US20040076785A1 - Water-whitening resistant latex emulsion pressure sensitive adhesive and its production - Google Patents

Water-whitening resistant latex emulsion pressure sensitive adhesive and its production Download PDF

Info

Publication number
US20040076785A1
US20040076785A1 US10/462,381 US46238103A US2004076785A1 US 20040076785 A1 US20040076785 A1 US 20040076785A1 US 46238103 A US46238103 A US 46238103A US 2004076785 A1 US2004076785 A1 US 2004076785A1
Authority
US
United States
Prior art keywords
psa
acrylate
facestock
interior side
release liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/462,381
Inventor
Corlyss Richards
Yaqiu Zhao
R. Harvey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Composites IP LLC
Original Assignee
Richards Corlyss J.
Yaqiu Zhao
Harvey R. Scott
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/567,855 external-priority patent/US6359092B1/en
Priority claimed from US09/848,855 external-priority patent/US6396347B1/en
Priority to US10/462,381 priority Critical patent/US20040076785A1/en
Application filed by Richards Corlyss J., Yaqiu Zhao, Harvey R. Scott filed Critical Richards Corlyss J.
Publication of US20040076785A1 publication Critical patent/US20040076785A1/en
Priority to CNB2004800201429A priority patent/CN100422280C/en
Priority to AU2004250146A priority patent/AU2004250146A1/en
Priority to BRPI0411566-0A priority patent/BRPI0411566B1/en
Priority to EP04776519A priority patent/EP1639056B1/en
Priority to ES04776519T priority patent/ES2381111T3/en
Priority to PCT/US2004/018761 priority patent/WO2004113465A2/en
Priority to AT04776519T priority patent/ATE550400T1/en
Priority to CA2529149A priority patent/CA2529149C/en
Priority to KR1020057024151A priority patent/KR20060094846A/en
Assigned to ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC reassignment ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHLAND INC.
Assigned to ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC reassignment ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT NUMBER 6763859 PREVIOUSLY RECORDED ON REEL 016408 FRAME 0950. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ASHLAND INC.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • C09J125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive

Definitions

  • the present invention relates to pressure sensitive adhesives based on aqueous latex emulsions and processes for the preparation of the adhesives.
  • Pressure sensitive adhesives prepared according to the present invention have mean particle diameter sizes of less than or equal to about 100 nm and narrow particle size distributions. These pressure sensitive adhesives are particularly suitable for applications that require that the pressure sensitive adhesive maintain adhesion between the substrate and facestock when subjected to hot water spraying or immersion.
  • the adhesives exhibit resistance to water-whitening or “blush”, often determined by a cold or ice water immersion test.
  • Hot water adhesion is required in applications such as bottle labels where the bottles are subjected to hot water spraying in washing operations. In general, resistance to water-whitening is desirable anywhere a pressure sensitive adhesive with transparent facestock or substrate is subjected to water or high humidity. Examples include labels on the sides of trucks, signs, and bottles.
  • International Application WO 97/11996 discloses a process for preparing hot water-whitening resistant latex emulsions useful in pressure sensitive adhesive compositions.
  • the process involves copolymerizing a monomer mixture containing at least one alkyl acrylate ester of an alcohol containing at least 4 carbon atoms, at least one polar co-monomer and at least one partially soluble co-monomer present in an amount of at least about 7 weight-%.
  • Polymerization is carried out in the presence of at least one nonionic surfactant containing at least 8 moles of ethylene oxide and at least one anionic surfactant containing up to about 10 moles of ethylene oxide.
  • the polymerization product is neutralized to produce an emulsion having a pH greater than 7 and containing particles having a volume average particle size diameter up to about 165 nm.
  • An electrolyte may be added subsequent to polymerization to stabilize opacity of a film cast from the emulsion.
  • International Application WO 98/44064 discloses inherently tacky pressure sensitive adhesives prepared by emulsion polymerization of at least one monomer mixture comprising; at least one alkyl acrylate, the alkyl group of which has from 4 to 12 carbon atoms; at least one unsaturated carboxylic acid containing from about 3 to 5 carbon atoms and one styrenic monomer; wherein the particles have a mean diameter of 300 nm or less.
  • the publication discloses a single stage preparation of aqueous acrylic emulsions in examples 4D, 4E, 4F, 4G and 4H with average particle sizes ranging from 245 nm to 139 nm. Each of the examples discloses the use of silane crosslinkers to improve blush resistance.
  • the publication discloses a preferred method of preparation, which yields adhesives resistant to water-whitening and involves a sequential polymerization of a first and second monomer charge. None of the above references disclose a pressure sensitive adhesive that maintains adhesion in hot water environments and is resistant to water-whitening.
  • An aqueous, blush-retardant pressure sensitive adhesive is made from an aqueous latex emulsion having an average particle size diameter of not substantially above about 100 nm and emulsified in the presence of an emulsifier having the general formula::
  • n is an integer ranging from 1-200, preferably from 10-20.
  • the preferred aqueous latex emulsion is prepared from a monomer mixture consisting essentially of at least one alkylacrylate having at least 4 carbon atoms in the alkyl chain, at least one ethylenically unsaturated carboxylic acid or its corresponding anhydride, and at least one styrenic monomer, and has a preferred mean particle size diameter of less than or equal to about 100 nm.
  • Pressure sensitive adhesives of the present invention are useful in clear label applications, marking films, etc.
  • the inventive pressure sensitive adhesives maintain adhesion and transparency (water-whitening resistance) when immersed in boiling water for 10 minutes.
  • the inventive PSA's also possess good wet-out.
  • the polymerization is carried out in the presence of a reactive emulsifier or surfactant as described below.
  • a redox type free radical initiator system is used in an amount sufficient to promote free radical polymerization of the monomers.
  • Other ingredients commonly used in the preparation of aqueous latex emulsions such as buffering agents, chain transfer agents, crosslinking agents and the like may be present.
  • General latex technology is discussed in, Kirk-Othmer, Encyclopedia of Technology, [ 4thEd.], vol.15, p.51-65; which is hereby incorporated by reference.
  • the pressure sensitive adhesive may also contain additional components such as, biocides, wetting agents, defoamers, tackifiers, etc.
  • the reactive emulsifier used in the invention can be made in accordance with the procedure described in U.S. Pat. No. 5,332,854, the disclosure of which is expressly incorporated herein by reference.
  • the emulsifier used in the invention has the following general structure:
  • n is an integer ranging from 1-200, preferably from 10-20.
  • Examples of preferred emulsifiers included in figure (I) are commercially available from Montello (Tulsa, Okla.) as Hitenol BC-10 and Hitenol BC-20 poly(oxy-1,2-ethanediyl), ⁇ -sulfo- ⁇ -[4-nonyl-2-(1-propenyl)phenyoxy]-branched ammonium salts; yellowish brownish viscous liquid, 97.0% actives, combined sulfuric acid content of 8.70-9.70%, pH of 6.5-8.5 (1% aqueous solution) where the number of repeating oxy-1,2-ethanediyl units (n) in BC-10 is 10 and in BC-20 is 20.
  • the pendant double bond is reactive in the latex emulsion preparation if a slightly higher temperature is used, higher amounts of redox catalyst are employed, and a hydrophilic monomer is included in the monomer mix. From about 1.0 wt % to about 4.0 wt-%, preferably from about 2.0 wt % to about 3 wt % of the reactive emulsifier based on the total weight of the latex, is used.
  • a reactive emulsifier can be employed with a variety of latex emulsions for formulating the novel PSA's
  • a preferred latex emulsion is disclosed in commonly-assigned application Ser. No. 09/290,159, filed on Apr. 12, 1999.
  • the monomers used to prepare such aqueous lattices include alkyl acrylates, ethylenically unsaturated carboxylic acids and their corresponding anhydrides and styrenic monomers.
  • Alkyl acrylates are alkyl esters of acrylic or methacrylic acid having at least 4 carbon atoms in the alkyl portion of the molecule. Examples include butyl acrylate, isobutyl acrylate, heptyl acrylate, octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, and isodecyl acrylate.
  • a single alkyl acrylate or mixtures of more than one alkyl acrylate can be used.
  • a preferred alkyl acrylate is 2-ethylhexyl acrylate.
  • the alkyl acrylate monomers are present in the monomer mixture in an amount from about 50 wt-% to about 90 wt-% and more preferably from about 60 wt-% to about 65 wt-% based on the total weight of the monomer mixture.
  • Examples of ethylenically unsaturated carboxylic acids and their corresponding anhydrides used in the present invention include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, beta-carboxyethyl acrylate and maleic anhydride.
  • a single ethylenically unsaturated carboxylic acid or its corresponding anhydride or mixtures thereof can be used.
  • a preferred carboxylic acid is beta-carboxyethyl acrylate.
  • the ethylenically unsaturated carboxylic acids or their corresponding anhydrides are preferably present in the monomer mixture in amounts from about 2 wt % to about 10 wt %, more preferably from about 5 wt-% to about 10 wt %, and most preferably from about 6 wt % to about 8 wt-% based on the total weight of the monomer mixture.
  • styrenic monomers used in the present invention include styrene, t-butyl styrene, dimethyl styrene, and vinyl toluene.
  • a preferred monomer is styrene.
  • the styrenic monomers are present in the monomer mixture in amounts ranging from about 15 wt-% to about 40 wt-%, and advantageously from about 28 wt-% to about 34 wt-%, based on the total weight of the monomer mixture.
  • a hard monomer can be used with the styrenic monomer. Up to 100% of the styrenic monomer content can be replaced with a hard monomer, i.e., a monomer having a Tg>30° C.
  • Representative hard monomers include, inter alia, methyl methacrylate (MMA), isobornyl acrylate, vinyl acetate, and the like.
  • crosslinkers can be used in the present invention. Useful include internal crosslinkers. Examples of useful internal crosslinkers include vinyl triethoxysilane, dimethacrylate and N-(iso-butoxymethyl) acrylamide. The crosslinkers are preferably present in amounts up to 1 wt % based on the total weight of the monomer mixture.
  • chain transfer agents can be used in the present invention.
  • Useful chain transfer agents include those known in the art an example of which includes n-dodecyl mercaptan.
  • the chain transfer agent is preferably present in amounts up to about 0.5 wt % based on the total weight of the monomer mixture.
  • pressure sensitive adhesives prepared using the latex emulsion exhibit enhanced adhesion especially on low energy materials such as high density polyethylene (HDPE) and low density polyethylene (LDPE) while maintaining good cohesive strength and water whitening resistance.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • a redox type free radical initiator system is used to promote polymerization of the monomers.
  • the initiator is peroxide or hydroperoxide such as t-butyl hydroperoxide.
  • the reducing agent used in the redox system is zinc formaldehyde sulfoxylate, sodium formaldehyde sulfoxylate, ascorbic acid, isoascorbic acid, sodium metabisulfite and the like.
  • a preferred redox type system consists of t-butyl hydroperoxide and zinc formaldehyde sulfoxylate.
  • the aqueous latex emulsions which form the basis of the pressure sensitive adhesives of the present invention, are prepared in a single stage synthesis with or without a seed in the reaction vessel prior to beginning the monomer feed. Reaction temperatures during the monomer feed can range from about 50° C. to about 90° C.
  • a pre-emulsion an aqueous solution of the initiator, and an aqueous solution of a reducing agent are prepared in separate vessels. A reaction vessel is charged with deionized water, an anionic surfactant and a predetermined amount of initiator.
  • the mixture in the reaction vessel is heated with stirring and up to 20 wt % of the pre-emulsion, more preferably up to 8 wt-% and most preferably 4 wt-% is added to the reaction vessel along with a predetermined amount of the reducing agent to form the seed.
  • a predetermined amount of the reducing agent the “initial Zn hit”
  • the predetermined amount of reducing agent is added after the initial pre-emulsion charge is added to the reaction vessel.
  • the contents of the reaction vessel are heated to a desired temperature and the pre-emulsion, initiator and the reducing agent are simultaneously metered into the reaction vessel with stirring.
  • the pre-emulsion and initiator can be accomplished by merging the pre-emulsion and initiator feed streams and passing the merged stream through a static mixer or by simply allowing the two feed streams to converge in a common feed line.
  • the contents of the reaction vessel are cooled and alternating predetermined amounts of the initiator and reducing agent are added to the reaction vessel with stirring. This alternating initiator/reducing agent addition is preferably performed at least once.
  • the pH of the aqueous latex emulsion is preferably adjusted to a pH of about 6 to about 9 and more preferably about 6 to about 7.5.
  • an aqueous solution of ammonium hydroxide can be used to adjust the pH.
  • Other bases that may be used include amines, imines, alkali metal and alkaline metal hydroxides, carbonates, etc.
  • the pressure sensitive adhesive composition advantageously contains biocides, wetting agents, defoamers, tackifiers and the like.
  • biocides include Kathon LX, commercially available as a 1.5% solution from Rohm & Haas and Metatin 910, commercially available from ACIMA.
  • An example of a suitable wetting agent is Surfynol SE commercially available from Air Products, PLURONIC® type polyols commercially available from BASF Corp, and the like.
  • defoamers include Drewplus T-1201 and Drewplus 1-191 commercially available from Ashland Specialty Chemical Company, and Rhodoline 6681, commercially available from Rhodia.
  • tackifiers include those tackifiers known in the art for use in pressure sensitive adhesive formulations such as, rosin esters, terpene phenolic esters, rosin ester/terpene phenolic hybrids and the like.
  • a preferred tackifier is a rosin ester an example of which is Aquatac 6085 available commercially from Arizona Chemica.
  • Other tackifiers such as terpene phenolic resins an example of which is Dermulsene TR501 and hybrids such as Dermulsene RE 222 available commercially from N&D Dispersions LLC. improve adhesion but cause the loss of some blush resistance
  • the pressure sensitive adhesives described above can be used to prepare articles such as tapes, labels, signs, marking films, and the like.
  • the pressure sensitive adhesive is coated or otherwise applied to a release liner such as a siliconized paper, dried, and laminated to a facestock.
  • the pressure sensitive adhesive is coated directly on a facestock.
  • facestocks include cellulosics, metal foils, polycarbonates, polyethylene (both HDPE and LDPE), polypropylene, polyethylene terephthalate, and vinyl films.
  • the pressure sensitive adhesives typically have a viscosity after adjusting the pH to between about 6 and about 8 of from about 1,000 to about 20,000 centipoises at 25° C.
  • the pressure sensitive adhesives exhibit a shear-thinning rheology such that it allows coating even on difficult to coat films.
  • Conventional coating techniques can be used to apply the pressure sensitive adhesives. Such techniques include dipping, slot die, air knife, brush curtain, extrusion blade, reverse roll, squeeze roll coating, and the like.
  • Polyken Tack Test This test is conducted on a Polyken, Jr. Probe Tack Tester (Polyken is a trademark of the Kendall Company) supplied by Testing Machines, Inc. (Amityville, N.Y.) under the following conditions:
  • Probe 304 SS. 0.5 cm. diameter probe with a 280 grit abrasive finish.
  • Probe Contact Pressure 100 gm/cm 2
  • Annular Weight 20 gm.-100 gm/cm 2 pressure of a 0.5 cm. diameter probe
  • Procedure A one-inch square of MYLAR polyester film coated with the adhesive is placed on top of the annular weight so that the hole is completely covered by the adhesive area and this assembly placed in the weight carrier well. The machine is activated and the sequence of probe pressure and probe retraction automatically accomplished. The force required to free the probe from adhesive coated film, measured in grams/cm 2 is read from the indicator dial on the machine.
  • An adhesive is coated to 2 mil MYLAR polyester film, dried at 90° C. for 5 minutes.
  • the adhesive coated polyester facestock is immersed in a jar of tap water. The film is observed for development of haze or discoloration over a period of time.
  • a typical formulation of the invention PSA is as follows: TABLE 1 Composition of 6448-79 Latex Wt-% Based on Component Latex Water 51.80 Sodium bicarbonate 0.10 Hitenol BC-10* 1.12 70% t-Butyl hydroperoxide 0.19 2-Ethyl hexylacrylate 32.27 Styrene 7.61 Methyl methacrylate 3.81 ⁇ -carboxyethyl acrylate 2.48 Methacrylic acid 1.50 Zinc formaldehyde sulfoxylate 0.12
  • ZFS zinc formaldehyde sulfoxylate
  • additional initiator (70% t-BHP, 0.075 g.) in de-ionized water (1.25 g.) was added, followed after another 10 minutes reaction time by additional ZFS reducing agent (0.03 g.) in de-ionized water (1.25 g.).
  • additional ZFS reducing agent (0.03 g.) in de-ionized water (1.25 g.).
  • the reaction was held at 80° C. for one additional hour after which cooling was started.
  • additional initiator (70% t-BHP, 0.075 g.) in de-ionized water (1.25 g.) was added, followed after another 10 minutes by additional ZFS reducing agent (0.03 g.) in de-ionized water (1.25 g.). Cooling was continued to a temperature ⁇ 30° C. at which point the latex was removed.
  • the latex formulation in Table 3 contains additional optional components such as an internal crosslinker and chain transfer agent as well as a mixture of two polymerizable anionic surfactants.
  • TABLE 3 Component Wt-% Based on Latex Water 55.5 Sodium bicarbonate 0.09 Hitenol BC-10* 0.834 Hitenol BC-20* 0.379 70% t-Butyl hydroperoxide 0.202 2-Ethyl hexylacrylate 30.82 Styrene 0.87 Methyl methacrylate 7.91 ⁇ -carboxyethyl acrylate 2.95 Methacrylic acid 0.01 Zinc formaldehyde sulfoxylate 0.12 Vinyl Triethoxysilane A-151 0.04 n-dodecyl mercaptan 0.06
  • MAA beta-carboxyethyl acrylate
  • MMA methyl methacrylate
  • 2-EHA 2-ethyl acrylate
  • styrene 13.0 g.
  • Silquest A-151 0.8 g.
  • ZFS zinc formaldehyde solfoxylate
  • a reductant feed containing 1.2 g zinc formaldehyde solfoxylate in 42 g of water was prepared and added to the reservoir of a peristaltic pump for eventual deliver to the polymerization reaction vessel.
  • a peristaltic pump for eventual deliver to the polymerization reaction vessel.
  • 35.0 g of pre-emulsion was charged in the vessel and a single addition of 0.2 g of ZFS reducing agent in 20.0 g of water was added. Formation of a translucent blue dispersion within a few minutes indicated that polymerization had initiated. Heating was continued to the controlled polymerization temperature of 80.degree. C., whereupon the pre-emulsion and ZFS reducing agent feeds were started.
  • the addition rates were adjusted to complete the deliveries over a three-hour time period at a reaction temperature of 80.degree. C.
  • Ten minutes after completion of the feeds additional 0.51 g of initiator 70% t-BHP in 2.0 g of water was added, followed after another ten minutes reaction time by additional 0.2 g of ZFS reducing agent in 2.0 g of water (2.0 g.).
  • the reaction was held at 80.degree. C. for one additional hour after which cooling was started.
  • additional 0.51 g of initiator 70% t-BHP in 2.0 g of water was added, following after another 10 minutes by additional 0.2 g of ZFS reducing agent in 2.0 g of water. Cooling was continued to a temperature ⁇ 30. degree. C.
  • the resulting composition had solids content of 44%, a percent coagulum of less than 0.01% and a viscosity of about 500 centipoise as measured by Brook-field viscometer, and a pH of 6.8.
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 0.2 g n-dodecyl mercaptan.
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 44.3 g of carboxyethyl acrylate, 0.3 g of methacrylic acid, 462.7 g of 2-ethylhexyl acrylate, 0.63 g of Silane A151 and 0.6 g n-dodecyl mercaptan.
  • Example No.14 was repeated with the exception that pre-emulsion mix contained 0.40 g of Silane A151 and 0.73 g n-dodecyl mercaptan.
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 44.3 g of carboxyethyl acrylate, 0.2 g of methacrylic acid, 462.1 g of 2-ethylhexyl acrylate, 13.1 g of styrene, 118.6 g of methyl methacrylate, 8.9 g Hitenol BC-10, 5.7 g Hitenol BC-20, 0.84 g of Silane A151, and 219.0 g of water.
  • pre-emulsion mix contained 44.3 g of carboxyethyl acrylate, 0.2 g of methacrylic acid, 462.1 g of 2-ethylhexyl acrylate, 13.1 g of styrene, 118.6 g of methyl methacrylate, 8.9 g Hitenol BC-10, 5.7 g Hitenol BC-20, 0.84 g of Silane A151, and 219.0 g of water.
  • Example No.16 was repeated with the exception that pre-emulsion mix contained 0.2 g of n-dodecyl mercaptan.
  • Example No.16 was repeated with the exception that pre-emulsion mix contained 0.9 g of n-dodecyl mercaptan.
  • Example No.14 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation.
  • Example No.15 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation.
  • Example No.18 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation.
  • Example No.18 was repeated with the exception that pre-emulsion mix contained 35.3 g of carboxyethyl acrylate, 457.6 g of 2-ethylhexyl acrylate, 23.5 g of styrene, 109.6 g of methyl methacrylate, 12.9 g of N-(iso-Butoxymethyl) acrylamide.
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 0.4 g of 1,3-Butanediol dimethacrylate and 0.73 g of n-dodecyl mercaptan.
  • Example No.22 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation.

Abstract

An aqueous, blush-retardant pressure sensitive adhesive (PSA) is made from an aqueous latex emulsion having an average particle size diameter of not substantially above about 100 nm and emulsified in the presence of an emulsifier consisting essentially of:
Figure US20040076785A1-20040422-C00001
wherein n is an integer ranging from 1-200.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [This is a Continuation-in-Part of application Ser. No. 09/848,855 which is a Continuation-in-Part of application Ser. No. 09/567,855 now U.S. Pat. No. 6,359,092][0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • Not applicable. [0002]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to pressure sensitive adhesives based on aqueous latex emulsions and processes for the preparation of the adhesives. Pressure sensitive adhesives prepared according to the present invention have mean particle diameter sizes of less than or equal to about 100 nm and narrow particle size distributions. These pressure sensitive adhesives are particularly suitable for applications that require that the pressure sensitive adhesive maintain adhesion between the substrate and facestock when subjected to hot water spraying or immersion. In addition, the adhesives exhibit resistance to water-whitening or “blush”, often determined by a cold or ice water immersion test. Hot water adhesion is required in applications such as bottle labels where the bottles are subjected to hot water spraying in washing operations. In general, resistance to water-whitening is desirable anywhere a pressure sensitive adhesive with transparent facestock or substrate is subjected to water or high humidity. Examples include labels on the sides of trucks, signs, and bottles. [0003]
  • Methods of providing water-whitening resistant latex emulsions for use in pressure sensitive adhesives are disclosed in the art. U.S. Pat. Nos. 5,286,843 and 5,536,811 disclose a process for improving the water-whitening resistance of pressure sensitive adhesives containing an aqueous latex emulsion and water soluble ions by removing the water soluble ions and adjusting the pH to at least about 6. The patents disclose that water-soluble ions may be removed by a number of techniques including centrifugation, dialysis, precipitation and deionization with ion exchange resins. The preferred method of removing the water-soluble ions is to contact the aqueous latex emulsion, the formulated pressure sensitive adhesive containing the aqueous emulsion or both with an ion exchange resin. [0004]
  • International Application WO 97/11996 discloses a process for preparing hot water-whitening resistant latex emulsions useful in pressure sensitive adhesive compositions. The process involves copolymerizing a monomer mixture containing at least one alkyl acrylate ester of an alcohol containing at least 4 carbon atoms, at least one polar co-monomer and at least one partially soluble co-monomer present in an amount of at least about 7 weight-%. Polymerization is carried out in the presence of at least one nonionic surfactant containing at least 8 moles of ethylene oxide and at least one anionic surfactant containing up to about 10 moles of ethylene oxide. The polymerization product is neutralized to produce an emulsion having a pH greater than 7 and containing particles having a volume average particle size diameter up to about 165 nm. An electrolyte may be added subsequent to polymerization to stabilize opacity of a film cast from the emulsion. [0005]
  • International Application WO 98/44064 discloses inherently tacky pressure sensitive adhesives prepared by emulsion polymerization of at least one monomer mixture comprising; at least one alkyl acrylate, the alkyl group of which has from 4 to 12 carbon atoms; at least one unsaturated carboxylic acid containing from about 3 to 5 carbon atoms and one styrenic monomer; wherein the particles have a mean diameter of 300 nm or less. The publication discloses a single stage preparation of aqueous acrylic emulsions in examples 4D, 4E, 4F, 4G and 4H with average particle sizes ranging from 245 nm to 139 nm. Each of the examples discloses the use of silane crosslinkers to improve blush resistance. The publication discloses a preferred method of preparation, which yields adhesives resistant to water-whitening and involves a sequential polymerization of a first and second monomer charge. None of the above references disclose a pressure sensitive adhesive that maintains adhesion in hot water environments and is resistant to water-whitening. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • An aqueous, blush-retardant pressure sensitive adhesive (PSA) is made from an aqueous latex emulsion having an average particle size diameter of not substantially above about 100 nm and emulsified in the presence of an emulsifier having the general formula:: [0007]
    Figure US20040076785A1-20040422-C00002
  • Where n is an integer ranging from 1-200, preferably from 10-20. [0008]
  • The preferred aqueous latex emulsion is prepared from a monomer mixture consisting essentially of at least one alkylacrylate having at least 4 carbon atoms in the alkyl chain, at least one ethylenically unsaturated carboxylic acid or its corresponding anhydride, and at least one styrenic monomer, and has a preferred mean particle size diameter of less than or equal to about 100 nm. [0009]
  • Pressure sensitive adhesives of the present invention are useful in clear label applications, marking films, etc. The inventive pressure sensitive adhesives maintain adhesion and transparency (water-whitening resistance) when immersed in boiling water for 10 minutes. The inventive PSA's also possess good wet-out. [0010]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The polymerization is carried out in the presence of a reactive emulsifier or surfactant as described below. A redox type free radical initiator system is used in an amount sufficient to promote free radical polymerization of the monomers. Once the polymerization is complete it may be desirable to adjust the pH of the latex emulsion in order to enhance its stability. Other ingredients commonly used in the preparation of aqueous latex emulsions such as buffering agents, chain transfer agents, crosslinking agents and the like may be present. General latex technology is discussed in, Kirk-Othmer, [0011] Encyclopedia of Technology, [4thEd.], vol.15, p.51-65; which is hereby incorporated by reference. In addition to the aqueous latex emulsion, the pressure sensitive adhesive may also contain additional components such as, biocides, wetting agents, defoamers, tackifiers, etc.
  • The reactive emulsifier used in the invention can be made in accordance with the procedure described in U.S. Pat. No. 5,332,854, the disclosure of which is expressly incorporated herein by reference. [0012]
  • The emulsifier used in the invention has the following general structure: [0013]
    Figure US20040076785A1-20040422-C00003
  • Where n is an integer ranging from 1-200, preferably from 10-20. [0014]
  • Examples of preferred emulsifiers included in figure (I) are commercially available from Montello (Tulsa, Okla.) as Hitenol BC-10 and Hitenol BC-20 poly(oxy-1,2-ethanediyl),α-sulfo-ω-[4-nonyl-2-(1-propenyl)phenyoxy]-branched ammonium salts; yellowish brownish viscous liquid, 97.0% actives, combined sulfuric acid content of 8.70-9.70%, pH of 6.5-8.5 (1% aqueous solution) where the number of repeating oxy-1,2-ethanediyl units (n) in BC-10 is 10 and in BC-20 is 20. The pendant double bond is reactive in the latex emulsion preparation if a slightly higher temperature is used, higher amounts of redox catalyst are employed, and a hydrophilic monomer is included in the monomer mix. From about 1.0 wt % to about 4.0 wt-%, preferably from about 2.0 wt % to about 3 wt % of the reactive emulsifier based on the total weight of the latex, is used. [0015]
  • While use of a reactive emulsifier can be employed with a variety of latex emulsions for formulating the novel PSA's, a preferred latex emulsion is disclosed in commonly-assigned application Ser. No. 09/290,159, filed on Apr. 12, 1999. The monomers used to prepare such aqueous lattices include alkyl acrylates, ethylenically unsaturated carboxylic acids and their corresponding anhydrides and styrenic monomers. [0016]
  • Alkyl acrylates are alkyl esters of acrylic or methacrylic acid having at least 4 carbon atoms in the alkyl portion of the molecule. Examples include butyl acrylate, isobutyl acrylate, heptyl acrylate, octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, and isodecyl acrylate. A single alkyl acrylate or mixtures of more than one alkyl acrylate can be used. A preferred alkyl acrylate is 2-ethylhexyl acrylate. The alkyl acrylate monomers are present in the monomer mixture in an amount from about 50 wt-% to about 90 wt-% and more preferably from about 60 wt-% to about 65 wt-% based on the total weight of the monomer mixture. [0017]
  • Examples of ethylenically unsaturated carboxylic acids and their corresponding anhydrides used in the present invention include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, beta-carboxyethyl acrylate and maleic anhydride. A single ethylenically unsaturated carboxylic acid or its corresponding anhydride or mixtures thereof can be used. A preferred carboxylic acid is beta-carboxyethyl acrylate. The ethylenically unsaturated carboxylic acids or their corresponding anhydrides are preferably present in the monomer mixture in amounts from about 2 wt % to about 10 wt %, more preferably from about 5 wt-% to about 10 wt %, and most preferably from about 6 wt % to about 8 wt-% based on the total weight of the monomer mixture. [0018]
  • Examples of styrenic monomers used in the present invention include styrene, t-butyl styrene, dimethyl styrene, and vinyl toluene. A preferred monomer is styrene. The styrenic monomers are present in the monomer mixture in amounts ranging from about 15 wt-% to about 40 wt-%, and advantageously from about 28 wt-% to about 34 wt-%, based on the total weight of the monomer mixture. [0019]
  • Optionally, a hard monomer can be used with the styrenic monomer. Up to 100% of the styrenic monomer content can be replaced with a hard monomer, i.e., a monomer having a Tg>30° C. Representative hard monomers include, inter alia, methyl methacrylate (MMA), isobornyl acrylate, vinyl acetate, and the like. Optionally, crosslinkers can be used in the present invention. Useful include internal crosslinkers. Examples of useful internal crosslinkers include vinyl triethoxysilane, dimethacrylate and N-(iso-butoxymethyl) acrylamide. The crosslinkers are preferably present in amounts up to 1 wt % based on the total weight of the monomer mixture. [0020]
  • Optionally, chain transfer agents can be used in the present invention. Useful chain transfer agents include those known in the art an example of which includes n-dodecyl mercaptan. The chain transfer agent is preferably present in amounts up to about 0.5 wt % based on the total weight of the monomer mixture. When crosslinkers and chain transfer agents are used in combination in the preparation of the latex emulsion, pressure sensitive adhesives prepared using the latex emulsion exhibit enhanced adhesion especially on low energy materials such as high density polyethylene (HDPE) and low density polyethylene (LDPE) while maintaining good cohesive strength and water whitening resistance. [0021]
  • A redox type free radical initiator system is used to promote polymerization of the monomers. The initiator is peroxide or hydroperoxide such as t-butyl hydroperoxide. The reducing agent used in the redox system is zinc formaldehyde sulfoxylate, sodium formaldehyde sulfoxylate, ascorbic acid, isoascorbic acid, sodium metabisulfite and the like. A preferred redox type system consists of t-butyl hydroperoxide and zinc formaldehyde sulfoxylate. [0022]
  • The aqueous latex emulsions, which form the basis of the pressure sensitive adhesives of the present invention, are prepared in a single stage synthesis with or without a seed in the reaction vessel prior to beginning the monomer feed. Reaction temperatures during the monomer feed can range from about 50° C. to about 90° C. In a preferred method of preparing the aqueous latex a pre-emulsion, an aqueous solution of the initiator, and an aqueous solution of a reducing agent are prepared in separate vessels. A reaction vessel is charged with deionized water, an anionic surfactant and a predetermined amount of initiator. The mixture in the reaction vessel is heated with stirring and up to 20 wt % of the pre-emulsion, more preferably up to 8 wt-% and most preferably 4 wt-% is added to the reaction vessel along with a predetermined amount of the reducing agent to form the seed. In small batches such as laboratory size synthesis the predetermined amount of reducing agent, the “initial Zn hit”, can be added before the initial pre-emulsion charge. In larger scale synthesis it is preferred that the predetermined amount of reducing agent is added after the initial pre-emulsion charge is added to the reaction vessel. After forming the seed, the contents of the reaction vessel are heated to a desired temperature and the pre-emulsion, initiator and the reducing agent are simultaneously metered into the reaction vessel with stirring. It has been found to be advantageous to mix the pre-emulsion and initiator. This can be accomplished by merging the pre-emulsion and initiator feed streams and passing the merged stream through a static mixer or by simply allowing the two feed streams to converge in a common feed line. On completion of the pre-emulsion feed, the contents of the reaction vessel are cooled and alternating predetermined amounts of the initiator and reducing agent are added to the reaction vessel with stirring. This alternating initiator/reducing agent addition is preferably performed at least once. Once the reaction is complete the pH may be adjusted. The pH of the aqueous latex emulsion is preferably adjusted to a pH of about 6 to about 9 and more preferably about 6 to about 7.5. For efficiency and economy an aqueous solution of ammonium hydroxide can be used to adjust the pH. Other bases that may be used include amines, imines, alkali metal and alkaline metal hydroxides, carbonates, etc. [0023]
  • In addition to the aqueous latex emulsion, the pressure sensitive adhesive composition advantageously contains biocides, wetting agents, defoamers, tackifiers and the like. Examples of suitable biocides include Kathon LX, commercially available as a 1.5% solution from Rohm & Haas and Metatin 910, commercially available from ACIMA. An example of a suitable wetting agent is Surfynol SE commercially available from Air Products, PLURONIC® type polyols commercially available from BASF Corp, and the like. Examples of defoamers include Drewplus T-1201 and Drewplus 1-191 commercially available from Ashland Specialty Chemical Company, and Rhodoline 6681, commercially available from Rhodia. Examples of tackifiers include those tackifiers known in the art for use in pressure sensitive adhesive formulations such as, rosin esters, terpene phenolic esters, rosin ester/terpene phenolic hybrids and the like. A preferred tackifier is a rosin ester an example of which is Aquatac 6085 available commercially from Arizona Chemica. Other tackifiers such as terpene phenolic resins an example of which is Dermulsene TR501 and hybrids such as Dermulsene RE 222 available commercially from N&D Dispersions LLC. improve adhesion but cause the loss of some blush resistance [0024]
  • The pressure sensitive adhesives described above can be used to prepare articles such as tapes, labels, signs, marking films, and the like. In a typical construction the pressure sensitive adhesive is coated or otherwise applied to a release liner such as a siliconized paper, dried, and laminated to a facestock. Alternatively, the pressure sensitive adhesive is coated directly on a facestock. Examples of facestocks include cellulosics, metal foils, polycarbonates, polyethylene (both HDPE and LDPE), polypropylene, polyethylene terephthalate, and vinyl films. [0025]
  • The pressure sensitive adhesives typically have a viscosity after adjusting the pH to between about 6 and about 8 of from about 1,000 to about 20,000 centipoises at 25° C. The pressure sensitive adhesives exhibit a shear-thinning rheology such that it allows coating even on difficult to coat films. Conventional coating techniques can be used to apply the pressure sensitive adhesives. Such techniques include dipping, slot die, air knife, brush curtain, extrusion blade, reverse roll, squeeze roll coating, and the like. [0026]
  • While the invention has been described with reference to preferred embodiments, those skilled in the art will understand that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In this application all units are in the metric system and all amounts and percentages are by weight, unless otherwise expressly indicated. Also, all citations referred to herein are expressly incorporated by reference. [0027]
  • IN THE EXAMPLES
  • The following test procedures were used in the examples: [0028]
  • 1. 180° Peel Test: PSTC-1 (November 1975), Pressure Sensitive Tape Council, Glenview, Ill. Results of this test are reported in pounds/inch for a 1 in strip. [0029]
  • 2. 178° Shear Test: Modified PSTC-7 using 1×1×4 lbs (November 1975). [0030]
  • Pressure Sensitive Tape Council. Results of this test are reported in hours/500 gm/0.25 in [0031] 2 at 22° C.
  • 3. Polyken Tack Test: This test is conducted on a Polyken, Jr. Probe Tack Tester (Polyken is a trademark of the Kendall Company) supplied by Testing Machines, Inc. (Amityville, N.Y.) under the following conditions: [0032]
  • Probe: 304 SS. 0.5 cm. diameter probe with a 280 grit abrasive finish. [0033]
  • Dwell Time: 1 second [0034]
  • Probe Contact Pressure: 100 gm/cm[0035] 2
  • Probe Retraction Rate: 1 cm/sec. [0036]
  • Annular Weight: 20 gm.-100 gm/cm[0037] 2 pressure of a 0.5 cm. diameter probe
  • Procedure: A one-inch square of MYLAR polyester film coated with the adhesive is placed on top of the annular weight so that the hole is completely covered by the adhesive area and this assembly placed in the weight carrier well. The machine is activated and the sequence of probe pressure and probe retraction automatically accomplished. The force required to free the probe from adhesive coated film, measured in grams/cm[0038] 2 is read from the indicator dial on the machine.
  • 4. Tap Water Immersion and Blush Test. [0039]
  • An adhesive is coated to 2 mil MYLAR polyester film, dried at 90° C. for 5 minutes. The adhesive coated polyester facestock is immersed in a jar of tap water. The film is observed for development of haze or discoloration over a period of time. [0040]
  • Example 1
  • A typical formulation of the invention PSA is as follows: [0041]
    TABLE 1
    Composition of 6448-79 Latex
    Wt-% Based on
    Component Latex
    Water 51.80
    Sodium bicarbonate 0.10
    Hitenol BC-10* 1.12
    70% t-Butyl hydroperoxide 0.19
    2-Ethyl hexylacrylate 32.27
    Styrene 7.61
    Methyl methacrylate 3.81
    β-carboxyethyl acrylate 2.48
    Methacrylic acid 1.50
    Zinc formaldehyde sulfoxylate 0.12
  • A typical synthesis is set forth below. [0042]
  • Preparation of the Pre-Emulsion [0043]
  • To a 500 ml. pre-emulsion vessel equipped with a turbine agitator was charged de-ionized water (64.8 g.), NaHCO[0044] 3 (0.4 g.), 70% t-butyl hydroperoxide initiator (t-BHP, 0.60 g.), and Hitenol BC-10 polymerizable anionic surfactant (3.6 g.). The agitation was adjusted to 400 rpm. A monomer solution consisting of beta-carboxyethyl acrylate (β-CEA, 10.0 g.), methacrylic acid (MM, 2.0 g.), methyl methacrylate (MMA, 15.33 g.), 2-ethylhexyl acrylate (2-EHA, 129.9 g), and styrene (30.65 g.) then was slowly added to the vessel. Agitation of the emulsion was continued for 35 minutes after which the pre-emulsion was transferred to the reservoir of a metering pump system for eventual delivery to the polymerization reaction vessel.
  • Preparation of the Reducing Agent Feed Solution [0045]
  • A solution of zinc formaldehyde sulfoxylate (ZFS, 0.35 g) in de-ionized water (12.0 g) was prepared and added to the reservoir of a peristaltic pump for eventual deliver to the polymerization reaction vessel. [0046]
  • Reactor Charge and Polymerization [0047]
  • To a 500 ml. reaction vessel equipped with a turbine agitator, thermocouple, heating mantle, temperature regulating device, N[0048] 2 sparge, and delivery lines for the pre-emulsion and reducing agent, was added de-ionized water (118.1 g.) and Hitenol BC-10 polymerizable surfactant (0.90 g). A N2 sparge was started, the agitation set at 200 rpm, and the heating mantle was turned on. When the temperature reached 60° C., the N2 sparge was turned off and 4% (˜12 ml.) of the pre-emulsion was pumped into the reaction vessel. When the temperature reached 70° C., a single addition of ZFS reducing agent (0.07 g.) solution in de-ionized water (5.0 g.) was added. Formation of a translucent blue dispersion within a few minutes indicated that the polymerization had initiated. Heating was continued to the controlled polymerization temperature of 80° C., whereupon the pre-emulsion and ZFS reducing agent feeds were started. The addition rates were adjusted to complete the deliveries over a three-hour time period at a reaction temperature of 80° C. Ten minutes after completion of the feeds, additional initiator (70% t-BHP, 0.075 g.) in de-ionized water (1.25 g.) was added, followed after another 10 minutes reaction time by additional ZFS reducing agent (0.03 g.) in de-ionized water (1.25 g.). The reaction was held at 80° C. for one additional hour after which cooling was started. When the temperature reached 50° C. additional initiator (70% t-BHP, 0.075 g.) in de-ionized water (1.25 g.) was added, followed after another 10 minutes by additional ZFS reducing agent (0.03 g.) in de-ionized water (1.25 g.). Cooling was continued to a temperature <30° C. at which point the latex was removed.
  • Additional formulations were compounded as above and evaluated for their properties. The formulations evaluated and results recorded are set forth in Table 2: [0049]
    TABLE 2
    2 3 4 5 6 7 8 9 10 11
    % BOM
    2-Ethyl hexylacrylate 58.6 58.6 69.15 69.15 65.55 68.36 73.71 72.51 72.51 60.37
    Styrene 0 16.31 16.31 8.16 16.31 8.16 0 0 0 30.72
    Methyl methacrylate 32.62 16.31 8.16 16.31 8.16 16.31 16.31 16.31 16.31
    β-carboxyethyl acrylate 5.32 5.32 5.32 5.32 5.32 3.57 5.32 5.32 5.32 5.12
    Methacrylic acid 1.06 1.06 1.06 1.06 1.06 0 1.06 1.06 1.06 1.02
    Hitenol BC-10 2.4 2.4 2.4 2.4 3.6 3.6 3.6 4.8 4.8 2.77
    TEST RESULTS
    Shear (1 × 1 × 4 lb) 144+   144+   102.6 cf 104 cf 87+   15.9 cf 11.5 cf 12.4 cf 35.7 cf 17.86
    15 min. peel 2.3 cl 2.4 cl 2.2 cl 2.2 cl 2.3 cl 2.32 cl 1.9 cl 1.5 cl 1.5 cl 2.6 cl
    24 hr peel 3.0 cl 3.5 cl 3.2 cl 3.1 cl 3.0 cl  2.9 cl 2.8 cl 2.4 cl 2.3 cl 3.9 cl
    Polyken tack test 40 67 183 107 151 197 203 242 218 470
    Particle Size (nm) 100 86.1 86 88 81.8 81.5 92 86.4 97.6 82.1
    Blush (days) 19+   16+   2 14+   10+   6 7+  4+  3+  3+ 
    (tap water immersion)
  • Adhesive Failure Code: [0050]
  • cl=clean, adhesive failure [0051]
  • cf=cohesive failure [0052]
  • +=greater than [0053]
  • The above-tabulated results demonstrate the remarkable properties exhibited by the inventive PSA's that utilize an aqueous latex emulsion PSA that employs a reactive emulsifier as the only emulsifier used to make the latex emulsion. Addition of non-reactive emulsifiers, while a small amount is tolerable, will degrade the otherwise excellent performance exhibited by the inventive PSA's. Note also that in example 11 no hard monomer (MMA) was used and the remarkable properties still were exhibited. [0054]
  • The latex formulation in Table 3 contains additional optional components such as an internal crosslinker and chain transfer agent as well as a mixture of two polymerizable anionic surfactants. [0055]
    TABLE 3
    Component Wt-% Based on Latex
    Water 55.5
    Sodium bicarbonate 0.09
    Hitenol BC-10* 0.834
    Hitenol BC-20* 0.379
    70% t-Butyl hydroperoxide 0.202
    2-Ethyl hexylacrylate 30.82
    Styrene 0.87
    Methyl methacrylate 7.91
    β-carboxyethyl acrylate 2.95
    Methacrylic acid 0.01
    Zinc formaldehyde sulfoxylate 0.12
    Vinyl Triethoxysilane A-151 0.04
    n-dodecyl mercaptan 0.06
  • A typical synthesis is set forth below: [0056]
  • Preparation of the Pre-Emulsion: [0057]
  • To a 2000 ml. Pre-emulsion vessel equipped with a turbine agitator was charged de-ionized water (218.0 g.), NaHCO. Sub.3 (1.4 g.), 70% t-butyl hydroperoxide initiator (t-BHP, 1.9 g.), and Hitenol BC-10 and Hitenol BC-20 polymerizable anionic surfactants (14.6 g.). The agitation was adjusted to 400 rpm. A monomer solution consisting of beta-carboxyethyl acrylate (.beta.CEA, 44.3 g.) methacrylic acid (MAA, 0.2 g.), methyl methacrylate (MMA, 118.6 g.), 2-ethyl acrylate (2-EHA, 462.1 g), styrene (13.0 g.), Silquest A-151 (0.8 g.), and n-dodecyl Mercaptan (n-DDM, 0.9 g.) then was slowly added to the vessel. Agitation of the emulsion was continued for 30 minutes after which the pre-emulsion was transferred to the reservoir of a metering pump system for eventual delivery to the polymerization reaction vessel. [0058]
  • Preparation of the Reducing Agent Feed Solution: [0059]
  • A solution of zinc formaldehyde solfoxylate (ZFS, 1.15 g.) in de-ionized water (42.0 g.) was prepared and added to the reservoir of a peristaltic pump for eventual deliver to the polymerization reaction vessel. [0060]
  • Reactor Charge and Polymerization [0061]
  • To a 2000 ml. reaction vessel equipped with a turbine agitator, thermocouple, circulated water bath, temperature regulating device, N.sub.2 sparge, and delivery lines for the pre-emulsion and reducing agent, was added de-ionized water (462.0 g.) and Hitenol BC-10 polymerizable surfactant (3.6 g.). A N.sub.2 sparge was started, the agitation set at 200 rpm, and circulated water bath was turned on. When the temperature reached 70.degree.C., pre-emulsion (35.0 g.) was charged in the vessel and a single addition of ZFS reducing agent (0.2 g.) solution in de-ionized water (20.0 g.) was added. Formation of a translucent blue dispersion within a few minutes indicated that polymerization had initiated. Heating was continued to the controlled polymerization temperature of 80.degree. C., whereupon the pre-emulsion and ZFS reducing agent feeds were started. The addition rates were adjusted to complete the deliveries over a three-hour time period at a reaction temperature of 80.degree. C. Ten minutes after completion of the feeds, additional initiator (70% t-BHP, 0.51 g.) in deionized water (2.0 g.) was added, followed after another ten minutes reaction time by additional ZFS reducing agent (0.2 g.) in de-ionized water (2.0 g.). The reaction was held at 80.degree. C. for one additional hour after which cooling was started. When the temperature reached 50.degree. C., additional initiator (70% t-BHP), 0.51 g.) in de-ionized water (2.0 g.) was added, following after another 10 minutes by additional ZFS reducing agent (0.2 g.) in de-ionized water (2.0 g.). Cooling was continued to a temperature <30. degree. C. at which point the latex was neutralized with ammonia then filtered through a 300 cotton cheese cloth. [0062]
  • Example 12
  • To a 2000 mL., four necked jacketed glass reactor equipped a turbine agitator, thermocouple, circulated water bath, N.sub.2 sparge, and delivery lines for the pre-emulsion and reducing agent, was added de-ionized water (462.0 g.) and Hitenol BC-10 polymerizable surfactant (3.6 g.). A N.sub.2 sparge was started, the agitation set at 200 rpm, and circulated water bath was turned on. A monomer mix consisting of 33.7 g of carboxyethyl acrylate, 0.2 g of methacrylic acid, 475.0 g of 2-ethylhexyl acrylate, 132.0 g of styrene was added to 217.1 g of water containing 1.3 g of sodium bicarbonate, 1.9 g of 70% t-butyl hydroperoxide initiator, and 14.6 g of Hitenol BC-10 polymerizable anionic surfactant and was agitated for sufficient time until the formation of a stable pre-emulsion feed. Separately, A reductant feed containing 1.2 g zinc formaldehyde solfoxylate in 42 g of water was prepared and added to the reservoir of a peristaltic pump for eventual deliver to the polymerization reaction vessel. When the temperature reached 70.degree.C., 35.0 g of pre-emulsion was charged in the vessel and a single addition of 0.2 g of ZFS reducing agent in 20.0 g of water was added. Formation of a translucent blue dispersion within a few minutes indicated that polymerization had initiated. Heating was continued to the controlled polymerization temperature of 80.degree. C., whereupon the pre-emulsion and ZFS reducing agent feeds were started. The addition rates were adjusted to complete the deliveries over a three-hour time period at a reaction temperature of 80.degree. C. Ten minutes after completion of the feeds, additional 0.51 g of initiator 70% t-BHP in 2.0 g of water was added, followed after another ten minutes reaction time by additional 0.2 g of ZFS reducing agent in 2.0 g of water (2.0 g.). The reaction was held at 80.degree. C. for one additional hour after which cooling was started. When the temperature reached 50.degree. C., additional 0.51 g of initiator 70% t-BHP in 2.0 g of water was added, following after another 10 minutes by additional 0.2 g of ZFS reducing agent in 2.0 g of water. Cooling was continued to a temperature <30. degree. C. at which point the latex was neutralized with ammonia then filtered through a 300 cotton cheese cloth. The resulting composition had solids content of 44%, a percent coagulum of less than 0.01% and a viscosity of about 500 centipoise as measured by Brook-field viscometer, and a pH of 6.8. [0063]
  • Example 13
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 0.2 g n-dodecyl mercaptan. [0064]
  • Example 14
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 44.3 g of carboxyethyl acrylate, 0.3 g of methacrylic acid, 462.7 g of 2-ethylhexyl acrylate, 0.63 g of Silane A151 and 0.6 g n-dodecyl mercaptan. [0065]
  • Example 15
  • Example No.14 was repeated with the exception that pre-emulsion mix contained 0.40 g of Silane A151 and 0.73 g n-dodecyl mercaptan. [0066]
  • Example 16
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 44.3 g of carboxyethyl acrylate, 0.2 g of methacrylic acid, 462.1 g of 2-ethylhexyl acrylate, 13.1 g of styrene, 118.6 g of methyl methacrylate, 8.9 g Hitenol BC-10, 5.7 g Hitenol BC-20, 0.84 g of Silane A151, and 219.0 g of water. [0067]
  • Example 17
  • Example No.16 was repeated with the exception that pre-emulsion mix contained 0.2 g of n-dodecyl mercaptan. [0068]
  • Example 18
  • Example No.16 was repeated with the exception that pre-emulsion mix contained 0.9 g of n-dodecyl mercaptan. [0069]
  • Example 19
  • Example No.14 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation. [0070]
  • Example 20
  • Example No.15 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation. [0071]
  • Example 21
  • Example No.18 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation. [0072]
  • Example 22
  • Example No.18 was repeated with the exception that pre-emulsion mix contained 35.3 g of carboxyethyl acrylate, 457.6 g of 2-ethylhexyl acrylate, 23.5 g of styrene, 109.6 g of methyl methacrylate, 12.9 g of N-(iso-Butoxymethyl) acrylamide. [0073]
  • Example 23
  • Example No.12 was repeated with the exception that pre-emulsion mix contained 0.4 g of 1,3-Butanediol dimethacrylate and 0.73 g of n-dodecyl mercaptan. [0074]
  • Example 24
  • Example No.22 was repeated with addition of 20% Rosin Ester tackifier in PSA formulation. [0075]
  • The pressure sensitive adhesives of Examples 12-24 above were coated onto a 2 mil Mylar film. The film was heat dried at 90° C. oven for 5 minutes. The coated Mylar was laminated with release liner for further testing. [0076]
    TABLE 4
    Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18 Ex 22 Ex 23
    % BOM
    2-Ethyl hexylacrylate 72.1 72.1 70.3 70.3 70.3 70.3 70.3 69.5 72.1
    Styrene 20 20 20 20 1.9 1.9 1.9 3.6 20
    Methyl methacrylate 18 18 18 16.7
    β-carboxyethyl acrylate 5.1 5.1 6.7 6.7 6.7 6.7 6.7 5.4 5.1
    Methacrylic acid 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
    Vinyl Triethoxysilane A-151 0.1 0.1 0.1 0.1 0.1
    N-(iso-Butoxymethyl) acrylamide 1.96
    1,3-Butanediol dimethacryalte 0.03
    n-dodecyl mercaptan 0.03 0.09 0.11 0.02 0.13 0.13 0.11
    Hitenol BC-10 2.8 2.8 2.8 2.8 2.0 2.0 2.0 2.0 2.8
    Hitenol BC-20 0.87 0.87 0.87 0.87
    Test Results
    Shear (1 × 1 × 4 lb) 5 cf 5 cf 8.9 cf 16 cf 24+ 24+ 24+ 4 c 4 c
    30 min. peel on stainless steel 2.6 cl 3.2 cl 3.9 cl 4.1 cl 1.9 cl 2.3 cl 2.8 cl 3.0 cl 3.9 cl
    24 hours peel on stainless steel 4.1 cl 5.5 cl 6.2 cf 6.3 cf 3.3 cl 3.8 cl 4.5 cf 4.5 cf 6.9 cf
    30 min. peel on HDPE 0.3 cl 0.2 cl 1.0 cl 0.9 cl 0.2 cl 0.3 cl 0.4 cl 0.4 cl 0.8 cl
    24 hours peel on HDPE 0.3 cl 0.4 cl 0.8 cl 1.4 cl 0.3 cl 0.4 cl 0.5 cl 0.5 cl 1.3 cl
    Polyken tack test (grams) 318 281 389 393 234 262 394 493
    Blush (days) 3+  3+  3+  3+  3+  3+  3+  3+  3+ 
    (tap water immersion)
  • By combination of chain transfer agent n-dodecyl mercaptan and crosslinkers (silane, N-(iso-Butoxymethyl) acrylate, and 1,3-butanediol dimethacrylate, etc), the adhesion to polyolefin surface such as HDPE is greatly improved while the adhesive still has excellent blush resistant. [0077]
  • The adhesion to low energy surface can be further improved when the above adhesives were formulated with Rosin Ester tackifiers such as Aquatac 6085. [0078]
    TABLE 5
    Test Results Ex 19 Ex 20 Ex 21 Ex 22
    Shear (1 × 1 × 4 lb)   6 cf  10 cf 8.9 cf 8.9 cf
    30 min. peel on stainless steel 4.4 cl 4.4 cl 4.2 cl 3.3 cl
    24 hours peel on stainless steel 5.9 cf 5.8 cf 4.9 cf 4.0 cl
    30 min. peel on HDPE 2.2 cl 1.4 cl 1.5 cl 0.9 cl
    24 hours peel on HDPE 2.0 cl 1.7 cl 1.3 cl 1.5 cl
    Polyken tack test (grams) 255 506 465 493
    Blush (days)   1+   1+   1+   1+
    (tap water immersion)

Claims (35)

1. An aqueous, blush-retardant pressure sensitive adhesive (PSA), which comprises:
an aqueous latex emulsion having a mean particle size diameter of less than or equal to about 100 nm and is emulsified in the presence of an emulsifier consisting essentially of:
Figure US20040076785A1-20040422-C00004
wherein n is an integer ranging from 1-200.
1. The PSA of claim 2, wherein said emulsifier is represented by the following structure:
Figure US20040076785A1-20040422-C00005
wherein n is an integer ranging from 10-20.
3. The PSA of claim 1, wherein said latex emulsion is prepared from a monomer mixture consisting essential of:
a) at least one alkyl acrylate having at least 4 carbon atoms in the alkyl group,
b) at least one ethylenically unsaturated carboxylic acid or its corresponding anhydride, and
c) at least one styrenic monomer, in the presence of said emulsifier and a redox type free radical initiator system.
4. The PSA of claim 3, wherein the alkyl group of said alkyl acrylate having at least 4 carbon atoms in the alkyl group is one or more of butyl acrylate, 2-ethylhexyl acrylate, heptyl acrylate, octyl acrylate, isooctyl acrylate, isobutyl acrylate, or isodecyl acrylate.
5. The PSA of claim 3, where the ethylenically unsaturated carboxylic acid or its corresponding anhydride is one or more of acrylic acid, methacrylic acid, beta-carboxyethyl acrylate, maleic acid, fumaric acid, itaconic acid, or maleic anhydride.
6. The PSA of claim 3, wherein the styrenic monomer is one or more of styrene, tert-butyl styrene, dimethyl styrene, or vinyl toluene.
7. The PSA of claim 3, wherein up to 100% of the styrenic monomer is replaced with a hard monomer having a Tg>30° C.
8. The PSA of claim 7, wherein said hard monomer is one or more of methyl methacrylate, isobornyl acrylate, and vinyl acetate.
9. The PSA of claim 1, which further comprises a wetting agent.
10. The PSA of claim 1, which further comprises a tackifier.
11. The PSA of claim 2, wherein n is an integer selected from the group consisting of 10, 20, and mixtures thereof.
12. The PSA of claim 2, wherein the crosslinker is present in the aqueous latex in an amount of up to about 1 wt % based on the total weight of the monomer mixture.
13. The PSA of claim 2, wherein the chain transfer agent is present in the aqueous latex in an amount of up to about 0.5 wt % based on the total weight of the monomer mixture.
14. An aqueous, blush-retardant pressure sensitive adhesive (PSA), which comprises:
an aqueous latex emulsion having an average particle size diameter of not substantially above about 100 nm and emulsified in the presence of an emulsifier consisting essentially of:
Figure US20040076785A1-20040422-C00006
optionally a crosslinker, and
optionally a chain transfer agent,
wherein said latex emulsion is made from a monomer mixture that includes beta-carboxyethyl acrylate, and n is an interger from 1-200
15. The PSA of claim 15, wherein said monomer mixture further consists essential of:
a) at least one alkyl acrylate having at least 4 carbon atoms in the alkyl group,
b) at least one ethylenically unsaturated carboxylic acid or its corresponding anhydride, and
c) at least one styrenic monomer,
in the presence of said emulsifier and a redox type free radical initiator system.
16. The pressure sensitive adhesive of claim 15, wherein the alkyl group of said alkyl acrylate having at least 4 carbon atoms in the alkyl group is one or more of butyl acrylate, 2-ethylhexyl acrylate, heptyl acrylate, octyl acrylate, isooctyl acrylate, isobutyl acrylate, or isodecyl acrylate.
17. The pressure sensitive adhesive of claim 15, where the ethylenically unsaturated carboxylic acid or its corresponding anhydride is one or more of acrylic acid, methacrylic acid, beta-carboxyethyl acrylate, maleic acid, fumaric acid, itaconic acid, or maleic anhydride.
18. The pressure sensitive adhesive of claim 15, wherein the styrenic monomer is one or more of styrene, tert-butyl styrene, dimethyl styrene, or vinyl toluene.
19. The PSA of claim 15, wherein up to 100% of the styrenic monomer is replaced with a hard monomer having a Tg>30° C.
20. The PSA of claim 20, wherein said hard monomer is one or more of methyl methacrylate, isobornyl acrylate, and vinyl acetate.
21. The PSA of claim 15 wherein the crosslinker is present in the aqueous latex in an amount of up to about 1 wt % based on the total weight of the monomer mixture.
22. The PSA of claim 15, wherein the chain transfer agent is present in an amount of up to about 0.5 wt % based on the total weight of the monomer mixture.
23. A laminate comprising:
(a) a release liner,
(b) a facestock, and
(c) the PSA of claim 1 between and adhering the release liner and facestock.
24. A laminate comprising:
(a) a release liner,
(b) a facestock, and
(c) the PSA of claim 2 between and adhering the release liner and facestock.
25. A laminate comprising:
(a) a release liner,
(b) a facestock, and
(c) the PSA of claim 3 between and adhering the release liner and facestock.
26. A laminate comprising:
(a) a release liner,
(b) a facestock, and
(c) the PSA of claim 7 between and adhering the release liner and facestock.
27. A laminate comprising:
(a) a release liner,
(b) a facestock, and
(c) the PSA of claim 9 between and adhering the release liner and facestock.
28. A laminate comprising:
(a) a release liner,
(b) a facestock, and
(d) the PSA of claim 10 between and adhering the release liner and facestock.
29. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 1.
30. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 2.
31. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 3.
32. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 7.
33. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 8.
34. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 9.
35. A tape comprising:
a wound roll of facestock having an exterior side and an interior side, the interior side coated with the PSA of claim 10.
US10/462,381 2000-05-09 2003-06-16 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production Abandoned US20040076785A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/462,381 US20040076785A1 (en) 2000-05-09 2003-06-16 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
KR1020057024151A KR20060094846A (en) 2003-06-16 2004-06-15 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
CA2529149A CA2529149C (en) 2003-06-16 2004-06-15 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
CNB2004800201429A CN100422280C (en) 2003-06-16 2004-06-15 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
AT04776519T ATE550400T1 (en) 2003-06-16 2004-06-15 ADHESIVE IN THE FORM OF A LATEX EMULSION WITH GOOD WHITENING BEHAVIOR AND ITS PRODUCTION
AU2004250146A AU2004250146A1 (en) 2003-06-16 2004-06-15 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
BRPI0411566-0A BRPI0411566B1 (en) 2003-06-16 2004-06-15 PRESSURE SENSITIVE STICKER
EP04776519A EP1639056B1 (en) 2003-06-16 2004-06-15 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
ES04776519T ES2381111T3 (en) 2003-06-16 2004-06-15 Pressure sensitive adhesive based on a latex emulsion resistant to water whitening and its production.
PCT/US2004/018761 WO2004113465A2 (en) 2003-06-16 2004-06-15 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/567,855 US6359092B1 (en) 2000-05-09 2000-05-09 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
US09/848,855 US6396347B1 (en) 2001-05-03 2001-05-03 Low-power, low-noise dual gain amplifier topology and method
US10/462,381 US20040076785A1 (en) 2000-05-09 2003-06-16 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/848,855 Continuation-In-Part US6396347B1 (en) 2000-05-09 2001-05-03 Low-power, low-noise dual gain amplifier topology and method

Publications (1)

Publication Number Publication Date
US20040076785A1 true US20040076785A1 (en) 2004-04-22

Family

ID=33538984

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/462,381 Abandoned US20040076785A1 (en) 2000-05-09 2003-06-16 Water-whitening resistant latex emulsion pressure sensitive adhesive and its production

Country Status (10)

Country Link
US (1) US20040076785A1 (en)
EP (1) EP1639056B1 (en)
KR (1) KR20060094846A (en)
CN (1) CN100422280C (en)
AT (1) ATE550400T1 (en)
AU (1) AU2004250146A1 (en)
BR (1) BRPI0411566B1 (en)
CA (1) CA2529149C (en)
ES (1) ES2381111T3 (en)
WO (1) WO2004113465A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070123637A1 (en) * 2003-11-07 2007-05-31 Face Specialties, S.A. Adhesive composition
US20090061342A1 (en) * 2007-09-05 2009-03-05 Xerox Corporation Toner compositions
US20090299004A1 (en) * 2006-06-01 2009-12-03 Leo Ternorutsky Pressure Sensitive Adhesives
US20100016493A1 (en) * 2006-06-01 2010-01-21 Cytec Surface Specialties, S.A. Pressure Sensitive Adhesives
CN102925083A (en) * 2011-08-10 2013-02-13 吴祖顺 Aqueous hot melt adhesive and its preparation method
CN103924478A (en) * 2014-04-09 2014-07-16 北京蓝海黑石科技有限公司 Mold release agent for masking tape, and preparation method thereof
CN112080230A (en) * 2020-09-01 2020-12-15 岳刚 Anti-aging waterproof acrylic pressure-sensitive adhesive
CN112080232A (en) * 2020-09-01 2020-12-15 岳刚 Waterproof acrylic pressure-sensitive adhesive
EP3798280A1 (en) * 2019-09-24 2021-03-31 Arkema France Aqueous dispersion of polymer particles and uses thereof as an adhesive composition
WO2022129700A1 (en) * 2020-12-18 2022-06-23 Upm Raflatac Oy Acrylic pressure sensitive adhesive composition for food packaging label application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496864B (en) * 2011-01-18 2015-08-21 Symbio Inc Water-whitening resistant pressure sensitive adhesive composition and adhesive article
MX2014009330A (en) * 2012-02-03 2014-11-12 3M Innovative Properties Co Blends for pressure sensitive adhesives used in protective films.
CN104725550B (en) * 2013-12-19 2017-02-15 上海华谊丙烯酸有限公司 Water resistant whiting emulsion pressure sensitive adhesive synthesis method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286843A (en) * 1992-05-22 1994-02-15 Rohm And Haas Company Process for improving water-whitening resistance of pressure sensitive adhesives
US5332854A (en) * 1990-06-20 1994-07-26 Dai-Ichi Kogyo Seiyaku Co., Ltd. Surfactant
US5620796A (en) * 1994-04-13 1997-04-15 Sekisui Kagaku Kogyo Kabushiki Kaisha Acrylic emulsion adhesive, method of production, and adhesive tape or sheet, and surfacer
US5663241A (en) * 1994-12-13 1997-09-02 Minnesota Mining And Manufacturing Company Removable pressure sensitive adhesive and article
US5885708A (en) * 1997-02-14 1999-03-23 Minnesota Mining And Manufacturing Company Antistatic latex adhesives
US5889105A (en) * 1993-12-23 1999-03-30 Nitto Denko Corporation Aqueous dispersion-type acrylic polymer
US5916693A (en) * 1994-05-26 1999-06-29 Rohm And Haas Company Adhesive articles comprising acrylic pressure sensitive adhesives with controlled humidity response
US5928783A (en) * 1998-03-09 1999-07-27 National Starch And Chemical Investment Holding Corporation Pressure sensitive adhesive compositions
US6048611A (en) * 1992-02-03 2000-04-11 3M Innovative Properties Company High solids moisture resistant latex pressure-sensitive adhesive
US6489387B2 (en) * 1995-09-29 2002-12-03 Avery Dennison Corporation Water whitening-resistant pressure-sensitive adhesives
US20030055161A1 (en) * 2001-07-13 2003-03-20 Chen Augustin T. Process for improving water-whitening resistance of pressure sensitive adhesives

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364248B2 (en) * 1992-10-20 2003-01-08 サンスター技研株式会社 Moisture curable adhesive for polyolefin
JPH093418A (en) * 1995-06-20 1997-01-07 Sekisui Chem Co Ltd Double-sided pressure-sensitive adhesive tape
CN1200755A (en) * 1995-08-14 1998-12-02 花王株式会社 Aqueous emulsion for pressure-sensitive adhesive and process for the prodn. thereof
US5895801A (en) 1997-03-31 1999-04-20 Avery Dennison Corporation Pressure-sensitive adhesives for marking films
CN1164657C (en) * 1999-04-12 2004-09-01 阿什兰公司 Pressure sensitive adhesives
EP1240267B1 (en) * 2000-05-09 2009-07-08 Ashland Licensing and Intellectual Property LLC Water-whitening resistant latex emulsion pressure sensitive adhesive and its production

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332854A (en) * 1990-06-20 1994-07-26 Dai-Ichi Kogyo Seiyaku Co., Ltd. Surfactant
US6048611A (en) * 1992-02-03 2000-04-11 3M Innovative Properties Company High solids moisture resistant latex pressure-sensitive adhesive
US5286843A (en) * 1992-05-22 1994-02-15 Rohm And Haas Company Process for improving water-whitening resistance of pressure sensitive adhesives
US5536811A (en) * 1992-05-22 1996-07-16 Rohm And Haas Company Process for improving water-whitening resistance of pressure sensitive adhesives
US5889105A (en) * 1993-12-23 1999-03-30 Nitto Denko Corporation Aqueous dispersion-type acrylic polymer
US5620796A (en) * 1994-04-13 1997-04-15 Sekisui Kagaku Kogyo Kabushiki Kaisha Acrylic emulsion adhesive, method of production, and adhesive tape or sheet, and surfacer
US5916693A (en) * 1994-05-26 1999-06-29 Rohm And Haas Company Adhesive articles comprising acrylic pressure sensitive adhesives with controlled humidity response
US5663241A (en) * 1994-12-13 1997-09-02 Minnesota Mining And Manufacturing Company Removable pressure sensitive adhesive and article
US6489387B2 (en) * 1995-09-29 2002-12-03 Avery Dennison Corporation Water whitening-resistant pressure-sensitive adhesives
US5885708A (en) * 1997-02-14 1999-03-23 Minnesota Mining And Manufacturing Company Antistatic latex adhesives
US5928783A (en) * 1998-03-09 1999-07-27 National Starch And Chemical Investment Holding Corporation Pressure sensitive adhesive compositions
US20030055161A1 (en) * 2001-07-13 2003-03-20 Chen Augustin T. Process for improving water-whitening resistance of pressure sensitive adhesives

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070123637A1 (en) * 2003-11-07 2007-05-31 Face Specialties, S.A. Adhesive composition
US20080289759A1 (en) * 2003-11-07 2008-11-27 Tibor Pernecker Adhesive composition
US20090299004A1 (en) * 2006-06-01 2009-12-03 Leo Ternorutsky Pressure Sensitive Adhesives
US20100016493A1 (en) * 2006-06-01 2010-01-21 Cytec Surface Specialties, S.A. Pressure Sensitive Adhesives
US20090061342A1 (en) * 2007-09-05 2009-03-05 Xerox Corporation Toner compositions
CN102925083A (en) * 2011-08-10 2013-02-13 吴祖顺 Aqueous hot melt adhesive and its preparation method
CN103924478A (en) * 2014-04-09 2014-07-16 北京蓝海黑石科技有限公司 Mold release agent for masking tape, and preparation method thereof
EP3798280A1 (en) * 2019-09-24 2021-03-31 Arkema France Aqueous dispersion of polymer particles and uses thereof as an adhesive composition
WO2021058639A1 (en) * 2019-09-24 2021-04-01 Arkema France Aqueous dispersion of polymer particles and uses thereof as an adhesive composition
CN114514250A (en) * 2019-09-24 2022-05-17 阿科玛法国公司 Aqueous dispersions of polymer particles and their use as adhesive compositions
CN112080230A (en) * 2020-09-01 2020-12-15 岳刚 Anti-aging waterproof acrylic pressure-sensitive adhesive
CN112080232A (en) * 2020-09-01 2020-12-15 岳刚 Waterproof acrylic pressure-sensitive adhesive
WO2022129700A1 (en) * 2020-12-18 2022-06-23 Upm Raflatac Oy Acrylic pressure sensitive adhesive composition for food packaging label application

Also Published As

Publication number Publication date
AU2004250146A1 (en) 2004-12-29
ES2381111T3 (en) 2012-05-23
CA2529149C (en) 2012-01-03
EP1639056B1 (en) 2012-03-21
EP1639056A4 (en) 2010-01-20
CN100422280C (en) 2008-10-01
BRPI0411566A (en) 2006-08-01
KR20060094846A (en) 2006-08-30
WO2004113465A3 (en) 2005-03-24
CA2529149A1 (en) 2004-12-29
ATE550400T1 (en) 2012-04-15
EP1639056A2 (en) 2006-03-29
CN1823150A (en) 2006-08-23
BRPI0411566B1 (en) 2014-12-16
WO2004113465A2 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
EP1198502B1 (en) Pressure sensitive adhesives
EP1639056B1 (en) Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
EP1240267B1 (en) Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
KR20050084597A (en) Removable, water-whitening resistant pressure sensitive adhesives
US6620870B1 (en) Contact bonding adhesives
US6359092B1 (en) Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
JP3398491B2 (en) Acrylic emulsion type pressure sensitive adhesive composition
US10093839B2 (en) Pressure-sensitive adhesives comprising low molecular weight acid-functional acrylic resins and methods of making and using same
US6420023B1 (en) Plasticizer resistant latex emulsion pressure sensitive adhesive and its production
CN109438617B (en) High initial viscosity emulsion type acrylate pressure-sensitive adhesive with rosin-based viscous monomer and preparation method thereof
EP3880763A1 (en) Pressure-sensitive adhesive compositions and related aqueous polymer dispersions
JP3611911B2 (en) Acrylic emulsion adhesive
MXPA05013767A (en) Water-whitening resistant latex emulsion pressure sensitive adhesive and its production
JP2002105422A (en) Aqueous dispersion type pressure-sensitive repeelable adhesive

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASHLAND INC.;REEL/FRAME:016408/0950

Effective date: 20050629

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT NUMBER 6763859 PREVIOUSLY RECORDED ON REEL 016408 FRAME 0950. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ASHLAND INC.;REEL/FRAME:032867/0391

Effective date: 20050629