US20040056008A1 - Apparatus for cutting a non-metallic substrate using a laser beam - Google Patents

Apparatus for cutting a non-metallic substrate using a laser beam Download PDF

Info

Publication number
US20040056008A1
US20040056008A1 US10/667,515 US66751503A US2004056008A1 US 20040056008 A1 US20040056008 A1 US 20040056008A1 US 66751503 A US66751503 A US 66751503A US 2004056008 A1 US2004056008 A1 US 2004056008A1
Authority
US
United States
Prior art keywords
laser beam
cutting
metallic substrate
glass
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/667,515
Inventor
Dae-ho Choo
Baek-Kyun Jeon
Hyung-Woo Nam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/667,515 priority Critical patent/US20040056008A1/en
Publication of US20040056008A1 publication Critical patent/US20040056008A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Definitions

  • the present invention relates to a method and apparatus for cutting a non-metallic substrate, by which the non-metallic substrate formed of a non-metal material such as glass and silicon is precisely separated into a plurality of small pieces, and more particularly, to a method and apparatus for cutting the non-metallic substrate, in which the non-metallic substrate formed of the glass and the silicon is completely cut using only a scribing laser beam and a breaking laser beam without a cooling device.
  • the semiconductor industry which fabricates a highly-integrated and high-performance semiconductor product, has continued to develop along with a semiconductor thin film processing technique.
  • the semiconductor product has anywhere from a few to a few tens of million semiconductor devices that are integrated on a high-purity substrate called a “wafer” that is made of single crystalline silicon, as one of a non-metal material, by the semiconductor thin film processing technique.
  • the semiconductor product serves to store data in digital form or to quickly operate the stored data.
  • liquid crystal display for displaying an analog video signal processed by a data processing unit into digital form
  • LCD liquid crystal display
  • a voltage is applied to a certain molecular alignment of the liquid crystal to transform the molecular alignment into that of another.
  • the optical property, such as double refractivity, optical rotary power, dichroism and light scattering, of a liquid crystal cell is changed by the molecular alignment.
  • the semiconductor product and the LCD have a common feature in that they are formed on a non-metallic substrate, i.e., a high-purity silicon substrate and a glass substrate.
  • a non-metallic substrate i.e., a high-purity silicon substrate and a glass substrate.
  • the non-metallic substrate is subject to shock and quite fragile.
  • a plurality of semiconductor chips or LCD unit cells are formed on a sheet of wafer or a large-sized glass substrate and then easily separated into each piece.
  • the semiconductor chip In the case of the semiconductor product, after forming anywhere from a few to a few hundred semiconductor chips on a sheet of wafer at the same time, and cutting into each chip through a separating process, the semiconductor chip is packaged to produce the semiconductor product.
  • the LCD unit cell is separated from the motherboard by a separating process, and then they are assembled.
  • the motherboard used for the LCD does not have a crystal structure having the property of glass, the brittleness of the motherboard is lower than that of a silicon wafer.
  • a fine crack is formed at an edge portion of the motherboard during the separating process. The stress is amplified along the crack during a next process used to form the motherboard. Therefore, a defect is easily generated in which an undesired portion of the motherboard is cut.
  • a diamond blade in which a circular plate having a desired diameter is studded with fine diamonds at a circumferential surface thereof and rotated at a high speed, is contacted with a “cutting path” using friction to form a scribe line at a desired depth on a surface of the substrate along the cutting path. Then, a physical impact is applied to the substrate so that a crack is propagated along the scribe line to a lower face of the substrate, thereby separating the semiconductor chip or the LCD unit cell from the wafer or the glass motherboard.
  • FIG. 1 is a view of a conventional laser cutting apparatus for cutting a glass substrate using a laser beam.
  • a scribing laser beam 13 for example a CO 2 laser beam having an absorptivity of 95% or more with respect to the glass, is scanned along a cutting path 12 formed on a glass motherboard 10 so as to rapidly heat the cutting path 12 of the motherboard 10 .
  • a cooling fluid beam 14 having a markedly lower temperature than the heating temperature of the glass motherboard 10 is applied onto the rapidly heated cutting path 12 . Accordingly, while the glass motherboard 10 is rapidly cooled, a crack is generated on a surface of the motherboard 10 to a desired depth to generate a scribe line 15 . Also, the cooling fluid beam 14 may be positioned to be apart from the scribing laser beam 13 at a desired distance or to be adjacent to the scribing laser beam 13 . Otherwise, the cooling fluid beam 14 may be positioned at an inner portion of the scribing laser beam 13 .
  • a breaking laser beam 16 such as the CO 2 laser beam, is linearly scanned along the scribe line 15 so as to heat the scribe line 15 rapidly.
  • a strong tensile force is generated at the scribe line 15 in the direction shown in FIG. 1, so that the glass motherboard 10 is completely cut off along the scribe line 15 .
  • the breaking laser beam 16 is symmetrically applied with respect to the scribe line 15 to heat both sides of the scribe line 15 rapidly.
  • the conventional laser cutting apparatus is mainly comprised of a laser beam generating portion and a cooling portion so as to heat a non-metallic substrate, such as the glass having a low thermal conductivity, using the laser beam and then rapidly cool the heated portion of the non-metallic substrate. Therefore, a thermal stress is propagated to a heat moving direction, so that the substrate is cut.
  • the substrate has to be cooled rapidly, using a cooling material in gaseous or liquid state, after being scanned by the scribing laser in order to induce sudden temperature changes This limits the cutting speed of the substrate.
  • the laser beam In order to cut the glass such as Borosilicate glass (BSG) having a thermal conductivity of 0.26 kcal/mh° C. (the thermal conductivity of metal is 57 kcal/mh° C.), the laser beam should be condensed.
  • BSG Borosilicate glass
  • increasing the cutting speed causes the laser beam energy applied to each unit surface area to be lowered, even if the laser beam is condensed. Therefore, the substrate may not be fully cut. Accordingly, the cutting method using the high harmonics laser beam is inferior with respect to the cutting speed as compared with the conventional mechanical cutting method that controls the cutting speed by increasing a mechanical speed.
  • an initial crack should be generated at an initial cutting point by a physical force using the scribing laser beam such as the CO 2 laser beam, or by a laser beam based on an impact energy such as YAG. Therefore, a fabricating cost is disadvantageously increased, because the laser cutting apparatus has total three laser generating portions, to include the laser for generating the initial crack, the scribing laser and the breaking laser. Moreover, if a laser head is moved by a repeat operation of the cutting equipment, the initial crack is inconsistent with the scribe line. Therefore, the cutting process has a defect in that a cut line is irregularly formed at a starting portion of the substrate.
  • a method of cutting a non-metallic substrate which comprises the steps of scanning a first laser beam for breaking bonds between molecules of the non-metallic substrate material on a cutting path formed on the non-metallic substrate to form a scribe line having a crack to a desired depth, and scanning a second laser beam along a scanning path of the first laser beam to propagate the crack in a depth direction of the substrate and to completely separate the non-metallic substrate.
  • an apparatus for cutting a non-metallic substrate which comprises a first laser beam generating means, which generates a first laser beam for breaking bonds between molecules of the non-metallic substrate material so as to heat a cutting path formed on the non-metallic substrate and to form a scribe line having a crack to a desired depth, and a second laser beam generating means, which generates a second laser beam for propagating the crack along a scanning path of the first laser beam in a depth direction of the substrate.
  • the first laser beam having a wavelength identical with a natural frequency of the non-metallic substrate is used for breaking the molecular bonds of the non-metallic substrate.
  • a scribe line having a narrow and deep crack is formed oh the cutting path of the non-metallic substrate, for example a glass, by the first laser beam, e.g., the 4 th harmonic yttrium aluminum garnet (YAG) laser beam having a wavelength of 266 nm and an absorptivity of 90% and more with respect to the non-metallic substrate.
  • the CO 2 laser beam as the second laser beam is scanned onto the scribe line to propagate the crack in the depth direction of the substrate and to completely cut the non-metallic substrate.
  • the cutting apparatus has only a scribing laser (the first laser) and a breaking laser (the second laser) without the cooling device, thereby simplifying a structure thereof and reducing the fabricating cost in comparison with a conventional one.
  • a cutting speed can be controlled by a speed of the first laser beam, the cutting speed can be increased and controlled with ease as compared with the conventional cutting method using the temperature difference due to the heating and the cooling operation.
  • the cooling device is not employed in the cutting apparatus of an embodiment of the present invention, thereby preventing the process defect such as the contamination of the liquid crystal injecting port after the cutting operation.
  • FIG. 1 is a view of a conventional laser cutting apparatus for cutting a glass substrate using a laser beam.
  • FIG. 2 is a view showing a cutting mechanism of an apparatus for cutting the glass substrate according to one preferred embodiment of the present invention.
  • FIG. 3 is a view showing characteristics of a 4 th harmonic YAG laser used in an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of crack shapes formed on the glass motherboard by a 3 rd harmonic YAG laser and a 4 th harmonic YAG laser.
  • FIG. 5 is a graph showing a transmittance of the 3 rd harmonic YAG laser and the 4 th harmonic YAG laser with respect to the glass.
  • FIG. 2 is a view showing a cutting mechanism of an apparatus for cutting a glass substrate according to one preferred embodiment of the present invention.
  • an apparatus for cutting a glass substrate includes a laser beam generating unit for generating a laser beam to heat a cutting path 150 of a glass mother substrate 100 , and a conveying unit (not shown) for conveying the laser beam generating unit to move relative to the glass motherboard 100 .
  • the laser beam generating unit includes a first laser beam generating member 110 for providing a first laser beam 120 to heat the cutting path 150 and to form a scribe line 160 having a crack to a desired depth, and further includes a second laser beam generating member 130 for providing a second laser beam 140 to propagate the crack along a scanning path of the first laser beam 120 in a depth direction of the substrate 100 .
  • the first laser beam 120 has a wavelength identical to an inherent frequency of the glass to break molecular bonds between glass molecules of the glass mother substrate 100 .
  • the first laser beam heats the cutting path 150 of the glass mother substrate 100 to generate the crack to a desired depth from the substrate surface of the cutting path 150 and to form the scribe line 160 .
  • the first laser beam 120 is formed by a 4 th harmonic YAG laser beam having an oscillating wavelength of 166 nm and an absorptivity of 90% or more with respect to the glass. Due to having a wavelength identical to the inherent frequency of the glass mother substrate 100 , the 4 th harmonic YAG laser beam breaks the molecular bonds between the molecules of the glass mother substrate 100 and generates a surface crack (referring to FIG. 4, reference numeral 180 ) with respect to all of the scribe lines 160 .
  • the YAG laser is a typical solid-state laser like a ruby laser and it has a chemical composition of Nd:Y 3 Al 5 O 12 , in which Nd 3+ ion of about 1% is contained in YAG crystal instead of Y 3+ ion, to generate a near infrared wavelength.
  • the YAG laser can generate a laser beam having nth harmonics by using a device for generating harmonics , and thereby obtaining a 2 nd harmonic YAG laser having a wavelength of 532 nm, a 3 rd harmonic YAG laser having a wavelength of 355 nm and a 4 th harmonic YAG laser having a wavelength of 266 nm.
  • FIG. 3 is a view showing characteristics of a 4 th harmonic YAG laser used in an embodiment of the present invention.
  • f is a focal distance of the lens
  • is a wavelength of the laser beam
  • M is a material constant, which is dependent on the kind of the laser
  • D is an output width of the laser beam.
  • the 3 rd harmonic YAG laser beam used as the laser beam for generating an initial crack in the conventional laser cutting apparatus has a wavelength of 356 nm, which is longer than that of the 4 th harmonic YAG laser beam used in a preferred embodiment of the present invention, and has a spot size of 25 ⁇ m.
  • the 4 th harmonic YAG laser used in a preferred embodiment of the present invention has the wavelength of 266 nm shorter than that of the 3 rd harmonic YAG laser, the spot size of the 4 th harmonic YAG laser becomes 10 ⁇ m, which is smaller than the spot size of the 3 rd harmonic YAG laser, that is 25 ⁇ m.
  • the condensed laser beam has a smaller diameter.
  • the spot size of the 4 th harmonic YAG laser beam is smaller than that of the 3 rd harmonic YAG laser beam, a contact surface area between the glass mother substrate 100 and the laser beam is reduced to generate a sharp and deep crack. That is, a crack 170 caused by the 3 rd harmonic YAG laser beam, having the spot size of about 25 ⁇ m, is widely and shallowly formed on the glass mother substrate 100 .
  • a crack 180 caused by the 4 th harmonic YAG laser beam, having the spot size of about 10 ⁇ m is formed sharp and deeply.
  • an occurrence of a fine crack perpendicular to the cutting path 150 is prevented (see FIG. 2), thereby improving the quality of a cut face after the cutting process.
  • FIG. 5 is a graph showing a transmittance versus wavelength of the 3 rd harmonic YAG laser (wavelength of 355 nm) and the 4 th harmonic YAG laser used in a preferred embodiment of the present invention (wavelength of 266 nm) (having a thickness of 0.7 mm and 1.1 mm, respectively) with respect to the glass.
  • the latitudinal axis of the graph is a wavelength of the laser beam (in nm), and the longitudinal axis is a transmission (in %) of the laser beam.
  • the 3 rd harmonic YAG laser used in a conventional laser cutting apparatus has a transmission of about 85% with respect to the glass of 0.7 mm, and has a transmission of about 80% with respect to the glass of 1.1 mm, the YAG laser has a low absorptivity of about 10% to 15%.
  • the 4 th harmonic YAG laser used in a preferred embodiment of the present invention has a transmittance of about 5% with respect to the glass of 0.7 mm, and has a transmission of about 1% with respect to the glass of 1.1 mm
  • the YAG laser used in a preferred embodiment of the present invention has a high absorptivity of about 90 to 97%.
  • the scribing on the glass mother substrate 100 by the 4 th harmonic YAG laser be-am makes the scribe line 160 formed sharply and deeply due to the high absorptivity and also due to an increased scribing speed.
  • the speed for full cutting can be increased to 400 mm/sec.
  • the cutting speed can be controlled by only the speed of the first laser beam 120 . Therefore, the cutting speed is easily controlled when compared with that of the conventional cutting method using a temperature difference by a rapid heating operation and a rapid cooling operation.
  • the second laser beam 140 which is a high power laser beam like the CO 2 laser beam, has an elliptical beam pattern having desired short and long axes and is scanned on the glass mother substrate 100 so that the long axis of the pattern is aligned with the cutting path 150 (see FIG. 2).
  • the second laser beam 140 is placed apart from the first laser beam 120 at a desired distance and scanned on the glass substrate 100 along a scanning path of the first laser beam 120 .
  • the second laser beam 140 is scanned on the scribe line 160 that is formed on the cutting path of the glass mother substrate 100 by the first laser beam 120 .
  • the second laser beam 140 has to be scanned at a temperature that is equal to or below the fusing point of the glass.
  • the second laser beam 140 has a width, x 2 , i.e., the length of the short axis, that is wider than a width, x 1 , i.e., the length of the short axis of the first laser beam 120 .
  • the second laser beam 140 is scanned so as to have a depth shallower than that of the first laser beam 120 .
  • the depth of the laser beam means the intensity of the laser beam per unit surface area.
  • the first laser beam 120 has to be scanned as narrowly and deeply as possible to form the crack on the cutting path 160 of the glass mother substrate 100 .
  • the second laser beam 140 since the second laser beam 140 is scanned to completely cut the glass mother substrate 100 along the cutting path 150 , the second laser beam 140 has to be scanned more widely and shallowly than the first laser beam 120 so as to prevent an unnecessary crack from generating on the glass mother substrate 100 , except for the cutting path 150 .
  • a beam profile of the second laser beam 140 can be transformed through a cylindrical lens in which a concave lens and a convex lens are combined. That is, in the case of using the cylindrical lens of which an upper face is formed as the concave lens and a lower face is formed as the convex lens, if a spot-shaped laser beam is incident to the concave lens, the laser beam is transformed from the spot shape into an elongated ellipse shape having the short and long axes. If the transformed laser beam is passed through the convex lens, the short axis is shortened to form a more elongated ellipse shape having the elongated long axis compared with its short axis.
  • the cutting apparatus comprises the scribing laser (the first laser) and the breaking laser (the second laser) without a cooling device, thereby simplifying the structure thereof and reducing a fabricating cost as compared with the conventional laser cutting apparatus. Further, the cutting apparatus of an embodiment of the present invention does not employ the cooling device, thereby preventing a process defect such as contamination of a liquid crystal injecting port after the cutting operation.
  • the first laser beam 120 is scanned along the cutting path 160 set up on the glass mother substrate 100 to form the cutting path 150 . Since the first laser beam 120 has the same wavelength as the natural frequency of the glass mother substrate 100 , the first laser beam 120 breaks the molecular bonds of the glass mother substrate 100 to generate the narrow and deep crack on a surface of the cutting path 150 . Therefore, the scribe line 160 having the crack is formed along the cutting path 150 in a desired depth.
  • the second laser beam 140 is scanned along a scanning path of the first laser beam 120 to rapidly heat the scribe line 160 . That is, the second laser beam 140 is directly scanned on the scribe line 160 .
  • the laser cutting apparatus of an embodiment of the present invention since the crack is directly formed at the object like the mother glass, by the first laser beam such as the 4 th harmonic YAG laser beam, the thermal conductivity of the object to be cut is not so important as compared with the conventional cutting apparatus
  • the laser cutting apparatus of an embodiment of the present invention can be applied to the cutting method of a silicon wafer as well as to glass and ceramic materials.
  • the first laser beam has a wavelength identical with the natural frequency of the non-metallic substrate (i.e., the first laser beam is capable of breaking the molecular bonds of the non-metallic substrate material).
  • the scribe line having the narrow and deep crack is formed on the cutting path of the non-metallic substrate using the first laser beam, such as the 4 th harmonic YAG laser beam having the wavelength of 266 nm and the absorptivity of 90% and more with respect to the non-metallic substrate.
  • the second laser beam such as the CO 2 laser beam, is scanned on the scribe line to propagate the crack in the depth direction of the substrate and to completely separate the non-metallic substrate.
  • the cutting apparatus comprises only the scribing laser (the first laser) and the breaking laser (the second laser) without the cooling device, thereby simplifying the structure thereof and reducing the fabricating cost as compared with the conventional apparatus.
  • the cutting speed can be controlled by the speed of the first laser beam, the cutting speed can advantageously be increased and can be easily controlled as compared with the conventional cutting method using the temperature difference due to the heating and the cooling operation.
  • the cooling device is not employed in the cutting apparatus of an embodiment of the present invention, thereby preventing the process defect such as the contamination of the liquid crystal injecting port after the cutting operation.

Abstract

A method and an apparatus for cutting a non-metallic substrate by a laser are disclosed. In the disclosed method and apparatus, a first laser beam for breaking molecular bonds of the non-metallic substrate material is scanned on a cutting path formed on the non-metallic substrate to form a scribe line having a crack in desired depth. Then, a second laser beam is scanned along a scanning path of the first laser beam to propagate the crack in a depth direction of the substrate and to completely separate the non-metallic substrate. Since the cutting speed can be controlled by the speed of the first laser beam, the cutting speed can be increased and the cutting speed can be easily controlled as compared with the conventional cutting method using the temperature difference due to the heating operation and the cooling operation.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a method and apparatus for cutting a non-metallic substrate, by which the non-metallic substrate formed of a non-metal material such as glass and silicon is precisely separated into a plurality of small pieces, and more particularly, to a method and apparatus for cutting the non-metallic substrate, in which the non-metallic substrate formed of the glass and the silicon is completely cut using only a scribing laser beam and a breaking laser beam without a cooling device. [0002]
  • 2. Description of the Related Art [0003]
  • In recent years, the semiconductor industry, which fabricates a highly-integrated and high-performance semiconductor product, has continued to develop along with a semiconductor thin film processing technique. The semiconductor product has anywhere from a few to a few tens of million semiconductor devices that are integrated on a high-purity substrate called a “wafer” that is made of single crystalline silicon, as one of a non-metal material, by the semiconductor thin film processing technique. The semiconductor product serves to store data in digital form or to quickly operate the stored data. [0004]
  • Further, as one of the semiconductor industry applications, a liquid crystal display (LCD) for displaying an analog video signal processed by a data processing unit into digital form has been rapidly developed. In the LCD, liquid crystal is injected between two transparent substrates. A voltage is applied to a certain molecular alignment of the liquid crystal to transform the molecular alignment into that of another. The optical property, such as double refractivity, optical rotary power, dichroism and light scattering, of a liquid crystal cell is changed by the molecular alignment. [0005]
  • The semiconductor product and the LCD have a common feature in that they are formed on a non-metallic substrate, i.e., a high-purity silicon substrate and a glass substrate. Unfortunately, the non-metallic substrate is subject to shock and quite fragile. However, a plurality of semiconductor chips or LCD unit cells are formed on a sheet of wafer or a large-sized glass substrate and then easily separated into each piece. [0006]
  • In the case of the semiconductor product, after forming anywhere from a few to a few hundred semiconductor chips on a sheet of wafer at the same time, and cutting into each chip through a separating process, the semiconductor chip is packaged to produce the semiconductor product. [0007]
  • In the case of the LCD, after forming at least two or more LCD unit cells on the large-sized glass substrate called a motherboard, the LCD unit cell is separated from the motherboard by a separating process, and then they are assembled. At this time, since the separating process occurs during a last step of a production process, a defect in the separating process negatively impacts the productivity and yield of the product. Particularly, the motherboard used for the LCD does not have a crystal structure having the property of glass, the brittleness of the motherboard is lower than that of a silicon wafer. A fine crack is formed at an edge portion of the motherboard during the separating process. The stress is amplified along the crack during a next process used to form the motherboard. Therefore, a defect is easily generated in which an undesired portion of the motherboard is cut. [0008]
  • In the conventional art, a diamond blade, in which a circular plate having a desired diameter is studded with fine diamonds at a circumferential surface thereof and rotated at a high speed, is contacted with a “cutting path” using friction to form a scribe line at a desired depth on a surface of the substrate along the cutting path. Then, a physical impact is applied to the substrate so that a crack is propagated along the scribe line to a lower face of the substrate, thereby separating the semiconductor chip or the LCD unit cell from the wafer or the glass motherboard. [0009]
  • When the wafer or the glass motherboard is separated using the diamond blade, it is necessary to use a cutting margin, which is a desired surface area for the cutting process. Therefore, if the cutting process is not precisely performed, the number of obtained semiconductor chips per a unit wafer decreases due to waste. [0010]
  • Particularly, in the case of the LCD, since a cut face by the diamond blade is roughly formed, many portions on which stresses are concentrated are formed on the cut face. The stress concentration portion of the cut face is easily broken by only a slight impact applied from the outside, so that a crack or a chipping is vertically generated to the cut face. [0011]
  • Further, since the diamond blade generates so many glass particles, an additional cleaning and drying process is required to remove the glass particles. This is disadvantageous to production efficiency. [0012]
  • Recently, to solve the problem, cutting methods using a laser beam have been suggested. For example. U.S. Pat. No. 4,467,168, entitled “Method of Cutting Glass with a Laser and an Article Made Therewith”, U.S. Pat. No. 4,682,003, entitled “Laser Beam Glass Cutting” and U.S. Pat. No. 5,622,540, entitled “Method of Breaking a Glass Sheet” disclose such methods. Since the cutting method using the laser beam is a non-contact type, the vertical crack formed perpendicularly to the cut face is not generated as compared with the cutting method of a contact type using friction with the diamond blade. [0013]
  • FIG. 1 is a view of a conventional laser cutting apparatus for cutting a glass substrate using a laser beam. [0014]
  • As shown in FIG. 1, a scribing [0015] laser beam 13, for example a CO2 laser beam having an absorptivity of 95% or more with respect to the glass, is scanned along a cutting path 12 formed on a glass motherboard 10 so as to rapidly heat the cutting path 12 of the motherboard 10.
  • Then, a [0016] cooling fluid beam 14 having a markedly lower temperature than the heating temperature of the glass motherboard 10 is applied onto the rapidly heated cutting path 12. Accordingly, while the glass motherboard 10 is rapidly cooled, a crack is generated on a surface of the motherboard 10 to a desired depth to generate a scribe line 15. Also, the cooling fluid beam 14 may be positioned to be apart from the scribing laser beam 13 at a desired distance or to be adjacent to the scribing laser beam 13. Otherwise, the cooling fluid beam 14 may be positioned at an inner portion of the scribing laser beam 13.
  • Subsequently, a breaking [0017] laser beam 16, such as the CO2 laser beam, is linearly scanned along the scribe line 15 so as to heat the scribe line 15 rapidly. Thus, a strong tensile force is generated at the scribe line 15 in the direction shown in FIG. 1, so that the glass motherboard 10 is completely cut off along the scribe line 15. Meanwhile, the breaking laser beam 16 is symmetrically applied with respect to the scribe line 15 to heat both sides of the scribe line 15 rapidly.
  • The conventional laser cutting apparatus, as described above, is mainly comprised of a laser beam generating portion and a cooling portion so as to heat a non-metallic substrate, such as the glass having a low thermal conductivity, using the laser beam and then rapidly cool the heated portion of the non-metallic substrate. Therefore, a thermal stress is propagated to a heat moving direction, so that the substrate is cut. [0018]
  • However, in the conventional laser cutting apparatus, the substrate has to be cooled rapidly, using a cooling material in gaseous or liquid state, after being scanned by the scribing laser in order to induce sudden temperature changes This limits the cutting speed of the substrate. [0019]
  • In order to cut the glass such as Borosilicate glass (BSG) having a thermal conductivity of 0.26 kcal/mh° C. (the thermal conductivity of metal is 57 kcal/mh° C.), the laser beam should be condensed. However, since laser beam energy applied to each unit surface area is inversely proportional to the cutting speed, increasing the cutting speed causes the laser beam energy applied to each unit surface area to be lowered, even if the laser beam is condensed. Therefore, the substrate may not be fully cut. Accordingly, the cutting method using the high harmonics laser beam is inferior with respect to the cutting speed as compared with the conventional mechanical cutting method that controls the cutting speed by increasing a mechanical speed. [0020]
  • Further, since the propagating method of the thermal stress has to generate a micro-crack at an early stage of the cutting process, an initial crack should be generated at an initial cutting point by a physical force using the scribing laser beam such as the CO[0021] 2 laser beam, or by a laser beam based on an impact energy such as YAG. Therefore, a fabricating cost is disadvantageously increased, because the laser cutting apparatus has total three laser generating portions, to include the laser for generating the initial crack, the scribing laser and the breaking laser. Moreover, if a laser head is moved by a repeat operation of the cutting equipment, the initial crack is inconsistent with the scribe line. Therefore, the cutting process has a defect in that a cut line is irregularly formed at a starting portion of the substrate.
  • In addition, in the conventional cutting method using the laser beam described above, since the cooling material such as water, dry ice, helium gas, etc., is positively necessary, a contamination caused by the coolant may cause a problem. That is, when the glass motherboard in which a cut piece is used in the LCD, the remaining coolant is introduced to a liquid crystal injecting port after the cutting operation, thereby generating a defect in a liquid crystal injecting process Therefore, a further process is essentially required to remove the remaining cooling material after completing the cutting operation. Moreover, if gas is used as the cooling material, since the gas has a lower density than a liquid material, the gas should have a lower temperature than a liquid cooling material to increase cooling efficiency. However, if the gas temperature is lower than the ambient temperature, it quickly lowers the ambient temperature during the cutting operation, condensing the moisture around. This moisture causes defects in the cutting process. [0022]
  • SUMMARY OF THE INVENTION
  • Therefore, it is an object of the present invention to provide a method of cutting a non-metallic substrate made of glass or silicon, in which the non-metallic substrate is completely cut by using only a scribing laser beam and a breaking laser beam without a cooling device. [0023]
  • It is another object of the present invention to provide an apparatus for cutting a non-metallic substrate, which property performs the cutting method. [0024]
  • To achieve the aforementioned objects of the present invention, there is provided a method of cutting a non-metallic substrate, which comprises the steps of scanning a first laser beam for breaking bonds between molecules of the non-metallic substrate material on a cutting path formed on the non-metallic substrate to form a scribe line having a crack to a desired depth, and scanning a second laser beam along a scanning path of the first laser beam to propagate the crack in a depth direction of the substrate and to completely separate the non-metallic substrate. [0025]
  • To achieve another object of the present invention, there is provided an apparatus for cutting a non-metallic substrate, which comprises a first laser beam generating means, which generates a first laser beam for breaking bonds between molecules of the non-metallic substrate material so as to heat a cutting path formed on the non-metallic substrate and to form a scribe line having a crack to a desired depth, and a second laser beam generating means, which generates a second laser beam for propagating the crack along a scanning path of the first laser beam in a depth direction of the substrate. [0026]
  • According to the present invention as described above, the first laser beam having a wavelength identical with a natural frequency of the non-metallic substrate is used for breaking the molecular bonds of the non-metallic substrate. A scribe line having a narrow and deep crack is formed oh the cutting path of the non-metallic substrate, for example a glass, by the first laser beam, e.g., the 4[0027] th harmonic yttrium aluminum garnet (YAG) laser beam having a wavelength of 266 nm and an absorptivity of 90% and more with respect to the non-metallic substrate. Then, the CO2 laser beam as the second laser beam is scanned onto the scribe line to propagate the crack in the depth direction of the substrate and to completely cut the non-metallic substrate.
  • Accordingly, the cutting apparatus has only a scribing laser (the first laser) and a breaking laser (the second laser) without the cooling device, thereby simplifying a structure thereof and reducing the fabricating cost in comparison with a conventional one. [0028]
  • Further, since a cutting speed can be controlled by a speed of the first laser beam, the cutting speed can be increased and controlled with ease as compared with the conventional cutting method using the temperature difference due to the heating and the cooling operation. [0029]
  • Moreover, the cooling device is not employed in the cutting apparatus of an embodiment of the present invention, thereby preventing the process defect such as the contamination of the liquid crystal injecting port after the cutting operation.[0030]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above objects and other advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings. [0031]
  • FIG. 1 is a view of a conventional laser cutting apparatus for cutting a glass substrate using a laser beam. [0032]
  • FIG. 2 is a view showing a cutting mechanism of an apparatus for cutting the glass substrate according to one preferred embodiment of the present invention. [0033]
  • FIG. 3 is a view showing characteristics of a 4[0034] th harmonic YAG laser used in an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of crack shapes formed on the glass motherboard by a 3[0035] rd harmonic YAG laser and a 4th harmonic YAG laser.
  • FIG. 5 is a graph showing a transmittance of the 3[0036] rd harmonic YAG laser and the 4th harmonic YAG laser with respect to the glass.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Now, preferred embodiments of the present invention will be described in detail with reference to the annexed drawings. [0037]
  • FIG. 2 is a view showing a cutting mechanism of an apparatus for cutting a glass substrate according to one preferred embodiment of the present invention. [0038]
  • Referring to FIG. 2, an apparatus for cutting a glass substrate according to one embodiment of the present invention includes a laser beam generating unit for generating a laser beam to heat a [0039] cutting path 150 of a glass mother substrate 100, and a conveying unit (not shown) for conveying the laser beam generating unit to move relative to the glass motherboard 100.
  • The laser beam generating unit includes a first laser [0040] beam generating member 110 for providing a first laser beam 120 to heat the cutting path 150 and to form a scribe line 160 having a crack to a desired depth, and further includes a second laser beam generating member 130 for providing a second laser beam 140 to propagate the crack along a scanning path of the first laser beam 120 in a depth direction of the substrate 100.
  • The [0041] first laser beam 120 has a wavelength identical to an inherent frequency of the glass to break molecular bonds between glass molecules of the glass mother substrate 100. The first laser beam heats the cutting path 150 of the glass mother substrate 100 to generate the crack to a desired depth from the substrate surface of the cutting path 150 and to form the scribe line 160. Preferably, the first laser beam 120 is formed by a 4th harmonic YAG laser beam having an oscillating wavelength of 166 nm and an absorptivity of 90% or more with respect to the glass. Due to having a wavelength identical to the inherent frequency of the glass mother substrate 100, the 4th harmonic YAG laser beam breaks the molecular bonds between the molecules of the glass mother substrate 100 and generates a surface crack (referring to FIG. 4, reference numeral 180) with respect to all of the scribe lines 160.
  • The YAG laser is a typical solid-state laser like a ruby laser and it has a chemical composition of Nd:Y[0042] 3Al5O12, in which Nd3+ ion of about 1% is contained in YAG crystal instead of Y3+ ion, to generate a near infrared wavelength. The YAG laser can generate a laser beam having nth harmonics by using a device for generating harmonics , and thereby obtaining a 2nd harmonic YAG laser having a wavelength of 532 nm, a 3rd harmonic YAG laser having a wavelength of 355 nm and a 4th harmonic YAG laser having a wavelength of 266 nm.
  • FIG. 3 is a view showing characteristics of a 4[0043] th harmonic YAG laser used in an embodiment of the present invention.
  • Referring to FIG. 3, a spot size “d” of the 4[0044] th harmonic YAG laser beam that is incident through a convex lens 200 can be calculated by the following equation: d = 4 f λ M 2 π D ,
    Figure US20040056008A1-20040325-M00001
  • where “f” is a focal distance of the lens, “λ” is a wavelength of the laser beam, M is a material constant, which is dependent on the kind of the laser, and D is an output width of the laser beam. [0045]
  • As shown in the above equation, since the spot size “d” is in proportion to the wavelength of the laser beam, as the wavelength becomes shorter, the spot size becomes smaller. Therefore, the shorter wavelength increases the beam intensity. The 3[0046] rd harmonic YAG laser beam used as the laser beam for generating an initial crack in the conventional laser cutting apparatus has a wavelength of 356 nm, which is longer than that of the 4th harmonic YAG laser beam used in a preferred embodiment of the present invention, and has a spot size of 25 μm.
  • On the contrary, since the 4[0047] th harmonic YAG laser used in a preferred embodiment of the present invention has the wavelength of 266 nm shorter than that of the 3rd harmonic YAG laser, the spot size of the 4th harmonic YAG laser becomes 10 μm, which is smaller than the spot size of the 3rd harmonic YAG laser, that is 25 μm.
  • In order to increase a scribing accuracy, preferably the condensed laser beam has a smaller diameter. Thus, as shown in FIG. 4, since the spot size of the 4[0048] th harmonic YAG laser beam is smaller than that of the 3rd harmonic YAG laser beam, a contact surface area between the glass mother substrate 100 and the laser beam is reduced to generate a sharp and deep crack. That is, a crack 170 caused by the 3rd harmonic YAG laser beam, having the spot size of about 25 μm, is widely and shallowly formed on the glass mother substrate 100. However, a crack 180 caused by the 4th harmonic YAG laser beam, having the spot size of about 10 μm, is formed sharp and deeply. Thus, an occurrence of a fine crack perpendicular to the cutting path 150 is prevented (see FIG. 2), thereby improving the quality of a cut face after the cutting process.
  • FIG. 5 is a graph showing a transmittance versus wavelength of the 3[0049] rd harmonic YAG laser (wavelength of 355 nm) and the 4th harmonic YAG laser used in a preferred embodiment of the present invention (wavelength of 266 nm) (having a thickness of 0.7 mm and 1.1 mm, respectively) with respect to the glass. In FIG. 6, the latitudinal axis of the graph is a wavelength of the laser beam (in nm), and the longitudinal axis is a transmission (in %) of the laser beam.
  • Referring to FIG. 5, since the 3[0050] rd harmonic YAG laser used in a conventional laser cutting apparatus has a transmission of about 85% with respect to the glass of 0.7 mm, and has a transmission of about 80% with respect to the glass of 1.1 mm, the YAG laser has a low absorptivity of about 10% to 15%. On the contrary, since the 4th harmonic YAG laser used in a preferred embodiment of the present invention has a transmittance of about 5% with respect to the glass of 0.7 mm, and has a transmission of about 1% with respect to the glass of 1.1 mm, the YAG laser used in a preferred embodiment of the present invention has a high absorptivity of about 90 to 97%.
  • Therefore, the scribing on the [0051] glass mother substrate 100 by the 4th harmonic YAG laser be-am makes the scribe line 160 formed sharply and deeply due to the high absorptivity and also due to an increased scribing speed. For example, when cutting an LCD panel of the glass having the thickness of 0.7 mm by the laser cutting apparatus according to an embodiment of the present invention, the speed for full cutting can be increased to 400 mm/sec. Further, since cooling means are not required in the cutting apparatus, the cutting speed can be controlled by only the speed of the first laser beam 120. Therefore, the cutting speed is easily controlled when compared with that of the conventional cutting method using a temperature difference by a rapid heating operation and a rapid cooling operation.
  • The [0052] second laser beam 140, which is a high power laser beam like the CO2 laser beam, has an elliptical beam pattern having desired short and long axes and is scanned on the glass mother substrate 100 so that the long axis of the pattern is aligned with the cutting path 150 (see FIG. 2). The second laser beam 140 is placed apart from the first laser beam 120 at a desired distance and scanned on the glass substrate 100 along a scanning path of the first laser beam 120. Preferably, the second laser beam 140 is scanned on the scribe line 160 that is formed on the cutting path of the glass mother substrate 100 by the first laser beam 120. At this time, if the scribe line 160 is heated over a fusing point of the glass, a portion in which the crack is generated is Functioned again. Therefore, the second laser beam 140 has to be scanned at a temperature that is equal to or below the fusing point of the glass.
  • Further, referring to FIG. 2, the [0053] second laser beam 140 has a width, x2, i.e., the length of the short axis, that is wider than a width, x1, i.e., the length of the short axis of the first laser beam 120. The second laser beam 140 is scanned so as to have a depth shallower than that of the first laser beam 120. As used herein, the depth of the laser beam means the intensity of the laser beam per unit surface area.
  • The [0054] first laser beam 120 has to be scanned as narrowly and deeply as possible to form the crack on the cutting path 160 of the glass mother substrate 100. On the other side, since the second laser beam 140 is scanned to completely cut the glass mother substrate 100 along the cutting path 150, the second laser beam 140 has to be scanned more widely and shallowly than the first laser beam 120 so as to prevent an unnecessary crack from generating on the glass mother substrate 100, except for the cutting path 150.
  • A beam profile of the [0055] second laser beam 140 can be transformed through a cylindrical lens in which a concave lens and a convex lens are combined. That is, in the case of using the cylindrical lens of which an upper face is formed as the concave lens and a lower face is formed as the convex lens, if a spot-shaped laser beam is incident to the concave lens, the laser beam is transformed from the spot shape into an elongated ellipse shape having the short and long axes. If the transformed laser beam is passed through the convex lens, the short axis is shortened to form a more elongated ellipse shape having the elongated long axis compared with its short axis.
  • According to the laser cutting apparatus of an embodiment of the present invention as described above, the cutting apparatus comprises the scribing laser (the first laser) and the breaking laser (the second laser) without a cooling device, thereby simplifying the structure thereof and reducing a fabricating cost as compared with the conventional laser cutting apparatus. Further, the cutting apparatus of an embodiment of the present invention does not employ the cooling device, thereby preventing a process defect such as contamination of a liquid crystal injecting port after the cutting operation. [0056]
  • Now, a method of cutting the [0057] glass mother substrate 100 using the cutting apparatus shown in FIG. 2 is described more fully.
  • First, the [0058] first laser beam 120 is scanned along the cutting path 160 set up on the glass mother substrate 100 to form the cutting path 150. Since the first laser beam 120 has the same wavelength as the natural frequency of the glass mother substrate 100, the first laser beam 120 breaks the molecular bonds of the glass mother substrate 100 to generate the narrow and deep crack on a surface of the cutting path 150. Therefore, the scribe line 160 having the crack is formed along the cutting path 150 in a desired depth.
  • While the [0059] first laser beam 120 is continuously advanced along the cutting path 150, the second laser beam 140 is scanned along a scanning path of the first laser beam 120 to rapidly heat the scribe line 160. That is, the second laser beam 140 is directly scanned on the scribe line 160.
  • Then, a thermal gradient is rapidly generated only in a depth direction of the [0060] glass mother substrate 100. Accordingly, the crack formed on the surface of the scribe line 160 is straight and propagated to a lower face of the glass mother substrate 100 to completely separate the glass mother substrate 100.
  • In the conventional laser cutting apparatus using the cooling device, since the fine crack is formed using the temperature difference due to the rapid heating and the rapid cooling, an object to be cut, such as the glass mother substrate, has to be locally and rapidly heated. Therefore, since heat transfer to a portion that is not heated by the laser beam should be reduced, a thermal conductivity of the object to be cut becomes an important factor and the object to be cut is limited to the glass and a ceramic material having a low thermal conductivity. [0061]
  • On the contrary, according to the cutting apparatus of an embodiment of the present invention, since the crack is directly formed at the object like the mother glass, by the first laser beam such as the 4[0062] th harmonic YAG laser beam, the thermal conductivity of the object to be cut is not so important as compared with the conventional cutting apparatus Thus, the laser cutting apparatus of an embodiment of the present invention can be applied to the cutting method of a silicon wafer as well as to glass and ceramic materials.
  • According to an embodiment of the present invention as described above, the first laser beam has a wavelength identical with the natural frequency of the non-metallic substrate (i.e., the first laser beam is capable of breaking the molecular bonds of the non-metallic substrate material). The scribe line having the narrow and deep crack is formed on the cutting path of the non-metallic substrate using the first laser beam, such as the 4[0063] th harmonic YAG laser beam having the wavelength of 266 nm and the absorptivity of 90% and more with respect to the non-metallic substrate. Then, the second laser beam, such as the CO2 laser beam, is scanned on the scribe line to propagate the crack in the depth direction of the substrate and to completely separate the non-metallic substrate.
  • Accordingly, the cutting apparatus comprises only the scribing laser (the first laser) and the breaking laser (the second laser) without the cooling device, thereby simplifying the structure thereof and reducing the fabricating cost as compared with the conventional apparatus. [0064]
  • Further, since the cutting speed can be controlled by the speed of the first laser beam, the cutting speed can advantageously be increased and can be easily controlled as compared with the conventional cutting method using the temperature difference due to the heating and the cooling operation. [0065]
  • Moreover, the cooling device is not employed in the cutting apparatus of an embodiment of the present invention, thereby preventing the process defect such as the contamination of the liquid crystal injecting port after the cutting operation. [0066]
  • While the present invention has been described in detail, it should be understood that various changes, substitutions and alterations could be made hereto without departing from the spirit and scope of the invention as defined by the appended claims. [0067]

Claims (13)

What is claimed is:
1. A method for cutting a non-metallic substrate, comprising the steps of:
scanning a first laser beam for breaking molecular bonds of the non-metallic substrate material on a cutting path formed on the non-metallic substrate to form a scribe line having a crack to a desired depth; and
scanning a second laser beam along a scanning path of the first laser beam to propagate the crack in a depth direction of the substrate and to completely separate the non-metallic substrate.
2. The method of claim 1, wherein the first laser beam has a wavelength having an absorptivity of 90% or more with respect to the non-metallic substrate.
3. The method of claim 2, wherein the non-metallic substrate is a glass, and the first laser beam is a 4th harmonics YAG laser beam having a wavelength of 266 nm.
4. The method of claim 1, wherein the first laser beam is scanned from a starting point of the cutting path to an end point of the cutting path.
5. The method of claim 1, wherein the second laser beam is a CO2 laser beam.
6. The method of claim 1, wherein the first laser beam has a width less than that of the second laser beam.
7. The method of claim 1, wherein the second laser beam is directly scanned onto the scribe line.
8. An apparatus for cutting a non-metallic substrate, comprising:
a first laser beam generating means that generates a first laser beam for breaking molecular bonds of the non-metallic substrate material so as to heat a cutting path formed on the non-metallic substrate and to form a scribe line having a crack to a desired depth; and
a second laser beam generating means that generates a second laser beam for propagating the crack along a scanning path of the first laser beam in a depth direction of the substrate.
9. The apparatus of claim 8, wherein the first laser beam has a wavelength having an absorptivity of 90% or more with respect to the non-metallic substrate.
10. The apparatus of claim 9, wherein the first laser beam is a 4th harmonics YAG laser beam having a wavelength of 266 nm.
11. The apparatus of claim 8, wherein the second laser beam is a CO2 laser beam.
12. The apparatus of claim 8, wherein the first laser beam has a width less than that of the second laser beam.
13. The apparatus of claim 8, wherein the second laser beam is directly scanned onto the scribe line.
US10/667,515 2001-05-21 2003-09-23 Apparatus for cutting a non-metallic substrate using a laser beam Abandoned US20040056008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/667,515 US20040056008A1 (en) 2001-05-21 2003-09-23 Apparatus for cutting a non-metallic substrate using a laser beam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020010027677A KR100701013B1 (en) 2001-05-21 2001-05-21 Method and Apparatus for cutting non-metal substrate using a laser beam
KR2001-27677 2001-05-21
US10/150,971 US6653210B2 (en) 2001-05-21 2002-05-21 Method and apparatus for cutting a non-metallic substrate using a laser beam
US10/667,515 US20040056008A1 (en) 2001-05-21 2003-09-23 Apparatus for cutting a non-metallic substrate using a laser beam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/150,971 Division US6653210B2 (en) 2001-05-21 2002-05-21 Method and apparatus for cutting a non-metallic substrate using a laser beam

Publications (1)

Publication Number Publication Date
US20040056008A1 true US20040056008A1 (en) 2004-03-25

Family

ID=19709709

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/150,971 Expired - Lifetime US6653210B2 (en) 2001-05-21 2002-05-21 Method and apparatus for cutting a non-metallic substrate using a laser beam
US10/667,515 Abandoned US20040056008A1 (en) 2001-05-21 2003-09-23 Apparatus for cutting a non-metallic substrate using a laser beam

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/150,971 Expired - Lifetime US6653210B2 (en) 2001-05-21 2002-05-21 Method and apparatus for cutting a non-metallic substrate using a laser beam

Country Status (5)

Country Link
US (2) US6653210B2 (en)
JP (1) JP2002346782A (en)
KR (1) KR100701013B1 (en)
CN (1) CN1268466C (en)
TW (1) TW496807B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188400A1 (en) * 2001-09-10 2004-09-30 Micron Technology, Inc. Wafer dicing device and method
US20040221451A1 (en) * 2003-05-06 2004-11-11 Micron Technology, Inc. Method for packaging circuits and packaged circuits
GB2419852A (en) * 2004-11-05 2006-05-10 Lg Philips Lcd Co Ltd Scribing apparatus, substrate cutting apparatus equipped with the scribing apparatus and substrate cutting method using the substrate cutting apparatus
US20060264064A1 (en) * 2004-08-02 2006-11-23 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US20070153455A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Method for cutting liquid crystal display panel and method for fabricating liquid crystal display panel using the same
US20080035617A1 (en) * 2006-08-11 2008-02-14 Foxsemicon Integrated Technology, Inc. Method for processing brittle substrates without micro-cracks
US20080135532A1 (en) * 2004-04-27 2008-06-12 Mitsuboshi Diamond Industrial Co., Ltd. Method of and an Apparatus for Forming a Perpendicular Crack in a Brittle Substrate
US20100078417A1 (en) * 2008-09-29 2010-04-01 Anatoli Anatolyevich Abramov Laser separation of glass sheets
US20100140794A1 (en) * 2001-10-08 2010-06-10 Chia Yong Poo Apparatus and method for packaging circuits
US20100305910A1 (en) * 2009-05-26 2010-12-02 Bekir Sami Yilbas Method of modeling residual stresses during laser cutting
US20110018143A1 (en) * 2002-06-14 2011-01-27 Swee Kwang Chua Wafer level packaging
US20110195535A1 (en) * 2010-02-05 2011-08-11 Disco Corporation Optical device wafer processing method
US20110195536A1 (en) * 2010-02-05 2011-08-11 Disco Corporation Optical device wafer processing method
US20110195537A1 (en) * 2010-02-05 2011-08-11 Disco Corporation Optical device wafer processing method

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW419867B (en) * 1998-08-26 2001-01-21 Samsung Electronics Co Ltd Laser cutting apparatus and method
JP4659300B2 (en) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
BE1013787A3 (en) * 2000-10-24 2002-08-06 Cuvelier Georges Method and installation for cutting glass pieces.
KR100786179B1 (en) * 2002-02-02 2007-12-18 삼성전자주식회사 Method and apparatus for cutting non-metallic substrate
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
EP2216128B1 (en) * 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
EP2400539B1 (en) 2002-03-12 2017-07-26 Hamamatsu Photonics K.K. Substrate dividing method
TWI520269B (en) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
JP4143607B2 (en) * 2002-12-03 2008-09-03 富士通株式会社 Laser irradiation apparatus for bending and laser irradiation method
TW200510152A (en) * 2003-01-10 2005-03-16 Mitsuboshi Diamond Ind Co Ltd Brittle material subscribing device and scribing method and automatic analysis line
FR2852250B1 (en) 2003-03-11 2009-07-24 Jean Luc Jouvin PROTECTIVE SHEATH FOR CANNULA, AN INJECTION KIT COMPRISING SUCH ANKLE AND NEEDLE EQUIPPED WITH SUCH ANKLE
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
DE10327360B4 (en) * 2003-06-16 2012-05-24 Curamik Electronics Gmbh Method for producing a ceramic-metal substrate
US7052978B2 (en) * 2003-08-28 2006-05-30 Intel Corporation Arrangements incorporating laser-induced cleaving
JP4563097B2 (en) * 2003-09-10 2010-10-13 浜松ホトニクス株式会社 Semiconductor substrate cutting method
US7592567B2 (en) * 2003-09-11 2009-09-22 Wazana Brothers International, Inc. Apparatus and method for disassembling containers having thermoplastic joining surfaces
US7170030B2 (en) * 2003-09-12 2007-01-30 International Business Machines Corporation Method and apparatus for repair of reflective photomasks
US7303645B2 (en) 2003-10-24 2007-12-04 Miradia Inc. Method and system for hermetically sealing packages for optics
JP4175636B2 (en) * 2003-10-31 2008-11-05 株式会社日本製鋼所 Glass cutting method
US7008861B2 (en) * 2003-12-11 2006-03-07 Cree, Inc. Semiconductor substrate assemblies and methods for preparing and dicing the same
JP4509578B2 (en) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP4598407B2 (en) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP4601965B2 (en) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
DE102004012402B3 (en) 2004-03-13 2005-08-25 Schott Ag Laser-cutting process to manufacture a three-dimensionally curved automotive windscreen
KR100626554B1 (en) * 2004-05-11 2006-09-21 주식회사 탑 엔지니어링 Device for Cutting Glass Substrate in Manufacturing Process of Flat Type Display and Method for controlling depth of cutting for the Glass Substrate
US7723212B2 (en) * 2004-07-30 2010-05-25 Mitsuboshi Diamond Industrial Co., Ltd Method for forming median crack in substrate and apparatus for forming median crack in substrate
US7064045B2 (en) * 2004-08-30 2006-06-20 Miradia Inc. Laser based method and device for forming spacer structures for packaging optical reflection devices
US7344956B2 (en) * 2004-12-08 2008-03-18 Miradia Inc. Method and device for wafer scale packaging of optical devices using a scribe and break process
KR101096733B1 (en) 2004-12-27 2011-12-21 엘지디스플레이 주식회사 cutting equipment of substrate and method for cutting of substrate using the same
KR100689698B1 (en) * 2005-01-12 2007-03-08 주식회사 이오테크닉스 Method for Processing an Object Having Passivation Layer
US9034731B2 (en) * 2005-02-03 2015-05-19 Stats Chippac Ltd. Integrated, integrated circuit singulation system
US7349140B2 (en) * 2005-05-31 2008-03-25 Miradia Inc. Triple alignment substrate method and structure for packaging devices
US7265027B2 (en) * 2005-06-14 2007-09-04 Miradia Inc. Bond method and structure using selective application of spin on glass
JP4942313B2 (en) * 2005-07-07 2012-05-30 株式会社ディスコ Wafer laser processing method
DE102005038027A1 (en) * 2005-08-06 2007-02-08 Jenoptik Automatisierungstechnik Gmbh Process for cutting brittle flat materials
US8053705B2 (en) * 2005-09-07 2011-11-08 Purdue Research Foundation Laser assisted machining process with distributed lasers
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
DE102006042280A1 (en) 2005-09-08 2007-06-06 IMRA America, Inc., Ann Arbor Transparent material scribing comprises using single scan of focused beam of ultrashort laser pulses to simultaneously create surface groove in material and modified region(s) within bulk of material
JP2007076930A (en) * 2005-09-12 2007-03-29 Joyo Kogaku Kk Method of cutting glass
CN100445013C (en) * 2005-09-30 2008-12-24 富士迈半导体精密工业(上海)有限公司 Laser cutting method
KR100972488B1 (en) * 2005-12-29 2010-07-26 엘지디스플레이 주식회사 Apparatus and method of cutting liquid crystal display device and method of fabricating liquid crystal display device using thereof
JP4322881B2 (en) * 2006-03-14 2009-09-02 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
KR100729966B1 (en) 2006-03-21 2007-06-19 케이 이엔지(주) Glass hole making method using laser
US8497449B1 (en) * 2006-05-26 2013-07-30 Synchron Laser Service Inc. Micro-machining of ceramics using an ytterbium fiber-laser
TWI298280B (en) 2006-09-06 2008-07-01 Nat Applied Res Laboratories Method for cutting non-metal material
US20080070378A1 (en) * 2006-09-19 2008-03-20 Jong-Souk Yeo Dual laser separation of bonded wafers
US8604381B1 (en) 2006-10-12 2013-12-10 Purdue Research Foundation Integrated laser material processing cell
US20080290077A1 (en) * 2007-05-22 2008-11-27 Demeritt Jeffery Alan Separation of transparent glasses and systems and methods therefor
JP5162163B2 (en) * 2007-06-27 2013-03-13 株式会社ディスコ Wafer laser processing method
CN101462822B (en) * 2007-12-21 2012-08-29 鸿富锦精密工业(深圳)有限公司 Friable non-metal workpiece with through hole and method of processing the same
CN100574961C (en) * 2008-01-02 2009-12-30 深圳市大族激光科技股份有限公司 The laser cutting method of rectangular tube
US8053704B2 (en) * 2008-05-27 2011-11-08 Corning Incorporated Scoring of non-flat materials
JP2010023071A (en) * 2008-07-18 2010-02-04 Mitsuboshi Diamond Industrial Co Ltd Method for machining terminal of laminated substrate
CN102203943B (en) * 2008-10-29 2013-07-31 欧瑞康太阳能股份公司(特吕巴赫) Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
CN102388000A (en) * 2009-02-25 2012-03-21 精工电子有限公司 Junction-glass cutting method, package manufacturing method, package, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
KR20170082649A (en) * 2009-03-20 2017-07-14 코닝 인코포레이티드 Precision laser scoring
TWI517922B (en) * 2009-05-13 2016-01-21 康寧公司 Methods for cutting a fragile material
US8539795B2 (en) * 2009-05-13 2013-09-24 Corning Incorporated Methods for cutting a fragile material
US20110070386A1 (en) * 2009-09-19 2011-03-24 Yoel Wazana Apparatus And Method For Disassembling Containers Having Thermoplastic Joining Surfaces
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
JP2014534939A (en) * 2011-09-21 2014-12-25 レイディアンス,インコーポレイテッド System and process for cutting material
WO2013051245A1 (en) * 2011-10-07 2013-04-11 Canon Kabushiki Kaisha Method and apparatus for laser-beam processing and method for manufacturing ink jet head
US9539681B2 (en) 2011-11-30 2017-01-10 Board Of Trustees Of Northern Illinois University Laser assisted machining system for ceramics and hard materials
KR20130126287A (en) * 2012-05-11 2013-11-20 참엔지니어링(주) Substrate cutting and method
KR101355807B1 (en) * 2012-09-11 2014-02-03 로체 시스템즈(주) Curve cutting method for non-metallic materials
CN104551413A (en) * 2013-10-23 2015-04-29 北大方正集团有限公司 Method for forming conductive films
US9636783B2 (en) 2014-04-30 2017-05-02 International Business Machines Corporation Method and apparatus for laser dicing of wafers
US9627259B2 (en) 2014-11-14 2017-04-18 Kabushiki Kaisha Toshiba Device manufacturing method and device
KR20160057966A (en) 2014-11-14 2016-05-24 가부시끼가이샤 도시바 Processing apparatus, nozzle and dicing apparatus
JP6305355B2 (en) 2015-01-28 2018-04-04 株式会社東芝 Device manufacturing method
JP6545511B2 (en) 2015-04-10 2019-07-17 株式会社東芝 Processing unit
CN104891496A (en) * 2015-05-11 2015-09-09 常州市奥普泰科光电有限公司 Method for non-destructive cutting of large optical glass to small ones
KR101698878B1 (en) * 2015-07-08 2017-01-23 주식회사 이오테크닉스 Method for cutting glass workpiece
KR102414810B1 (en) 2015-10-12 2022-06-30 삼성디스플레이 주식회사 Liquid crystal display device and manufacturing method thereof
CN106410597A (en) * 2016-07-28 2017-02-15 中国科学院上海硅酸盐研究所 Non-metallic laser heating method
CN109592892A (en) * 2018-11-26 2019-04-09 武汉华工激光工程有限责任公司 A kind of laser processing of glass
KR20200102572A (en) 2019-02-21 2020-09-01 삼성디스플레이 주식회사 Display device
JP7364860B2 (en) 2019-07-01 2023-10-19 日亜化学工業株式会社 Manufacturing method of light emitting device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930825A (en) * 1974-11-29 1976-01-06 Ford Motor Company Method of laser beam cutting of a ribbon of hot glass
US4467168A (en) * 1981-04-01 1984-08-21 Creative Glassworks International Method of cutting glass with a laser and an article made therewith
US4682003A (en) * 1985-04-03 1987-07-21 Sasaki Glass Co., Ltd. Laser beam glass cutting
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
US5698121A (en) * 1995-08-31 1997-12-16 Fanuc Ltd. Three-dimensional laser beam machining apparatus using YAG cutting tool
US5916640A (en) * 1996-09-06 1999-06-29 Msp Corporation Method and apparatus for controlled particle deposition on surfaces
US20010035401A1 (en) * 1999-06-08 2001-11-01 Ran Manor Dual laser cutting of wafers
US6320158B1 (en) * 1998-01-29 2001-11-20 Fujitsu Limited Method and apparatus of fabricating perforated plate
US20010046997A1 (en) * 1998-03-24 2001-11-29 Abraham Donald J. Allosteric inhibitors of pyruvate kinase
US6407360B1 (en) * 1998-08-26 2002-06-18 Samsung Electronics, Co., Ltd. Laser cutting apparatus and method
US6420245B1 (en) * 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US6448534B1 (en) * 1995-10-27 2002-09-10 E. I. Du Pont De Nemours And Company Method and apparatus for laser cutting materials
US6541730B2 (en) * 2000-10-21 2003-04-01 Samsung Electronics Co., Ltd. Method and apparatus for cutting a non-metal substrate by using a laser beam
US6555477B1 (en) * 2002-05-22 2003-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing Cu CMP corrosion
US6744009B1 (en) * 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
US6841482B2 (en) * 2000-12-15 2005-01-11 Xsil Technology Limited Laser machining of semiconductor materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555447B2 (en) * 1999-06-08 2003-04-29 Kulicke & Soffa Investments, Inc. Method for laser scribing of wafers
KR100603210B1 (en) * 1999-10-25 2006-07-20 삼성전자주식회사 apparatus for cutting glass using laser and method for cutting glass using the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930825A (en) * 1974-11-29 1976-01-06 Ford Motor Company Method of laser beam cutting of a ribbon of hot glass
US4467168A (en) * 1981-04-01 1984-08-21 Creative Glassworks International Method of cutting glass with a laser and an article made therewith
US4682003A (en) * 1985-04-03 1987-07-21 Sasaki Glass Co., Ltd. Laser beam glass cutting
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
US5698121A (en) * 1995-08-31 1997-12-16 Fanuc Ltd. Three-dimensional laser beam machining apparatus using YAG cutting tool
US6448534B1 (en) * 1995-10-27 2002-09-10 E. I. Du Pont De Nemours And Company Method and apparatus for laser cutting materials
US5916640A (en) * 1996-09-06 1999-06-29 Msp Corporation Method and apparatus for controlled particle deposition on surfaces
US6320158B1 (en) * 1998-01-29 2001-11-20 Fujitsu Limited Method and apparatus of fabricating perforated plate
US20010046997A1 (en) * 1998-03-24 2001-11-29 Abraham Donald J. Allosteric inhibitors of pyruvate kinase
US6407360B1 (en) * 1998-08-26 2002-06-18 Samsung Electronics, Co., Ltd. Laser cutting apparatus and method
US6420245B1 (en) * 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US20010035401A1 (en) * 1999-06-08 2001-11-01 Ran Manor Dual laser cutting of wafers
US6541730B2 (en) * 2000-10-21 2003-04-01 Samsung Electronics Co., Ltd. Method and apparatus for cutting a non-metal substrate by using a laser beam
US6841482B2 (en) * 2000-12-15 2005-01-11 Xsil Technology Limited Laser machining of semiconductor materials
US6744009B1 (en) * 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
US6555477B1 (en) * 2002-05-22 2003-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing Cu CMP corrosion

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188400A1 (en) * 2001-09-10 2004-09-30 Micron Technology, Inc. Wafer dicing device and method
US20100140794A1 (en) * 2001-10-08 2010-06-10 Chia Yong Poo Apparatus and method for packaging circuits
US8115306B2 (en) 2001-10-08 2012-02-14 Round Rock Research, Llc Apparatus and method for packaging circuits
US8106488B2 (en) 2002-06-14 2012-01-31 Micron Technology, Inc. Wafer level packaging
US20110018143A1 (en) * 2002-06-14 2011-01-27 Swee Kwang Chua Wafer level packaging
US8564106B2 (en) 2002-06-14 2013-10-22 Micron Technology, Inc. Wafer level packaging
US20040221451A1 (en) * 2003-05-06 2004-11-11 Micron Technology, Inc. Method for packaging circuits and packaged circuits
US9484225B2 (en) 2003-05-06 2016-11-01 Micron Technology, Inc. Method for packaging circuits
US10811278B2 (en) 2003-05-06 2020-10-20 Micron Technology, Inc. Method for packaging circuits
US10453704B2 (en) 2003-05-06 2019-10-22 Micron Technology, Inc. Method for packaging circuits
US7712211B2 (en) 2003-05-06 2010-05-11 Micron Technology, Inc. Method for packaging circuits and packaged circuits
US8555495B2 (en) 2003-05-06 2013-10-15 Micron Technology, Inc. Method for packaging circuits
US20100146780A1 (en) * 2003-05-06 2010-06-17 Yong Poo Chia Method for packaging circuits and packaged circuits
US8065792B2 (en) 2003-05-06 2011-11-29 Micron Technology, Inc. Method for packaging circuits
US20080135532A1 (en) * 2004-04-27 2008-06-12 Mitsuboshi Diamond Industrial Co., Ltd. Method of and an Apparatus for Forming a Perpendicular Crack in a Brittle Substrate
US20060264064A1 (en) * 2004-08-02 2006-11-23 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US20060097022A1 (en) * 2004-11-05 2006-05-11 Lg. Philips Lcd Co., Ltd. Scribing apparatus, substrate cutting apparatus equipped with the scribing apparatus, and substrate cutting method using the substrate cutting apparatus
GB2419852A (en) * 2004-11-05 2006-05-10 Lg Philips Lcd Co Ltd Scribing apparatus, substrate cutting apparatus equipped with the scribing apparatus and substrate cutting method using the substrate cutting apparatus
US7528341B2 (en) * 2004-11-05 2009-05-05 Lg Display Co., Ltd. Scribing apparatus, substrate cutting apparatus equipped with the scribing apparatus, and substrate cutting method using the substrate cutting apparatus
GB2419852B (en) * 2004-11-05 2008-02-20 Lg Philips Lcd Co Ltd Scribing apparatus, substrate cutting apparatus equipped with the scribing apparatus, and substrate cutting method using the substrate cutting apparatus
US7460205B2 (en) * 2005-12-29 2008-12-02 Lg Display Co., Ltd. Method for cutting liquid crystal display panel and method for fabricating liquid crystal display panel using the same
US20070153455A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Method for cutting liquid crystal display panel and method for fabricating liquid crystal display panel using the same
US20080035617A1 (en) * 2006-08-11 2008-02-14 Foxsemicon Integrated Technology, Inc. Method for processing brittle substrates without micro-cracks
US8051679B2 (en) 2008-09-29 2011-11-08 Corning Incorporated Laser separation of glass sheets
US20100078417A1 (en) * 2008-09-29 2010-04-01 Anatoli Anatolyevich Abramov Laser separation of glass sheets
US8155933B2 (en) * 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
US20100305910A1 (en) * 2009-05-26 2010-12-02 Bekir Sami Yilbas Method of modeling residual stresses during laser cutting
CN102194931A (en) * 2010-02-05 2011-09-21 株式会社迪思科 Optical device wafer processing method
US8178425B2 (en) * 2010-02-05 2012-05-15 Disco Corporation Optical device wafer processing method
US8148184B2 (en) * 2010-02-05 2012-04-03 Disco Corporation Optical device wafer processing method
US20110195535A1 (en) * 2010-02-05 2011-08-11 Disco Corporation Optical device wafer processing method
US20110195537A1 (en) * 2010-02-05 2011-08-11 Disco Corporation Optical device wafer processing method
CN102157367A (en) * 2010-02-05 2011-08-17 株式会社迪思科 Optical device wafer processing method
US20110195536A1 (en) * 2010-02-05 2011-08-11 Disco Corporation Optical device wafer processing method

Also Published As

Publication number Publication date
KR20020088296A (en) 2002-11-27
TW496807B (en) 2002-08-01
JP2002346782A (en) 2002-12-04
CN1268466C (en) 2006-08-09
US20020170896A1 (en) 2002-11-21
US6653210B2 (en) 2003-11-25
KR100701013B1 (en) 2007-03-29
CN1386606A (en) 2002-12-25

Similar Documents

Publication Publication Date Title
US6653210B2 (en) Method and apparatus for cutting a non-metallic substrate using a laser beam
US6541730B2 (en) Method and apparatus for cutting a non-metal substrate by using a laser beam
Nisar et al. Laser glass cutting techniques—A review
KR101358672B1 (en) Transparent material cutting method using ultrafast pulse laser and dicing apparatus for thereof
US8584490B2 (en) Laser cutting method
TWI653115B (en) Method for performing laser filamentation within transparent materials
US8426767B2 (en) Methods for laser scribing and breaking thin glass
KR100849696B1 (en) Brittle material scribing method and scribing apparatus
TWI658015B (en) Methods and apparatus for cutting radii in flexible thin glass and glass substrate produced thereby
JP4414473B2 (en) Cutting method
US20100294748A1 (en) Method for separating a sheet of brittle material
TWI362370B (en) Method for cutting a brittle substrate
JP2000156358A (en) Method and device for processing transparent medium using laser
TW201523696A (en) The generation of a crack initiation point or a crack guide for improved separation of a solid layer from a solid body
JP2007260749A (en) Laser beam machining method and apparatus, and machined product of brittle material
Cheng et al. Laser beam induced thermal-crack propagation for asymmetric linear cutting of silicon wafer
JP2009107301A (en) Full body cutting method for brittle material
Kang et al. Cutting glass by laser
JP2006137169A (en) Method and apparatus for breaking and cutting fragile material
KR100659931B1 (en) Apparatus for cutting a substrate by using laser and method for performing the same
JP2009262408A (en) Method for scribing brittle material substrate and device therefor
Wen et al. Study on picosecond laser stealth dicing of 4H-SiC along [112¯ 0] and [11¯ 00] crystal orientations on Si-face and C-face
KR20050026253A (en) Vertical glass-plate cutting machine
KR200415435Y1 (en) Vertical glass-plate cutting machine for LCD plate
RU2238918C2 (en) Method for cutting of frangible non-metallic materials

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION