US20040042931A1 - Chemically sensitive sensor comprising arylene alkenylene oligomers - Google Patents

Chemically sensitive sensor comprising arylene alkenylene oligomers Download PDF

Info

Publication number
US20040042931A1
US20040042931A1 US10/454,762 US45476203A US2004042931A1 US 20040042931 A1 US20040042931 A1 US 20040042931A1 US 45476203 A US45476203 A US 45476203A US 2004042931 A1 US2004042931 A1 US 2004042931A1
Authority
US
United States
Prior art keywords
recited
chemically sensitive
sensitive sensor
sensor
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/454,762
Inventor
Michael Wit
Emmanuel Vanneste
Frank Blockhuys
Gunter Verreyt
Wim Tachelet
Luc Nagels
Herman Geise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OligoSense NV
Original Assignee
OligoSense NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OligoSense NV filed Critical OligoSense NV
Priority to US10/454,762 priority Critical patent/US20040042931A1/en
Assigned to UNIVERSITAIRE INSTELLING ANTWERPEN, INTERUNIVERSITAIR MICRO-ELEKTRONICA CENTRUM reassignment UNIVERSITAIRE INSTELLING ANTWERPEN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TACHELET, WIM, DE WIT, MICHAEL, NAGELS, LUC J., VANNESTE, EMMANUEL, VERREYT, GUNTER, BLOCKHUYS, FRANK, GEISE, HERMAN J.
Assigned to OLIGOSENSE N.V. reassignment OLIGOSENSE N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERUNIVERSITAIR MICRO-ELEKTRONICA CENTRUM VZW
Assigned to OLIGOSENSE N.V. reassignment OLIGOSENSE N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITAIRE INSTELLING ANTWERPEN
Publication of US20040042931A1 publication Critical patent/US20040042931A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • G01N33/0034General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array comprising neural networks or related mathematical techniques

Definitions

  • the invention is situated in the domain of chemical sensors for the analytic characterization of gases and liquids.
  • the invention concerns the use of semi-conductive coatings, based on doped ⁇ -conjugated arylene alkenylene oligomers, in the active layer of sensors, and in arrays of such sensors applicable for the analytical characterization of gases and liquids, applicable in detecting systems for chromatography as well as in the context of an “electronic nose” or “electronic tongue”.
  • High-performance liquid chromatography is an analytical quantification and detection method in which an eluent is forced through a packed column. The mixture containing the product that has to be detected or quantified is submitted to a eluent flow. Since different products have different elution speeds, the products are separated from each other at the end of the column. After being separated on the column, the product is detected in a flow-through detector. The detector response can be translated into the concentration of the product.
  • detectors are used to quantify or detect analytes in a gaseous mixture. Detectors that can be used for these purposes can be the usual electrochemical detectors (ECD). The operation principles of ECDs are well described.
  • ECDs operate on the basis of potentiometric, amperometric and conductimetric phenomena. The present state of the art will be reviewed for such systems.
  • Potentiometric detectors are widely used in analytic chemistry, the best known example being the pH-meter.
  • the operating principles are well known.
  • Such detectors are often specific for one ion (ion-selective electrodes).
  • chromatographic systems and other systems, based on hydrodynamic measurements
  • potentiometric detection is still poorly developed. For these applications one needs sensors with low specificity, in contrast to batch techniques in which high specificity is required.
  • the kind of electrodes that are mostly used currently are metal electrodes (copper), so-called liquid-membrane ion-selective electrodes, Ag + /AgCl electrodes, and anion-exchange membranes (Potentiometrische detektie van anionen in LC en CE met polymere vloeibaar-membraan elektroden, B. De Backer, Universitaire Instelling Antwerpen, 1995).
  • Such potentiometric sensors are not yet commercially available for liquid chromatographic systems. This is due to the low sensitivity, the slow response and the sometimes irreversible behavior of the sensors under chromatographic conditions.
  • Liquid membrane electrodes work well under chromatographic conditions as well as in Capillary Zone Electrophoretic (CZE) separations (Grate, M. H. Abraham, Sensors and Actuators B, 3 (1991), 85).
  • CZE Capillary Zone Electrophoretic
  • Glassy carbon is chemically inert, thereby making developments such as electrode derivatisation or enzyme coupling difficult.
  • An electronic nose is an instrument in which an array of sensors, each of which have partial selectivity, is used in combination with a pattern recognition system, and which can be used to recognize simple and/or complex aromas and gas mixtures.
  • An array of sensors is described in U.S. Pat. No. 5,571,401.
  • the electronic nose can be employed in a wide range of applications, for example in industry, medicine, environmental protection, distribution and transport as well as in forensic investigations.
  • a chemical nose to monitor the freshness, to control quality of the starting, and the middle, and the final products as well as to monitor fermentation processes.
  • the advantage is that the quasi on-line (in situ) monitoring of the aroma (odor) may lead to an automated control system. Identification and/or quality control of starting products are potential applications in the chemical and pharmaceutical industry, because the “nose” offers a fast and universal analytical method. In medicine, the nose can be used in breath analyses. The patients breath allows to diagnose some diseases, for example the odor of acetone is an indication for diabetes. The odor pattern may be helpful to identify the source of industrial emissions. Yet another potential use is a fast risk analysis in the event of road accidents involving chemicals.
  • the nose must be able—after a learning stage—to distinguish between the aromas of two or more mixtures, each containing a multitude of components.
  • the sensors must operate on a molecular level.
  • a sensor in an electronic nose must have partial selectivities to a wide spectrum of gases, rather than a high sensitivity to only one particular gas.
  • Most existing gas sensors lack the wide spectrum of sensitivities to a variety of gases.
  • Sensors based on metal oxide semi-conductors (MOS) Type 1 sensors are widely and successfully employed in sensor industry. Yet in the context of a chemical nose they are inferior compared to other materials. Particularly the number of different MOS materials that can be produced by inorganic synthesis, is very small compared to variability offered in products through organic synthesis.
  • Conductimetric gas sensors based on conducting polymers form a group of sensors (type 5) that are important in the context of the electronic nose (Persaud, G. Dodd, Nature, 229 (1982), 352).
  • Conducting polymers consist of a long sequence of alternating single and double bonds. This ⁇ -conjugated system can be made conductive via oxidation or reduction in a process called doping. The conductivity is influenced by the environment. In other words, conductivity changes upon contact with different vapours. These compounds are well suited for implementation in a chemical nose.
  • Aromascan plc. Electra House, Electra Way, CREWE CW1 1WZ, UK (offering a nose based solely on conducting polymers);
  • Neotronics Western House 2, Cambridge Road, Stansted Mountfitchet, Essex CM24 8BZ, UK (offering a nose containing conducting polymer and MOS sensors);
  • This invention regards chemically sensitive sensors, suitable for detecting analytes in fluids (in gaseous or liquid phase), characterised in that the chemically sensitive sensors comprise a chemically sensitive probe which comprises one or a blend of several arylene alkenylene oligomers. Said arylene alkenylane determines at least one response signal. The invention further comprises means for converting said response signal to a sensor response.
  • oligomers can also be mixed with polymers. Doping is preferred to obtain workable resistances.
  • Sensors according to the invention are applicable in a chromatography apparatus such as a GC (gas chromatograph) or HPLC (High Performance Liquid Chromatography) for detecting analytes.
  • a chromatography apparatus such as a GC (gas chromatograph) or HPLC (High Performance Liquid Chromatography) for detecting analytes.
  • GC gas chromatograph
  • HPLC High Performance Liquid Chromatography
  • the electronic nose consists of a pattern recognition system in combination with a sensor array.
  • an electronic tongue In analogy to the electronic nose, an electronic tongue can be developed: it would be an apparatus consisting of an array of sensors capable of characterizing the composition of a liquid. Again a number of sensor types come into consideration among which sensors based on conducting oligomers.
  • the response signal can be determined by the interaction of the oligomer with the analyte or the fluid.
  • the response signal can be determined by the interaction of the oligomer with the analyte or the fluid.
  • FIG. 1 describes the experimental setup for the examples 1 to 4.
  • FIG. 2 describes a typical result for example 1.
  • FIG. 3 describes a typical result for example 2.
  • FIG. 4 describes a typical result for example 3.+
  • FIG. 5 describes the average results for 3 analogue sensors after 7 measurements.
  • FIG. 6 describes a summary of examples 1 to 4.
  • FIG. 7 describes a typical result for example 5.
  • FIG. 8 describes the setup for a potentiometric measuring cell.
  • FIG. 9 describes a chromatogram of 6 catecholamines, detected with an amperometric sensor according to the invention.
  • FIG. 10 describes the setup for an amperometric electrode.
  • a chemically sensitive sensor for the detection of an analyte in a fluid comprising a chemically sensitive probe which comprises one or several arylene alkenylene oligomers.
  • Said fluid can be a liquid, a gas or a vapour.
  • Said probe can be applied as a coating on a carrier surface and can be a probe.
  • Said chemically sensitive sensor can further comprise electrodes able to put a voltage over said chemically sensitive probe.
  • the probe can be a resistor or a coating or another structure.
  • arylene alkenylene oligomers can be defined as follows: every possible sequence of one or more aromatic or heteroaromatic units like benzene, thiophene, pyrrole, aniline, indole, and many others (the arylene segments) which can be connected by one or more alkenyl segments (—(CR ⁇ CR′—) n ).
  • the backbone can be substituted as well on the aryl segments as on the alkenyl segments.
  • the type of substituents have an effect on the partial selectivity of the coatings, the solubility of the oligomers, their oxidation potential and the nominal electrical conductivity.
  • the chain length of these arylene alkenylene oligomers can be best expressed in the number of separate arylene segments in the molecule.
  • the length of the oligomers for this invention is ranging from 2 to 20 coupled segments.
  • Most of the oligomers mentioned in the examples and the following listing are synthesized via the Wittig route. Other synthetic routes like via the Knoevenagel condensation, the McMurry and the Grignard coupling are also possible.
  • the here described conductive materials perform better than the classic materials. They react fast and reversibly on analyte concentrations and show high sensitivity. The materials are easy to coat, to give mechanically stable coatings, which can be used under chromatographic conditions for months, without a significant deterioration of performance.
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene is equal to (3,4,5 triMeO)BB(2,5diMeO)B(3,4,5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl) benzene is equal to (3,4,5 triMeO)BBB(3,4,5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-diethoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diEtO)B(3,4,5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dipropoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diPrO)B( 3 , 4 , 5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dibutoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diBuO)B( 3 , 4 , 5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dihexoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diHxO)B( 3 , 4 , 5 triMeo);
  • 1,4-bis(2-[N-methyl-2-pyrryl]ethenyl)-2,5-dibutoxybenzene is equal to (N-methyl)NB(2,5 diOBuO)N(N-methyl).
  • Class BB
  • BB— (2,5diMeBr)B(2,5 diMeBr), MeBBMe, MeBAnt, (MeO)BB(MeO), (EtO)BB(EtO), (PrO)BB(PrO), (BuO)BB(BuO), (iBuO)BB(iBuo), (PtO)BB(PtO), (iPtO)BB(iPtO), (HxO)BB(HxO), (HpO)BB(HpO), (OcO)BB(OcO), (HdO)BB(HdO), (OHC)BB(CHO), —BB(2,3,4 triMeO), MeBB(2,3,4 triMeO), (BrCH 2 )BB(NO 2 ), ClBB(NO 2 ).
  • Class BBB [0068]
  • Class BFB [0082]
  • BFB —BFBMe, MeBFBMe, MeBFNaf, NafFNaf, (NO 2 )BFB(NO 2 ), (2-NO 2 )BFB(2-NO 2 ), (3-NO 2 )BFB(3-NO 2 ), (NC)BFB(CN).
  • Class BFBFB [0092]
  • BFBFB —BFB(2,5-diMeO)FB—, —BFB(2,5-diEtO)FB—, —BFAntFB—, MeBFBFBMe, MeBFB(2,5-di Me)FBMe, MeBFB(2,5-di EtO)FBMe, MeBFB(2,5-di BuO)FBMe, NafFBFNaf.
  • the oligomers can be doped to obtain a nominal electrical conductivity. Doping is an oxidation or reduction reaction with incorporation of the dopant to obtain electrical neutrality. Oxidative doping is preferred as the resulting doped oligomers are more stable in air. Doping can be done by adding a dopant to the polymer. Doping can be done in the gaseous phase with a dopant having a sufficient vapor pressure (e.g. 12 ). When the oligomer is exposed to the I 2 vapor, the oxidation reaction can be monitored measuring the electrical resistance. Doping can also be done in a solution of the dopant and a solvent (e.g. I 2 in pentane).
  • a solvent e.g. I 2 in pentane
  • dope the oligomer before coating in a solution of the oligomer and the dopant and a solvent.
  • dopants are: I 2 , AsF 5 , AlCl 3 , MoOCl 4 , MoCl 5 , NO + en NO 2 + salts (e.g.
  • the oligomers can also be doped by electrochemical doping.
  • the oligomer coating can be oxidized at the anode of an electrochemical cell or reduced at the cathode. Electrochemical exchange of the counterions is also possible. Following dopants can be easily used for electrochemical doping: electrolytes giving the anionic counterions BF 4 ⁇ , NO 3 ⁇ , NO 2 ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , ClO 3 ⁇ , BrO 3 ⁇ , FeCl 4 ⁇ , FeCl 2 ⁇ , CF 3 CO 2 ⁇ , MoOCl 4 ⁇ , MoCl 6 ⁇ , AlCl 4 ⁇ , KS 2 O 8 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , HSO 4 ⁇ CF 3 SO 3 ⁇ , CH 3 SO 3 ⁇ , CH 3 CO 2 ⁇ , CH 3 C 6 H 4 SO 3
  • the oligomers can be blended with each other or with polymers.
  • a few examples of polymers for blending are: polyacrylonitril, polyvinylchloride, polymethylrmthacrylate, polyvinylidenechloride, polyethyleneoxide, polystyrene, pqlycarbonate, nylon, cellularlose-acetate-butyrate, polypropylene, polyethylene, cellulose-acetate, polyphenyleneoxide, polyisobutylene, phenylmethyl-diphenylsiloxane copolymers, polybis(cyanopropyl), siloxane, polyethyleneimine, polyethylenemaleate, fluoropolyol.
  • Blending with polymers gives more mechanical strength and stability to the doped oligomer.
  • the polymers can co-operate in the partial selectivity of the coatings.
  • Components other than polymers can be used to enhance the mechanical stability and/or the permeability for gases and liquids, the miscibility, solubility, ability to form dispersions: e.g. graphite, fibers, clays, sand, glass.
  • the oligomers or blends with oligomers can be coated before or after doping on a substrate that is provided with electrically conductive contacts (e.g. made of gold), giving by preference an ohmic contact with the coating, and permit to measure the electrical resistance over the coating. Electrodes can also be deposited after coating (on top). Electrochemical doping and coating of the film can also be done simultaneously.
  • electrically conductive contacts e.g. made of gold
  • the coatings can be made on a glassy carbon electrode.
  • coating spin-coating or spray-coating techniques can be used. Vacuum deposition of the pure oligomer, electrodeposition and dip-coating are also options. Spray-coating is preferred because of the ability to use free-standing metal masks to coat different coatings on a small scale next to each other.
  • the thickness of the coating is optional and can be used to adjust the characteristics of the coating (e.g. the nominal electrical resistance for the application in gas sensors, average response times, environmental stability, expected lifetime, magnitude of the responses, partial selectivity). Layer thickness is in the range of a few nanometers to tenths of a millimeter.
  • a silicium, alumina or quartz wafer can serve as a substrate.
  • Many dimensions and shapes of the electrodes are possible (e.g. two rectangular shaped electrodes, with a gap of 0.25 millimeter and a length of 1 millimeter).
  • the typical magnitude of the responses, being the corpual fractional resistance change after one minute is maximum 10% for the type 5 sensors of the state of the art (e.g. polypyrrole sensors).
  • those responses are generally much higher (e.g. a sensor with a coating 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene gives a response of 45% to acetone relative to dry air).
  • the sensors according to the invention work at temperatures near room temperature, in opposition to the sensors of type 1 that work at high temperatures. This results in an advantageous low power consumption.
  • gas sensors with oligomers in the coating is at least as simple as the construction of type 5 sensors.
  • Response time can be kept short: firstly because the diffusion in the coating is generally fast and secondly because there is no need to wait for an equilibrium situation to get a useful signal (because of the magnitude of the responses). For instance, a sensor with 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene coating has reached 95% of its maximal response in less than 30 seconds (measured for nine different vapors).
  • the oligomers can be used as an alternative for graphite in type 4 sensors.
  • the oligomers and blends thereof can also be used as an alternative for the polymers in type 2 and 3 sensors.
  • the conductimetric detection mechanism can be combined with the detection in type 2 sensors on the same coating.
  • FIG. 1 one can see an apparatus suitable for testing sensors for gaseous phase analysis.
  • a continuous gas stream is generated, which is split into a carrier gas stream ( 11 ) and a reference gas stream ( 12 ).
  • the flowrates of both are independently controlled by two massflow controllers (mf 1 ( 13 ) and mf 2 ( 14 ); Brooks model 5850T).
  • the controllers are regulated by a master controller (Brooks model 5876) to which both massflow controllers are connected.
  • a massflow controller heats up the incoming gas stream with a filament. This generates a temperature gradient which is measured.
  • the readout on the master controller is digital and shows the rate in percentage of the maximum flowrate.
  • the inventors have established for this experimental setup that there is a linear relation between controller readout (%) and flowrate.
  • the flowrate of the reference stream can be set between 5 and 230 ml/min and that of the carrier stream between 0 and 120 ml/min.
  • Vessels containing compounds to be detected are kept at 15° C. by means of thermostatic bath ( 17 ). This setup thus enables us to generate vapors with constant, yet material dependent concentrations during all of the experiments.
  • the carrier gas is bubbled through one of the vessels and a saturated vapor results.
  • valves By manipulating two three-way valves (twv 1 ( 15 ) and twv 2 ( 16 )) either reference or carrier gas can be sent over the organic films.
  • the valves also enable us to mix the two gas streams and thus we can generate vapor concentrations between 0 g/cm 3 and the theoretical concentration of saturation.
  • a second phase of the research the entire setup was automated and both three-way valves were replaced with computer controlled valves—one two-position and one twelve-position valve (Valco Instruments). Selection of the vapor and its dilution are controlled by these valves and the software application under TestPoint.
  • the substrate with one or multiple oligomer film(s) deposited on it is plugged into a connector connected to a digital multimeter ( 19 ) (dmm) (Keithly model 199).
  • the multimeter measures the electrical resistance between two gold electrodes at a distance of 200 ⁇ m; because it can simultaneously scan eight channels, the substrate is divided into four groups of sixteen contacts i.e. 8 measuring points. This will enables us to deposit 32 different electrically conducting oligomers on the substrate in the future.
  • the range of the digital multimeter lies between 0 Ohm and 300 MOhm; the resolution of the measurements is 33.10 ⁇ 4 %.
  • the delay necessary to switch, between channels is 0,4 seconds depending on the difference in magnitude between two consecutive measurements.
  • a personal computer (80486) ( 20 ) collects the data via a RS232-connector.
  • the TestPoint program regulates the multimeter's switching between channels and the construction of the graphical representation of the measured values. Any further data manipulations are performed in Microsoft Excel 5.0.
  • the temperature of the substrate is maintained at a constant 35° C. using a second thermostatic bath (tb 2 ) ( 21 ). It has been established that at higher temperatures the conductivity of the species drops while at lower temperatures danger exists of condensation of the vapors.
  • the sensor is covered by a Teflon box.
  • the gas is introduced into this little chamber via tubing.
  • the dead volume of the chamber is only 3 cm 3 and thus delays in response due to the filling of the chamber are minimal since the flow is always 100 ml/min.
  • the time between the introduction of the vapor and the moment at which saturation is reached, is estimated to be 6 seconds.
  • the compounds can be consecutively mixed with the carrier gas and every five minutes one of the vapors can be sent over the substrate for one minute. After the experiment the sensor is conditioned again during a certain period of time to remove contaminants from previous experiments. The compounds from a series of compounds are chosen randomly to avoid systematic errors.
  • the substrate is then cooled to room temperature.
  • a conductimetric gas sensor based on a mixture of oligomers: bi[5,5′-(1,2-bis(3-methoxy-2-thienyl)ethene)diyl], ter[5,5′-(1,2-bis(3-methoxy-2-thienyl)ethene)diyl] and quater[5,5′-(1,2-bis(3-methoxy-2-thienyl)ethene)diyl].
  • the electrochemical doping was done by submerging the substrate into an electrolyte solution (e.g. 1%(v/v) perchlorate acetonitrile) while applying a voltage of 1.7 V. This way, a fast doping reaction is obtained.
  • an electrolyte solution e.g. 1%(v/v) perchlorate acetonitrile
  • Table 1 lists concentrations of the vapors at 15° C.; these values have been taken from “Handbook of Chemistry and Physics”, Chemical Rubber Company, and to compounds marked with #, 5% (v/v) water has been added to compensate for their hygroscopic properties. TABLE 1 List of the nine compounds in the experiments with respective vapor pressure and concentration at saturation. partial vapour concentration concentration Number product pressure at 15° C.
  • the response time (the time required to reach 95% of the maximum response) is about 6 to 12 seconds.
  • the analytes are sprayed directly onto the surface of the working electrode.
  • the potential over the membrane is measured by monitoring the potential between the working ( 31 ) and the reference electrode ( 30 ).
  • the coated electrode shows excellent response times (less then 1 s) and no memory effects were found.
  • FIG. 8 The setup of a potentiometric measuring cell ( 29 ) is shown in FIG. 8. It uses a large glass container in which the working ( 31 ) and the reference electrodes ( 30 ) are placed. This type of cell is called a large volume wall-jet.
  • the working electrode ( 31 ) consists of a glassy carbon electrode spraycoated with the conducting blend.
  • the outlet of the chromatographic system is placed at a distance of approximately 100 ⁇ m of the surface of the working electrode.
  • FIG. 7 An example of use and performance of the material as a potentiometric sensor in HPLC analysis is shown in FIG. 7.
  • This is an LC separation of organic acids; tartaric acid ( 22 ), maleic acid ( 23 ), lactic acid ( 24 ), acetic acid ( 25 ), citric acid ( 26 ), fumaric acid ( 27 ) and succinic acid ( 28 ).
  • the chromatographic column was a Merck (Darmstadt, FRG) RP C 18 column, particle size 5 ⁇ m, internal diameter 4 mm, length 10 cm.
  • the acids were eluted using 1 mM H 3 PO 4 solution at a flow rate of 0.5 ml/min. 50 ml of a 10 ⁇ 4 M solution of the acids in 1 mM H 3 PO 4 was injected.
  • the electrodes are coated applying a droplet ( 38 ) of a solution containing the polymer, the conducting component and I 2 as the dopant (FIG. 10).
  • the solvent is evaporated under atmospheric conditions, the thickness of the film is approximately 25 Am.
  • the coated electrodes show good mechanical and chemical stability. The material can be modified chemically to make it possible to attach enzymes at the surface.
  • the material can also be used in amperometric detectors.
  • the setup used for this kind of experiment is identical to that used for potentiometry.
  • Three electrodes are used instead of two (a working, a reference and a counter electrode).
  • the working electrode again is coated with the conducting blend.
  • FIG. 9 shows a chromatogram of six catecholamines.
  • FIG. 9 chromatogram of six catecholamines detected amperometicaly, dl-4-hydroxy-3-methoxy mandelic acid (A) ( 32 ), norepinephrine (B) ( 33 ), epinephrine (C) ( 34 ), 3,4 -dihydroxybenzylamine(D) ( 35 ), 3,4-dihydroxyphenylacetic acid (E) ( 36 ) and dopamine (F) ( 37 ) using a RP C18 (5 mm) column, ID 4.6 mm and length 10 cm.
  • the analytes were eluted using a 0.1 mM phosphate buffer (pH 3.8) with 5 mM EDTA and 5% methanol at a flow rate of 1 ml/min.

Abstract

The invention concerns the use of semi-conductive coatings, based on doped π-conjugated arylene alkenylene oligomers, in the active layer of sensors, and in arrays of such sensors applicable for the analytical characterization of gases and liquids, applicable in detecting systems for chromatography as well as in the context of an “electronic nose” or “electronic tongue”.

Description

    FIELD OF THE INVENTION
  • The invention is situated in the domain of chemical sensors for the analytic characterization of gases and liquids. [0001]
  • The invention concerns the use of semi-conductive coatings, based on doped π-conjugated arylene alkenylene oligomers, in the active layer of sensors, and in arrays of such sensors applicable for the analytical characterization of gases and liquids, applicable in detecting systems for chromatography as well as in the context of an “electronic nose” or “electronic tongue”. [0002]
  • BACKGROUND OF THE INVENTION
  • High-performance liquid chromatography (HPLC) is an analytical quantification and detection method in which an eluent is forced through a packed column. The mixture containing the product that has to be detected or quantified is submitted to a eluent flow. Since different products have different elution speeds, the products are separated from each other at the end of the column. After being separated on the column, the product is detected in a flow-through detector. The detector response can be translated into the concentration of the product. [0003]
  • Similarly, in gas chromatography, detectors are used to quantify or detect analytes in a gaseous mixture. Detectors that can be used for these purposes can be the usual electrochemical detectors (ECD). The operation principles of ECDs are well described. [0004]
  • ECDs operate on the basis of potentiometric, amperometric and conductimetric phenomena. The present state of the art will be reviewed for such systems. [0005]
  • Potentiometric detectors are widely used in analytic chemistry, the best known example being the pH-meter. The operating principles are well known. Such detectors are often specific for one ion (ion-selective electrodes). In chromatographic systems (and other systems, based on hydrodynamic measurements) however, potentiometric detection is still poorly developed. For these applications one needs sensors with low specificity, in contrast to batch techniques in which high specificity is required. [0006]
  • The kind of electrodes that are mostly used currently are metal electrodes (copper), so-called liquid-membrane ion-selective electrodes, Ag[0007] +/AgCl electrodes, and anion-exchange membranes (Potentiometrische detektie van anionen in LC en CE met polymere vloeibaar-membraan elektroden, B. De Backer, Universitaire Instelling Antwerpen, 1995). Such potentiometric sensors are not yet commercially available for liquid chromatographic systems. This is due to the low sensitivity, the slow response and the sometimes irreversible behavior of the sensors under chromatographic conditions.
  • Liquid membrane electrodes work well under chromatographic conditions as well as in Capillary Zone Electrophoretic (CZE) separations (Grate, M. H. Abraham, Sensors and Actuators B, 3 (1991), 85). [0008]
  • In HPLC one usually uses glassy carbon as the active material in amperometric detectors. Glassy carbon made amperometric detection in HPLC to a success in the last 20 years. A wide range of products can be detected with this material. Yet, many chemical compounds can in practice not be oxidized or reduced on the surface of glassy carbon, because of the low reaction rates. Each year about 100 publications report about efforts to modify glassy carbon while improving the kinetics of the oxidation and reduction processes. So far, no significant improvements were made. Another material successfully used in amperometric HPLC detection is polycrystalline platinum, used in the so-called “Pulsed amperometric detection” (PAD) of carbohydrates. Recently, much research is carried out on enzyme-electrodes. The enzymes, immobilized on the electrodes, act as catalysts in the electron transfer from the analyte to the electrode underneath. [0009]
  • Glassy carbon is chemically inert, thereby making developments such as electrode derivatisation or enzyme coupling difficult. [0010]
  • A different application for chemical sensors is in the context of an electronic nose. An electronic nose is an instrument in which an array of sensors, each of which have partial selectivity, is used in combination with a pattern recognition system, and which can be used to recognize simple and/or complex aromas and gas mixtures. Such an array of sensors is described in U.S. Pat. No. 5,571,401. [0011]
  • The electronic nose can be employed in a wide range of applications, for example in industry, medicine, environmental protection, distribution and transport as well as in forensic investigations. In the food and beverage industry one may apply a chemical nose to monitor the freshness, to control quality of the starting, and the middle, and the final products as well as to monitor fermentation processes. [0012]
  • The advantage is that the quasi on-line (in situ) monitoring of the aroma (odor) may lead to an automated control system. Identification and/or quality control of starting products are potential applications in the chemical and pharmaceutical industry, because the “nose” offers a fast and universal analytical method. In medicine, the nose can be used in breath analyses. The patients breath allows to diagnose some diseases, for example the odor of acetone is an indication for diabetes. The odor pattern may be helpful to identify the source of industrial emissions. Yet another potential use is a fast risk analysis in the event of road accidents involving chemicals. [0013]
  • On the spot determinations of fire accelerators may be another application. This list of possible applications is not complete, and other applications will appear. It shows, nevertheless, that the development of the electronic nose is important with many advantageous applications. In several of these applications, a small response time is needed. [0014]
  • The nose must be able—after a learning stage—to distinguish between the aromas of two or more mixtures, each containing a multitude of components. The sensors must operate on a molecular level. Furthermore, a sensor in an electronic nose must have partial selectivities to a wide spectrum of gases, rather than a high sensitivity to only one particular gas. Most existing gas sensors lack the wide spectrum of sensitivities to a variety of gases. Sensors based on metal oxide semi-conductors (MOS) [0015] Type 1 sensors, are widely and successfully employed in sensor industry. Yet in the context of a chemical nose they are inferior compared to other materials. Particularly the number of different MOS materials that can be produced by inorganic synthesis, is very small compared to variability offered in products through organic synthesis.
  • Other types of sensors considered for application in an electronic nose are all based on the partial, selective permeability of polymers for gasses. On this single physical phenomenon, many technologies can be grafted, such as electrochemical sensors. Also, one knows surface acoustic wave and quartz crystal microbalance sensors using polymer coatings (Dickinson, J. White, J. S. Kauer, D. R. Walt, Nature, 382 (1996), 697) ([0016] type 2 sensors). Type 3 sensors exist, based on the fluorescent properties of optical fibers with a polymer coating. Type 4 sensors are conductimetric sensors based on conventional polymers where conductivity is introduced by mixing graphite particles with the polymer.
  • Conductimetric gas sensors based on conducting polymers form a group of sensors (type 5) that are important in the context of the electronic nose (Persaud, G. Dodd, Nature, 229 (1982), 352). Conducting polymers consist of a long sequence of alternating single and double bonds. This π-conjugated system can be made conductive via oxidation or reduction in a process called doping. The conductivity is influenced by the environment. In other words, conductivity changes upon contact with different vapours. These compounds are well suited for implementation in a chemical nose. [0017]
  • The use of polypyrrole, polyaniline, poly-N-methylpyrrole and poly-5-carboxyindole has been reported. (P. N. Bartlett, S. K. Ling-Chung, Sensors and Actuators, 20, (1989), 287). [0018] More type 5 sensors have been made by variation of functional groups on the main skeleton or by a variation of doping materials.
  • At this moment in [0019] time 5 companies offer commercial versions of an electronic nose. They are
  • (1) Aromascan plc., Electra House, Electra Way, CREWE CW1 1WZ, UK (offering a nose based solely on conducting polymers); [0020]
  • (2) Neotronics, [0021] Western House 2, Cambridge Road, Stansted Mountfitchet, Essex CM24 8BZ, UK (offering a nose containing conducting polymer and MOS sensors);
  • (3) AlphaMOS s.a., 3 Avenue Didier Durat, 31400 Toulouse, France (offering a nose solely based on MOS sensors); [0022]
  • (4) Nordic Sensor Technologies AB, [0023] Teknikringen 8, S-583 30 Linköping, Sweden (offering a nose based on MOS sensors) and
  • (5) Lennartz Electronic, Bismarckstrasse 136, D-72072 Tübingen, Germany (offering a nose based on MOS and quartz crystal microbalance sensors). [0024]
  • Other references to this subject are: [0025]
  • ref. 1: New Scientist, Feb. 18, 1993. [0026]
  • ref. 2: C&EN, Aug. 31, 1996. [0027]
  • ref. 3: Bartlett, J. W. Gardner, “Sensors and Sensory Systems for an Electronic Nose”, Kluwer Academic Publisher, Dordrecht, 1992. [0028]
  • ref. 4: Stetter et al., “Sensor systems for an electronic nose.”, Kluwer Academic Publischer, Dordrecht, 1992). [0029]
  • ref. 5: Mills, F. Walsh, I. Whyte, Chemical Technology Europe, Jul.-Aug. 26, 1996 [0030]
  • ref. 0.6: “Selective sample handling and detection in high-performance liquid chromatography”, Journal of Chromatography Library, vol. 39A, R. W. Frei and K. Zech, Ed., Elsevier, Amsterdam 1981. [0031]
  • ref. 7: “Principles of ion-selective electrodes and membrane transport”, W. E. Morf, Ed., Elsevier, Amsterdam 1981. [0032]
  • SUMMARY OF THE INVENTION
  • This invention regards chemically sensitive sensors, suitable for detecting analytes in fluids (in gaseous or liquid phase), characterised in that the chemically sensitive sensors comprise a chemically sensitive probe which comprises one or a blend of several arylene alkenylene oligomers. Said arylene alkenylane determines at least one response signal. The invention further comprises means for converting said response signal to a sensor response. [0033]
  • These oligomers can also be mixed with polymers. Doping is preferred to obtain workable resistances. Sensors according to the invention are applicable in a chromatography apparatus such as a GC (gas chromatograph) or HPLC (High Performance Liquid Chromatography) for detecting analytes. The possibility to use different arylene alkenylene oligomers for different sensors, which results in a different selectivity and sensitivity of said sensors for a given analyte, makes the sensors according to the invention very suitable for arrays of sensors. Combined with a pattern recognition system, such arrays of sensors are configurable as an electronic nose or tongue. [0034]
  • We recall that the electronic nose consists of a pattern recognition system in combination with a sensor array. [0035]
  • In analogy to the electronic nose, an electronic tongue can be developed: it would be an apparatus consisting of an array of sensors capable of characterizing the composition of a liquid. Again a number of sensor types come into consideration among which sensors based on conducting oligomers. [0036]
  • Other systems that require several sensors with different responses can also be developed using sensors according to the present invention. [0037]
  • The response signal can be determined by the interaction of the oligomer with the analyte or the fluid. [0038]
  • The response signal can be determined by the interaction of the oligomer with the analyte or the fluid.[0039]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 describes the experimental setup for the examples 1 to 4. [0040]
  • FIG. 2 describes a typical result for example 1. [0041]
  • FIG. 3 describes a typical result for example 2. [0042]
  • FIG. 4 describes a typical result for example 3.+[0043]
  • FIG. 5 describes the average results for 3 analogue sensors after 7 measurements. [0044]
  • FIG. 6 describes a summary of examples 1 to 4. [0045]
  • FIG. 7 describes a typical result for example 5. [0046]
  • FIG. 8 describes the setup for a potentiometric measuring cell. [0047]
  • FIG. 9 describes a chromatogram of 6 catecholamines, detected with an amperometric sensor according to the invention. [0048]
  • FIG. 10 describes the setup for an amperometric electrode.[0049]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A chemically sensitive sensor for the detection of an analyte in a fluid is described in the invention, said chemically sensitive sensor comprising a chemically sensitive probe which comprises one or several arylene alkenylene oligomers. Said fluid can be a liquid, a gas or a vapour. Said probe can be applied as a coating on a carrier surface and can be a probe. Said chemically sensitive sensor can further comprise electrodes able to put a voltage over said chemically sensitive probe. The probe can be a resistor or a coating or another structure. [0050]
  • The chemical structure of arylene alkenylene oligomers can be defined as follows: every possible sequence of one or more aromatic or heteroaromatic units like benzene, thiophene, pyrrole, aniline, indole, and many others (the arylene segments) which can be connected by one or more alkenyl segments (—(CR═CR′—)[0051] n). The backbone can be substituted as well on the aryl segments as on the alkenyl segments. The type of substituents have an effect on the partial selectivity of the coatings, the solubility of the oligomers, their oxidation potential and the nominal electrical conductivity. The substituents can be methyl(Me), ethyl(Et), propyl(Pr), butyl(Bu), isobutyl(iBu), methoxy(MeO), ethoxy(EtO), propoxy(PrO), butoxy(BuO), isobutoxy(iBuO) Pentoxy (PtO), isopentoxy (IPtO), hexoxy (HxO), heptoxy (HpO), octoxy (OcO), hexadecoxy (HdO), (or any other alkyl or alkoxy residue), —CHO, —CN, —COOH, —C6H5, anthracene en naphthalene, —CH2X —X (with X=F, Cl, Br, I), and all other substituents. The chain length of these arylene alkenylene oligomers can be best expressed in the number of separate arylene segments in the molecule. The length of the oligomers for this invention is ranging from 2 to 20 coupled segments. Most of the oligomers mentioned in the examples and the following listing are synthesized via the Wittig route. Other synthetic routes like via the Knoevenagel condensation, the McMurry and the Grignard coupling are also possible.
  • The here described conductive materials perform better than the classic materials. They react fast and reversibly on analyte concentrations and show high sensitivity. The materials are easy to coat, to give mechanically stable coatings, which can be used under chromatographic conditions for months, without a significant deterioration of performance. [0052]
  • For the purpose of simplification a system of short notations will be used rather than the IUPAC nomenclature. The letters F for a 2- or 2,5-substituted furane-ring, B for a 1- or 1,4-substituted benzene, S for a 2- or 2,5-substituted thiophene, N for a 2- or 2,5-substituted pyrrole, Naf for naphthalene, Ant for anthracene and BiT for bithienyl will be used. If not further specified 2,5-coupled hetero aromates and para-coupled benzenes are meant. A simple ethenylic segment is not mentioned unless it is substituted. If substituted the notation is (2( )) with the position of the substituents and the type of substituent between brackets. Analogously a 1,4-butadienylic segment is indicated by (4). Substituents at the end of the molecule are always explicitly mentioned and an end-standing hydrogen atom is symbolized by (−). [0053]
  • A few examples of the shortened notation in relation with the full name are given next: [0054]
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene is equal to (3,4,5 triMeO)BB(2,5diMeO)B(3,4,5 triMeO); [0055]
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl) benzene is equal to (3,4,5 triMeO)BBB(3,4,5 triMeO); [0056]
  • 0,1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethylbenzene is equal to (3,4,5 triMeO)BB(2,5 diMe)B(3,4,5 triMeO); [0057]
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-diethoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diEtO)B(3,4,5 triMeO); [0058]
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dipropoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diPrO)B([0059] 3,4,5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dibutoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diBuO)B([0060] 3,4,5 triMeO);
  • 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dihexoxybenzene is equal to (3,4,5 triMeO)BB(2,5 diHxO)B([0061] 3,4,5 triMeo);
  • 2,5-bis(2-[4-methoxyphenyl]ethenyl)thiophene is equal to (MeO)BTB(MeO); [0062]
  • 2,5-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)thiophene is equal to (3,4,5 triMeO)BTB(3,4,5 triMeO); [0063]
  • 1,4-bis(2-[N-methyl-2-pyrryl]ethenyl)-2,5-dibutoxybenzene is equal to (N-methyl)NB(2,5 diOBuO)N(N-methyl). [0064]
  • Using this notation, a division of these oligomers in a number of classes can be done and a few examples of the named classes are given next: [0065]
  • Class BB: [0066]
  • —BB—, (2,5diMeBr)B(2,5 diMeBr), MeBBMe, MeBAnt, (MeO)BB(MeO), (EtO)BB(EtO), (PrO)BB(PrO), (BuO)BB(BuO), (iBuO)BB(iBuo), (PtO)BB(PtO), (iPtO)BB(iPtO), (HxO)BB(HxO), (HpO)BB(HpO), (OcO)BB(OcO), (HdO)BB(HdO), (OHC)BB(CHO), —BB(2,3,4 triMeO), MeBB(2,3,4 triMeO), (BrCH[0067] 2)BB(NO2), ClBB(NO2).
  • Class BBB: [0068]
  • —BBB—, —B(2(2-phenyl))B(2(2-phenyl))B—, —BB(2,5 diEtO)B-, -BB(2,5-diPro)B-, -BB(2,5-diBuO)B-, MeBBBMe, MeB(2(1-phenyl))B(2(1-phenyl))BMe, AntB(2,5 diMe)Ant, (MeO)BBB(MeO), (EtO)BBB(EtO), (PrO)BBB(PrO), (BuO)BBB(BuO), (iBuO)BBB(iBuO), (PtO)BBB(PtO), (iPtO)BBB(iPtO), (HxO)BBB(HxO), (HpO)BBB(HpO), (OcO)BBB(OcO), (HdO)BBB(HdO), (3,4,5-triMeO)BBB(3,4,5-triMeO), (3,4,5-triMeO)B(2(2-CN))B(2(2-CN))B(3,4,5-triMeO), (3,4,5-triMeO)BB(2,5-diMeO)B(3,4,5-triMeO), (3,4,5-triMeO)BB(2,5-diEtO)B(3,4,5-triMeo), (3,4,5-triMeO)BB(2,5-diPrO)B(3,4,5-triMeO), (3,4,5-triMeO)BB(2,5-diBuO)B(3,4,5-triMeO), ([0069] 2,4,6-triMeO)BBB(2,4,6-triMeO), (2,4-di MeO)BB(2,5-di MeO)B(2,4-di MeO), (2,4,6-triMeO)BB(2,5-diMeO)B(2,4,6-triMeO), (2,4,6-triMeO)BBB(CN), (2,4,6-triMeo)BBB(NO2), (0 2N)B(2(1-phenyl))B(2(1-phenyl))B(NO2), (NC)B(2(1-phenyl))B(2(1-phenyl))B(CN), (NC)BBB(NO2), (BrCH2)B(2(2-phenyl))B(2(2-phenyl))B(CH2Br).
  • Class BBBB: [0070]
  • —BBBB—, MeBBBBMe, (MeO)BBBB(MeO), (BuO)BBBB(BuO), (HxO)BBBB(HxO), (OcO)BBBB(OcO), (3,4,5-triMeO)BBBB(3,4,5-triMeO). [0071]
  • Class FF: [0072]
  • —FF—, MeFF(CHO). [0073]
  • Class FFF: [0074]
  • —FFF—, MeFFFMe, ([0075] 0 2N)FFF(NO2).
  • Class F(4)F(4)F: [0076]
  • —F(4)F(4)F—. [0077]
  • Class FFFFF: [0078]
  • —FFFFF—, MeFFFFFMe. [0079]
  • Class BF: [0080]
  • —BF—, MeBF—, —BF(CHO), MeBF(CHO), ([0081] 0 2N)BF(NO2), (NO2)BF(CN), (NO2)BF—.
  • Class BFB: [0082]
  • —BFB—, —BFBMe, MeBFBMe, MeBFNaf, NafFNaf, (NO[0083] 2)BFB(NO2), (2-NO2)BFB(2-NO2), (3-NO2)BFB(3-NO2), (NC)BFB(CN).
  • Class B(4)B(4)B: [0084]
  • —B(4)B(4)B—. [0085]
  • Class FBF: [0086]
  • —FBF—, —FB(2,5 diMe)F—, —FB([0087] 2,5 diEtO)F—, —FAntF—, MeFBFMe, (0 2N)FBF(NO2).
  • Class F(4)B(4)F: [0088]
  • —F(4)B(4)F—, —F(4)B(2,6 diMe)(4)F—. [0089]
  • Class BFBF: [0090]
  • —BFBF—. [0091]
  • Class BFBFB: [0092]
  • —BFBFB—, —BFB(2,5-diMeO)FB—, —BFB(2,5-diEtO)FB—, —BFAntFB—, MeBFBFBMe, MeBFB(2,5-di Me)FBMe, MeBFB(2,5-di EtO)FBMe, MeBFB(2,5-di BuO)FBMe, NafFBFNaf. [0093]
  • Class FFBFF: [0094]
  • —FFBFF—, MeFFBFFMe. [0095]
  • Class BTB: [0096]
  • —BTB—, (MeO)BTB(MeO), (3,4,5-triMeO)BTB(3,4,5-triMeO) [0097]
  • Class TBT: [0098]
  • -TBT-, -TB(2,5-diMe)T-. [0099]
  • Class NBN: [0100]
  • —NBN—, (N-methyl)NB(2,5-diOMe)N(N-methyl), (N-methyl)NB(2,5-diOBu)N(N-methyl). [0101]
  • This list is not complete and should not be considered limiting. All other oligomeric conjugated molecules are useful too. Every random combination of aromatic and/or conjugated heterocyclic monomers and/or ethenylene segments with or without various substituents is useful for this application. [0102]
  • The oligomers can be doped to obtain a nominal electrical conductivity. Doping is an oxidation or reduction reaction with incorporation of the dopant to obtain electrical neutrality. Oxidative doping is preferred as the resulting doped oligomers are more stable in air. Doping can be done by adding a dopant to the polymer. Doping can be done in the gaseous phase with a dopant having a sufficient vapor pressure (e.g. [0103] 12). When the oligomer is exposed to the I2 vapor, the oxidation reaction can be monitored measuring the electrical resistance. Doping can also be done in a solution of the dopant and a solvent (e.g. I2 in pentane). It is also possible to dope the oligomer before coating in a solution of the oligomer and the dopant and a solvent. A few examples of dopants are: I2, AsF5, AlCl3, MoOCl4, MoCl5, NO+ en NO2 + salts (e.g. NOBF4, NOPF6, NOSbF6, NOAsF6, NOCuCl3, NOCH3SO3, N0 2BF4, NO2 PF6, NO2AsF6, NO2SbF6,NO2CF3SO3), O2 +AsF6 , HClO4, HNO3, H2SO4, p-toluenesulfonicacid, benzoylperoxide, CF3SO3H, SO3, Br2, (FSO3)2, FSO3H, Fe(ClO4)3, FeCl3, Fe(OTs)3, Fe(CF3SO3)3, Ag salts (e.g. AgSbF6, AgCF3SO3, AgOTs) leading to doped oligomers with incorporated counterions of the form: I, I3 , I5 , NO3 , NO2 , BF4 , AsF5 , PF6 , Cl, Br, SbF6 , MoOCl4 , oCl6 , FeCl4 , FeCl2 , FSO3 , So3 , C6H5CO2 , OTs, AsF6 , Br3 , Br5 −, CF 3SO3 , CF3CO2 , HSO4 .
  • The oligomers can also be doped by electrochemical doping. The oligomer coating can be oxidized at the anode of an electrochemical cell or reduced at the cathode. Electrochemical exchange of the counterions is also possible. Following dopants can be easily used for electrochemical doping: electrolytes giving the anionic counterions BF[0104] 4 , NO3 , NO2 , F, Cl, Br, I, ClO4 , ClO3 , BrO3 , FeCl4 , FeCl2 , CF3CO2 , MoOCl4 , MoCl6 , AlCl4 , KS2O8 , PF6 , SbF6 , HSO4 CF3SO3 , CH3SO3 , CH3CO2 , CH3C6H4SO3 , and electrolytes giving the cationic counterions: NO+, NO2 +. The oligomers can be blended with each other or with polymers. A few examples of polymers for blending are: polyacrylonitril, polyvinylchloride, polymethylrmthacrylate, polyvinylidenechloride, polyethyleneoxide, polystyrene, pqlycarbonate, nylon, celullose-acetate-butyrate, polypropylene, polyethylene, celullose-acetate, polyphenyleneoxide, polyisobutylene, phenylmethyl-diphenylsiloxane copolymers, polybis(cyanopropyl), siloxane, polyethyleneimine, polyethylenemaleate, fluoropolyol.
  • Blending with polymers gives more mechanical strength and stability to the doped oligomer. The polymers can co-operate in the partial selectivity of the coatings. Components other than polymers can be used to enhance the mechanical stability and/or the permeability for gases and liquids, the miscibility, solubility, ability to form dispersions: e.g. graphite, fibers, clays, sand, glass. [0105]
  • For Conductimetric Gas Sensors: [0106]
  • The oligomers or blends with oligomers can be coated before or after doping on a substrate that is provided with electrically conductive contacts (e.g. made of gold), giving by preference an ohmic contact with the coating, and permit to measure the electrical resistance over the coating. Electrodes can also be deposited after coating (on top). Electrochemical doping and coating of the film can also be done simultaneously. [0107]
  • For amperometric or voltametric sensors for the liquid phase [0108]
  • Analogously, the coatings can be made on a glassy carbon electrode. [0109]
  • For coating spin-coating or spray-coating techniques can be used. Vacuum deposition of the pure oligomer, electrodeposition and dip-coating are also options. Spray-coating is preferred because of the ability to use free-standing metal masks to coat different coatings on a small scale next to each other. The thickness of the coating is optional and can be used to adjust the characteristics of the coating (e.g. the nominal electrical resistance for the application in gas sensors, average response times, environmental stability, expected lifetime, magnitude of the responses, partial selectivity). Layer thickness is in the range of a few nanometers to tenths of a millimeter. [0110]
  • For the construction of chemiresistors for gases, a silicium, alumina or quartz wafer can serve as a substrate. Many dimensions and shapes of the electrodes are possible (e.g. two rectangular shaped electrodes, with a gap of 0.25 millimeter and a length of 1 millimeter). [0111]
  • Advantages that make the use of oligomers advantageous are numerous. [0112]
  • Used in electrodes for electrochemical detection in chromatography, a blended coating is mechanically very stable, and coated electrodes have a good signal to noise ratio for potentiometric and amperometric detectors. The fact that the choice in oligomer, the dopant and the polymer used for blending is virtually unlimited makes the application of these coatings very promising. [0113]
  • For chemically sensitive chemiresistors and their use in an electronic nose, the fact that the use of these coatings gives the possibility to make a whole set of new sensor materials is a first advantage of the invention in the concept of an electronic nose. The resulting sensors have good characteristics. [0114]
  • The typical magnitude of the responses, being the procentual fractional resistance change after one minute is maximum 10% for the [0115] type 5 sensors of the state of the art (e.g. polypyrrole sensors). For the coatings according to the invention, those responses are generally much higher (e.g. a sensor with a coating 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene gives a response of 45% to acetone relative to dry air).
  • The sensors according to the invention work at temperatures near room temperature, in opposition to the sensors of [0116] type 1 that work at high temperatures. This results in an advantageous low power consumption.
  • The construction of gas sensors with oligomers in the coating is at least as simple as the construction of [0117] type 5 sensors.
  • Response time can be kept short: firstly because the diffusion in the coating is generally fast and secondly because there is no need to wait for an equilibrium situation to get a useful signal (because of the magnitude of the responses). For instance, a sensor with 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene coating has reached 95% of its maximal response in less than 30 seconds (measured for nine different vapors). [0118]
  • The oligomers can be used as an alternative for graphite in [0119] type 4 sensors. The oligomers and blends thereof can also be used as an alternative for the polymers in type 2 and 3 sensors.
  • The conductimetric detection mechanism can be combined with the detection in [0120] type 2 sensors on the same coating.
  • For sensors in the concept of an electronic tongue, the performance of the materials in the use as a chemically active layer for potentiometric and amperometric and conductimetric sensors indicates a great potential application in the concept of an electronic tongue. [0121]
  • For coupling of the electronic nose or tongue with chromatographic techniques, the performance of the materials in the use as a chemically active layer for potentiometric and amperometric and conductimetric sensors and their great potential in application in the concept of an electronic tongue and an electronic nose open the possibility to use them in new hyphenated techniques like GC/electronic nose and HPLC/electronic tongue. [0122]
  • EXAMPLES
  • Examples Concerning The Gaseous Phase [0123]
  • 1. Apparatus for Measuring the Characteristics According to the Invention: [0124]
  • In FIG. 1, one can see an apparatus suitable for testing sensors for gaseous phase analysis. [0125]
  • From a cylinder ([0126] 10) of industrial grade air a continuous gas stream is generated, which is split into a carrier gas stream (11) and a reference gas stream (12). The flowrates of both are independently controlled by two massflow controllers (mf1 (13) and mf2 (14); Brooks model 5850T). The controllers are regulated by a master controller (Brooks model 5876) to which both massflow controllers are connected. A massflow controller heats up the incoming gas stream with a filament. This generates a temperature gradient which is measured. By means of a feedback mechanism the opening through which the gas stream comes in can be widened or narrowed. The readout on the master controller is digital and shows the rate in percentage of the maximum flowrate. The inventors have established for this experimental setup that there is a linear relation between controller readout (%) and flowrate. The flowrate of the reference stream can be set between 5 and 230 ml/min and that of the carrier stream between 0 and 120 ml/min. Vessels containing compounds to be detected are kept at 15° C. by means of thermostatic bath (17). This setup thus enables us to generate vapors with constant, yet material dependent concentrations during all of the experiments. The carrier gas is bubbled through one of the vessels and a saturated vapor results.
  • By manipulating two three-way valves (twv[0127] 1 (15) and twv2 (16)) either reference or carrier gas can be sent over the organic films. The valves also enable us to mix the two gas streams and thus we can generate vapor concentrations between 0 g/cm3 and the theoretical concentration of saturation. In a second phase of the research the entire setup was automated and both three-way valves were replaced with computer controlled valves—one two-position and one twelve-position valve (Valco Instruments). Selection of the vapor and its dilution are controlled by these valves and the software application under TestPoint.
  • In between measurements the dry reference stream ([0128] 12) is sent over the sensors (18) to prevent contamination from the surrounding air.
  • The substrate with one or multiple oligomer film(s) deposited on it is plugged into a connector connected to a digital multimeter ([0129] 19) (dmm) (Keithly model 199). The multimeter measures the electrical resistance between two gold electrodes at a distance of 200 μm; because it can simultaneously scan eight channels, the substrate is divided into four groups of sixteen contacts i.e. 8 measuring points. This will enables us to deposit 32 different electrically conducting oligomers on the substrate in the future. The range of the digital multimeter lies between 0 Ohm and 300 MOhm; the resolution of the measurements is 33.10−4%. The delay necessary to switch, between channels is 0,4 seconds depending on the difference in magnitude between two consecutive measurements.
  • A personal computer (80486) ([0130] 20) collects the data via a RS232-connector. The TestPoint program regulates the multimeter's switching between channels and the construction of the graphical representation of the measured values. Any further data manipulations are performed in Microsoft Excel 5.0.
  • The temperature of the substrate is maintained at a constant 35° C. using a second thermostatic bath (tb[0131] 2) (21). It has been established that at higher temperatures the conductivity of the species drops while at lower temperatures danger exists of condensation of the vapors.
  • The sensor is covered by a Teflon box. The gas is introduced into this little chamber via tubing. The dead volume of the chamber is only 3 cm[0132] 3 and thus delays in response due to the filling of the chamber are minimal since the flow is always 100 ml/min. The time between the introduction of the vapor and the moment at which saturation is reached, is estimated to be 6 seconds.
  • Next, dry reference gas is sent over the film during a certain period, this because during this conditioning the base resistance will rise 2 or 3%, probably due to slight dedoping. [0133]
  • Consequently, the compounds can be consecutively mixed with the carrier gas and every five minutes one of the vapors can be sent over the substrate for one minute. After the experiment the sensor is conditioned again during a certain period of time to remove contaminants from previous experiments. The compounds from a series of compounds are chosen randomly to avoid systematic errors. [0134]
  • 2. Examples of Manufacturing Sensors According to the Invention [0135]
  • Example 1
  • a conductimetric gas sensor based on the [0136] trimer 1,4-bis-(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene.
  • 0.07 g (0,134 mM) 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene was dissolved in 10 ml of dichloromethane (CH[0137] 2Cl2). Then we add 10 ml of a saturated iodine/dichloromethane solution. We observe an instantaneous oxidation of the oligomer, as we can see in the change of color from the neutral yellow 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene, to an almost black oxidized form.
  • On this substance, we deposit a film with the spin coating technique on an alumina substrate. The thickness of the film on this substrate, or on an analogous coated glass plate, can be measured with a Dektak 3030 profilometer. [0138]
  • Example 2
  • a conductimetric gas sensor based on the [0139] trimer 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)benzene blended with polycarbonate.
  • 0.0793 [0140] g 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl) benzene was dissolved in 10 ml of a saturated iodine/dichloromethane solution. One can observe an instantaneous oxidation of the-oligomer, the original yellow color turned into purple-black (oxidized form, electrically conducting form). Afterwards, 10 ml of a 5%(g/g) polycarbonate/dichloromethane mixture has been added under continuous stirring. A film was deposited by spraying 2 ml of this mixture on the alumina substrate. On top of this first layer, a second ultra thin layer was deposited using a mixture of 5%(g/g) polycarbonate/dichloromethane with the same technique. Afterwards, this substrate with its two layers was placed at a temperature of 160° C. (Tg polycarbonate=150° C.) during 5 minutes. The materials are deposited on the electrodes using a metal mask, thus making individual sensors on the substrate, with the spray coating technique.
  • The substrate is then cooled to room temperature. [0141]
  • Example 3
  • a conductimetric gas sensor based on a mixture of oligomers: bi[5,5′-(1,2-bis(3-methoxy-2-thienyl)ethene)diyl], ter[5,5′-(1,2-bis(3-methoxy-2-thienyl)ethene)diyl] and quater[5,5′-(1,2-bis(3-methoxy-2-thienyl)ethene)diyl]. [0142]
  • 0.5 g of this mixture was dissolved in 40 ml of dichloromethane and then deposited using the spray technique on a preheated (40 ° C.) substrate. Doping was done with iodine in the gas phase by putting a pellet of iodine onto the sensors, and shielding it from the environment using a glass bulb. [0143]
  • Example 4
  • a conductimetric gas sensor based on electrochemically doped 1,4-bis(2-[3,4,5-trimethoxyphenyl]ethenyl)-2,5-dimethoxybenzene with perchlorate (ClO[0144] 4 ).
  • The electrochemical doping was done by submerging the substrate into an electrolyte solution (e.g. 1%(v/v) perchlorate acetonitrile) while applying a voltage of 1.7 V. This way, a fast doping reaction is obtained. [0145]
  • 3. Examples of use of Sensors According to the Invention [0146]
  • An experimental setup as described in hereabove (apparatus for measuring the characteristics according to the invention) was used. [0147]
  • During the experiments nine different compounds were used: water (1), methanol (2), ethanol (3), propanol (4), acetone (5), diethyl ether (6), acetic acid (7), ethyl acetate (8) and toluene (9). These were all chosen for a number of reasons: it is easy to generate saturated vapors of these compounds and, since they are frequently used by other research groups, they enable us to compare the results. [0148]
  • Table 1 lists concentrations of the vapors at 15° C.; these values have been taken from “Handbook of Chemistry and Physics”, Chemical Rubber Company, and to compounds marked with #, 5% (v/v) water has been added to compensate for their hygroscopic properties. [0149]
    TABLE 1
    List of the nine compounds in the experiments
    with respective vapor pressure and concentration at saturation.
    partial vapour concentration concentration
    Number product pressure at 15° C. in volume % in gram/m 3
    1 water 12.8 mm Hg 1.7 % v/v 13.6 g/m 3
    2 methanol 67.2 mm Hg 8.8 % v/v 125.6 /m3
    #
    3 ethanol 30.8 mm Hg 4.1 % v/v 84.1 g/m3
    #
    4 n-propanol 10.7 mm Hg 1.4 % v/v 36.2 g/m3
    #
    5 acetone 127.8 mm Hg 16.8 % v/v 434 g/m 3
    6 ether # 306.7 mm Hg 40.4 % v/v 1334 g/m 3
    7 acetic 8.8 mm Hg 1.2 % v/v 31.4 g/m3
    acid #
    8 ethyl 50.5 mm Hg 6.6 % v/v 212 g/m3
    acetate #
    9 toluene 16.2 mm Hg 2.1 % v/v 86.2 g/m3
  • Results for the Sensor According to Example 1: [0150]
  • A typical result is shown in FIG. 2. Product numbers are listed in Table 1. Notice the large range in the ordinate. As is mentioned above, the responses of the gas sensors according to the invention to several gases are generally much higher than any other existing gas sensors (e.g. up to 50%). [0151]
  • These measurements are reproducible. Product numbers are listed in Table 1. We have summarized 10 measurements in Table 2. The initial resistance is 26,5 kΩ. The response %R is expressed in percentages and has been defined as in [0152] Equation 1. In this equation, Ri is the initial resistance and Rf is the resistance after exposure to a defined gas during a certain time (e.g. one minute). In Table 2 stands stdev for the standard deviation on the results and is also expressed in percentages definition of response: %R=(Rf−Ri)×100%/Ri
    TABLE 2
    results of 10 measurements as described in example 1.
    ethyl acetic
    water methanol ethanol propanol toluene acetate acetone acid ether
    % R 3.09 15.32 16.04 18.07 36.66 36.06 45.13 42.25 36.64
    stdev 0.663 0.992 2.050 1.832 3.145 2.721 3.431 3.981 1.917
  • Notice that the response time (the time required to reach 95% of the maximum response) is about 6 to 12 seconds. [0153]
  • Results for the Sensor According to Example 2: [0154]
  • A typical result is shown in FIG. 3. Product numbers are listed in Table 1. We have summarized 10 measurements on this kind of sensors in Table 3. %R is defined as in example 1. [0155]
    TABLE 3
    results of 10 measurements as described in example 2.
    ethyl acetic diethyl
    water methanol ethanol propanol toluene acetate acetone acid ether
    % R 1.82 17.54 3.31 2.11 0.92 2.65 4.02 1.45 8.12
  • Results for the Sensor According to Example 3: [0156]
    TABLE 4
    results of a typical measurement as described in example 3.
    ethyl acetic diethyl
    water methanol ethanol propanol toluene acetate acetone acid ether
    % R −3.9 0.8 5.6 3.8 12.2 17.3 16.6 13.7 11.8
  • Results for the Sensor According to Example 4: [0157]
  • In FIG. 5, the results of 3 identical sensors (same product, same thickness) are displayed. [0158]
  • The standard procedure to test the sensory properties of these sensors has been repeated 5 times within 7 hours. [0159]
  • The average response is shown, product numbers are listed in Table 1, and the error-lines are calculated as follows: [0160]
  • %R=μ±σ[0161]
  • μ=average response [0162]
  • σ=standard deviation [0163]
    TABLE 5
    results of 7 measurements as described in example 4.
    ethyl acetic diethyl
    water methanol ethanol propanol toluene acetate acetone acid ether
    % R 30.97 86.63 93.67 107.6 8.68 14.94 5.97 39.44 196.6
    stdev 8.83 18.34 11.05 4.54 0.82 1.93 0.56 3.60 15.33
  • Summary of the Results for the Sensors According to Examples 1 to 4: [0164]
  • Comparing the results of examples 1 to 4 (FIG. 6) one can see that all the sensors give a response to all gases, but that every sensor reacts differently for a given gas. This is called the partial selectivity of a sensor-array. Thus, the product as in example 2 is a good methanol-sensor, and the sensor as in example 4 is a good alcohol sensor. Combining the information from these 4 sensors, allows us to detect the components in the gas mixture. [0165]
  • As one can see, the more different sensors one can make, the bigger the differentiation will be. This is one of the main advantages using oligomers, besides the large responses: the number of different oligomers is virtually unlimited. Chemical modifications can be done, which allows us to introduce for example other substituents. Therefore, these products as described above are good candidate-sensors for an electronic nose. [0166]
  • It is obvious that a number of changes and modifications can be done without deviating from the concept of this invention. [0167]
  • Examples of the Applications in Liquid Phase [0168]
  • Fabrication of a Potentiometric Measuring Cell [0169]
  • The analytes are sprayed directly onto the surface of the working electrode. The potential over the membrane is measured by monitoring the potential between the working ([0170] 31) and the reference electrode (30). The coated electrode shows excellent response times (less then 1 s) and no memory effects were found.
  • The setup of a potentiometric measuring cell ([0171] 29) is shown in FIG. 8. It uses a large glass container in which the working (31) and the reference electrodes (30) are placed. This type of cell is called a large volume wall-jet. The working electrode (31) consists of a glassy carbon electrode spraycoated with the conducting blend. The outlet of the chromatographic system is placed at a distance of approximately 100 μm of the surface of the working electrode.
  • Use of the Material in Potentiometric Detectors [0172]
  • Example 5
  • An example of use and performance of the material as a potentiometric sensor in HPLC analysis is shown in FIG. 7. This is an LC separation of organic acids; tartaric acid ([0173] 22), maleic acid (23), lactic acid (24), acetic acid (25), citric acid (26), fumaric acid (27) and succinic acid (28). The chromatographic column was a Merck (Darmstadt, FRG) RP C 18 column, particle size 5 μm, internal diameter 4 mm, length 10 cm. The acids were eluted using 1 mM H3PO4 solution at a flow rate of 0.5 ml/min. 50 ml of a 10−4 M solution of the acids in 1 mM H3PO4 was injected.
  • The figure shows that organic acids can be detected sensitively using the new electrode material. Organic acids are normally detected using UV detection, having the same sensitivity as the potentiometric method. UV detection however is less selective than potentiometry. Analysis of complex food or biological mixtures by UV detection gives rise to interferences causing difficult detection of the acids. [0174]
  • Coating of Electrodes [0175]
  • The electrodes are coated applying a droplet ([0176] 38) of a solution containing the polymer, the conducting component and I2 as the dopant (FIG. 10). The solvent is evaporated under atmospheric conditions, the thickness of the film is approximately 25 Am. The coated electrodes show good mechanical and chemical stability. The material can be modified chemically to make it possible to attach enzymes at the surface.
  • Use of the Material in Amperometric Detectors. [0177]
  • The material can also be used in amperometric detectors. The setup used for this kind of experiment is identical to that used for potentiometry. Three electrodes are used instead of two (a working, a reference and a counter electrode). The working electrode again is coated with the conducting blend. [0178]
  • FIG. 9 shows a chromatogram of six catecholamines. [0179]
  • FIG. 9: chromatogram of six catecholamines detected amperometicaly, dl-4-hydroxy-3-methoxy mandelic acid (A) ([0180] 32), norepinephrine (B) (33), epinephrine (C) (34), 3,4 -dihydroxybenzylamine(D) (35), 3,4-dihydroxyphenylacetic acid (E) (36) and dopamine (F) (37) using a RP C18 (5 mm) column, ID 4.6 mm and length 10 cm. The analytes were eluted using a 0.1 mM phosphate buffer (pH 3.8) with 5 mM EDTA and 5% methanol at a flow rate of 1 ml/min.

Claims (23)

1. A chemically sensitive sensor for the detection of an analyte in a fluid comprising:
a chemically sensitive probe comprising at least one arylene alkenylene oligomer, wherein at least one response signal being determined by said oligomer; and
means for converting said response signal to a sensor response.
2. The sensor as recited in claim 1, wherein said response signal is determined by the interaction of said oligomer with said analyte.
3. The sensor as recited in claim 1, wherein said response signal is determined by the interaction of said oligomer with said fluid.
4. A chemically sensitive sensor as recited in claim 1, wherein said fluid is a liquid.
5. A chemically sensitive sensor as recited in claim 1, wherein said fluid is a gas.
6. A chemically sensitive sensor as recited in claim 1, wherein said fluid is a vapour.
7. A chemically sensitive sensor as recited in claim 1, wherein said probe further comprises a carrier, said probe being a coating on the carrier surface.
8. A chemically sensitive sensor as recited in claim 7, wherein said probe forms a film, said film having a thickness being in the range of 1 nm to 0,5 mm.
9. A chemically sensitive sensor as recited in claim 1, wherein said sensor further comprises electrodes able to put a voltage over said chemically sensitive probe.
10. A chemically sensitive sensor as recited in the claim 1, wherein said arylene alkenylene oligomers comprise a number of aromatic and/or heteroaromatic residus, said number being in the range of 2 to 20.
11. A chemically sensitive sensor as recited in claim 10, wherein said aromatic and/or heteroaromatic residus are chosen from the group comprising benzene, pyrrole, thiophene, naphtalene, anthracene, bithienyl, aniline and indole.
12. A chemically sensitive sensor as recited in claim 10, wherein said aromatic and/or heteroaromatic residus are connected by one or more alkenyl segments.
13. A chemically sensitive sensor as recited in claim 10, wherein said aromatic and/or heteroaromatic residus and/or said alkenyl segments are substituted with one or more substituents chosen from the group comprising all alkyl groups, all alkoxy groups, —CHO, —CN, —COOH2,—C6H5, anthracene, naphtalene and —CH2X and —X with X chosen from the group comprising F, Cl, Br and I.
14. A chemically sensitive sensor as recited in claim 1, wherein said arylene alkenylene oligomers are doped with one or several dopants, thereby changing the resistance of said oligomers.
15. A chemically sensitive sensor as recited in claim 14, wherein the doping is oxidative or reductive.
16. A chemically sensitive sensor as recited in claim 14, wherein the doping is chemical or electrochemical.
17. A chemically sensitive sensor as recited in claim 14, wherein said dopant is advantageously chosen from the group comprising I2, AsF5, AlCl3, MoOCl4, MoCl5, NO+en NO2 + salts (e.g. NOBF4, NOPF6, NOSbF6, NOAsF6, NOCuCl3, NOCH3SO3, NO2BF4, NO2PF6, NO2AsF6, NO2SbF6, NO2CF3SO3), O2 +AsF6 , HClO4, HNO3, H2SO4, p-toluenesulfonicacid, benzoylperoxide, CF3SO3H, SO3Br2, (FSO3)2, FSO3H, Fe(ClO4)3, FeCl3, Fe(OTs)3, Fe(CF3SO3)3, Ag salts (e.g. AgSbF6, AgCF3SO3, AgOTs) leading to doped oligomers with incorporated counterions of the form chosen from the group comprising I, I3 , I5 , NO3 , NO2 , BF4 , AsF5 , PF6 , Cl, Br, SbF6 , MoOCl4 , MoCl6 , FeCl4 , FeCl2 , FSO3 , SO3 , C6H5CO2 , OTs, AsF6 , Br3 , Br5 , CF3SO3 , CF3CO2 , and HSO4 , electrolytes giving the anionic counterions chosen from the group comprising BF4 , NO3 , NO2 , F, Cl, Br, I, ClO4 , ClO3 , BrO3 , FeCl4 , FeCl2 , CF3CO2 , MoOCl4 , MoCl6 , AlCl4 , KS2 , PF6 , SbF6 , HSO4 CF3SO3 , CH3SO3 , and CH3CO2 , CH3C6H4SO3 , and electrolytes giving the cationic counterions NO+, or NO2 +.
18. A chemically sensitive sensor as recited in claim 1, wherein said arylene alkylene oligomers are blended with one or several polymers.
19. A chemically sensitive sensor as recited in claim 18, wherein said polymers are chosen from the group comprising: polyacrylonitril, polyvinylchloride, polymethylmethacrylate, polyvinyl idenechloride, polyethyleneoxide, polystyrene, polycarbonate, nylon, celullose-acetate-butyrate, polypropylene, polyethylene, celullose-acetate, polyphenyleneoxide, polyisobutylene, phenylmethyl-diphenylsiloxane copolymers, polybis (cyanopropyl), siloxane, polyethyleneimine, polyethylenemaleate, fluoropolyol.
20. A method of constructing the chemically sensitive sensor as recited in claim 7, comprising the step of coating said arylene alkylene oligomers on said carrier surface by a coating technique chosen from the group comprising: spin-coating, spray-coating, dip-coating, vacuum deposition and electro-deposition.
21. Array of chemically sensitive sensors, comprising two or more chemically sensitive sensors as recited in claim 1.
22. Electronic nose for the detection and/or identification of an analyte in gaseous phase solution, wherein it comprises an array of chemically sensitive sensors such as recited in claim 21 and a sensor response pattern recognition system.
23. Electronic tongue for the detection and/or identification of an analyte in liquid phase solution, wherein it comprises an array of chemically sensitive sensors such as recited in claim 21 and a sensor response pattern recognition system.
US10/454,762 1997-05-15 2003-06-03 Chemically sensitive sensor comprising arylene alkenylene oligomers Abandoned US20040042931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/454,762 US20040042931A1 (en) 1997-05-15 2003-06-03 Chemically sensitive sensor comprising arylene alkenylene oligomers

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP97870068 1997-05-15
EP97870068.0 1997-05-15
EP97870082A EP0878711A1 (en) 1997-05-15 1997-05-30 Chemically sensitive sensor comprising arylene alkenylene oligomers
EP97870082.1 1997-05-30
US08/985,806 US6042788A (en) 1997-05-15 1997-12-05 Chemically sensitive sensor comprising arylene alkenylene oligomers
US09/448,053 US6572826B1 (en) 1997-05-15 1999-11-23 Chemically sensitive sensor comprising arylene alkenylene oligomers
US10/454,762 US20040042931A1 (en) 1997-05-15 2003-06-03 Chemically sensitive sensor comprising arylene alkenylene oligomers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/448,053 Continuation US6572826B1 (en) 1997-05-15 1999-11-23 Chemically sensitive sensor comprising arylene alkenylene oligomers

Publications (1)

Publication Number Publication Date
US20040042931A1 true US20040042931A1 (en) 2004-03-04

Family

ID=26148239

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/985,806 Expired - Fee Related US6042788A (en) 1997-05-15 1997-12-05 Chemically sensitive sensor comprising arylene alkenylene oligomers
US09/448,053 Expired - Fee Related US6572826B1 (en) 1997-05-15 1999-11-23 Chemically sensitive sensor comprising arylene alkenylene oligomers
US10/454,762 Abandoned US20040042931A1 (en) 1997-05-15 2003-06-03 Chemically sensitive sensor comprising arylene alkenylene oligomers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/985,806 Expired - Fee Related US6042788A (en) 1997-05-15 1997-12-05 Chemically sensitive sensor comprising arylene alkenylene oligomers
US09/448,053 Expired - Fee Related US6572826B1 (en) 1997-05-15 1999-11-23 Chemically sensitive sensor comprising arylene alkenylene oligomers

Country Status (3)

Country Link
US (3) US6042788A (en)
EP (1) EP0878711A1 (en)
JP (1) JPH1172474A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212663A1 (en) * 2007-09-10 2009-08-27 The University Of Hong Kong Electronic tongue sensor
WO2014165659A2 (en) * 2013-04-03 2014-10-09 University Of Massachusetts An electrochemical tongue
US11107675B2 (en) 2016-07-14 2021-08-31 Entegris, Inc. CVD Mo deposition by using MoOCl4
CN114324760A (en) * 2021-12-29 2022-04-12 山东和富工程检测有限公司 Building materials product smell release testing arrangement

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2325886C (en) * 1998-04-09 2009-07-21 California Institute Of Technology Electronic techniques for analyte detection
US6461306B1 (en) * 1998-06-15 2002-10-08 The Trustees Of The University Of Pennsylvania Diagnosing intrapulmonary infection and analyzing nasal sample
WO2000020852A1 (en) 1998-10-02 2000-04-13 California Institute Of Technology Conductive organic sensors, arrays and methods of use
US6631333B1 (en) 1999-05-10 2003-10-07 California Institute Of Technology Methods for remote characterization of an odor
US7122152B2 (en) 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
ATE319080T1 (en) 1999-05-10 2006-03-15 California Inst Of Techn USE OF A SPATIO-TEMPORAL RESPONSE IN SENSOR ARRAYS FOR THE DETECTION OF ANALYTES IN FLUID
US6890715B1 (en) 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
WO2001013087A2 (en) * 1999-08-18 2001-02-22 California Institute Of Technology Sensors and sensor arrays of conducting and insulating composites and methods of use thereof
US6237397B1 (en) * 1999-10-06 2001-05-29 Iowa State University Research Foundation, Inc. Chemical sensor and coating for same
US6575013B2 (en) * 2001-02-26 2003-06-10 Lucent Technologies Inc. Electronic odor sensor
JP3680167B2 (en) * 2001-07-11 2005-08-10 エーザイ株式会社 Taste identification device and identification method
WO2004059281A2 (en) * 2002-12-16 2004-07-15 Avery Dennison Corporation Analyte detecting article and method
US7138090B2 (en) * 2003-04-11 2006-11-21 Therm-O-Disc, Incorporated Vapor sensor and materials therefor
US7645422B2 (en) * 2003-04-11 2010-01-12 Therm-O-Disc, Incorporated Vapor sensor and materials therefor
DE10318956A1 (en) * 2003-04-26 2004-11-11 Kanesho Soil Treatment Bvba Method and device for the detection of volatile analytes in air samples
TWI234842B (en) * 2003-09-09 2005-06-21 Ind Tech Res Inst Manufacturing method of chemical sensors
US7104115B2 (en) * 2004-05-07 2006-09-12 Sensicore, Inc. Fluid treatment apparatus with input and output fluid sensing
US20060020427A1 (en) * 2004-05-07 2006-01-26 Sensicore, Inc. Systems and methods for fluid quality monitoring using portable sensors in connection with supply and service entities
US7100427B2 (en) * 2004-05-07 2006-09-05 Sensicore, Inc. Multi-sensor system for fluid monitoring with selective exposure of sensors
US20050251366A1 (en) * 2004-05-07 2005-11-10 Sensicore, Inc. Monitoring systems and methods for fluid testing
US7249000B2 (en) * 2004-05-07 2007-07-24 Sensicore, Inc. Fluid monitoring systems and methods with data communication to interested parties
EP1875226B1 (en) 2005-04-21 2009-08-12 Symrise GmbH & Co. KG Process for the separation and sensory evaluation of flavours
US20060281191A1 (en) * 2005-06-09 2006-12-14 Prasad Duggirala Method for monitoring organic deposits in papermaking
US7424399B2 (en) * 2005-06-10 2008-09-09 Ge Analytical Instruments, Inc. Systems and methods for fluid quality sensing, data sharing and data visualization
US7708947B2 (en) * 2005-11-01 2010-05-04 Therm-O-Disc, Incorporated Methods of minimizing temperature cross-sensitivity in vapor sensors and compositions therefor
ITMI20060813A1 (en) * 2006-04-21 2007-10-22 Thermo Electron Spa CO2 ADSORPTION DEVICE FOR ELEMENTARY ANALYSIS INSTRUMENTS.
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
US20080025876A1 (en) * 2006-07-26 2008-01-31 Ramamurthy Praveen C Vapor sensor materials having polymer-grafted conductive particles
WO2008094706A2 (en) * 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
US8197650B2 (en) 2007-06-07 2012-06-12 Sensor Innovations, Inc. Silicon electrochemical sensors
US8691390B2 (en) * 2007-11-20 2014-04-08 Therm-O-Disc, Incorporated Single-use flammable vapor sensor films
US20090230362A1 (en) * 2008-01-25 2009-09-17 Bazan Guillermo C Conjugated oligoelectrolyte electron transporting layers
JP5181386B2 (en) * 2008-02-01 2013-04-10 国立大学法人 新潟大学 Chemical biosensor
US8650932B2 (en) * 2008-10-17 2014-02-18 Smiths Detection Inc. Sensor system with close-loop-adsorption circulation
GB2500550A (en) 2010-12-16 2013-09-25 Sensor Innovations Inc Electrochemical sensors
FR2987129B1 (en) * 2012-02-21 2014-03-14 Commissariat Energie Atomique SENSORS OF NOSE OR ELECTRONIC LANGUAGE
US9804117B2 (en) * 2013-08-13 2017-10-31 Schlumberger Technology Corporation CO2 concentration measurement in dry gas mixtures
CA3000385A1 (en) * 2017-04-11 2018-10-11 Syscor Controls & Automation Inc. Polymer absorption sensor having low cross-sensitivity
CN110361422B (en) * 2019-07-12 2022-07-08 北京机械设备研究所 Preparation method and device of gas sensor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907441A (en) * 1987-02-03 1990-03-13 National Research Development Corporation Apparatus and method for identifying or measuring gas or liquid borne substances
US5189136A (en) * 1990-12-12 1993-02-23 The Regents Of The University Of California Conducting polymer formed of poly(2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylenevinylene)
US5512490A (en) * 1994-08-11 1996-04-30 Trustees Of Tufts College Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns
US5512401A (en) * 1995-02-27 1996-04-30 Xerox Corporation Polyimide-amic acid toner compositions
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5674752A (en) * 1995-10-16 1997-10-07 The United States Of America As Represented By The Secretary Of The Navy Conductive polymer coated fabrics for chemical sensing
US5675070A (en) * 1996-02-09 1997-10-07 Ncr Corporation Olfatory sensor identification system and method
US5766952A (en) * 1996-07-25 1998-06-16 Regents Of The University Of Minnesota Vapochromic platinum-complexes and salts
US5788833A (en) * 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US5831259A (en) * 1994-06-28 1998-11-03 Commissariat A L'energie Atomique Electrooptical transducer utilizing photoluminescent conjugate oligomers
US6013459A (en) * 1997-06-12 2000-01-11 Clinical Micro Sensors, Inc. Detection of analytes using reorganization energy
US6096273A (en) * 1996-11-05 2000-08-01 Clinical Micro Sensors Electrodes linked via conductive oligomers to nucleic acids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728452A1 (en) * 1987-08-26 1989-03-09 Basf Ag Electroconductive polymers from polyheterocyclic compounds with derivatives of tetrathiafulvalene as counter-ions, their preparation and their use

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907441A (en) * 1987-02-03 1990-03-13 National Research Development Corporation Apparatus and method for identifying or measuring gas or liquid borne substances
US5189136A (en) * 1990-12-12 1993-02-23 The Regents Of The University Of California Conducting polymer formed of poly(2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylenevinylene)
US5831259A (en) * 1994-06-28 1998-11-03 Commissariat A L'energie Atomique Electrooptical transducer utilizing photoluminescent conjugate oligomers
US5512490A (en) * 1994-08-11 1996-04-30 Trustees Of Tufts College Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns
US5512401A (en) * 1995-02-27 1996-04-30 Xerox Corporation Polyimide-amic acid toner compositions
US5788833A (en) * 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US5698089A (en) * 1995-03-27 1997-12-16 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5674752A (en) * 1995-10-16 1997-10-07 The United States Of America As Represented By The Secretary Of The Navy Conductive polymer coated fabrics for chemical sensing
US5675070A (en) * 1996-02-09 1997-10-07 Ncr Corporation Olfatory sensor identification system and method
US5766952A (en) * 1996-07-25 1998-06-16 Regents Of The University Of Minnesota Vapochromic platinum-complexes and salts
US6096273A (en) * 1996-11-05 2000-08-01 Clinical Micro Sensors Electrodes linked via conductive oligomers to nucleic acids
US6013459A (en) * 1997-06-12 2000-01-11 Clinical Micro Sensors, Inc. Detection of analytes using reorganization energy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212663A1 (en) * 2007-09-10 2009-08-27 The University Of Hong Kong Electronic tongue sensor
US8004152B2 (en) 2007-09-10 2011-08-23 The University Of Hong Kong Electronic tongue sensor
WO2014165659A2 (en) * 2013-04-03 2014-10-09 University Of Massachusetts An electrochemical tongue
WO2014165659A3 (en) * 2013-04-03 2015-01-15 University Of Massachusetts An electrochemical tongue
US10845335B2 (en) 2013-04-03 2020-11-24 University Of Massachusetts Electrochemical tongue
US11107675B2 (en) 2016-07-14 2021-08-31 Entegris, Inc. CVD Mo deposition by using MoOCl4
CN114324760A (en) * 2021-12-29 2022-04-12 山东和富工程检测有限公司 Building materials product smell release testing arrangement

Also Published As

Publication number Publication date
EP0878711A1 (en) 1998-11-18
JPH1172474A (en) 1999-03-16
US6042788A (en) 2000-03-28
US6572826B1 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US6572826B1 (en) Chemically sensitive sensor comprising arylene alkenylene oligomers
JP3963474B2 (en) Sensor array for detecting an analyte in a fluid
Barisci et al. Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose
US6759010B2 (en) Use of an array of polymeric sensors of varying thickness for detecting analytes in fluids
US6350369B1 (en) Method and system for determining analyte activity
Domanský et al. Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air
US8394330B1 (en) Conductive organic sensors, arrays and methods of use
KR100224941B1 (en) Gas sensor
US6537498B1 (en) Colloidal particles used in sensing arrays
US7955561B2 (en) Colloidal particles used in sensing array
Ferreira et al. Langmuir–Blodgett films from polyaniline/ruthenium complexes as modified electrodes for detection of dopamine
Barhoumi et al. Silicon Nitride Capacitive Chemical Sensor for Phosphate Ion Detection Based on Copper Phthalocyanine–Acrylate‐polymer
De Melo et al. Use of conducting polypyrrole blends as gas sensors
JP4215510B2 (en) Use of said sensors in sensors and sensor systems for the analysis of mixtures with broad selectivity
EP2459997B1 (en) Multi-electrode chemiresistor
EP1084390A2 (en) Colloidal particles used in sensing arrays
Blue et al. The development of sensors for volatile nitro-containing compounds as models for explosives detection
De Souza et al. Free-grown polypyrrole thin films as aroma sensors
Wiziack et al. Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films
Bissell et al. The influence of non-specific molecular partitioning of analytes on the electrical responses of conducting organic polymer gas sensors
EP0226584A1 (en) Gas sensors, and methods of making and using them
De Saja et al. Array of lutetium bisphthalocyanine sensors for the detection of trimethylamine
KR20190086182A (en) Biosensor for detecting cortisol using resistance switching and hysteresis change, method for preparing thereof and application thereof
Shaidarova et al. Selective Voltammetric and Flow-Injection Amperometric Determination of Acyclovir and Valacyclovir on an Electrode with a Reduced Graphene Oxide–Polyglycine Film Composite
Ofer i, United States Patent (10) Patent No.: US 9.217. 722 B2

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITAIRE INSTELLING ANTWERPEN, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE WIT, MICHAEL;VANNESTE, EMMANUEL;BLOCKHUYS, FRANK;AND OTHERS;REEL/FRAME:014538/0695;SIGNING DATES FROM 19971127 TO 19971201

Owner name: OLIGOSENSE N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITAIRE INSTELLING ANTWERPEN;REEL/FRAME:014538/0661

Effective date: 20020220

Owner name: INTERUNIVERSITAIR MICRO-ELEKTRONICA CENTRUM, BELGI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE WIT, MICHAEL;VANNESTE, EMMANUEL;BLOCKHUYS, FRANK;AND OTHERS;REEL/FRAME:014538/0695;SIGNING DATES FROM 19971127 TO 19971201

Owner name: OLIGOSENSE N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERUNIVERSITAIR MICRO-ELEKTRONICA CENTRUM VZW;REEL/FRAME:014538/0671

Effective date: 20020329

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION