US20040048078A1 - Paintable material - Google Patents

Paintable material Download PDF

Info

Publication number
US20040048078A1
US20040048078A1 US10/659,887 US65988703A US2004048078A1 US 20040048078 A1 US20040048078 A1 US 20040048078A1 US 65988703 A US65988703 A US 65988703A US 2004048078 A1 US2004048078 A1 US 2004048078A1
Authority
US
United States
Prior art keywords
sealant
sealant material
article
panel
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/659,887
Inventor
Michael Czaplicki
Renee Bradley
Jeff Bradley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L&L Products Inc
Original Assignee
L&L Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L&L Products Inc filed Critical L&L Products Inc
Priority to US10/659,887 priority Critical patent/US20040048078A1/en
Publication of US20040048078A1 publication Critical patent/US20040048078A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/287Adhesive compositions including epoxy group or epoxy polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • Y10T428/2891Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to paintable materials, and particularly sealant materials for covering a surface.
  • Sealant materials are often applied to surfaces for sealing or for otherwise covering the surface, including any joints associated therewith.
  • sealant materials that serve these purposes for different articles of manufacture.
  • joints are typically part of a show surface, and are thus visible to a user or consumer. Accordingly, one desirable characteristic for a sealant for covering the joint is to provide a generally smooth or continuously or controlled patterned surface that is cosmetically pleasing. If colorant is not already included in the sealant, but a color is desirable, preferably the sealant material is paintable.
  • sealant Certain assembly operations in the aforenoted industries and others, require that a sealant be heated along with the article to which it is applied. For instance, some priming or painting operations are conducted at elevated temperatures. Thus, another desirable trait for certain sealants is that they exhibit attractive temperature response characteristics for a desired application. For example, a metal shelving unit having a sealant applied to a joint thereon, upon heat exposure, advantageously will not experience random oozing, bubbling, rippling, or the like, which would require post treatment clean-up processes.
  • sealant material may also be desirable for the sealant material to self level or otherwise flow in a predetermined manner during or after application of the material such that the sealant can properly function.
  • the present invention meets the above needs by providing an improved paintable sealant material, and articles incorporating the same, including:
  • sealant material and methods of using it disclosed herein are particularly adapted for enabling the material to be painted using conventional or art-disclosed coating techniques.
  • the sealant material may be applied to a surface, or to joints within or between one or more surfaces.
  • the sealant material can be used for bonding a first surface to a second surface.
  • the sealant material is extrudable, moldable, or processable using other art-disclosed techniques.
  • the sealant material is used for sealing or otherwise covering visible joints or hems on articles of manufacture such as, refrigerator doors, range tops, dishwashers, freezers, microwave ovens, desk tops, desk drawers, chair bumpers, filing cabinets, shelving, or the like.
  • the sealant material alternatively is applied to a variety of components of an automotive vehicle such as hem flanges, fuel filler doors, fuel filler assemblies, license plates, doors, door frames, ditches, vehicle grille assemblies, bumper guards, consoles, name plates, badges or the like.
  • the sealant material is attached to a substrate of a component as a separate pre-formed seal, e.g., molded into a desired configuration.
  • One additional particularly attractive feature of the present invention is the ability, in some applications, to employ the sealant material by itself and without any separately fabricated support substrate.
  • FIG. 1 illustrates a sectional view of an exemplary sealant material formed in accordance with an aspect of the present invention
  • FIG. 2 illustrates a sectional view of the sealant material of FIG. 1 after a portion of the sealant material has been cured according to another aspect of the present invention
  • FIG. 3 illustrates a sectional view of the sealant material of FIGS. 1 - 2 as applied to an example of a substrate
  • FIG. 4 illustrates a sectional view of the sealant material of FIGS. 1 - 3 after the material has flowed onto the substrate;
  • FIG. 5 illustrates an example of how an extruder might be used to form and/or apply the sealant material of the present invention.
  • the present invention is predicated upon an improved sealant material, and articles incorporating the same, including:
  • Epoxy resin is used herein to mean any of the conventional dimeric, oligomeric or polymeric epoxy materials containing at least one epoxy functional group.
  • the polymer based materials may be epoxy containing materials having one or more oxirane rings polymerizable by a ring opening reaction.
  • the sealant material includes up to about 80% of an epoxy resin. More preferably, the sealant includes between about 10% and 50% by weight of epoxy containing materials.
  • the epoxy containing materials may be aliphatic, cycloaliphatic, aromatic or the like.
  • the epoxy may be supplied as a solid (e.g., as pellets, chunks, pieces or the like) or a liquid (e.g., an epoxy resin).
  • the epoxy may include an ethylene copolymer or terpolymer that may possess an alpha-olefin.
  • the polymer is composed of two or three different monomers, i.e., small molecules with high chemical reactivity that are capable of linking up with similar molecules.
  • an epoxy resin is added to the sealant material to increase the flow properties of the material.
  • One exemplary epoxy resin may be a phenolic resin, which may be a novalac type or other type resin.
  • Other preferred epoxy containing materials may include a bisphenol-A epichlorohydrin ether polymer, or a bisphenol-A epoxy resin which may be modified with butadiene or another polymeric additive.
  • one or more of the epoxy containing materials may be provided to the sealant material as an epoxy/elastomer hybrid, e.g., a blend or copolymer that has been previously fabricated.
  • the epoxy/elastomer hybrid may be included in an amount of up to about 40% by weight of the sealant material. More preferably, the epoxy/elastomer hybrid is approximately 10 to 30%, and more preferably is about 20% by weight of the sealant material.
  • the hybrid itself generally includes about 1:5 to 5:1 parts of epoxy to elastomer, and more preferably about 1:3 to 3:1 parts or epoxy to elastomer.
  • the epoxy/elastomer hybrid preferably includes approximately 40 to 80% of an epoxy resin (such as disclosed in the above), and about 20 to 60% of an elastomer compound.
  • the elastomer compound may be any suitable art disclosed thermoplastic elastomer, thermosetting elastomer or a mixture thereof.
  • Exemplary elastomers include, without limitation natural rubber, styrenebutadiene rubber, polyisoprene, polyisobutylene, polybutadiene, isoprene-butadiene copolymer, neoprene, nitrile rubber, butyl rubber, polysulfide elastomer, acrylic elastomer, acrylonitrile elastomers, silicone rubber, polysiloxanes, polyester rubber, diisocyanate-linked condensation elastomer, EPDM (ethylene propylene diene rubbers), chlorosulphonated polyethylene, fluorinated hydrocarbons and the like. In one embodiment, recycled tire rubber is employed.
  • the epoxy/elastomer hybrid when added to the sealant material, preferably is added to modify structural properties of the sealant material such as strength, toughness, stiffness, flexural modulus, or the like. Additionally, the epoxy/elastomer hybrid may be selected to render the sealant material more compatible with coatings such as water-bome paint or primer system or other conventional coatings.
  • the sealant material includes one or more materials for controlling the rheological characteristics of the sealant material over a range of temperatures (e.g., up to about 250° C.).
  • the rheology modifier preferably is present in an amount up to about 40%, and more preferably between about 1 to about 20%, and still more preferably less than about 10%. Of course, higher amounts are possible as well.
  • any suitable art-disclosed rheology modifier may be used, and thus the rheology modifier may be organic or inorganic, liquid or solid, or otherwise.
  • the rheology modifier is a polymer, and more preferably one based upon an olefinic (e.g., an ethylene, a butylenes, a propylene or the like), a styrenic (e.g., a styrene-butadiene-containing rubber), an acrylic or an unsaturated carboxylic acid or its ester (such as acrylates, methacrylates or mixtures thereof; e.g., ethylene methyl acrylate polymer).
  • the rheology modifier may be provided in a generally homogeneous state or suitable compounded with other ingredients.
  • acetates e.g., EVA
  • the rheology modifier or the entire sealant
  • the rheology modifier be substantially free of an acetate in view of the propensity for decomposition at higher temperatures and the attendant potential deleterious release of acetic acid onto a painted surface.
  • One or more blowing agents may be added to the sealant material for producing inert gasses that form as desired an open and/or closed cellular structure within the sealant material. In this manner, it may be possible to lower the density of articles fabricated from the material. In addition, the material expansion helps to improve sealing capability.
  • the blowing agent may include one or more nitrogen containing groups such as amides, amines and the like.
  • suitable blowing agents include azodicarbonamide, dinitrosopentamethylenetetramine, azodicarbonamide, dinitrosopentamethylenetetramine, 4,4 i oxy-bis-(benzenesulphonylhydrazide), trihydrazinotriazine and N,N i -dimethyl-N,N i dinitrosoterephthalamide.
  • modified and unmodified azocarbonamides may be supplied to the material 10 in particle form having particles sizes of, for example, 120 and 180 microns.
  • the azocarbonamides can assist the sealant material in leveling itself (i.e., forming a surface of maintaining the surface 24 in a substantially flat condition).
  • An accelerator for the blowing agents may also be provided in the sealant material.
  • Various accelerators may be used to increase the rate at which the blowing agents form inert gasses.
  • One preferred blowing agent accelerator is a metal salt, or is an oxide, e.g. a metal oxide, such as zinc oxide.
  • Amounts of blowing agents and blowing agent accelerators can vary widely within the sealant material depending upon the type of cellular structure desired, the desired amount of expansion of the sealant material, the desired rate of expansion and the like. Exemplary ranges for the amounts of blowing agents and blowing agent accelerators in the sealant material range from about 0% by weight to about 5% by weight and are preferably in the sealant material in fractions of weight percentages.
  • One or more curing agents and/or curing agent accelerators may be added to the sealant material.
  • Amounts of curing agents and curing agent accelerators can, like the blowing agents, vary widely within the sealant material depending upon the type of cellular structure desired, the desired amount of expansion of the sealant material, the desired rate of expansion, the desired structural properties of the sealant material and the like.
  • Exemplary ranges for the curing agents or curing agent accelerators present in the sealant material range from about 0% by weight to about 7% by weight.
  • the curing agents assist the sealant material in curing by crosslinking of the polymers, epoxy resins (e.g., by reacting in stoichiometrically excess amounts of curing agent with the epoxide groups on the resins) or both. It is also preferable for the curing agents to assist in thermosetting the sealant material.
  • Useful classes of curing agents are materials selected from aliphatic or aromatic amines or their respective adducts, amidoamines, polyamides, cycloaliphatic amines (e.g., anhydrides, polycarboxylic polyesters, isocyanates, phenol-based resins (such as phenol or cresol novolak resins, copolymers such as those of phenol terpene, polyvinyl phenol, or bisphenol-A formaldehyde copolymers, bishydroxyphenyl alkanes or the like), or mixtures thereof.
  • Particular preferred curing agents include modified and unmodified polyamines such as triethylenetetramine, diethylenetriamine tetraethylenepentamine, cyanoguanidine and the like.
  • An accelerator for the curing agents e.g., methylene diphenyl bis urea
  • the sealant material may also include one or more fillers, including but not limited to particulated materials (e.g., powder), beads, microspheres, or the like.
  • the filled includes a relatively low-density material that is generally nonreactive with the other components present in the sealant material.
  • fillers include silica, diatomaceous earth, glass, clay, talc, pigments, colorants, glass beads or bubbles, glass, carbon ceramic fibers, antioxidants, and the like. Such fillers, particularly clays, can assist the sealant material in leveling itself during flow of the material.
  • the clays that may be used as fillers may include clays from the kaolinite, illite, chloritem, smecitite or sepiolite groups.
  • suitable fillers include, without limitation, talc, vermiculite, pyrophyllite, sauconite, saponite, nontronite, montmorillonite or mixtures thereof.
  • the clays may also include minor amounts of other ingredients such as carbonates, feldspars, micas and quartz.
  • the fillers may also include ammonium chlorides such as dimethyl ammonium chloride and dimethyl benzyl ammonium chloride. Titanium dioxide might also be employed.
  • one or more mineral or stone type fillers such as calcium carbonate, sodium carbonate or the like may be used as fillers.
  • silicate minerals such as mica may be used as fillers. It has been found that, in addition to performing the normal functions of a filler, silicate minerals and mica in particular.
  • the fillers in the sealant material can range from 10% to 90% by weight of the sealant material.
  • the sealant material may include from about 0% to about 3% by weight, and more preferably slightly less that 1% by weight days or similar fillers.
  • Powdered (e.g. about 0.01 to about 50, and more preferably about 1 to 25 micron mean particle diameter) mineral type filler can comprise between about 5% and 70% by weight, more preferably about 40% to about 60%, and still more preferably approximately 55% by weight of the sealant material.
  • the sealant material may contain approximately 7% by weight mica.
  • additives, agents or performance modifiers may also be included in the sealant material as desired, including but not limited to a UV resistant agent, a flame retardant, an impact modifier, a heat stabilizer, a colorant, a processing aid, a lubricant, a reinforcement (e.g., chopped or continuous glass, ceramic, aramid, or carbon fiber or the like).
  • a UV resistant agent e.g., a flame retardant, an impact modifier, a heat stabilizer, a colorant, a processing aid, a lubricant, a reinforcement (e.g., chopped or continuous glass, ceramic, aramid, or carbon fiber or the like).
  • polymers may also be incorporated into the sealant material, e.g., by copolymerization, by blending, or otherwise.
  • other polymers that might be appropriately incorporated into the sealant material include halogenated polymers, polycarbonates, polyketones, urethanes, polyesters, silanes, sulfones, allyls, olefins, styrenes, acrylates, methacrylates, epoxies, silicones, phenolics, rubbers, polyphenylene oxides, terphthalates, or mixtures thereof.
  • polymeric materials may be or may include include, without limitation, polyethylene, polypropylene, polystyrene, polyolefin, polyacrylate, poly(ethylene oxide), poly(ethyleneimine), polyester, polyurethane, polysiloxane, polyether, polyphosphazine, polyamide, polyimide, polyisobutylene, polyacrylonitrile, poly(vinyl chloride), poly(methylmethacrylate), poly(vinyl acetate), poly(vinylidene chloride), polytetrafluoroethylene, polyisoprene, polyacrylamide, polyacrylic acid, polymethacrylate, and polyacetals.
  • the material When determining appropriate components for the sealant material, it may be important to form the material such that it will only activate (e.g., flow, foam or otherwise change states) at appropriate times or temperatures. For instance, in most applications, it is undesirable for the material to be reactive at room temperature or otherwise at the ambient temperature in a production environment. More typically, the sealant material becomes activated to flow at higher processing temperatures. As an example, temperatures such as those encountered in an automobile assembly plant may be appropriate, especially when the sealant material is processed along with the other components at elevated temperatures or at higher applied energy levels, e.g., during painting preparation steps. Temperatures encountered in many coating operations, for instance, range up to about 250° C. or higher.
  • the present materials exhibit the ability to flow and self level to then serve as a generally smooth paintable surface within a temperature range up to about 100° C., more preferably up to about 175° C., still more preferably up to about 250° C., and even still more preferably up to about 325° C.
  • the sealant material can be accomplished according to a variety of new or known techniques.
  • the sealant material is formed as a material of substantially homogeneous composition.
  • various combining techniques may be used to increase or decrease the concentration of certain components in certain locations of the sealant material.
  • the sealant material is formed by supplying the components of the material in solid form such as pellets, chunks and the like, in liquid form or a combination thereof.
  • the components are typically combined in one or more containers such as large bins or other containers.
  • the containers can be used to intermix the components by rotating or otherwise moving the container. Thereafter, heat, pressure or a combination thereof may be applied to soften or liquidize the components such that the components can be intermixed by stirring or otherwise into a single homogenous composition.
  • the sealant material may be formed by heating one or more of the components that is generally easier to soften or liquidize such as the polymer based materials to induce those components into a mixable state. Thereafter, the remaining components may then be intermixed with the softened components.
  • the temperature of the components may be important to assure that the temperature of the components remains below certain activation temperatures that might cause the sealant material to activate (e.g., form gasses, flow or otherwise activate), cure (e.g., harden, stiffen or otherwise change states) or both.
  • the sealant material contains a blowing agent
  • a first mixture 60 of components may be provided to a throat portion 54 of the extruder 40 .
  • Each of the components is preferably provided in solid forms such as chunks, pellets or powders that can be thoroughly mixed together in a tumbler or other mixing receptade.
  • the first mixture 60 may comprise any of the components discussed above.
  • the first mixture 60 may include a combination of one or more components, which may be chosen from an epoxy resin, an epoxy/elastomer, a filler, another polymer or a mixture thereof.
  • the extruder screw 70 mixes the components to form a viscoelastic material that is progressively moved from the throat portion 54 of the extruder 40 and through the intermediate portion 58 of the extruder.
  • a side stream that is preferably liquid is provided to enhance mixing of the components in the extruder 40 .
  • the side stream preferably provides an epoxy in resin form that may or may not be combined with other components. Alternatively, the side stream may include any of the polymer materials discussed above.
  • a second mixture 90 is combined with the first mixture 60 and the material from the side stream.
  • each of the components is preferably provided in solid forms such as chunks, pellets or powders that can be thoroughly mixed together in a tumbler or other mixing receptacle.
  • the second mixture 90 is a combination of one or more of the same components that were supplied in the first mixture 60 .
  • any blowing agents, blowing agent accelerators, curing agents or curing agent accelerators are preferably added to the second mixture 90 .
  • the first mixture 60 , the side stream and the second mixture 90 are combined and mixed, they form the sealant material, which may be emitted from the extruder 40 .
  • the sealant material may then be transported and applied to substrates or, in certain circumstances, the material may be directly applied to a surface as it leaves the extruder 40 .
  • the skilled artisan will recognize that various other techniques may be used to form the sealant material from the various components.
  • FIGS. 1 - 4 illustrate an example of a sealant material 10 being applied to a substrate 12 .
  • the sealant material 10 may be applied to a variety of substrates. However, for exemplary purposes and with no intention of limiting the invention, the material 10 is shown as applied to components 14 , 16 (e.g. overlapping panels) for forming a joint 18 .
  • the joint 18 is formed with overlapping arced portions of the two components 14 , 16 .
  • the substrate material is selected from steel, aluminum or plastic (e.g., reinforced plastic).
  • the sealant material 10 may be initially formed in a variety of shapes, sizes, patterns, thicknesses and the like and may be formed using a variety of forming techniques such as molding, extruding, thermosetting and the like. Alternatively, the sealant material 10 may be initially formed in a substantially liquid state wherein the material 10 is shaped by its container or shaped by a substrate to which the material has been applied. Preferably, the sealant material 10 is initially formed as a single homogeneous melt flowable composition, however, in alternative embodiments, the sealant material 10 may form one layer of a multi-layer article.
  • the sealant material 10 may be dry to the touch shortly after it is initially formed to allow easer handling, packaging and the like of the material 10 , however, it is also possible for the material 10 to be wet, tacky or both.
  • the sealant material 10 has been extruded in a viscoelastic state as an elongated strip, which is shown in cross-section.
  • section shapes e.g., having an asymmetrical shape about a longitudinal axis, a symmetrical shape about the longitudinal axis, varying shapes along the longitudinal axis, longitudinal channels or passages, or the like are contemplated as well and may be formed as desired or needed for any chosen application.
  • sealant material may also be co-extrude the sealant material with a strip or wire (e.g., for forming an encapsulated or laminated strip or wire, such as for making an antenna for a communications system). Molded or die-cut articles may also be formed from the sealant material of the present invention.
  • the material may be activated, cured or both to form a seal of a desired configuration.
  • Activation of the sealant material, curing of the material or both may take place in a single stage or multiple stages and may utilize a variety of stimuli to cause activation or curing.
  • Activation generally denotes inducing the sealant material 10 to flow, foam or generally soften and can be caused by exposure of the sealant material 10 to a variety of stimuli such as heat, light, electricity, pressure, moisture and the like.
  • Curing as used herein, generally denotes any stiffening, hardening, solidifying or the like of the sealant material and can be caused by exposure to a variety of stimuli such as cooling, light and the like.
  • Activation of the material may include at least some degree of foaming or bubbling in situations where the sealant material includes a blowing agent. Such foaming or bubbling can assist the sealant material in wetting a substrate and forming an intimate bond with the substrate. Alternatively, however, it shall be recognized that the sealant material may be activated to flow without foaming or bubbling and may still substantially wet the substrate to form a desired seal.
  • the sealant material may be activated prior to application of the sealant material to a substrate such that the sealant material is in a generally flowable state when it is applied to the substrate. In such a situation, curing of the material may occur during or after the time the sealant material is applied to the substrate.
  • the sealant material 10 may undergo a single stage activation, a single stage cure or both.
  • the sealant material is typically placed adjacent (e.g., in direct contact with or near) a substrate upon which the sealant material is to form a seal. Thereafter, the sealant material 10 is activated by exposure to a stimulus such as energy in the form of heat, light or otherwise that activates the sealant material 10 to flow over the substrate. Then, after a desired amount of flow has been induced, the sealant is cured substantially throughout its volume to form a seal upon the substrate.
  • the sealant material 10 may undergo a selective multiple stage activation, a multiple stage cure or both.
  • a portion of the sealant material 10 may be exposed to a stimulus to at least partially cure a portion of the sealant material, e.g. a cure to a predetermined depth (e.g., on the order of about 1 mil to about 2 mm), or a cure in certain regions along or within the mass of material.
  • a predetermined depth e.g., on the order of about 1 mil to about 2 mm
  • the sealant material 10 is illustrated with a partially cured portion 20 that was formed by exposing at least one portion of the surface 24 of the sealant material to ultraviolet (UV) light, UV radiation, moisture, infrared light, heat or the like from a stimulus source to cross-link or otherwise cure the partially cured portion 20 .
  • UV ultraviolet
  • the remainder of the sealant material 10 forms a second portion 26 , which can be cured at a later time or different location.
  • the partially cured portion 20 may be formed by exposing a surface of the sealant material 10 to a stimulus (e.g., heat) that first activates (e.g.,softens) the portion 20 and then the portion 20 may be exposed to another stimulus (e.g., cooling) for curing.
  • a stimulus e.g., heat
  • the amount of heat used to activate the portion 20 is enough to soften the portion 20 without causing any substantial degree of flow.
  • the sealant material 20 can generally maintain the shape in which it was originally formed until it is later activated to flow over a substrate.
  • the partially cured portion 20 may be formed to most any depth within the sealant material 10 depending on the stimulus applied to the portion 20 , the length of time of exposure to the stimulus and the like. Moreover, the length or depth of the selectively or partially cured portion 20 may be varied at different locations of the sealant material 10 as desired or depending upon the substrate to which the material 10 is being applied.
  • One particularly advantageous feature of the present invention is the ability to cure the present materials in the absence of a photo-initiator.
  • photoinitiators might be employed in some applications, in one preferred embodiment, the composition of the present invention is substantially free of a photoinitiator.
  • Curing or partial curing of the sealant material may also be effected using an acid cure for inducing homopolymerization on or within the material, or with a suitable liquid for effectuating the initiation of a condensation reaction.
  • a partial cure of a surface of the sealant material may be undertaken with any suitable acid, but more preferably with a mild acid (such as phosphoric acid, citric acid or the like). It may also be performed by coating with a water dispersed or 100% amine-based liquid curing agent suitable for condensation polymerization. Under either approach, the liquid may optionally be rinsed after application.
  • the sealant material 10 is is typically placed adjacent the substrate 12 such that the melt flowable portion 26 of the substrate 12 will be permitted to flow over a portion of the substrate 12 .
  • the strip of sealant material 10 is placed in the channel 18 such that a length of the strip extends along a length of the channel 18 and such that a width of the strip generally spans a width of the channel 18 .
  • the melt flowable portion 26 is directly adjacent the overlapping portion of the panels 14 , 16 and the partially cured portion 20 of the sealant material 10 faces out of the channel 18 .
  • the material 10 is exposed to heat or elevated temperature, such as from an e-coat process or otherpaint operation cycle thereby causing the flowable portion 26 to cover a portion of the substrate 12 .
  • the sealant material 10 is shown after it has been heated to a flowable state permitting the material 10 to intimately contact the overlapping portions of the panels 14 , 16 .
  • the sealant material of the present invention may be employed in any suitable thickness (e.g., from about 1 mil to about 10 mm, and more preferably about 1 to 5 mm).
  • a sealed joint prepared in accordance with the present invention is further coated with a top coat (e.g., a paint) and optionally a primer (between the top coat and the joint), a clear coat (e.g., a polyurethane, an acrylic such as a glycidyl methacrylate (GMA)-based coating, or a mixture thereof) over the top coat, or a combination thereof.
  • a top coat e.g., a paint
  • a primer between the top coat and the joint
  • a clear coat e.g., a polyurethane, an acrylic such as a glycidyl methacrylate (GMA)-based coating, or a mixture thereof
  • GMA glycidyl methacrylate
  • the coating includes a two component polyurethane coating.
  • the coating is applied as a powder coating.
  • an electocoating process is used to apply a coating layer, such as the primer.

Abstract

A sealant material and articles incorporating the same. The sealant material includes up to about 80% of an epoxy resin; up to about 40% of an epoxy/elastomer hybrid; up to about 40% of a rheology modifier; up to about 5% of a blowing agent; up to about 7% of a curing agent; and about 40 to about 60% of a filler.

Description

    FIELD OF THE INVENTION
  • The present invention relates to paintable materials, and particularly sealant materials for covering a surface. [0001]
  • BACKGROUND OF THE INVENTION
  • Sealant materials are often applied to surfaces for sealing or for otherwise covering the surface, including any joints associated therewith. There presently exist a vast number of sealant materials that serve these purposes for different articles of manufacture. However, in certain circumstances, it may be desirable for sealant materials to serve other additional purposes depending on the components or articles of manufacture to which the sealant materials are applied. [0002]
  • For example, in some industries, such as the furniture, appliance or automotive industries, joints are typically part of a show surface, and are thus visible to a user or consumer. Accordingly, one desirable characteristic for a sealant for covering the joint is to provide a generally smooth or continuously or controlled patterned surface that is cosmetically pleasing. If colorant is not already included in the sealant, but a color is desirable, preferably the sealant material is paintable. [0003]
  • Certain assembly operations in the aforenoted industries and others, require that a sealant be heated along with the article to which it is applied. For instance, some priming or painting operations are conducted at elevated temperatures. Thus, another desirable trait for certain sealants is that they exhibit attractive temperature response characteristics for a desired application. For example, a metal shelving unit having a sealant applied to a joint thereon, upon heat exposure, advantageously will not experience random oozing, bubbling, rippling, or the like, which would require post treatment clean-up processes. [0004]
  • Further, in certain applications it may also be desirable for the sealant material to self level or otherwise flow in a predetermined manner during or after application of the material such that the sealant can properly function. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention meets the above needs by providing an improved paintable sealant material, and articles incorporating the same, including: [0006]
  • (a) an epoxy resin material; [0007]
  • (b) an epoxy/elastomer mixture; [0008]
  • (c) a rheology modifier [0009]
  • (d) a blowing agent; [0010]
  • (e) a curing agent; and [0011]
  • (f) a filler. [0012]
  • The sealant material and methods of using it disclosed herein are particularly adapted for enabling the material to be painted using conventional or art-disclosed coating techniques. [0013]
  • The sealant material may be applied to a surface, or to joints within or between one or more surfaces. In some applications, the sealant material can be used for bonding a first surface to a second surface. The sealant material is extrudable, moldable, or processable using other art-disclosed techniques. In one particularly advantageous aspect, the sealant material is used for sealing or otherwise covering visible joints or hems on articles of manufacture such as, refrigerator doors, range tops, dishwashers, freezers, microwave ovens, desk tops, desk drawers, chair bumpers, filing cabinets, shelving, or the like. [0014]
  • The sealant material alternatively is applied to a variety of components of an automotive vehicle such as hem flanges, fuel filler doors, fuel filler assemblies, license plates, doors, door frames, ditches, vehicle grille assemblies, bumper guards, consoles, name plates, badges or the like. Moreover, in certain embodiments, the sealant material is attached to a substrate of a component as a separate pre-formed seal, e.g., molded into a desired configuration. [0015]
  • One additional particularly attractive feature of the present invention is the ability, in some applications, to employ the sealant material by itself and without any separately fabricated support substrate. [0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims, and drawings, of which the following is a brief description: [0017]
  • FIG. 1 illustrates a sectional view of an exemplary sealant material formed in accordance with an aspect of the present invention; [0018]
  • FIG. 2 illustrates a sectional view of the sealant material of FIG. 1 after a portion of the sealant material has been cured according to another aspect of the present invention; [0019]
  • FIG. 3 illustrates a sectional view of the sealant material of FIGS. [0020] 1-2 as applied to an example of a substrate;
  • FIG. 4 illustrates a sectional view of the sealant material of FIGS. [0021] 1-3 after the material has flowed onto the substrate;
  • FIG. 5 illustrates an example of how an extruder might be used to form and/or apply the sealant material of the present invention.[0022]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention is predicated upon an improved sealant material, and articles incorporating the same, including: [0023]
  • (a) up to about 80% of an epoxy resin; [0024]
  • (b) up to about 40% of an epoxy/elastomer; [0025]
  • (c) up to about 40% of a rheology modifier; [0026]
  • (d) up to about 5% of a blowing agent; [0027]
  • (e) up to about 7% of a curing agent; and [0028]
  • (f) a filler. [0029]
  • Percentages herein refer to weight percent, unless otherwise indicated. [0030]
  • Epoxy Resin [0031]
  • Epoxy resin is used herein to mean any of the conventional dimeric, oligomeric or polymeric epoxy materials containing at least one epoxy functional group. The polymer based materials may be epoxy containing materials having one or more oxirane rings polymerizable by a ring opening reaction. In preferred embodiments, the sealant material includes up to about 80% of an epoxy resin. More preferably, the sealant includes between about 10% and 50% by weight of epoxy containing materials. [0032]
  • The epoxy containing materials may be aliphatic, cycloaliphatic, aromatic or the like. The epoxy may be supplied as a solid (e.g., as pellets, chunks, pieces or the like) or a liquid (e.g., an epoxy resin). The epoxy may include an ethylene copolymer or terpolymer that may possess an alpha-olefin. As a copolymer or terpolymer, the polymer is composed of two or three different monomers, i.e., small molecules with high chemical reactivity that are capable of linking up with similar molecules. Preferably, an epoxy resin is added to the sealant material to increase the flow properties of the material. One exemplary epoxy resin may be a phenolic resin, which may be a novalac type or other type resin. Other preferred epoxy containing materials may include a bisphenol-A epichlorohydrin ether polymer, or a bisphenol-A epoxy resin which may be modified with butadiene or another polymeric additive. [0033]
  • Epoxy/Elastomer [0034]
  • In a highly preferred embodiment, one or more of the epoxy containing materials may be provided to the sealant material as an epoxy/elastomer hybrid, e.g., a blend or copolymer that has been previously fabricated. The epoxy/elastomer hybrid may be included in an amount of up to about 40% by weight of the sealant material. More preferably, the epoxy/elastomer hybrid is approximately 10 to 30%, and more preferably is about 20% by weight of the sealant material. [0035]
  • In turn, the hybrid itself generally includes about 1:5 to 5:1 parts of epoxy to elastomer, and more preferably about 1:3 to 3:1 parts or epoxy to elastomer. In one preferred embodiment, the epoxy/elastomer hybrid preferably includes approximately 40 to 80% of an epoxy resin (such as disclosed in the above), and about 20 to 60% of an elastomer compound. The elastomer compound may be any suitable art disclosed thermoplastic elastomer, thermosetting elastomer or a mixture thereof. Exemplary elastomers include, without limitation natural rubber, styrenebutadiene rubber, polyisoprene, polyisobutylene, polybutadiene, isoprene-butadiene copolymer, neoprene, nitrile rubber, butyl rubber, polysulfide elastomer, acrylic elastomer, acrylonitrile elastomers, silicone rubber, polysiloxanes, polyester rubber, diisocyanate-linked condensation elastomer, EPDM (ethylene propylene diene rubbers), chlorosulphonated polyethylene, fluorinated hydrocarbons and the like. In one embodiment, recycled tire rubber is employed. [0036]
  • The epoxy/elastomer hybrid, when added to the sealant material, preferably is added to modify structural properties of the sealant material such as strength, toughness, stiffness, flexural modulus, or the like. Additionally, the epoxy/elastomer hybrid may be selected to render the sealant material more compatible with coatings such as water-bome paint or primer system or other conventional coatings. [0037]
  • Rheology Modifier [0038]
  • Preferably, the sealant material includes one or more materials for controlling the rheological characteristics of the sealant material over a range of temperatures (e.g., up to about 250° C.). When used, the rheology modifier preferably is present in an amount up to about 40%, and more preferably between about 1 to about 20%, and still more preferably less than about 10%. Of course, higher amounts are possible as well. [0039]
  • In one embodiment, any suitable art-disclosed rheology modifier may be used, and thus the rheology modifier may be organic or inorganic, liquid or solid, or otherwise. In a particularly preferred embodiment, the rheology modifier is a polymer, and more preferably one based upon an olefinic (e.g., an ethylene, a butylenes, a propylene or the like), a styrenic (e.g., a styrene-butadiene-containing rubber), an acrylic or an unsaturated carboxylic acid or its ester (such as acrylates, methacrylates or mixtures thereof; e.g., ethylene methyl acrylate polymer). The rheology modifier may be provided in a generally homogeneous state or suitable compounded with other ingredients. [0040]
  • It may be possible to use certain acetates (e.g., EVA) in accordance with the present invention for certain applications. However, it is preferably that the rheology modifier (or the entire sealant) be substantially free of an acetate in view of the propensity for decomposition at higher temperatures and the attendant potential deleterious release of acetic acid onto a painted surface. [0041]
  • Blowing Agent [0042]
  • One or more blowing agents may be added to the sealant material for producing inert gasses that form as desired an open and/or closed cellular structure within the sealant material. In this manner, it may be possible to lower the density of articles fabricated from the material. In addition, the material expansion helps to improve sealing capability. [0043]
  • The blowing agent may include one or more nitrogen containing groups such as amides, amines and the like. Examples of suitable blowing agents include azodicarbonamide, dinitrosopentamethylenetetramine, azodicarbonamide, dinitrosopentamethylenetetramine, 4,4[0044] ioxy-bis-(benzenesulphonylhydrazide), trihydrazinotriazine and N,Ni-dimethyl-N,Ni dinitrosoterephthalamide. In a highly preferred embodiment, modified and unmodified azocarbonamides may be supplied to the material 10 in particle form having particles sizes of, for example, 120 and 180 microns. Advantageously, the azocarbonamides can assist the sealant material in leveling itself (i.e., forming a surface of maintaining the surface 24 in a substantially flat condition).
  • An accelerator for the blowing agents may also be provided in the sealant material. Various accelerators may be used to increase the rate at which the blowing agents form inert gasses. One preferred blowing agent accelerator is a metal salt, or is an oxide, e.g. a metal oxide, such as zinc oxide. [0045]
  • Amounts of blowing agents and blowing agent accelerators can vary widely within the sealant material depending upon the type of cellular structure desired, the desired amount of expansion of the sealant material, the desired rate of expansion and the like. Exemplary ranges for the amounts of blowing agents and blowing agent accelerators in the sealant material range from about 0% by weight to about 5% by weight and are preferably in the sealant material in fractions of weight percentages. [0046]
  • Curing Agent [0047]
  • One or more curing agents and/or curing agent accelerators may be added to the sealant material. Amounts of curing agents and curing agent accelerators can, like the blowing agents, vary widely within the sealant material depending upon the type of cellular structure desired, the desired amount of expansion of the sealant material, the desired rate of expansion, the desired structural properties of the sealant material and the like. Exemplary ranges for the curing agents or curing agent accelerators present in the sealant material range from about 0% by weight to about 7% by weight. [0048]
  • Preferably, the curing agents assist the sealant material in curing by crosslinking of the polymers, epoxy resins (e.g., by reacting in stoichiometrically excess amounts of curing agent with the epoxide groups on the resins) or both. It is also preferable for the curing agents to assist in thermosetting the sealant material. Useful classes of curing agents are materials selected from aliphatic or aromatic amines or their respective adducts, amidoamines, polyamides, cycloaliphatic amines (e.g., anhydrides, polycarboxylic polyesters, isocyanates, phenol-based resins (such as phenol or cresol novolak resins, copolymers such as those of phenol terpene, polyvinyl phenol, or bisphenol-A formaldehyde copolymers, bishydroxyphenyl alkanes or the like), or mixtures thereof. Particular preferred curing agents include modified and unmodified polyamines such as triethylenetetramine, diethylenetriamine tetraethylenepentamine, cyanoguanidine and the like. An accelerator for the curing agents (e.g., methylene diphenyl bis urea) may also be provided for preparing the sealant material. [0049]
  • Filler [0050]
  • The sealant material may also include one or more fillers, including but not limited to particulated materials (e.g., powder), beads, microspheres, or the like. Preferably the filled includes a relatively low-density material that is generally nonreactive with the other components present in the sealant material. [0051]
  • Examples of fillers include silica, diatomaceous earth, glass, clay, talc, pigments, colorants, glass beads or bubbles, glass, carbon ceramic fibers, antioxidants, and the like. Such fillers, particularly clays, can assist the sealant material in leveling itself during flow of the material. The clays that may be used as fillers may include clays from the kaolinite, illite, chloritem, smecitite or sepiolite groups. Examples of suitable fillers include, without limitation, talc, vermiculite, pyrophyllite, sauconite, saponite, nontronite, montmorillonite or mixtures thereof. The clays may also include minor amounts of other ingredients such as carbonates, feldspars, micas and quartz. The fillers may also include ammonium chlorides such as dimethyl ammonium chloride and dimethyl benzyl ammonium chloride. Titanium dioxide might also be employed. [0052]
  • In one preferred embodiment, one or more mineral or stone type fillers such as calcium carbonate, sodium carbonate or the like may be used as fillers. In another preferred embodiment, silicate minerals such as mica may be used as fillers. It has been found that, in addition to performing the normal functions of a filler, silicate minerals and mica in particular. [0053]
  • When employed, the fillers in the sealant material can range from 10% to 90% by weight of the sealant material. According to some embodiments, the sealant material may include from about 0% to about 3% by weight, and more preferably slightly less that 1% by weight days or similar fillers. Powdered (e.g. about 0.01 to about 50, and more preferably about 1 to 25 micron mean particle diameter) mineral type filler can comprise between about 5% and 70% by weight, more preferably about 40% to about 60%, and still more preferably approximately 55% by weight of the sealant material. In one highly preferred embodiment the sealant material may contain approximately 7% by weight mica. [0054]
  • Other Additives [0055]
  • Other additives, agents or performance modifiers may also be included in the sealant material as desired, including but not limited to a UV resistant agent, a flame retardant, an impact modifier, a heat stabilizer, a colorant, a processing aid, a lubricant, a reinforcement (e.g., chopped or continuous glass, ceramic, aramid, or carbon fiber or the like). [0056]
  • Other polymers may also be incorporated into the sealant material, e.g., by copolymerization, by blending, or otherwise. For example, without limitation, other polymers that might be appropriately incorporated into the sealant material include halogenated polymers, polycarbonates, polyketones, urethanes, polyesters, silanes, sulfones, allyls, olefins, styrenes, acrylates, methacrylates, epoxies, silicones, phenolics, rubbers, polyphenylene oxides, terphthalates, or mixtures thereof. Other potential polymeric materials may be or may include include, without limitation, polyethylene, polypropylene, polystyrene, polyolefin, polyacrylate, poly(ethylene oxide), poly(ethyleneimine), polyester, polyurethane, polysiloxane, polyether, polyphosphazine, polyamide, polyimide, polyisobutylene, polyacrylonitrile, poly(vinyl chloride), poly(methylmethacrylate), poly(vinyl acetate), poly(vinylidene chloride), polytetrafluoroethylene, polyisoprene, polyacrylamide, polyacrylic acid, polymethacrylate, and polyacetals. [0057]
  • When determining appropriate components for the sealant material, it may be important to form the material such that it will only activate (e.g., flow, foam or otherwise change states) at appropriate times or temperatures. For instance, in most applications, it is undesirable for the material to be reactive at room temperature or otherwise at the ambient temperature in a production environment. More typically, the sealant material becomes activated to flow at higher processing temperatures. As an example, temperatures such as those encountered in an automobile assembly plant may be appropriate, especially when the sealant material is processed along with the other components at elevated temperatures or at higher applied energy levels, e.g., during painting preparation steps. Temperatures encountered in many coating operations, for instance, range up to about 250° C. or higher. [0058]
  • The present materials exhibit the ability to flow and self level to then serve as a generally smooth paintable surface within a temperature range up to about 100° C., more preferably up to about 175° C., still more preferably up to about 250° C., and even still more preferably up to about 325° C. [0059]
  • Formation of the sealant material can be accomplished according to a variety of new or known techniques. Preferably, the sealant material is formed as a material of substantially homogeneous composition. However, it is contemplated that various combining techniques may be used to increase or decrease the concentration of certain components in certain locations of the sealant material. [0060]
  • According to one embodiment, the sealant material is formed by supplying the components of the material in solid form such as pellets, chunks and the like, in liquid form or a combination thereof. The components are typically combined in one or more containers such as large bins or other containers. Preferably, the containers can be used to intermix the components by rotating or otherwise moving the container. Thereafter, heat, pressure or a combination thereof may be applied to soften or liquidize the components such that the components can be intermixed by stirring or otherwise into a single homogenous composition. [0061]
  • According to another embodiment, the sealant material may be formed by heating one or more of the components that is generally easier to soften or liquidize such as the polymer based materials to induce those components into a mixable state. Thereafter, the remaining components may then be intermixed with the softened components. [0062]
  • Depending upon the components used, it may be important to assure that the temperature of the components remains below certain activation temperatures that might cause the sealant material to activate (e.g., form gasses, flow or otherwise activate), cure (e.g., harden, stiffen or otherwise change states) or both. Notably, when the sealant material contains a blowing agent, it is typically desirable to maintain the temperature of the sealant material below a temperature that will activate the blowing agent during formation of the sealant material or before the sealant material is applied to a surface. [0063]
  • In situations where it is desirable to maintain the sealant material at lower temperatures it may be desirable to maintain the components in a semi-solid or viscoelastic state using pressure or a combination of pressure and heat to intermix the components of the sealing material. Various machines have been designed to applying heat, pressure or both to materials. One preferred machine is an extruder. According to one embodiment of the present invention, various components may be premixed into one, two or more pre-mixtures and introduced at one or various locations in a single or twin-screw extruder. Thereafter, the heat and pressure provided by the extruder mixes the sealant material in a single generally homogeneous composition, and preferably does so without activating the material. [0064]
  • As an example, and referring to FIG. 5, a [0065] first mixture 60 of components may be provided to a throat portion 54 of the extruder 40. Each of the components is preferably provided in solid forms such as chunks, pellets or powders that can be thoroughly mixed together in a tumbler or other mixing receptade. The first mixture 60 may comprise any of the components discussed above. In a preferred embodiment, the first mixture 60 may include a combination of one or more components, which may be chosen from an epoxy resin, an epoxy/elastomer, a filler, another polymer or a mixture thereof.
  • As the [0066] first mixture 60 is introduced into the extruder 40, the extruder screw 70 mixes the components to form a viscoelastic material that is progressively moved from the throat portion 54 of the extruder 40 and through the intermediate portion 58 of the extruder. After substantial mixing of the first mixture 60, a side stream that is preferably liquid is provided to enhance mixing of the components in the extruder 40. The side stream preferably provides an epoxy in resin form that may or may not be combined with other components. Alternatively, the side stream may include any of the polymer materials discussed above.
  • Toward the [0067] die portion 48 of the extruder 40, a second mixture 90 is combined with the first mixture 60 and the material from the side stream. Again, each of the components is preferably provided in solid forms such as chunks, pellets or powders that can be thoroughly mixed together in a tumbler or other mixing receptacle. Moreover, the second mixture 90 is a combination of one or more of the same components that were supplied in the first mixture 60. Additionally, however, any blowing agents, blowing agent accelerators, curing agents or curing agent accelerators are preferably added to the second mixture 90.
  • Once the [0068] first mixture 60, the side stream and the second mixture 90 are combined and mixed, they form the sealant material, which may be emitted from the extruder 40. The sealant material may then be transported and applied to substrates or, in certain circumstances, the material may be directly applied to a surface as it leaves the extruder 40. The skilled artisan will recognize that various other techniques may be used to form the sealant material from the various components.
  • FIGS. [0069] 1-4 illustrate an example of a sealant material 10 being applied to a substrate 12. The sealant material 10 may be applied to a variety of substrates. However, for exemplary purposes and with no intention of limiting the invention, the material 10 is shown as applied to components 14, 16 (e.g. overlapping panels) for forming a joint 18. The joint 18, as shown, is formed with overlapping arced portions of the two components 14, 16. In one embodiment, the substrate material is selected from steel, aluminum or plastic (e.g., reinforced plastic).
  • The [0070] sealant material 10 may be initially formed in a variety of shapes, sizes, patterns, thicknesses and the like and may be formed using a variety of forming techniques such as molding, extruding, thermosetting and the like. Alternatively, the sealant material 10 may be initially formed in a substantially liquid state wherein the material 10 is shaped by its container or shaped by a substrate to which the material has been applied. Preferably, the sealant material 10 is initially formed as a single homogeneous melt flowable composition, however, in alternative embodiments, the sealant material 10 may form one layer of a multi-layer article. The sealant material 10 may be dry to the touch shortly after it is initially formed to allow easer handling, packaging and the like of the material 10, however, it is also possible for the material 10 to be wet, tacky or both. In one preferred embodiment, shown in FIG. 1, the sealant material 10 has been extruded in a viscoelastic state as an elongated strip, which is shown in cross-section. Of course other section shapes (e.g., having an asymmetrical shape about a longitudinal axis, a symmetrical shape about the longitudinal axis, varying shapes along the longitudinal axis, longitudinal channels or passages, or the like) are contemplated as well and may be formed as desired or needed for any chosen application. It may also be possible to co-extrude the sealant material with a strip or wire (e.g., for forming an encapsulated or laminated strip or wire, such as for making an antenna for a communications system). Molded or die-cut articles may also be formed from the sealant material of the present invention.
  • Once the [0071] sealant material 10 has been formed in a desired configuration, the material may be activated, cured or both to form a seal of a desired configuration. Activation of the sealant material, curing of the material or both may take place in a single stage or multiple stages and may utilize a variety of stimuli to cause activation or curing. Activation, as used herein, generally denotes inducing the sealant material 10 to flow, foam or generally soften and can be caused by exposure of the sealant material 10 to a variety of stimuli such as heat, light, electricity, pressure, moisture and the like. Curing, as used herein, generally denotes any stiffening, hardening, solidifying or the like of the sealant material and can be caused by exposure to a variety of stimuli such as cooling, light and the like.
  • Activation of the material may include at least some degree of foaming or bubbling in situations where the sealant material includes a blowing agent. Such foaming or bubbling can assist the sealant material in wetting a substrate and forming an intimate bond with the substrate. Alternatively, however, it shall be recognized that the sealant material may be activated to flow without foaming or bubbling and may still substantially wet the substrate to form a desired seal. [0072]
  • According to one embodiment, the sealant material may be activated prior to application of the sealant material to a substrate such that the sealant material is in a generally flowable state when it is applied to the substrate. In such a situation, curing of the material may occur during or after the time the sealant material is applied to the substrate. [0073]
  • According to another embodiment, the [0074] sealant material 10 may undergo a single stage activation, a single stage cure or both. In the embodiment, the sealant material is typically placed adjacent (e.g., in direct contact with or near) a substrate upon which the sealant material is to form a seal. Thereafter, the sealant material 10 is activated by exposure to a stimulus such as energy in the form of heat, light or otherwise that activates the sealant material 10 to flow over the substrate. Then, after a desired amount of flow has been induced, the sealant is cured substantially throughout its volume to form a seal upon the substrate.
  • According to still other embodiments, the [0075] sealant material 10 may undergo a selective multiple stage activation, a multiple stage cure or both. For example, a portion of the sealant material 10 may be exposed to a stimulus to at least partially cure a portion of the sealant material, e.g. a cure to a predetermined depth (e.g., on the order of about 1 mil to about 2 mm), or a cure in certain regions along or within the mass of material. In FIG. 2, the sealant material 10 is illustrated with a partially cured portion 20 that was formed by exposing at least one portion of the surface 24 of the sealant material to ultraviolet (UV) light, UV radiation, moisture, infrared light, heat or the like from a stimulus source to cross-link or otherwise cure the partially cured portion 20. As can be seen, the remainder of the sealant material 10 forms a second portion 26, which can be cured at a later time or different location.
  • Alternatively, the partially cured [0076] portion 20 may be formed by exposing a surface of the sealant material 10 to a stimulus (e.g., heat) that first activates (e.g.,softens) the portion 20 and then the portion 20 may be exposed to another stimulus (e.g., cooling) for curing. Preferably, the amount of heat used to activate the portion 20 is enough to soften the portion 20 without causing any substantial degree of flow. In this manner, the sealant material 20 can generally maintain the shape in which it was originally formed until it is later activated to flow over a substrate.
  • The partially cured [0077] portion 20 may be formed to most any depth within the sealant material 10 depending on the stimulus applied to the portion 20, the length of time of exposure to the stimulus and the like. Moreover, the length or depth of the selectively or partially cured portion 20 may be varied at different locations of the sealant material 10 as desired or depending upon the substrate to which the material 10 is being applied.
  • One particularly advantageous feature of the present invention is the ability to cure the present materials in the absence of a photo-initiator. Thus, while photoinitiators might be employed in some applications, in one preferred embodiment, the composition of the present invention is substantially free of a photoinitiator. [0078]
  • Curing or partial curing of the sealant material may also be effected using an acid cure for inducing homopolymerization on or within the material, or with a suitable liquid for effectuating the initiation of a condensation reaction. By way of example, a partial cure of a surface of the sealant material may be undertaken with any suitable acid, but more preferably with a mild acid (such as phosphoric acid, citric acid or the like). It may also be performed by coating with a water dispersed or 100% amine-based liquid curing agent suitable for condensation polymerization. Under either approach, the liquid may optionally be rinsed after application. [0079]
  • Before or after formation of the partially cured [0080] portion 20, the sealant material 10 is is typically placed adjacent the substrate 12 such that the melt flowable portion 26 of the substrate 12 will be permitted to flow over a portion of the substrate 12. In FIG. 3, the strip of sealant material 10 is placed in the channel 18 such that a length of the strip extends along a length of the channel 18 and such that a width of the strip generally spans a width of the channel 18. Preferably, the melt flowable portion 26 is directly adjacent the overlapping portion of the panels 14, 16 and the partially cured portion 20 of the sealant material 10 faces out of the channel 18.
  • Once the [0081] sealant material 10 is situated as desired, the material 10 is exposed to heat or elevated temperature, such as from an e-coat process or otherpaint operation cycle thereby causing the flowable portion 26 to cover a portion of the substrate 12. In FIG. 4, the sealant material 10 is shown after it has been heated to a flowable state permitting the material 10 to intimately contact the overlapping portions of the panels 14, 16.
  • The sealant material of the present invention may be employed in any suitable thickness (e.g., from about 1 mil to about 10 mm, and more preferably about 1 to 5 mm). [0082]
  • In one particularly preferred embodiment, a sealed joint prepared in accordance with the present invention is further coated with a top coat (e.g., a paint) and optionally a primer (between the top coat and the joint), a clear coat (e.g., a polyurethane, an acrylic such as a glycidyl methacrylate (GMA)-based coating, or a mixture thereof) over the top coat, or a combination thereof. Preferably one such coating is a water-based coated, although solvent based coatings may also be used. In one embodiment, the coating includes a two component polyurethane coating. In another embodiment the coating is applied as a powder coating. Preferably an electocoating process is used to apply a coating layer, such as the primer. [0083]
  • The preferred embodiment of the present invention has been disclosed. A person of ordinary skill in the art would realize however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention. [0084]

Claims (14)

What is claimed is:
1. An article of manufacture; comprising:
a) a first panel;
b) a second panel adjoining said first panel;
c) a sealant over said first panel and said second panel; said sealant material including
i. up to about 80% of an epoxy resin;
ii. up to about 40% of an epoxy/elastomer hybrid;
iii. up to about 40% of a rheology modifier;
iv. up to about 5% of a blowing agent;
v. up to about 7% of a curing agent; and
vi. a filler;
d) a layer of primer over said sealant; and
e) a layer of paint over said primer.
2. An article of manufacture, comprising:
a) a first panel;
b) a partially cured sealant over said first panel and said second panel; said sealant material including
i. up to about 80% of an epoxy resin;
ii. up to about 40% of an epoxy/elastomer hybrid;
iii. up to about 40% of a rheology modifier other than an ethylene vinyl acetate;
iv. up to about 5% of a blowing agent;
v. up to about 7% of a curing agent; and
vi. about 40 to about 60% of a filler, said sealant being substantially free of a photoinitiator.
3. An article of manufacture, comprising:
a) a first metal automotive vehicle panel selected from aluminum, steel or reinforced plastic;
b) a second automotive vehicle panel selected from aluminum, steel or reinforced plastic adjoining said first panel;
c) a sealant over said first panel and said second panel; said sealant material including
1. about 10 to about 50 parts by weight of an epoxy resin;
2. about 10 to about 30 parts by weight of an epoxy/elastomer hybrid having about 1:3 to 3:1 parts of epoxy to elastomer;
3. less than about 10 parts by weight of a rheology modifier including an acrylic;
4. up to about 5 parts by weight of an azocarbonamide blowing agent;
5. up to about 7 parts by weight of a curing agent including an amine; and
6. about 40 to about 60 parts by weight of a mineral filler;
d) a layer of primer, applied by electrocoating, over said sealant;
e) a layer of two component polyurethane paint over said primer; and
f) a clear coat layer over said paint.
4. The article of claim 1, wherein said sealant is substantially free of a photoinitiator.
5. The article of claim 1, wherein said sealant is substantially free of ethylene vinyl acetate.
6. The article of claim 1, wherein said sealant is substantially free of ethylene vinyl acetate and a photoinitiator.
7. The article of claim 1, wherein said sealant has been partially cured.
8. The article claim 2, wherein said epoxy resin is present in an amount of about 10 to about 50% by weight, and said epoxy/elastomer hybrid is present in an amount of about 10 to about 30% by weight and has about 1:3 to 3:1 parts of epoxy to elastomer.
9. The article of claim 8, wherein said filler is a mineral filler.
10. The article of claim 3, wherein said sealant is substantially free of a photoinitiator.
11. The article of claim 3, wherein said sealant is substantially free of ethylene vinyl acetate.
12. The article of claim 3, wherein said sealant is substantially free of ethylene is vinyl acetate and a photoinitiator.
13. The article of claim 3, wherein said sealant has been partially cured.
14. The article of claim 3, wherein said sealant is self leveling at elevated temperatures for providing a smooth paintable surface.
US10/659,887 2001-08-24 2003-09-11 Paintable material Abandoned US20040048078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/659,887 US20040048078A1 (en) 2001-08-24 2003-09-11 Paintable material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/939,245 US6682818B2 (en) 2001-08-24 2001-08-24 Paintable material
US10/659,887 US20040048078A1 (en) 2001-08-24 2003-09-11 Paintable material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/939,245 Continuation US6682818B2 (en) 2001-08-24 2001-08-24 Paintable material

Publications (1)

Publication Number Publication Date
US20040048078A1 true US20040048078A1 (en) 2004-03-11

Family

ID=25472811

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/939,245 Expired - Fee Related US6682818B2 (en) 2001-08-24 2001-08-24 Paintable material
US10/659,887 Abandoned US20040048078A1 (en) 2001-08-24 2003-09-11 Paintable material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/939,245 Expired - Fee Related US6682818B2 (en) 2001-08-24 2001-08-24 Paintable material

Country Status (6)

Country Link
US (2) US6682818B2 (en)
EP (1) EP1326922B1 (en)
AT (1) ATE295868T1 (en)
DE (1) DE60204209T2 (en)
ES (1) ES2239247T3 (en)
WO (1) WO2003018688A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186049A1 (en) * 2002-04-01 2003-10-02 L&L Products, Inc. Activatable material
US20040204551A1 (en) * 2003-03-04 2004-10-14 L&L Products, Inc. Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith
US20040266898A1 (en) * 2003-06-26 2004-12-30 L&L Products, Inc. Expandable material
US20050020703A1 (en) * 2001-05-02 2005-01-27 L&L Products, Inc. Two component (epoxy/amine) structural foam-in-place material
US20050119372A1 (en) * 2001-05-02 2005-06-02 L&L Products, Inc. Two component (epoxy/amine) structural foam-in-place material
US20060188726A1 (en) * 2003-01-22 2006-08-24 Xaver Muenz Heat curable, thermally expandable composition with high degree of expansion
US20070193171A1 (en) * 2004-07-21 2007-08-23 Zephyros, Inc. Sealant material
US20070284036A1 (en) * 2006-06-07 2007-12-13 L&L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
US20110098382A1 (en) * 2008-04-09 2011-04-28 Zephyros Inc Structural adhesives
US9096039B2 (en) 2010-03-04 2015-08-04 Zephyros, Inc. Structural composite laminates
US9427902B2 (en) 2009-09-15 2016-08-30 Zephyros, Inc. Cavity filling
CN109517491A (en) * 2018-12-03 2019-03-26 北京雷铂犀牛科技有限公司 SMART METALS surface coating
US10577522B2 (en) 2013-07-26 2020-03-03 Zephyros, Inc. Thermosetting adhesive films including a fibrous carrier
US11028220B2 (en) 2014-10-10 2021-06-08 Zephyros, Inc. Relating to structural adhesives

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02007795A (en) * 2000-02-11 2005-06-06 L & L Products Inc Structural reinforcement system for automotive vehicles.
US6482486B1 (en) * 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6620501B1 (en) * 2000-08-07 2003-09-16 L&L Products, Inc. Paintable seal system
WO2002030486A2 (en) * 2000-10-13 2002-04-18 Fluidigm Corporation Microfluidic device based sample injection system for analytical devices
US6682818B2 (en) * 2001-08-24 2004-01-27 L&L Products, Inc. Paintable material
US20030050352A1 (en) * 2001-09-04 2003-03-13 Symyx Technologies, Inc. Foamed Polymer System employing blowing agent performance enhancer
US6729425B2 (en) * 2001-09-05 2004-05-04 L&L Products, Inc. Adjustable reinforced structural assembly and method of use therefor
US6887914B2 (en) * 2001-09-07 2005-05-03 L&L Products, Inc. Structural hot melt material and methods
US6774171B2 (en) * 2002-01-25 2004-08-10 L&L Products, Inc. Magnetic composition
US7004536B2 (en) * 2002-07-29 2006-02-28 L&L Products, Inc. Attachment system and method of forming same
US20040076831A1 (en) * 2002-10-02 2004-04-22 L&L Products, Inc. Synthetic material and methods of forming and applying same
US6811864B2 (en) * 2002-08-13 2004-11-02 L&L Products, Inc. Tacky base material with powder thereon
US20040056472A1 (en) * 2002-09-25 2004-03-25 L&L Products, Inc. Fuel fill assembly and method of forming same
RU2366625C2 (en) * 2003-03-11 2009-09-10 Х.Б.Фуллер Лайсензинг Энд Файнэнсинг, Инк. Low-temperature pressing method for production of insulating glass packets
US8080308B2 (en) * 2003-03-11 2011-12-20 H.B. Fuller Company One-part moisture curable hot melt silane functional poly-alpha-olefin sealant composition
US20040197571A1 (en) * 2003-04-03 2004-10-07 Yuji Hiroshige Thermosetting composition, and sealing article and sealing structure using the same
US7125461B2 (en) * 2003-05-07 2006-10-24 L & L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
US20050016677A1 (en) * 2003-07-22 2005-01-27 L&L Products, Inc. Two-component adhesive material and method of use therefor
US20050159531A1 (en) * 2004-01-20 2005-07-21 L&L Products, Inc. Adhesive material and use therefor
US20050221046A1 (en) * 2004-04-01 2005-10-06 L&L Products, Inc. Sealant material
US20050230027A1 (en) * 2004-04-15 2005-10-20 L&L Products, Inc. Activatable material and method of forming and using same
US20050241756A1 (en) * 2004-04-28 2005-11-03 L&L Products, Inc. Adhesive material and structures formed therewith
US8070994B2 (en) 2004-06-18 2011-12-06 Zephyros, Inc. Panel structure
US7521093B2 (en) * 2004-07-21 2009-04-21 Zephyros, Inc. Method of sealing an interface
WO2008112992A2 (en) * 2007-03-15 2008-09-18 Zephyros, Inc. Sealant material
JP4575940B2 (en) * 2007-08-21 2010-11-04 トヨタ自動車株式会社 Sealer and sealing method
GB201207481D0 (en) 2012-04-26 2012-06-13 Zephyros Inc Applying flowable materials to synthetic substrates
DE102018102238B4 (en) 2018-02-01 2022-06-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Process for gluing and sealing seams and joints and application of a process
JP2020037306A (en) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 Method of manufacturing vehicle body member and seal structure of connection part of vehicle body member

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862796A (en) * 1973-04-24 1975-01-28 Eastman Kodak Co Plastic-glass eyeloupe
US4378395A (en) * 1981-03-16 1983-03-29 Nissan Motor Company, Limited Reinforcing material
US4427481A (en) * 1978-02-27 1984-01-24 R & D Chemical Company Magnetized hot melt adhesive and method of preparing same
US4444818A (en) * 1982-01-30 1984-04-24 Nitto Electric Industrial Co., Ltd. Reinforcing adhesive sheets
US4538380A (en) * 1983-11-16 1985-09-03 Profile Extrusions Company Low friction weather seal
US4605460A (en) * 1983-10-03 1986-08-12 W. R. Grace & Co., Cryovac Div. Method of laminating high barrier shrink film
US4693775A (en) * 1986-03-06 1987-09-15 United Technologies Automotive, Inc. Hot melt, synthetic, magnetic sealant
US4724243A (en) * 1986-12-29 1988-02-09 United Technologies Automotive, Inc. Hot melt magnetic sealant, method of making and method of using same
US4749434A (en) * 1986-12-29 1988-06-07 United Technologies Automotive, Inc. Hot melt magnetic sealant, method of making and method of using same
US4769166A (en) * 1987-06-01 1988-09-06 United Technologies Automotive, Inc. Expandable magnetic sealant
US4898630A (en) * 1987-11-18 1990-02-06 Toyota Jidosha Kabushiki Thermosetting highly foaming sealer and method of using it
US4923902A (en) * 1988-03-10 1990-05-08 Essex Composite Systems Process and compositions for reinforcing structural members
US4922596A (en) * 1987-09-18 1990-05-08 Essex Composite Systems Method of manufacturing a lightweight composite automotive door beam
US5124186A (en) * 1990-02-05 1992-06-23 Mpa Diversified Products Co. Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube
US5266133A (en) * 1993-02-17 1993-11-30 Sika Corporation Dry expansible sealant and baffle composition and product
US5470886A (en) * 1994-03-31 1995-11-28 Ppg Industries, Inc. Curable, sprayable compositions for reinforced thin rigid plates
US5577784A (en) * 1994-09-01 1996-11-26 Davidson Textron Inc. Vehicle bumper
US5648401A (en) * 1996-10-09 1997-07-15 L & L Products, Inc. Foamed articles and methods for making same
US5783272A (en) * 1993-08-10 1998-07-21 Dexter Corporation Expandable films and molded products therefrom
US5806919A (en) * 1996-11-04 1998-09-15 General Motors Corporation Low density-high density insert reinforced structural joints
US5884960A (en) * 1994-05-19 1999-03-23 Henkel Corporation Reinforced door beam
US5894071A (en) * 1994-04-15 1999-04-13 Sika Ag, Vorm. Kaspar Winkler & Co. Two-component adhesive-, sealing- or coating composition and it's use
US5932680A (en) * 1993-11-16 1999-08-03 Henkel Kommanditgesellschaft Auf Aktien Moisture-curing polyurethane hot-melt adhesive
US5931474A (en) * 1997-02-24 1999-08-03 Raychem Corporation Cavity sealing article and method
US5948508A (en) * 1997-08-15 1999-09-07 3M Innovative Properties Company On-line paintable insert
US5964979A (en) * 1997-08-15 1999-10-12 3M Innovative Properties Company Sealing method and article
US5985435A (en) * 1996-01-23 1999-11-16 L & L Products, Inc. Magnetized hot melt adhesive articles
US5994422A (en) * 1995-05-20 1999-11-30 Henkel-Teroson Gmbh Hot-curing rubber foams with high structural strength
US6030701A (en) * 1993-04-15 2000-02-29 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US6040350A (en) * 1997-08-26 2000-03-21 Nissan Motor Co., Ltd. Epoxy resin type composition for stiffening vehicle body and method for stiffening vehicle body
US6056526A (en) * 1994-11-30 2000-05-02 3M Innovative Properties Company Molding tool for sealant material
US6057382A (en) * 1998-05-01 2000-05-02 3M Innovative Properties Company Epoxy/thermoplastic photocurable adhesive composition
US6077884A (en) * 1996-11-20 2000-06-20 Sika Chemie Gmbh Aqueous dispersion of epoxy resin and blend of epoxy resin-polyoxyalkylene amines
US6096791A (en) * 1996-10-29 2000-08-01 Henkel-Teroson Gmbh Sulphur-free expanding, hot hardening shaped parts
US6103784A (en) * 1998-08-27 2000-08-15 Henkel Corporation Corrosion resistant structural foam
US6133335A (en) * 1998-12-31 2000-10-17 3M Innovative Properties Company Photo-polymerizable compositions and articles made therefrom
US6136398A (en) * 1998-05-01 2000-10-24 3M Innovative Properties Company Energy cured sealant composition
US6136944A (en) * 1998-09-21 2000-10-24 Shell Oil Company Adhesive of epoxy resin, amine-terminated polyamide and polyamine
US6174932B1 (en) * 1998-05-20 2001-01-16 Denovus Llc Curable sealant composition
US6197403B1 (en) * 1998-04-06 2001-03-06 Hp Pelzer (Automotive Systems), Inc. Integral sound absorber and water deflector door panel
US6228449B1 (en) * 1994-01-31 2001-05-08 3M Innovative Properties Company Sheet material
US6232433B1 (en) * 1996-10-02 2001-05-15 Henkel Corporation Radiation curable polyesters
US6235842B1 (en) * 1996-10-08 2001-05-22 Hitachi Chemical Company, Ltd. Phase-separated carboxyl group-containing elastomer modified phoenoxy resin optionally with epoxy resin
US6244601B1 (en) * 1996-12-19 2001-06-12 Meteor Gummiwerke K.H. Badge Gmbh & Co. Sealing system for the roof frame of a hard-top, coupe, or convertible
US6263635B1 (en) * 1999-12-10 2001-07-24 L&L Products, Inc. Tube reinforcement having displaceable modular components
US6277898B1 (en) * 1997-05-21 2001-08-21 Denovus Llc Curable sealant composition
US6303672B1 (en) * 1993-12-27 2001-10-16 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US6312668B2 (en) * 1993-12-06 2001-11-06 3M Innovative Properties Company Optionally crosslinkable coatings, compositions and methods of use
US6319964B1 (en) * 2000-06-30 2001-11-20 Sika Corporation Acoustic baffle with predetermined directional expansion characteristics
US20020009582A1 (en) * 2000-06-06 2002-01-24 Golden Michael R. Epoxy based reinforcing patches with improved adhesion to oily metal surfaces
US6348513B1 (en) * 1998-08-27 2002-02-19 Henkel Corporation Reduced tack compositions useful for the production of reinforcing foams
US6350791B1 (en) * 1998-06-22 2002-02-26 3M Innovative Properties Company Thermosettable adhesive
US6376564B1 (en) * 1998-08-27 2002-04-23 Henkel Corporation Storage-stable compositions useful for the production of structural foams
US6419305B1 (en) * 2000-09-29 2002-07-16 L&L Products, Inc. Automotive pillar reinforcement system
US6429244B1 (en) * 1998-01-23 2002-08-06 Henkel Corporation Self-levelling plastisol composition and method for using same
US6432475B1 (en) * 1998-12-08 2002-08-13 Nitto Denko Corporation Pressure-sensitive adhesive composition, process for the preparation thereof and pressure-sensitive adhesive sheets
US6437055B1 (en) * 2000-04-07 2002-08-20 Ppg Industries Ohio, Inc. Electrodepositable coating from gelled epoxy-polyester and amine
US6441081B1 (en) * 1998-10-05 2002-08-27 Sumitomo Chemical Company, Limited Polypropylene-base resin composition and products of injection molding thereof
US6440257B1 (en) * 2000-05-18 2002-08-27 Hexcel Corporation Self-adhesive prepreg face sheets for sandwich panels
US6441075B2 (en) * 1996-04-26 2002-08-27 Nissan Motor Co., Ltd. Polyolefin-based resin composition and automotive molded plastic made from same
US20020120064A1 (en) * 2000-12-21 2002-08-29 3M Innovative Properties Company Pressure-sensitive adhesive blends comprising ethylene/propylene-derived polymers and propylene-derived polymers and articles therefrom
USH2047H1 (en) * 1999-11-10 2002-09-03 Henkel Corporation Reinforcement laminate
US6444713B1 (en) * 1997-05-21 2002-09-03 Denovus Llc Foaming compositions and methods for making and using the compositions
US6444149B1 (en) * 1997-03-10 2002-09-03 Perstorp Ab Process for the manufacturing of an article of plastic material
US6448338B1 (en) * 1997-07-16 2002-09-10 Henkel Teroson Gmbh Hot-setting wash-fast sealant for shell structures
US6451876B1 (en) * 2000-10-10 2002-09-17 Henkel Corporation Two component thermosettable compositions useful for producing structural reinforcing adhesives
US6451231B1 (en) * 1997-08-21 2002-09-17 Henkel Corporation Method of forming a high performance structural foam for stiffening parts
US6455146B1 (en) * 2000-10-31 2002-09-24 Sika Corporation Expansible synthetic resin baffle with magnetic attachment
US6455150B1 (en) * 1993-12-09 2002-09-24 Karen A. Sheppard Multi-layer oriented heat sealable film structure of improved machinability
US6455476B1 (en) * 1998-06-09 2002-09-24 Henkel Corporation Composition and process for lubricated plastic working of metals
US20020136891A1 (en) * 2000-12-29 2002-09-26 3M Innovative Properties Company Pressure sensitive adhesive blends comprising (meth) acrylate polymers and articles therefrom
US20020137808A1 (en) * 1999-04-28 2002-09-26 3M Innovative Properties Company Uniform small cell foams and a continuous process for making same
US6467834B1 (en) * 2000-02-11 2002-10-22 L&L Products Structural reinforcement system for automotive vehicles
US6471285B1 (en) * 2000-09-29 2002-10-29 L&L Products, Inc. Hydroform structural reinforcement system
US6479560B2 (en) * 1997-05-21 2002-11-12 Denovus Llc Foaming compositions and methods for making and using the composition
US6482496B1 (en) * 1996-07-03 2002-11-19 Henkel Corporation Foil backed laminate reinforcement
US6482486B1 (en) * 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6486256B1 (en) * 1998-10-13 2002-11-26 3M Innovative Properties Company Composition of epoxy resin, chain extender and polymeric toughener with separate base catalyst
US6485589B1 (en) * 1993-04-15 2002-11-26 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US6506494B2 (en) * 1999-12-20 2003-01-14 3M Innovative Properties Company Ambient-temperature-stable, one-part curable epoxy adhesive
US6561571B1 (en) * 2000-09-29 2003-05-13 L&L Products, Inc. Structurally enhanced attachment of a reinforcing member
US6573309B1 (en) * 1999-03-03 2003-06-03 Henkel Teroson Gmbh Heat-curable, thermally expandable moulded park
US6620501B1 (en) * 2000-08-07 2003-09-16 L&L Products, Inc. Paintable seal system
US20030187129A1 (en) * 2002-03-27 2003-10-02 Lear Corporation Sound-deadening composites of metallocene copolymers for use in vehicle applications
US6634698B2 (en) * 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
US6682818B2 (en) * 2001-08-24 2004-01-27 L&L Products, Inc. Paintable material
US20040016564A1 (en) * 2002-07-25 2004-01-29 3M Innovative Properties Company Expanded insulating sleeve with edge support
US20040033324A1 (en) * 2002-08-19 2004-02-19 3M Innovative Properties Company Epoxy compositions having improved shelf life and articles containing the same
US6740379B1 (en) * 1998-03-13 2004-05-25 3M Innovative Properties Company Adhesive tape for adhering inserts to a page of a magazine
US6740399B1 (en) * 1999-03-31 2004-05-25 3M Innovative Properties Company Multi-layered sealant
US6742258B2 (en) * 2001-11-30 2004-06-01 3M Innovative Properties Company Method of hydroforming articles and the articles formed thereby
US6747074B1 (en) * 1999-03-26 2004-06-08 3M Innovative Properties Company Intumescent fire sealing composition
US6753379B1 (en) * 1999-11-05 2004-06-22 3M Innovative Properties Company Heat activated adhesive
US20050003222A1 (en) * 2003-07-03 2005-01-06 3M Innovative Properties Company Heat-activatable adhesive

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868796A (en) 1973-04-04 1975-03-04 Ford Motor Co Side door intrusion protection
JPS6044187B2 (en) 1979-09-08 1985-10-02 日産自動車株式会社 Automotive plate material and its manufacturing method
JPS57151357A (en) 1981-03-16 1982-09-18 Nissan Motor Reinforcing material and reinforcing panel
DE3769337D1 (en) 1986-02-21 1991-05-23 Austria Metall BUMPER PROTECTOR, IN PARTICULAR FOR REINFORCING MOTOR VEHICLE DOORS.
US4995545A (en) 1988-03-10 1991-02-26 Essex Composite Systems Method of reinforcing a structure member
US4900771A (en) 1989-01-26 1990-02-13 Aster, Inc. Hot applied plastisol compositions
US4978562A (en) 1990-02-05 1990-12-18 Mpa Diversified Products, Inc. Composite tubular door beam reinforced with a syntactic foam core localized at the mid-span of the tube
JPH0459820A (en) 1990-06-29 1992-02-26 Mitsui Petrochem Ind Ltd Injection-moldable epoxy resin composition
US6004492A (en) 1994-01-14 1999-12-21 Compsys, Inc. Method of making composite spring and damper units
JP3954119B2 (en) 1995-01-21 2007-08-08 イイダ産業株式会社 Heated foam filling reinforcement and closed cross-section structural member reinforcement structure using the same heated foam filling reinforcement
DE19502381A1 (en) 1995-01-26 1996-08-01 Teroson Gmbh Structural raw rubber-based adhesives
US6165588A (en) 1998-09-02 2000-12-26 Henkel Corporation Reinforcement of hollow sections using extrusions and a polymer binding layer
EP0857186A4 (en) 1995-10-05 1998-10-28 Henkel Corp Thermosetting resin compositions
EP0861277B1 (en) 1995-11-18 2003-04-23 Vantico AG Powderable reactive resin compositions
US5851626A (en) 1997-04-22 1998-12-22 Lear Corporation Vehicle acoustic damping and decoupling system
WO1998052997A1 (en) 1997-05-21 1998-11-26 Denovus L.L.C. Epoxy-containing foaming compositions and use thereof
DE19729982A1 (en) 1997-07-12 1999-01-14 Sika Chemie Gmbh Thixotropic two-component polyurethane systems
US6162504A (en) 1997-12-04 2000-12-19 Henkel Corporation Adhesives and sealants containing adhesion promoter comprising waste powder prime
US6372334B1 (en) 1998-03-30 2002-04-16 Henkel Corporation Reinforcement laminate
EP1079962B1 (en) 1998-05-22 2004-01-21 Magna Interior Systems Inc. Decorative automotive interior trim articles with integral in-mold coated polyurethane aromatic elastomer covering and process for making the same
WO1999061281A1 (en) 1998-05-22 1999-12-02 Magna International Of America, Inc. Exterior panels for motor vehicles
JP2002524339A (en) 1998-09-09 2002-08-06 ヘンケル コーポレーション 3D laminated beam structure
DE19845607A1 (en) 1998-10-06 2000-04-20 Henkel Teroson Gmbh Impact-resistant epoxy resin compositions
US6387470B1 (en) * 1998-11-05 2002-05-14 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
AU2001259772A1 (en) * 2000-05-16 2001-11-26 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
US20020123575A1 (en) 2000-12-28 2002-09-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862796A (en) * 1973-04-24 1975-01-28 Eastman Kodak Co Plastic-glass eyeloupe
US4427481A (en) * 1978-02-27 1984-01-24 R & D Chemical Company Magnetized hot melt adhesive and method of preparing same
US4378395A (en) * 1981-03-16 1983-03-29 Nissan Motor Company, Limited Reinforcing material
US4444818A (en) * 1982-01-30 1984-04-24 Nitto Electric Industrial Co., Ltd. Reinforcing adhesive sheets
US4605460A (en) * 1983-10-03 1986-08-12 W. R. Grace & Co., Cryovac Div. Method of laminating high barrier shrink film
US4538380A (en) * 1983-11-16 1985-09-03 Profile Extrusions Company Low friction weather seal
US4693775A (en) * 1986-03-06 1987-09-15 United Technologies Automotive, Inc. Hot melt, synthetic, magnetic sealant
US4724243A (en) * 1986-12-29 1988-02-09 United Technologies Automotive, Inc. Hot melt magnetic sealant, method of making and method of using same
US4749434A (en) * 1986-12-29 1988-06-07 United Technologies Automotive, Inc. Hot melt magnetic sealant, method of making and method of using same
US4769166A (en) * 1987-06-01 1988-09-06 United Technologies Automotive, Inc. Expandable magnetic sealant
US4922596A (en) * 1987-09-18 1990-05-08 Essex Composite Systems Method of manufacturing a lightweight composite automotive door beam
US4898630A (en) * 1987-11-18 1990-02-06 Toyota Jidosha Kabushiki Thermosetting highly foaming sealer and method of using it
US4923902A (en) * 1988-03-10 1990-05-08 Essex Composite Systems Process and compositions for reinforcing structural members
US5124186A (en) * 1990-02-05 1992-06-23 Mpa Diversified Products Co. Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube
US5266133A (en) * 1993-02-17 1993-11-30 Sika Corporation Dry expansible sealant and baffle composition and product
US6485589B1 (en) * 1993-04-15 2002-11-26 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US6030701A (en) * 1993-04-15 2000-02-29 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US5783272A (en) * 1993-08-10 1998-07-21 Dexter Corporation Expandable films and molded products therefrom
US5932680A (en) * 1993-11-16 1999-08-03 Henkel Kommanditgesellschaft Auf Aktien Moisture-curing polyurethane hot-melt adhesive
US6312668B2 (en) * 1993-12-06 2001-11-06 3M Innovative Properties Company Optionally crosslinkable coatings, compositions and methods of use
US6455150B1 (en) * 1993-12-09 2002-09-24 Karen A. Sheppard Multi-layer oriented heat sealable film structure of improved machinability
US6303672B1 (en) * 1993-12-27 2001-10-16 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US6228449B1 (en) * 1994-01-31 2001-05-08 3M Innovative Properties Company Sheet material
US5470886A (en) * 1994-03-31 1995-11-28 Ppg Industries, Inc. Curable, sprayable compositions for reinforced thin rigid plates
US5712317A (en) * 1994-03-31 1998-01-27 Ppg Industries, Inc. Curable, sprayable compositions for reinforcing thin rigid plates
US5894071A (en) * 1994-04-15 1999-04-13 Sika Ag, Vorm. Kaspar Winkler & Co. Two-component adhesive-, sealing- or coating composition and it's use
US5884960A (en) * 1994-05-19 1999-03-23 Henkel Corporation Reinforced door beam
US5577784A (en) * 1994-09-01 1996-11-26 Davidson Textron Inc. Vehicle bumper
US6056526A (en) * 1994-11-30 2000-05-02 3M Innovative Properties Company Molding tool for sealant material
US5994422A (en) * 1995-05-20 1999-11-30 Henkel-Teroson Gmbh Hot-curing rubber foams with high structural strength
US5985435A (en) * 1996-01-23 1999-11-16 L & L Products, Inc. Magnetized hot melt adhesive articles
US6441075B2 (en) * 1996-04-26 2002-08-27 Nissan Motor Co., Ltd. Polyolefin-based resin composition and automotive molded plastic made from same
US6482496B1 (en) * 1996-07-03 2002-11-19 Henkel Corporation Foil backed laminate reinforcement
US6232433B1 (en) * 1996-10-02 2001-05-15 Henkel Corporation Radiation curable polyesters
US6235842B1 (en) * 1996-10-08 2001-05-22 Hitachi Chemical Company, Ltd. Phase-separated carboxyl group-containing elastomer modified phoenoxy resin optionally with epoxy resin
US5648401A (en) * 1996-10-09 1997-07-15 L & L Products, Inc. Foamed articles and methods for making same
US6096791A (en) * 1996-10-29 2000-08-01 Henkel-Teroson Gmbh Sulphur-free expanding, hot hardening shaped parts
US5806919A (en) * 1996-11-04 1998-09-15 General Motors Corporation Low density-high density insert reinforced structural joints
US6077884A (en) * 1996-11-20 2000-06-20 Sika Chemie Gmbh Aqueous dispersion of epoxy resin and blend of epoxy resin-polyoxyalkylene amines
US6244601B1 (en) * 1996-12-19 2001-06-12 Meteor Gummiwerke K.H. Badge Gmbh & Co. Sealing system for the roof frame of a hard-top, coupe, or convertible
US5931474A (en) * 1997-02-24 1999-08-03 Raychem Corporation Cavity sealing article and method
US6444149B1 (en) * 1997-03-10 2002-09-03 Perstorp Ab Process for the manufacturing of an article of plastic material
US6444713B1 (en) * 1997-05-21 2002-09-03 Denovus Llc Foaming compositions and methods for making and using the compositions
US6277898B1 (en) * 1997-05-21 2001-08-21 Denovus Llc Curable sealant composition
US6479560B2 (en) * 1997-05-21 2002-11-12 Denovus Llc Foaming compositions and methods for making and using the composition
US6448338B1 (en) * 1997-07-16 2002-09-10 Henkel Teroson Gmbh Hot-setting wash-fast sealant for shell structures
US6287669B1 (en) * 1997-08-15 2001-09-11 3M Innovative Properties Company Sealing method and article
US5948508A (en) * 1997-08-15 1999-09-07 3M Innovative Properties Company On-line paintable insert
US5964979A (en) * 1997-08-15 1999-10-12 3M Innovative Properties Company Sealing method and article
US6451231B1 (en) * 1997-08-21 2002-09-17 Henkel Corporation Method of forming a high performance structural foam for stiffening parts
US6040350A (en) * 1997-08-26 2000-03-21 Nissan Motor Co., Ltd. Epoxy resin type composition for stiffening vehicle body and method for stiffening vehicle body
US6429244B1 (en) * 1998-01-23 2002-08-06 Henkel Corporation Self-levelling plastisol composition and method for using same
US6740379B1 (en) * 1998-03-13 2004-05-25 3M Innovative Properties Company Adhesive tape for adhering inserts to a page of a magazine
US6197403B1 (en) * 1998-04-06 2001-03-06 Hp Pelzer (Automotive Systems), Inc. Integral sound absorber and water deflector door panel
US6153302A (en) * 1998-05-01 2000-11-28 3M Innovative Properties Company Epoxy/thermoplastic photocurable adhesive composition
US6057382A (en) * 1998-05-01 2000-05-02 3M Innovative Properties Company Epoxy/thermoplastic photocurable adhesive composition
US6136398A (en) * 1998-05-01 2000-10-24 3M Innovative Properties Company Energy cured sealant composition
US6174932B1 (en) * 1998-05-20 2001-01-16 Denovus Llc Curable sealant composition
US6455476B1 (en) * 1998-06-09 2002-09-24 Henkel Corporation Composition and process for lubricated plastic working of metals
US6350791B1 (en) * 1998-06-22 2002-02-26 3M Innovative Properties Company Thermosettable adhesive
US6376564B1 (en) * 1998-08-27 2002-04-23 Henkel Corporation Storage-stable compositions useful for the production of structural foams
US6348513B1 (en) * 1998-08-27 2002-02-19 Henkel Corporation Reduced tack compositions useful for the production of reinforcing foams
US6218442B1 (en) * 1998-08-27 2001-04-17 Henkel Corporation Corrosion resistant structural foam
US6103784A (en) * 1998-08-27 2000-08-15 Henkel Corporation Corrosion resistant structural foam
US6136944A (en) * 1998-09-21 2000-10-24 Shell Oil Company Adhesive of epoxy resin, amine-terminated polyamide and polyamine
US6441081B1 (en) * 1998-10-05 2002-08-27 Sumitomo Chemical Company, Limited Polypropylene-base resin composition and products of injection molding thereof
US6486256B1 (en) * 1998-10-13 2002-11-26 3M Innovative Properties Company Composition of epoxy resin, chain extender and polymeric toughener with separate base catalyst
US6432475B1 (en) * 1998-12-08 2002-08-13 Nitto Denko Corporation Pressure-sensitive adhesive composition, process for the preparation thereof and pressure-sensitive adhesive sheets
US6291059B1 (en) * 1998-12-31 2001-09-18 3M Innovative Properties Company Photo-polymerizable compositions and articles made therefrom
US6133335A (en) * 1998-12-31 2000-10-17 3M Innovative Properties Company Photo-polymerizable compositions and articles made therefrom
US6573309B1 (en) * 1999-03-03 2003-06-03 Henkel Teroson Gmbh Heat-curable, thermally expandable moulded park
US6747074B1 (en) * 1999-03-26 2004-06-08 3M Innovative Properties Company Intumescent fire sealing composition
US6740399B1 (en) * 1999-03-31 2004-05-25 3M Innovative Properties Company Multi-layered sealant
US20020137808A1 (en) * 1999-04-28 2002-09-26 3M Innovative Properties Company Uniform small cell foams and a continuous process for making same
US6753379B1 (en) * 1999-11-05 2004-06-22 3M Innovative Properties Company Heat activated adhesive
USH2047H1 (en) * 1999-11-10 2002-09-03 Henkel Corporation Reinforcement laminate
US6263635B1 (en) * 1999-12-10 2001-07-24 L&L Products, Inc. Tube reinforcement having displaceable modular components
US6506494B2 (en) * 1999-12-20 2003-01-14 3M Innovative Properties Company Ambient-temperature-stable, one-part curable epoxy adhesive
US6467834B1 (en) * 2000-02-11 2002-10-22 L&L Products Structural reinforcement system for automotive vehicles
US6482486B1 (en) * 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6437055B1 (en) * 2000-04-07 2002-08-20 Ppg Industries Ohio, Inc. Electrodepositable coating from gelled epoxy-polyester and amine
US6440257B1 (en) * 2000-05-18 2002-08-27 Hexcel Corporation Self-adhesive prepreg face sheets for sandwich panels
US20020009582A1 (en) * 2000-06-06 2002-01-24 Golden Michael R. Epoxy based reinforcing patches with improved adhesion to oily metal surfaces
US6319964B1 (en) * 2000-06-30 2001-11-20 Sika Corporation Acoustic baffle with predetermined directional expansion characteristics
US6620501B1 (en) * 2000-08-07 2003-09-16 L&L Products, Inc. Paintable seal system
US6634698B2 (en) * 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
US6419305B1 (en) * 2000-09-29 2002-07-16 L&L Products, Inc. Automotive pillar reinforcement system
US6471285B1 (en) * 2000-09-29 2002-10-29 L&L Products, Inc. Hydroform structural reinforcement system
US6561571B1 (en) * 2000-09-29 2003-05-13 L&L Products, Inc. Structurally enhanced attachment of a reinforcing member
US6451876B1 (en) * 2000-10-10 2002-09-17 Henkel Corporation Two component thermosettable compositions useful for producing structural reinforcing adhesives
US6455146B1 (en) * 2000-10-31 2002-09-24 Sika Corporation Expansible synthetic resin baffle with magnetic attachment
US20020120064A1 (en) * 2000-12-21 2002-08-29 3M Innovative Properties Company Pressure-sensitive adhesive blends comprising ethylene/propylene-derived polymers and propylene-derived polymers and articles therefrom
US20020136891A1 (en) * 2000-12-29 2002-09-26 3M Innovative Properties Company Pressure sensitive adhesive blends comprising (meth) acrylate polymers and articles therefrom
US6682818B2 (en) * 2001-08-24 2004-01-27 L&L Products, Inc. Paintable material
US6742258B2 (en) * 2001-11-30 2004-06-01 3M Innovative Properties Company Method of hydroforming articles and the articles formed thereby
US20030187129A1 (en) * 2002-03-27 2003-10-02 Lear Corporation Sound-deadening composites of metallocene copolymers for use in vehicle applications
US20040016564A1 (en) * 2002-07-25 2004-01-29 3M Innovative Properties Company Expanded insulating sleeve with edge support
US20040033324A1 (en) * 2002-08-19 2004-02-19 3M Innovative Properties Company Epoxy compositions having improved shelf life and articles containing the same
US20050003222A1 (en) * 2003-07-03 2005-01-06 3M Innovative Properties Company Heat-activatable adhesive

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020703A1 (en) * 2001-05-02 2005-01-27 L&L Products, Inc. Two component (epoxy/amine) structural foam-in-place material
US20050119372A1 (en) * 2001-05-02 2005-06-02 L&L Products, Inc. Two component (epoxy/amine) structural foam-in-place material
US20030186049A1 (en) * 2002-04-01 2003-10-02 L&L Products, Inc. Activatable material
US6846559B2 (en) 2002-04-01 2005-01-25 L&L Products, Inc. Activatable material
US7736743B2 (en) 2003-01-22 2010-06-15 Henkel Kgaa Heat curable, thermally expandable composition with high degree of expansion
US20060188726A1 (en) * 2003-01-22 2006-08-24 Xaver Muenz Heat curable, thermally expandable composition with high degree of expansion
US20040204551A1 (en) * 2003-03-04 2004-10-14 L&L Products, Inc. Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith
US20070088138A1 (en) * 2003-03-04 2007-04-19 L&L Products, Inc. Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith
US20070117874A1 (en) * 2003-06-26 2007-05-24 L&L Products, Inc. Expandable material
US20040266898A1 (en) * 2003-06-26 2004-12-30 L&L Products, Inc. Expandable material
US7838589B2 (en) 2004-07-21 2010-11-23 Zephyros, Inc. Sealant material
US20070193171A1 (en) * 2004-07-21 2007-08-23 Zephyros, Inc. Sealant material
US20070284036A1 (en) * 2006-06-07 2007-12-13 L&L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
US7438782B2 (en) 2006-06-07 2008-10-21 Zephyros, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
US11667813B2 (en) 2008-04-09 2023-06-06 Zephyros, Inc. Structural adhesives
US20110098382A1 (en) * 2008-04-09 2011-04-28 Zephyros Inc Structural adhesives
US11248145B2 (en) 2008-04-09 2022-02-15 Zephyros, Inc. Structural adhesives
US9427902B2 (en) 2009-09-15 2016-08-30 Zephyros, Inc. Cavity filling
US9096039B2 (en) 2010-03-04 2015-08-04 Zephyros, Inc. Structural composite laminates
US11873428B2 (en) 2013-07-26 2024-01-16 Zephyros, Inc. Thermosetting adhesive films
US10577522B2 (en) 2013-07-26 2020-03-03 Zephyros, Inc. Thermosetting adhesive films including a fibrous carrier
US10577523B2 (en) 2013-07-26 2020-03-03 Zephyros, Inc. Relating to thermosetting adhesive films
US11028220B2 (en) 2014-10-10 2021-06-08 Zephyros, Inc. Relating to structural adhesives
CN109517491A (en) * 2018-12-03 2019-03-26 北京雷铂犀牛科技有限公司 SMART METALS surface coating

Also Published As

Publication number Publication date
EP1326922A1 (en) 2003-07-16
EP1326922B1 (en) 2005-05-18
DE60204209T2 (en) 2005-10-13
US20030049453A1 (en) 2003-03-13
US6682818B2 (en) 2004-01-27
ES2239247T3 (en) 2005-09-16
ATE295868T1 (en) 2005-06-15
DE60204209D1 (en) 2005-06-23
WO2003018688A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
US6682818B2 (en) Paintable material
US10800462B2 (en) Reinforcement structure
US7521093B2 (en) Method of sealing an interface
EP1490451B1 (en) Activatable material
US7838589B2 (en) Sealant material
US7438782B2 (en) Activatable material for sealing, baffling or reinforcing and method of forming same
EP2160435B1 (en) Toughened adhesive material
US7199165B2 (en) Expandable material
EP1620521B2 (en) Activatable material for sealing, baffling or reinforcing and method of forming same
US20050221046A1 (en) Sealant material
US20080226866A1 (en) Sealant material
US20050269840A1 (en) Sealant material
EP2598590B1 (en) Oriented structural adhesives
US20070095475A1 (en) Adhesive material and method of using same
CN112585190A (en) High modulus foam structural materials with higher elongation at break
WO2016055535A1 (en) Improvements in or relating to structural adhesives
US20190241777A1 (en) Adhesives and sealants having microcellular structures formed within

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE