenomics AG filed Critical Epigenomics AG
Assigned to EPIGENOMICS AG reassignment EPIGENOMICS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERLIN, KURT, OLEK, ALEXANDER, PIEPENBROCK, CHRISTIAN
Publication of US20040076956A1 publication Critical patent/US20040076956A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to nucleic acids, oligonucleotides, PNA-oligomers and to a method for the diagnosis and/or therapy of diseases which have a connection with the genetic and/or epigenetic parameters of genes associated with DNA repair and, in particular, with the methylation status thereof.
  • DNA damage may take several forms, including single- and double-strand breaks, inter-and intrastrand crosslinks and different kinds of base modifications. DNA damage may be the result of a variety of factors. Common exogenous sources of DNA damage include, chemical compounds and irradiation. Endogenous sources include spontaneous chemical conversion (e.g. deamination or depurination), the effect of oxygen and free radicals (causing base damage and DNA strand breaks), and malfunctions in DNA replication mechanisms (causing base mismatches and deletions). At the cellular level DNA damage may affect functions such as transcription, DNA replication, cell cycle, apoptosis and mutagenesis.
  • NER Nucleotide excision repair
  • the generalised NER process involves the action of at least 30 proteins in a mechanism involving damage identification, localised unwinding of the DNA helix, excision of the damaged portion of DNA, synthesis of a new strand and subsequent ligation.
  • the consequences of a defect in one of the NER proteins are apparent from three rare recessive photosensitive syndromes: xeroderma pigmentosum (XP), CS and the photosensitive form of the brittle hair disorder trichothiodystrophy (TTD), see below for further references.
  • XP xeroderma pigmentosum
  • CS the photosensitive form of the brittle hair disorder trichothiodystrophy
  • TTD brittle hair disorder trichothiodystrophy
  • Ataxia telangiectasia Allen et. al. ‘Ataxia telangiectasia mutated is essential during adult neurogenesis.’ Genes and Development Mar. 1, 2001;15(5):554-566.
  • Ageing Martin et. al. ‘Genetic analysis of ageing: role of oxidative damage and environmental stresses’ Nature Genetics May 1996; 13 (1): 25.
  • Bloom's Syndrome Karow et. al. ‘The Bloom's syndrome gene product promotes branch migration of holliday junctions.’ Proc Natl Acad Sci U S A Jun. 6, 2000;97(12):6504-8.
  • Cockayne syndrome Hanawalt ‘DNA repair: The bases for Cockayne syndrome’ Nature 405,(2000): 415-416.
  • Nijmegen breakage syndrome Digweed et. al. ‘Nijmegen breakage syndrome: consequences of defective DNA double strand break repair.’ Bioessays August 1999;21(8):649-56.
  • Trichothiodystrophy Vermeulen et. al. ‘Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder.’ Nature Genet November 2000;26(3):307-13.
  • Fanconi Anaemia Thyagarajan and Campbell ‘Elevated homologous recombination activity in fanconi anemia fibroblasts.’: J Biol Chem Sep. 12, 1997;272(37):23328-33.
  • Werner Syndrome Kamath-Loeb et. al. ‘Functional interaction between the Werner Syndrome protein and DNA polymerase delta.’ Proc Natl Acad Sci U S A Apr. 25, 2000;97(9):4603-8.
  • 5-methylcytosine is the most frequent covalent base modification in the DNA of eukaryotic cells. It plays a role, for example, in the regulation of the transcription, in genetic imprinting, and in tumorigenesis. Therefore, the identification of 5-methylcytosine as a component of genetic information is of considerable interest. However, 5-methylcytosine positions cannot be identified by sequencing since 5-methylcytosine has the same base pairing behavior as cytosine. Moreover, the epigenetic information carried by 5-methylcytosine is completely lost during PCR amplification.
  • a relatively new and currently the most frequently used method for analyzing DNA for 5-methylcytosine is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil which corresponds to thymidine in its base pairing behavior.
  • 5-methylcytosine remains unmodified under these conditions. Consequently, the original DNA is converted in such a manner that methylcytosine, which originally could not be distinguished from cytosine by its hybridization behavior, can now be detected as the only remaining cytosine using “normal” molecular biological techniques, for example, by amplification and hybridization or sequencing. All of these techniques are based on base pairing which can now be fully exploited.
  • the prior art is defined by a method which encloses the DNA to be analyzed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite only reacts with single-stranded DNA), and which replaces all precipitation and purification steps with fast dialysis (Olek A, Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. Dec. 15, 1996;24(24):5064-6). Using this method, it is possible to analyze individual cells, which illustrates the potential of the method.
  • Methylation analysis on individual chromosomes improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. Feb. 25, 1994;22(4):695-6; Martin V, Ribieras S, Song-Wang X, Rio M C, Dante R. Genomic sequencing indicates a correlation between DNA hypomethylation in the 5′ region of the pS2 gene and its expression in human breast cancer cell lines. Gene. May 19, 1995;157(1-2):261-4; WO 97/46705, WO 95/15373 and WO 97/45560.
  • Fluorescently labeled probes are often used for the scanning of immobilized DNA arrays.
  • the simple attachment of Cy3 and Cy5 dyes to the 5′-OH of the specific probe are particularly suitable for fluorescence labels.
  • the detection of the fluorescence of the hybridized probes may be carried out, for example via a confocal microscope. Cy3 and Cy5 dyes, besides many others, are commercially available.
  • Matrix Assisted Laser Desorption Ionization Mass Spectrometry is a very efficient development for the analysis of biomolecules (Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. Oct. 15, 1988;60(20):2299-301).
  • An analyte is embedded in a light-absorbing matrix. The matrix is evaporated by a short laser pulse thus transporting the analyte molecule into the vapor phase in an unfragmented manner.
  • the analyte is ionized by collisions with matrix molecules.
  • An applied voltage accelerates the ions into a field-free flight tube. Due to their different masses, the ions are accelerated at different rates. Smaller ions reach the detector sooner than bigger ones.
  • MALDI-TOF spectrometry is excellently suited to the analysis of peptides and proteins.
  • the analysis of nucleic acids is somewhat more difficult (Gut I G, Beck S. DNA and Matrix Assisted Laser Desorption Ionization Mass Spectrometry. Current Innovations and Future Trends. 1995, 1; 148-57).
  • the sensitivity to nucleic acids is approximately 100 times worse than to peptides and decreases disproportionally with increasing fragment size.
  • the ionization process via the matrix is considerably less efficient.
  • the selection of the matrix plays an eminently important role.
  • Genomic DNA is obtained from DNA of cell, tissue or other test samples using standard methods. This standard methodology is found in references such as Fritsch and Maniatis eds., Molecular Cloning: A Laboratory Manual, 1989.
  • the object of the present invention is to provide the chemically modified DNA of genes associated with DNA repair, as well as oligonucleotides and/or PNA-oligomers for detecting cytosine methylations, as well as a method which is particularly suitable for the diagnosis and/or therapy of genetic and epigenetic parameters of genes associated with DNA repair.
  • the present invention is based on the discovery that genetic and epigenetic parameters and, in particular, the cytosine methylation pattern of genes associated with DNA repair are particularly suitable for the diagnosis and/or therapy of diseases associated with DNA repair.
  • This objective is achieved according to the-present invention using a nucleic acid containing a sequence of at least 18 bases in length of the chemically pretreated DNA of genes associated with DNA repair according to one of Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.
  • the respective data bank numbers accession numbers
  • GenBank was used as the underlying data bank, which is located at the National Institute of Health, internet address www.ncbi.nlm.nih.gov.
  • the object of the present invention is further achieved by an oligonucleotide or oligomer for detecting the cytosine methylation state in chemically pretreated DNA, containing at least one base sequence having a length of at least 13 nucleotides which hybridizes to a chemically pretreated DNA of genes associated with DNA repair according to Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.
  • the oligomer probes according to the present invention constitute important and effective tools which, for the first time, make it possible to ascertain the genetic and epigenetic parameters of genes associated with DNA repair.
  • the base sequence of the oligomers preferably contain at least one CpG dinucleotide.
  • the probes may also exist in the form of a PNA (peptide nucleic acid) which has particularly preferred pairing properties.
  • PNA peptide nucleic acid
  • Particularly preferred are oligonucleotides according to the present invention in which the cytosine of the CpG dinucleotide is the 5 th -9 th nucleotide from the 5′-end of the 13-mer; in the case of PNA-oligomers, it is preferred for the cytosine of the CpG dinucleotide to be the 4 th -6 th nucleotide from the 5′-end of the 9-mer.
  • the oligomers according to the present invention are normally used in so called “sets” which contain at least one oligomer for each of the CpG dinucleotides of the sequences of Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.
  • sets which contain at least one oligomer for each of the CpG dinucleotides from one of Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.
  • the present invention makes available a set of at least two oligonucleotides which can be used as so-called “primer oligonucleotides” for amplifying DNA sequences of one of Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto and fragments thereof.
  • At least one oligonucleotide is bound to a solid phase.
  • the present invention moreover relates to a set of at least 10 n (oligonucleotides and/or PNA-oligomers) used for detecting the cytosine methylation state in chemically pretreated genomic DNA (Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto).
  • These probes enable diagnosis and/or therapy of genetic and epigenetic parameters of genes associated with DNA repair.
  • the set of oligomers may also be used for detecting single nucleotide polymorphisms (SNPs) in the chemically pretreated DNA of genes associated with DNA repair according to one of Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.
  • SNPs single nucleotide polymorphisms
  • an arrangement of different oligonucleotides and/or PNA-oligomers made available by the present invention is present in a manner that it is likewise bound to a solid phase.
  • This array of different oligonucleotide- and/or PNA-oligomer sequences can be characterized in that it is arranged on the solid phase in the form of a rectangular or hexagonal lattice.
  • the solid phase surface is preferably composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold.
  • nitrocellulose as well as plastics such as nylon which can exist in the form of pellets or also as resin matrices are possible as well.
  • a further subject matter of the present invention is a method for manufacturing an array fixed to a carrier material for analysis in connection with diseases associated with DNA repair in which method at least one oligomer according to the present invention is coupled to a solid phase.
  • Methods for manufacturing such arrays are known, for example, from U.S. Pat. No. 5,744,305 by means of solid-phase chemistry and photolabile protecting groups.
  • a further subject matter of the present invention relates to a DNA chip for the analysis of diseases associated with DNA repair which contains at least one nucleic acid according to the present invention.
  • DNA chips are known, for example, for U.S. Pat. No. 5,837,832.
  • kits which may be composed, for example, of a bisulfite-containing reagent, a set of primer oligonucleotides containing at least two oligonucleotides whose sequences in each case correspond or are complementary to an 18 base long segment of the base sequences specified in the appendix (Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto), oligonucleotides and/or PNA-oligomers as well as instructions for carrying out and evaluating the described method.
  • a kit along the lines of the present invention can also contain only part of the aforementioned components.
  • the present invention also makes available a method for ascertaining genetic and/or epigenetic parameters of genes associated with the cycle cell by analyzing cytosine methylations and single nucleotide polymorphisms, including the following steps:
  • a genomic DNA sample is chemically treated in such a manner that cytosine bases which are unmethylated at the 5′-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior. This will be understood as ‘chemical pretreatment’ hereinafter.
  • the genomic DNA to be analyzed is preferably obtained form usual sources of DNA such as cells or cell components, for example, cell lines, biopsies, blood, sputum, stool, urine, cerebral-spinal fluid, tissue embedded in paraffin such as tissue from eyes, intestine, kidney, brain, heart, prostate, lung, breast or liver, histologic object slides, or combinations thereof.
  • sources of DNA such as cells or cell components, for example, cell lines, biopsies, blood, sputum, stool, urine, cerebral-spinal fluid, tissue embedded in paraffin such as tissue from eyes, intestine, kidney, brain, heart, prostate, lung, breast or liver, histologic object slides, or combinations thereof.
  • genomic DNA is preferably carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.
  • bisulfite hydrogen sulfite, disulfite
  • Fragments of the chemically pretreated DNA are amplified, using sets of primer oligonucleotides according to the present invention, and a, preferably heat-stable polymerase. Because of statistical and practical considerations, preferably more than ten different fragments having a length of 100-2000 base pairs are amplified.
  • the amplification of several DNA segments can be carried out simultaneously in one and the same reaction vessel. Usually, the amplification is carried out by means of a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • the set of primer oligonucleotides includes at least two olignonucleotides whose sequences are each reverse complementary or identical to an at least 18 base-pair long segment of the base sequences specified in the appendix (Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto).
  • the primer oligonucleotides are preferably characterized in that they do not contain any CpG dinucleotides.
  • At least one primer oligonucleotide is bonded to a solid phase during amplification.
  • the different oligonucleotide and/or PNA-oligomer sequences can be arranged on a plane solid phase in the form of a rectangular or hexagonal lattice, the solid phase surface preferably being composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold, it being possible for other materials such as nitrocellulose or plastics to be used as well.
  • the fragments obtained by means of the amplification can carry a directly or indirectly detectable label.
  • the detection may be carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).
  • MALDI matrix assisted laser desorption/ionization mass spectrometry
  • ESI electron spray mass spectrometry
  • the amplificates obtained in the second step of the method are subsequently hybridized to an array or a set of oligonucleotides and/or PNA probes.
  • the hybridization takes place in the manner described in the following.
  • the set of probes used during the hybridization is preferably composed of at least 10 oligonucleotides or PNA-oligomers.
  • the amplificates serve as probes which hybridize to oligonucleotides previously bonded to a solid phase. The non-hybridized fragments are subsequently removed.
  • Said oligonucleotides contain at least one base sequence having a length of 13 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG dinucleotide.
  • the cytosine of the CpG dinucleotide is the 5 th to 9 th nucleotide from the 5′-end of the 9-mer.
  • One oligonucleotide exists for each CpG dinucleotide.
  • Said PNA-oligomers contain at least one base sequence having a length of 9 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG dinucleotide.
  • the cytosine of the CpG dinucleotide is the 4 th to 6 th nucleotide seen from the 5′-end of the 9-mer.
  • One oligonucleotide exists for each CpG dinucleotide.
  • the non-hybridized amplificates are removed.
  • the hybridized amplificates are detected.
  • labels attached to the amplificates are identifiable at each position of the solid phase at which an oligonucleotide sequence is located.
  • the labels of the amplificates are fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer.
  • the mass spectrometer is preferred for the detection of the amplificates, fragments of the amplificates or of probes which are complementary to the amplificates, it being possible for the detection to be carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).
  • MALDI matrix assisted laser desorption/ionization mass spectrometry
  • ESI electron spray mass spectrometry
  • the produced fragments may have a single positive or negative net charge for better detectability in the mass spectrometer.
  • the aforementioned method is preferably used for ascertaining genetic and/or epigenetic parameters of genes associated with DNA repair.
  • the oligomers according to the present invention or arrays thereof as well as a kit according to the present invention are intended to be used for the diagnosis and/or therapy of diseases associated with DNA repair by analyzing methylation patterns of genes associated with DNA repair.
  • the method is preferably used for the diagnosis and/or therapy of important genetic and/or epigenetic parameters within genes associated with DNA repair.
  • the method according to the present invention is used, for example, for the diagnosis and/or therapy of diseases.
  • nucleic acids according to the present invention of Seq. ID No.1 through Seq. ID No.144 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto can be used for the diagnosis and/or therapy of genetic and/or epigenetic parameters of genes associated with DNA repair.
  • the present invention moreover relates to a method for manufacturing a diagnostic agent and/or therapeutic agent for the diagnosis and/or therapy of diseases associated with DNA repair by analyzing methylation patterns of genes associated with DNA repair, the diagnostic agent and/or therapeutic agent being characterized in that at least one nucleic acid according to the present invention is used for manufacturing it, possibly together with suitable additives and auxiliary agents.
  • a further subject matter of the present invention relates to a diagnostic agent and/or therapeutic agent for diseases associated with DNA repair by analyzing methylation patterns of genes associated with DNA repair, the diagnostic agent and/or therapeutic agent containing at least one nucleic acid according to the present invention, possibly together with suitable additives and auxiliary agents.
  • the present invention moreover relates to the diagnosis and/or prognosis of events which are disadvantageous to patients or individuals in which important genetic and/or epigenetic parameters within genes associated with DNA repair said parameters obtained by means of the present invention may be compared to another set of genetic and/or epigenetic parameters, the differences serving as the basis for a diagnosis and/or prognosis of events which are disadvantageous to patients or individuals.
  • hybridization is to be understood as a bond of an oligonucleotide to a completely complementary sequence along the lines of the Watson-Crick base pairings in the sample DNA, forming a duplex structure.
  • stringent hybridization conditions are those conditions in which a hybridization is carried out at 60° C. in 2.5 ⁇ SSC buffer, followed by several washing steps at 37° C. in a low buffer concentration, and remains stable.
  • the term “functional variants” denotes all DNA sequences which are complementary to a DNA sequence, and which hybridize to the reference sequence under stringent conditions and have an activity similar to the corresponding polypeptide according to the present invention.
  • “genetic parameters” are mutations and polymorphisms of genes associated with DNA repair and sequences further required for their regulation.
  • mutations are, in particular, insertions, deletions, point mutations, inversions and polymorphisms and, particularly preferred, SNPs (single nucleotide polymorphisms).
  • epigenetic parameters are, in particular, cytosine methylations and further chemical modifications of DNA bases of genes associated with DNA repair and sequences further required for their regulation.
  • Further epigenetic parameters include, for example, the acetylation of histones which, however, cannot be directly analyzed using the described method but which, in turn, correlates with the DNA methylation.
  • FIG. 1 shows the hybridisation of fluorescent labelled amplificates to a surface bound oligonucleotide.
  • Sample I being from healthy tissue and sample II being from olgodendrogliome cerebrum (tumor) tissue. Fluorescence at a spot shows hybridisation of the amplificate to the oligonucleotide.
  • Hybridisation to a CG oligonucleotide denotes methylation at the cytosine position being analysed
  • hybridisation to a TG oligonucleotide denotes no methylation at the cytosine position being analysed.
  • Sequences having odd sequence numbers exhibit in each case sequences of the chemically pretreated genomic DNAs of different genes associated with DNA repair.Sequences having even sequence numbers (e.g., Seq. ID No. 2, 4, 6, . . . ) exhibit in each case the sequences of the chemically pretreated genomic DNAs of genes associated with DNA repair which are complementary to the preceeding sequences (e.g., the complementary sequence to Seq. ID No.1 is Seq. ID No.2, the complementary sequence to Seq. ID No.3 is Seq. ID No.4, etc.)
  • Seq. ID Nos. 145 to 148 show the sequences of oligonucleotides used in Example 1.
  • the following example relates to a fragment of a gene associated with DNA repair, in this case, Uracil-DNA glycosylase (UNG) in which a specific CG-position is analyzed for its methylation status.
  • UNG Uracil-DNA glycosylase
  • the following example relates to a fragment of the gene UNG in which a specific CG-position is to be analyzed for methylation.
  • a genomic sequence is treated using bisulfite (hydrogen sulfite, disulfite) in such a manner that all cytosines which are not methylated at the 5-position of the base are modified in such a manner that a different base is substituted with regard to the base pairing behavior while the cytosines methylated at the 5-position remain unchanged.
  • bisulfite hydrogen sulfite, disulfite
  • the treated DNA sample is diluted with water or an aqueous solution.
  • the DNA is subsequently desulfonated (10-30 min, 90-100° C.) at an alkaline pH value.
  • the DNA sample is amplified in a polymerase chain reaction, preferably using a heat-resistant DNA polymerase.
  • cytosines of the gene UNG are analyzed.
  • a defined fragment having a length of 476 bp is amplified with the specific primer oligonucleotides GTTATAGTTATAGTTAGGGT (Sequence ID No. 145) and TCTCCCCTCTAATTAAACAA (Sequence ID No. 146).
  • This amplificate serves as a sample which hybridizes to an oligonucleotide previously bonded to a solid phase, forming a duplex structure, for example AGGAAGGCGGTGGGTTT (Sequence ID No.
  • the cytosine to be detected being located at position 252 of the amplificate.
  • the detection of the hybridization product is based on Cy3 and Cy5 fluorescently labeled primer oligonucleotides which have been used for the amplification.
  • a hybridization reaction of the amplified DNA with the oligonucleotide takes place only if a methylated cytosine was present at this location in the bisulfite-treated DNA.
  • the methylation status of the specific cytosine to be analyzed is inferred from the hybridization product.
  • a sample of the amplificate is further hybridized to another oligonucleotide previously bonded to a solid phase.
  • Said olignonucleotide is identical to the oligonucleotide previously used to analyze the methylation status of the sample, with the exception of the position in question.
  • said oligonucleotide comprises a thymine base as opposed to a cytosine base i.e AGGAAGGTGGTGGGTTT (Sequence ID No. 148). Therefore, the hybridisation reaction only takes place if an unmethylated cytosine was present at the position to be analysed.
  • the procedure was carried out on cell samples from 2 patients, sample I being from normal healthy tissue and sample II being from a olgodendrogliome cerebrum tumor sample.
  • methylation patterns In order to relate the methylation patterns to one of the diseases associated with DNA repair, it is initially required to analyze the DNA methylation patterns of a group of diseased and of a group of healthy patients. These analyses are carried out, for example, analogously to Example 1. The results obtained in this manner are stored in a database and the CpG dinucleotides which are methylated differently between the two groups are identified. This can be carried out by determining individual CpG methylation rates as can be done, for example, in a relatively imprecise manner, by sequencing or else, in a very precise manner, by a methylation-sensitive “primer extension reaction”. It is also possible for the entire methylation status to be analyzed simultaneously, and for the patterns to be compared, for example, by clustering analyses which can be carried out, for example, by a computer.
  • Example 2 can be carried, out, for example, for the following diseases: Ataxia telangiectasia, Ageing, Bloom's Syndrome, Immunodeficiency, Cockayne syndrome, Nijmegen breakage syndrome, Trichothiodystrophy, Fanconi Anaemia, Werner Syndrome, solid tumors and cancer TABLE I Listing of particularly preferred genes of the present invention associated with DNA repair Database Entry (Genbank, internet Gene address www.ncbi.nlm.nih.gov) PMS2L1 D38435 PMS2L12 AF053356 PMS2L2 D38436 PMS2L3 D38437 PMS2L4 D38438 and D38500 PMS2L5 D38439 PMS2L6 D38440 MGMT NM_002412 MSH2 NM_000251 NUDT1 NM_002452 TDG NM_003211 INPPL1 NM_001567 RFC4 NM_002916 DDIT1L FANCB X
US10/240,589 2000-04-06 2001-04-06 Diagnosis of diseases associated with dna repair Abandoned US20040076956A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
DE10019058A DE10019058A1 (de) 2000-04-06 2000-04-06 Detektion von Variationen des DNA-Methylierungsprofils
DE10019058.8 2000-04-06
DE10019173 2000-04-07
DE10019173.8 2000-04-07
DE10032529A DE10032529A1 (de) 2000-06-30 2000-06-30 Diagnose von bedeutenden genetischen Parametern innerhalb des Major Histocompatibility Complex (MHC)
DE10032529.7 2000-06-30
DE10043826 2000-09-01
DE10043826.1 2000-09-01
PCT/EP2001/003972 WO2001081622A2 (fr) 2000-04-06 2001-04-06 Diagnostic de maladies associees a la reparation de l'adn

Publications (1)

Publication Number Publication Date
US20040076956A1 true US20040076956A1 (en) 2004-04-22

Family

ID=27437807

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/240,453 Abandoned US20030148326A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with dna transcription
US10/239,676 Expired - Fee Related US7195870B2 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with gene regulation
US10/240,485 Abandoned US20030148327A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with metastasis
US10/240,589 Abandoned US20040076956A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with dna repair
US10/240,708 Abandoned US20050282157A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with dna replication
US10/240,454 Abandoned US20040067491A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with metabolism
US10/240,452 Abandoned US20030162194A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with apoptosis

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/240,453 Abandoned US20030148326A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with dna transcription
US10/239,676 Expired - Fee Related US7195870B2 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with gene regulation
US10/240,485 Abandoned US20030148327A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with metastasis

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/240,708 Abandoned US20050282157A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with dna replication
US10/240,454 Abandoned US20040067491A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with metabolism
US10/240,452 Abandoned US20030162194A1 (en) 2000-04-06 2001-04-06 Diagnosis of diseases associated with apoptosis

Country Status (7)

Country Link
US (7) US20030148326A1 (fr)
EP (9) EP1278893A2 (fr)
JP (3) JP2003534780A (fr)
AT (1) ATE353975T1 (fr)
AU (9) AU2001275663A1 (fr)
DE (1) DE60126593T2 (fr)
WO (8) WO2001076451A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321626A1 (en) * 2006-05-26 2009-12-31 Akos Vertes Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
US20100323917A1 (en) * 2009-04-07 2010-12-23 Akos Vertes Tailored nanopost arrays (napa) for laser desorption ionization in mass spectrometry
US9000361B2 (en) 2009-01-17 2015-04-07 The George Washington University Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays
WO2015167959A1 (fr) * 2014-04-28 2015-11-05 Sigma-Aldrich Co. Llc Modification épigénétique de génomes de mammifères à l'aide d'endonucléases ciblées

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780982B2 (en) * 1996-07-12 2004-08-24 Third Wave Technologies, Inc. Charge tags and the separation of nucleic acid molecules
US6818404B2 (en) 1997-10-23 2004-11-16 Exact Sciences Corporation Methods for detecting hypermethylated nucleic acid in heterogeneous biological samples
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
EP1278893A2 (fr) 2000-04-06 2003-01-29 Epigenomics AG Diagnostic de maladies associees a la replication de l'adn
WO2001093902A2 (fr) * 2000-06-07 2001-12-13 Biosynexus Incorporated Molecules hybrides arn/adn immunostimulatrices
US20040023230A1 (en) * 2000-06-30 2004-02-05 Alexander Olek Method and nucleic acids for pharmacogenomic methylation analysis
AUPR142500A0 (en) * 2000-11-13 2000-12-07 Human Genetic Signatures Pty Ltd A peptide nucleic acid-based assay for the detection of specific nucleic acid sequences
DE10128508A1 (de) 2001-06-14 2003-02-06 Epigenomics Ag Verfahren und Nukleinsäuren für die Differenzierung von Prostata-Tumoren
US7432050B2 (en) 2001-10-05 2008-10-07 Case Western Reserve University Methods and compositions for detecting colon cancers
JP2003144172A (ja) * 2001-11-16 2003-05-20 Nisshinbo Ind Inc メチル化検出用オリゴヌクレオチド固定化基板
US20110151438A9 (en) * 2001-11-19 2011-06-23 Affymetrix, Inc. Methods of Analysis of Methylation
DE10161625A1 (de) * 2001-12-14 2003-07-10 Epigenomics Ag Verfahren und Nukleinsäuren für die Analyse einer Lungenzell-Zellteilungsstörung
WO2003076593A2 (fr) 2002-03-07 2003-09-18 The Johns Hopkins University School Of Medicine Depistage genomique pour genes lies au cancer rendus epigenetiquement silencieux
EP1344832A1 (fr) * 2002-03-15 2003-09-17 Epigenomics AG Procédé et acides nucléiques pour l'analyse de méthylation dans le gène de melastatin
AU2003225983A1 (en) * 2002-03-25 2003-10-13 St. Jude Children's Research Hospital Cpg retrieval of dna from formalin-fixed pathology specimen for promoter methylation analysis
EP1551221A4 (fr) * 2002-07-03 2007-08-01 Coley Pharm Group Inc Compositions d'acide nucleique destinees a stimuler les reponses immunitaires
US20040053880A1 (en) 2002-07-03 2004-03-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7807803B2 (en) 2002-07-03 2010-10-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
EP1554407B1 (fr) * 2002-10-01 2009-07-29 Epigenomics AG Procede en vue du traitement de troubles de la proliferation de celllules mammaires
US20060094016A1 (en) * 2002-12-02 2006-05-04 Niall Gormley Determination of methylation of nucleic acid sequences
DE10304219B3 (de) * 2003-01-30 2004-08-19 Epigenomics Ag Verfahren zum Nachweis von Cytosin-Methylierungsmustern mit hoher Sensitivität
WO2004070062A2 (fr) * 2003-02-04 2004-08-19 Wyeth Compositions et techniques de diagnostic et de traitement de cancers
US20050009059A1 (en) * 2003-05-07 2005-01-13 Affymetrix, Inc. Analysis of methylation status using oligonucleotide arrays
US7799525B2 (en) 2003-06-17 2010-09-21 Human Genetic Signatures Pty Ltd. Methods for genome amplification
US8415100B2 (en) 2003-08-14 2013-04-09 Case Western Reserve University Methods and compositions for detecting gastrointestinal and other cancers
EP1660683B1 (fr) * 2003-08-14 2017-04-19 Case Western Reserve University Procedes et compositions pour le depistage de cancers du colon
DE10338308B4 (de) 2003-08-15 2006-10-19 Epigenomics Ag Verfahren zum Nachweis von Cytosin-Methylierungen in DNA
ATE419394T1 (de) 2003-09-04 2009-01-15 Human Genetic Signatures Pty Nukleinsäurenachweistest
EP1689885B1 (fr) * 2003-10-20 2012-10-17 St Vincent's Hospital Sydney Limited Evaluation de la prédisposition de cancer par la détermination quantitative de la méthylation dans des cellules normales d'hommes sains
EP3269826B1 (fr) * 2003-12-01 2020-03-11 Epigenomics AG Procédés et acides nucléiques pour l'analyse d'expression de gènes associés au développement des troubles de prolifération cellulaire de la prostate
EP1561821B1 (fr) 2003-12-11 2011-02-16 Epigenomics AG Marqueurs pour le pronostic de la réponse à la thérapie et/ou de la survie chez les patients du cancer du sein
EP1568786A3 (fr) * 2004-02-13 2007-08-29 Affymetrix, Inc. (A US Entity) Analyse de la méthylation utilisant des matrices d'acides nucléiques
US8168777B2 (en) 2004-04-29 2012-05-01 Human Genetic Signatures Pty. Ltd. Bisulphite reagent treatment of nucleic acid
CN101056883B (zh) 2004-09-10 2012-10-10 人类遗传标记控股有限公司 包括含有嵌入性假核苷酸(ipn)的嵌入性核酸(ina)的扩增阻断剂
KR20060026595A (ko) 2004-09-21 2006-03-24 (주)지노믹트리 제한효소와 dna 칩을 이용한 프로모터의 메틸화 검출방법
KR100617649B1 (ko) * 2004-09-24 2006-09-04 (주)지노믹트리 대장암 특이적 발현감소 유전자의 메틸화된 프로모터를 함유하는 암 진단용 조성물 및 그 용도
CA2589668C (fr) 2004-12-03 2014-09-02 Human Genetic Signatures Pty Ltd Procedes de simplification d'acides nucleiques microbiens par modification chimique de cytosines
US20060134650A1 (en) * 2004-12-21 2006-06-22 Illumina, Inc. Methylation-sensitive restriction enzyme endonuclease method of whole genome methylation analysis
WO2006088978A1 (fr) 2005-02-16 2006-08-24 Epigenomics, Inc. Procede de determination du modele de methylation d'un acide polynucleique
JP5133238B2 (ja) 2005-04-15 2013-01-30 エピゲノミックス アクチェンゲゼルシャフト 遠隔サンプル由来のdna断片を提供する方法
WO2006111586A2 (fr) * 2005-04-20 2006-10-26 Proyecto De Biomedicina Cima, S.L. Procede permettant de determiner in vitro le degre de methylation du promoteur de line-1
CN101203618B (zh) 2005-05-26 2013-03-13 人类遗传标记控股有限公司 使用含有非常规碱基的引物的等温链置换扩增
US20060292585A1 (en) * 2005-06-24 2006-12-28 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays
US8343738B2 (en) 2005-09-14 2013-01-01 Human Genetic Signatures Pty. Ltd. Assay for screening for potential cervical cancer
NZ593228A (en) 2006-01-11 2012-10-26 Genomic Health Inc Gene expression markers (inhba) for colorectal cancer prognosis
US7465544B2 (en) * 2006-01-11 2008-12-16 Wisconsin Alumni Research Foundation Synthetic cofactor analogs of S-adenosylmethionine as ligatable probes of biological methylation and methods for their use
EP1826279B1 (fr) 2006-02-28 2011-05-04 Charité - Universitätsmedizin Berlin Détection et contrôle de la qualité de lymphocytes T de régulation via l'analyse de méthylation de l'ADN du gène FoxP3
US7901882B2 (en) * 2006-03-31 2011-03-08 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays
EP2194143B1 (fr) * 2006-05-02 2016-06-29 University of Southampton Prédiction de phénotypes
WO2008096146A1 (fr) 2007-02-07 2008-08-14 Solexa Limited Préparation de matrices pour l'analyse de méthylation
RU2565540C2 (ru) * 2007-10-23 2015-10-20 Клиникал Джиномикс Пти. Лтд. Способ диагностики неоплазм-ii
JP5431351B2 (ja) 2007-11-27 2014-03-05 ヒューマン ジェネティック シグネチャーズ ピーティーワイ リミテッド バイサルファイト修飾された核酸を増幅およびコピーするための酵素
US9670546B2 (en) 2008-07-15 2017-06-06 Epigenomics Ag Methods and nucleic acids for analyses of cell proliferative disorders
EP2340314B8 (fr) * 2008-10-22 2015-02-18 Illumina, Inc. Préservation d'informations liées à une méthylation d'adn génomique
SG175832A1 (en) 2009-05-01 2011-12-29 Genomic Health Inc Gene expression profile algorithm and test for likelihood of recurrence of colorectal cancer and response to chemotherapy
US20120322670A1 (en) 2009-08-28 2012-12-20 Cellular Dynamics International, Inc. Identifying genetic variation in affected tissues
US20130195884A1 (en) * 2009-12-31 2013-08-01 Deutsches Krebsforschungszentrum Novel modulators of trail signalling
EP2702177B1 (fr) * 2011-04-28 2017-04-12 New York University Signatures génomiques d'une métastase dans le cancer de la prostate
US10435743B2 (en) 2011-05-20 2019-10-08 The Regents Of The University Of California Method to estimate age of individual based on epigenetic markers in biological sample
MX350658B (es) 2011-09-07 2017-09-13 Human Genetic Signatures Pty Ltd Ensayo de detección molecular.
EP2821487B1 (fr) * 2012-02-29 2016-10-26 Sysmex Corporation Procédé pour déterminer la présence ou l'absence de cellule cancéreuse issue d'un carcinome hépatocellulaire, et marqueur de détermination et trousse
US9732390B2 (en) 2012-09-20 2017-08-15 The Chinese University Of Hong Kong Non-invasive determination of methylome of fetus or tumor from plasma
US10706957B2 (en) 2012-09-20 2020-07-07 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
KR101302173B1 (ko) 2012-12-07 2013-08-30 이화여자대학교 산학협력단 Hmox1 유전자의 메틸화 변화를 이용한 알츠하이머 질환의 진단용 조성물 및 이를 이용한 알츠하이머 질환의 진단방법
US20140274757A1 (en) 2013-03-14 2014-09-18 Marie K. Kirby Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer
EP3850083A4 (fr) * 2018-09-14 2022-06-29 Shinozaki, Gen Systèmes et procédés de détection de risque de délire à l'aide de marqueurs épigénétiques
CN111217900A (zh) * 2018-11-27 2020-06-02 上海交通大学 一种血管新生的转录调控因子及其用途
SG11202107670TA (en) 2019-01-18 2021-08-30 Univ California Dna methylation measurement for mammals based on conserved loci
JP2022552400A (ja) 2019-10-14 2022-12-15 ジェンキュリクス インク 特定の遺伝子のcpgメチル化変化を利用した肝癌診断用組成物およびその使用
KR102637032B1 (ko) 2020-01-28 2024-02-15 주식회사 젠큐릭스 특정 유전자의 CpG 메틸화 변화를 이용한 방광암 진단용 조성물 및 이의 용도
WO2021206467A1 (fr) 2020-04-08 2021-10-14 주식회사 젠큐릭스 Composition pour diagnostiquer un cancer colorectal, un cancer rectal ou un adénome colorectal à l'aide d'un changement de méthylation cpg du gène glrb, et son utilisation
CN111500702B (zh) * 2020-04-26 2021-04-20 江苏大学附属医院 RPN1基因cg00843506位点甲基化在诊断哮喘中的用途
WO2023175019A1 (fr) 2022-03-15 2023-09-21 Genknowme S.A. Procédé pour déterminer la différence entre l'âge biologique et l'âge chronologique d'un sujet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744305A (en) * 1989-06-07 1998-04-28 Affymetrix, Inc. Arrays of materials attached to a substrate
US6017704A (en) * 1996-06-03 2000-01-25 The Johns Hopkins University School Of Medicine Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids
US6214556B1 (en) * 1997-11-27 2001-04-10 Epigenomics Ag Method for producing complex DNA methylation fingerprints
US6331393B1 (en) * 1999-05-14 2001-12-18 University Of Southern California Process for high-throughput DNA methylation analysis
US20030036081A1 (en) * 2001-07-02 2003-02-20 Epigenomics Ag Distributed system for epigenetic based prediction of complex phenotypes
US20030113750A1 (en) * 2001-06-14 2003-06-19 Juergen Distler Method and nucleic acids for the differentiation of prostate tumors

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
SE501439C2 (sv) 1993-06-22 1995-02-13 Pharmacia Lkb Biotech Sätt och anordning för analys av polynukleotidsekvenser
US5837832A (en) 1993-06-25 1998-11-17 Affymetrix, Inc. Arrays of nucleic acid probes on biological chips
WO1995011995A1 (fr) * 1993-10-26 1995-05-04 Affymax Technologies N.V. Reseaux de sondes d'acide nucleique sur des microplaquettes biologiques
JPH09506253A (ja) 1993-11-30 1997-06-24 マクギル・ユニヴァーシティ Dnaメチルトランスフェラーゼの阻害
US5858661A (en) * 1995-05-16 1999-01-12 Ramot-University Authority For Applied Research And Industrial Development Ataxia-telangiectasia gene and its genomic organization
US5871917A (en) 1996-05-31 1999-02-16 North Shore University Hospital Research Corp. Identification of differentially methylated and mutated nucleic acids
WO1998056952A1 (fr) * 1997-06-09 1998-12-17 University Of Southern California Methode de diagnostic du cancer basee sur des differences de methylation d'adn
DE19750172C1 (de) * 1997-11-12 1998-10-01 Deutsches Krebsforsch DNA mit Promotor-Aktivität für Zellzyklus-Gen
EP1036202B1 (fr) * 1997-12-05 2002-05-02 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V. Procede d'identification d'acides nucleiques par spectrometrie de masse par ionisation/desorption laser assistee par matrice
WO2000005419A1 (fr) * 1998-07-24 2000-02-03 Yeda Research And Development Company Ltd. Prevention d'une metastase au moyen de 5-aza-2'-desoxycytidine
DE19905082C1 (de) * 1999-01-29 2000-05-18 Epigenomics Gmbh Verfahren zur Identifikation von Cytosin-Methylierungsmustern in genomischen DNA-Proben
US6783933B1 (en) * 1999-09-15 2004-08-31 The Johns Hopkins University School Of Medicine CACNA1G polynucleotide, polypeptide and methods of use therefor
US7332275B2 (en) * 1999-10-13 2008-02-19 Sequenom, Inc. Methods for detecting methylated nucleotides
JP2004507214A (ja) 2000-03-15 2004-03-11 エピゲノミクス アーゲー 腫瘍抑制遺伝子と腫瘍遺伝子に関連する疾患の診断
EP1278893A2 (fr) 2000-04-06 2003-01-29 Epigenomics AG Diagnostic de maladies associees a la replication de l'adn
US20040023230A1 (en) 2000-06-30 2004-02-05 Alexander Olek Method and nucleic acids for pharmacogenomic methylation analysis
DE10037769A1 (de) 2000-08-03 2002-02-21 Epigenomics Gmbh Diagnose von mit CD24 assoziierten Krankheiten
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
DE10054972A1 (de) 2000-11-06 2002-06-06 Epigenomics Ag Diagnose von mit humos assoziierten Krankheiten
DE10054974A1 (de) 2000-11-06 2002-06-06 Epigenomics Ag Diagnose von mit Cdk4 assoziierten Krankheiten

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744305A (en) * 1989-06-07 1998-04-28 Affymetrix, Inc. Arrays of materials attached to a substrate
US6017704A (en) * 1996-06-03 2000-01-25 The Johns Hopkins University School Of Medicine Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids
US6214556B1 (en) * 1997-11-27 2001-04-10 Epigenomics Ag Method for producing complex DNA methylation fingerprints
US6331393B1 (en) * 1999-05-14 2001-12-18 University Of Southern California Process for high-throughput DNA methylation analysis
US20030113750A1 (en) * 2001-06-14 2003-06-19 Juergen Distler Method and nucleic acids for the differentiation of prostate tumors
US20030036081A1 (en) * 2001-07-02 2003-02-20 Epigenomics Ag Distributed system for epigenetic based prediction of complex phenotypes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321626A1 (en) * 2006-05-26 2009-12-31 Akos Vertes Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
US8084734B2 (en) 2006-05-26 2011-12-27 The George Washington University Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
US9000361B2 (en) 2009-01-17 2015-04-07 The George Washington University Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays
US20100323917A1 (en) * 2009-04-07 2010-12-23 Akos Vertes Tailored nanopost arrays (napa) for laser desorption ionization in mass spectrometry
US9490113B2 (en) 2009-04-07 2016-11-08 The George Washington University Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry
WO2015167959A1 (fr) * 2014-04-28 2015-11-05 Sigma-Aldrich Co. Llc Modification épigénétique de génomes de mammifères à l'aide d'endonucléases ciblées

Also Published As

Publication number Publication date
ATE353975T1 (de) 2007-03-15
EP1274866A2 (fr) 2003-01-15
EP1274865A2 (fr) 2003-01-15
US20030082609A1 (en) 2003-05-01
WO2001077376A8 (fr) 2002-03-21
EP2014776A3 (fr) 2009-04-01
DE60126593D1 (de) 2007-03-29
WO2001092565A2 (fr) 2001-12-06
AU7633001A (en) 2001-10-23
WO2001092565A8 (fr) 2002-05-30
WO2001077375A3 (fr) 2002-06-27
AU2001254788A1 (en) 2001-10-23
WO2001077375A8 (fr) 2002-10-24
WO2001077375A2 (fr) 2001-10-18
WO2001077164A8 (fr) 2002-03-21
EP1370685A2 (fr) 2003-12-17
JP2003531589A (ja) 2003-10-28
WO2001077164A3 (fr) 2002-06-20
EP1278893A2 (fr) 2003-01-29
WO2001077377A3 (fr) 2002-07-11
EP2014776A2 (fr) 2009-01-14
WO2001081622A8 (fr) 2002-05-16
JP2003534780A (ja) 2003-11-25
AU2001289600A1 (en) 2001-12-11
EP1272670A2 (fr) 2003-01-08
US20030162194A1 (en) 2003-08-28
WO2001077164A2 (fr) 2001-10-18
AU2001278420A1 (en) 2001-11-07
WO2001077376A2 (fr) 2001-10-18
WO2001077378A3 (fr) 2002-10-17
AU2001276331A1 (en) 2001-10-23
WO2001092565A3 (fr) 2002-09-06
WO2001077377A8 (fr) 2002-02-28
US20030148327A1 (en) 2003-08-07
WO2001077377A2 (fr) 2001-10-18
EP1268861A2 (fr) 2003-01-02
WO2001076451A3 (fr) 2003-09-04
WO2001076451A9 (fr) 2002-08-08
EP1268857A2 (fr) 2003-01-02
AU2001277487A1 (en) 2001-10-23
WO2001081622A3 (fr) 2003-09-04
JP2004508807A (ja) 2004-03-25
EP1274865B1 (fr) 2007-02-14
AU2001254794A1 (en) 2001-10-23
WO2001076451A2 (fr) 2001-10-18
EP1360319A2 (fr) 2003-11-12
WO2001081622A2 (fr) 2001-11-01
AU2001276330B2 (en) 2006-08-31
US20040067491A1 (en) 2004-04-08
AU2001275663A1 (en) 2001-10-23
DE60126593T2 (de) 2007-10-31
WO2001077378A2 (fr) 2001-10-18
WO2001077376A3 (fr) 2002-08-08
US7195870B2 (en) 2007-03-27
US20030148326A1 (en) 2003-08-07
US20050282157A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US20040076956A1 (en) Diagnosis of diseases associated with dna repair
US20040048254A1 (en) Diagnosis of diseases associated with tumor supressor genes and oncogenes
EP1294948A2 (fr) Diagnostic de troubles du comportement, de troubles neurologiques et de cancers
AU2001276330A1 (en) Diagnosis of diseases associated with apoptosis
US20040048278A1 (en) Diagnosis of diseases associated with the human c-mos gene
EP1344832A1 (fr) Procédé et acides nucléiques pour l'analyse de méthylation dans le gène de melastatin
AU2006213968A1 (en) Diagnosis of diseases associated with DNA replication
AU2006203475A1 (en) Diagnosis of Diseases Associated with Gene Regulation

Legal Events

Date Code Title Description
AS Assignment

Owner name: EPIGENOMICS AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OLEK, ALEXANDER;PIEPENBROCK, CHRISTIAN;BERLIN, KURT;REEL/FRAME:013829/0878

Effective date: 20021001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION