US20040007464A1 - Apparatus and method for performing microfluidic manipulations for chemical analysis - Google Patents

Apparatus and method for performing microfluidic manipulations for chemical analysis Download PDF

Info

Publication number
US20040007464A1
US20040007464A1 US10/434,874 US43487403A US2004007464A1 US 20040007464 A1 US20040007464 A1 US 20040007464A1 US 43487403 A US43487403 A US 43487403A US 2004007464 A1 US2004007464 A1 US 2004007464A1
Authority
US
United States
Prior art keywords
reservoir
channel
intersection
reservoirs
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/434,874
Inventor
J. Ramsey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/434,874 priority Critical patent/US20040007464A1/en
Publication of US20040007464A1 publication Critical patent/US20040007464A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00826Quartz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00828Silicon wafers or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00853Employing electrode arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00912Separation by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00916Separation by chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00968Type of sensors
    • B01J2219/0097Optical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00993Design aspects
    • B01J2219/00995Mathematical modeling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4895Solvent bonding, i.e. the surfaces of the parts to be joined being treated with solvents, swelling or softening agents, without adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N2030/162Injection electromigration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N2030/285Control of physical parameters of the fluid carrier electrically driven carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N2030/382Flow patterns flow switching in a single column
    • G01N2030/383Flow patterns flow switching in a single column by using auxiliary fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8429Preparation of the fraction to be distributed adding modificating material
    • G01N2030/8435Preparation of the fraction to be distributed adding modificating material for chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/01Micromixers: continuous laminar flow with laminar boundary mixing in the linear direction parallel to the fluid propagation with or without conduit geometry influences from the pathway

Definitions

  • the present invention relates generally to miniature instrumentation for chemical analysis and chemical sensing and, more specifically, to electrically controlled manipulations of fluids and capillaries in micromachine channels. These manipulations can be used in a variety of applications, including the electrically controlled manipulation of fluid for capillary electrophoresis, liquid chromatography, and flow injection analysis.
  • Capillary electrophoresis has become a popular technique for separating charged molecular species in solution.
  • the technique is performed in small capillary tubes to reduce band broadening effects due to thermal convection and hence improve resolving power.
  • An electromigration injection is effected by applying an appropriately polarized electric potential across the capillary tube for a given duration while the entrance end of the capillary is in the sample reservoir. This can lead to sampling bias because a disproportionately larger quantity of the species with higher electrophoretic mobilities migrate into the tube.
  • the capillary is removed from the sample reservoir and replaced into the entrance buffer reservoir after the injection duration for both techniques.
  • U.S. Pat. No. 4,908,112 to Pace describes a micro-machined structure that includes a channel for the separation and a separate channel that meets the separation channel in a T-intersection and contains electrodes to produce electroosmotic flow for injection of sample into the separation channel.
  • U.S. Pat. No. 5,141,621 to Zare et al. discloses a capillary electrophoresis method and apparatus which applies a potential at two buffer reservoirs located at opposite ends of a capillary column. Samples are introduced without the need to disengage the electyric field, due to the fact that the injector is grounded.
  • U.S. Pat. No. 5,110,431 to Moring describes a crossing flow pattern using conventional capillary tubing with minimal resolution loss for the purpose of post column introduction of reactive substances to aid in detection.
  • U.S. Pat. No. 5,073,239 to Hjerten discloses the use of two capillaries to deliver sample by electroendosmotic flow into a closed container whose major exit is through the separating column.
  • An object of the present invention is to provide a miniaturized injection method and apparatus in which it is not required to perform any mechanical manipulations with the capillary tube.
  • Another object of the present invention is to provide a miniaturized injection method and apparatus which utilizes electroosmottic pumping similar to electromigration techniques, but without the advent of sampling bias.
  • Yet another object of the present invention is to provide a miniaturized injection method and apparatus capable of achieving improvements in reproducibility of injections.
  • Still another object of the present invention is to provide a miniaturized injection method and apparatus which uses electrostatic forces to spatially shape the injection plug, making it small in spatial extent and stable with time.
  • Another object of the invention is to provide a reagent mixing apparatus and method for electroosmotically driven devices which allow virtually any wet chemical experiment now performed at the bench, in test tubes and beakers, to be conducted on a chip under electronic control.
  • an injection apparatus for microchip liquid chromatography and other situations, which includes a body having a first channel extending between an analyte reservoir and an analyte waste reservoir and a second channel extending between a first buffer reservoir and a buffer waste reservoir, the first and second channels crossing to form a first fluid communicating intersection, and means for moving analyte, in sequence, and at first, through the first channel into the intersection, and then from the intersection into the second channel.
  • FIG. 1 is a schematic top view of a microchip according to a first preferred embodiment of a microchip according to the present invention
  • FIG. 2 is an enlarged, vertical sectional view of a channel, taken along line II-II of FIG. 1;
  • FIG. 3( a ) is a schematic view of the intersection area of the microchip of FIG. 1, prior to analyte injection;
  • FIG. 3( b ) is an actual CCD fluorescence image taken of the same area depicted in FIG. 3( a ), after injection in the pinched mode;
  • FIG. 3( c ) is an actual photomicrograph taken of the same area depicted in FIG. 3( a ), after injection in the floating mode;
  • FIG. 4 shows integrated fluorescence plotted versus time for pinched and floating injections
  • FIG. 5( a ) is a schematic view of a CCD camera view of the intersection area of the microchip of FIG. 1, prior to analyte injection;
  • FIG. 5( b ) is a CCD fluorescence image taken of the same area depicted in FIG. 5( a ), after injection in the pinched mode;
  • FIGS. 5 ( c )- 5 ( e ) are CCD fluorescence images taken of the same area depicted in FIG. 3( a ), sequentially showing a plug of analyte moving away from the channel intersection at 1, 2, and 3 seconds, respectively, after switching to the run mode;
  • FIG. 6 are electropherograms at (a) 3.3 cm, (b) 9.9 cm, and (c) 16.5 cm from the point of injection for rhodamine B (less retained) and sulforhodamine (more retained);
  • FIG. 7 is a plot of the efficiency data generated from the electropherograms of FIG. 6, showing variation of the plate number with channel length for rhodamine B (square with plus) and sulforhodamine (square with dot) with best linear fit (solid lines) for each analyte;
  • FIG. 8 is a schematic top view of a microchip according to a second preferred embodiment of a microchip according to the present invention.
  • FIG. 9 is a CCD image of “sample loading mode for rhodamine B (shaded area);
  • FIG. 10( a ) is an electropherogram of rhodamine B and fluorescein with a separation field strength of 1.5 kV/cm and a separation length of 0.9 mm;
  • FIG. 10( b ) is an electropherogram of rhodamine B and fluorescein with a separation field strength of 1.5 kV/cm and a separation length of 1.6 mm;
  • FIG. 10( c ) is an electropherogram of rhodamine B and fluorescein with a separation field strength of 1.5 kV/cm and a separation length of 11.1 mm;
  • FIG. 11 is a graph showing variation of the number of plates per unit time as a function of the electric field strength for rhodamine B at separations lengths of 1.6 mm (circle) and 11.1 mm (square) and for fluorescein at separation lengths of 1.6 mm (diamond) and 11.1 mm (triangle);
  • FIG. 12 is a schematic, top view of a microchip according to another embodiment of the present invention.
  • FIG. 13 is an enlarged view of the intersection region of FIG. 12;
  • FIG. 14 is a schematic, top view of a microchip according to another embodiment of the present invention.
  • FIG. 15 is an enlarged view of the intersection region of FIG. 14;
  • FIG. 16 is a schematic, top plan view of a microchip according to the FIG. 14 embodiment, additionally including a reagent reservoir and reaction channel;
  • FIG. 17 is a schematic view of the embodiment of FIG. 16, showing applied voltages
  • FIG. 18 are CCD images of a plug of analyte moving through the intersection of the FIG. 16 embodiment
  • FIG. 19 show two electropherograms producing using the FIG. 16 embodiment
  • FIG. 20 is a schematic view of another preferred embodiment of the present invention.
  • FIG. 21 is a schematic view of the apparatus of FIG. 20, showing sequential applications of voltages to effect desired fluidic manipulations.
  • FIG. 22 is a graph showing the different voltages applied to effect the fluidic manipulations of FIG. 21.
  • a microchip 20 includes a base member 22 which is approximately two inches by one inch piece of microscope slide (Corning, Inc. #2947).
  • a channel pattern 24 is formed in one planar surface 26 of the base member 22 using standard photolitographic procedures followed by chemical wet etching.
  • the channel pattern 24 is transferred onto the slide or base member 22 with a positive photoresist (Shipley 1811) and an e-beam written chrome mask (Institute of Advanced Manufacturing Sciences, Inc.).
  • the pattern is chemically etched using HF/NH 4 F solution.
  • a cover plate 28 is then bonded to the base member 22 using a direct bonding technique whereby the base member 22 and the cover plate 28 surfaces are first hydrolyzed in a dilute NH 4 OH/H 2 O 2 solution and then joined. The assembly is then annealed at about 500° C. in order to insure proper adhesion of the cover plate 28 to the base member 22 .
  • cylindrical plastic reservoirs 30 , 32 , 34 and 36 are affixed to the base member 22 , with portions of the cover plate sandwiched therebetween, with epoxy or other suitable means. Electrical contact is made by placing platinum electrodes 38 , 40 , 42 , and 44 in reservoirs 30 , 32 , 34 , and 36 , respectively.
  • the electrodes are connected to a power source (PS) 37 which applies a desired potential to select ones of the electrodes, in a manner to be described more fully below.
  • PS power source
  • the channel pattern 24 has four distinct channel portions. Each channel portion has an accompanying reservoir mounted above the terminus of each channel portion, and all four intersect at one end in a four way intersection 46 . The opposite ends of each section provide termini that extend just beyond the peripheral edge of the cover plate 28 .
  • a first channel portion 48 runs from the reservoir 30 to the four-way intersection 46 .
  • a second channel portion 50 runs from the reservoir 32 to the four-way intersection 46 .
  • a third channel portion 52 runs from the reservoir 34 to the intersection 46 , and a fourth channel portion 54 runs from the reservoir 44 to the intersection 46 .
  • the enclosed length (that which is covered by the cover plate 28 ) of channel extending from reservoir 30 to reservoir 34 is 19 mm, while the length of channel portion 50 is 6.4 mm and channel portion 54 is 171 mm.
  • the turn radius of section 54 which serves as a separation column, is 0.16 mm.
  • the cross section of the channel 54 is shown in FIG. 2.
  • the other channels would have the same shape.
  • the dimensions give the channel 54 a trapezoidal shape.
  • the channel 54 has a depth “d” of 10 ⁇ m, an upper width “w 1 ” of 90 ⁇ m, and a lower width “w 2 ” of 70 ⁇ m.
  • the trapezoidal cross section is due to “undercutting” by the chemical etching process at the edge of the photoresist.
  • Chip dynamics were analyzed using analyte fluorescence.
  • a charge coupled device (CCD) camera was used to monitor designated areas of the chip and a photomultiplier tube (PMT) tracked single point events.
  • the CCD (Princeton Instruments, Inc. TE/CCD-512TKM) camera was mounted on a stereo microscope (Nikon SMZ-U), and the chip 20 was illuminated using an argon ion laser (514.5 nm, Coherent Innova 90) operating at 3 W with the beam expanded to a circular spot ⁇ 2 cm in diameter.
  • the point detection scheme employed a helium-neon laser (543 nm, PMS Electro-optics LHGP-0051) with an electrometer (Keithley 617) to monitor response of the PMT (Oriel 77340).
  • the power supply or supplies 37 (Spellman CZE 1000R) for electrophoresis were operated between 0 and +4.4 kV relative to ground.
  • the chip 20 can be operated in either an “inject” mode or a “run” mode.
  • Reservoir 30 is supplied with an analyte and reservoir 32 with buffer.
  • Reservoir 34 acts as an analyte waste reservoir, and reservoir 36 acts as a waste reservoir.
  • a potential is applied to reservoir 30 with reservoir 34 grounded.
  • reservoirs 32 and 36 are floating, meaning that they are neither coupled to the power source, nor grounded.
  • the second inject mode is the “pinched” mode, which is preferred, wherein potentials are applied to reservoirs 30 , 32 , and 36 , with reservoir 34 grounded in order to control the injection plug shape.
  • the potential is applied to reservoir 32 with reservoir 36 grounded and with reservoirs 30 and 34 at approximately half of the potential of reservoir 32 .
  • the analytes used for diagnostic experiments were rhodamine B and sulforhodamine 101 (Exciton Chemical Co., Inc.) at 60 ⁇ M for the CCD images and 6 ⁇ M for the point detection.
  • a sodium tetraborate buffer (50 mM, pH 9.2) was the mobile phase in all experiments.
  • FIGS. 3 ( a )- 3 ( c ) CCD images of the two types of injections are depicted in FIGS. 3 ( a )- 3 ( c ).
  • FIG. 3( a ) shows the intersection 46 , as well as the end portions of channel portions 48 , 50 , 52 and 54 .
  • reservoirs are in communication with end portions of corresponding channel segments. These end portions act as “ports” through which material moves between the reservoirs to the various channel segments.
  • the CCD image of FIG. 3( b ) is of injection in the pinched mode, just prior to being switched to the run mode.
  • analyte shown as white against the dark background
  • the voltages applied to reservoirs 30 , 32 , 34 , and 36 were 90%, 90%, 0, and 100%, respectively, of the power supply output which correspond to electric field strengths in the corresponding channels of 270, 400, 690 and 20 V/cm, respectively. Consequently, the analyte in the injection cross or intersection 46 has a trapezoidal shape and is spatially constricted in channel portion 52 by this flow pattern.
  • FIG. 3( c ) shows a floating mode injection.
  • the analyte is pumped from reservoir 30 to 34 as in the pinched injection except no potential is applied to reservoirs 32 and 36 .
  • the analyte is free to flow into these channels through eddy flow resulting in a more diffuse injection plug.
  • the pinched injection is superior in two areas: temporal stability and plug length.
  • temporal stability insures that equal volumes of the faster and slower moving analytes are introduced into the separation column or channel 54 .
  • a smaller plug length leads to a higher separation efficiency and, consequently, to a greater component capacity for a given instrument.
  • the reproducibility for the pinched injection mode was tested by integrating the area of the band profile following introduction into the separation channel 54 .
  • the reproducibility for the pinched injection is 0.7% RSD.
  • Most of this measured instability is from the optical measurement system.
  • the pinched injection has a higher reproducibility because of the temporal stability. With electronically controlled voltage switching, the RSD is expected to improve for both schemes.
  • the injection plug width and, ultimately, the resolution between analytes depends largely on both the flow pattern of the analyte and the dimensions of the injection cross or intersection 46 .
  • the width of the channel at the top is 90 ⁇ m, but a channel width of 10 ⁇ m is feasible which would lead to a decrease in the volume of the injection plug from 90 pL down to 1 pL with a pinched injection.
  • the CCD images demonstrate the separation process at 1 second intervals, with FIG. 5( a ) showing a schematic of the section of the chip imaged, and with FIGS. 5 ( b )- 5 ( e ) showing the separation unfold.
  • FIG. 5( b ) again shows the pinched injection with the applied voltages at reservoirs 30 , 32 , and 36 equal.
  • FIGS. 5 ( c )- 5 ( e ) shows the plug moving away from the intersection at 1, 2, and 3 seconds, respectively, after switching to the run mode.
  • FIG. 5( c ) the injection plug is migrating around a 90° turn, and band distortion is visible due to the inner portion of the plug travelling less distance than the outer portion.
  • FIG. 5( d ) the analytes have separated into distinct bands, which are distorted in the shape of a parallelogram.
  • FIG. 5( e ) the bands are well separated and have attained a more rectangular shape, i.e., collapsing of the parallelogram, due to radial diffusion, an additional contribution to efficiency loss.
  • intersection 46 was maintained at 66% of the potential of reservoir 32 during the run mode. This provided sufficient flow of the analyte back away from the injection intersection 46 down channels 48 and 52 without decreasing the field strength in the separation channel 54 significantly.
  • FIGS. 5 ( c )- 5 ( e ) This three way flow is demonstrated in FIGS. 5 ( c )- 5 ( e ) as the analytes in channels 48 and 52 (left and right, respectively) move further away from the intersection with time.
  • Three way flow permits well-defined, reproducible injections with minimal bleed of the analyte into the separation channel 54 .
  • FIG. 6 depicts selected electropherograms at 3.3, 9.9, and 16.5 cm from the point of injection.
  • the efficiency data are plotted in FIG. 7 (conditions for FIG. 7 were the same as for FIG. 6).
  • FIG. 8 the same, but primed, reference numerals are used to refer to structure similar to that found in FIG. 1. The only significant difference is that instead of a serpentine channel 54 for separations, a straight channel 54 ′ is used. A variety of tests, according to the aforementioned techniques, were performed, but with higher electric field strengths used over shorter distances to achieve high speed separations. A spatially well defined small volume, ⁇ 100 pL, injection is required to perform these types of analyses.
  • a CCD image (the area of which is denoted by the broken line square) displays the flow pattern of the analyte 56 (shaded area) and the buffer (white area) through the region of the injection intersection 46 .
  • the volume of the analyte plug is stable over time.
  • the slight asymmetry of the plug shape is due to the different electric field strengths in the buffer channel 50 (470 V/cm) and the separation channel 54 (100 V/cm), for 1.0 kV applied to the buffer, the analyte and the waste reservoirs, and with the analyte waste reservoir grounded.
  • the different field strengths do not influence the stability of the injection plug.
  • the analyte plug is injected into the separation column, only the analyte in the injection cross or intersection 46 would migrate into the separation channel 54 .
  • the volume of the injection plug in the injection cross is approximately 120 pL with a plug length of 130 ⁇ m.
  • a portion of the analyte in the analyte channel and the analyte waste channel is drawn into the separation column.
  • the volume of the injection plug is approximately 250 pL with a plug length of 208 ⁇ m.
  • One particular advantage to the planar microchip 20 of the present invention is that with laser induced fluorescence the point of detection can be placed anywhere along the separation column.
  • the electropherograms are detected at separation lengths of 0.9 mm, 1.6 mm and 11.1 mm from the injection intersection 46 .
  • the 1.6 mm and 11.1 mm separation lengths were used over a range of electric field strengths from 0.06 to 1.5 kV/cm, and the separations had baseline resolution over this range.
  • the analytes, rhodamine B and fluorescein are resolved in less than 150 ms for the 0.9 mm separation length, as shown in FIG. 10( a ), in less than 260 ms for the 1.6 mm separation length, as shown in FIG. 10( b ), and in less than 1.6 seconds for the 11.1 mm separation length, as shown in FIG. 10( c ).
  • the injection plug Due to the trapezoidal geometry of the channels, the upper corners make it difficult to cut the sample plug away exactly when the potentials are switched from the sample loading mode to the separation mode. Thus, the injection plug has a slight tail associated with it, and this effect probably accounts for the tailing observed in the separated peaks.
  • N is the number of theoretical plates
  • t is the separation time
  • L is the length of the separation column
  • H is the height equivalent to a theoretical plate.
  • A is the sum of the contributions from the injection plug length and the detector path length
  • B is equal to 2D m
  • D m is the diffusion coefficient for the analyte in the buffer
  • u is the linear velocity of the analyte
  • N/t ( ⁇ E ) 2 /( A ⁇ E+B )
  • FIG. 11 the number of plates per second for the 1.6 mm and 11.1 mm separation lengths are plotted versus the electric field strength. The number of plates per second quickly becomes a linear function of the electric field strength, because the plate height approaches a constant value.
  • the symbols in FIG. 11 represent the experimental data collected for the two analytes at the 1.6 mm and 11.1 mm separation lengths. The lines are calculated using the previously-stated equation and the coefficients are experimentally determined. A slight deviation is seen between the experimental data and the calculated numbers for rhodamine B at the 11.1 mm separation length. This is primarily due to experimental error.
  • FIG. 12 illustrates a microchip 60 having six different ports or channels 62 , 64 , 66 , 68 , 70 , and 72 respectively connected to six different reservoirs 74 , 76 , 78 , 80 , 82 , and 84 .
  • the microchip 60 is similar to microchips 20 and 20 ′ described previously, in that an injection cross or intersection 86 is provided.
  • a second intersection 88 and two additional buffer reservoirs 80 and 84 are also provided.
  • reservoir 76 contains separating buffer
  • reservoir 74 contains the sample to be analyzed (the “analyte”)
  • reservoirs 78 and 82 are waste reservoirs.
  • Intersection 86 is operated in the pinched mode as in the previous embodiments.
  • the lower intersection 88 in fluid communication with reservoirs 80 and 84 , are used to make up additional flow so that a continuous buffer stream can be directed down towards the waste reservoir 82 and, when needed, upwards toward the injection intersection 86 .
  • Reservoir 84 and attached channel 72 are not necessary, although they improve performance by reducing band broadening as a plug passes the lower intersection 88 . In all cases, the flow from reservoir 84 will be symmetric with that from reservoir 80 .
  • FIG. 13 is an enlarged view of the two intersections 86 and 88 .
  • the different types of arrows show the flow directions at given instances in time for injection of a plug of sample into the separation channel.
  • the solid arrow show the initial flow pattern where sample is electroosmotically pumped into the upper intersection 86 and “pinched” by flow from reservoirs 76 and 80 toward this same intersection. Flow away from this intersection is carried to the sample waste reservoir 78 .
  • the sample is also flowing from the reservoir 74 to the waste reservoir 78 . Under these conditions, flow from reservoir 80 (and reservoir 84 ) is also going down the separation channel 70 to the waste reservoir 82 .
  • a plug of sample is injected by switching to the flow profile shown by the short dashed arrows. Buffer flows down from reservoir 76 to the upper intersection 86 and towards reservoirs 74 , 78 and 82 . This flow profile also pushes a plug of sample toward waste reservoir 82 into the separation channel 70 as described before.
  • This flow profile is held for a sufficient length of time so as to move the sample plug past the lower intersection.
  • the flow of buffer from reservoirs 80 and 84 should be low as indicated by the short arrow and into the separation channel 70 to minimize distortion.
  • the distance between the upper and lower intersections 86 and 88 , respectively, should be as small as possible to minimize plug distortion and criticality of timing in the switching between the two flow conditions. Electrodes for sensing the electric potential might also be placed at the lower intersection and in the channel 68 to assist in adjusting the electric potentials for proper flow control. Accurate flow control at the lower intersection 88 may be necessary to prevent unacceptable band broadening.
  • a microchip 90 includes a buffer reservoir 92 , a sample reservoir 94 , a sample waste reservoir 96 , and a separation channel waste reservoir 98 .
  • An intersection 100 is formed at the confluence of buffer channel 102 , sample channel 104 , sample waste channel 105 , and the separation channel 106 .
  • FIG. 15 An enlarged view of the intersection 100 is shown in FIG. 15.
  • the directional arrows indicate the time sequence of the flow profiles at the intersection 100 .
  • the solid arrows show the initial flow pattern. Voltages at the various reservoirs are adjusted to obtain the described flow patterns.
  • the initial flow pattern brings buffer from reservoir 92 at a sufficient rate such that all sample is pushed toward the sample waste reservoir 96 . Under these conditions, the flow towards reservoir 98 is pure buffer.
  • the potential distribution will be such that the highest potential is at reservoir 92 , a slightly lower potential at reservoir 94 and yet a lower potential at reservoir 96 , with reservoir 98 being grounded.
  • the potential at reservoir 96 can be switched to a higher value or the potentials at reservoirs 92 and 96 , or 96 only, can be floated momentarily to provide the flow shown by the short dashed arrows in FIG. 15.
  • the primary flow will be from the sample reservoir 92 down towards the separation channel waste reservoir 98 .
  • the flow from reservoirs 92 and 96 will be small and in practice in either direction. This condition is held only long enough to pump a sample plug into the separation channel.
  • the voltage distribution is switched back to the original values eliminating sample from flowing toward the separation channel 106 .
  • the voltage distribution is switched back to the original values, thus eliminating sample from flowing toward the separation channel 106 .
  • sample injector described with respect to FIGS. 14 and 15 show electrophoretic mobility based bias as do conventional electroosmotic injections.
  • this injection approach is time dependent unlike the pinched injection approach described above. Nonetheless, this approach has simplicity in voltage switching requirements and fabrication.
  • FIG. 14 The “four port” configuration of FIG. 14 provides continuous unidirectional flow through the separation channel 106 .
  • a schematic view of the microchip 90 is shown in FIG. 16.
  • the four-port pattern of channels is disposed on a glass substrate 108 and glass cover slip 110 , as in the previously-described embodiments.
  • Sample channel 104 is in one embodiment 2.7 mm in length from the sample reservoir 94 to the intersection 100 , while sample waste channel 105 is 6.5 mm, and buffer channel 102 is 7.0 mm.
  • the separation channel 106 is modified to be only 7.0 mm in length, due to the addition of a reagent reservoir 112 which has a reagent channel 114 that connects to the separation channel 106 at a mixing tee 116 .
  • the length of the separation channel 106 is measured from the intersection 100 to the mixing tee 116 .
  • the channel 118 extending from the mixing tee 116 to the waste reservoir 98 is the reaction column or channel, and in the illustrated embodiment this channel is 10.8 mm in length.
  • the length of channel 114 is 11.6 mm.
  • the substrate 108 is glass and the channels are chemically wet etched, an isotropic etch occurs, i.e., the glass etches uniformly in all directions, and the resulting channel geometry is trapezoidal.
  • the channel cross section of the illustrated embodiment has dimensions of 5.2 ⁇ m in depth, 57 ⁇ m in width at the top and 45 ⁇ m in width at the bottom.
  • glass is a preferred material, other similar materials may be used, such as fused silica, crystalline quartz, and silicon (if surface treated to alter its resistivity).
  • the schematic view in FIG. 17 demonstrates one example when 1 kV is applied to the entire system.
  • the electric field strengths in the separation column (E sep ) and the reaction column (E rxn ) are 200 and 425 V/cm, respectively. This allows the combining of 1 part separation effluent with 1.125 parts reagent at the mixing tee 116 .
  • a sample introduction system such as this, with or without post-column reaction, allows a very rapid cycle time for multiple analyses.
  • FIG. 18 a sequential view of a plug of analyze moving through the intersection of the FIG. 16 embodiment can be seen by CCD, using the potentials illustrated in FIG. 17.
  • the analyte being pumped through the microchip 90 was rhodamine B (shaded area), and the orientation of the CCD images of the injection cross is the same as in FIGS. 12 and 17.
  • the first image, (A) shows the analyte being pumped through the injection cross or intersection toward the sample waste reservoir 96 prior to the injection.
  • the second image, (B) catches the analyte plug being broken away from the analyte stream and being injected into the separation column.
  • the third image, (C) depicts the analyte plug moving away from the injection cross after an injection plug has been completely introduced into the separation column.
  • the potentials at the buffer and analyze waste reservoirs were floated for 100 ms while the sample moved into the separation column.
  • the leading/separation mode has resumed, and a clean injection plug with a length of 142 ⁇ m has been introduced into the separation column.
  • the gated injector contributes to only a minor fraction of the total plate height.
  • the injection plug length is a function of the time of the injection and the electric field strength in the column.
  • the shape of the injected plug is skewed slightly because of the directionality of the cleaving buffer flow. However, for a given injection period, the reproducibility of the amount injected, determined by integrating the peak area, is 1% RSD for a series of 10 replicate injections.
  • the electropherograms (A) and (B) in FIG. 19 demonstrate the separation of two pairs of amino acids.
  • the voltage configuration is the same as in FIG. 17, except the total applied voltage is 4 kV which corresponds to an electric field strength of 800 V/cm in the separation column (E sep ) and 1,700 V/cm in the reaction column (E rxn ).
  • the injection times were 100 ms for the tests which correspond to estimated injection plug lengths of 384, 245, and 225 ⁇ m for arginine, glycine and threonine, respectively.
  • the injection volumes of 102, 65, and 60 pL correspond to 200, 130, and 120 fmol injected for arginine, glycine and threonine, respectively.
  • the point of detection is 6.5 mm downstream from the mixing tee which gives a total column length of 13.5 mm for the separation and reaction.
  • the present invention can be used to mix different fluids contained in different ports or reservoirs. This could be used for a liquid chromatography separation experiment followed by post-column labeling reactions in which different chemical solutions of a given volume are pumped into the primary separation channel and other reagents or solutions can be injected or pumped into the stream at different times to be mixed in precise and known concentrations. To execute this process, it is necessary to accurately control and manipulate solutions in the various channels.
  • electroosmotic flow on microminiaturized planar liquid phase separation devices is a viable approach for sample manipulation and as a pumping mechanism for liquid chromatography.
  • the present invention also entails the use of electroosmotic flow to mix various fluids in a controlled and reproducible fashion.
  • an appropriate fluid is placed in a tube made of a correspondingly appropriate material, functional groups at the surface of the tube can ionize.
  • protons will leave the surface and enter an aqueous solvent. Under such conditions the surface will have a net negative charge and the solvent will have an excess of positive charges.
  • v is the solvent velocity
  • is the dielectric constant of the fluid
  • is the zeta potential of the surface
  • is the electric field strength
  • is the solvent viscosity
  • FIG. 20 shows a six port device that could take advantage of this novel mixing scheme. Particular features attached to the different ports represent solvent reservoirs. This device could potentially be used for a liquid chromatography separation experiment followed by post-column labeling reactions. On such a device, reservoirs 120 and 122 would contain solvents to be used in a liquid chromatography solvent programming type of separation.
  • the intersecting channel 132 connecting reservoirs 134 and 136 is used to make an injection into the liquid chromatography or separation channel 124 .
  • reservoir 138 and its channel 140 attached to the separation channel 124 is for adding a reagent, which is added in proportions to render the species separated in the separation channel detectable.
  • Fluids are usually characterized by conductance which is just the reciprocal of the resistance as shown in equation 3.
  • is the electrical conductance
  • is the conductivity
  • A is the cross-sectional area
  • L is the length as above.
  • K i ⁇ i ⁇ A i L i
  • the voltage drop across the channel or the current through the channel can be used to determine the solvent velocity or flow rate through that channel as expressed in equation 5.
  • the conductivity, ⁇ or the resistivity, ⁇ will depend upon the characteristics of the solution which could vary from channel to channel. In many CE applications the characteristics of the buffer will dominate the electrical characteristics of the fluid, and thus the conductance will be constant. In the case of liquid chromatography where solvent programming is performed, the electrical characteristics of the two mobile phases could differ considerably if a buffer is not used. During a solvent programming run where the mole fraction of the mixture is changing, the conductivity of the mixture may change in a nonlinear fashion but it will change monotonically from the conductivity of the one neat solvent to the other. The actual variation of the conductance with mole fraction depends on the dissociation constant of the solvent in addition to the conductivity of the individual ions.
  • the device shown schematically in FIG. 20 could be used for performing gradient elution liquid chromatography with post-column labeling for detection purposes, for example.
  • a voltage control 140 In order to carry out such a task using electroosmotic manipulation of fluids, a voltage control 140 must be used to control the electric potentials applied to each of the solvent reservoirs. It may also be desirable to monitor potentials at given positions, for example at channel cross sections, so that there is additional information for intelligent control of the various reservoir potentials and thus fluid flow.
  • These control signals and electrical connections are denoted by the symbols S 1 , S 2 and S 3 and the corresponding broken lines.
  • the voltage controller box shown in FIG. 20 is programmed to change the voltages as a function of time to carry out various tasks.
  • FIG. 21 shows the fluid flow requirements for carrying out the tasks involved in a liquid chromatography experiment as mentioned above.
  • the arrows in the figures show the direction and relative magnitude of the flow in the channels.
  • the first task, inject “a”, is an injection of a volume of sample from reservoir 4 into the separation channel.
  • To execute a pinched injection it is necessary to transport the sample from reservoir 4 across the intersection to reservoir 5 .
  • fluid flow from the separation channel and the solvent reservoirs must flow towards the intersection as shown.
  • the flow from reservoir 1 is much larger than that from reservoir 2 because these are the initial conditions for a gradient elution experiment.
  • FIG. 22 shows how the voltages to the various reservoirs are changed for a hypothetical experiment.
  • the voltages shown in this diagram are only to indicate relative magnitudes and not absolute voltages.
  • static voltages are applied to the various reservoirs.
  • Solvent flow from all reservoirs except reservoir 6 is towards the sample waste reservoir 5 .
  • reservoir 5 is at the lowest potential and all the other reservoirs are at higher potential.
  • the potential at reservoir 6 should be sufficiently below that of reservoir 3 to provide only a slight flow towards reservoir 6 .
  • the voltage at reservoir 2 should be sufficiently great in magnitude to provide a net flow towards the injection intersection, but the flow should be a low magnitude.
  • the small detection volumes can limit the number of detection schemes which can be used to extract information. Fluorescence detection remains one of the most sensitive detection techniques for capillary electrophoresis. When incorporating fluorescence detection into a system that does not have naturally fluorescing analytes, derivatization of the analyze must occur either pre- or post-separation. When the fluorescent “tag” is short lived or the separation is hindered by pre-separation derivatization, post-column addition of derivatizing reagent becomes the method of choice. A variety of post-column reactors have been demonstrated for capillary electrophoresis.
  • the present invention takes the approach of fabricating a microchip device for electrophoretic separations with post-column and reaction column can be coupled in a single monolithic device enabling extremely low volume exchanges between individual column functions.
  • This microfabrication approach is a part of the continuing effort toward micromachining of miniaturized instrumentation of chemical separations which includes devices for gas chromatography, liquid chromatography, and capillary electrophoresis.
  • the microchip for the FIG. 20 embodiment was fabricated using standard photolithographic, wet chemical etching, and bonding techniques.
  • a photomask was fabricated by sputtering chrome (50 nm) onto a glass slide and ablating the column design into the chrome film via a CAD/CAM laser ablation system (Resonetics, Inc.).
  • the column design was then transferred onto the substrates using a positive photoresist.
  • the channels were etched into the substrate in a dilute Hf/Nh 4 F bath.
  • a cover plate was bonded to the substrate over the etched channels using a direct bonding technique.
  • H diff , H inj and H dot are the contributions of axial diffusion, injection plug length, and detector observation length to the plate height, respectively.
  • D m is the diffusion coefficient of th analyze in the buffer
  • u is the linear velocity of the analyze
  • 1 inj is the injection Plug length
  • 1 dot is the detector observation length
  • L sep is the separation length.
  • the effect of Joule heating were not considered because the power dissipation was below 1 W/m for all experiments.
  • the contribution from the axial diffusion is time dependent, and the contributions from the injection plug length and detector observation length are time independent.
  • the linear velocity of the analyte, u is equal to the product of the effective electrophoretic mobility, ⁇ ep , and the electric field strength, E.
  • the plate height data decreases from 140 V/cm to 280 V/cm to 1400 V/cm.
  • This behavior is abnormal (Equation 6) and demonstrates a band broadening phenomena when two streams of equal volumes converge.
  • the geometry of the mixing tee was not optimized to minimize this band distortion.
  • Above separation field strength of 840 V/cm the system stabilizes and again the plate height decreases with increasing linear velocity.
  • E sep 1400 V/cm
  • the ratio of the plate heights at the 8 mm and 6 mm separation lengths is 1.22 which is not an unacceptable loss in efficiency for the separation.
  • the average residence times of an analyte molecule in the window of observation are 4.68, 2.34, 1.17, and 0.58 s for the electric field strengths in the reaction column (E rxn ) of 240, 480, 960, and 1920 V/cm, respectively.
  • the relative intensities of the fluorescence correspond qualitatively to this 4 s half-time of reaction.
  • the slope and maximum of the intensity of the fluorescence shifts further downstream because the glycine and OPA are swept away from the mixing tee faster with higher field strengths.
  • the observed fluorescence from the product would have a step function of ra response following the mixing of the separation effluent and derivatizing reagent.
  • the kinetics of the reaction and a finite rate of mixing dominated by diffusion prevent this from occurring.
  • the use of the post-column reactor required a different injection scheme than the pinched injection in order to keep the analyze, buffer and reagent streams isolated.
  • the microchip was operated in a continuous sample loading/separation mode whereby the sample was continuously pumped from the analyze reservoir through the injection cross toward the analyze waste reservoir. Buffer was simultaneously pumped from the buffer reservoir toward the analyze waste and waste reservoirs to deflect the analyze stream and prevent the sample from migrating down the separation column.
  • micromachined post-column reactors can improve the power of post-separation reactions as an analytical tool by minimizing the volume of the extra-column plumbing especially between the separation and reagent columns.
  • this microchip design was fabricated with a modest lengths for the separation (7 mm) and reaction columns (10.8 mm) which were more than sufficient for this demonstration. Longer separation columns can be manufactured on a similar size microchip using a serpentine geometry [ 15 ] to perform more difficult separations.
  • the ratio of the channel dimensions between the separation column and reaction column should be minimized so that the electric field strength in the separation channel is large, i.e. narrow channel, and in the reaction channel is small, i.e. wide channel.

Abstract

A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

Description

  • CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. application Ser. No. 09/909,638, filed Jul. 20, 2001, which is a continuation of U.S. application Ser. No. 09/300,060, filed Apr. 27, 1999, now U.S. Pat. No. 6,342,142, issued Dec. 29, 2002, which is a continuation of U.S. application Ser. No. 08/283,769, filed Aug. 1, 1994, now U.S. Pat. No. 6,001,229, issued Dec. 14, 1999, the disclosures of which are hereby incorporated, by reference.[0001]
  • [0002] This invention was made with Government support under contract DE-AC05-840R21400 awarded by the U.S. Department of Energy to Martin Marietta Energy Systems, Inc. and the Government has certain rights in this invention.
  • FIELD OF THE INVENTION
  • The present invention relates generally to miniature instrumentation for chemical analysis and chemical sensing and, more specifically, to electrically controlled manipulations of fluids and capillaries in micromachine channels. These manipulations can be used in a variety of applications, including the electrically controlled manipulation of fluid for capillary electrophoresis, liquid chromatography, and flow injection analysis. [0003]
  • BACKGROUND OF THE INVENTION
  • Capillary electrophoresis has become a popular technique for separating charged molecular species in solution. The technique is performed in small capillary tubes to reduce band broadening effects due to thermal convection and hence improve resolving power. [0004]
  • The small tubes imply that minute volumes of materials, on the order of picoliters, must be handled to inject the sample into the separation capillary tube. [0005]
  • Current techniques for injection include electromigration and siphoning of sample from a container into a continuous separation tube. Both of these techniques suffer from relatively poor reproducibility, and electromigration additionally suffers from electrophoretic mobility-based bias. For both sampling techniques the input end of the analysis capillary tube must be transferred from a buffer reservoir to a reservoir holding the sample. Thus, a mechanical manipulation is involved. For the siphoning injection, the sample reservoir is raised above the buffer reservoir holding the exit end of the capillary for a fixed length of time. [0006]
  • An electromigration injection is effected by applying an appropriately polarized electric potential across the capillary tube for a given duration while the entrance end of the capillary is in the sample reservoir. This can lead to sampling bias because a disproportionately larger quantity of the species with higher electrophoretic mobilities migrate into the tube. The capillary is removed from the sample reservoir and replaced into the entrance buffer reservoir after the injection duration for both techniques. [0007]
  • U.S. Pat. No. 4,908,112 to Pace describes a micro-machined structure that includes a channel for the separation and a separate channel that meets the separation channel in a T-intersection and contains electrodes to produce electroosmotic flow for injection of sample into the separation channel. [0008]
  • U.S. Pat. No. 5,141,621 to Zare et al. discloses a capillary electrophoresis method and apparatus which applies a potential at two buffer reservoirs located at opposite ends of a capillary column. Samples are introduced without the need to disengage the electyric field, due to the fact that the injector is grounded. [0009]
  • U.S. Pat. No. 5,110,431 to Moring describes a crossing flow pattern using conventional capillary tubing with minimal resolution loss for the purpose of post column introduction of reactive substances to aid in detection. [0010]
  • U.S. Pat. No. 5,092,973 to Zare et al. describes a capillary with rectangular geometry, which certain specified advantages in a capillary electrophoresis technique. [0011]
  • U.S. Pat. No. 5,073,239 to Hjerten discloses the use of two capillaries to deliver sample by electroendosmotic flow into a closed container whose major exit is through the separating column. [0012]
  • A continuing need exists for methods and apparatuses which lead to improved electrophoretic resolution and improved injection stability. [0013]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a miniaturized injection method and apparatus in which it is not required to perform any mechanical manipulations with the capillary tube. [0014]
  • Another object of the present invention is to provide a miniaturized injection method and apparatus which utilizes electroosmottic pumping similar to electromigration techniques, but without the advent of sampling bias. [0015]
  • Yet another object of the present invention is to provide a miniaturized injection method and apparatus capable of achieving improvements in reproducibility of injections. [0016]
  • Still another object of the present invention is to provide a miniaturized injection method and apparatus which uses electrostatic forces to spatially shape the injection plug, making it small in spatial extent and stable with time. [0017]
  • Another object of the invention is to provide a reagent mixing apparatus and method for electroosmotically driven devices which allow virtually any wet chemical experiment now performed at the bench, in test tubes and beakers, to be conducted on a chip under electronic control. [0018]
  • These and other objects of the invention are met by providing a method of controlling fluid flow in an interconncected channel structure having at leat three ports, which includes actively controlling the electric potential at the at least three ports to create diffferences in potential sufficient to cause fluid to move through the interconnected channel structure in a controlled manner. The aforementioned objects are further met by providing an apparatus for effecting the method. [0019]
  • In another aspect of the invention, an injection apparatus is provided for microchip liquid chromatography and other situations, which includes a body having a first channel extending between an analyte reservoir and an analyte waste reservoir and a second channel extending between a first buffer reservoir and a buffer waste reservoir, the first and second channels crossing to form a first fluid communicating intersection, and means for moving analyte, in sequence, and at first, through the first channel into the intersection, and then from the intersection into the second channel. [0020]
  • Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which taken in conjunction with the annexed drawings, discloses preferred embodiments of the invention.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic top view of a microchip according to a first preferred embodiment of a microchip according to the present invention; [0022]
  • FIG. 2 is an enlarged, vertical sectional view of a channel, taken along line II-II of FIG. 1; [0023]
  • FIG. 3([0024] a) is a schematic view of the intersection area of the microchip of FIG. 1, prior to analyte injection;
  • FIG. 3([0025] b) is an actual CCD fluorescence image taken of the same area depicted in FIG. 3(a), after injection in the pinched mode;
  • FIG. 3([0026] c) is an actual photomicrograph taken of the same area depicted in FIG. 3(a), after injection in the floating mode;
  • FIG. 4 shows integrated fluorescence plotted versus time for pinched and floating injections; [0027]
  • FIG. 5([0028] a) is a schematic view of a CCD camera view of the intersection area of the microchip of FIG. 1, prior to analyte injection;
  • FIG. 5([0029] b) is a CCD fluorescence image taken of the same area depicted in FIG. 5(a), after injection in the pinched mode;
  • FIGS. [0030] 5(c)-5(e) are CCD fluorescence images taken of the same area depicted in FIG. 3(a), sequentially showing a plug of analyte moving away from the channel intersection at 1, 2, and 3 seconds, respectively, after switching to the run mode;
  • FIG. 6 are electropherograms at (a) 3.3 cm, (b) 9.9 cm, and (c) 16.5 cm from the point of injection for rhodamine B (less retained) and sulforhodamine (more retained); [0031]
  • FIG. 7 is a plot of the efficiency data generated from the electropherograms of FIG. 6, showing variation of the plate number with channel length for rhodamine B (square with plus) and sulforhodamine (square with dot) with best linear fit (solid lines) for each analyte; [0032]
  • FIG. 8 is a schematic top view of a microchip according to a second preferred embodiment of a microchip according to the present invention; [0033]
  • FIG. 9 is a CCD image of “sample loading mode for rhodamine B (shaded area); [0034]
  • FIG. 10([0035] a) is an electropherogram of rhodamine B and fluorescein with a separation field strength of 1.5 kV/cm and a separation length of 0.9 mm;
  • FIG. 10([0036] b) is an electropherogram of rhodamine B and fluorescein with a separation field strength of 1.5 kV/cm and a separation length of 1.6 mm;
  • FIG. 10([0037] c) is an electropherogram of rhodamine B and fluorescein with a separation field strength of 1.5 kV/cm and a separation length of 11.1 mm;
  • FIG. 11 is a graph showing variation of the number of plates per unit time as a function of the electric field strength for rhodamine B at separations lengths of 1.6 mm (circle) and 11.1 mm (square) and for fluorescein at separation lengths of 1.6 mm (diamond) and 11.1 mm (triangle); [0038]
  • FIG. 12 is a schematic, top view of a microchip according to another embodiment of the present invention; [0039]
  • FIG. 13 is an enlarged view of the intersection region of FIG. 12; [0040]
  • FIG. 14 is a schematic, top view of a microchip according to another embodiment of the present invention; [0041]
  • FIG. 15 is an enlarged view of the intersection region of FIG. 14; [0042]
  • FIG. 16 is a schematic, top plan view of a microchip according to the FIG. 14 embodiment, additionally including a reagent reservoir and reaction channel; [0043]
  • FIG. 17 is a schematic view of the embodiment of FIG. 16, showing applied voltages; [0044]
  • FIG. 18 are CCD images of a plug of analyte moving through the intersection of the FIG. 16 embodiment; [0045]
  • FIG. 19 show two electropherograms producing using the FIG. 16 embodiment; [0046]
  • FIG. 20 is a schematic view of another preferred embodiment of the present invention; [0047]
  • FIG. 21 is a schematic view of the apparatus of FIG. 20, showing sequential applications of voltages to effect desired fluidic manipulations; and [0048]
  • FIG. 22 is a graph showing the different voltages applied to effect the fluidic manipulations of FIG. 21.[0049]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, a [0050] microchip 20 includes a base member 22 which is approximately two inches by one inch piece of microscope slide (Corning, Inc. #2947). A channel pattern 24 is formed in one planar surface 26 of the base member 22 using standard photolitographic procedures followed by chemical wet etching.
  • The [0051] channel pattern 24 is transferred onto the slide or base member 22 with a positive photoresist (Shipley 1811) and an e-beam written chrome mask (Institute of Advanced Manufacturing Sciences, Inc.). The pattern is chemically etched using HF/NH4F solution.
  • After forming the [0052] channel pattern 24, a cover plate 28 is then bonded to the base member 22 using a direct bonding technique whereby the base member 22 and the cover plate 28 surfaces are first hydrolyzed in a dilute NH4OH/H2O2 solution and then joined. The assembly is then annealed at about 500° C. in order to insure proper adhesion of the cover plate 28 to the base member 22.
  • Following bonding of the [0053] cover plate 28, cylindrical plastic reservoirs 30, 32, 34 and 36, hating open opposite axial ends, are affixed to the base member 22, with portions of the cover plate sandwiched therebetween, with epoxy or other suitable means. Electrical contact is made by placing platinum electrodes 38, 40, 42, and 44 in reservoirs 30, 32, 34, and 36, respectively. The electrodes are connected to a power source (PS) 37 which applies a desired potential to select ones of the electrodes, in a manner to be described more fully below.
  • The [0054] channel pattern 24 has four distinct channel portions. Each channel portion has an accompanying reservoir mounted above the terminus of each channel portion, and all four intersect at one end in a four way intersection 46. The opposite ends of each section provide termini that extend just beyond the peripheral edge of the cover plate 28.
  • A [0055] first channel portion 48 runs from the reservoir 30 to the four-way intersection 46. A second channel portion 50 runs from the reservoir 32 to the four-way intersection 46. A third channel portion 52 runs from the reservoir 34 to the intersection 46, and a fourth channel portion 54 runs from the reservoir 44 to the intersection 46.
  • In one particularly preferred embodiment, the enclosed length (that which is covered by the cover plate [0056] 28) of channel extending from reservoir 30 to reservoir 34 is 19 mm, while the length of channel portion 50 is 6.4 mm and channel portion 54 is 171 mm. The turn radius of section 54, which serves as a separation column, is 0.16 mm.
  • The cross section of the [0057] channel 54 is shown in FIG. 2. The other channels would have the same shape. The dimensions give the channel 54 a trapezoidal shape. In one specific application, the channel 54 has a depth “d” of 10 μm, an upper width “w1” of 90 μm, and a lower width “w2” of 70 μm. The trapezoidal cross section is due to “undercutting” by the chemical etching process at the edge of the photoresist.
  • Electrophoresis experiments were conducted using the [0058] microchip 20 of FIG. 1, and employing methodology according to the present invention. Chip dynamics were analyzed using analyte fluorescence. A charge coupled device (CCD) camera was used to monitor designated areas of the chip and a photomultiplier tube (PMT) tracked single point events. The CCD (Princeton Instruments, Inc. TE/CCD-512TKM) camera was mounted on a stereo microscope (Nikon SMZ-U), and the chip 20 was illuminated using an argon ion laser (514.5 nm, Coherent Innova 90) operating at 3 W with the beam expanded to a circular spot ≈2 cm in diameter. The point detection scheme employed a helium-neon laser (543 nm, PMS Electro-optics LHGP-0051) with an electrometer (Keithley 617) to monitor response of the PMT (Oriel 77340). The power supply or supplies 37 (Spellman CZE 1000R) for electrophoresis were operated between 0 and +4.4 kV relative to ground.
  • General Operation
  • Referring again to FIG. 1, the [0059] chip 20 can be operated in either an “inject” mode or a “run” mode. Reservoir 30 is supplied with an analyte and reservoir 32 with buffer. Reservoir 34 acts as an analyte waste reservoir, and reservoir 36 acts as a waste reservoir.
  • In the inject mode, at least two types of sample introduction are possible. In the first, known as a “floating” injection, a potential is applied to [0060] reservoir 30 with reservoir 34 grounded. At the same time, reservoirs 32 and 36 are floating, meaning that they are neither coupled to the power source, nor grounded.
  • The second inject mode is the “pinched” mode, which is preferred, wherein potentials are applied to [0061] reservoirs 30, 32, and 36, with reservoir 34 grounded in order to control the injection plug shape.
  • In the “run” mode, the potential is applied to [0062] reservoir 32 with reservoir 36 grounded and with reservoirs 30 and 34 at approximately half of the potential of reservoir 32.
  • The analytes used for diagnostic experiments were rhodamine B and sulforhodamine [0063] 101 (Exciton Chemical Co., Inc.) at 60 μM for the CCD images and 6 μM for the point detection. A sodium tetraborate buffer (50 mM, pH 9.2) was the mobile phase in all experiments.
  • The two modes of injection were tested for the sample introduction into the separation column, [0064] channel portion 54. The analyte was placed in reservoir 30, and in both injection schemes is “pumped” in the direction of reservoir 34, a waste reservoir. CCD images of the two types of injections are depicted in FIGS. 3(a)-3(c). FIG. 3(a) shows the intersection 46, as well as the end portions of channel portions 48, 50, 52 and 54. Throughout the specification, various embodiments are described wherein reservoirs are in communication with end portions of corresponding channel segments. These end portions act as “ports” through which material moves between the reservoirs to the various channel segments.
  • The CCD image of FIG. 3([0065] b) is of injection in the pinched mode, just prior to being switched to the run mode. In the pinched mode, analyte (shown as white against the dark background) is pumped electrophoretically and electroosmotically from reservoir 30 to 34 (left to right) with mobile phase from reservoir 32 (top) and reservoir 36 (bottom) travelling toward reservoir 34 (right). The voltages applied to reservoirs 30, 32, 34, and 36 were 90%, 90%, 0, and 100%, respectively, of the power supply output which correspond to electric field strengths in the corresponding channels of 270, 400, 690 and 20 V/cm, respectively. Consequently, the analyte in the injection cross or intersection 46 has a trapezoidal shape and is spatially constricted in channel portion 52 by this flow pattern.
  • FIG. 3([0066] c) shows a floating mode injection. The analyte is pumped from reservoir 30 to 34 as in the pinched injection except no potential is applied to reservoirs 32 and 36. By not controlling the flow of mobile phase in channel portions 50 and 54, the analyte is free to flow into these channels through eddy flow resulting in a more diffuse injection plug.
  • When comparing the pinched and floating injections, the pinched injection is superior in two areas: temporal stability and plug length. When two or more analytes with vastly different mobilities are to be analyzed, an injection with temporal stability insures that equal volumes of the faster and slower moving analytes are introduced into the separation column or [0067] channel 54. A smaller plug length leads to a higher separation efficiency and, consequently, to a greater component capacity for a given instrument.
  • To determine the temporal stability of each mode, a series of CCD fluorescent images were collected at 1.5 second intervals starting just prior to the analyte reaching the [0068] injection intersection 46. An estimate of the amount of analyte that is injected was determined by integrating the fluorescence in the intersection 46 and channels 50 and 54. This fluorescence is plotted versus time in FIG. 4.
  • For the pinched injection, a stability of 1% relative standard deviation (RSD) is observed, which is comparable to the stability of the illuminating laser. For the floating injection, the amount of analyte to be injected into the column or [0069] channel portion 54 increases with time because of the flow anisotropy. For a 30 second injection, the volume of the injection plug is ca. 90 pL and stable for the pinched injection versus ca. 300 pL and continuously increasing with time for a floating injection.
  • By monitoring the separation channel at a point 0.9 cm from the [0070] intersection 46, the reproducibility for the pinched injection mode was tested by integrating the area of the band profile following introduction into the separation channel 54. For six injections with a duration of 40 seconds, the reproducibility for the pinched injection is 0.7% RSD. Most of this measured instability is from the optical measurement system. The pinched injection has a higher reproducibility because of the temporal stability. With electronically controlled voltage switching, the RSD is expected to improve for both schemes.
  • The injection plug width and, ultimately, the resolution between analytes depends largely on both the flow pattern of the analyte and the dimensions of the injection cross or [0071] intersection 46. For this column, the width of the channel at the top is 90 μm, but a channel width of 10 μm is feasible which would lead to a decrease in the volume of the injection plug from 90 pL down to 1 pL with a pinched injection.
  • Separations
  • After the sample or analyte has been pumped into the [0072] intersection 46 of the microchip 20, the voltages are manually switched from the inject to the run mode of operation. FIGS. 5(a)-5(e) illustrate a separation of rhodamine B (less retained) and sulforhodamine (more retained) using the following conditions: Einj=400 V/cm, Erun=150 V/cm, buffer=50 mM sodium tetraborate at pH 9.2. The CCD images demonstrate the separation process at 1 second intervals, with FIG. 5(a) showing a schematic of the section of the chip imaged, and with FIGS. 5(b)-5(e) showing the separation unfold.
  • FIG. 5([0073] b) again shows the pinched injection with the applied voltages at reservoirs 30, 32, and 36 equal. FIGS. 5(c)-5(e) shows the plug moving away from the intersection at 1, 2, and 3 seconds, respectively, after switching to the run mode.
  • In FIG. 5([0074] c), the injection plug is migrating around a 90° turn, and band distortion is visible due to the inner portion of the plug travelling less distance than the outer portion. By FIG. 5(d), the analytes have separated into distinct bands, which are distorted in the shape of a parallelogram. In FIG. 5(e), the bands are well separated and have attained a more rectangular shape, i.e., collapsing of the parallelogram, due to radial diffusion, an additional contribution to efficiency loss.
  • When the switch is made from the inject mode to the run mode, a clean break of the injection plug from the analyte stream is mandatory to avoid tailing. This is achieved by pumping the mobile phase from [0075] channel 50 into channels 48, 52, and 54 simultaneously by maintaining the potential at the intersection 46 below the potential of reservoir 32 and above the potentials of reservoirs 30, 34, and 36.
  • The experiments described herein, the [0076] intersection 46 was maintained at 66% of the potential of reservoir 32 during the run mode. This provided sufficient flow of the analyte back away from the injection intersection 46 down channels 48 and 52 without decreasing the field strength in the separation channel 54 significantly.
  • This three way flow is demonstrated in FIGS. [0077] 5(c)-5(e) as the analytes in channels 48 and 52 (left and right, respectively) move further away from the intersection with time. Three way flow permits well-defined, reproducible injections with minimal bleed of the analyte into the separation channel 54.
  • FIG. 6 are electropherograms at (a) 3.3 cm, (b) 9.9 cm, and (c) 16.5 cm from the point of injection for rhodamine B (less retained) and. sulforhodamine (more retained). These were taken using the following conditions: injection type was pinched, E[0078] inj=500V/cm, Erun=170 V/cm, buffer=50 mM sodium tetraborate at pH 9.2.
  • To obtain electropherograms in the conventional manner, single point detection with the helium-neon laser was used at different locations down the axis of the [0079] separation channel 54. The efficiency at ten evenly spaced positions was monitored, each constituting a separate experiment. FIG. 6 depicts selected electropherograms at 3.3, 9.9, and 16.5 cm from the point of injection. The efficiency data are plotted in FIG. 7 (conditions for FIG. 7 were the same as for FIG. 6).
  • At 16.5 cm from the point of injection, the efficiencies of rhodamine B and sulforhodamine are 38,100 and 29,000 plates, respectively. Efficiencies of this magnitude are sufficient for many separation applications. The linearity of the data provides information about the uniformity and quality of the channel down the length of the column. If a defect in the channel, e.g. a large pit, was present, a sharp decrease in the efficiency would result; however, none was detected. [0080]
  • As a further demonstration of the utility of this injection scheme, a modified embodiment was tested. Referring to FIG. 8, the same, but primed, reference numerals are used to refer to structure similar to that found in FIG. 1. The only significant difference is that instead of a [0081] serpentine channel 54 for separations, a straight channel 54′ is used. A variety of tests, according to the aforementioned techniques, were performed, but with higher electric field strengths used over shorter distances to achieve high speed separations. A spatially well defined small volume, ≈100 pL, injection is required to perform these types of analyses.
  • The sample was loaded into the injection cross via a frontal electropherogram, and once the front of the slowest analyte passes through the injection cross or [0082] intersection 46′, the sample is ready to be analyzed. In FIG. 9, a CCD image (the area of which is denoted by the broken line square) displays the flow pattern of the analyte 56 (shaded area) and the buffer (white area) through the region of the injection intersection 46.
  • By pinching the flow of the analyte, the volume of the analyte plug is stable over time. The slight asymmetry of the plug shape is due to the different electric field strengths in the buffer channel [0083] 50 (470 V/cm) and the separation channel 54 (100 V/cm), for 1.0 kV applied to the buffer, the analyte and the waste reservoirs, and with the analyte waste reservoir grounded. However, the different field strengths do not influence the stability of the injection plug. Ideally, when the analyte plug is injected into the separation column, only the analyte in the injection cross or intersection 46 would migrate into the separation channel 54.
  • From FIG. 9, the volume of the injection plug in the injection cross is approximately 120 pL with a plug length of 130 μm. A portion of the analyte in the analyte channel and the analyte waste channel is drawn into the separation column. Following the switch to the separation mode, the volume of the injection plug is approximately 250 pL with a plug length of 208 μm. These dimensions are estimated from a series of CCD images taken immediately after the switch is made to the separation mode. [0084]
  • One particular advantage to the [0085] planar microchip 20 of the present invention is that with laser induced fluorescence the point of detection can be placed anywhere along the separation column. The electropherograms are detected at separation lengths of 0.9 mm, 1.6 mm and 11.1 mm from the injection intersection 46. The 1.6 mm and 11.1 mm separation lengths were used over a range of electric field strengths from 0.06 to 1.5 kV/cm, and the separations had baseline resolution over this range. At an electric field strength of 1.5 kV/cm, the analytes, rhodamine B and fluorescein, are resolved in less than 150 ms for the 0.9 mm separation length, as shown in FIG. 10(a), in less than 260 ms for the 1.6 mm separation length, as shown in FIG. 10(b), and in less than 1.6 seconds for the 11.1 mm separation length, as shown in FIG. 10(c).
  • Due to the trapezoidal geometry of the channels, the upper corners make it difficult to cut the sample plug away exactly when the potentials are switched from the sample loading mode to the separation mode. Thus, the injection plug has a slight tail associated with it, and this effect probably accounts for the tailing observed in the separated peaks. [0086]
  • An important measure of the utility of a separation system is the number of plates generated per unit time, as given by the formula[0087]
  • N/t=L/(Ht)
  • where N is the number of theoretical plates, t is the separation time, L is the length of the separation column, and H is the height equivalent to a theoretical plate. The plate height, H, can be written as[0088]
  • H=A+B/u
  • where A is the sum of the contributions from the injection plug length and the detector path length, B is equal to 2D[0089] m, where Dm is the diffusion coefficient for the analyte in the buffer, and u is the linear velocity of the analyte.
  • Combining the two equations above and substituting u=μE where μ is the effective electrophoretic mobility of the analyte and E is the electric field strength, the plates per unit time can be expressed as a function of the electric field strength:[0090]
  • N/t=(μE)2/(AμE+B)
  • At low electric field strengths when axial diffusion is the dominant form of band dispersion, the term AμE is small relative to B and consequently, the number of plates per second increases with the square of the electric field strength. [0091]
  • As the electric field strength increases, the plate height approaches a constant value, and the plates per unit time increases linearly with the electric field strength because B is small relative to AμE. It is thus advantageous to have A as small as possible, a benefit of the pinched injection scheme. [0092]
  • In FIG. 11, the number of plates per second for the 1.6 mm and 11.1 mm separation lengths are plotted versus the electric field strength. The number of plates per second quickly becomes a linear function of the electric field strength, because the plate height approaches a constant value. The symbols in FIG. 11 represent the experimental data collected for the two analytes at the 1.6 mm and 11.1 mm separation lengths. The lines are calculated using the previously-stated equation and the coefficients are experimentally determined. A slight deviation is seen between the experimental data and the calculated numbers for rhodamine B at the 11.1 mm separation length. This is primarily due to experimental error. [0093]
  • There are situations where it may not be desirable to reverse the flow in the separation channel as described above for the “pinched” and “floating” injection schemes. Examples of such cases might be the injection of a new sample plug before the preceding plug has been completely eluted or the use of a post-column reactor where reagent is continuously being injected into the end of the separation column. In the latter case, it would in-general not be desirable to have the reagent flowing back up into the separation channel. [0094]
  • FIG. 12 illustrates a [0095] microchip 60 having six different ports or channels 62, 64, 66, 68, 70, and 72 respectively connected to six different reservoirs 74, 76, 78, 80, 82, and 84. The microchip 60 is similar to microchips 20 and 20′ described previously, in that an injection cross or intersection 86 is provided. In the FIG. 12 embodiment, a second intersection 88 and two additional buffer reservoirs 80 and 84 are also provided.
  • As in the previous embodiments, [0096] reservoir 76 contains separating buffer, reservoir 74 contains the sample to be analyzed (the “analyte”), and reservoirs 78 and 82 are waste reservoirs. Intersection 86 is operated in the pinched mode as in the previous embodiments. The lower intersection 88, in fluid communication with reservoirs 80 and 84, are used to make up additional flow so that a continuous buffer stream can be directed down towards the waste reservoir 82 and, when needed, upwards toward the injection intersection 86. Reservoir 84 and attached channel 72 are not necessary, although they improve performance by reducing band broadening as a plug passes the lower intersection 88. In all cases, the flow from reservoir 84 will be symmetric with that from reservoir 80.
  • FIG. 13 is an enlarged view of the two [0097] intersections 86 and 88. The different types of arrows show the flow directions at given instances in time for injection of a plug of sample into the separation channel. The solid arrow show the initial flow pattern where sample is electroosmotically pumped into the upper intersection 86 and “pinched” by flow from reservoirs 76 and 80 toward this same intersection. Flow away from this intersection is carried to the sample waste reservoir 78. The sample is also flowing from the reservoir 74 to the waste reservoir 78. Under these conditions, flow from reservoir 80 (and reservoir 84) is also going down the separation channel 70 to the waste reservoir 82.
  • A plug of sample is injected by switching to the flow profile shown by the short dashed arrows. Buffer flows down from [0098] reservoir 76 to the upper intersection 86 and towards reservoirs 74, 78 and 82. This flow profile also pushes a plug of sample toward waste reservoir 82 into the separation channel 70 as described before.
  • This flow profile is held for a sufficient length of time so as to move the sample plug past the lower intersection. The flow of buffer from [0099] reservoirs 80 and 84 should be low as indicated by the short arrow and into the separation channel 70 to minimize distortion.
  • The distance between the upper and [0100] lower intersections 86 and 88, respectively, should be as small as possible to minimize plug distortion and criticality of timing in the switching between the two flow conditions. Electrodes for sensing the electric potential might also be placed at the lower intersection and in the channel 68 to assist in adjusting the electric potentials for proper flow control. Accurate flow control at the lower intersection 88 may be necessary to prevent unacceptable band broadening.
  • After the sample plug passes the lower intersection, the potentials are switched back to the initial conditions to give the original flow profile as shown with the long dashed arrows. This flow pattern will allow buffer flow into the [0101] separation channel 70 while sample is again being transported to the plug forming region in the upper intersection 86. This injection scheme will allow more rapid injections to be made and may be very important for samples that are slow to migrate or if it takes a long time to achieve a homogeneous sample at the upper intersection 86 such as with entangled polymer solutions.
  • A different approach to injection can be taken with a four leg or cross-type injector. It also provides a continuous unidirectional flow of fluid through the separation channel. This injection scheme only requires that the voltage be changed or removed from one (or two) reservoirs and allows the separation channel waste reservoir to remain at ground potential. This will allow injection and separation to be performed with a single polarity power supply. Referring to FIG. 14, a [0102] microchip 90 includes a buffer reservoir 92, a sample reservoir 94, a sample waste reservoir 96, and a separation channel waste reservoir 98. An intersection 100 is formed at the confluence of buffer channel 102, sample channel 104, sample waste channel 105, and the separation channel 106.
  • An enlarged view of the [0103] intersection 100 is shown in FIG. 15. The directional arrows indicate the time sequence of the flow profiles at the intersection 100. The solid arrows show the initial flow pattern. Voltages at the various reservoirs are adjusted to obtain the described flow patterns. The initial flow pattern brings buffer from reservoir 92 at a sufficient rate such that all sample is pushed toward the sample waste reservoir 96. Under these conditions, the flow towards reservoir 98 is pure buffer.
  • In general, the potential distribution will be such that the highest potential is at [0104] reservoir 92, a slightly lower potential at reservoir 94 and yet a lower potential at reservoir 96, with reservoir 98 being grounded. To make an injection of sample, the potential at reservoir 96 can be switched to a higher value or the potentials at reservoirs 92 and 96, or 96 only, can be floated momentarily to provide the flow shown by the short dashed arrows in FIG. 15.
  • Under these conditions, the primary flow will be from the [0105] sample reservoir 92 down towards the separation channel waste reservoir 98. The flow from reservoirs 92 and 96 will be small and in practice in either direction. This condition is held only long enough to pump a sample plug into the separation channel. After sufficient time for sample injection, the voltage distribution is switched back to the original values eliminating sample from flowing toward the separation channel 106. After sufficient time for sample injection, the voltage distribution is switched back to the original values, thus eliminating sample from flowing toward the separation channel 106.
  • The type of sample injector described with respect to FIGS. 14 and 15 show electrophoretic mobility based bias as do conventional electroosmotic injections. In addition, this injection approach is time dependent unlike the pinched injection approach described above. Nonetheless, this approach has simplicity in voltage switching requirements and fabrication. [0106]
  • The “four port” configuration of FIG. 14 provides continuous unidirectional flow through the [0107] separation channel 106. A schematic view of the microchip 90 is shown in FIG. 16. The four-port pattern of channels is disposed on a glass substrate 108 and glass cover slip 110, as in the previously-described embodiments.
  • [0108] Sample channel 104 is in one embodiment 2.7 mm in length from the sample reservoir 94 to the intersection 100, while sample waste channel 105 is 6.5 mm, and buffer channel 102 is 7.0 mm. The separation channel 106 is modified to be only 7.0 mm in length, due to the addition of a reagent reservoir 112 which has a reagent channel 114 that connects to the separation channel 106 at a mixing tee 116. Thus, the length of the separation channel 106 is measured from the intersection 100 to the mixing tee 116.
  • The [0109] channel 118 extending from the mixing tee 116 to the waste reservoir 98 is the reaction column or channel, and in the illustrated embodiment this channel is 10.8 mm in length. The length of channel 114 is 11.6 mm.
  • Because the [0110] substrate 108 is glass and the channels are chemically wet etched, an isotropic etch occurs, i.e., the glass etches uniformly in all directions, and the resulting channel geometry is trapezoidal. The channel cross section of the illustrated embodiment has dimensions of 5.2 μm in depth, 57 μm in width at the top and 45 μm in width at the bottom.
  • While glass is a preferred material, other similar materials may be used, such as fused silica, crystalline quartz, and silicon (if surface treated to alter its resistivity). [0111]
  • Column performance and separations using the FIG. 16 embodiment were monitored on-microchip via fluorescence using an argon ion laser (351.1 nm, 50 mW, Coherent Innova 90) for excitation. The fluorescence signal was collected with a photomultiplier tube (PMT, Oriel 77340) for point detection and a charge coupled device (CCD, Princeton Instruments, Inc. TE/CCD-512TKM) for imaging a region of the [0112] microchip 90. The compounds used for testing the apparatus were rhodamine B (Exciton Chemical Co., Inc.) arginine, glycine, threonine and o-phthaldialdehyde (Sigma Chemical Co.). A sodium tetraborate buffer (20 mM, pH 9.2) with 2% (v/v) methanol and 0.5% (v/v) β-mercaptoethanol was the buffer in all tests. The concentrations of the amino acid, OPA and rhodamine B solutions were 2 mM, 3.7 mM, and 50 μM, respectively. Several run conditions were utilized.
  • To inject a small aliquot of sample, the potentials at the buffer and analyte waste reservoir are simply floated for a short period of time (≈100 ms) allowing sample to migrate down the [0113] separation column 106 as in an WP injection. To break off the injection plug, the potentials at the buffer reservoir 92 and the sample (or analyze) waste reservoir 96 are re-applied. A shortfall of this method is that the composition of the injected plug has an D bias whereby the faster migrating compounds are introduced preferentially into the separation column 106 over slower migrating compounds.
  • The schematic view in FIG. 17 demonstrates one example when 1 kV is applied to the entire system. With this voltage configuration, the electric field strengths in the separation column (E[0114] sep) and the reaction column (Erxn) are 200 and 425 V/cm, respectively. This allows the combining of 1 part separation effluent with 1.125 parts reagent at the mixing tee 116. A sample introduction system such as this, with or without post-column reaction, allows a very rapid cycle time for multiple analyses.
  • In FIG. 18, a sequential view of a plug of analyze moving through the intersection of the FIG. 16 embodiment can be seen by CCD, using the potentials illustrated in FIG. 17. The analyte being pumped through the [0115] microchip 90 was rhodamine B (shaded area), and the orientation of the CCD images of the injection cross is the same as in FIGS. 12 and 17. The first image, (A), shows the analyte being pumped through the injection cross or intersection toward the sample waste reservoir 96 prior to the injection. The second image, (B), catches the analyte plug being broken away from the analyte stream and being injected into the separation column. The third image, (C), depicts the analyte plug moving away from the injection cross after an injection plug has been completely introduced into the separation column. The potentials at the buffer and analyze waste reservoirs were floated for 100 ms while the sample moved into the separation column. By the time of the (C) sequence, the leading/separation mode has resumed, and a clean injection plug with a length of 142 μm has been introduced into the separation column. As seen below, the gated injector contributes to only a minor fraction of the total plate height. The injection plug length is a function of the time of the injection and the electric field strength in the column. The shape of the injected plug is skewed slightly because of the directionality of the cleaving buffer flow. However, for a given injection period, the reproducibility of the amount injected, determined by integrating the peak area, is 1% RSD for a series of 10 replicate injections.
  • The electropherograms (A) and (B) in FIG. 19 demonstrate the separation of two pairs of amino acids. The voltage configuration is the same as in FIG. 17, except the total applied voltage is 4 kV which corresponds to an electric field strength of 800 V/cm in the separation column (E[0116] sep) and 1,700 V/cm in the reaction column (Erxn). The injection times were 100 ms for the tests which correspond to estimated injection plug lengths of 384, 245, and 225 μm for arginine, glycine and threonine, respectively. The injection volumes of 102, 65, and 60 pL correspond to 200, 130, and 120 fmol injected for arginine, glycine and threonine, respectively. The point of detection is 6.5 mm downstream from the mixing tee which gives a total column length of 13.5 mm for the separation and reaction.
  • The reaction rates of the amino acids with the OPA are moderately fast, but not fast enough on the time scale of these experiments. An increase in the band distortion is observed because the mobilities of the derivatized compounds are different from the pure amino acids. Until the reaction is complete, the zones of unreacted and reacted amino acid will move at different velocities causing a broadening of the analyze zone. As evidenced in FIG. l[0117] 9, glycine has the greatest discrepancy in electrophoretic mobilities between the derivatized and un-derivatized amino acid. To ensure that the excessive band broadening was not a function of the retention time, threonine was also tested. Threonine has a slightly longer retention time than the glycine; however, the broadening is not as extensive as for glycine.
  • The present invention can be used to mix different fluids contained in different ports or reservoirs. This could be used for a liquid chromatography separation experiment followed by post-column labeling reactions in which different chemical solutions of a given volume are pumped into the primary separation channel and other reagents or solutions can be injected or pumped into the stream at different times to be mixed in precise and known concentrations. To execute this process, it is necessary to accurately control and manipulate solutions in the various channels. [0118]
  • The use of electroosmotic flow on microminiaturized planar liquid phase separation devices, described above, is a viable approach for sample manipulation and as a pumping mechanism for liquid chromatography. The present invention also entails the use of electroosmotic flow to mix various fluids in a controlled and reproducible fashion. When an appropriate fluid is placed in a tube made of a correspondingly appropriate material, functional groups at the surface of the tube can ionize. In the case of tubing materials that are terminated in hydroxyl groups, protons will leave the surface and enter an aqueous solvent. Under such conditions the surface will have a net negative charge and the solvent will have an excess of positive charges. With the application of an electric field across the tube, the excess cations in solution will be attracted to the cathode, or negative electrode. The movement of these positive charges through the tube will drag the solvent with them. The steady state velocity is given by [0119] equation 1, v = ε × ξ × E η
    Figure US20040007464A1-20040115-M00001
  • where v is the solvent velocity, ∈ is the dielectric constant of the fluid, ξ is the zeta potential of the surface, Ε is the electric field strength, and η is the solvent viscosity. From [0120] equation 1 it is obvious that the fluid flow velocity or flow rate can be controlled through the electric field strength. Thus, electroosmosis can be used as a programmable pumping mechanism.
  • FIG. 20 shows a six port device that could take advantage of this novel mixing scheme. Particular features attached to the different ports represent solvent reservoirs. This device could potentially be used for a liquid chromatography separation experiment followed by post-column labeling reactions. On such a device, [0121] reservoirs 120 and 122 would contain solvents to be used in a liquid chromatography solvent programming type of separation.
  • The [0122] channel 124 connected to waste reservoir 126, and to the two arms 128 and 130 of reservoirs 120 and 122, is the primary separation channel, i.e., where the liquid chromatography experiment would take place. The intersecting channel 132 connecting reservoirs 134 and 136 is used to make an injection into the liquid chromatography or separation channel 124. Finally, reservoir 138 and its channel 140 attached to the separation channel 124 is for adding a reagent, which is added in proportions to render the species separated in the separation channel detectable.
  • To execute this process, it is necessary to accurately control and manipulate solutions in the various channels. The embodiments described above took very small volumes of solution (≈100 pl) from [0123] reservoir 134 and accurately injected them into the separation channel structure.
  • For these various scenarios, a given volume of solution needs to be transferred from one channel to another. For example, solvent programming for liquid chromatography or reagent addition for post-column labeling reactions requires that streams of solutions be mixed in precise and known concentrations. [0124]
  • The mixing of various solvents in known proportions can be done according to the present invention by controlling potentials which ultimately control electroosmotic flows as indicated in [0125] equation 1. According to equation 1 the electric field strength needs to be known to determine the linear velocity of the solvent. In general, in these types of fluidic manipulations a known potential or voltage is applied to a given reservoir. The field strength can be calculated from the applied voltage and the characteristics of the channel. In addition, the resistance or conductance of the fluid in the channels must also be known. The resistance of a channel is given by equation 2 where R is the resistance, ρ is the resistivity, L is the length of the channel, and A is the cross-sectional area. R i = ρ i L i A i
    Figure US20040007464A1-20040115-M00002
  • Fluids are usually characterized by conductance which is just the reciprocal of the resistance as shown in [0126] equation 3. In equation 3, κ is the electrical conductance, κ is the conductivity, A is the cross-sectional area, and L is the length as above. K i = κ i A i L i
    Figure US20040007464A1-20040115-M00003
  • Using ohms law and [0127] equations 2 and 3 we can write the field strength in a given channel, i, in terms of the voltage drop across that channel divided by its length which is equal to the current, Ii through channel i times the resistivity of that channel divided by the cross-sectional area as shown in equation 4. E i = V i L i = I i ρ i A i = I i κ i A i
    Figure US20040007464A1-20040115-M00004
  • Thus, if the channel is both dimensionally and electrically characterized, the voltage drop across the channel or the current through the channel can be used to determine the solvent velocity or flow rate through that channel as expressed in [0128] equation 5.
  • V i ∝I i∝Flow
  • Obviously the conductivity, κ or the resistivity, ρ, will depend upon the characteristics of the solution which could vary from channel to channel. In many CE applications the characteristics of the buffer will dominate the electrical characteristics of the fluid, and thus the conductance will be constant. In the case of liquid chromatography where solvent programming is performed, the electrical characteristics of the two mobile phases could differ considerably if a buffer is not used. During a solvent programming run where the mole fraction of the mixture is changing, the conductivity of the mixture may change in a nonlinear fashion but it will change monotonically from the conductivity of the one neat solvent to the other. The actual variation of the conductance with mole fraction depends on the dissociation constant of the solvent in addition to the conductivity of the individual ions. [0129]
  • As described above, the device shown schematically in FIG. 20 could be used for performing gradient elution liquid chromatography with post-column labeling for detection purposes, for example. In order to carry out such a task using electroosmotic manipulation of fluids, a [0130] voltage control 140 must be used to control the electric potentials applied to each of the solvent reservoirs. It may also be desirable to monitor potentials at given positions, for example at channel cross sections, so that there is additional information for intelligent control of the various reservoir potentials and thus fluid flow. These control signals and electrical connections are denoted by the symbols S1, S2 and S3 and the corresponding broken lines. The voltage controller box shown in FIG. 20 is programmed to change the voltages as a function of time to carry out various tasks.
  • FIG. 21 shows the fluid flow requirements for carrying out the tasks involved in a liquid chromatography experiment as mentioned above. The arrows in the figures show the direction and relative magnitude of the flow in the channels. The first task, inject “a”, is an injection of a volume of sample from [0131] reservoir 4 into the separation channel. To execute a pinched injection it is necessary to transport the sample from reservoir 4 across the intersection to reservoir 5. In addition, to confine the sample volume, fluid flow from the separation channel and the solvent reservoirs must flow towards the intersection as shown. The flow from reservoir 1 is much larger than that from reservoir 2 because these are the initial conditions for a gradient elution experiment.
  • It is also desirable to prevent the reagent in [0132] reservoir 6 from entering the separation channel, thus, a small flow of buffer directed toward the reagent channel is desirable and this flow should be as near to zero as possible. After a representative sample is presented at the injection intersection, the separation can proceed. In “b” the start of a run (separation), solvent from reservoirs 1 and 2 flows down the separation channel and also towards reservoirs 4 and 5 to make a clean injection of sample into the separation column.
  • Appropriate flow of reagent from [0133] reservoir 6 is also directed towards the separation channel. The initial condition as shown in “b” is with a large mole fraction of solvent 1 and a small fraction of solvent 2. The voltages applied to reservoirs 1 and 2 are changed as a function of time so that the proportions of solvents 1 and 2 are changed from a dominance of solvent 1 to mostly solvent 2. This is seen in “c”. The latter monotonic change in applied voltage effects the gradient elution liquid chromatography experiment. As the isolated components pass the reagent addition channel, appropriate reaction can take place between this reagent and the isolated material to form a detectable species.
  • FIG. 22 shows how the voltages to the various reservoirs are changed for a hypothetical experiment. The voltages shown in this diagram are only to indicate relative magnitudes and not absolute voltages. In the injection mode of operation static voltages are applied to the various reservoirs. Solvent flow from all reservoirs except [0134] reservoir 6 is towards the sample waste reservoir 5. Thus, reservoir 5 is at the lowest potential and all the other reservoirs are at higher potential. The potential at reservoir 6 should be sufficiently below that of reservoir 3 to provide only a slight flow towards reservoir 6. The voltage at reservoir 2 should be sufficiently great in magnitude to provide a net flow towards the injection intersection, but the flow should be a low magnitude.
  • In moving to the run (start) mode, the potentials are readjusted as indicated in FIG. 22. The flow now is such that the solvent from [0135] reservoirs 1 and 2 is moving down the separation channel towards reservoir 3. There is also a slight flow of solvent away from the injection cross towards reservoirs 4 and 5 and an appropriate flow of reagent from reservoir 6 into the separation channel. Reservoir 3 now needs to be at the minimum potential and reservoir 1 at the maximum potential. All other potentials are adjusted to provide the fluid flow directions and magnitudes as indicated in FIG. 21 at “b”. Also as shown in FIG. 423 the voltages applied to the solvent reservoirs 1 and 2 are monotonically changed to move from the conditions of a large mole fraction of solvent 1 to a large mole fraction of solvent 2.
  • At the end of the solvent programming run, the device is now ready to switch back to the inject condition to load another sample. The voltage variations shown in FIG. 22 are only to be illustrative of what might be done to provide the various fluid flows in FIG. 21. In an actual experiment some to the various voltages may well differ in relative magnitude. [0136]
  • For capillary separation systems, the small detection volumes can limit the number of detection schemes which can be used to extract information. Fluorescence detection remains one of the most sensitive detection techniques for capillary electrophoresis. When incorporating fluorescence detection into a system that does not have naturally fluorescing analytes, derivatization of the analyze must occur either pre- or post-separation. When the fluorescent “tag” is short lived or the separation is hindered by pre-separation derivatization, post-column addition of derivatizing reagent becomes the method of choice. A variety of post-column reactors have been demonstrated for capillary electrophoresis. However, the ability to construct a post-column reactor with extremely low volume connections to minimize band distortion has been difficult. The present invention takes the approach of fabricating a microchip device for electrophoretic separations with post-column and reaction column can be coupled in a single monolithic device enabling extremely low volume exchanges between individual column functions. This microfabrication approach is a part of the continuing effort toward micromachining of miniaturized instrumentation of chemical separations which includes devices for gas chromatography, liquid chromatography, and capillary electrophoresis. [0137]
  • The microchip for the FIG. 20 embodiment was fabricated using standard photolithographic, wet chemical etching, and bonding techniques. A photomask was fabricated by sputtering chrome (50 nm) onto a glass slide and ablating the column design into the chrome film via a CAD/CAM laser ablation system (Resonetics, Inc.). The column design was then transferred onto the substrates using a positive photoresist. The channels were etched into the substrate in a dilute Hf/Nh[0138] 4F bath. To form the separation capillary, a cover plate was bonded to the substrate over the etched channels using a direct bonding technique. The surfaces were hydrolyzed in dilute NH4OH/H2O2 solution, rinsed in deionized, filtered H2O, joined and then annealed at 500° C. Cylindrical glass reservoirs were affixed on the substrate using RTV silicone (made by General Electric). Platinum electrodes provided electrical contact from the power supply (Spellman CZE1000R) to the solutions in the reservoirs.
  • Column performance and separations were monitored on-microchip via fluorescence using an argon ion laser (35.1 nm, 50 mW, Coherent Innova 90) for excitation. The fluorescence signal was collected with a photomultiplier tube (PMT; Oriel 77340) for point detection and a charge coupled device (CCD; Princeton Instruments, Inc. TE/CCD-512TKM) for imaging a region of the microchip. The compounds used for the experiments were rhodamine B (Exciton Chemical Co., Inc.), arginine, glycine, threonine and o-phthaldialdehyde (Sigma Chemical Co.). A sodium tetraborate buffer (20 mM, pH 9.2) with 2% (v/v) methanol and 0.5% (v/v) β-mercaptoethanol was the buffer in all experiments. The concentrations of the amino acid, OPA and rhodamine B solutions were 2 mM, 3.7 mM, and 50 μM, respectively. Several run conditions were utilized for microchip diagnostics and will be described as needed. [0139]
  • Because several separation lengths were used to study different aspects of the microchip performance, the efficiencies will be reported primarily using the plate height (H). The contributions to the plate height are[0140]
  • H=H diff +H inj +H dot=2D m /u+1inj 2/(12L sep)+1dot 2/(12L sep)
  • where H[0141] diff, Hinj and Hdot are the contributions of axial diffusion, injection plug length, and detector observation length to the plate height, respectively. Dm is the diffusion coefficient of th analyze in the buffer, u is the linear velocity of the analyze, 1inj is the injection Plug length, 1dot is the detector observation length, and Lsep is the separation length. The effect of Joule heating were not considered because the power dissipation was below 1 W/m for all experiments. The contribution from the axial diffusion is time dependent, and the contributions from the injection plug length and detector observation length are time independent. In electrophoretic separations, the linear velocity of the analyte, u, is equal to the product of the effective electrophoretic mobility, μep, and the electric field strength, E.
  • To test the efficiency of the microchip in both the separation column and the reaction column, a fluorescent laser dye, rhodamine B, was used as a probe. Efficiency measurements calculated from peak widths at half height were made using the point detection scheme at distances of 6 mm and 8 mm from the injection cross, or 1 mm upstream and 1 mm downstream from the mixing tee. This provided information on the effects of the mixing of the two streams. [0142]
  • The electric field strengths in the reagent column and the separation column were approximately equal, and the field strength in the reaction column was twice that of the separation column. This configuration of the applied voltages allowed an approximately 1:1 volume ratio of derivatizing reagent and effluent from the separation column. As the field strengths increased, the degree of turbulence at the mixing tee increased. At the separation distance of 6 mm (1 mm upstream from the mixing tee), the plate height data decreased as expected as the inverse of the linear velocity of the analyze (Equation 6). At the separation distance of 8 mm (1 mm upstream from the mixing tee), the plate height data decreased as expected as the inverse of the linear velocity of the analyze (Equation 6). At the separation distance of 8 mm (1 mm downstream from the mixing tee), the plate height data decreases from 140 V/cm to 280 V/cm to 1400 V/cm. This behavior is abnormal (Equation 6) and demonstrates a band broadening phenomena when two streams of equal volumes converge. The geometry of the mixing tee was not optimized to minimize this band distortion. Above separation field strength of 840 V/cm, the system stabilizes and again the plate height decreases with increasing linear velocity. For E[0143] sep=1400 V/cm, the ratio of the plate heights at the 8 mm and 6 mm separation lengths is 1.22 which is not an unacceptable loss in efficiency for the separation.
  • Following the combining of the two streams at the mixing tee, the intensity of the fluorescence signal generated from the reaction of the OPA with an amino acid was tested by pumping glycine down the column as a frontal electropherogram to mix with the OPA at the mixing tee. The fluorescence signal from the OPA/amino acid reaction was collected using a CCD as the product moved downstream from the mixing tee. Again, the relative volume ratio of the OPA and glycine streams was 1.125. OPA has a typical half-time of reaction with amino acids of 4 s. The average residence times of an analyte molecule in the window of observation are 4.68, 2.34, 1.17, and 0.58 s for the electric field strengths in the reaction column (E[0144] rxn) of 240, 480, 960, and 1920 V/cm, respectively. The relative intensities of the fluorescence correspond qualitatively to this 4 s half-time of reaction. As the field strength increases in the reaction column, the slope and maximum of the intensity of the fluorescence shifts further downstream because the glycine and OPA are swept away from the mixing tee faster with higher field strengths. Ideally, the observed fluorescence from the product would have a step function of ra response following the mixing of the separation effluent and derivatizing reagent. However, the kinetics of the reaction and a finite rate of mixing dominated by diffusion prevent this from occurring.
  • The use of the post-column reactor required a different injection scheme than the pinched injection in order to keep the analyze, buffer and reagent streams isolated. For the post-column reaction separations, the microchip was operated in a continuous sample loading/separation mode whereby the sample was continuously pumped from the analyze reservoir through the injection cross toward the analyze waste reservoir. Buffer was simultaneously pumped from the buffer reservoir toward the analyze waste and waste reservoirs to deflect the analyze stream and prevent the sample from migrating down the separation column. To inject a small aliquot of sample, the potentials at the buffer and analyze waste reservoir are simply floated for a short period of time (≈100 ms) allowing sample to migrate down the separation column as in analyze injection, To break off the injection plug the potentials at the buffer and analyze waste reservoir are reapplied. A shortfall of this method is that the composition of the injected plug has analyze bias whereby the faster migrating compounds are introduced preferentially into the separation column over slower migrating compounds. [0145]
  • The use of micromachined post-column reactors can improve the power of post-separation reactions as an analytical tool by minimizing the volume of the extra-column plumbing especially between the separation and reagent columns. this microchip design was fabricated with a modest lengths for the separation (7 mm) and reaction columns (10.8 mm) which were more than sufficient for this demonstration. Longer separation columns can be manufactured on a similar size microchip using a serpentine geometry [[0146] 15] to perform more difficult separations. To decrease post-mixing tee band distortions, the ratio of the channel dimensions between the separation column and reaction column should be minimized so that the electric field strength in the separation channel is large, i.e. narrow channel, and in the reaction channel is small, i.e. wide channel.
  • While advantageous embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims. [0147]

Claims (19)

What is claimed is:
1. An apparatus for effecting material transport, comprising:
a. an injection channel and a separation channel, wherein the separation and injection channels are covered by a cover plate, and wherein the separation channel has first and second ends and is in fluid communication with the injection channel at an intersection;
b. first and second reservoirs in fluid communication with the injection channel and respectively containing first and second fluids containing first and second materials, respectively;
c. a third reservoir in fluid communication with the separation channel at said first end and containing a third fluid containing a third material; and
d. means for applying and actively controlling an electric potential at each of the first, second and third reservoirs simultaneously to impart movement of the first and third materials from the first and third reservoirs into the intersection and then into the separation channel said application and control of said electric potential causing the materials from the first and third reservoirs to be mixed.
2. An apparatus according to claim 1, wherein the intersection is between the first and second ends of the separation channel, and further comprising a fourth reservoir containing a fourth fluid containing a fourth material, in fluid communication with the second end of the separation channel, and further comprising means for introducing a fourth material into the separation channel between the intersection and the second end.
3. An apparatus according to claim 1, wherein the means for applying and actively controlling an electric potential at each of the first, second and third reservoirs applies and actively controls the potential at each of the first and second reserviors to vary the ratio of the first fluid to the third fluid moved into the intersection.
4. An apparatus for effecting material transport in an interconnected channel structure, comprising:
a. a body having a first channel extending between an analyte reservoir and an analyte waste reservoir, a second channel extending between a first buffer reservoir and a buffer waste reservoir, and a cover plate covering the first and second channels;
b. the first and second channels crossing to form a first fluid communicating intersection; and
c. voltage means electronically coupled to each reservoir to establish a first flow pattern for moving analyte through the first channel into the intersection, and a second flow pattern in which each of said analyte reservoir, analyte waste reservoir, buffer reservoir and buffer waste reservoir have actively controlled voltages for moving analyte from the intersection into the second channel.
5. An apparatus according to claim 4, wherein the body includes a glass substrate having first and second opposite planar surfaces, the first and second channels being formed in one of the first and second surfaces.
6. An apparatus according to claim 5, wherein the body further includes a glass cover plate bonded to the substrate over and thereby enclosing the first and second channels.
7. An apparatus according to claim 5 further comprising a third channel extending between a second buffer reservoir and a third buffer reservoir, the first and third channels crossing to form a second fluid communicating intersection between the first buffer reservoir and the buffer waste reservoir.
8. An apparatus according to claim 7, wherein the voltage means comprises means for imparting differential voltages to select ones of the analyte reservoir, the analyte waste reservoir, the first, second, and third buffer reservoirs, and the buffer waste reservoir.
9. An apparatus according to claim 8, wherein the voltage means comprises an electric power source and a plurality of electrodes disposed respectively in the analyte reservoir, the analyte waste reservoir, the first, second and third buffer reservoirs, and the buffer waste reservoir.
10. An apparatus according to claim 9, wherein the first channel has a buffer channel portion extending between the intersection and the buffer reservoir, and a separation channel portion extending between the intersection and the buffer waste reservoir.
11. An apparatus according to claim 10, wherein the separation channel portion of the first channel has a serpentine pattern.
12. An apparatus according to claim 4, wherein the voltage means comprises means for imparting differential voltages to select ones of the analyte reservoir, the analyte waste reservoir, the buffer reservoir and the buffer waste reservoir.
13. An apparatus according to claim 4, wherein the voltage means comprises an electric power source and a plurality of electrodes disposed respectively in the analyte reservoir, the analyte waste reservoir, the buffer reservoir and the buffer waste reservoir.
14. A method of effecting material transport in an interconnected covered channel structure, which structure comprises a first channel portion connecting a first and second reservoir via first and second ports, respectively, and a second channel portion connecting a third and fourth reservoir via third and fourth ports, respectively, wherein the first and second channel portions are in fluid communication with each other at an intersection, the method comprising:
a. actively controlling an electric potential simultaneously at each of the first, second, third and fourth ports, the step of actively controlling comprising:
i. applying potentials to the first, third and fourth reservoirs, and grounding the second reservoir, said potentials being effective to transport material contained in the first reservoir into the intersection in a pinched condition; and
ii. changing the electric potentials of the four reservoirs to impart movement of material from the intersection towards the fourth reservoir by:
b. applying an electric potential to the third reservoir;
c. applying potentials to the first and second reservoirs that are less than the potential applied to the third reservoirs; and
d. grounding the fourth reservoir.
15. A method of effecting material transport in an interconnected covered channel structure, which structure comprises a first channel portion connecting first and second reservoirs via first and second ports, respectively, and a second channel portion connecting third and fourth reservoirs via third and fourth ports, respectively, wherein the first and second portions are in fluid communication with each other at a first intersection, and a third channel portion connecting a fifth reservoir via a fifth port, with the second channel portion at a point located between the first intersection and the fourth reservoir, the method comprising:
a. actively controlling the electric potential simultaneously in each of the first, second, third, fourth and fifth ports to create differences in potential sufficient to cause material to move through the interconnected channel structure in a controlled manner.
16. A method according to claim 15, wherein the step of actively controlling further comprises placing a buffer in the first reservoir, a reagent in the fifth reservoir, placing an analyte in the third reservoir, and creating potential differences between the first, second, third, fourth and fifth reservoirs to impart movement of the analyte, reagent and buffer towards the fourth reservoir.
17. A method of effecting material transport in an interconnected covered channel structure, which structure comprises a first channel portion connecting first and second reservoirs via first and second ports, respectively, and a second channel portion connecting third and fourth reservoirs via third and fourth ports, respectively, wherein the first and second channel portions are in fluid communication with each other at a first intersection, and a third channel portion connecting fifth and sixth reservoirs via fifth and sixth ports, respectively, wherein the second and third channel portions are in fluid communication at a second intersection, the second intersection being located at a point between the first intersection and the fourth reservoir, the method comprising actively controlling the electric potential simultaneously in each of the first, second, third, fourth, fifth and sixth ports to create differences in potential sufficient to cause material to move through the interconnected channel structure in a controlled manner.
18. A method according to claim 17, wherein the step of actively controlling further comprises placing a buffer in the third, fifth and sixth reservoirs, placing a sample in the first reservoir, creating a first distribution of electrical potential at the reservoirs to impart movement of sample into the first intersection and towards the second reservoir and buffer from the fifth and sixth reservoirs towards the fourth reservoir and the first intersection, and then creating a second distribution of electric potential at the reservoirs to impart movement of sample from the first intersection and buffer towards the fourth reservoir.
19. A method of effecting material transport in an interconnected covered channel structure, which structure comprises a first channel portion connecting first and second reservoirs via first and second ports, respectively, and a second channel portion connecting third and fourth reservoirs via third and fourth ports respectively, wherein the first and second channel portions are in fluid communication with each other at an intersection, the method comprising actively controlling an electric potential simultaneously at each of the first, second, third and fourth ports, the step of actively controlling comprising:
a. applying potentials to the first, third and fourth reservoirs, and applying a potential to the second reservoir that is less than potentials applied to the first, third and fourth reservoirs said potentials being effective to transport material contained in the first reservoir into the intersection in a pinched condition; and
b. changing the electric potentials of the four reservoirs to impart movement of material from the intersection towards the fourth reservoir by:
i. applying an electric potential to the third reservoir;
ii. applying potentials to the first and second reservoirs that are less than the potential applied to the third reservoir; and
iii. applying a potential to the fourth reservoir that is less than the potentials applied to the first, and second reservoirs.
US10/434,874 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis Abandoned US20040007464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/434,874 US20040007464A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/283,769 US6001229A (en) 1994-08-01 1994-08-01 Apparatus and method for performing microfluidic manipulations for chemical analysis
US09/300,060 US6342142B1 (en) 1994-08-01 1999-04-27 Apparatus and method for performing microfluidic manipulations for chemical analysis
US09/909,638 US20020008030A1 (en) 1994-08-01 2001-07-20 Apparatus and method for performing microfluidic manipulations for chemical analysis
US10/434,874 US20040007464A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/909,636 Continuation US6410583B1 (en) 2000-07-25 2001-07-20 Cyclopentanoindoles, compositions containing such compounds and methods of treatment

Publications (1)

Publication Number Publication Date
US20040007464A1 true US20040007464A1 (en) 2004-01-15

Family

ID=23087469

Family Applications (16)

Application Number Title Priority Date Filing Date
US08/283,769 Expired - Lifetime US6001229A (en) 1994-08-01 1994-08-01 Apparatus and method for performing microfluidic manipulations for chemical analysis
US08/776,645 Expired - Lifetime US5858195A (en) 1994-08-01 1995-08-01 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/153,470 Expired - Lifetime US6033546A (en) 1994-08-01 1998-09-15 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/153,187 Expired - Lifetime US6010608A (en) 1994-08-01 1998-09-16 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/153,186 Expired - Lifetime US6010607A (en) 1994-08-01 1998-09-16 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/300,060 Expired - Lifetime US6342142B1 (en) 1994-08-01 1999-04-27 Apparatus and method for performing microfluidic manipulations for chemical analysis
US09/477,585 Expired - Lifetime US6475363B1 (en) 1994-08-01 2000-01-04 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/909,638 Abandoned US20020008030A1 (en) 1994-08-01 2001-07-20 Apparatus and method for performing microfluidic manipulations for chemical analysis
US10/262,533 Abandoned US20030150733A1 (en) 1994-08-01 2002-10-01 Apparatus and method for performing microfluidic manipulations for chemical analysis and sysnthesis
US10/426,818 Abandoned US20030226753A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/426,371 Abandoned US20030205470A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/426,370 Abandoned US20030226755A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/426,366 Abandoned US20030205469A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/435,185 Abandoned US20040137445A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis
US10/434,874 Abandoned US20040007464A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis
US10/434,918 Abandoned US20040009517A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis

Family Applications Before (14)

Application Number Title Priority Date Filing Date
US08/283,769 Expired - Lifetime US6001229A (en) 1994-08-01 1994-08-01 Apparatus and method for performing microfluidic manipulations for chemical analysis
US08/776,645 Expired - Lifetime US5858195A (en) 1994-08-01 1995-08-01 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/153,470 Expired - Lifetime US6033546A (en) 1994-08-01 1998-09-15 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/153,187 Expired - Lifetime US6010608A (en) 1994-08-01 1998-09-16 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/153,186 Expired - Lifetime US6010607A (en) 1994-08-01 1998-09-16 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/300,060 Expired - Lifetime US6342142B1 (en) 1994-08-01 1999-04-27 Apparatus and method for performing microfluidic manipulations for chemical analysis
US09/477,585 Expired - Lifetime US6475363B1 (en) 1994-08-01 2000-01-04 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US09/909,638 Abandoned US20020008030A1 (en) 1994-08-01 2001-07-20 Apparatus and method for performing microfluidic manipulations for chemical analysis
US10/262,533 Abandoned US20030150733A1 (en) 1994-08-01 2002-10-01 Apparatus and method for performing microfluidic manipulations for chemical analysis and sysnthesis
US10/426,818 Abandoned US20030226753A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/426,371 Abandoned US20030205470A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/426,370 Abandoned US20030226755A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/426,366 Abandoned US20030205469A1 (en) 1994-08-01 2003-04-30 Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US10/435,185 Abandoned US20040137445A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/434,918 Abandoned US20040009517A1 (en) 1994-08-01 2003-05-09 Apparatus and method for performing microfluidic manipulations for chemical analysis

Country Status (13)

Country Link
US (16) US6001229A (en)
EP (3) EP1382962A1 (en)
JP (1) JP4023819B2 (en)
KR (1) KR100369497B1 (en)
CN (1) CN1052301C (en)
AT (2) ATE374940T1 (en)
AU (1) AU701348B2 (en)
CA (1) CA2196429C (en)
DE (2) DE69535608T2 (en)
DK (1) DK0775306T3 (en)
ES (1) ES2185709T3 (en)
MX (1) MX9700845A (en)
WO (1) WO1996004547A1 (en)

Families Citing this family (801)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5750015A (en) * 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US6569382B1 (en) 1991-11-07 2003-05-27 Nanogen, Inc. Methods apparatus for the electronic, homogeneous assembly and fabrication of devices
US6652808B1 (en) * 1991-11-07 2003-11-25 Nanotronics, Inc. Methods for the electronic assembly and fabrication of devices
EP0620432B1 (en) 1993-04-15 2004-08-25 Zeptosens AG Method for controlling sample introduction in microcolumn separation techniques and sampling device
US20040077074A1 (en) * 1993-11-01 2004-04-22 Nanogen, Inc. Multi-chambered analysis device
US6319472B1 (en) 1993-11-01 2001-11-20 Nanogen, Inc. System including functionally separated regions in electrophoretic system
US6403367B1 (en) * 1994-07-07 2002-06-11 Nanogen, Inc. Integrated portable biological detection system
US7857957B2 (en) * 1994-07-07 2010-12-28 Gamida For Life B.V. Integrated portable biological detection system
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US5658413A (en) * 1994-10-19 1997-08-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
US5985119A (en) * 1994-11-10 1999-11-16 Sarnoff Corporation Electrokinetic pumping
DE19511603A1 (en) * 1995-03-30 1996-10-02 Norbert Dr Ing Schwesinger Device for mixing small amounts of liquid
US6120665A (en) * 1995-06-07 2000-09-19 Chiang; William Yat Chung Electrokinetic pumping
US6454945B1 (en) 1995-06-16 2002-09-24 University Of Washington Microfabricated devices and methods
WO1997000442A1 (en) * 1995-06-16 1997-01-03 The University Of Washington Microfabricated differential extraction device and method
US5716852A (en) * 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US20020022261A1 (en) * 1995-06-29 2002-02-21 Anderson Rolfe C. Miniaturized genetic analysis systems and methods
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6168948B1 (en) 1995-06-29 2001-01-02 Affymetrix, Inc. Miniaturized genetic analysis systems and methods
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US20020068357A1 (en) * 1995-09-28 2002-06-06 Mathies Richard A. Miniaturized integrated nucleic acid processing and analysis device and method
US6132580A (en) * 1995-09-28 2000-10-17 The Regents Of The University Of California Miniature reaction chamber and devices incorporating same
DE19536582A1 (en) * 1995-09-29 1997-04-03 Siemens Ag Method and device for providing a volume of a substance
US6541213B1 (en) 1996-03-29 2003-04-01 University Of Washington Microscale diffusion immunoassay
US5948684A (en) * 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US7235406B1 (en) 1996-04-03 2007-06-26 Applera Corporation Nucleic acid analysis device
US7244622B2 (en) 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
US6825047B1 (en) 1996-04-03 2004-11-30 Applera Corporation Device and method for multiple analyte detection
DE69700499T2 (en) * 1996-04-03 2000-03-23 Perkin Elmer Corp DEVICE AND METHOD FOR DETECTING SEVERAL ANALYZES
US6399023B1 (en) 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
EP2290364A1 (en) 1996-04-25 2011-03-02 BioArray Solutions Ltd. Light-controlled electrokinetic assembly of particles near surfaces
US6958245B2 (en) 1996-04-25 2005-10-25 Bioarray Solutions Ltd. Array cytometry
EP1726958A3 (en) 1996-04-25 2007-07-11 BioArray Solutions Ltd. Light-controlled electrokinetic assembly of particles near surfaces
US6387707B1 (en) 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
US5726404A (en) * 1996-05-31 1998-03-10 University Of Washington Valveless liquid microswitch
US5971158A (en) * 1996-06-14 1999-10-26 University Of Washington Absorption-enhanced differential extraction device
AU754363B2 (en) * 1996-06-28 2002-11-14 Caliper Life Sciences, Inc. Microfluidic device and method
AU2003213516C1 (en) * 1996-06-28 2006-04-27 Caliper Technologies Corporation High-throughput Screening Assay Systems in Microscale Fluidic Devices
NZ333346A (en) 1996-06-28 2000-03-27 Caliper Techn Corp High-throughput screening assay systems in microscale fluidic devices
EP0909385B1 (en) * 1996-06-28 2008-09-10 Caliper Life Sciences, Inc. Method of transporting fluid samples within a microfluidic channel
US5779868A (en) * 1996-06-28 1998-07-14 Caliper Technologies Corporation Electropipettor and compensation means for electrophoretic bias
AU729537B2 (en) * 1996-06-28 2001-02-01 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5800690A (en) * 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
AU743084B2 (en) * 1996-07-16 2002-01-17 Caliper Technologies Corporation Separation of fluid components in a microfluidic system
US6221654B1 (en) 1996-09-25 2001-04-24 California Institute Of Technology Method and apparatus for analysis and sorting of polynucleotides based on size
US5858187A (en) * 1996-09-26 1999-01-12 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing electrodynamic focusing on a microchip
EP0938674B1 (en) * 1996-11-16 2005-06-01 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen in Reutlingen Stiftung Bürgerlichen Rechts Array of microelements, method of contacting cells in a liquid environment and method for the production of an array of microelements
US6447727B1 (en) * 1996-11-19 2002-09-10 Caliper Technologies Corp. Microfluidic systems
US6465257B1 (en) 1996-11-19 2002-10-15 Caliper Technologies Corp. Microfluidic systems
DE19648458C1 (en) * 1996-11-22 1998-07-09 Evotec Biosystems Gmbh Micromechanical ejection pump for separating the smallest fluid volumes from a flowing sample fluid
GB2319771B (en) * 1996-11-29 2001-09-26 Imperial College Process
US6706473B1 (en) 1996-12-06 2004-03-16 Nanogen, Inc. Systems and devices for photoelectrophoretic transport and hybridization of oligonucleotides
WO1998033585A1 (en) * 1997-02-05 1998-08-06 California Institute Of Technology Microfluidic sub-millisecond mixers
US6056859A (en) * 1997-02-12 2000-05-02 Lockheed Martin Energy Research Corporation Method and apparatus for staining immobilized nucleic acids
US20030027126A1 (en) 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US5964995A (en) * 1997-04-04 1999-10-12 Caliper Technologies Corp. Methods and systems for enhanced fluid transport
JP2001521622A (en) 1997-04-04 2001-11-06 カリパー テクノロジーズ コーポレイション Closed-loop biochemical analyzer
US6235471B1 (en) 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US7033474B1 (en) * 1997-04-25 2006-04-25 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
AU747505B2 (en) * 1997-04-25 2002-05-16 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
US5976336A (en) * 1997-04-25 1999-11-02 Caliper Technologies Corp. Microfluidic devices incorporating improved channel geometries
CN1105914C (en) * 1997-04-25 2003-04-16 卡钳技术有限公司 Microfluidic devices incorporating improved channel geometries
WO1998049344A1 (en) * 1997-04-28 1998-11-05 Lockheed Martin Energy Research Corporation Method and apparatus for analyzing nucleic acids
US6632619B1 (en) * 1997-05-16 2003-10-14 The Governors Of The University Of Alberta Microfluidic system and methods of use
DE69823347T2 (en) 1997-05-16 2005-05-12 Alberta Research Council, Edmonton MICROFLUIDIC SYSTEM AND METHOD FOR THE OPERATION THEREOF
US6090251A (en) 1997-06-06 2000-07-18 Caliper Technologies, Inc. Microfabricated structures for facilitating fluid introduction into microfluidic devices
US5869004A (en) * 1997-06-09 1999-02-09 Caliper Technologies Corp. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
AU730827B2 (en) * 1997-06-09 2001-03-15 Caliper Technologies Corporation Apparatus and methods for correcting for variable velocity in microfluidic systems
US5882465A (en) * 1997-06-18 1999-03-16 Caliper Technologies Corp. Method of manufacturing microfluidic devices
US5900130A (en) * 1997-06-18 1999-05-04 Alcara Biosciences, Inc. Method for sample injection in microchannel device
US6425972B1 (en) 1997-06-18 2002-07-30 Calipher Technologies Corp. Methods of manufacturing microfabricated substrates
US6001231A (en) * 1997-07-15 1999-12-14 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
US6375871B1 (en) 1998-06-18 2002-04-23 3M Innovative Properties Company Methods of manufacturing microfluidic articles
US5876675A (en) * 1997-08-05 1999-03-02 Caliper Technologies Corp. Microfluidic devices and systems
US5989402A (en) 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US5965410A (en) 1997-09-02 1999-10-12 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
AU746098B2 (en) * 1997-09-02 2002-04-18 Caliper Life Sciences, Inc. Microfluidic system with electrofluidic and electrothermal controls
US7745142B2 (en) * 1997-09-15 2010-06-29 Molecular Devices Corporation Molecular modification assays
US7632651B2 (en) * 1997-09-15 2009-12-15 Mds Analytical Technologies (Us) Inc. Molecular modification assays
US20050227294A1 (en) * 1997-09-15 2005-10-13 Molecular Devices Corporation Molecular modification assays involving lipids
US6540895B1 (en) 1997-09-23 2003-04-01 California Institute Of Technology Microfabricated cell sorter for chemical and biological materials
US6833242B2 (en) * 1997-09-23 2004-12-21 California Institute Of Technology Methods for detecting and sorting polynucleotides based on size
US6012902A (en) 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
JP2001518624A (en) 1997-09-26 2001-10-16 ユニバーシティ・オブ・ワシントン Simultaneous particle separation and chemical reactions
US5842787A (en) * 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US5958694A (en) 1997-10-16 1999-09-28 Caliper Technologies Corp. Apparatus and methods for sequencing nucleic acids in microfluidic systems
US6143152A (en) * 1997-11-07 2000-11-07 The Regents Of The University Of California Microfabricated capillary array electrophoresis device and method
ATE220456T1 (en) * 1997-11-12 2002-07-15 Pe Corp Ny SERPENTINE-SHAPED ELECTROFORETIC CHANNEL WITH SELF-CORRECTING CURVES
US6174675B1 (en) 1997-11-25 2001-01-16 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
US6074725A (en) * 1997-12-10 2000-06-13 Caliper Technologies Corp. Fabrication of microfluidic circuits by printing techniques
US6299747B1 (en) * 1997-12-17 2001-10-09 Cetek Corporation Capillary electrophoretic methods to detect new biologically active compounds in complex biological material
US5948227A (en) * 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations
WO1999034203A1 (en) 1997-12-24 1999-07-08 Cetek Corporation Capillary electrophoretic method to detect target-binding ligands and to determine their relative affinities
AU2021099A (en) 1997-12-30 1999-07-19 Caliper Technologies Corporation Software for the display of chromatographic separation data
US6153076A (en) * 1998-01-12 2000-11-28 The Regents Of The University Of California Extended length microchannels for high density high throughput electrophoresis systems
US6857449B1 (en) 1998-01-20 2005-02-22 Caliper Life Sciences, Inc. Multi-layer microfluidic devices
US6167910B1 (en) 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
US6420143B1 (en) 1998-02-13 2002-07-16 Caliper Technologies Corp. Methods and systems for performing superheated reactions in microscale fluidic systems
US7497994B2 (en) 1998-02-24 2009-03-03 Khushroo Gandhi Microfluidic devices and systems incorporating cover layers
US6100541A (en) 1998-02-24 2000-08-08 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements
US6756019B1 (en) 1998-02-24 2004-06-29 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
US6251343B1 (en) 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
WO1999047255A1 (en) * 1998-03-17 1999-09-23 Cepheid Unitary chemical processing device
WO1999053093A1 (en) * 1998-04-08 1999-10-21 Universität Heidelberg Method for carrying out reactions between at least two reaction partners in aqueous reaction mixtures
US6444474B1 (en) * 1998-04-22 2002-09-03 Eltron Research, Inc. Microfluidic system for measurement of total organic carbon
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6123798A (en) * 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
US6830729B1 (en) 1998-05-18 2004-12-14 University Of Washington Sample analysis instrument
AU3771599A (en) 1998-05-18 1999-12-06 University Of Washington Liquid analysis cartridge
US6306590B1 (en) 1998-06-08 2001-10-23 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
CA2332919A1 (en) 1998-06-08 1999-12-16 Caliper Technologies Corporation Microfluidic devices, systems and methods for performing integrated reactions and separations
US6274089B1 (en) 1998-06-08 2001-08-14 Caliper Technologies Corp. Microfluidic devices, systems and methods for performing integrated reactions and separations
WO1999064840A1 (en) * 1998-06-09 1999-12-16 Caliper Technologies Corp. Fluorescent polarization detection in microfluidic systems
WO1999064851A1 (en) * 1998-06-11 1999-12-16 Arizona Board Of Regents Control of flow and materials for micro devices
US6890411B1 (en) 1998-06-11 2005-05-10 Arizona Board Of Regents Control of flow and materials for micro devices
CA2334952C (en) * 1998-06-12 2006-03-14 Asahi Kasei Kogyo Kabushiki Kaisha Analyzer for determining components in a fluid sample
EP2360271A1 (en) 1998-06-24 2011-08-24 Illumina, Inc. Decoding of array sensors with microspheres
US6529835B1 (en) 1998-06-25 2003-03-04 Caliper Technologies Corp. High throughput methods, systems and apparatus for performing cell based screening assays
US6627446B1 (en) * 1998-07-02 2003-09-30 Amersham Biosciences (Sv) Corp Robotic microchannel bioanalytical instrument
US6794197B1 (en) 1998-07-14 2004-09-21 Zyomyx, Inc. Microdevice and method for detecting a characteristic of a fluid
US7155344B1 (en) 1998-07-27 2006-12-26 Caliper Life Sciences, Inc. Distributed database for analytical instruments
US20020049694A1 (en) 1998-07-27 2002-04-25 J. Wallace Parce Distributed database for analytical instruments
US6540896B1 (en) 1998-08-05 2003-04-01 Caliper Technologies Corp. Open-Field serial to parallel converter
US6132685A (en) * 1998-08-10 2000-10-17 Caliper Technologies Corporation High throughput microfluidic systems and methods
CN1275202A (en) * 1998-08-19 2000-11-29 詹诺普蒂克股份公司 Device for transporting very small quantites of liquid and method for producing same
US6245227B1 (en) 1998-09-17 2001-06-12 Kionix, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
CN1312473C (en) 1998-09-17 2007-04-25 阿德文生物科学公司 Liquid phase chromatographic system, chemical separating device and mass spectrometer and method
FR2783919A1 (en) * 1998-09-25 2000-03-31 Suisse Electronique Microtech Integrated optical biochemical sensor for detecting the different fluid components during fluid analysis uses wave guide and optical coupler on substrate having slotted fluid channel
US20020192719A1 (en) * 1998-09-30 2002-12-19 Caliper Technologies Corp. Homogeneous assay methods
US6498005B1 (en) 1998-09-30 2002-12-24 Caliper Technologies Corp. Homogeneous assay methods
US6086243A (en) * 1998-10-01 2000-07-11 Sandia Corporation Electrokinetic micro-fluid mixer
US6592696B1 (en) 1998-10-09 2003-07-15 Motorola, Inc. Method for fabricating a multilayered structure and the structures formed by the method
US6572830B1 (en) 1998-10-09 2003-06-03 Motorola, Inc. Integrated multilayered microfludic devices and methods for making the same
GB9822185D0 (en) * 1998-10-13 1998-12-02 Zeneca Ltd Device
AU2003204460B2 (en) * 1998-10-14 2005-11-10 Caliper Life Sciences, Inc. Microfluidic controller and detector system with self-calibration
US6498497B1 (en) * 1998-10-14 2002-12-24 Caliper Technologies Corp. Microfluidic controller and detector system with self-calibration
US6149787A (en) 1998-10-14 2000-11-21 Caliper Technologies Corp. External material accession systems and methods
NL1010327C2 (en) * 1998-10-15 2000-04-18 Univ Twente Apparatus and method for controlling a liquid flow.
US6217731B1 (en) * 1998-10-21 2001-04-17 Spectrumedix Corporation Method and apparatus for monitoring and displaying the status of a parallel capillary electrophoresis device
US6086740A (en) 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
US6062261A (en) * 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
US6150119A (en) 1999-01-19 2000-11-21 Caliper Technologies Corp. Optimized high-throughput analytical system
US6416642B1 (en) 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US20020019059A1 (en) * 1999-01-28 2002-02-14 Calvin Y.H. Chow Devices, systems and methods for time domain multiplexing of reagents
EP1159605B1 (en) * 1999-02-02 2012-07-11 Caliper Life Sciences, Inc. Methods for characterizing proteins
US20050027111A1 (en) * 1999-02-02 2005-02-03 Caliper Life Sciences, Inc. Methods, devices and systems for characterizing proteins
US6913679B1 (en) 1999-02-11 2005-07-05 The Regents Of The University Of California Apparatus and methods for high resolution separation of sample components on microfabricated channel devices
US6294063B1 (en) 1999-02-12 2001-09-25 Board Of Regents, The University Of Texas System Method and apparatus for programmable fluidic processing
US6525343B1 (en) 1999-02-18 2003-02-25 Toyo Kohan Co., Ltd. Micro-chip for chemical reaction
ATE469699T1 (en) * 1999-02-23 2010-06-15 Caliper Life Sciences Inc MANIPULATION OF MICROPARTICLES IN MICROFLUID SYSTEMS
US6749814B1 (en) * 1999-03-03 2004-06-15 Symyx Technologies, Inc. Chemical processing microsystems comprising parallel flow microreactors and methods for using same
US6503359B2 (en) 1999-03-05 2003-01-07 Burstein Technologies, Inc. Monomolecular adhesion methods for manufacturing microfabricated multilaminate devices
US6171850B1 (en) 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6148508A (en) * 1999-03-12 2000-11-21 Caliper Technologies Corp. Method of making a capillary for electrokinetic transport of materials
US6500323B1 (en) 1999-03-26 2002-12-31 Caliper Technologies Corp. Methods and software for designing microfluidic devices
JP2000283960A (en) * 1999-03-31 2000-10-13 Shimadzu Corp Micro-chip electrophoretic device
WO2000060341A1 (en) * 1999-04-02 2000-10-12 Morphometrix Technologies Inc. Electro-osmotic pumping system and method
US6303343B1 (en) 1999-04-06 2001-10-16 Caliper Technologies Corp. Inefficient fast PCR
US6322683B1 (en) 1999-04-14 2001-11-27 Caliper Technologies Corp. Alignment of multicomponent microfabricated structures
US6605475B1 (en) 1999-04-16 2003-08-12 Perspective Biosystems, Inc. Apparatus and method for sample delivery
US6375817B1 (en) * 1999-04-16 2002-04-23 Perseptive Biosystems, Inc. Apparatus and methods for sample analysis
US6270641B1 (en) 1999-04-26 2001-08-07 Sandia Corporation Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems
US6555389B1 (en) 1999-05-11 2003-04-29 Aclara Biosciences, Inc. Sample evaporative control
WO2000070080A1 (en) 1999-05-17 2000-11-23 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US6592821B1 (en) 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US8080380B2 (en) * 1999-05-21 2011-12-20 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US6472141B2 (en) * 1999-05-21 2002-10-29 Caliper Technologies Corp. Kinase assays using polycations
US8481268B2 (en) 1999-05-21 2013-07-09 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US6287774B1 (en) * 1999-05-21 2001-09-11 Caliper Technologies Corp. Assay methods and system
US6485690B1 (en) 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
US6649358B1 (en) 1999-06-01 2003-11-18 Caliper Technologies Corp. Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities
US6406605B1 (en) 1999-06-01 2002-06-18 Ysi Incorporated Electroosmotic flow controlled microfluidic devices
DE19927534B4 (en) * 1999-06-16 2008-01-31 Merck Patent Gmbh Apparatus for sample application
DE19927535B4 (en) * 1999-06-16 2004-06-17 Merck Patent Gmbh Miniaturized analysis system with device for discharging substances
WO2000077511A1 (en) * 1999-06-16 2000-12-21 Merck Patent Gmbh Device for preparing samples
JP2001004628A (en) * 1999-06-18 2001-01-12 Kanagawa Acad Of Sci & Technol Immunoassay and its method
GB2351245B (en) 1999-06-21 2003-07-16 Univ Hull Method of controlling liquid movement in a chemical device
DE19964399B4 (en) * 1999-06-22 2005-06-16 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Laboratory equipment employing microchip useful for chemical, physical or biological diagnostics comprises connection interface between diverse supplies and chip
WO2000078454A1 (en) * 1999-06-22 2000-12-28 Agilent Technologies, Inc. Apparatus for the operation of a microfluidic device
DE19928412C2 (en) * 1999-06-22 2002-03-21 Agilent Technologies Inc Supply element for a laboratory microchip
US6811668B1 (en) 1999-06-22 2004-11-02 Caliper Life Sciences, Inc. Apparatus for the operation of a microfluidic device
DE19964315B4 (en) * 1999-06-22 2005-01-13 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Laboratory equipment employing microchip useful for chemical, physical or biological diagnostics comprises connection interface between diverse supplies and chip
DE19928410C2 (en) * 1999-06-22 2002-11-28 Agilent Technologies Inc Device housing with a device for operating a laboratory microchip
US7501245B2 (en) 1999-06-28 2009-03-10 Helicos Biosciences Corp. Methods and apparatuses for analyzing polynucleotide sequences
GB9915686D0 (en) * 1999-07-06 1999-09-01 Zeneca Ltd Device
US7223364B1 (en) 1999-07-07 2007-05-29 3M Innovative Properties Company Detection article having fluid control film
US6533914B1 (en) 1999-07-08 2003-03-18 Shaorong Liu Microfabricated injector and capillary array assembly for high-resolution and high throughput separation
US6395232B1 (en) * 1999-07-09 2002-05-28 Orchid Biosciences, Inc. Fluid delivery system for a microfluidic device using a pressure pulse
JP3990910B2 (en) 1999-07-16 2007-10-17 アプレラ コーポレイション High density electrophoresis device and method
DE19935433A1 (en) 1999-08-01 2001-03-01 Febit Ferrarius Biotech Gmbh Microfluidic reaction carrier
US7517442B1 (en) 1999-08-09 2009-04-14 Life Technologies Corporation Facile method and apparatus for the analysis of biological macromolecules in two dimensions using common and familiar electrophoresis formats
EP1203959B1 (en) * 1999-08-11 2007-06-13 Asahi Kasei Kabushiki Kaisha Analyzing cartridge and liquid feed control device
US6696022B1 (en) 1999-08-13 2004-02-24 U.S. Genomics, Inc. Methods and apparatuses for stretching polymers
US6495104B1 (en) 1999-08-19 2002-12-17 Caliper Technologies Corp. Indicator components for microfluidic systems
US6858185B1 (en) 1999-08-25 2005-02-22 Caliper Life Sciences, Inc. Dilutions in high throughput systems with a single vacuum source
US6613581B1 (en) 1999-08-26 2003-09-02 Caliper Technologies Corp. Microfluidic analytic detection assays, devices, and integrated systems
US6613211B1 (en) 1999-08-27 2003-09-02 Aclara Biosciences, Inc. Capillary electrokinesis based cellular assays
WO2001017797A1 (en) 1999-09-10 2001-03-15 Caliper Technologies Corp. Microfabrication methods and devices
WO2001020593A1 (en) 1999-09-17 2001-03-22 Bioarray Solutions, Llc System and method for programmable illumination pattern generation
US6210986B1 (en) 1999-09-23 2001-04-03 Sandia Corporation Microfluidic channel fabrication method
US20020132371A1 (en) * 1999-09-27 2002-09-19 Kreimer David I. Amplification of analyte detection by substrates having particle structures with receptors
US20030232388A1 (en) * 1999-09-27 2003-12-18 Kreimer David I. Beads having identifiable Raman markers
US20040023293A1 (en) * 1999-09-27 2004-02-05 Kreimer David I. Biochips for characterizing biological processes
US6468763B1 (en) 1999-09-29 2002-10-22 Caliper Technologies Corp. Optical detection of transmembrane potential changes
DE19947496C2 (en) * 1999-10-01 2003-05-22 Agilent Technologies Inc Microfluidic microchip
DE19964337B4 (en) * 1999-10-01 2004-09-16 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Microfluidic microchip with bendable suction tube
JP2003511682A (en) 1999-10-08 2003-03-25 カリパー・テクノロジーズ・コープ. Use of Nernst voltage-sensitive dyes in transmembrane voltage measurements.
JP2001108619A (en) 1999-10-12 2001-04-20 Minolta Co Ltd Analyzer, sample operation needle, and sample take-out method
DE19949551C2 (en) 1999-10-14 2001-12-13 Agilent Technologies Inc Microfluidic microchip, energy supply device and method for operating a microfluidic microchip
US6878255B1 (en) 1999-11-05 2005-04-12 Arrowhead Center, Inc. Microfluidic devices with thick-film electrochemical detection
US6406604B1 (en) * 1999-11-08 2002-06-18 Norberto A. Guzman Multi-dimensional electrophoresis apparatus
US7329388B2 (en) * 1999-11-08 2008-02-12 Princeton Biochemicals, Inc. Electrophoresis apparatus having staggered passage configuration
US6692952B1 (en) * 1999-11-10 2004-02-17 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
US6149815A (en) * 1999-11-23 2000-11-21 Sauter; Andrew D. Precise electrokinetic delivery of minute volumes of liquid(s)
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
CA2290731A1 (en) * 1999-11-26 2001-05-26 D. Jed Harrison Apparatus and method for trapping bead based reagents within microfluidic analysis system
US6271038B1 (en) * 1999-12-15 2001-08-07 Glaxo Wellcome Inc. Methods for high throughout determination and ranking of formulations and solubility
US6468761B2 (en) 2000-01-07 2002-10-22 Caliper Technologies, Corp. Microfluidic in-line labeling method for continuous-flow protease inhibition analysis
US6790328B2 (en) 2000-01-12 2004-09-14 Ut-Battelle, Llc Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
CA2397415A1 (en) * 2000-01-12 2001-07-19 Zyomyx, Inc. Microdevice and method for detecting a characteristic of a fluid
US7037416B2 (en) 2000-01-14 2006-05-02 Caliper Life Sciences, Inc. Method for monitoring flow rate using fluorescent markers
US6556923B2 (en) * 2000-01-26 2003-04-29 Caliper Technologies Corp. Software for high throughput microfluidic systems
US6589729B2 (en) 2000-02-04 2003-07-08 Caliper Technologies Corp. Methods, devices, and systems for monitoring time dependent reactions
DE10005844A1 (en) * 2000-02-10 2004-07-22 Andresen, Karin Optical detection of binding between biological test material and material on biochip, including removing dot formed by hybridization from biochip by dissolution before analysis using UV irradiation
US20040108207A1 (en) * 2000-02-11 2004-06-10 Aclara Biosciences, Inc. Injection and separation system and method employing transient isotachophoretic stacking
US6818113B2 (en) 2000-02-11 2004-11-16 Aclara Biosciences, Inc. Microfluidic device with sample injector and method of using
US6685813B2 (en) * 2000-02-11 2004-02-03 Aclara Biosciences, Inc. Tandem isotachophoresis/zone electrophoresis method and system
US20020189946A1 (en) * 2000-02-11 2002-12-19 Aclara Biosciences, Inc. Microfluidic injection and separation system and method
DE60032113T2 (en) 2000-02-11 2007-06-28 Stmicroelectronics S.R.L., Agrate Brianza Integrated device for microfluidic temperature control and its manufacturing method
DK173796B1 (en) * 2000-02-16 2001-11-05 Nkt Res As Method for controlling flow in a flow system
WO2001063273A2 (en) * 2000-02-22 2001-08-30 California Institute Of Technology Development of a gel-free molecular sieve based on self-assembled nano-arrays
CA2399199A1 (en) 2000-02-23 2001-08-30 Ring-Ling Chien Multi-reservoir pressure control system
US7040144B2 (en) * 2000-02-23 2006-05-09 Caliper Life Sciences, Inc. Microfluidic viscometer
US6681616B2 (en) * 2000-02-23 2004-01-27 Caliper Technologies Corp. Microfluidic viscometer
US6537433B1 (en) * 2000-03-10 2003-03-25 Applera Corporation Methods and apparatus for the location and concentration of polar analytes using an alternating electric field
AU2001245549A1 (en) * 2000-03-10 2001-09-24 Dna Sciences, Inc. Cross channel device for serial sample injection
US7141152B2 (en) * 2000-03-16 2006-11-28 Le Febre David A Analyte species separation system
US6749735B1 (en) 2000-03-16 2004-06-15 David Le Febre Electromobility focusing controlled channel electrophoresis system
AU2001249253A1 (en) * 2000-03-17 2001-10-03 Aclara Biosciences, Inc. Microfluidic device and system with improved sample handling
US20020012971A1 (en) 2000-03-20 2002-01-31 Mehta Tammy Burd PCR compatible nucleic acid sieving medium
JP2001281233A (en) * 2000-03-28 2001-10-10 Inst Of Physical & Chemical Res Microchip for water distribution and water distribution method using it
DE10017791A1 (en) * 2000-04-10 2001-10-11 Basf Ag Method and device for microdosing small amounts of liquid for biopolymer arrays
US6290909B1 (en) * 2000-04-13 2001-09-18 Sandia Corporation Sample injector for high pressure liquid chromatography
US6733645B1 (en) 2000-04-18 2004-05-11 Caliper Technologies Corp. Total analyte quantitation
EP1281002A4 (en) 2000-05-11 2006-08-09 Caliper Life Sciences Inc Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers
WO2001087458A1 (en) * 2000-05-12 2001-11-22 University Of Cincinnati Magnetic bead-based arrays
AU6152301A (en) 2000-05-12 2001-11-26 Caliper Techn Corp Detection of nucleic acid hybridization by fluorescence polarization
GB2362713A (en) * 2000-05-26 2001-11-28 Casect Ltd Sampling system for gas
WO2001095999A1 (en) * 2000-06-09 2001-12-20 University Of Delaware System and method for chemical analysis using laser ablation
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
GB2363809B (en) * 2000-06-21 2003-04-02 Schlumberger Holdings Chemical sensor for wellbore applications
WO2002000100A2 (en) * 2000-06-23 2002-01-03 Daniel Armstrong Method for separation, identification and evaluation of microbes and cells
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
AU2001277075A1 (en) * 2000-07-21 2002-02-05 Aclara Biosciences, Inc. Method and devices for capillary electrophoresis with a norbornene based surface coating
EP1232678A4 (en) * 2000-07-26 2004-08-25 Univ California Manipulation of live cells and inorganic objects with optical micro beam arrays
AU2001280951B2 (en) * 2000-08-02 2006-03-02 Caliper Life Sciences, Inc. High throughput separations based analysis systems
US20070119711A1 (en) * 2000-08-02 2007-05-31 Caliper Life Sciences, Inc. High throughput separations based analysis systems and methods
US7192559B2 (en) 2000-08-03 2007-03-20 Caliper Life Sciences, Inc. Methods and devices for high throughput fluid delivery
DE10041853C1 (en) * 2000-08-25 2002-02-28 Gmd Gmbh Configurable microreactor network
WO2002022878A1 (en) * 2000-09-14 2002-03-21 Caliper Technologies Corp. Microfluidic devices and methods for performing temperature mediated reactions
WO2002022267A2 (en) * 2000-09-18 2002-03-21 Micronics, Inc. Externally controllable surface coatings for microfluidic devices
JP2002184775A (en) * 2000-12-19 2002-06-28 Mitsubishi Electric Corp Structure having columnar structure and method of manufacturing the same, and dna segregation device using the same
US6939451B2 (en) * 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
US6706162B1 (en) * 2000-09-25 2004-03-16 Applera Corporation High speed, high resolution compositions, methods, and kits for capillary electrophoresis
US6994826B1 (en) 2000-09-26 2006-02-07 Sandia National Laboratories Method and apparatus for controlling cross contamination of microfluid channels
US6623860B2 (en) 2000-10-10 2003-09-23 Aclara Biosciences, Inc. Multilevel flow structures
US20030045005A1 (en) 2000-10-17 2003-03-06 Michael Seul Light-controlled electrokinetic assembly of particles near surfaces
ATE432466T1 (en) 2000-10-31 2009-06-15 Caliper Life Sciences Inc MICROFLUIDIC PROCESS FOR IN-SITU MATERIAL CONCENTRATION
US20030057092A1 (en) * 2000-10-31 2003-03-27 Caliper Technologies Corp. Microfluidic methods, devices and systems for in situ material concentration
US20050011761A1 (en) * 2000-10-31 2005-01-20 Caliper Technologies Corp. Microfluidic methods, devices and systems for in situ material concentration
EP1339496B1 (en) * 2000-11-06 2007-02-28 The Government of the United States of America, as represented by the Secretary of Health and Human Services Sample delivery system with laminar mixing for microvolume biosensing
US20090118139A1 (en) * 2000-11-07 2009-05-07 Caliper Life Sciences, Inc. Microfluidic method and system for enzyme inhibition activity screening
US6784420B2 (en) * 2000-11-13 2004-08-31 Genoptix, Inc. Method of separating particles using an optical gradient
US6936811B2 (en) * 2000-11-13 2005-08-30 Genoptix, Inc. Method for separating micro-particles
US20030007894A1 (en) 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US20020123112A1 (en) * 2000-11-13 2002-09-05 Genoptix Methods for increasing detection sensitivity in optical dielectric sorting systems
US6833542B2 (en) * 2000-11-13 2004-12-21 Genoptix, Inc. Method for sorting particles
US20020160470A1 (en) * 2000-11-13 2002-10-31 Genoptix Methods and apparatus for generating and utilizing linear moving optical gradients
US6744038B2 (en) 2000-11-13 2004-06-01 Genoptix, Inc. Methods of separating particles using an optical gradient
US6770182B1 (en) * 2000-11-14 2004-08-03 Sandia National Laboratories Method for producing a thin sample band in a microchannel device
AU2002248149A1 (en) * 2000-11-16 2002-08-12 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
US8900811B2 (en) 2000-11-16 2014-12-02 Caliper Life Sciences, Inc. Method and apparatus for generating thermal melting curves in a microfluidic device
WO2002041004A2 (en) 2000-11-16 2002-05-23 Burstein Technologies, Inc. Optical biodiscs with reflective layers
WO2002040874A1 (en) 2000-11-16 2002-05-23 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US7026131B2 (en) 2000-11-17 2006-04-11 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-discs
US7087203B2 (en) 2000-11-17 2006-08-08 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-disc
EP1355858A2 (en) * 2000-11-17 2003-10-29 University Of Virginia Patent Foundation Method for orthogonal analyte stacking/injection systems in electrophoresis
JP2002214241A (en) * 2000-11-20 2002-07-31 Minolta Co Ltd Microchip
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
AU2002239289A1 (en) * 2000-11-22 2002-06-03 Burstein Technologies, Inc. Apparatus and methods for separating agglutinants and disperse particles
GB0028647D0 (en) * 2000-11-24 2001-01-10 Nextgen Sciences Ltd Apparatus for chemical assays
US6778724B2 (en) 2000-11-28 2004-08-17 The Regents Of The University Of California Optical switching and sorting of biological samples and microparticles transported in a micro-fluidic device, including integrated bio-chip devices
US6942778B1 (en) * 2000-11-28 2005-09-13 Nanogen, Inc. Microstructure apparatus and method for separating differently charged molecules using an applied electric field
US7079468B2 (en) 2000-12-08 2006-07-18 Burstein Technologies, Inc. Optical discs for measuring analytes
JP3778041B2 (en) * 2000-12-08 2006-05-24 コニカミノルタホールディングス株式会社 Particle separation mechanism and particle separation apparatus
JP2002236131A (en) * 2000-12-08 2002-08-23 Minolta Co Ltd Microchip
US7054258B2 (en) 2000-12-08 2006-05-30 Nagaoka & Co., Ltd. Optical disc assemblies for performing assays
US20020110926A1 (en) * 2001-01-16 2002-08-15 Caliper Technologies Corp. Emulator device
US7070681B2 (en) * 2001-01-24 2006-07-04 The Board Of Trustees Of The Leland Stanford Junior University Electrokinetic instability micromixer
WO2002060754A1 (en) 2001-01-29 2002-08-08 Caliper Technologies Corp. Non-mechanical valves for fluidic systems
US6707548B2 (en) 2001-02-08 2004-03-16 Array Bioscience Corporation Systems and methods for filter based spectrographic analysis
US20020168780A1 (en) * 2001-02-09 2002-11-14 Shaorong Liu Method and apparatus for sample injection in microfabricated devices
WO2002070118A2 (en) * 2001-02-09 2002-09-12 Microchem Solutions Apparatus and method for small-volume fluid manipulation and transportation
US6913697B2 (en) 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
AU2002327165B2 (en) * 2001-02-15 2006-08-10 Caliper Life Sciences, Inc. Microfluidic systems with enhanced detection systems
US7670559B2 (en) * 2001-02-15 2010-03-02 Caliper Life Sciences, Inc. Microfluidic systems with enhanced detection systems
US6720148B1 (en) 2001-02-22 2004-04-13 Caliper Life Sciences, Inc. Methods and systems for identifying nucleotides by primer extension
US7016560B2 (en) * 2001-02-28 2006-03-21 Lightwave Microsystems Corporation Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
US6949176B2 (en) * 2001-02-28 2005-09-27 Lightwave Microsystems Corporation Microfluidic control using dielectric pumping
US7867776B2 (en) * 2001-03-02 2011-01-11 Caliper Life Sciences, Inc. Priming module for microfluidic chips
US6870613B1 (en) * 2001-03-07 2005-03-22 Carolyn Tisone Simultaneous recording of multispectral fluorescence signatures
US7150999B1 (en) 2001-03-09 2006-12-19 Califer Life Sciences, Inc. Process for filling microfluidic channels
WO2002074899A1 (en) * 2001-03-15 2002-09-26 Array Bioscience Corporation Enhancing surfaces for analyte detection
US7037417B2 (en) * 2001-03-19 2006-05-02 Ecole Polytechnique Federale De Lausanne Mechanical control of fluids in micro-analytical devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US6575188B2 (en) * 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US7010391B2 (en) * 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US6989129B2 (en) * 2001-04-05 2006-01-24 The President And Fellows Of Harvard College Automated capillary liquid chromatography small volume analysis system
JP5162074B2 (en) 2001-04-06 2013-03-13 フルイディグム コーポレイション Polymer surface modification
EP1384022A4 (en) 2001-04-06 2004-08-04 California Inst Of Techn Nucleic acid amplification utilizing microfluidic devices
US6752922B2 (en) 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
JP4362987B2 (en) * 2001-04-09 2009-11-11 株式会社島津製作所 Sample introduction method in microchip electrophoresis
JP2004530044A (en) * 2001-04-12 2004-09-30 アストラゼネカ アクチボラグ Micro-engineered reactor
US20030194755A1 (en) * 2001-04-27 2003-10-16 Genoptix, Inc. Early detection of apoptotic events and apoptosis using optophoretic analysis
US20040009540A1 (en) * 2001-04-27 2004-01-15 Genoptix, Inc Detection and evaluation of cancer cells using optophoretic analysis
DE60221240T2 (en) * 2001-05-02 2007-10-31 Applera Corp., Foster City CONCENTRATION AND CLEANING OF ANALYTES WITH ELECTRIC FIELDS
WO2002090770A2 (en) * 2001-05-07 2002-11-14 Nanolab Ltd. Method and apparatus for propelling a fluid
KR100442680B1 (en) * 2001-05-10 2004-08-02 주식회사 디지탈바이오테크놀러지 Apparatus for mixing fluids by micro channel
KR100442681B1 (en) * 2001-05-10 2004-08-02 주식회사 디지탈바이오테크놀러지 Channel unit and apparatus for mixing fluids using the unit
US7214300B2 (en) * 2001-06-04 2007-05-08 Epocal Inc. Integrated electrokinetic devices and methods of manufacture
US7723123B1 (en) * 2001-06-05 2010-05-25 Caliper Life Sciences, Inc. Western blot by incorporating an affinity purification zone
US20020187564A1 (en) * 2001-06-08 2002-12-12 Caliper Technologies Corp. Microfluidic library analysis
US6977163B1 (en) 2001-06-13 2005-12-20 Caliper Life Sciences, Inc. Methods and systems for performing multiple reactions by interfacial mixing
WO2003000417A2 (en) * 2001-06-20 2003-01-03 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20020197733A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20020195343A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfabricated separation device employing a virtual wall for interfacing fluids
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030077570A1 (en) * 2001-09-20 2003-04-24 Coventor, Inc. Small molecule substrate based enzyme activity assays
US7211442B2 (en) * 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030015425A1 (en) * 2001-06-20 2003-01-23 Coventor Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7262063B2 (en) 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
EP1270073B1 (en) * 2001-06-28 2005-02-16 Agilent Technologies, Inc. (a Delaware corporation) Microfluidic system with controller
GB0116384D0 (en) * 2001-07-04 2001-08-29 Diagnoswiss Sa Microfluidic chemical assay apparatus and method
ATE465811T1 (en) * 2001-07-13 2010-05-15 Caliper Life Sciences Inc METHOD FOR SEPARATING COMPONENTS OF A MIXTURE
KR100455661B1 (en) * 2001-07-20 2004-11-12 학교법인 포항공과대학교 Lab on a chip for the analysis of amine compound
US20060062696A1 (en) 2001-07-27 2006-03-23 Caliper Life Sciences, Inc. Optimized high throughput analytical systems
US7060171B1 (en) 2001-07-31 2006-06-13 Caliper Life Sciences, Inc. Methods and systems for reducing background signal in assays
US6890409B2 (en) * 2001-08-24 2005-05-10 Applera Corporation Bubble-free and pressure-generating electrodes for electrophoretic and electroosmotic devices
US6803568B2 (en) 2001-09-19 2004-10-12 Predicant Biosciences, Inc. Multi-channel microfluidic chip for electrospray ionization
US7238477B2 (en) * 2001-09-24 2007-07-03 Intel Corporation Methods to increase nucleotide signals by Raman scattering
US6972173B2 (en) * 2002-03-14 2005-12-06 Intel Corporation Methods to increase nucleotide signals by raman scattering
US20030108664A1 (en) * 2001-10-05 2003-06-12 Kodas Toivo T. Methods and compositions for the formation of recessed electrical features on a substrate
US20030072682A1 (en) * 2001-10-11 2003-04-17 Dan Kikinis Method and apparatus for performing biochemical testing in a microenvironment
CA2741049C (en) 2001-10-15 2019-02-05 Bioarray Solutions, Ltd. Multiplexed analysis of polymorphic loci by probe elongation-mediated detection
US6966880B2 (en) * 2001-10-16 2005-11-22 Agilent Technologies, Inc. Universal diagnostic platform
US6783647B2 (en) 2001-10-19 2004-08-31 Ut-Battelle, Llc Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
CA2463420A1 (en) * 2001-10-24 2003-05-01 Singulex, Inc. Methods for detecting genetic haplotypes by interaction with probes
WO2003038424A1 (en) * 2001-11-02 2003-05-08 Imperial College Innovations Limited Capillary electrophoresis microchip, system and method
US20030086333A1 (en) * 2001-11-05 2003-05-08 Constantinos Tsouris Electrohydrodynamic mixing on microfabricated devices
EP1451350A4 (en) * 2001-11-05 2006-05-10 Transgenomic Inc Methods, systems, and kits for analysis of polynucleotides
US20040028559A1 (en) * 2001-11-06 2004-02-12 Peter Schuck Sample delivery system with laminar mixing for microvolume biosensing
US6750661B2 (en) 2001-11-13 2004-06-15 Caliper Life Sciences, Inc. Method and apparatus for controllably effecting samples using two signals
US7247274B1 (en) 2001-11-13 2007-07-24 Caliper Technologies Corp. Prevention of precipitate blockage in microfluidic channels
GB0128350D0 (en) 2001-11-27 2002-01-16 Lab901 Ltd Non-rigid apparatus for microfluidic applications
CN1164939C (en) * 2001-11-30 2004-09-01 清华大学 Capillary electrophoresis chip device for testing polymorphism of nucleotide and mononucleotide
ES2403560T3 (en) * 2001-11-30 2013-05-20 Fluidigm Corporation Microfluidic device and procedures for its use
AU2002351291A1 (en) * 2001-12-06 2003-06-23 Nanostream, Inc. Adhesiveless microfluidic device fabrication
AU2002353107A1 (en) * 2001-12-11 2003-07-09 Sau Lan Tang Staats Microfluidic devices and methods for two-dimensional separations
US20030116552A1 (en) * 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US7105810B2 (en) 2001-12-21 2006-09-12 Cornell Research Foundation, Inc. Electrospray emitter for microfluidic channel
AU2003219733A1 (en) 2002-02-08 2003-09-02 University Of Louisville Research Foundation, Inc.Belknap Campus A capillary electrophoresis-electrochemical detection microchip device and supporting circuits
US6814859B2 (en) * 2002-02-13 2004-11-09 Nanostream, Inc. Frit material and bonding method for microfluidic separation devices
US6958119B2 (en) 2002-02-26 2005-10-25 Agilent Technologies, Inc. Mobile phase gradient generation microfluidic device
EP2581739B1 (en) 2002-03-05 2015-11-04 Caliper Life Sciences, Inc. Microfluidic separation method with combined pressure and voltage control
US7303727B1 (en) 2002-03-06 2007-12-04 Caliper Life Sciences, Inc Microfluidic sample delivery devices, systems, and methods
US7195986B1 (en) * 2002-03-08 2007-03-27 Caliper Life Sciences, Inc. Microfluidic device with controlled substrate conductivity
US7252928B1 (en) 2002-03-12 2007-08-07 Caliper Life Sciences, Inc. Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels
US7223371B2 (en) * 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
GB0206117D0 (en) * 2002-03-15 2002-04-24 Imaging Res Solutions Ltd Use of microfabricated devices
EP2666849A3 (en) 2002-04-01 2014-05-28 Fluidigm Corporation Microfluidic particle-analysis systems
US7312085B2 (en) * 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
CA2480200A1 (en) * 2002-04-02 2003-10-16 Caliper Life Sciences, Inc. Methods and apparatus for separation and isolation of components from a biological sample
US6808075B2 (en) 2002-04-17 2004-10-26 Cytonome, Inc. Method and apparatus for sorting particles
US9943847B2 (en) 2002-04-17 2018-04-17 Cytonome/St, Llc Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US6976590B2 (en) 2002-06-24 2005-12-20 Cytonome, Inc. Method and apparatus for sorting particles
US8241883B2 (en) 2002-04-24 2012-08-14 Caliper Life Sciences, Inc. High throughput mobility shift
US8048623B1 (en) 2002-04-24 2011-11-01 The University Of North Carolina At Greensboro Compositions, products, methods and systems to monitor water and other ecosystems
US8383342B2 (en) 2002-04-24 2013-02-26 The University Of North Carolina At Greensboro Compositions, products, methods and systems to monitor water and other ecosystems
US9126165B1 (en) 2002-04-24 2015-09-08 The University Of North Carolina At Greensboro Nucleic acid arrays to monitor water and other ecosystems
US20040033539A1 (en) * 2002-05-01 2004-02-19 Genoptix, Inc Method of using optical interrogation to determine a biological property of a cell or population of cells
US20030211461A1 (en) * 2002-05-01 2003-11-13 Genoptix, Inc Optophoretic detection of durgs exhibiting inhibitory effect on Bcr-Abl positive tumor cells
US6794734B2 (en) * 2002-05-03 2004-09-21 Mia-Com Heterojunction P-I-N diode and method of making the same
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
EP2278338B1 (en) * 2002-05-09 2020-08-26 The University of Chicago Device and method for pressure-driven plug transport and reaction
DE10223127C1 (en) * 2002-05-24 2003-10-02 Fraunhofer Ges Forschung Electrical micro-fluidic multiplex system comprises a channel for a liquid stream, electrodes arranged along the channel, and control unit with several outlets for control signals of electrodes
US20030217923A1 (en) * 2002-05-24 2003-11-27 Harrison D. Jed Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US7161356B1 (en) 2002-06-05 2007-01-09 Caliper Life Sciences, Inc. Voltage/current testing equipment for microfluidic devices
US20030229672A1 (en) * 2002-06-05 2003-12-11 Kohn Daniel Mark Enforceable spam identification and reduction system, and method thereof
US7361313B2 (en) 2003-02-18 2008-04-22 Intel Corporation Methods for uniform metal impregnation into a nanoporous material
GB0213979D0 (en) * 2002-06-18 2002-07-31 Sec Dep Of The Home Department Improvements in and relating to analysis
US20030230524A1 (en) * 2002-06-18 2003-12-18 Naohiro Soga Chromatographic chip and method of fabrication thereof
US7867193B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US20050238506A1 (en) * 2002-06-21 2005-10-27 The Charles Stark Draper Laboratory, Inc. Electromagnetically-actuated microfluidic flow regulators and related applications
EP1535066A2 (en) * 2002-06-24 2005-06-01 Fluidigm Corporation Recirculating fluidic network and methods for using the same
GB0216077D0 (en) * 2002-07-11 2002-08-21 Univ Cranfield Reconfigurable microfluidic device
DE10232849A1 (en) * 2002-07-19 2004-02-12 Abb Patent Gmbh Gas analyzer, e.g. for field detection of odorless, invisible toxic agents and pollutants, has self-contained sampling and detector, and sample is transferred to detector under action of force field
JP4225972B2 (en) * 2002-07-26 2009-02-18 アプレラ コーポレイション Microfluidic device and method comprising a purification column with excess diluent
US7244961B2 (en) * 2002-08-02 2007-07-17 Silicon Valley Scientific Integrated system with modular microfluidic components
ES2282682T3 (en) * 2002-08-02 2007-10-16 Ge Healthcare (Sv) Corp. INTEGRATED DESIGN OF MICROCHIPS.
KR100480338B1 (en) * 2002-08-08 2005-03-30 한국전자통신연구원 Microfluidic devices for the controlled movements of solution
US7381317B2 (en) * 2002-08-12 2008-06-03 Beckman Coulter, Inc. Methods and compositions for capillary electrophoresis (CE)
AU2003304163A1 (en) 2002-08-21 2005-01-21 Shell Oil Company Method for measuring fluid chemistry in drilling and production operations
US8277753B2 (en) 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
US20040053209A1 (en) * 2002-09-12 2004-03-18 Genoptix, Inc Detection and evaluation of topoisomerase inhibitors using optophoretic analysis
ITTO20020809A1 (en) * 2002-09-17 2004-03-18 St Microelectronics Srl MICROPUMP, IN PARTICULAR FOR AN INTEGRATED DNA ANALYSIS DEVICE.
ITTO20020808A1 (en) * 2002-09-17 2004-03-18 St Microelectronics Srl INTEGRATED DNA ANALYSIS DEVICE.
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US7329545B2 (en) 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US7143785B2 (en) * 2002-09-25 2006-12-05 California Institute Of Technology Microfluidic large scale integration
EP2359689B1 (en) 2002-09-27 2015-08-26 The General Hospital Corporation Microfluidic device for cell separation and use thereof
TW590982B (en) 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
WO2004040001A2 (en) 2002-10-02 2004-05-13 California Institute Of Technology Microfluidic nucleic acid analysis
US20040067167A1 (en) * 2002-10-08 2004-04-08 Genoptix, Inc. Methods and apparatus for optophoretic diagnosis of cells and particles
GB2395006A (en) * 2002-10-29 2004-05-12 Micro Chemical Systems Ltd Apparatus and method for performing an assay
US7932098B2 (en) * 2002-10-31 2011-04-26 Hewlett-Packard Development Company, L.P. Microfluidic system utilizing thin-film layers to route fluid
US20040086872A1 (en) * 2002-10-31 2004-05-06 Childers Winthrop D. Microfluidic system for analysis of nucleic acids
US20040091850A1 (en) * 2002-11-08 2004-05-13 Travis Boone Single cell analysis of membrane molecules
US7108775B2 (en) * 2002-11-08 2006-09-19 Applera Corporation Apparatus and method for confining eluted samples in electrophoresis systems
US7526114B2 (en) 2002-11-15 2009-04-28 Bioarray Solutions Ltd. Analysis, secure access to, and transmission of array images
US20060144707A1 (en) * 2002-11-20 2006-07-06 Landers James P Isolation of sperm cells from other biological materials using microfabricated devices and related methods thereof
US7189578B1 (en) * 2002-12-02 2007-03-13 Cfd Research Corporation Methods and systems employing electrothermally induced flow for mixing and cleaning in microsystems
US7152616B2 (en) * 2002-12-04 2006-12-26 Spinx, Inc. Devices and methods for programmable microscale manipulation of fluids
US6905583B2 (en) * 2002-12-13 2005-06-14 Aclara Biosciences, Inc. Closed-loop control of electrokinetic processes in microfluidic devices based on optical readings
EP1573061A4 (en) * 2002-12-18 2006-03-08 Aclara Biosciences Inc Multiplexed immunohistochemical assays using molecular tags
US20040121307A1 (en) * 2002-12-19 2004-06-24 Genoptix, Inc Early detection of cellular differentiation using optophoresis
US20040121474A1 (en) * 2002-12-19 2004-06-24 Genoptix, Inc Detection and evaluation of chemically-mediated and ligand-mediated t-cell activation using optophoretic analysis
DE10260310B3 (en) * 2002-12-20 2004-05-06 Siemens Ag Micro-structure, to process fluid for reactions and analysis by capillary electrophoresis, has electrodes to give continuous flow with part taken off through branch channel
DE10260308B3 (en) * 2002-12-20 2004-05-06 Siemens Ag Micro-structure for fluid processing, for reactions and capillary electrophoresis analysis, has number of reservoirs with electrodes, linked by channels for electrokinetic fluid movements
US20060113190A1 (en) * 2002-12-27 2006-06-01 Kurnik Ronald T Microfluidic device and method for improved sample handling
JP2006512092A (en) 2002-12-30 2006-04-13 ザ・リージェンツ・オブ・ジ・ユニバーシティ・オブ・カリフォルニア Method and apparatus for pathogen detection and analysis
KR100506185B1 (en) * 2003-01-03 2005-08-04 주식회사 옵트론-텍 Lab-on-a chip for detecting system of cerebral vasomotor disease
US6833068B2 (en) * 2003-01-13 2004-12-21 Sandia National Laboratories Passive injection control for microfluidic systems
WO2004065000A1 (en) 2003-01-21 2004-08-05 Illumina Inc. Chemical reaction monitor
US8088897B2 (en) * 2003-01-30 2012-01-03 BellBrook Labs, Inc. Assay method for group transfer reactions
WO2004068115A2 (en) * 2003-01-30 2004-08-12 Bellbrook Labs, Llc Assay method for group transfer reactions
US7355010B2 (en) 2003-01-30 2008-04-08 Bellbrook Labs, Llc Assay method for group transfer reactions
CN100389321C (en) * 2003-02-19 2008-05-21 浙江大学 Liquid level stabilizing device in micro-analysis chip liquid pool and method of use thereof
SE0300454D0 (en) * 2003-02-19 2003-02-19 Aamic Ab Nozzles for electrospray ionization and methods of fabricating them
US20050014134A1 (en) * 2003-03-06 2005-01-20 West Jason Andrew Appleton Viral identification by generation and detection of protein signatures
US20040179972A1 (en) * 2003-03-14 2004-09-16 Nanostream, Inc. Systems and methods for detecting manufacturing defects in microfluidic devices
US7147764B2 (en) * 2003-03-28 2006-12-12 Applera Corporation Dual electrode injection of analyte into a capillary electrophoretic device
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US20040195099A1 (en) * 2003-04-04 2004-10-07 Jacobson Stephen C. Sample filtration, concentration and separation on microfluidic devices
DE10315514B3 (en) * 2003-04-04 2004-09-30 Siemens Ag Microfluidic device for the controlled introduction of a fluid into a channel
WO2004091795A2 (en) * 2003-04-10 2004-10-28 U.S. Genomics, Inc. Manipulation of polymers in a microchannel
US7820030B2 (en) * 2003-04-16 2010-10-26 Handylab, Inc. System and method for electrochemical detection of biological compounds
US7007710B2 (en) * 2003-04-21 2006-03-07 Predicant Biosciences, Inc. Microfluidic devices and methods
DE10318864B3 (en) * 2003-04-25 2004-09-23 Siemens Ag Micro-fluidic valve, for controlled introduction of fluid into channel during capillary electrophoresis, combines electrical potential gradient with curvature inducing Coanda effect
US20040236603A1 (en) * 2003-05-22 2004-11-25 Biospect, Inc. System of analyzing complex mixtures of biological and other fluids to identify biological state information
US7425700B2 (en) * 2003-05-22 2008-09-16 Stults John T Systems and methods for discovery and analysis of markers
SE0301639D0 (en) 2003-06-06 2003-06-06 Biacore Ab Method and apparatus for characterization of intercations
US7373255B2 (en) 2003-06-06 2008-05-13 Biacore Ab Method and system for determination of molecular interaction parameters
US7344681B1 (en) 2003-06-06 2008-03-18 Sandia Corporation Planar micromixer
WO2004113877A1 (en) * 2003-06-13 2004-12-29 The General Hospital Corporation Microfluidic systems for size based removal of red blood cells and platelets from blood
US20050103713A1 (en) * 2003-07-30 2005-05-19 Ramsey J. M. Devices with small-scale channels and the fabrication thereof by etching
WO2005019419A2 (en) * 2003-07-31 2005-03-03 Singulex, Inc. Co-detection of single polypeptide and polynucleotide molecules
JP4996248B2 (en) 2003-07-31 2012-08-08 ハンディーラブ インコーポレイテッド Processing of particle-containing samples
CA2536360C (en) * 2003-08-28 2013-08-06 Celula, Inc. Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
EP1667581A1 (en) * 2003-09-01 2006-06-14 Inverness Medical Switzerland GmbH Sampling device with capillary action
US20050121324A1 (en) * 2003-09-05 2005-06-09 Caliper Life Sciences, Inc. Analyte injection system
US7316320B2 (en) * 2003-09-18 2008-01-08 Intel Corporation Sorting charged particles
ES2375962T3 (en) 2003-09-22 2012-03-07 Bioarray Solutions Ltd IMMOBILIZED SURFACE POLYELECTROLYTE WITH MULTIPLE FUNCTIONAL GROUPS ABLE TO JOIN COVALENTLY TO BIOMOLECULES.
US7537807B2 (en) 2003-09-26 2009-05-26 Cornell University Scanned source oriented nanofiber formation
US20050232817A1 (en) * 2003-09-26 2005-10-20 The University Of Cincinnati Functional on-chip pressure generator using solid chemical propellant
US20080021674A1 (en) * 2003-09-30 2008-01-24 Robert Puskas Methods for Enhancing the Analysis of Particle Detection
US7718133B2 (en) 2003-10-09 2010-05-18 3M Innovative Properties Company Multilayer processing devices and methods
CA2899287A1 (en) 2003-10-28 2005-05-12 Bioarray Solutions Ltd. Optimization of gene expression analysis using immobilized capture probes
US20050095602A1 (en) * 2003-11-04 2005-05-05 West Jason A. Microfluidic integrated microarrays for biological detection
US8030092B2 (en) * 2003-11-07 2011-10-04 Princeton Biochemicals, Inc. Controlled electrophoresis method
EP1706735B1 (en) * 2003-11-07 2017-01-04 Princeton Biochemicals, Inc. Multi-dimensional electrophoresis apparatus
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7588671B2 (en) 2003-11-21 2009-09-15 Ebara Corporation Microfluidic treatment method and device
US7329391B2 (en) * 2003-12-08 2008-02-12 Applera Corporation Microfluidic device and material manipulating method using same
DE10350484B4 (en) * 2003-12-20 2006-02-02 Ehrfeld Mikrotechnik Bts Gmbh Method and device for labeling proteins
US20050161327A1 (en) * 2003-12-23 2005-07-28 Michele Palmieri Microfluidic device and method for transporting electrically charged substances through a microchannel of a microfluidic device
KR20070094669A (en) * 2003-12-23 2007-09-20 칼리퍼 라이프 사이언시즈, 인크. Analyte injection system
JP2005227745A (en) * 2004-01-14 2005-08-25 Seiko Epson Corp Liquid crystal display device and electronic apparatus
DE602004013045T2 (en) * 2004-01-29 2008-07-17 Agilent Technologies, Inc. - a Delaware Corporation -, Santa Clara MIXING LIQUIDS
US7867194B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
WO2005080605A2 (en) 2004-02-19 2005-09-01 Helicos Biosciences Corporation Methods and kits for analyzing polynucleotide sequences
EP1757357B1 (en) * 2004-03-23 2013-04-24 Japan Science and Technology Agency Method and device for producing micro-droplets
US20050224350A1 (en) * 2004-03-30 2005-10-13 Intel Corporation Counter electroseparation device with integral pump and sidearms for improved control and separation
EP1757926B1 (en) * 2004-04-28 2019-04-10 ARKRAY, Inc. Electrophoretic chip and electrophoretic device having the same
US20050244973A1 (en) * 2004-04-29 2005-11-03 Predicant Biosciences, Inc. Biological patterns for diagnosis and treatment of cancer
US7273590B2 (en) * 2004-04-29 2007-09-25 Industrial Technology Research Institute gravity-driven apparatus and method for control of microfluidic devices
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
AU2005241080B2 (en) 2004-05-03 2011-08-11 Handylab, Inc. Processing polynucleotide-containing samples
DE602004023001D1 (en) * 2004-05-13 2009-10-15 Agilent Technologies Inc CONTROL OF THE SAMPLE APPLICATION OF A PREPARATION
US8496875B2 (en) 2004-05-21 2013-07-30 Caliper Life Sciences, Inc. Automated system for handling microfluidic devices
US8974652B2 (en) * 2004-05-28 2015-03-10 Board Of Regents, The University Of Texas System Programmable fluidic processors
US7799553B2 (en) * 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
EP1755783A1 (en) * 2004-06-04 2007-02-28 Crystal Vision Microsystems LLC Device and process for continuous on-chip flow injection analysis
TWI291025B (en) * 2004-06-29 2007-12-11 Univ Nat Cheng Kung An integral micro-dialysis electrophoresis chip having on-line labeling function and the analysis method thereof
EP1618955B1 (en) * 2004-07-19 2010-12-22 STMicroelectronics Srl Biological molecules detection device having increased detection rate, and method for quick detection of biological molecules
US20060022130A1 (en) * 2004-07-29 2006-02-02 Predicant Biosciences, Inc., A Delaware Corporation Microfluidic devices and methods with integrated electrical contact
US7848889B2 (en) 2004-08-02 2010-12-07 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US7211184B2 (en) * 2004-08-04 2007-05-01 Ast Management Inc. Capillary electrophoresis devices
US7618524B1 (en) 2004-08-10 2009-11-17 Sandia Corporation Polymeric salt bridges for conducting electric current in microfluidic devices
JP2008513022A (en) 2004-09-15 2008-05-01 マイクロチップ バイオテクノロジーズ, インコーポレイテッド Microfluidic device
US20060060769A1 (en) 2004-09-21 2006-03-23 Predicant Biosciences, Inc. Electrospray apparatus with an integrated electrode
US7828954B2 (en) * 2004-09-21 2010-11-09 Gamida For Life B.V. Electrode based patterning of thin film self-assembled nanoparticles
US7524672B2 (en) * 2004-09-22 2009-04-28 Sandia Corporation Microfluidic microarray systems and methods thereof
US7550267B2 (en) 2004-09-23 2009-06-23 University Of Washington Microscale diffusion immunoassay utilizing multivalent reactants
US7592139B2 (en) 2004-09-24 2009-09-22 Sandia National Laboratories High temperature flow-through device for rapid solubilization and analysis
US7591883B2 (en) 2004-09-27 2009-09-22 Cornell Research Foundation, Inc. Microfiber supported nanofiber membrane
US7572640B2 (en) * 2004-09-28 2009-08-11 Singulex, Inc. Method for highly sensitive detection of single protein molecules labeled with fluorescent moieties
US8685711B2 (en) * 2004-09-28 2014-04-01 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
US9040305B2 (en) * 2004-09-28 2015-05-26 Singulex, Inc. Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry
EP1805500A4 (en) * 2004-09-28 2008-05-07 Singulex Inc System and method for spectroscopic analysis of single particles
US20060065532A1 (en) * 2004-09-30 2006-03-30 Matthias Stiene Microfluidic analytical system with accessible electrically conductive contact pads
US7534097B2 (en) * 2004-10-15 2009-05-19 Nanyang Technological University Method and apparatus for controlling multi-fluid flow in a micro channel
EP1805318B1 (en) 2004-10-27 2014-09-03 Cepheid Closed-system multi-stage nucleic acid amplification reactions
US20060094004A1 (en) * 2004-10-28 2006-05-04 Akihisa Nakajima Micro-reactor, biological material inspection device, and microanalysis system
KR100571845B1 (en) * 2004-10-28 2006-04-17 삼성전자주식회사 Method of mixing fluids and mixing apparatus using the method
US20060205061A1 (en) * 2004-11-24 2006-09-14 California Institute Of Technology Biosensors based upon actuated desorption
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
AU2006208124B2 (en) * 2005-01-25 2011-09-15 Massachusetts Institute Of Technology Electrokinetic concentration device and methods of use thereof
PL1859330T3 (en) 2005-01-28 2013-01-31 Univ Duke Apparatuses and methods for manipulating droplets on a printed circuit board
US20070017812A1 (en) * 2005-03-30 2007-01-25 Luc Bousse Optimized Sample Injection Structures in Microfluidic Separations
US20060246493A1 (en) 2005-04-04 2006-11-02 Caliper Life Sciences, Inc. Method and apparatus for use in temperature controlled processing of microfluidic samples
US20070026415A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026413A1 (en) * 2005-07-29 2007-02-01 Mehmet Toner Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026417A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026414A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
EP1872111A2 (en) 2005-04-19 2008-01-02 The President and Fellows of Harvard College Fluidic structures including meandering and wide channels
US20070031819A1 (en) * 2005-04-26 2007-02-08 University Of Washington Microfluidic systems for biological and molecular analysis and methods thereof
WO2006121510A2 (en) 2005-05-09 2006-11-16 Theranos, Inc. Point-of-care fluidic systems and uses thereof
JP2006317357A (en) * 2005-05-13 2006-11-24 Shimadzu Corp Microchip electrophoretic method and microchip electrophoretic apparatus
US8206974B2 (en) 2005-05-19 2012-06-26 Netbio, Inc. Ruggedized apparatus for analysis of nucleic acid and proteins
FR2887241B1 (en) * 2005-06-15 2008-01-11 Rhodia Chimie Sa MICROFLUIDIC FLOW DEVICE FOR DETERMINING PARAMETERS OF PHYSICAL AND / OR CHEMICAL TRANSFORMATION AND USE THEREOF
EP1890803B1 (en) 2005-06-15 2010-07-21 Rhodia Opérations Microfluidic circulating device for determining parameters of a physical and/or chemical transformation, and use thereof
US20070014699A1 (en) 2005-06-23 2007-01-18 Beckman Coulter, Inc, Methods and apparatus for improving the sensitivity of capillary zone electrophoresis
US20070128083A1 (en) * 2005-07-18 2007-06-07 U.S. Genomics, Inc. Microfluidic methods and apparatuses for sample preparation and analysis
US8921102B2 (en) 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20090181421A1 (en) * 2005-07-29 2009-07-16 Ravi Kapur Diagnosis of fetal abnormalities using nucleated red blood cells
US20070026416A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070059680A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
EP1754536B1 (en) * 2005-08-16 2008-12-24 Agilent Technologies, Inc. Fluid injection system
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
CN101300352B (en) 2005-09-01 2013-03-20 佳能美国生命科学公司 Method and molecular diagnostic device for detection, analysis and identification of genomic DNA
DE602006011756D1 (en) * 2005-09-02 2010-03-04 Wako Pure Chem Ind Ltd COMPLEX FORMING AND SEPARATION METHOD
US20070059719A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
US20070059774A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
US20070059718A1 (en) * 2005-09-15 2007-03-15 Mehmet Toner Systems and methods for enrichment of analytes
US20070059781A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
US20070059683A1 (en) * 2005-09-15 2007-03-15 Tom Barber Veterinary diagnostic system
US20070059716A1 (en) * 2005-09-15 2007-03-15 Ulysses Balis Methods for detecting fetal abnormality
US7988839B2 (en) 2005-09-20 2011-08-02 University Of Louisville Research Foundation, Inc. Capillary electrophoresis systems and methods
CN1319848C (en) * 2005-09-22 2007-06-06 上海交通大学 Array type piezoelectricity-driven multi-cavity micro-mixer
CN101317086B (en) * 2005-10-04 2013-08-14 海德威技术公司 Microfluidic detection of analytes
US20070199821A1 (en) * 2005-10-05 2007-08-30 Chow Andrea W Automated two-dimensional gel electrophoresis
US7727371B2 (en) * 2005-10-07 2010-06-01 Caliper Life Sciences, Inc. Electrode apparatus for use with a microfluidic device
EP1945815A4 (en) * 2005-10-11 2009-02-18 Handylab Inc Polynucleotide sample preparation device
US20070099288A1 (en) * 2005-11-02 2007-05-03 Affymetrix, Inc. Microfluidic Methods, Devices, and Systems for Fluid Handling
US20080038714A1 (en) * 2005-11-02 2008-02-14 Affymetrix, Inc. Instrument to Pneumatically Control Lab Cards and Method Thereof
US20080311585A1 (en) * 2005-11-02 2008-12-18 Affymetrix, Inc. System and method for multiplex liquid handling
US8007267B2 (en) 2005-11-02 2011-08-30 Affymetrix, Inc. System and method for making lab card by embossing
US8075852B2 (en) 2005-11-02 2011-12-13 Affymetrix, Inc. System and method for bubble removal
DE102005055866A1 (en) * 2005-11-23 2007-05-24 Hte Ag The High Throughput Experimentation Company Continuous reaction of two liquid, mutually immiscible phases especially in Suzuki (hetero)aryl-(hetero)aryl coupling reactions involves flowing components through packed bed reactor
EP1969351A4 (en) * 2005-12-16 2010-12-29 Univ Indiana Res & Tech Corp Sub-micron surface plasmon resonance sensor systems
US8355136B2 (en) 2005-12-16 2013-01-15 Indiana University Research And Technology Corporation Sub-micron surface plasmon resonance sensor systems
EP1963819A2 (en) * 2005-12-22 2008-09-03 Honeywell International, Inc. Portable sample analyzer system
US7749365B2 (en) 2006-02-01 2010-07-06 IntegenX, Inc. Optimized sample injection structures in microfluidic separations
WO2008030631A2 (en) 2006-02-03 2008-03-13 Microchip Biotechnologies, Inc. Microfluidic devices
US7815868B1 (en) * 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US7766033B2 (en) 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US7528368B2 (en) * 2006-03-23 2009-05-05 Protea Biosciences, Inc. Electrospray ionization process and add-on device with sample injection tip
US7641778B2 (en) * 2006-03-23 2010-01-05 Protea Biosciences, Inc. Gel electroelution and sample separation devices and associated processes
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
DK2001990T3 (en) 2006-03-24 2016-10-03 Handylab Inc Integrated microfluidic sample processing system and method for its use
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
WO2007114947A2 (en) 2006-04-04 2007-10-11 Singulex, Inc. Highly sensitive system and methods for analysis of troponin
EP3156799B1 (en) 2006-04-04 2024-01-24 Novilux, LLC Analyzer and method for highly sensitive detection of analytes
US7838250B1 (en) 2006-04-04 2010-11-23 Singulex, Inc. Highly sensitive system and methods for analysis of troponin
US8900828B2 (en) * 2006-05-01 2014-12-02 Cepheid Methods and apparatus for sequential amplification reactions
US7641860B2 (en) 2006-06-01 2010-01-05 Nanotek, Llc Modular and reconfigurable multi-stage microreactor cartridge apparatus
US7998418B1 (en) 2006-06-01 2011-08-16 Nanotek, Llc Evaporator and concentrator in reactor and loading system
WO2007146677A2 (en) * 2006-06-06 2007-12-21 Daniel Armstrong Electrokinetic sterility testing device
US8119352B2 (en) * 2006-06-20 2012-02-21 Cepheld Multi-stage amplification reactions by control of sequence replication times
US20080007838A1 (en) * 2006-07-07 2008-01-10 Omnitech Partners, Inc. Field-of-view indicator, and optical system and associated method employing the same
US7854902B2 (en) * 2006-08-23 2010-12-21 Nanotek, Llc Modular and reconfigurable multi-stage high temperature microreactor cartridge apparatus and system for using same
US8366897B2 (en) * 2006-10-04 2013-02-05 National Institute Of Standards And Technology Gradient elution electrophoresis and detectorless electrophoresis apparatus
US7807454B2 (en) 2006-10-18 2010-10-05 The Regents Of The University Of California Microfluidic magnetophoretic device and methods for using the same
WO2008052138A2 (en) 2006-10-25 2008-05-02 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated dna analysis system using same
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
US7600413B2 (en) * 2006-11-29 2009-10-13 Schlumberger Technology Corporation Gas chromatography system architecture
EP2677309B9 (en) 2006-12-14 2014-11-19 Life Technologies Corporation Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8999636B2 (en) 2007-01-08 2015-04-07 Toxic Report Llc Reaction chamber
JP5016683B2 (en) 2007-01-17 2012-09-05 アジレント・テクノロジーズ・インク Microfluidic chip having side openings for fluid introduction
US20080245740A1 (en) * 2007-01-29 2008-10-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic methods
US9046192B2 (en) 2007-01-31 2015-06-02 The Charles Stark Draper Laboratory, Inc. Membrane-based fluid control in microfluidic devices
KR20100028526A (en) * 2007-02-05 2010-03-12 마이크로칩 바이오테크놀로지스, 인크. Microfluidic and nanofluidic devices, systems, and applications
WO2008118808A1 (en) 2007-03-23 2008-10-02 Advion Bioscience, Inc. Liquid chromatography-mass spectrometry
WO2008124104A1 (en) 2007-04-04 2008-10-16 Network Biosystems Inc. Integrated nucleic acid analysis
EP2149050A2 (en) 2007-04-27 2010-02-03 The Regents Of The University Of California Device and methods for detection of airborne agents
EP2803992B1 (en) * 2007-04-27 2021-02-17 ARKRAY, Inc. Sample analyzing method by capillary electrophoresis method
KR100902093B1 (en) * 2007-05-23 2009-06-09 인하대학교 산학협력단 Optical Measurement Method of Size and Number of Liquid Droplet/Plug or Micro-particle Using Visible Range Light in Microchannel
ATE554859T1 (en) * 2007-05-24 2012-05-15 Univ California INTEGRATED FLUIDIC DEVICES WITH MAGNETIC SORTING
TWI322032B (en) * 2007-06-20 2010-03-21 Nat Univ Chung Cheng Microfluid mixer
US8324372B2 (en) 2007-07-13 2012-12-04 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
JP2010533840A (en) * 2007-07-13 2010-10-28 ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニヴァーシティ Methods and apparatus using electric fields for improved biological assays
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
WO2009015296A1 (en) 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
WO2009021233A2 (en) * 2007-08-09 2009-02-12 Advanced Liquid Logic, Inc. Pcb droplet actuator fabrication
CN104307581B (en) * 2007-08-09 2017-04-12 诺思可有限公司 Methods and devices for correlated, multi-parameter single cell measurements and recovery of remnant biological material
KR100894547B1 (en) * 2007-08-10 2009-04-24 재단법인서울대학교산학협력재단 Particle focusing apparatus and method for focusing particles by using the same
JP2010536565A (en) * 2007-08-23 2010-12-02 シンベニオ・バイオシステムズ・インコーポレーテッド Magnetic sorting system for traps for target species
WO2009029550A2 (en) * 2007-08-24 2009-03-05 Singulex, Inc. Highly sensitive system and methods for analysis of prostate specific antigen (psa)
US8029743B2 (en) 2007-09-19 2011-10-04 General Electric Company Microfluidic device with vertical injection aperture
US7946155B2 (en) * 2007-09-19 2011-05-24 Albion Laboratories, Inc. Method for quantitatively determining unbound metal in formulations containing chelates
DE602007007927D1 (en) 2007-11-05 2010-09-02 Agilent Technologies Inc Freezing a microfluidic chip
WO2009059430A1 (en) * 2007-11-07 2009-05-14 The University Of British Columbia Microfluidic device and method of using same
CA2709217C (en) 2007-12-19 2021-01-05 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US7740747B2 (en) * 2007-12-28 2010-06-22 General Electric Company Injection method for microfluidic chips
US20090253181A1 (en) * 2008-01-22 2009-10-08 Microchip Biotechnologies, Inc. Universal sample preparation system and use in an integrated analysis system
CN102016552A (en) * 2008-03-05 2011-04-13 神谷来克斯公司 Methods and compositions for highly sensitive detection of molecules
WO2009117611A2 (en) * 2008-03-19 2009-09-24 Cynvenio Biosystems, Llc Trapping magnetic cell sorting system
WO2009119698A1 (en) * 2008-03-24 2009-10-01 日本電気株式会社 Flow passage control mechanism for microchip
US20090250345A1 (en) * 2008-04-03 2009-10-08 Protea Biosciences, Inc. Microfluidic electroelution devices & processes
US20090250347A1 (en) * 2008-04-03 2009-10-08 Protea Biosciences, Inc. Microfluidic devices & processes for electrokinetic transport
EP2271919A1 (en) * 2008-04-16 2011-01-12 Cynvenio Biosystems, Inc. Magnetic separation system with pre and post processing modules
WO2009147554A1 (en) * 2008-05-27 2009-12-10 Koninklijke Philips Electronics N. V. Isoelectric focusing biochip
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US8436990B2 (en) 2008-07-22 2013-05-07 Arkray, Inc. Microchip and analyzing apparatus
CN102047104B (en) * 2008-07-22 2014-09-03 爱科来株式会社 Apparatus and method for analysis by capillary electrophoretic method
DE102008038114B4 (en) 2008-08-18 2018-08-02 Karlsruher Institut für Technologie A method for the spatial separation and for the separate detection of cations and anions, which are located in an analyte
EP2163305A1 (en) * 2008-09-05 2010-03-17 INSTITUT FÜR MIKROTECHNIK MAINZ GmbH Device and process for rapid isolation of a compound in a sample
GB2464183A (en) * 2008-09-19 2010-04-14 Singulex Inc Sandwich assay
US8361716B2 (en) 2008-10-03 2013-01-29 Pathogenetix, Inc. Focusing chamber
US8377277B2 (en) 2008-10-22 2013-02-19 General Electric Company System and method for performing microfluidic manipulation
US8546128B2 (en) 2008-10-22 2013-10-01 Life Technologies Corporation Fluidics system for sequential delivery of reagents
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US11951474B2 (en) 2008-10-22 2024-04-09 Life Technologies Corporation Fluidics systems for sequential delivery of reagents
US7740748B2 (en) 2008-10-27 2010-06-22 General Electric Company Electrophoresis system and method
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
CN104195227B (en) 2008-11-07 2017-04-12 适应生物技术公司 Methods of monitoring conditions by sequence analysis
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9528160B2 (en) 2008-11-07 2016-12-27 Adaptive Biotechnolgies Corp. Rare clonotypes and uses thereof
US9365901B2 (en) 2008-11-07 2016-06-14 Adaptive Biotechnologies Corp. Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia
US9506119B2 (en) 2008-11-07 2016-11-29 Adaptive Biotechnologies Corp. Method of sequence determination using sequence tags
US7927476B2 (en) 2008-12-22 2011-04-19 General Electric Company Injection method for microfluidic chips
FR2940450B1 (en) * 2008-12-22 2011-02-18 Centre Nat Rech Scient DEVICE AND METHOD FOR STUDYING AN ACOUSTIC WAVE STUDY AREA
US8448499B2 (en) 2008-12-23 2013-05-28 C A Casyso Ag Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method
WO2010077322A1 (en) 2008-12-31 2010-07-08 Microchip Biotechnologies, Inc. Instrument with microfluidic chip
EP2387627B1 (en) 2009-01-15 2016-03-30 Adaptive Biotechnologies Corporation Adaptive immunity profiling and methods for generation of monoclonal antibodies
WO2010118427A1 (en) 2009-04-10 2010-10-14 Canon U.S. Life Sciences, Inc. Fluid interface cartridge for a microfluidic chip
WO2010135382A1 (en) * 2009-05-18 2010-11-25 Brigham Young University Integrated microfluidic device for serum biomarker quantitation using either standard addition or a calibration curve
AU2010249678B2 (en) * 2009-05-19 2014-08-28 The Regents Of The University Of California Multi-directional microfluidic devices and methods
WO2010141326A1 (en) 2009-06-02 2010-12-09 Integenx Inc. Fluidic devices with diaphragm valves
WO2010141131A1 (en) 2009-06-04 2010-12-09 Lockheed Martin Corporation Multiple-sample microfluidic chip for dna analysis
EP3586945A3 (en) 2009-06-05 2020-03-04 IntegenX Inc. Universal sample preparation system and use in an integrated analysis system
US8450069B2 (en) * 2009-06-08 2013-05-28 Singulex, Inc. Highly sensitive biomarker panels
WO2010144745A2 (en) * 2009-06-10 2010-12-16 Cynvenio Biosystems, Inc. Sheath flow devices and methods
JP2012529908A (en) 2009-06-15 2012-11-29 ネットバイオ・インコーポレーテッド Improved method for quantification of forensic DNA
RU2539032C2 (en) 2009-06-25 2015-01-10 Фред Хатчинсон Кансэр Рисёч Сентер Method for measuring artificial immunity
EP4019977A1 (en) 2009-06-26 2022-06-29 President and Fellows of Harvard College Fluid injection
US20150160171A1 (en) * 2009-09-23 2015-06-11 Abt Molecular Imaging, Inc. Automated Quality Control System for Radiopharmaceuticals
US20130130309A1 (en) * 2009-09-23 2013-05-23 Abt Molecular Imaging Inc Radiopharmaceutical Production System and Quality Control System Utilizing High Performance Liquid Chromatography
US20110114190A1 (en) * 2009-11-16 2011-05-19 The Hong Kong University Of Science And Technology Microfluidic droplet generation and/or manipulation with electrorheological fluid
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8187979B2 (en) * 2009-12-23 2012-05-29 Varian Semiconductor Equipment Associates, Inc. Workpiece patterning with plasma sheath modulation
US8398418B2 (en) 2010-01-07 2013-03-19 Life Technologies Corporation Electronic connector having a clamping member urging a flow cell toward an electrical circuitry with an electrically conductive membrane disposed in between
WO2011106098A2 (en) 2010-02-25 2011-09-01 Advanced Microlabs, Llc Microfluidic interface for a microchip
US8974651B2 (en) 2010-04-17 2015-03-10 C.C. Imex Illuminator for visualization of fluorophores
KR101744339B1 (en) * 2010-05-03 2017-06-08 삼성전자주식회사 Surface Acoustic Wave Sensor Device Including Target Biomolecule Isolation Component
AU2011249908A1 (en) 2010-05-06 2012-11-22 Singulex, Inc. Methods for diagnosing, staging, predicting risk for developing and identifying treatment responders for rheumatoid arthritis
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
CN103154718B (en) 2010-06-30 2015-09-23 生命科技公司 The electric charge accumulation circuit of sensing ion and method
CN103221810B (en) 2010-08-18 2016-08-03 生命科技股份有限公司 Immersion coating for the micropore of electrochemical detection device
US20120045786A1 (en) * 2010-08-19 2012-02-23 Stith Curtis W Opto-fluidic microscope diagnostic system
US8763642B2 (en) 2010-08-20 2014-07-01 Integenx Inc. Microfluidic devices with mechanically-sealed diaphragm valves
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
AU2011315951B2 (en) 2010-10-15 2015-03-19 Lockheed Martin Corporation Micro fluidic optic design
WO2012071472A2 (en) * 2010-11-23 2012-05-31 The Regents Of The University Of California Multi-directional microfluidic devices comprising a pan-capture binding region and methods of using the same
US9029169B2 (en) 2010-12-03 2015-05-12 The Regents Of The University Of California Protein renaturation microfluidic devices and methods of making and using the same
EP2659408B1 (en) 2010-12-29 2019-03-27 Life Technologies Corporation Time-warped background signal for sequencing-by-synthesis operations
WO2012092515A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Methods, systems, and computer readable media for nucleic acid sequencing
EP2658999B1 (en) 2010-12-30 2019-03-13 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
US20130060482A1 (en) 2010-12-30 2013-03-07 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
WO2012106501A1 (en) 2011-02-02 2012-08-09 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
EP2490020A1 (en) 2011-02-18 2012-08-22 Koninklijke Philips Electronics N.V. Measurement chip, microfluidic device and method of measurement chip manufacture
EP2490005A1 (en) * 2011-02-18 2012-08-22 Koninklijke Philips Electronics N.V. Microfluidic resistance network and microfluidic device
BR112013026451B1 (en) 2011-04-15 2021-02-09 Becton, Dickinson And Company system and method to perform molecular diagnostic tests on several samples in parallel and simultaneously amplification in real time in plurality of amplification reaction chambers
US9459239B2 (en) * 2011-07-08 2016-10-04 Agilent Technologies, Inc. Intake monitoring for accurate proportioning
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
US11053535B2 (en) 2011-09-12 2021-07-06 The University Of North Carolina At Chapel Hill Devices with a fluid transport nanochannel intersected by a fluid sensing nanochannel and related methods
WO2013049706A1 (en) 2011-09-30 2013-04-04 Becton, Dickinson And Company Unitized reagent strip
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
EP2761304A4 (en) 2011-09-30 2015-01-28 Univ California Microfluidic devices and methods for assaying a fluid sample using the same
US20150136604A1 (en) 2011-10-21 2015-05-21 Integenx Inc. Sample preparation, processing and analysis systems
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
AU2012325791B2 (en) 2011-10-21 2018-04-05 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
WO2013067202A1 (en) 2011-11-04 2013-05-10 Handylab, Inc. Polynucleotide sample preparation device
CA2858070C (en) 2011-12-09 2018-07-10 Adaptive Biotechnologies Corporation Diagnosis of lymphoid malignancies and minimal residual disease detection
US9499865B2 (en) 2011-12-13 2016-11-22 Adaptive Biotechnologies Corp. Detection and measurement of tissue-infiltrating lymphocytes
US9194840B2 (en) 2012-01-19 2015-11-24 Life Technologies Corporation Sensor arrays and methods for making same
CN104204812B (en) 2012-02-03 2018-01-05 贝克顿·迪金森公司 The external file that compatibility determines between distributing and test for molecule diagnostic test
EP3591408A1 (en) 2012-02-10 2020-01-08 The University of North Carolina at Chapel Hill Devices with fluidic nanofunnels, associated methods, fabrication and analysis systems
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
ES2662128T3 (en) 2012-03-05 2018-04-05 Adaptive Biotechnologies Corporation Determination of paired immune receptor chains from the frequency of matching subunits
AU2013204332B2 (en) 2012-04-16 2015-07-16 Commonwealth Scientific And Industrial Research Organisation Methods and systems for detecting an analyte or classifying a sample
US9028776B2 (en) 2012-04-18 2015-05-12 Toxic Report Llc Device for stretching a polymer in a fluid sample
US8685708B2 (en) 2012-04-18 2014-04-01 Pathogenetix, Inc. Device for preparing a sample
ES2582554T3 (en) 2012-05-08 2016-09-13 Adaptive Biotechnologies Corporation Compositions and method for measuring and calibrating amplification bias in multiplexed PCR reactions
US9646132B2 (en) 2012-05-11 2017-05-09 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
WO2013191908A1 (en) * 2012-06-20 2013-12-27 The University Of North Carolina At Chapel Hill Integrated sample processing for electrospray ionization devices
CA2886647A1 (en) 2012-10-01 2014-04-10 Adaptive Biotechnologies Corporation Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization
CN104755918B (en) * 2012-10-25 2017-10-24 皇家飞利浦有限公司 Method and apparatus for sensing liquid
WO2014064551A1 (en) * 2012-10-25 2014-05-01 Koninklijke Philips N.V. Method and device for sensing a liquid
US9304334B2 (en) * 2013-01-21 2016-04-05 Photronics, Inc. Microfluidic thermoptic energy processor
EP2962117B1 (en) 2013-02-28 2019-10-09 The University of North Carolina At Chapel Hill Nanofluidic devices with integrated components for the controlled capture, trapping, and transport of macromolecules and related methods of analysis
US20160008812A1 (en) * 2013-02-28 2016-01-14 Rie Kobayashi Fluidic device and fabrication method thereof, and thermal transfer medium for fluidic device fabrication
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
NZ711033A (en) 2013-03-13 2020-03-27 Univ North Carolina Chapel Hill Nanofluidic devices for the rapid mapping of whole genomes and related systems and methods of analysis
CN105264366B (en) 2013-03-15 2019-04-16 生命科技公司 Chemical sensor with consistent sensor surface area
US10933417B2 (en) 2013-03-15 2021-03-02 Nanobiosym, Inc. Systems and methods for mobile device analysis of nucleic acids and proteins
US9671368B2 (en) 2013-05-10 2017-06-06 The Regents Of The University Of California Two-dimensional microfluidic devices and methods of using the same
US9708657B2 (en) 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
EP2833136A1 (en) * 2013-07-31 2015-02-04 University College Cork Opto-fluidic microsystem and method
EP3053072B1 (en) 2013-10-04 2024-02-21 Life Technologies Corporation Methods and systems for modeling phasing effects in sequencing using termination chemistry
GB201320146D0 (en) 2013-11-14 2014-01-01 Cambridge Entpr Ltd Fluidic separation and detection
CN114471756B (en) 2013-11-18 2024-04-16 尹特根埃克斯有限公司 Cartridge and instrument for sample analysis
US9476853B2 (en) 2013-12-10 2016-10-25 Life Technologies Corporation System and method for forming microwells
KR101536164B1 (en) * 2013-12-18 2015-07-13 한국기초과학지원연구원 Derivatization Reaction Gas Chromatographic Chip
US10421072B2 (en) 2014-01-21 2019-09-24 The Board Of Trustees Of The University Of Illinois Wettability patterned substrates for pumpless liquid transport and drainage
CA2941612A1 (en) 2014-03-05 2015-09-11 Adaptive Biotechnologies Corporation Methods using randomer-containing synthetic molecules
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
US9835587B2 (en) 2014-04-01 2017-12-05 C.C. Imex Electrophoresis running tank assembly
ES2777529T3 (en) 2014-04-17 2020-08-05 Adaptive Biotechnologies Corp Quantification of adaptive immune cell genomes in a complex mixture of cells
WO2015179098A1 (en) 2014-05-21 2015-11-26 Integenx Inc. Fluidic cartridge with valve mechanism
AU2015330841B2 (en) 2014-10-10 2019-08-15 Quantapore, Inc. Nanopore-based polymer analysis with mutually-quenching fluorescent labels
US10676787B2 (en) 2014-10-13 2020-06-09 Life Technologies Corporation Methods, systems, and computer-readable media for accelerated base calling
CN113092563A (en) 2014-10-22 2021-07-09 尹特根埃克斯有限公司 Systems and methods for sample preparation, processing, and analysis
CN104297327B (en) * 2014-10-29 2017-01-18 广东国盛医学科技股份有限公司 Method for analyzing fine sub-fractions of serum lipoprotein subtype by adopting micro-fluidic chip
US10392663B2 (en) 2014-10-29 2019-08-27 Adaptive Biotechnologies Corp. Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from a large number of samples
US10246701B2 (en) 2014-11-14 2019-04-02 Adaptive Biotechnologies Corp. Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture
US9255905B1 (en) 2015-05-11 2016-02-09 The University Of North Carolina At Chapel Hill Pressure driven microfluidic injection for chemical separations
US10734216B2 (en) 2015-05-11 2020-08-04 The University Of North Carolina At Chapel Hill Pressure driven fluidic injection for chemical separations by electrophoresis
US9606082B2 (en) 2015-05-11 2017-03-28 The University Of North Carolina At Chapel Hill Pressure driven microfluidic injection for chemical separations
US10471428B2 (en) 2015-05-11 2019-11-12 The University Of North Carolina At Chapel Hill Fluidic devices with nanoscale manifolds for molecular transport, related systems and methods of analysis
US10035887B2 (en) * 2015-08-19 2018-07-31 Shimadzu Corporation Manufacturing method for nanoparticle
US9728387B2 (en) 2015-10-20 2017-08-08 The University Of North Carolina At Chapel Hill Solid phase extraction with capillary electrophoresis
US10564121B2 (en) * 2015-11-26 2020-02-18 Vladislav Dolnik Device and method for separation and analysis of trace and ultra-trace ionogenic compounds by isotachophoresis and zone electrophoresis on chip
AU2016365121B2 (en) 2015-11-30 2022-03-03 Intabio, Inc. Devices and methods for sample characterization
US10265699B2 (en) 2016-06-01 2019-04-23 The United States Of America, As Represented By The Secretary Of Commerce Vacuum compatible fluid sampler
CN106345543B (en) * 2016-09-13 2018-07-06 哈尔滨工业大学 A kind of microring array chip of the charge inducing electric osmose based on fixed potential
US11952612B2 (en) 2016-11-14 2024-04-09 Commonwealth Scientific And Industrial Research Organisation Protease sensor molecules
DE102016015171B4 (en) 2016-12-20 2021-04-01 Albert-Ludwigs-Universität Freiburg Analysis device with functionalized cryogels
DE102017108120A1 (en) 2017-04-13 2018-10-18 Laser-Laboratorium Göttingen e.V. analyzer
CN111164426B (en) 2017-08-08 2023-12-08 联邦科学技术研究组织 Carbohydrate sensor
WO2019103732A1 (en) * 2017-11-22 2019-05-31 Hewlett-Packard Development Company, L.P. Multizonal microfluidic devices
EP3746211A4 (en) 2018-01-29 2021-10-27 Intabio, Inc. Devices, methods and kits for sample characterization
SG11202011729UA (en) 2018-05-31 2020-12-30 Intabio Inc Software for microfluidic systems interfacing with mass spectrometry
US20210332351A1 (en) 2018-07-23 2021-10-28 Dna Script Massively Parallel Enzymatic Synthesis of Nucleic Acid Strands
EP3894593A2 (en) 2018-12-13 2021-10-20 DNA Script Direct oligonucleotide synthesis on cells and biomolecules
US20220356510A1 (en) 2019-01-03 2022-11-10 Dna Script One Pot Synthesis of Sets of Oligonucleotides
CN110044680B (en) * 2019-04-28 2024-02-23 宁波大学 Sample concentration device and method for capillary electrophoresis
WO2021026172A1 (en) 2019-08-05 2021-02-11 Seer, Inc. Systems and methods for sample preparation, data generation, and protein corona analysis
US11285484B2 (en) 2019-08-12 2022-03-29 Intabio, Llc Multichannel isoelectric focusing devices and high voltage power supplies
CN110567790B (en) * 2019-09-11 2021-11-05 南京信息工程大学 Micro-electrophoresis chip for online concentration and detection of charged small particles and detection method
CN111610247B (en) * 2020-05-27 2021-03-16 中国科学院地质与地球物理研究所 Method for quickly separating high-purity W from geological sample
GB2598113A (en) 2020-08-18 2022-02-23 Agilent Technologies Inc Fluidically coupling with elastic structure deformable by sealing element
KR20230142832A (en) 2021-01-08 2023-10-11 셀라노메, 인크. Devices and methods for analyzing biological samples

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120228A (en) * 1974-07-23 1976-02-18 Dainippon Toryo Kk Boseihifukusoseibutsu
US4370382A (en) * 1980-06-19 1983-01-25 Union Carbide Corporation Modified zinc-rich coatings
US4390403A (en) * 1981-07-24 1983-06-28 Batchelder J Samuel Method and apparatus for dielectrophoretic manipulation of chemical species
US5230781A (en) * 1984-03-29 1993-07-27 Li-Cor, Inc. Sequencing near infrared and infrared fluorescence labeled DNA for detecting using laser diodes
US5207880A (en) * 1984-03-29 1993-05-04 The Board Of Regents Of The University Of Nebraska DNA sequencing
US4675300A (en) * 1985-09-18 1987-06-23 The Board Of Trustees Of The Leland Stanford Junior University Laser-excitation fluorescence detection electrokinetic separation
US4680201A (en) * 1985-10-30 1987-07-14 Stellan Hjerten Coating for electrophoresis tube
GB2191110B (en) * 1986-06-06 1989-12-06 Plessey Co Plc Chromatographic separation device
US5112460A (en) * 1986-10-21 1992-05-12 Northeastern University High performance microcapillary gel electrophoresis
US4865706A (en) * 1986-10-21 1989-09-12 Northeastern University High performance microcapillary gel electrophoresis
US5132012A (en) * 1988-06-24 1992-07-21 Hitachi, Ltd. Liquid chromatograph
US4997536A (en) * 1988-07-06 1991-03-05 Beckman Instruments, Inc. Control of electrokinetic potential by treatment with redox agents
EP0356160A3 (en) * 1988-08-24 1991-09-11 The Board Of Trustees Of The Leland Stanford Junior University Capillary device
US4909919A (en) * 1988-11-22 1990-03-20 The Regents Of The University Of Michigan Velocity modulated capillary electrophoresis analysis system
US5089111A (en) * 1989-01-27 1992-02-18 Bio-Rad Laboratories, Inc. Electrophoretic sieving in gel-free media with dissolved polymers
US5229297A (en) * 1989-02-03 1993-07-20 Eastman Kodak Company Containment cuvette for PCR and method of use
US4996880A (en) * 1989-03-23 1991-03-05 Electric Power Research Institute, Inc. Operating turbine resonant blade monitor
US5096554A (en) * 1989-08-07 1992-03-17 Applied Biosystems, Inc. Nucleic acid fractionation by counter-migration capillary electrophoresis
US5274240A (en) * 1990-01-12 1993-12-28 The Regents Of The University Of California Capillary array confocal fluorescence scanner and method
US5073239A (en) * 1990-01-24 1991-12-17 Bio-Rad Laboratories, Inc. Fluid introduction into a capillary by electroendosmosis
US5141621A (en) * 1990-01-26 1992-08-25 The Board Of Trustees Of The Leland Stanford Junior University Capillary electrophoresis injection device and method
US5092973A (en) * 1990-01-26 1992-03-03 The Board Of Trustees Of The Leland Stanford Junior University Rectangular capillaries for capillary electrophoresis
US5750015A (en) * 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US5126022A (en) * 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
US5110431A (en) * 1990-02-28 1992-05-05 Applied Biosystems, Inc. On-capillary gap junction for fluorescence detection in capillary electrophoresis
US5307148A (en) * 1990-04-05 1994-04-26 Hitachi, Ltd. Fluorescence detection type electrophoresis apparatus
SE470347B (en) * 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Microstructure for fluid flow systems and process for manufacturing such a system
US5122248A (en) * 1990-05-18 1992-06-16 Northeastern University Pulsed field capillary electrophoresis
US5325170A (en) * 1990-05-31 1994-06-28 Thermo Instrument Systems Inc. Laser-based refractive index detector using backscatter
DE59105165D1 (en) * 1990-11-01 1995-05-18 Ciba Geigy Ag Device for the preparation or preparation of liquid samples for chemical analysis.
DE59108006D1 (en) * 1991-01-28 1996-08-22 Ciba Geigy Ag Device for the preparation of samples, in particular for analysis purposes
JPH04318181A (en) * 1991-04-17 1992-11-09 Nippon Paint Co Ltd Processing solution for aluminum or aluminum alloy
US5605662A (en) * 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
DE59108591D1 (en) * 1991-12-06 1997-04-10 Ciba Geigy Ag Electrophoretic separation device and electrophoretic separation process
US5288463A (en) * 1992-10-23 1994-02-22 Eastman Kodak Company Positive flow control in an unvented container
US5338427A (en) * 1993-02-26 1994-08-16 Biometric Imaging Inc. Single use separation cartridge for a capillary electrophoresis instrument
US5410030A (en) * 1993-04-05 1995-04-25 Molecular Probes, Inc. Dimers of unsymmetrical cyanine dyes containing pyridinium moieties
EP0620432B1 (en) * 1993-04-15 2004-08-25 Zeptosens AG Method for controlling sample introduction in microcolumn separation techniques and sampling device
US5429734A (en) * 1993-10-12 1995-07-04 Massachusetts Institute Of Technology Monolithic capillary electrophoretic device
US5571680A (en) * 1994-01-21 1996-11-05 Beckman Instruments, Inc. Homogeneous immunoassays and enzyme based assays of analytes using capillary electrophoresis
US5543026A (en) * 1994-02-07 1996-08-06 The Perkin-Elmer Corporation Real-time scanning fluorescence electrophoresis apparatus for the analysis of polynucleotide fragments
US5603351A (en) * 1995-06-07 1997-02-18 David Sarnoff Research Center, Inc. Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device
US5585069A (en) * 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5900130A (en) * 1997-06-18 1999-05-04 Alcara Biosciences, Inc. Method for sample injection in microchannel device
DE60044856D1 (en) * 1999-07-19 2010-09-30 Univ California Shaping of metals by laser shock blasting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis

Also Published As

Publication number Publication date
EP1162455B1 (en) 2007-10-03
ES2185709T3 (en) 2003-05-01
ATE374940T1 (en) 2007-10-15
DE69535608D1 (en) 2007-11-15
EP0775306A1 (en) 1997-05-28
US6033546A (en) 2000-03-07
US5858195A (en) 1999-01-12
US6010608A (en) 2000-01-04
DE69535608T2 (en) 2008-07-10
DE69528705T2 (en) 2003-07-03
US6342142B1 (en) 2002-01-29
EP1162455A1 (en) 2001-12-12
EP0775306B1 (en) 2002-10-30
US20030226755A1 (en) 2003-12-11
US20030205470A1 (en) 2003-11-06
CN1168720A (en) 1997-12-24
JPH10507516A (en) 1998-07-21
US6475363B1 (en) 2002-11-05
EP0775306A4 (en) 1997-10-22
CA2196429A1 (en) 1996-02-15
MX9700845A (en) 1997-09-30
KR100369497B1 (en) 2003-04-11
US20030226753A1 (en) 2003-12-11
WO1996004547A1 (en) 1996-02-15
EP1382962A1 (en) 2004-01-21
AU3150895A (en) 1996-03-04
US20040137445A1 (en) 2004-07-15
CN1052301C (en) 2000-05-10
ATE227023T1 (en) 2002-11-15
US20040009517A1 (en) 2004-01-15
US6001229A (en) 1999-12-14
DE69528705D1 (en) 2002-12-05
CA2196429C (en) 2001-05-08
US6010607A (en) 2000-01-04
KR970705020A (en) 1997-09-06
DK0775306T3 (en) 2002-11-25
US20030205469A1 (en) 2003-11-06
US20020008030A1 (en) 2002-01-24
AU701348B2 (en) 1999-01-28
JP4023819B2 (en) 2007-12-19
US20030150733A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
US6001229A (en) Apparatus and method for performing microfluidic manipulations for chemical analysis
Zhang et al. Narrow sample channel injectors for capillary electrophoresis on microchips
von Heeren et al. Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure
US6875403B2 (en) Method and apparatus for reproducible sample injection on microfabricated devices
Haswell Development and operating characteristics of micro flow injection based on electroosmotic flow
Harrison et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip
Fan et al. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections
Jacobson et al. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices
Manz et al. Miniaturization and chip technology. What can we expect?
Effenhauser Integrated chip-based microcolumn separation systems
US20020130044A1 (en) Mechanical control of fluids in micro-analytical devices
US7029561B2 (en) Fluidic temperature gradient focusing
Ramsey Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
Li et al. Microfluidic lab-on-a-chip
Ramsey Miniature chemical measurement systems
Baldock Development of Polymer and Glass Miniaturised Devices for Isotachophoresis
McCreedy Camilleri P (1998) Capillary Electrophoresis, Theory and Practice, 2nd edn, pp. 135d182. New York: CRC Press. Guzman NA (1993) Capillary Electrophoresis Technology, pp. 65d87, 693d704. New York: Marcel Dekker. Khaledi MG (1998) High-Performance Capillary Elec
Nikcevic Development of techniques and materials for microfluidic devices
Lin et al. MICROFABRICATED PMMA STRUCTURE FOR DNA PRECONCENTRATION AND ELECTROPHORESIS

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION