US20030236208A1 - Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides - Google Patents

Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides Download PDF

Info

Publication number
US20030236208A1
US20030236208A1 US10/307,005 US30700502A US2003236208A1 US 20030236208 A1 US20030236208 A1 US 20030236208A1 US 30700502 A US30700502 A US 30700502A US 2003236208 A1 US2003236208 A1 US 2003236208A1
Authority
US
United States
Prior art keywords
oligonucleotide
oligonucleotides
dna
alteration
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/307,005
Inventor
Eric Kmiec
Howard Gamper
Michael Rice
Jungsup Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Delaware
Original Assignee
University of Delaware
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Delaware filed Critical University of Delaware
Priority to US10/307,005 priority Critical patent/US20030236208A1/en
Assigned to UNIVERSITY OF DELAWARE reassignment UNIVERSITY OF DELAWARE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAMPER, HOWARD B., KIM, JUNGSUP, KMIEC, ERIC B., RICE, MICHAEL C.
Publication of US20030236208A1 publication Critical patent/US20030236208A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the technical field of the invention is oligonucleotide-directed repair or alteration of plant genetic information using novel chemically modified oligonucleotides.
  • a number of methods have been developed specifically to alter the genomic information of plants. These methods generally include the use of vectors such as, for example, T-DNA, carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate.
  • vectors such as, for example, T-DNA
  • transgene-containing vectors adds one or more exogenous copies of a gene in a usually random fashion at one or more integration sites of the plant's genome at some variable frequency.
  • the introduced gene may be foreign or may be derived from the host plant. Any gene which was originally present in the genome, which may be, for example, a normal allelic variant, mutated, defective, and/or functional copy of the introduced gene, is retained in the genome of the host plant.
  • RNA-DNA oligonucleotides requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant, animal or fungal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350.
  • RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene alteration, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result reduces the utility of such a molecule in methods designed for targeted gene alteration.
  • oligo- or poly-nucleotides which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide.
  • Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic.
  • Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251.
  • the utility of these oligonucleotides for directing targeted gene alteration is compromised by a high frequency of nonspecific base changes.
  • the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide.
  • Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.
  • Oligonucleotides designed for use in the targeted alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches.
  • antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome.
  • antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.
  • Artificial chromosomes can be useful for the screening purposes identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.
  • ARS Autonomous Replication Sequences
  • Centromeres Centromeres
  • Telomeres Telomeres
  • Yeast artificial chromosomes allow large segments of genomic DNA to be cloned and modified (Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)).
  • YACs Yeast artificial chromosomes
  • YACs have certain advantages over these alternative large capacity cloning vectors (Burke et al., Science, 236:806-812 (1987)).
  • the maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert size for a YAC.
  • YACs cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) (Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Sicilnou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)). BACs are based on the E.
  • coli fertility plasmid F factor
  • PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts.
  • the PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis (Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979)).
  • BACs have been developed for transformation of plants with high-molecular weight DNA using the T-DNA system (Hamilton, Gene 24:107-116 (1997); Frary & Hamilton, Transgenic Res. 10: 121-132 (2001)).
  • Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast system and a plant system.
  • the alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these.
  • Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating plants with desired phenotypes, including, for example, environmental stress tolerance, improved nutritional value, herbicide resistance, disease resistance, modified oil production, modified starch production, and altered floral morphology including selective sterility.
  • oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA in cells.
  • the target genomic DNA can be nuclear chromosomal DNA as well as plastid or mitochondrial chromosomal DNA.
  • the target DNA can also be a transgene present in the plant cell, including, for example, a previously introduced T-DNA.
  • the target plant DNA can also be extrachromosomal DNA present in plant or non-plant cells in various forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector.
  • MACs mammalian artificial chromosomes
  • PACs from P-1 vectors
  • yeast artificial chromosomes YACs
  • BACs bacterial artificial chromosomes
  • PLACs plant artificial chromosomes
  • episomal DNA including episomal DNA from an exogenous source such as a plasmid or recombinant vector.
  • the target DNA may be transcriptionally silent or active.
  • the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex.
  • the target DNA to be altered is the non-transcribed strand of a transcribed gene of a genomic DNA duplex.
  • nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748; Wengel, WO 00/66604; and Jakobsen & Koshkin, WO 01/25478 also allow specific targeted alteration of genetic information.
  • LNAs locked nucleic acids
  • xylo-LNAs xylo-LNAs
  • L-ribo-LNAs L-ribo-LNAs
  • the assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide.
  • Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide.
  • Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention.
  • the assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different plants or strains, or testing cells derived from different plants or strains, or plant cell lines.
  • a series of single-stranded oligonucleotides comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event.
  • the present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of plant genetic material, including gene mutation, targeted gene repair and gene knockout.
  • the oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base.
  • the oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity.
  • gene alterations that knockout a particular protein activity can be obtained using oligonucleotides designed to convert a codon in the coding region of the protein to a stop codon, thus prematurely terminating translation of the protein.
  • Oligonucleotides that introduce stop codons in the open-reading-frame of the protein are one embodiment of the invention. Generally, oligonucleotides that introduce stop codons early in the open-reading-frame of the protein are preferred. If the open-reading-frame contains more than one methionine, oligonucleotides that introduce stop codons after the second methionine are preferred.
  • oligonucleotides that introduce stop codons in exons after the alternative splice site are preferred.
  • the following table provides examples of codons that can be converted to stop codons by altering a single oligonucleotide. A skilled artisan could readily identify other codons that can be converted to stop codons by altering one, two or three of the base pairs in a given codon. Similarly, a skilled artisan could readily identify codons that can be converted to stop codons by a frameshift mutations that inserts or deletes one or two base pairs in the open-reading-frame.
  • stop codons can be generated in a single open-reading-frame and that these stop codons can be adjacent in the sequence or separated by intervening codons. Where more than one stop codon is introduced into a single open-reading-frame, such alterations can be generated by a single or multiple oligonucleotides and can be generated simultaneously or by sequential mutagenesis of the target nucleic acid.
  • the oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides.
  • the single-stranded oligo-nucleotides described herein are inexpensive to synthesize and easy to purify.
  • an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.
  • oligonucleotides having a DNA domain surrounding the targeted base with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region, are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350.
  • Preferred oligonucleotides of the invention have at least two modified bases on at least one of the termini, preferably the 3′ terminus of the oligonucleotide.
  • Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cells of different types including, for example, plant cells, fungal cells including S. cerevisiae, Ustillago maydis, Candida albicans, and mammalian cells.
  • Particularly preferred are cells and cell extracts derived from plants including, for example, experimental model plants such as Chiamydomonas reinhardtii, Physcomitrella patens, and Arabidopsis thaliana in addition to crop plants such as cauliflower ( Brassica oleracea ), artichoke ( Cynara scolymus ), fruits such as apples ( Malus, e.g.
  • leek Allium, e.g. porrum
  • lettuce Lactuca, e.g. sativa
  • spinach Spinacia, e.g. oleraceae
  • tobacco Nicotiana, e.g. tabacum
  • roots such as arrowroot ( Maranta, e.g. arundinacea ), beet ( Beta, e.g. vulgaris ), carrot ( Daucus, e.g. carota ), cassava ( Manihot, e.g. esculenta ), turnip ( Brassica, e.g. rapa ), radish ( Raphanus, e.g.
  • oilseeds such as beans ( Phaseolus, e.g. vulgaris ), pea ( Pisum, e.g. sativum ), soybean ( Glycine, e.g. max ), cowpea ( Vigna unguiculata ), mothbean ( Vigna aconitifolia ), wheat ( Triticum, e.g. aestivum ), sorghum ( Sorghum e.g. bicolor ), barley ( Hordeum, e.g. vulgare ), corn ( Zea, e.g.
  • ssypium mays ), rice ( Oryza, e.g. sativa ), rapeseed ( Brassica napus ), millet (Panicum sp.), sunflower ( Helianthus annuus ), oats ( Avena sativa ), chickpea ( Cicer, e.g. arietinum ); tubers, such as kohlrabi ( Brassica, e.g. oleraceae ), potato ( Solanum, e.g. tuberosum ) and the like; fiber and wood plants, such as flax ( Linum e.g. usitatissimum ), cotton ( Gossypium e.g.
  • hirsutum pine (Pinus sp.), oak (Quercus sp.), eucalyptus (Eucalyptus sp.), and the like and ornamental plants such as turfgrass ( Lolium, e.g. rigidum ), petunia ( Petunia, e.g. x hybrida ), hyacinth ( Hyacinthus orientalis ), carnation ( Dianthus e.g. caryophyllus ), delphinium ( Delphinium, e.g.
  • the DNA domain of the oligonucleotides is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration event(s).
  • the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases.
  • the central DNA domain is generally at least 8 nucleotides in length.
  • the base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.
  • one or both of the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone (including LNA derivatives and analogs) modifications, or 2′-O-methyl base analogs, or any combination of these modifications.
  • Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer.
  • the oligonucleotides of the invention are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide.
  • the efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications.
  • This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion.
  • the effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA (including LNA derivatives or analogs), phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.
  • oligonucleotides of defined sequence are provided for alteration of genes in particular plants. Provided the teachings of the instant application, one of skill in the art could readily design oligonucleotides to introduce analogous alterations in homologous genes from any plant. Furthermore, in the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases.
  • oligonucleotides of the invention include for each correcting change, oligonucleotides of length 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
  • nucleic acids of up to 240 bases which comprise the sequences disclosed herein may be used.
  • the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain.
  • the oligonucleotides of the invention as disclosed in the various tables for alteration of particular plant genes contain phosphorothioate linkages, 2′-O-methyl analog or LNA (including LNA derivatives and analogs) or any combination of these modifications just as the assay oligonucleotides do.
  • oligonucleotides that contain any particular nuclease resistant modification.
  • Oligonucleotides of the invention may be altered with any combination of additional LNAs (including LNA derivatives and analogs), phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency.
  • additional LNAs including LNA derivatives and analogs
  • phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency.
  • internal as well as terminal region segments of the backbone may be altered.
  • simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.
  • the different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end.
  • the backbone modifications are adjacent to one another.
  • the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred.
  • the optimal number and type of backbone modifications for any particular oligo-nucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein.
  • the optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein.
  • a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.
  • Efficiency of conversion is defined herein as the percentage of recovered substrate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change.
  • the oligonucleotides of the invention in different embodiments can alter DNA two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides.
  • Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.
  • the oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligo-nucleotides that may possess a similar mixed chemical composition backbone.
  • the oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA.
  • antisense oligonucleotides fail to direct targeted gene alteration.
  • the oligonucleotides of the invention may target either strand of DNA and can include any component of the genome including, for example, intron and exon sequences.
  • the preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex.
  • the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA.
  • the sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.
  • the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide-dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration.
  • the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration.
  • molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.
  • the oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.
  • oligomer Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, preferably, using a software program.
  • Oligo Analyzer 2.0 available through Integrated DNA Technologies (Coralville, Iowa 52241) (http://www.idtdna.com); this program is available for use on the world wide web at http://www.idtdna.com/program/oligoanalyzer/oligoanalyzer.asp.
  • Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”.
  • Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, Wis. 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html).
  • the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions.
  • the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligo-nucleotide sequence.
  • the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex.
  • the preferred oligonucleotides target the sense strand of the DNA i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.
  • the oligonucleotides of the invention can include more than a single base change.
  • multiple bases can be simultaneously targeted for change.
  • the target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell.
  • Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change.
  • oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base.
  • a base change event up to about 27 nucleotides away can also be effected.
  • the positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein.
  • the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.
  • the oligonucleotides of the present invention can be introduced into cells by any suitable means.
  • the modified oligonucleotides may be used alone.
  • Suitable means include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake.
  • PEI polyethylenimine
  • electroporation biolistics, microinjection and other methods known in the art to facilitate cellular uptake.
  • biolistic or particle bombardment methods are typically used.
  • isolated plant cells are treated in culture according to the methods of the invention, to mutate or repair a target gene.
  • plant target DNA may be modified in vitro or in another cell type, including for example, yeast or bacterial cells and then introduced into a plant cell as, for example, a T-DNA.
  • Plant cells thus modified may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change.
  • targeted genomic alteration including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.
  • the single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair.
  • the methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism.
  • Such agents may, for example, be used to develop plants with improved traits by rationally changing the sequence of selected genes in isolated cells and using these modified cells to regenerate whole plants having the altered gene. See, e.g., U.S. Pat. No.
  • Such plants produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences.
  • Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes.
  • the oligonucleotides of the invention also simplify the production of plants having particular modified or inactivated genes. Altered plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs.
  • the oligonucleotides and methods of the present invention may also be used to introduce molecular markers, including, for example, SNPs, RFLPs, AFLPs and CAPs.
  • the purified oligonucleotide compositions may be formulated in accordance with routine procedures depending on the target.
  • purified oligonucleotide can be used directly in a standard reaction mixture to introduce alterations into targeted DNA in vitro or where cells are the target as a composition adapted for bathing cells in culture or for microinjection into cells in culture.
  • the purified oligonucleotide compositions may also be provided on coated microbeads for biolistic delivery into plant cells. Where necessary, the composition may also include a solubilizing agent.
  • the ingredients will be supplied either separately or mixed together in single-use form, for example, as a dry, lyophilized powder or water-free concentrate.
  • dosage required for efficient targeted gene alteration will range from about 0.001 to 50,000 ⁇ g/kg target tissue, preferably between 1 to 250 ⁇ g/kg, and most preferably at a concentration of between 30 and 60 micromolar.
  • DOTAP Boehringer-Mannheim
  • the amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells.
  • microbeads are generally coated with resuspended oligonucleotides, which range of oligonucleotide to microbead concentration can be similarly adjusted to improve efficiency as determined using one of the assay methods described herein, starting with about 0.05 to 1 microgram of oligonucleotide to 25 microgram of 1.0 micrometer gold beads or similar microcarrier.
  • kits comprising at least one oligonucleotide of the invention.
  • the kit may comprise an additional reagent or article of manufacture.
  • the additional reagent or article of manufacture may comprise a delivery mechanism, cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention.
  • the invention includes a kit comprising an isogenic set of cells in which each cell in the kit comprises a different altered amino acid for a target protein encoded by a targeted altered gene within the cell produced according to the methods of the invention.
  • FIG. 1 Flow diagram for the generation of modified single-stranded oligonucleotides.
  • the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages.
  • Fold changes in repair activity for correction of kan s in the HUH7 cell-free extract are presented in parenthesis.
  • HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982).
  • Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan s gene.
  • the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule.
  • oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).
  • FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left; SEQ ID NO: 2673) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments (right; SEQ ID NO: 2674).
  • FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide (SEQ ID NO: 2673) is used.
  • SEQ ID NO: 2673 a chimeric double-stranded hairpin oligonucleotide
  • the Kan mutant sequence corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676; the Kan converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678; the mutant sequence in the sequence trace corresponds to SEQ ID NO: 2679 and the converted sequences in the sequence trace correspond to SEQ ID NO: 2680.
  • FIG. 2 Genetic readout system for correction of a point mutation in plasmid pK s m4021.
  • a mutant kanamycin gene harbored in plasmid pK s m4021 is the target for correction by oligonucleotides.
  • the mutant G is converted to a C by the action of the oligo.
  • Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts.
  • the wild type sequence corresponds to SEQ ID NO: 2681.
  • FIG. 3 Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides.
  • Plasmid pT s ⁇ 208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance.
  • the target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype.
  • B DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair.
  • the wild type sequence corresponds to SEQ ID NO: 2682
  • the mutant sequence corresponds to SEQ ID NO: 2683
  • the converted sequence corresponds to SEQ ID NO: 2684.
  • the control sequence in the sequence trace corresponds to SEQ ID NO: 2685 and the 3S/25A sequence in the sequence trace corresponds to SEQ ID NO: 2686.
  • FIG. 4 DNA sequences of representative kan r colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues.
  • sequences in the sequence traces have been assigned numbers as follows: 3S/25G, 6S/25G and 8S/25G correspond to SEQ ID NO: 2687, 10S/25G corresponds to SEQ ID NO: 2688, 25S/25G on the lower left corresponds to SEQ ID NO: 2689 and 25S/25G on the lower right corresponds to SEQ ID NO: 2690.
  • FIG. 5 Gene correction in HeLa cells.
  • Representative oligonucleotides of the invention are co-transfected with the pCMVneo( ⁇ )FIAsH plasmid (shown in FIG. 9) into HeLa cells.
  • Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides.
  • Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted.
  • the ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.
  • FIG. 6 Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.
  • FIG. 7 Hygromycin-eGFP target plasmids.
  • Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter.
  • the target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype.
  • FIG. 1 Plasmid pAURHYG(ins)GFP
  • Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds).
  • the target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function.
  • the sequence of the normal allele correspond to SEQ ID NO: 2691
  • the sequence of the targe/existing mutation corresponds to SEQ ID NO: 2694
  • the sequence of the desired alteration corresponds to SEQ ID NO: 2693.
  • FIG. 8 Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG.
  • the sequence of HygE3T/25 corresponds to SEQ ID NO: 2695
  • the sequence of HygE3T/74 corresponds to SEQ ID NO: 2696
  • the sequence of HygE3T/74a corresponds to SEQ ID NO: 2697
  • the sequence of HygGG/Rev corresponds to SEQ ID NO: 2698
  • the sequence of Kan70T corresponds to SEQ ID NO: 2699.
  • FIG. 9 pAURNeo( ⁇ )FIAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence.
  • the sequence of the Neo/kan target mutant corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676
  • the converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678
  • the FIAsH peptide sequence corresponds to SEQ ID NO: 2700.
  • FIG. 10 pYESHyg(x)eGFP plasmid.
  • This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.
  • FIG. 11 pBI-HygeGFP plasmid.
  • This plasmid is a construct based on the plasmids pBI101, pBI 101.2, pBI101.3 or pBI 121 available from Clontech in which HygeGFP replaces the beta-glucuronidase gene of the Clontech plasmids.
  • the different Clontech plasmids vary by a reading frame shift relative to the polylinker, or the presence of the Cauliflower mosaic virus promoter.
  • single-stranded and double-hairpin oligonucleotides with chimeric backbones are used to correct a point mutation in the kanamycin gene of pK s m4021 (FIG. 2) or the tetracycline gene of pT s ⁇ 208 (FIG. 3).
  • All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIG. 1C and FIG. 1D.
  • Each plasmid contains a functional ampicillin gene.
  • Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation).
  • a separate plasmid, pAURNeo( ⁇ )FIAsH (FIG. 9), bearing the kan s gene is used in the cell culture experiments.
  • This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferasea (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S.
  • Neo+/FIAsH fusion product after alteration
  • Neo ⁇ /FIAsH product before alteration
  • Additional constructs can be made to test additional gene alteration events or for specific use in different expression systems.
  • alternative comparable plant plasmids or integration vectors such as, e.g. those based on T-DNA, can be constructed for stable expression in plant cells according to the disclosures herein.
  • Such constructs would use a plant specific promoter such as, e.g., cauliflower mosaic virus 35S promoter, to replace the promoters directing expression of the neo, hyg or aureobasidinA resistance gene disclosed herein, including for example, in FIGS. 7B, 9 and 10 herein.
  • the green fluorescent protein (GFP) sequence used herein may be modified to increase expression in plant cells such as Arabidopsis and the other plants disclosed herein as described in Haseloff et al., Proc. Natl.Acad. Sci. 94(6): 2122-7 (1997), Rouwendal et al. Plant Mol. Biol. 33(6): 989-99 (1997) and Hu et al. FEBS Lett. 369(2-3): 331-4 (1995). Codon usage for optimal expression of GFP in plants results from increasing the frequency of codons with a C or a G in the third position from 32 to about 60%. Specific constructs are disclosed and can be used as follows with such plant specific alterations.
  • pHYGeGFP plasmid Invitrogen, CA DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol.
  • a 215 bp 5′ amplicon for the (rep), ( ⁇ ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′; SEQ ID NO: 2701) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′; SEQ ID NO: 2702), Hyg ⁇ r (5′-GACTATCCACGCCCTCC-3′; SEQ ID NO: 2703), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′; SEQ ID NO: 2704), respectively.
  • Oligonucleotide synthesis and cells Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 ⁇ g/ml per A 260 unit of single-stranded or hairpin oligomer).
  • HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep.
  • the E.coli strain, DH10B is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).
  • Cell-free extracts Although this portion of this example is directed to mammalian systems, similar extracts from plants can be prepared as disclosed elsewhere in this application and used as disclosed in this example.
  • We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma).
  • yeast S. cerevisiae
  • Ustilago maydis Ustilago maydis
  • Candida albicans cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans.
  • yeast cells For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000 ⁇ g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively.
  • Reaction mixtures of 50 ⁇ l consisting of 10-30 ⁇ g protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 ⁇ g chimeric double-hairpin oligonucleotide or 0.55 ⁇ g single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 ⁇ g of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl 2 , 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min.
  • the reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated.
  • the nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 ⁇ l H 2 O, and is stored at ⁇ 20° C. 5 ⁇ l of plasmid from the resuspension ( ⁇ 100 ng) was transfected in 20 ⁇ l of DH10B cells by electroporation (400 V, 300 ⁇ F, 4 k ⁇ ) in a Cell-Porator apparatus (Life Technologies).
  • FIG. 1 Chimeric single-stranded oligonucleotides.
  • the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligo-nucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1B) phosphorothioate linkages.
  • Fold changes in repair activity for correction of kan s in the HUH7 cell-free extract are presented in parenthesis.
  • Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan s gene.
  • a reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased.
  • a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration.
  • Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.
  • oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line.
  • the dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide.
  • Smooth lines indicate DNA residues
  • wavy lines indicate 2′-O-methyl RNA residues
  • the carat indicates the mismatched base site (G).
  • the cells are co-transfected with 10 ⁇ g of plasmid pAURNeo( ⁇ ) FIAsH and 5 ⁇ g of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 ⁇ g lipofectamine, according to the manufacturer's directions (Life Technologies).
  • the cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair.
  • oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kan s gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence (SEQ ID NO: 2717) in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation).
  • Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides.
  • Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkan s m4021 (see FIG. 1).
  • Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity.
  • Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTet ⁇ 208.
  • Table 4 illustrates data from repair of the pkan s m4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kan r or tet r and fold increases (single strand versus double hairpin) are presented for kan r in Table 1.
  • FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G).
  • FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”.
  • This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide.
  • a mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured.
  • Plasmid pK s m4021 contains a mutation (T ⁇ G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli.
  • This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance.
  • the directed correction is from G ⁇ C rather than G ⁇ T (wild-type).
  • the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein.
  • the number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation.
  • the number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.
  • the original RNA-DNA double hairpin chimera design e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration.
  • the double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments.
  • the central base pair is mismatched to the corresponding base pair in the target gene.
  • Frame shift mutations are repaired.
  • plasmid pT s ⁇ 208 described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift.
  • a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used.
  • a modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site.
  • FIG. 3 illustrates the plasmid and target bases designated for change in the experiments.
  • Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pK s m4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTC GATAAGCCTATGCTGACCC GTG (SEQ ID NO: 2709) corrects the original mutation present in the kanamycin resistance gene of pK s m4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTC GGCTACGACTGGGCACAACAGACAATTGGC (SEQ ID NO: 2710) with the remaining nucleotides being completely complementary to the plasmid
  • oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pK s M4021 plasmid.
  • these include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTC G TA T CCGAATAGC-3′ (SEQ ID NO: 2711); a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCC A ATTGTCTGTTGTGCCCAGTC G TAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA-3′ (SEQ ID NO: 2712); and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCC A ATTGTCTGTTGTGCCCAGTC G TAGCCGMTAGCCT-3
  • Plant extracts direct repair.
  • the modified single-stranded constructs can be tested in plant cell extracts.
  • We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle.
  • Some plant cell-free extracts also include about 1% (w/v) PVP.
  • Plasmid pK S m4021 (1 ⁇ g), the indicated oligonucleotide (1.5 ⁇ g chimeric oligonucleotide or 0.55 ⁇ g single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 ⁇ g of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kan r colonies counted.
  • TABLE III Frameshift mutation repair is directed by single-stranded oligonucleotides Oligonucleotide Plasmid Extract tet r colonies Tet IX (3S/25A; 0.5 ⁇ g) pT S ⁇ 208 (1 ⁇ g) — 0 — ⁇ 20 ⁇ g 0 Tet IX (0.5 ⁇ g) ⁇ ⁇ 48 Tet IX (1.5 ⁇ g) ⁇ ⁇ 130 Tet IX (2.0 ⁇ g) ⁇ ⁇ 68 Tet I (chimera; 1.5 ⁇ g) ⁇ ⁇ 48
  • Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide.
  • the extract used for these experiments came from HUH7 cells.
  • the data represent the number of tetracycline resistant colonies per 10 6 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments.
  • Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pT s ⁇ 208.
  • the oligonucleotides are equivalent to structures I and IX in FIG. 2.
  • Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18).
  • Chimeric oligonucleotide II 1.5 ⁇ g
  • modified single-stranded oligonucleotides IX and X (0.55 ⁇ g) were used to correct pK S m4021.
  • Total number of kan r colonies are present per 10 7 ampicillin resistant colonies and represent an average of four independent experiments.
  • single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair.
  • These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG( ⁇ )GFP which has a single base deletion.
  • pAURHYG(wt)GFP a wild-type copy of the hygromycin-eGFP fusion gene
  • pAURHYG(wt)GFP a wild-type copy of the hygromycin-eGFP fusion gene
  • These plasmids also contain an aureobasidinA resistance gene.
  • pAURHYG(rep)GFP hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region.
  • hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.
  • oligonucleotides shown in FIG. 8
  • the oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP.
  • Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration.
  • HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art.
  • HygE3T/74 is a 74-base oligonucleotide with the 25-base sequence centrally positioned.
  • the fifth oligonucleotide, designated Kan70T is a non-specific, control oligonucleotide which is not complementary to the target sequence.
  • an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control.
  • oligonucleotides containing one, two, three, four, five, six, eight, ten or more LNA modifications on at least one of the two termini (and preferrably the 3′ terminus) may be used in different embodiments.
  • Oligonucleotide synthesis and cells We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast ( Saccharomyces cerevisiae ) strain LSY678 MAT ⁇ at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C.
  • This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system.
  • the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25).
  • LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.
  • oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid.
  • these include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGG G TA C GTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 2714); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATA C GTCCTGCGGGTAAA C AGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 2715); and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTT
  • Oligonucleotides targeting the sense strand direct gene correction more efficiently.
  • the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA.
  • HygE3T/74 an oligonucleotide
  • this effect was observed over a range of oligonucleotide concentrations from 0-3.6 ⁇ g, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74 ⁇ and HygE3T/74).
  • microinjection procedures may also be used with cultured plant cells or protoplasts using any plant species, including those disclosed herein.
  • Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation.
  • CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.).
  • Lin ⁇ CD38 ⁇ cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection.
  • Stem Medium Stem Medium
  • S Medium contains Iscoves' Modified Dulbecc's Medium without phenol red (IMDM) with 100 ⁇ g/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 ⁇ g/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 ⁇ g/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 ⁇ M 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
  • IMDM Iscoves' Modified Dulbecc's Medium without phenol red
  • Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
  • CD34+ cells can convert a normal A ( ⁇ A ) to sickle T ( ⁇ S ) mutation in the ⁇ -globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene.
  • stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
  • non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
  • PEI polyethylenimine
  • Biolistic delivery of oligonucleotide into plant cells may be accomplished according to the following method.
  • One milliliter of packed cell volume of plant cell suspensions are subcultured onto plates containing solid medium [with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mg/liter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose (pH 5.7) and having 8 g/liter agar-agar from Sigma added before autoclaving].
  • solid medium with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mg/liter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose
  • oligonucleotides may be introduced to cells after precipitation onto 1 micrometer or comparable gold microcarriers (Bio-Rad).
  • Bio-Rad a helium-driven particle gun
  • 35 microliters of a particle suspension 60 mg of microcarriers per ml of 100% ethanol
  • 35 microliters of a particle suspension 60 mg of microcarriers per ml of 100% ethanol
  • 40 microliter of resuspended oligonucleotide 60 ng/microliter water
  • 75 microliter of ice-cold 2.5 M CaCl2 is added
  • 75 microliter of ice-cold 0.1 M spermidine is added.
  • the tube is mixed vigorously or a vortex mixer for 10 min at room temperature.
  • the particles are allowed to settle for 10 min and are centrifuged at 11,750 g for 30 sec.
  • the supernatant is removed and the particles are resuspended in 50 microliter of 100% ethanol.
  • An alternative method of delivery can be used as follows. Cultured cells are suspended in liquid N6 medium and then plated on a VWR Scientific glass fiber filter. About 0.4 microgram of oligonucleotide are precipitated with 15 microliter of 2.5 mM CaCl2 and 5 microliter of 0.1 M spermidine onto 25 microgram of 1.0 micrometer gold particles. Microprojectile bombardment is performed by using a Bio-Rad PDS-1000 He particle delivery system or comparable machine following manufacturers instructions. Alterations in oligonucleotide concentrations can be employed to determine the optimum concentration of oligonucleotide according to the procedures described herein for any particular oligonucleotide of the invention.
  • the oligonucleotide of the invention may be delivered to a plant cell by electroporation of a protoplast derived from a plant part.
  • the protoplasts may be formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques such as those in Gallois et al., Methods in Molecular Biology 55: 89-107 by Humana Press.
  • Such conditions for electroporation use about 3 ⁇ 10 5 protoplasts in a total volume of about 0.3 ml with a concentration of oligonucleotide of between 0.6 to 4 microgram per ml.
  • the oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon.
  • stop codons e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site
  • frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein.
  • stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.
  • Agrobacterium tumefaciens is used for introduction of a T-DNA, including the T-DNA in the plasmid of FIG. 11, into a plant cell.
  • Agrobacterium tumefaciens is used. These techniques are routine standard techniques known in the art. For example, one method follows. We transform A. tumefaciens is transformed by electroporation (using a BioRad Gene PulserTM). Competent A. tumefaciens is prepared using a method similar to that of preparing competent E. coli by suspending a freshly grown culture three times in ice-cold water and a final resuspension in 10% glycerol. Electroporation conditions are a 0.2 cm gap cuvette at a setting of 25 ⁇ F,200 ⁇ and2.5 kV.
  • A. tumefaciens containing a plasmid with a T-DNA is then used to introduce the T-DNA into a plant cell using routine standard techniques known in the art. For example, we transform Arabidopsis by vacuum infiltration or by dipping flowers in an Agrobacterium solution containing a surfactant, e.g. L-77. Seeds are then collected, grown and screened for presence of the T-DNA. Alternatively, Agrobacterium can be used to transform callus tissue and the callus tissue can then be used to regenerate transformed plants.
  • the left-most column identifies each alteration or mutation and the phenotype that the alteration/mutation confers.
  • the mutation/alteration is identified at both the nucleic acid and protein level.
  • mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Terminator codons are shown as “TERM”.
  • the nucleic acid level the entire triplet of the wild type and mutated codons is shown.
  • the middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the genome or in cloned DNA including DNA in artificial chromosomes, episomes, plasmids, or other types of vectors.
  • the oligonucleotides of the invention may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence.
  • oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.
  • the first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair/altering nucleotide.
  • the second oligonucleotide targets the opposite strand of the DNA duplex for repair/alteration.
  • the third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair/alteration nucleotide.
  • the fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.
  • the third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.
  • Herbicides having broad-spectrum activity are particularly useful because they obviate the need for multiple herbicides targeting different classes of weeds.
  • the problem with such herbicides is that they typically also affect crops which are exposed to the herbicide.
  • One way to overcome this is to generate plants which are resistant to one or more broad-spectrum herbicides.
  • Such herbicide-tolerant plants may reduce the need for tillage to control weeds, thereby effectively reducing soil erosion and can reduce the quantity and number of different herbicides applied in the field.
  • Common herbicides used include those that inhibit the enzyme 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS), for example N-phosphonomethyl-glycine (e.g. glyphosate), those that inhibit acetolactate synthase (ALS) activity, for example the sulfonylureas and related herbicides, and those that inhibit dihydropteroate synthase, for example methyl[(4-amino-phenyl)sulfonyl]carbamate (e.g. Asulam).
  • EPSPS 5-enolpyruvyl-3-phosphoshikimic acid synthase
  • N-phosphonomethyl-glycine e.g. glyphosate
  • ALS acetolactate synthase
  • dihydropteroate synthase for example methyl[(4-amino-phenyl)sulfonyl]carbamate (e.g. Asulam).
  • Herbicide-tolerant plants can be produced by several methods, including, for example, introducing into the genome of the plant the ability to degrade the herbicide, the capacity to produce a higher level of the targeted enzyme, and/or expressing an herbicide-tolerant allele of the enzyme.
  • Physiological and biochemical responses to high levels of ionic or nonionic solutes and decreased water potential have been studied in a variety of plants. It is known, for example, that increasing levels of alcohol dehydrogenase can confer enhances flooding resistance in plants.
  • one mechanism underlying the adaptation or tolerance of plants to osmotic stresses is the accumulation of compatible, low molecular weight osmolytes such as sugar alcohols, special amino acids, and glycinebetaine.
  • Such accumulation can be engineered, for example, by removing feedback inhibition on 1-pyrroline-t-carboxylate synthetase, which results in accumulation of proline.
  • recent experiments suggest that altering the expression or activity of specific sodium or potassium transporters can confer enhanced salt tolerance.
  • AACACCGACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAA 1158 Ser27Term ACCGATGCAGAGAGCTAAGATTCATGGCTATAAGCCGAAGATGAA TCG-TAG GGCCGGAGATGATGTAGCAGAATGCTCTGCC TGAATCTT A GCTCTCTG 1159 CAGAGAGC T AAGATTCA 1160 2,4-DB resistance TGCTACATCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATC 1161 3-ketoacyl-CoA TTCGCTCTCTGCAT A GGTTTGTGCAGCTGGGGATAGTGCGTCGTA thiolase TCAAAGAACGTCGGTGTTTGGAGATGATGT Cucurbita sp.
  • ACATCATCTCCAAACACCGACGTTCTTTGATACGACGCACTATCCC 1162 Ser31Term CAGCTGCACAAACC T ATGCAGAGAGCGAAGATTCATGGCTATAAG TCG-TAG CCGAAGATGAAGGCCGGAGATGATGTAGCA CTCTGCAT A GGTTTGTG 1163 CACAAACC T ATGCAGAG 1164 2,4-DB resistance TCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATCTTCGCTC 1165 3-ketoacyl-CoA TCTGCATCGGTTTG A GCAGCTGGGGATAGTGCGTCGTATCAAAGA thiolase ACGTCGGTGTTTGGAGATGATGTCGTGATA Cucurbita sp.
  • Plant productivity is limited by resources available and the ability of plants to harness these resources.
  • the conversion of light to chemical energy which is then used to synthesize carbohydrates, fatty acids, sugars, amino acids and other compounds, requires a complex system which combines the light harvesting apparatus of pigments and proteins.
  • the value of light energy to the plant can only be realized when it is efficiently converted into chemical energy by photosynthesis and fed into various biochemical processes.
  • Significant effort has therefore been directed at studying photosynthetic processes in plants in order to improve productivity and/or the efficiency of photosynthesis.
  • the analysis of the photosynthetic process is substantially aided by the ability to produce albino plants.
  • the attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism.
  • TABLE 18 Oligonucleotides to produce albino plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: White leaves TTCTTTCCTGTGAAATTATCTGCTCAAATCTTTGGTTCCTGACGGAG 1189 Immutans ATGGCGGCGATTT G AGGCATCTCCTCTGGTACGTTGACGATTTCA Arabidopsis thaliana CGGCCTTTGGTTACTCTTCGACGCTCTAG Ser5Term CTAGAGCGTCGAAGAGTAACCAAAGGCCGTGAAATCGTCAACGTA 1190 TCA-TGA CCAGAGGAGATGCCT C AAATCGCCGCCATCTCCGTCAGGAACCAA AGATTTGAGCAGATAATTTCACAGGAAAGAA GGCGATTT G AGGCATCT 1191 AGATGCCT C AAATCGCC 1192 White leaves G
  • Another aim of biotechnology is to generate plants, especially crop plants, with added value traits.
  • An example of such a trait is improved nutritional quality in food crops.
  • lysine, tryptophan and threonine which are essential amino acids in the diet of humans and many animals, are limiting nutrients in most cereal crops. Consequently, grain-based diets, such as those based on corn, barley, wheat, rice, maize, millet, sorghum, and the like, must be supplemented with more expensive synthetic amino acids or amino-acid-containing oilseed protein meals. Increasing the lysine content of these grains or of any of the feed component crops would result in significant added value.
  • Naturally occurring mutants of plants that have different levels of particular essential amino acids have been identified. However, these mutants are generally not the result of increased free amino acid, but are instead the result of shifts in the overall protein profile of the grain. For example, in maize, reduced levels of lysine-deficient endosperm proteins (prolamines) are complemented by elevated levels of more lysine-rich proteins (albumins, globulins and glutelins). While nutritionally superior, these mutants are associated with reduced yields and poor grain quality, limiting their agronomic usefulness.
  • An alternative approach is to generate plants with mutations that render key amino acid biosynthetic enzymes insensitive to feedback inhibition. Many such mutations are known and mutation results in increased free amino acid.
  • the increased production can optionally be coupled to increased expression of an abundant storage protein comprising the chosen amino acid.
  • a normally abundant protein can be engineered to contain more of the target amino acid.
  • the attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that remove feedback inhibition in plant amino acid biosynthetic enzymes.
  • TABLE 19 Genome-Altering Oligos Conferring Amino Acid Overproduction Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Met Overproduction TATCCTCCAGGATCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCT 1289 CGS GAGCATTAAAGCCC A TAGAAACTGTAGCAACATCGGTGTTGCACA Arabidopsis thaliana GATCGTGGCGGCTAAGTGGTCCAACAACCC Arg77His GGGTTGTTGGACCACTTAGCCGCCACGATCTGTGCAACACCGAT 1290 CGT-CAT GTTGCTACAGTTTCTA T GGGCTTTAATGCTCAGCTGACGGACGAA ATTAGGAGGAAATCTTAAGATCCTGGAGGATA TAAAGCCC A TAGAAACT 12
  • a principal aim of biotechnology is the improvement of crop plants for food value, agriculture, and to produce a range of plant-derived raw materials.
  • polysaccharides constitute the main raw materials derived from plants, and apart from cellulose, the storage polymer starch is the most important polysaccharide raw material.
  • Starch is derived from a range of plants, but maize is the most important cultivated plant for the production of starch.
  • the polysaccharide starch is a polymer made up of glucose molecules.
  • starch is not a homogeneous raw material and is, in fact, a highly complex mixture of various types of molecules which differ from each other, for example, in their degree of polymerization and in the degree of branching of the glucose chains.
  • amylose-starch is a basically non-branched polymer made up of ⁇ -1,4-glycosidically branched glucose molecules
  • amylopectin-starch is a complex mixture of variously branched glucose chains. The branching results from additional ⁇ -1,6-glycosidic linkages.
  • the starch is approximately 25% amylose-starch and 75% amylopectin-starch.
  • Fatty Acid Synthase Fatty Acid Synthase
  • Fatty acid synthesis is the result of the three enzymatic activities: acyl-ACP elongase, acyl-ACP desaturase and acyl-ACP thioesterases specific for each of palmitoyl-, stearoyl- and oleoyl-ACP.
  • a variety of enzymes have been identified that influence the relative levels of saturated vs. unsaturated fatty acids in plants.
  • the enzymes stearoyl-acyl carrier protein (stearoyl-ACP) desaturase, oleoyl desaturase and linoleate desaturase produce unsaturated fatty acids from saturated precursors.
  • stearoyl-ACP stearoyl-acyl carrier protein
  • oleoyl desaturase oleoyl desaturase
  • linoleate desaturase produce unsaturated fatty acids from saturated precursors.
  • relative enzymatic activities of the various acyl-ACP thioesterases influences the relative acyl-chain composition of the resultant fatty acids. Consequently a reduction or an increase of the activity of these enzymes can alter the properties of oils produced in a plant. In fact, specific targeting of particular enzymatic activities can results in altered levels of particular fatty acids.
  • oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes encoding proteins involved in fatty acid biosynthesis.
  • TABLE 22 Oligonucleotides to produce plants with reduced palmitate Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Reduced palmitate TTTGGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGC 2065 Acyl-ACP-thioesterase CACCTCTGCTACGT A GTCATTCTTTCCTGTACCATCTTCTTCACTTG Arabidopsis thaliana ATCCTAATGGAAAAGGCAATAAGATTGG Ser8Term CCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATGGTA 2066 TCG-TAG CAGGAAAGAATGAC T ACGTCGCAGAGGTGGCCACCATGACGAGG AGATGAAGCGTTCAAAGACACTGCCACCAAA TGCTACGT A GTCATTCT

Abstract

Presented are methods and compositions for targeted chromosomal genomic alterations with modified single-stranded oligonucleotides. The oligonucleotides of the invention have modified nuclease-resistant termini comprising LNA, phosphorothioate linkages or 2′-O-Me base analogues or combinations of such modifications.

Description

    FIELD OF THE INVENTION
  • The technical field of the invention is oligonucleotide-directed repair or alteration of plant genetic information using novel chemically modified oligonucleotides. [0001]
  • BACKGROUND OF THE INVENTION
  • A number of methods have been developed specifically to alter the genomic information of plants. These methods generally include the use of vectors such as, for example, T-DNA, carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene-containing vectors adds one or more exogenous copies of a gene in a usually random fashion at one or more integration sites of the plant's genome at some variable frequency. The introduced gene may be foreign or may be derived from the host plant. Any gene which was originally present in the genome, which may be, for example, a normal allelic variant, mutated, defective, and/or functional copy of the introduced gene, is retained in the genome of the host plant. [0002]
  • These methods of gene alteration are problematic in that complications which can compromise the vigor, productivity, yield, etc. of the plant may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. The random nature of this insertion and/or the use of exogenous promoters can also cause the timing, location or strength of expression of the introduced transgene to be inappropriate or unpredictable. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, T-DNA ends or other vector remnants, exogenous control sequences required to allow production of the transgene protein, which control sequences may be exogenous or native to the host plant and/or the transgene, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. In addition, concerns have been raised with consumption, especially by humans, of plants containing such exogenous genetic material. [0003]
  • More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant, animal or fungal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene alteration, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result reduces the utility of such a molecule in methods designed for targeted gene alteration. [0004]
  • Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing targeted gene alteration is compromised by a high frequency of nonspecific base changes. [0005]
  • In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., [0006] Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.
  • Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., [0007] Gene Ther. 3:859-867 (1996). Similar efforts to target genes by homologous recombination in plants using large fragments of DNA had some success. See Kempin et al., Nature 389:802-803 (1997). However, the efficiency and reproducibility of the published homologous recombination approach in plants has severely limited the widespread use of this method.
  • Earlier experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide rather than larger fragments of DNA, wherein the oligonucleotide had no functional domains other than a region of complementary sequence to the target. See Campbell et al., [0008] New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.
  • Oligonucleotides designed for use in the targeted alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence. [0009]
  • Artificial chromosomes can be useful for the screening purposes identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres. [0010]
  • Yeast artificial chromosomes (YACs) allow large segments of genomic DNA to be cloned and modified (Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)). Other vectors also have been developed for the cloning of large segments of genomic DNA, including cosmids, and bacteriophage P1 (Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)). YACs have certain advantages over these alternative large capacity cloning vectors (Burke et al., Science, 236:806-812 (1987)). The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert size for a YAC. [0011]
  • An alternative to YACs are cloning systems based on the [0012] E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) (Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)). BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. The PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis (Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979)). In addition, BACs have been developed for transformation of plants with high-molecular weight DNA using the T-DNA system (Hamilton, Gene 24:107-116 (1997); Frary & Hamilton, Transgenic Res. 10: 121-132 (2001)).
  • A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA. [0013]
  • SUMMARY OF THE INVENTION
  • Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast system and a plant system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating plants with desired phenotypes, including, for example, environmental stress tolerance, improved nutritional value, herbicide resistance, disease resistance, modified oil production, modified starch production, and altered floral morphology including selective sterility. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA in cells. The target genomic DNA can be nuclear chromosomal DNA as well as plastid or mitochondrial chromosomal DNA. The target DNA can also be a transgene present in the plant cell, including, for example, a previously introduced T-DNA. For screening purposes, the target plant DNA can also be extrachromosomal DNA present in plant or non-plant cells in various forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing plant DNA can be obtained from a variety of sources, including, e.g., the Arabidopsis Biological Resource Center (ABRC) at the Ohio State University, and the Rice Genome Research Program at the MAFF DNA bank in Ibaraki, Japan. The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex. In a more preferred embodiment, the target DNA to be altered is the non-transcribed strand of a transcribed gene of a genomic DNA duplex. [0014]
  • The low efficiency of targeted gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., [0015] J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene alteration oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2′-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2′-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See, for example, copending applications U.S. application Ser. No. 60/208,538, U.S. application Ser. No. 60/244,989, U.S. application Ser. No. 09/818,875, international application no. PCT/US01/09761 and Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000), the disclosures of which are incorporated herein in their entirety by reference. We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748; Wengel, WO 00/66604; and Jakobsen & Koshkin, WO 01/25478 also allow specific targeted alteration of genetic information.
  • The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different plants or strains, or testing cells derived from different plants or strains, or plant cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian and plant cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules. [0016]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of plant genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity. For example, gene alterations that knockout a particular protein activity can be obtained using oligonucleotides designed to convert a codon in the coding region of the protein to a stop codon, thus prematurely terminating translation of the protein. Oligonucleotides that introduce stop codons in the open-reading-frame of the protein are one embodiment of the invention. Generally, oligonucleotides that introduce stop codons early in the open-reading-frame of the protein are preferred. If the open-reading-frame contains more than one methionine, oligonucleotides that introduce stop codons after the second methionine are preferred. Additionally, if the gene exhibits alternative splice sites, oligonucleotides that introduce stop codons in exons after the alternative splice site are preferred. The following table provides examples of codons that can be converted to stop codons by altering a single oligonucleotide. A skilled artisan could readily identify other codons that can be converted to stop codons by altering one, two or three of the base pairs in a given codon. Similarly, a skilled artisan could readily identify codons that can be converted to stop codons by a frameshift mutations that inserts or deletes one or two base pairs in the open-reading-frame. It is also understood that more than one stop codon can be generated in a single open-reading-frame and that these stop codons can be adjacent in the sequence or separated by intervening codons. Where more than one stop codon is introduced into a single open-reading-frame, such alterations can be generated by a single or multiple oligonucleotides and can be generated simultaneously or by sequential mutagenesis of the target nucleic acid. [0017]
    Corresponding
    Original codons* stop codon
    G GA (glycine), A GA (arginine), C GA (arginine), T T A TGA
    (leucine), T C A (serine), TG T (cysteine), TG G
    (tryptophan), TG C (cysteine)
    A AG (lysine), G AG (glutamate), C AG (glutamine), T T G TAG
    (leucine), T C G (serine), T G G (tryptophan), TA T
    (cysteine), TA C (tyrosine)
    A AA (lysine), G AA (glutamate), C AA (glutamine), T T A TAA
    (leucine), T C A (serine), TA T (cysteine), TA C
    (tyrosine)
  • The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligo-nucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay. [0018]
  • We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region, are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Preferred oligonucleotides of the invention have at least two modified bases on at least one of the termini, preferably the 3′ terminus of the oligonucleotide. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cells of different types including, for example, plant cells, fungal cells including [0019] S. cerevisiae, Ustillago maydis, Candida albicans, and mammalian cells. Particularly preferred are cells and cell extracts derived from plants including, for example, experimental model plants such as Chiamydomonas reinhardtii, Physcomitrella patens, and Arabidopsis thaliana in addition to crop plants such as cauliflower (Brassica oleracea), artichoke (Cynara scolymus), fruits such as apples (Malus, e.g. domesticus), mangoes (Mangifera, e.g. indica), banana (Musa, e.g. acuminata), berries (such as currant, Ribes, e.g. rubrum), kiwifruit (Actinidia, e.g. chinensis), grapes (Vitis, e.g. vinifera), bell peppers (Capsicum, e.g. annuum), cherries (such as the sweet cherry, Prunus, e.g. avium), cucumber (Cucumis, e.g. sativus), melons (Cucumis, e.g. melo), nuts (such as walnut, Juglans, e.g. regia; peanut, Arachis hypogeae), orange (Citrus, e.g. maxima), peach (Prunus, e.g. persica), pear (Pyra, e.g. communis), plum (Prunus, e.g. domestica), strawberry (Fragaria, e.g. moschata or vesca), tomato (Lycopersicon, e.g. esculentum); leaves and forage, such as alfalfa (Medicago, e.g. sativa or truncatula), cabbage (e.g. Brassica oleracea), endive (Cichoreum, e.g. endivia), leek (Allium, e.g. porrum), lettuce (Lactuca, e.g. sativa), spinach (Spinacia, e.g. oleraceae), tobacco (Nicotiana, e.g. tabacum); roots, such as arrowroot (Maranta, e.g. arundinacea), beet (Beta, e.g. vulgaris), carrot (Daucus, e.g. carota), cassava (Manihot, e.g. esculenta), turnip (Brassica, e.g. rapa), radish (Raphanus, e.g. sativus), yam (Dioscorea, e.g. esculenta), sweet potato (Ipomoea batatas); seeds, including oilseeds, such as beans (Phaseolus, e.g. vulgaris), pea (Pisum, e.g. sativum), soybean (Glycine, e.g. max), cowpea (Vigna unguiculata), mothbean (Vigna aconitifolia), wheat (Triticum, e.g. aestivum), sorghum (Sorghum e.g. bicolor), barley (Hordeum, e.g. vulgare), corn (Zea, e.g. mays), rice (Oryza, e.g. sativa), rapeseed (Brassica napus), millet (Panicum sp.), sunflower (Helianthus annuus), oats (Avena sativa), chickpea (Cicer, e.g. arietinum); tubers, such as kohlrabi (Brassica, e.g. oleraceae), potato (Solanum, e.g. tuberosum) and the like; fiber and wood plants, such as flax (Linum e.g. usitatissimum), cotton (Gossypium e.g. hirsutum), pine (Pinus sp.), oak (Quercus sp.), eucalyptus (Eucalyptus sp.), and the like and ornamental plants such as turfgrass (Lolium, e.g. rigidum), petunia (Petunia, e.g. x hybrida), hyacinth (Hyacinthus orientalis), carnation (Dianthus e.g. caryophyllus), delphinium (Delphinium, e.g. ajacis), Job's tears (Coix lacryma-jobi), snapdragon (Antirrhinum majus), poppy (Papaver, e.g. nudicaule), lilac (Syringa, e.g. vulgaris), hydrangea (Hydrangea e.g. macrophylla), roses (including Gallicas, Albas, Damasks, Damask Perpetuals, Centifolias, Chinas, Teas and Hybrid Teas) and ornamental goldenrods (e.g. Solidago spp.). Such plant cells can then be used to regenerate whole plants according to methods described herein or any method known in the art. The DNA domain of the oligonucleotides is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration event(s). On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.
  • According to certain embodiments, one or both of the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone (including LNA derivatives and analogs) modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. The oligonucleotides of the invention are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA (including LNA derivatives or analogs), phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted. [0020]
  • In the examples, oligonucleotides of defined sequence are provided for alteration of genes in particular plants. Provided the teachings of the instant application, one of skill in the art could readily design oligonucleotides to introduce analogous alterations in homologous genes from any plant. Furthermore, in the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of [0021] length 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. In some embodiments, longer nucleic acids of up to 240 bases which comprise the sequences disclosed herein may be used. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for alteration of particular plant genes contain phosphorothioate linkages, 2′-O-methyl analog or LNA (including LNA derivatives and analogs) or any combination of these modifications just as the assay oligonucleotides do.
  • The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs (including LNA derivatives and analogs), phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance. [0022]
  • The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligo-nucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin. [0023]
  • Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligo-nucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications. [0024]
  • Efficiency of conversion is defined herein as the percentage of recovered substrate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350. [0025]
  • In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration. [0026]
  • The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligo-nucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides. [0027]
  • Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene alteration activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide-dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages. [0028]
  • The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention. [0029]
  • Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, preferably, using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241) (http://www.idtdna.com); this program is available for use on the world wide web at http://www.idtdna.com/program/oligoanalyzer/oligoanalyzer.asp. [0030]
  • For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, Wis. 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html). [0031]
  • If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency. [0032]
  • Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligo-nucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA. [0033]
  • The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide. [0034]
  • The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. For plant cells, biolistic or particle bombardment methods are typically used. According to certain preferred embodiments of the present invention, isolated plant cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Alternatively, plant target DNA may be modified in vitro or in another cell type, including for example, yeast or bacterial cells and then introduced into a plant cell as, for example, a T-DNA. Plant cells thus modified may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject. [0035]
  • The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants with improved traits by rationally changing the sequence of selected genes in isolated cells and using these modified cells to regenerate whole plants having the altered gene. See, e.g., U.S. Pat. No. 6,046,380 and U.S. Pat. No. 5,905,185 incorporated herein by reference. Such plants produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of plants having particular modified or inactivated genes. Altered plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used to introduce molecular markers, including, for example, SNPs, RFLPs, AFLPs and CAPs. [0036]
  • The purified oligonucleotide compositions may be formulated in accordance with routine procedures depending on the target. For example, purified oligonucleotide can be used directly in a standard reaction mixture to introduce alterations into targeted DNA in vitro or where cells are the target as a composition adapted for bathing cells in culture or for microinjection into cells in culture. The purified oligonucleotide compositions may also be provided on coated microbeads for biolistic delivery into plant cells. Where necessary, the composition may also include a solubilizing agent. Generally, the ingredients will be supplied either separately or mixed together in single-use form, for example, as a dry, lyophilized powder or water-free concentrate. In general, dosage required for efficient targeted gene alteration will range from about 0.001 to 50,000 μg/kg target tissue, preferably between 1 to 250 μg/kg, and most preferably at a concentration of between 30 and 60 micromolar. [0037]
  • For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein. For biolistic delivery, microbeads are generally coated with resuspended oligonucleotides, which range of oligonucleotide to microbead concentration can be similarly adjusted to improve efficiency as determined using one of the assay methods described herein, starting with about 0.05 to 1 microgram of oligonucleotide to 25 microgram of 1.0 micrometer gold beads or similar microcarrier. [0038]
  • Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an additional reagent or article of manufacture. The additional reagent or article of manufacture may comprise a delivery mechanism, cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention. Alternatively, the invention includes a kit comprising an isogenic set of cells in which each cell in the kit comprises a different altered amino acid for a target protein encoded by a targeted altered gene within the cell produced according to the methods of the invention.[0039]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kan[0040] s in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G). FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left; SEQ ID NO: 2673) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments (right; SEQ ID NO: 2674). FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide (SEQ ID NO: 2673) is used. In FIG. 1(D), the Kan mutant sequence corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676; the Kan converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678; the mutant sequence in the sequence trace corresponds to SEQ ID NO: 2679 and the converted sequences in the sequence trace correspond to SEQ ID NO: 2680.
  • FIG. 2. Genetic readout system for correction of a point mutation in plasmid pK[0041] sm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts. The wild type sequence corresponds to SEQ ID NO: 2681.
  • FIG. 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pT[0042] sΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair. The wild type sequence corresponds to SEQ ID NO: 2682, the mutant sequence corresponds to SEQ ID NO: 2683 and the converted sequence corresponds to SEQ ID NO: 2684. The control sequence in the sequence trace corresponds to SEQ ID NO: 2685 and the 3S/25A sequence in the sequence trace corresponds to SEQ ID NO: 2686.
  • FIG. 4. DNA sequences of representative kan[0043] r colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues. The sequences in the sequence traces have been assigned numbers as follows: 3S/25G, 6S/25G and 8S/25G correspond to SEQ ID NO: 2687, 10S/25G corresponds to SEQ ID NO: 2688, 25S/25G on the lower left corresponds to SEQ ID NO: 2689 and 25S/25G on the lower right corresponds to SEQ ID NO: 2690.
  • FIG. 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo([0044] )FIAsH plasmid (shown in FIG. 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.
  • FIG. 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell. [0045]
  • FIG. 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. In FIG. 7A, the sequence of the normal allele corresponds to SEQ ID NO: 2691, the sequence of the targe/existing mutation corresponds to SEQ ID NO: 2692 and the sequence of the desired alteration corresponds to SEQ ID NO: 2693. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function. In FIG. 7B, the sequence of the normal allele correspond to SEQ ID NO: 2691, the sequence of the targe/existing mutation corresponds to SEQ ID NO: 2694 and the sequence of the desired alteration corresponds to SEQ ID NO: 2693. [0046]
  • FIG. 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG. 8, the sequence of HygE3T/25 corresponds to SEQ ID NO: 2695, the sequence of HygE3T/74 corresponds to SEQ ID NO: 2696, the sequence of HygE3T/74a corresponds to SEQ ID NO: 2697, the sequence of HygGG/Rev corresponds to SEQ ID NO: 2698 and the sequence of Kan70T corresponds to SEQ ID NO: 2699. [0047]
  • FIG. 9. pAURNeo(−)FIAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence. In FIG. 9, the sequence of the Neo/kan target mutant corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676, the converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678 and the FIAsH peptide sequence corresponds to SEQ ID NO: 2700. [0048]
  • FIG. 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose. [0049]
  • FIG. 11. pBI-HygeGFP plasmid. This plasmid is a construct based on the plasmids pBI101, pBI 101.2, pBI101.3 or pBI 121 available from Clontech in which HygeGFP replaces the beta-glucuronidase gene of the Clontech plasmids. The different Clontech plasmids vary by a reading frame shift relative to the polylinker, or the presence of the Cauliflower mosaic virus promoter.[0050]
  • The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein. [0051]
  • EXAMPLE 1 Assay Method for Base Alteration and Preferred Oligonucleotide Selection
  • In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see FIG. 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pK[0052] sm4021 (FIG. 2) or the tetracycline gene of pTsΔ208 (FIG. 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIG. 1C and FIG. 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(−)FIAsH (FIG. 9), bearing the kans gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferasea (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FIAsH fusion product (after alteration) or the truncated Neo−/FIAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy.
  • Additional constructs can be made to test additional gene alteration events or for specific use in different expression systems. For example, alternative comparable plant plasmids or integration vectors such as, e.g. those based on T-DNA, can be constructed for stable expression in plant cells according to the disclosures herein. Such constructs would use a plant specific promoter such as, e.g., cauliflower mosaic virus 35S promoter, to replace the promoters directing expression of the neo, hyg or aureobasidinA resistance gene disclosed herein, including for example, in FIGS. 7B, 9 and [0053] 10 herein. Moreover, the green fluorescent protein (GFP) sequence used herein may be modified to increase expression in plant cells such as Arabidopsis and the other plants disclosed herein as described in Haseloff et al., Proc. Natl.Acad. Sci. 94(6): 2122-7 (1997), Rouwendal et al. Plant Mol. Biol. 33(6): 989-99 (1997) and Hu et al. FEBS Lett. 369(2-3): 331-4 (1995). Codon usage for optimal expression of GFP in plants results from increasing the frequency of codons with a C or a G in the third position from 32 to about 60%. Specific constructs are disclosed and can be used as follows with such plant specific alterations.
  • We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T1374→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHYGeGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 [0054] bp 5′ amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′; SEQ ID NO: 2701) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′; SEQ ID NO: 2702), HygΔr (5′-GACTATCCACGCCCTCC-3′; SEQ ID NO: 2703), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′; SEQ ID NO: 2704), respectively. We generate a 300 bp 3′ amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′; SEQ ID NO: 2705), HygΔf (5′-CGTGGATAGTCCTGCGG-3′; SEQ ID NO: 2706), Hyginsf (5′-CGTGGATAATGTCCTGCGG-3′; SEQ ID NO: 2707), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′; SEQ ID NO: 2708). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 μg of vector pHYGeGFP and 5 μg of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHYGeGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.
  • Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., [0055] Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 μg/ml per A260 unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep. The E.coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).
  • Cell-free extracts. Although this portion of this example is directed to mammalian systems, similar extracts from plants can be prepared as disclosed elsewhere in this application and used as disclosed in this example. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×10[0056] 8 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000×g. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at −80° C. We determine the protein concentration in the extract by the Bradford assay.
  • We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, [0057] S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000×g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000×g for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000×g for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at −80° C. We determine the protein concentration of the extract by the Bradford assay.
  • Reaction mixtures of 50 μl are used, consisting of 10-30 μg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 μg chimeric double-hairpin oligonucleotide or 0.55 μg single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 μg of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl[0058] 2, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 μl H2O, and is stored at −20° C. 5 μl of plasmid from the resuspension (˜100 ng) was transfected in 20 μl of DH10B cells by electroporation (400 V, 300 μF, 4 kΩ) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37° C. for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 μg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37° C. Cells are then spun down at 3750×g and the pellet is resuspended in 500 μl SOC. 200 μl is added undiluted to each of two kanamycin (50 μg/ml) agar plates and 200 μl of a 105 dilution is added to an ampicillin (100 μg/ml) plate. After overnight 37° C. incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10−5 to correct for the amp dilution.
  • The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent DH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μl of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10[0059] 31 4 dilution of the cultures are concurrently plated on agar plates containing 100 μg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).
  • Chimeric single-stranded oligonucleotides. In FIG. 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligo-nucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kan[0060] s in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene.
  • Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kan[0061] s system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and FIG. 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.
  • The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and FIG. 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2′-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide. [0062]
  • Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in FIG. 4, colonies generated through the action of the single-stranded [0063] molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see FIG. 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.
  • In FIG. 1, the [0064] numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the examplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).
  • Correction of a mutant kanamycin gene in cultured mammalian cells. Although this portion of this example is directed to cultured mammalian cells, comparable methods may be used using cultured plant cells or protoplasts of those cells from the plant species disclosed herein. The experiments are performed using different eukaryotic cells including plant and mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO[0065] 2 in a humidified incubator to a density of 2×105 cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 μg of plasmid pAURNeo(−) FIAsH and 5 μg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 μg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kans gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence (SEQ ID NO: 2717) in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FIAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).
  • Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkan[0066] sm4021 (see FIG. 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkansm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kanr or tetr and fold increases (single strand versus double hairpin) are presented for kanr in Table 1.
  • FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G). FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”. [0067]
  • Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold in certain embodiments when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides. [0068]
  • This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in [0069] E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.
  • The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kan[0070] s mutation, gene repair is observed (I in FIG. 1A). Chimera II (FIG. 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kans mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.
  • Frame shift mutations are repaired. By using plasmid pT[0071] sΔ208, described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. FIG. 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. FIG. 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.
  • Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues. [0072]
  • Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pK[0073] sm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG (SEQ ID NO: 2709) corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC (SEQ ID NO: 2710) with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3′ end. Oigo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).
  • We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pK[0074] sM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTCGTATCCGAATAGC-3′ (SEQ ID NO: 2711); a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA-3′ (SEQ ID NO: 2712); and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGMTAGCCT-3′ (SEQ ID NO: 2713). The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.
  • We assay correction of the original mutation in pK[0075] sm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp5091 which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below:
    Oligo 1 (25-mer) Oligo 2 (70-mer)
    Clones with both sites changed 9 7
    Clones with a single site changed 0 2
    Clones that were not changed 4 1
  • Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels). [0076]
  • Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract or extracts made from other plant cells disclosed herein. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl[0077] 2; 10 mM DTT; and 10% [v/v] glycerol). Some plant cell-free extracts also include about 1% (w/v) PVP. We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000×g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μg (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at −80° C.
  • We describe experiments using two sources here: a dicot (canola) and a monocot (banana, [0078] Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.
  • Tables are attached hereto. [0079]
    TABLE I
    Gene repair activity is directed by single-stranded oligonucleotides.
    Oligonucleotide Plasmid Extract (ug) kanr colonies Fold increase
    I pKSm4021 10 300
    I 20 418  1.0 ×
    II 10 537
    II 20 748  1.78 ×
    III 10 3
    III 20 5  0.01 ×
    IV 10 112
    IV 20 96  0.22 ×
    V 10 217
    V 20 342  0.81 ×
    VI 10 6
    VI 20 39 0.093 ×
    VII 10 0
    VII 20 0    0 ×
    VIII 10 3
    VIII 20 5  0.01 ×
    IX 10 936
    IX 20 1295  3.09 ×
    X 10 1140
    X 20 1588  3.7 ×
    XI 10 480
    XI 20 681  1.6 ×
    XII 10 18
    XII 20 25 0.059 ×
    XIII 10 0
    XIII 20 4 0.009 ×
    20 0
    I 0
  • Plasmid pK[0080] Sm4021 (1 μg), the indicated oligonucleotide (1.5 μg chimeric oligonucleotide or 0.55 μg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 μg of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kanr colonies counted. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/−15%). Fold increase is defined relative to 418 kanr colonies (second reaction) and in all reactions was calculated using the 20 μg sample.
    TABLE II
    Modified single-stranded oligomers are not dependent on MSH2
    or MSH3 for optimal gene repair activity.
    A. Oligonucleotide Plasmid Extract kanr colonies
    IX (3S/25G) HUH7 637
    X (6S/25G) HUH7 836
    IX MEF2−/− 781
    X MEF2−/− 676
    IX MEF3−/− 582
    X MEF3−/− 530
    IX MEF+/+ 332
    X MEF+/+ 497
    MEF2−/− 10
    MEF3 −/− 5
    MEF+/+ 14
  • Chimeric oligonucleotide (1.5 μg) or modified single-stranded oligonucleotide (0.55 μg) was incubated with 1 μg of plasmid pK[0081] Sm4021 and 20 μg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2−/−) or MSH3 (3−/−) deleted. MEF+/+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies.
    TABLE III
    Frameshift mutation repair is directed by
    single-stranded oligonucleotides
    Oligonucleotide Plasmid Extract tetr colonies
    Tet IX (3S/25A; 0.5 μg) pTSΔ208 (1 μg) 0
    20 μg 0
    Tet IX (0.5 μg) 48
    Tet IX (1.5 μg) 130
    Tet IX (2.0 μg) 68
    Tet I (chimera; 1.5 μg) 48
  • Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 10[0082] 6 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pTsΔ208. The oligonucleotides are equivalent to structures I and IX in FIG. 2.
    TABLE IV
    Plant cell-free extracts support gene repair by
    single-stranded oligonucleotides
    Oligonucleotide Plasmid Extract kanr colonies
    II (chimera) pKSm402l 30 μg Canola 337
    IX (3S/25G) Canola 763
    X (6S/25G) Canola 882
    II Musa 203
    IX Musa 343
    X Musa 746
    Canola 0
    Musa 0
    IX Canola 0
    X Musa 0
  • Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μg) and modified single-stranded oligonucleotides IX and X (0.55 μg) were used to correct pK[0083] Sm4021. Total number of kanr colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments.
    TABLE V
    Gene repair activity in cell-free extracts prepared from yeast
    (Saccharomyces cerevisiae)
    Cell-type Plasmid Chimeric Oligo SS Oligo kanr/ampr × 106
    Wild type pKansm4021 1 μg 0.36
    Wild type 1 μg 0.81
    ΔRAD52 1 μg 10.72
    ΔRAD52 1 μg 17.41
    ΔPMS1 1 μg 2.02
    ΔPMS1 1 μg 3.23
  • EXAMPLE 2 Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection
  • In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene. [0084]
  • We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with KpnI and SaII (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit. [0085]
  • We use this system to assay the ability of five oligonucleotides (shown in FIG. 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74α, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control. Alternatively, oligonucleotides containing one, two, three, four, five, six, eight, ten or more LNA modifications on at least one of the two termini (and preferrably the 3′ terminus) may be used in different embodiments. [0086]
  • Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast ([0087] Saccharomyces cerevisiae) strain LSY678 MAT α at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30° C. until the OD600 was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4° C. at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4° C. at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4° C. at 5000 rpm for 5 minutes and resuspend the cells in 120 μl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 μl of cells with 5 μg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μF, 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30° C. with shaking at 300 rpm for 6 hours. We then spread 200 μl of this culture on selective plates containing 300 μg/ml hygromycin and spread 200 μl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30° C. for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.
  • Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in FIG. 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count. [0088]
  • We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the [0089] sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 2714); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 2715); and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACGGTTTCTAC (SEQ ID NO: 2716). The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.
  • Oligonucleotides targeting the sense strand direct gene correction more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74α, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74α and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in FIG. 10. [0090]
  • Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μg. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested. [0091]
  • Tables are attached hereto. [0092]
    TABLE 6
    Correction of an insertion mutation in pAURHYG(ins)GFP by
    HygGG/Rev, HygE3T/25 and HygE3T/74
    Colonies on Colonies on Correction
    Oligonucleotide Tested Hygromycin Aureobasidin (/105) Efficiency
    HygGG/Rev 3 157 0.02
    HygE3T/25 64 147 0.44
    HygE3T/74 280 174 1.61
    Kan70T 0
  • [0093]
    TABLE 7
    An oligonucleotide targeting the sense strand of the target sequence
    corrects more efficiently.
    Colonies per
    hygromycin plate
    Amount of Oligonucleotide (μg) HygE3T/74 HygE3T/74α
    0 0 0
    0.6 24 128 (8.4x)*
    1.2 69 140 (7.5x)*
    2.4 62 167 (3.8x)*
    3.6 29 367 (15x)* 
  • [0094]
    TABLE 8
    Correction of a base substitution mutation is more efficient than correction
    of a frame shift mutation.
    Oligonucleotide Plasmid tested (contained in LSY678)
    Tested (5 μg) pAURHYG(ins)GFP pAURHYG(rep)GFP
    HygE3T/74 72 277
    HygE3T/74α 1464 2248
    Kan70T 0 0
  • [0095]
    TABLE 9
    Optimization of oligonucleotide concentration in electroporated yeast cells.
    Colonies on Colonies on Correction
    Amount (μg) hygromycin aureobasidin (/105) efficiency
    0 0 67 0
    1.0 5 64 0.08
    2.5 47 30 1.57
    5.0 199 33 6.08
    7.5 383 39 9.79
    10.0 191 33 5.79
  • EXAMPLE 3 Cultured Cell Manipulation
  • Although disclosure in this example is directed to use of stem cells or human blood cells and microinjection, the microinjection procedures may also be used with cultured plant cells or protoplasts using any plant species, including those disclosed herein. Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). Lin[0096] CD38 cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection. S Medium contains Iscoves' Modified Dulbecc's Medium without phenol red (IMDM) with 100 μg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 μg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 μg/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 μM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
  • 35 mm dishes are coated overnight at 4° C. with 50 μg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 μm to 0.3 μm outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells. [0097]
  • For in vitro erythropoiesis from Lin[0098] CD38 cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
  • Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art. [0099]
  • Biolistic delivery of oligonucleotide into plant cells may be accomplished according to the following method. One milliliter of packed cell volume of plant cell suspensions are subcultured onto plates containing solid medium [with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mg/liter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mg/[0100] liter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose (pH 5.7) and having 8 g/liter agar-agar from Sigma added before autoclaving]. By using a helium-driven particle gun such as that from BioRad and following manufacturers directions, oligonucleotides may be introduced to cells after precipitation onto 1 micrometer or comparable gold microcarriers (Bio-Rad). To precipitate onto microcarriers, 35 microliters of a particle suspension (60 mg of microcarriers per ml of 100% ethanol) is transferred to a 1.5 ml microcentrifuge tube, which is agitated on a vortex mixer. Then 40 microliter of resuspended oligonucleotide (60 ng/microliter water) is added; then 75 microliter of ice-cold 2.5 M CaCl2 is added; then 75 microliter of ice-cold 0.1 M spermidine is added. The tube is mixed vigorously or a vortex mixer for 10 min at room temperature. The particles are allowed to settle for 10 min and are centrifuged at 11,750 g for 30 sec. The supernatant is removed and the particles are resuspended in 50 microliter of 100% ethanol. An aliquot of 10 microliter of the resuspended particles are applied to each macro-projectile which is used to bombard each plate once at 900 psi (1 psi=6.89 kPa) with a gap distance (distance from power source to macroprojectile) of 1 cm and a target distance (distance from microprojectile launch site to target material) of 10 cm.
  • An alternative method of delivery can be used as follows. Cultured cells are suspended in liquid N6 medium and then plated on a VWR Scientific glass fiber filter. About 0.4 microgram of oligonucleotide are precipitated with 15 microliter of 2.5 mM CaCl2 and 5 microliter of 0.1 M spermidine onto 25 microgram of 1.0 micrometer gold particles. Microprojectile bombardment is performed by using a Bio-Rad PDS-1000 He particle delivery system or comparable machine following manufacturers instructions. Alterations in oligonucleotide concentrations can be employed to determine the optimum concentration of oligonucleotide according to the procedures described herein for any particular oligonucleotide of the invention. [0101]
  • Alternatively, the oligonucleotide of the invention may be delivered to a plant cell by electroporation of a protoplast derived from a plant part. The protoplasts may be formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques such as those in Gallois et al., Methods in Molecular Biology 55: 89-107 by Humana Press. Such conditions for electroporation use about 3×10[0102] 5 protoplasts in a total volume of about 0.3 ml with a concentration of oligonucleotide of between 0.6 to 4 microgram per ml.
  • EXAMPLE 4 Plant Cells
  • The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon. [0103]
  • Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells. [0104]
  • For introduction of a T-DNA, including the T-DNA in the plasmid of FIG. 11, into a plant cell, [0105] Agrobacterium tumefaciens is used. These techniques are routine standard techniques known in the art. For example, one method follows. We transform A. tumefaciens is transformed by electroporation (using a BioRad Gene Pulser™). Competent A. tumefaciens is prepared using a method similar to that of preparing competent E. coli by suspending a freshly grown culture three times in ice-cold water and a final resuspension in 10% glycerol. Electroporation conditions are a 0.2 cm gap cuvette at a setting of 25 μF,200 Ω and2.5 kV.
  • [0106] A. tumefaciens containing a plasmid with a T-DNA is then used to introduce the T-DNA into a plant cell using routine standard techniques known in the art. For example, we transform Arabidopsis by vacuum infiltration or by dipping flowers in an Agrobacterium solution containing a surfactant, e.g. L-77. Seeds are then collected, grown and screened for presence of the T-DNA. Alternatively, Agrobacterium can be used to transform callus tissue and the callus tissue can then be used to regenerate transformed plants.
  • All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. [0107]
  • Notes on the Tables Presented Below: [0108]
  • Each of the following tables presents, for the specified gene, a plurality of mutations that are known to confer a relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the genome according to the present invention. [0109]
  • The left-most column identifies each alteration or mutation and the phenotype that the alteration/mutation confers. [0110]
  • For most entries, the mutation/alteration is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown. [0111]
  • The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the genome or in cloned DNA including DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically. [0112]
  • All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold. [0113]
  • The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair/altering nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair/alteration. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair/alteration nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second. [0114]
  • The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide. [0115]
  • EXAMPLE 5 Engineering Herbicide Resistant Plants
  • Chemical weed control is an important tool of modern agriculture and many herbicides have been developed for this purpose. Their use has resulted in substantial increases in the yields of many crops, including, for example, maize, soybeans, and cotton. Thus while the use of fertilizers and new high-yielding crop varieties have contributed greatly to the “green revolution,” chemical weed control has also been at the forefront of technological achievement. [0116]
  • Herbicides having broad-spectrum activity are particularly useful because they obviate the need for multiple herbicides targeting different classes of weeds. The problem with such herbicides is that they typically also affect crops which are exposed to the herbicide. One way to overcome this is to generate plants which are resistant to one or more broad-spectrum herbicides. Such herbicide-tolerant plants may reduce the need for tillage to control weeds, thereby effectively reducing soil erosion and can reduce the quantity and number of different herbicides applied in the field. [0117]
  • Common herbicides used, for example, include those that inhibit the enzyme 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS), for example N-phosphonomethyl-glycine (e.g. glyphosate), those that inhibit acetolactate synthase (ALS) activity, for example the sulfonylureas and related herbicides, and those that inhibit dihydropteroate synthase, for example methyl[(4-amino-phenyl)sulfonyl]carbamate (e.g. Asulam). Herbicide-tolerant plants can be produced by several methods, including, for example, introducing into the genome of the plant the ability to degrade the herbicide, the capacity to produce a higher level of the targeted enzyme, and/or expressing an herbicide-tolerant allele of the enzyme. [0118]
  • The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes that confer herbicide resistance. [0119]
    TABLE 10
    Genome-Altering Oligos Conferring Glyphosate Resistance
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Glyphosate Resistance AAGCGTCGGAGATTGTACTTCAACCCATTTAGAGAAATCTCCGGTC 1
    EPSPS TTATTAAGCTTCCTGCCTCCAAGTCTCTATCAAATCGGATCCTGC
    Arabidopsis thaliana TTCTCGCTGCTCTGTCTGAGGTATATATCAC
    Gly97Ala GTGATATATACCTCAGACAGAGCAGCGAGAAGCAGGATCCGATT 2
    GGC-GCC TGATAGAGACTTGGAGGCAGGAAGCTTAATAAGACCGGAGATTT
    CTCTAATGGGTTGAAGTACAATCTCCGACGCTT
    GCTTCCTG C CTCCAAGT 3
    ACTTGGAG G CAGGAAGC 4
    Glyphosate Resistance AAGCTTCAGAGATTGTGCTTCAACCAATCAGAGAAATCTCGGGTC 5
    EPSPS TCATTAAGCTACCCGCATCCAAATCTCTCTCCAATCGGATCCTCC
    Brassica napus TTCTTGCCGCTCTATCTGAGGTACATATACT
    Gly93AIa AGTATATGTACCTCAGATAGAGCGGCAAGAAGGAGGATCCGATT 6
    GGA-GCA GGAGAGAGATTTGGATGCGGGTAGCTTAATGAGACCCGAGATTT
    CTCTGATTGGTTGAAGCACAATCTCTGAAGCTT
    GCTACCCG C ATCCAAAT 7
    ATTIGGAT G CGGGTAGC 8
    Glyphosate Resistance AGCCCAACGAGATTGTGCTGCAACCCATCAAAGATATATCAGGC 9
    EPSPS 1 ACTGTTAAATTGCCTGCTTCTAAATCCCTTTCCAATCGTATTCTCC
    Nicotiana tabacum TTCTTGCTGCCCTTTCTAAGGGAAGGACTGT
    Gly95Ala ACAGTCCTTCCCTTAGAAAGGGCAGCAAGAAGGAGAATACGATT 10
    GGT-GCT GGAAAGGGATTTAGAA G CAGGCAATTTAACAGTGCCTGATATATC
    TTTGATGGGTTGCAGCACAATCTCGTIGGGCT
    ATTGCCTG C TTCTAAAT 11
    ATTTAGAA G CAGGCAAT 12
    Glyphosate Resistance ATTGTTTCCTTGGTACGAAATGTCCTCCTGTTCGAATTGTCAGCA 13
    EPSPS 2 AGGGAGGCCTTCCCGCAGGGAAGGTAAAGCTCTCTGGATCAATT
    Nicotiana tabacum AGCAGCCAGTACTTGACTGCTCTGCTTATGGC
    Gly62Ala GCCATAAGCAGAGCAGTCAAGTACTGGCTGCTAATTGATCCAGA 14
    GGA-GCA GAGCTTTACCTTCCCT G CGGGAAGGCCTCCCTTGCTGACAATTC
    GAACAGGAGGACATTTCGTACCAAGGAAACAAT
    CCTTCCCG C AGGGAAGG 15
    CCTTCCCG C GGGAAGG 16
    Glyphosate Resistance ATTGTTTCCTTGGCACTGACTGGCCACCTGTTCGTGTCAATGGAA 17
    EPSPS TCGGAGGGCTACCTG C TGGCAAGGTCAAGCTGTCTGGCTCCATC
    Zea mays AGCAGTCAGTACTTGAGTGCCTTGCTGATGGC
    Gly168Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAGCCAGA 18
    GGT-GCT CAGCTTGACCTTGCCA G CAGGTAGCCCTCCGATTCCATTGACAC
    GAACAGGTGGGCAGTCAGTGCCAAGGAAACAAT
    GCTACCTG C TGGCAAGG 19
    CCTTGCCA G CAGGTAGC 20
    Glyphosate Resistance ACTGTTTCCTTGGCACTGAATGCCCACCTGTTCGTGTCAAGGGA 21
    EPSPS ATTGGAGGACTTCCTG C TGGCAAGGTTAAGCTCTCTGGTTCCAT
    Cryza sativa CAGCAGTCAGTACTTGAGTGCCTTGCTGATGGC
    Gly115Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAACCAGA 22
    GGT-GCT GAGCTTAACCTTGCCAGCAGGAAGTCCTCCAATTCCCTTGACAC
    GAACAGGTGGGCATTCAGTGCCAAGGAAACAGT
    ACTTCCTG C TGGCAAGG 23
    CCTTGCCA G CAGGAAGT 24
    Glyphosate Resistance AGCCTTCTGAGATAGTGTTGCAACCCATTAAAGAGATTTCAGGCA 25
    EPSPS CTGTTAAATTGCCTGCCTCTAAATCATTATCTAATAGAATTCTCCT
    Petunia x hybrida TCTTGCTGCCTTATCTGAAGGMCAACTGT
    Gly93Ala ACAGTTGTTCCTTCAGATAAGGCAGCAAGAAGGAGAATTCTATTA 26
    GGC-GCC GATAATGATTTAGAGGCAGGCAATTTAACAGTGCCTGAAATCTCT
    TTAATGGGTTGCAACACTATCTCAGAAGGCT
    ATTGCCTG CCTCTAAAT 27
    ATTTAGAG G CAGGCAAT 28
    Glyphosate Resistance AACCCCATGAGATTGTGCTAGNACCCATCAAAGATATATCTGGTA 29
    EPSPS CTGTTAAATTACCCG C TTCGAAATCCCTTTCCAATCGTATTCTCCT
    Lycopersicon TCTTGCTGCCCTTTCTGAGGGAAGGACTGT
    esculentum ACAGTCCTTCCCTCAGAAAGGGCAGCAAGAAGGAGAATACGATT 30
    Gly97Ala GGAAAGGGATTTCGAA G CGGGTAATTTAACAGTACCAGATATATC
    GGT-GCT TTTGATGGGTNCTAGCACAATCTGATGGGGTT
    ATTACCCG C TTCGAAAT 31
    ATTTCGAA G CGGGTAAT 32
    Glyphosate Resistance ATTGTTTCCTTGGCACTGACTGCCCACCTGTTCGKATCAACGGGA 33
    EPSPS TTGGAGGGCTACCTGCTGGCAAGGTTAAGCTGTCTGGTTCCAIT
    Lolium rigidum AGCAGCCAATACTTGAGTTCCTTGCTGATGGC
    Gly107Ala GCCATCAGCAAGGAACTCAAGTATTGGCTGCTGATGGAACCAGA 34
    GGT-GCT CAGCTTAACCTTGCCA G CAGGTAGCCCTCCAATGCCGTTGATCG
    AACAGGTGGGCAGTCAGTGCCAAGGAAACAAT
    GCTACCTG C TGGCAAGG 35
    CCTTGCCA G CAGGTAGC 36
  • [0120]
    TABLE 11
    Genome-Altering Oligos Conferring Imidazolinone
    and Sulfonylurea Herbicide Resistance
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 37
    Resistance ATCACAGGACAAGTC T CTCGTCGTATGATTGGTACAGATGCGTTT
    ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT
    Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 38
    Pro197Ser CAATCATACGACGAG A GACTTGTCCTGTGATTGCTACAAGAGGAA
    CCT-TCT CACTATCTAACAACGCATCGGCTAATCCGCT
    GACAAGTCTC T CGTCGT 39
    ACGACGAG A GACTTGTC 40
    Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 41
    Resistance ATCACAGGACAAGTCC AG CGTCGTATGATTGGTACAGATGCGTTT
    ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT
    Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 42
    Pro197GLN CAATCATACGACG C TGGACTTGTCCTGTGATTGCTACAAGAGGAA
    CCT-CAG CACTATCTAACAACGCATCGGCTAATCCGCT
    ACAAGTCC AG CGTCGTC 43
    TACGACG CT GGACTTGT 44
    Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 45
    Resistance ATCACAGGACAAGTCC AA CGTCGTATGATTGGTACAGATGCGTTT
    ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT
    Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 46
    Pro197GLN CAATCATACGACG TT GGACTTGTCCTGTGATTGCTACAAGAGGAA
    CCT-CAA CACTATCTAACAACGCATCGGCTAATCCGCT
    ACAAGTCC AA CGTCGTA 47
    TACGACG TT GGACTTGT 48
    Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT 49
    Resistance TGCCGATGATCCCGA AC GGTGGCACTTTCAACGATGTCATAACGG
    ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT
    Arabidopsis thaliana ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT 50
    Ser653Asn TGAAAGTGCCACC GT TCGGGATCATCGGCAACACATGTTCTTGGT
    AGT-AAC GCGGACAAATCACATCCAACAGGTAAGGTC
    GATCCCGA AC GGTGGCA 51
    TGCCACC GT TCGGGATC 52
    Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT 53
    Resistance TGCCGATGATCCCGA AT GGTGGCACTTTCAACGATGTCATAACGG
    ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT
    Arabidopsis thaliana ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT 54
    Ser653Asn TGAAAGTGCCACC AT TCGGGATCATCGGCAACACATGTTCTTGGT
    AGT-AAT GCGGACAAATCACATCCAACAGGTAAGGTC
    GATCCCGA AT GGTGGCA 55
    TGCCACC AT TCGGGATC 56
    Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGC 57
    Resistance CATCACGGGCCAGGTC T CCCGCCGCATGATCGGCACCGACGCCT
    ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT
    Oryza saliva AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG 58
    Pro171Ser CCGATCATGCGGCGGG A GACCTGGCCCGTGATGGCGACCATCG
    CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA
    GCCAGGTC T CCCGCCGC 59
    GCGGCGGG A GACCTGGC 60
    Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 61
    Resistance ATCACGGGCCAGGTCC AA CGCCGCATGATCGGCACCGACGCCTT
    ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
    Oryza saliva GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 62
    Pro171Gln GCCGATCATGCGGCG TT GGACCTGGCCCGTGATGGCGACCATCG
    CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG
    CCAGGTCC AA CGCCGCA 63
    TGCGGCG TT GGACCTGG 64
    Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 65
    Resistance ATCACGGGCCAGGTCC AG CGCCGCATGATCGGCACCGACGCCTT
    ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
    Oryza saliva GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 66
    Pro171Gln GCCGATCATGCGGCG CT GGACCTGGCCCGTGATGGCGACCATCG
    CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG
    CCAGGTCC AG CGCCGCA 67
    TGCGGCG CT GGACCTGG 68
    Imidazolinone GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC 69
    Resistance TGCCTATGATCCCAA A TGGGGGCGCATTCAAGGACATGATCCTGG
    ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT
    Oryza saliva ATAGATTAATACACAGTCCTGCGATCACCATCCAGGATCATGTCCT 70
    Ilee627Asn TGAATGCGCCCCCA T TTGGGATCATAGGCAGCACATGCTCCTGGT
    ATT-AAT GCGGGACGATGATATCCAACAAGTATGGCC
    GATCCCAA A TGGGGGCG 71
    CGCCCCCA T TTGGGATC 72
    Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGC 73
    Resistance CATCACGGGACAGGTG T CGCGACGCATGATTGGCACCGACGCCT
    ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT
    Zea mays AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGGT 74
    Pro165Ser GCCAATCATGCGTCGCG A CACCTGTCCCGTGATGGCGACCATGG
    CCG-TCG GGACGGAATCGAGCAGCGCGTCGGCGAGCGCGGA
    GACAGGTG T CGCGACGC 75
    GCGTCGCG A CACCTGTC 76
    Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGCC 77
    Resistance ATCACGGGACAGGTGC A GCGACGCATGATTGGCACCGACGCCTT
    ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC
    Zea mays GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGG 78
    Pro165Gln TGCCAATCATGCGTCGC T GCACCTGTCCCGTGATGGCGACCATG
    CCG-CAG GGGACGGAATCGAGCAGCGCGTCGGCGAGCGCGG
    ACAGGTGC A GCGACGCA 79
    TGCGTCGC T GCACCTGT 80
    Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT 81
    Resistance TGCCTATGATCCCTA AT GGTGGGGCTTTCAAGGATATGATCCTGG
    ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA
    Zea mays TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT 82
    Ser621Asn TGAAAGCCCCACC AT TAGGGATCATAGGCAACACATGCTCCTGGT
    AGT-AAT GTGGGACGATTATATCCAAGAGGTACGGCC
    GATCCCTA AT GGTGGGG 83
    CCCCACC AT TAGGGATC 84
    Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT 85
    Resistance TGCCTATGATCCCTA AC GGTGGGGCTTTCAAGGATATGATCCTGG
    ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA
    Zea mays TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT 86
    Ser621Asn TGAAAGCCCCACC GT TAGGGATCATAGGCAACACATGCTCCTGGT
    AGT-AAC GTGGGACGATTATATCCAAGAGGTACGGCC
    GATCCCTA AC GGTGGGG 87
    CCCCACC GT TAGGGATC 88
    Sulfonylurea TCCGCGCTCGCCGACGCCGTCCTCGACTCCATCCCCATGGTGGC 89
    Resistance CATCACGGGGCAGGTC T CGCGCCGCATGATCGGCACGGACGCCT
    ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT
    Lolium multiflorum AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGTG 90
    Pro167Ser CCGATCATGCGGCGCG A GACCTGCCCCGTGATGGCCACCATGG
    CCG-TCC GGATGGAGTVGAGGAGGGCCTCGGCGACCCCCCA
    GGCAGGTC T CGCGCCGC 91
    GCGGCGCG A GACCTGCC 92
    Sulfonylurea CCGCGCTCGCCGACGCCCTCCTCGACTCCATCCCCATGGTGGCC 93
    Resistance ATCACGGGGCAGGTCC A GCGCCGCATGATCGGCACGGACGCCTT
    ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC
    Lolium multiflorum GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGT 94
    Pro167Gln GCCGATCATGCGGCGC T GGACCTGCCCCGTGATGGCCACCATGG
    CCG-CAG GGATGGAGTCGAGGAGGGCGTCGGCGAGCGCGG
    GCAGGTCC A GCGCCGCA 95
    TGCGGCGC T GGACCTGC 96
    Imidazolinone CTGGGCCATACTTGTTGGATATCATCGTCCCTCACCAGGAGCATG 97
    Resistance TGCTGCCTATGATCCCTA A CGGTGGTGCTTTCAAGGACATTATCA
    ALS TGGAAGGTGATGGCAGGATTTCGTATTAAAC
    Lolium multiflorum GTTTAATACGAAATCCTGCCATCACCTTCCATGATAATGTCGTTGA 98
    Ser623Asn AAGCACCACCG T TAGGGATCATAGGCAGCACATGCTCCTGGTGA
    AGC-AAC GGGACGATGATATCCAACAAGTATGGCCCAG
    GATCCCTA A CGGTGGTG 99
    CACCACCG T TAGGGATC 100
    Sulfonylurea TCCGCGCTCGCCGACGGTCTCCTCGACTCCATCGCCATGGTCGC 101
    Resistance CATCACGGGCCAGGTC T CACGCCGCATGATCGGCACGGACGCGT
    ALS TCCAGGAGACGCCCATAGTGGAGGTCACGCGCT
    Hordeum vulgare AGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGTG 102
    Pro68Ser CGGATCATGCGGCGTG A GACCTGGCCCGTGATGGCGACCATGG
    CCA-TCA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGGA
    GCCAGGTC T CACGCCGC 103
    GCGGCGTG A GACCTGGC 104
    Sulfonyurea CCGCGCTCGCCGACGCTCTCCTCGACTCCATCCCCATGGTCGCC 105
    Resistance ATCACGGGCCAGGTCC A ACGCCGCATGATCGGCACGGACGCGTT
    ALS CCAGGAGACGCCCATAGTGGAGGTCACGCGCTC
    Hordeum vulgare GAGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGT 106
    Pro68Gln GCCGATCATGCGGCGT T GGACCTGGCCCGTGATGGCGACCATGG
    CCA-CAA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGG
    CCAGGTCC A ACGCCGCA 107
    TGCGGCGT T GGACCTGG 108
    Imidazolinone CCCAGGGCCGTACCTGCTGGATATCATTGTCCCGCATCAGGAGC 109
    Resistance ACGTGCTGCCTATGATCCCAA A CGGTGGTGCTTTCAAGGACATGA
    ALS TCATGGAGGGTGATGGCAGGACCTCGTACTGA
    Hordeum vulgare TCAGTACGAGGTCCTGCCATTCACCCTCCATGATCATGTCCTTGAA 110
    Ser524Asn AGCACCACCG T TTGGGATCATAGGCAGCACGTGCTCCTGATGCG
    AGC-AAC GGACAATGATATCCAGCAGGTACGGCCCTGGG
    GATCCCAA A CGGTGGTG 111
    CACCACCG T TTGGGATC 112
    Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG 113
    Resistance ATCACTGGTCAAGTC T CTCGTCGGATGATCGGTACCGATGCTTTC
    ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT
    Gossypium hirsutum ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 114
    Pro186Ser CGATCATCCGACGAG A GACTTGACCAGTGATCGCCACGAGAGGG
    CCT-TCT ATACTATCGAGCATTGCATCAGCGAGACCACT
    GTCAAGTC T CTCGTCGG 115
    CCGACGAG A GACTTGAC 116
    Sulfonylurea GTGGTCTCGCTGATGCAATGGTCGATAGTATCCCTCTCGTGGCGA 117
    Resistance TCACTGGTCAAGTCC AA CGTCGGATGATCGGTACCGATGCTTTCC
    ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
    Gossypium hirsutum GACCTTGTTACCTCAACAATTGGAGTTICCTGGAAAGCATCGGTA 118
    Pro186Gln CCGATCATCCGACG TT GGACTTGACCAGTGATCGCCACGAGAGG
    CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC
    TCAAGTCC AA CGTCGGA 119
    TCCGACG TT GGACTTGA 120
    Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA 121
    Resistance TCACIGGTCAAGTCC AG CGTCGGATGATCGGTACCGATGCTTTCC
    ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
    Gossypium hirsutum GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 122
    Pro186Gln CCGATCATCCGACG CT GGACTTGACCAGTGATCGCCACGAGAGG
    CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC
    TCAAGTCC AG CGTCGGA 123
    TCCGACG CT GGACTTGA 124
    Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT 125
    Resistance GCCTATGATCCCCA A TGGAGGCGCTTTCAAAGATGTGATCACAGA
    ALS GGGTGATGGAAGAACACAATATTGACCTCA
    Gossypium hirsutum TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT 126
    Ser642Asn TGAAAGCGCCTCCA T TGGGGATCATAGGCAGGACATGTTCTTGAT
    AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC
    GATCCCCA A TGGAGGCG 127
    CGCCTCCA T TGGGGATC 128
    Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA 129
    Resistance TTACTGGGCAAGTT T CCCGGCGTATGATTGGTACTGATGCTTTTCA
    ALS AGAGACTCCAATTGTTGAGGTAACTCGAT
    Amaranthus ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC 130
    retroflexus AATCATACGCCGGG A AACTTGCCCAGTAATGGCGACAAGAGGGA
    Pro192Ser CTGAGTCAAGAAGTGCATCAGCAAGACCAGA
    CCC-TCC GGCAAGTT T CCCGGCGT 131
    ACGCCGGG A AAGTTGCC 132
    Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 133
    Resistance TACTGGGCAAGTTC AA CGGCGTATGATTGGTACTGATGCTTTTCA
    ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
    Amaranthus GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 134
    retroflexus CAATCATACGCCG TT GAACTTGCCCAGTAATGGCGACAAGAGGGA
    Pro192Gln CTGAGTCAAGAAGTGCATCAGCAAGACCAG
    CCC-CAA GCAAGTTC AA CGGCGTA 135
    TACGCCG TT GAACTTGC 136
    Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 137
    Resistance TACTGGGCAAGtTC AG CGGCGTATGATTGGTACTGATGCTTTTCA
    ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
    Amaranthus GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 138
    retroflexus CAATCATACGCCG CT GAACTTGCCCAGTAATGGCGACAAGAGGG
    Pro192Gln ACTGAGTCAAGAAGTGCATCAGCAAGACCAG
    CCC-CAG GCAAGTTC AG CGGCGTA 139
    TACGCCG CT GAACTTGC 140
    Imidazolinone GACCGTATCTTGCTGGATGTTAATCGTACCACATCAGGAGCATGTGC 141
    Resistance TGCCTAIGATCCCTA A CGGTGCCGCCTTCAAGGACACCATAACAG
    ALS AGGGTGATGGAAGAAGGGGTTATTAGTTGGT
    Amaranthus ACCAACTAATAAGCCCTTCTTCCATTCACCCTCTGTTATGGTGTCCT 142
    retroflexus TGAAGGCGGCACCG T TAGGGATCATAGGCAGCACATGCTCCTGA
    Ser652Asn TGTGGTACGATTACATCCAGCAGATACGGTC
    AGC-AAC GATCCCTA A CGGTGCCG 143
    CGGCACCG T TAGGGATC 144
    Sulfonylurea AGCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGC 145
    Resistance TATAACAGGTCAAGTG T CACGTAGGATGATAGGTACTGATGCTTTT
    ALS 1 CAGGAAACTCCTATTGTITGAGGTAACTAGAT
    Nicotiana tabacum ATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTACC 146
    Pro194Ser TATCATCCTACGTG A CACTTGACCTGTTATAGCAACAATGGGGAC
    CCA-TCA GCTATCCAGTAGCGCGTCAGCGAGGCCGCT
    GTCAAGTG T CACGTAGG 147
    CCTACGTG A CACTTGAC 148
    Sulfonylurea GCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGCT 149
    Resistance ATAACAGGTCAAGTGC AA CGTAGGATGATAGGTACTGATGCTTTT
    ALS 1 CAGGAAACTCCTATTGTTGAGGTAACTAGATC
    Nicotiana tabacum GATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTAC 150
    Pro194Gln CTATCATCCTACGT T GCACTTGACCTGTTATAGCAACAATGGGGA
    CCA-CAA CGCTATCCAGTAGCGCGTCAGCGAGGCCGC
    TCAAGTGC A ACGTAGGA 151
    TCCTACGT T GCACTTGA 152
    Imidazolinone GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTTT 153
    Resistance ACCTATGATTCCCA A TGGCGGAGCTTTCAAAGATGTGATCACAGA
    ALS 1 GGGTGACGGGAGAAGTTCCTATTGAGTTTG
    Nicotiana tabacum CAAACTGAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT 154
    Ser650Asn TGAAAGCTCCGCCA T TGGGAATCATAGGTAAAACATGTTCCTGAT
    AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC
    GATTCCCA A TGGCGGAG 155
    CTCCGCCA T TGGGAATC 156
    Sulfonylurea AGTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGC 157
    Resistance TATAACCGGTCAAGTG T CACGTAGGATGATCGGTACTGATGCTTT
    ALS 2 TCAGGAAACTCCGATTGTTGAGGTAACTAGAT
    Nicotiana tabacum ATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTACC 158
    Pro191Ser GATCATCCTACGTG A CACTTGACCGGTTATAGCAACAATGGGGAC
    CCA-TCA GCTATCCAGTAGGGCGTCCGCGAGGCCACT
    GICAAGTG T CACGTAGG 159
    CCTACGTG A CACTTGAC 160
    Sulfonylurea GTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGCT 161
    Resistance ATAACCGGTCAAGTGC A ACGTAGGATGATCGGTACTGATGCTTTT
    ALS 2 CAGGAAACTCCGATTGTTGAGGTAACTAGATC
    Nicotiana tabacum GATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTAC 162
    Pro191Gln CGATCATCCTACGT T GCACTTGACCGGTTATAGCAACAATGGGGA
    CCA-CAA CGCTATCCAGTAGGGCGTCCGCGAGGCCAC
    TCAAGTGC A ACGTAGGA 163
    TCCTACGT T GCACTTGA 164
    Imidazolinone GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTCT 165
    Resistance ACCTATGATTCCCA A TGGCGGGGCTTTCAAAGATGTGATCACAGA
    ALS 2 GGGTGACGGGAGAAGTTCCTATTGACTTTG
    Nicotiana tabacum CAAAGTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT 166
    Ser647Asn TGAAAGCCCCGCCA T TGGGAATCATAGGTAGAACATGTTCCTGAT
    AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC
    GATTCCCA A TGGCGGGG 167
    CCCCGCCA T TGGGAATC 168
    Sulfonylurea AGTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTA 169
    Resistance TTACTGGTCAAGTT T CCAGGAGAATGATTGGAACAGATGCGTTTC
    ALS AAGAAACCCCTATTGTTGAGGTAACACGTT
    Xanthium spp. AACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTCC 170
    Pro175Ser AATCATTCTCCTGG A AACTTGACCAGTAATAGCAACCATTGGAACA
    CCC-TCC CTGTCTAATAAAGCATCAGCAAGACCACT
    GTCAAGTT T CCAGGAGA 171
    TCTCCTGG A AACTTGAC 172
    Sulfonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 173
    Resistance TACTGGTCAAGTTC AA AGGAGAATGATTGGAACAGATGCGTTTCA
    ALS AGAAACCCCTATTGTTGAGGTAACACGTTC
    Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC 174
    Pro175Gln CAATCATTCTCCT TT GAACTTGACCAGTAATAGCAACCATTGGAAC
    CCC-CAA ACTGTCTAATAAAGCATCAGCAAGACCAC
    TCAAGTTC AA AGGAGAA 175
    TTCTCCT TTGAACTTGA 176
    Sulfonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 177
    Resistance TACTGGTCAAGTTC AGAGGAGAATGATTGGAACAGATGCGTTTCA
    ALS AGAAACCCCTATTGTTGAGGTAACACGTTC
    Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC 178
    Pro175Gln CAATCATTCTCCT CT GAACTTGACCAGTAATAGCAACCATTGGAAC
    CCC-CAG ACTGTCTAATAAAGCATCAGCAAGACCAC
    TCAAGTTC AG AGGAGAA 179
    TTCTCCT CT GAACTTGA 180
    Imidazolinone GGGCCTTACTTGTTGGATGTGATCGTGCCCCATCAAGAACATGTG 181
    Resistance TTGCCCATGATCCCG AA TGGTGGAGGTTTCATGGATGTGATCACC
    ALS GAAGGCGACGGCAGAATGAAATATTGAGCTT
    Xanthium spp. AAGCTCAATATTTCATTCTGCCGTCGCCTTCGGTGATCACATCCAT 182
    Ala631Asn GAAACCTCCACCA TT CGGGATCATGGGCAACACATGTTCTTGATG
    GCT-AAT GGGCACGATCACATCCAACAAGTAAGGCCC
    TGATCCCG AA TGGTGGA 183
    TCCACCA TT CGGGATCA 184
    Sulfonylurea TCCGGGTTTGCTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCG 185
    Resistance ATCACGGGGCAGGTG T CGCGGCGAATGATTGGGACGGATGCTTT
    ALS TCAGGAGACTCCTATTGTTGAGGTAACACGGT
    Bassia scoparia ACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTCC 186
    Pro189Ser CAATCATTCGCCGCG A CACCTGCCCCGTGATCGCCACCAGTGGA
    CCG-TCG ACGGAATCGAGCAAAGCATCAGCAAACCCGGA
    GGCAGGTG T CGCGGCGA 187
    TCGCCGCG A CACCTGCC 188
    Sulfonylurea CCGGGTTTGGTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCGA 189
    Resistance TCACGGGGCAGGTGC A GCGGCGAATGATTGGGACGGATGCTTTT
    ALS CAGGAGACTCCTATTGTTGAGGTAACACGGTC
    Bassia scoparia GACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTC 190
    Pro189Gln CCAATCATTCGCCGC T GCACCTGCCCCGTGATCGCCACCAGTGG
    CCG-CAG AACGGAATCGAGCAAAGCATCAGCAAACCCGG
    GCAGGTGC A GCGGCGAA 191
    TTCGCCGC T GCAGCTGC 192
    Imidazolinone GACCTTACCTGCTTGATGTGATTGTACCTCATCAGGAGCATGTGC 193
    Resistance TGCCTATGATTCCTA A TGGTGCAGCCTTCAAGGATATCATTAACGA
    ALS AGGTGATGGAAGAACAAGTTATTGATGTTC
    Bassia scoparia GAACATCAATAACTTGTTCTTCCATCACCTTCGTTAATGATATCCTT 194
    Ser649Asn GAAGGCTGCACCA T TAGGAATCATAGGCAGCACATGCTCCTGATG
    AGT-AAT AGGTACAATCACATCAAGCAGGTAAGGTC
    GATTCGTA A TGGTGCAG 195
    CTGCACCA T TAGGAATC 196
    Sulfonylurea AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC 197
    Resistance ATTACAGGACAGGTC T CTCGCCGGATGATCGGTACTGACGCCTTC
    ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGT
    Brassica napus ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC 198
    Pro182Ser CGATCATCCGGCGAG A GACCTGTCCTGTAATGGCGACAAGAGGA
    CCT-TCT ACACTGTCAAGCATCGCGTCTGCTAACCCGCT
    GACAGGTC T CTCGCCGG 199
    CCGGCGAG A GACCTGTC 200
    Sulfonylurea GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCCA 201
    Resistance TTACAGGACAGGTCC AA CGCCGGATGATCGGTACTGACGCCTTC
    ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC
    Brassica napus GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA 202
    Pro182Gln CCGATCATCCGGCG TT GGACCTGTCCTGTAATGGCGACAAGAGG
    CCT-CAA AACACTGTCAAGCATCGCGTCTGCTAACCCGC
    ACAGGTCC AA CGCCGGA 203
    TCCGGCG TT GGACCTGT 204
    Sulfonylurea GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCCA 205
    Resistance TTACAGGACAGGTCC AG CGCCGGATGATCGGTACTGACGCCTTC
    ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC
    Brassica napus GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA 206
    Pro182Gln CCGATCATCCGGCG CT GGACCTGTCCTGTAATGGCGACAAGAGG
    CCT-CAG AACACTGTCAAGCATCGCGTCTGCTAACCCGC
    ACAGGTCC AG CGCCGGA 207
    TCCGGCG CT GGACCTGT 208
    Imidazolinone GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT 209
    Resistance TACCGATGATCCCAA A TGGTGGCACTTTCAAAGATGTAATAACAG
    ALS 1 AAGGGGATGGTCGCACTAAGTACTGAGAGAT
    Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT 210
    Ser638Asn GAAAGTGCCACCA T TTGGGATCATCGGTAACACATGTTCTTGGTG
    AGT-AAT CGGACATATCACATCCAACAGGTATGGTC
    GATCCCAA A TGGTGGCA 211
    TGCCACCA T TTGGGATC 212
    Sulfonylurea CAGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGC 213
    Resistance CATTACAGGACAGGT T CCTCGCCGGATGATCGGTACTGACGCCTT
    ALS 2 CCAAGAGACACCAATCGTTGAGGTAACGAGG
    Brassica napus CCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTACC 214
    Pro126Ser GATCATCCGGCGAGG A ACCTGTCCTGTAATGGCGACAAGAGGAA
    CCC-TCC CACTGTCAAGCATCGCGTCTGCTAACCCGCTG
    GGACAGGT T CCTCGCCG 215
    CGGCGAGG A ACCTGTCC 216
    Sulfonylurea AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC 217
    Resistance ATTACAGGACAGGTC A CTCGCCGGATGATCGGTACTGACGCCTTC
    ALS 2 CAAGAGACACCAATCGTTGAGGTAACGAGGT
    Brassica napus ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC 218
    Pro126Gln CGATCATCCGGCGAG T GACCTGTCCTGTAATGGCGACAAGAGGA
    CCC-CAG ACACTGTCAAGCATCGCGTCTGCTAACCCGCT
    GACAGGTC A CTCGCCGG 219
    CCGGCGAG T GACCTGTC 220
    Imidazolinone GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT 221
    Resistance TACCGATGATCCCAA A TGGTGGCACTTTCAAAGATGTAATAACAG
    ALS 2 AAGGGGATGGTCGCACTAAGTACTGAGAGAT
    Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT 222
    Ser582Asn GAAAGTGCCACCA T TTGGGATCATCGGTAACACATGTTCTTGGTG
    AGT-AAT CGGACATATCACATCCAACAGGTATGGTC
    GATCCCAA A TGGTGGCA 223
    TGCCACCA T TTGGGATC 224
    Sulfonylurea AGCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGC 225
    Resistance CATCACAGGACAGGTC T CTCGCCGGATGATCGGTACTGACGCGT
    ALS 3 TCCAAGAGACGCCAATCGTTGAGGTAACGAGGT
    Brassica napus ACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTAC 226
    Pro179Ser CGATCATCCGGCGAG A GACCTGTCCTGTGATGGCGACGAGAGGA
    CCT-TCT ACACTGTCAAGCATCGCGTCGGCTAACCCGCT
    GACAGGTC T CTCGCCGG 227
    CCGGCGAG A GACCTGTC 228
    Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 229
    Resistance ATCACAGGACAGGTCC AA CGCCGGATGATCGGTACTGACGCGTT
    ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC
    Brassica napus GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA 230
    Pro179Gln CCGATCATCCGGCG TT GGACCTGTCCTGTGATGGCGACGAGAGG
    CCT-CAA AACACTGTCAAGCATCGCGTCGGCTAACCCGC
    ACAGGTCC AAee CGCCGGA 231
    TCCGGCG TT GGACCTGT 232
    Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 233
    Resistance ATCACAGGACAGGTCC AG CGCCGGATGATCGGTACTGACGCGTT
    ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC
    Brassica napus GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA 234
    Pro179Gln CCGATCATCCGGCG CT GGACCTGTCCTGTGATGGCGACGAGAGG
    CCT-CAG AACACTGTCAAGCATCGCGTCGGCTAACCCGC
    ACAGGTCC AG CGCCGGA 235
    TCCGGCG CT GGACCTGT 236
    Imidazolinone GACCGTACCTGTTGGATGTCATCTGTCCGCACCAAGAACATGTGT 237
    Resistance TACOGATGATCCCAA A TGGTGGCACTTTCAAAGATGTAATAACCG
    ALS 3 AAGGGGATGGTCGCACTAAGTACTGAGAGAT
    Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCGGTTATTACATCTT 238
    Ser635Asn TGAAAGTGCCACCA T TTGGGATCATCGGTAACACATGTTCTTGGT
    AGT-AAT GCGGACAGATGACATCCAACAGGTACGGTC
    GATCCCAA A TGGTGGCA 239
    TGCCACCA T TTGGGATC 240
    Sultonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGC 241
    Resistance CATCACGGGCCAGGTC T CCCGCCGCATGATCGGCACCGACGCCT
    ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT
    Oryza sativa AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG 242
    Prol7l Ser CCGATCATGCGGCGGG A GACCTGGCCCGTGATGGCGACCATCG
    CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA
    GCCAGGTC T CCCGCCGC 243
    GCGGCGGG A GACCTGGC 244
    Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 245
    Resistance ATCACGGGCCAGGTCC AA CGCCGCATGATCGGCACCGACGCCTT
    ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
    Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 246
    Pro171Gln GCCGATCATGCGGCG Tee TGGACCTGGCCCGTGATGGCGACCATCG
    CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG
    CCAGGTCC AA CGCCGCA 247
    TGCGGCG TT GGACCTGG 248
    Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 249
    Resistance ATCACGGGCCAGGTCC AG CGCCGCATGATCGGCACCGACGCCTT
    ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
    Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 250
    Pro171Gln GCCGATCATGCGGCG CT GGACCTGGCCCGTGATGGGGACCATCG
    CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG
    CCAGGTCC AG CGCCGCA 251
    TGCGGCG CT GGACCTGG 252
    Imidazolinone GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC 253
    Resistance TGCCTATGATCCCAA A TGGGGGCGCATTCAAGGACATGATCCTGG
    ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT
    Oryza sativa ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT 254
    Ser627Asn TGAATGCGCCCCCA T TTGGGATCATAGGCAGCACATGCICCTGGI
    AGT-AAT GCGGGACGATGATATCCAACAAGTATGGCC
    GATCCCAA A TGGGGGCG 255
    CGCCCCGA T TTGGGATC 256
    Sulfonylurea TCTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGC 257
    Resistance CATCACGGGACAGGTG T CGCGACGCATGATTGGCACCGACGCCT
    ALS TTCAGGAGACGCCCATCGTCGAGGTCACCCGCT
    Zea mays AGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGTG 258
    Pro165Ser CCAATCATGCGTCGCG A CACCTGTCCCGTGATGGCGACCATGGG
    CCG-TCG GACGGAGTCGAGCAACGCGTCTGCGAGCGCAGA
    GACAGGTG T CGCGACGC 259
    GCGTCGCG A CACCTGTC 260
    Sulfonylurea CTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGCC 261
    Resistance ATCACGGGACAGGTGC A GCGACGCATGATTGGCACCGACGCCTT
    ALS TCAGGAGACGCCCATCGTCGAGGTCACCCGCTC
    Zea mays GAGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGT 262
    Pro165Gln GCCAATCATGCGTCGC T GCACCTGTCCCGTGATGGCGACCATGG
    CCG-CAG GGACGGAGTCGAGCAACGCGTCTGCGAGCGCAG
    ACAGGTGC A GCGACGCA 263
    TGCGTCGC T GCACCTGT 264
    Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCGCACCAGGAGCATGTGT 265
    Resistance TGCCTATGATCCCTA A TGGTGGGGCTTTCAAGGATATGATCCTGG
    ALS ATGGTGATGGCAGGACTGTGTATTGATCCGT
    Zea mays ACGGATCAATACACAGTCCTGCCATCACCATCCAGGATCATATCC 266
    Ser621Asn TTGAAAGCCCCACCA T TAGGGATCATAGGCAACACATGCTCCTGG
    AGT-AAT TGCGGGACGATTATATCCAAGAGGTACGGCC
    GATCCCTA A TGGTGGGG 267
    CCCCACCA T TAGGGATC 268
    Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG 269
    Resistance ATCACTGGICAAGTC T CTCGTCGGATGATCGGTACCGATGCTTTC
    ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT
    Gossypium hirsutum ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 270
    Pro186Ser CGATCATCCGACGAG A GACTTGACCAGTGATCGCCACGAGAGGG
    CCT-TCT ATACTATGGAGCATTGCATCAGCGAGACCACT
    GTCAAGTCTC T CGTCGG 271
    CCGACGAGAG A CTTGAC 272
    Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA 273
    Resistance TCACTGGTCAAGTCC AA CGTCGGATGATCGGTACCGATGCTTTCC
    ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
    Gossypium hirsutum GACCTTGTTACCTTAACAATTGGAGTTTCCTGGAAAGCATCGGTA 274
    Pro186Gln CCGATCATCCGACG TT GGACTTGACCAGTGATCGCCACGAGAGG
    CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC
    TCAAGTCC AA CGTCGGA 275
    TTCCGACG TT GGACTTGA 276
    Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGCCGA 277
    Resistance TCACTGGTCAAGTCC AG CGTCGGATGATCGGTACCGATGCTTTCC
    ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
    Gossypium hirsutum GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 278
    Pro186Gln CCGATCATCCGACG CT GGACTTGACCAGTGATCGCCACGAGAGG
    CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC
    TCAAGTCC AG CGTCGGA 279
    TCCGACG CT GGACTTGA 280
    Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT 281
    Resistance GCCTATGATCCCCA A TGGAGGGGCTTTCAAAGATGTGATCACAGA
    ALS GGGTGATGGAAGAACACAATATTGACCTCA
    Gossypium hirsutum TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT 282
    Ser642Asn TGAAAGCCCCTCCA T TGGGGATCATAGGCAGGACATGTTCTTGAT
    AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC
    GATCCCCA A TGGAGGGG 283
    CCCCTCCA Tee TGGGGATC 284
    Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA 285
    Resistance TTACTGGGCAAGTT T CCCGGCGTATGATTGGTACTGATGCTTTTCA
    ALS AGAGACTCCAATTGTTGAGGTAACTCGAT
    Amaranthus powellii ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC 286
    Pro192Ser AATCATACGCCGGG A AACTTGCCCAGTAATGGCGACAAGAGGGA
    CCC-TCC CTGAGTCAAGAAGTGCATCAGCAAGACCAGA
    GGCAAGTT T CCCGGCGT 287
    ACGCCGGG A AACTTGCC 288
    Sulfonymurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 289
    Resistance TACTGGGC AA GTTCAACGGCGTATGATTGGTACTGATGCTTTTCA
    ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
    Amaranthus powellii GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 290
    Pro192Gln CAATCATACGCCG TT GAACTTGCCCAGTAATGGCGACAAGAGGGA
    CCC-CAA CTGAGTCAAGAAGTGCATCAGCAAGACCAG
    GCAAGTTC AA CGGCGTA 291
    TACGCCG TT GAACTTGC 292
    Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 293
    Resistance TACTGGGCAAGTTC AG CGGCGTATGATTGGTACTGATGCTTTTCA
    ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
    Amaranthus powellii GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 294
    Pro192Gln CAATCATACGCCG CT GAACTTGCCCAGTAATGGCGACAAGAGGG
    CCC-CAG ACTGAGTCAAGAAGTGCATCAGCAAGACCAG
    GCAAGTTC AG CGGCGTA 295
    TACGCCG CT GAACTTGC 296
    Imidazolinone GACCGTATCTGCTGGATGTAATCGTACCACATCAGGAGCATGTGC 297
    Resistance TGCCTATGATCCCTA A CGGTGCCGCCTTCAAGGACACCATAACAG
    ALS AGGGTGATGGAAGAAGGGCTTATTAGTTGGT
    Amaranthus powellii ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGIGTCCT 298
    Ser652Asn TGAAGGCGGCACCG T TAGGGATCATAGGCAGCACATGCTCCTGA
    AGC-AAC TGTGGTACGATTACATCCAGCAGATACGGTG
    GATCCCTA A CGGTGCCG 299
    CGGCACCG T TAGGGATC 300
  • [0121]
    TABLE 12
    Genome-Altering Oligos Conferring Porphyric Herbicide Resistance
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Porphyric Herbicide TCTTGCGCCCTCTTTCTGAATCTGCTGCAAATGCACTCTCAAAACT 301
    Resistant ATATTACCCACCA ATG GCAGCAGTATCTATCTCGTACCCGAAAGA
    PPO AGCAATCCGAACAGAATGTTTGATAGATGG
    Arabidopsis thaliana CCATCTATCAAACATTCTGTTCGGATTGCTTCTTTCGGGTACGAGA 302
    Val365Met TAGATACTGCTG C CA T TGGTGGGTAATATAGTTTTGAGAGTGCATT
    GTT-ATG TGCAGCAGATTCAGAAAGAGGGCGCAAGA
    CCCACCA A T G GCAGCAG 303
    CTGCTGC C A T TGGTGGG 304
    Porphyric Herbicide TATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTT 305
    Resistant CTACTAICCCCCA A T G GGAGCAGTCACAATTTCATATCCTCAAGAA
    PPO GCTATTCGTGATGAGCGTCTGGTTGATGG
    Nicotiana tabacum CCATCAACCAGACGCTCATCACGAATAGCTTCTTGAGGATATGAA 306
    Val376Met ATTGTGACTGCTCC C A TT GGGGGATAGTAGAAATTTGAAAGTGCA
    GTT-ATG TCTGCTGCGGCAACCGAAAGAGGACGTAATA
    TCCCCCA A T GGGAGCAG 307
    CTGCTCC C A T TGGGGGA 308
    Porphyric Herbicide TGTTGCGTCCGCTTTCGTTGGGTGCAGCAGATGCATTGTCAAAAT 309
    Resistant TTTATTATCCTCCG A T G GCAGCTGTATCAATTTCATATCCAAAAGA
    PPO CGGAATTCGTGCTGACCGGCTGATTGATGG
    Cichorium intybus CCATCAATCAGCCGGTCAGCACGAATTGCGTCTTTTGGATATGAA 310
    Val383Met ATTGATACAGCTGC C A T CGGAGGATAATAAAATTTTGACAATGCAT
    GTT-ATG CTGCTGCACCCAACGAAAGCGGACGCAACA
    TCCTCCG A T GGCAGCTG 311
    CAGCTGC C A T CGGAGGA 312
    Porphyric Herbicide TCCTTCGTCCACTTTCAGATGTCGCCGCAGAATCTCTTTCAAAATT 313
    Resistant TCATTATCCACCA A T G GCAGCTGTGTCACTTTCCTATCCTAAAGAA
    PPO GCAATTAGATCAGAGTGCTTGATTGACGG
    Spinacia oleracea CCGTCAATCAAGCACTCTGATCTAATTGCTTCTTTAGGATAGGAAA 314
    Val390Met GTGACACAGCTGC C A T TGGTGGATAATGAAATTTTGAAAGAGATT
    GTT-ATG CTGCGGCGACATCTGAAAGTGGACGAAGGA
    TCCACCA A T G GCAGCTG 315
    CAGCTGC C A T TGGTGGA 316
    Porphyric Herbicide TTTTGCGTCCACTTTCAAGCGATGCTGCAGATGCTCTATCAAGATT 317
    Resistant CTATTATCCACCG A T G GCTGCIGTAACTGTTTCGTATCCAAAGGAA
    PPO GCAATTAGAAAAGAATGCTTAATTGATGG
    Zea mays CGATCAATTAAGCATTCTTTTCTAATTGCTTCCTTTGGATACGAAAC 318
    Val363Met AGTTACAGCAGC C A T CGGTGGATAATAGAATCTTGATAGAGCATC
    GTT-ATG TGCAGCATCGCTTGAAAGTGGACGCAAAA
    TCCACCG A T G GCTGCTG 319
    CAGCAGC C A T CGGTGGA 320
    Porphyric Herbicide TCTTGCGGCCACTTTCAAGTGATGGAGCAGATGCTCTGTCAATATT 321
    Resistant CTATTATCCACCA A T G GCTGCTGTAACTGTTTCATATCCAAAAGAA
    PPO GCAATTAGAAAAGAATGCTTAATTGACGG
    Oryza sativa CCGTCAATTAAGCATTCTTTTCTAATTGCTTCTTTTGGATATGAAAC 322
    Val364Met AGTTACAGCAGC C A T TGGTGGATAATAGAATATTGACAGAGCATC
    GTT-ATG TGCTGCATCACTTGAAAGTGGCCGCAAGA
    TCCACCA A T G GCTGCTG 323
    CAGCAGCCA T TGGTGGA 324
    Porphyric Herbicide CTGGTCAAGGAGCAGGCGCCCGCCGCCGCCGAGGCCCTGGGCT 325
    Resistant CCTTCGACTACCCGCCG A TGGGCGCCGTGACGCTGTCGTACCCG
    PPO CTGAGCGCCGTGCGGGAGGAGCGCAAGGCCTCGG
    Chlamydomonas CCGAGGCCTTGCGCTCCTCCCGCACGGCGCTCAGCGGGTACGAC 326
    reinhardtii AGCGTCACGGCGCCCA T CGGCGGGTAGTCGAAGGAGCCCAGGG
    Val389Met CCTCGGCGGCGGCGGGCGCCTGCTCCTTGACCAG
    GTG-ATG ACCCGCCG A TGGGCGCC 327
    GGCGCCCA T CGGGGGGT 328
  • [0122]
    TABLE 13
    Genome-Altering Oligos Conferring Triazine Resistance
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 329
    D1 Protein TTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACATTTCTTCTT
    Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 330
    AGT-ACT CGAGAATIGTTGAAA G TAGCATATTGGAAAATCAATCGGCCAAAAT
    AACCGTGAGCAGCTACAATGTTGTAAGTTT
    ATATGCTA C TTTCAACA 331
    TGTTGAAA G TAGCATAT 332
    Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 333
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCGTTACACTTCTTCC
    Nicotiana tabacum TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAG GCCAAGCAGCTAGGAAGAAGTGTAACGAA 334
    AGT-ACT CGAGAGtTGTIGAAA G TAGCATATTGGAAGATCAAtCGGCCAAAA
    TAACCATGAGCGGCTACGATGTTATAAGTTT
    ATATGCTA C TTTCAACA 335
    TGTTGAAA G TAGCATAT 336
    Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 337
    D1Protein CTTCCAATATGCTA C TTTTAACAACTCTCGCTCTTTACATTTCTTCT
    Populus deltoides TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG 338
    AGT-ACT CGAGAGTTGTTAAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATATTATAAGTTT
    ATATGCTA C TTTTAACA 339
    TGTTAAAA G TAGCATAT 340
    Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 341
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCGTTACACTTCTTCC
    Petunia x hybrida TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 342
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATATTATAAGTTT
    ATATGCTA C TTTCAACA 343
    TGTTGAAA G TAGCATAT 344
    Triazine Resistant AAACTTATAAIATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 345
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACATTTCTTCC
    Magnolia pyramidata TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 346
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCAGCTACGATATTATAAGTTT
    ATATGCTA C TTTCAACA 347
    TGTTGAAA G TAGCATAT 348
    Triazine Resistant AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT 349
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCTTTACATTTCTTCC
    Medicago sativa TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 350
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAAGCATGAGCTGCTACAATATTATAGGTTT
    ATATGCTA C TTTCAACA 351
    TGTTGAAA+E,us GTAGCATAT 1352
    Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTTGGCCGATTGAT 353
    D1Protein CTTCCAATATGCAA C TTTCAACAATTCTCGTTCTTTACATTTCTTCT
    Glycine max TAGCTGCTTGGCCTGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 354
    AGT-ACT CGAGAATTGTTGAAA G TTGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCAGCTACAATATTATAGGTTT
    ATATGCAA C TTTCAACA 355
    TGTTGAAA G TTGCATAT 356
    Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 357
    D1Protein CTTCCAATATGCT AC TTTCAACAATTCTCGTTCTTTACATTTCTTCT
    Brassica napus TAGCGGCTTGGCCGGTAGTAGGTATTTG
    Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 358
    GGT-ACT CGAGAAITGTTGAAA GT AGCATATTGGAAGATCAATCGGCCAAAA
    TAACCGTGAGCAGCTACAATGTTGTAAGTTT
    ATATGCT AC TTTCAACA 359
    TGTTGAAA GT AGCATAT 360
    Triazine Resistant AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT 361
    D1Protein CTTCCAATATGCTA C TTTTAACAACTCTCGTTCTTTACACTTCTTCT
    Oryza sativa TGGCTGCTTGGCCTGTAGTAGGGATTTG
    Ser264Thr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 362
    AGT-ACT CGAGAGTTGTTAAAA G TAGCATATTGGAAGATTAATCGGCCAAAAT
    AACCATGAGCGGCCACAATATTATAAGTTT
    ATATGCTA C TTTTAACA 363
    TGTTAAAA G TAGCATAT 364
    Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT 365
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACACTTCTTCT
    Zea mays TGGCTGCTtGGCCTGTAGTAGGGATCtG
    Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 366
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATTAATCGACCAAAAT
    AACCGTGAGCAGCCACAATATTATAAGTCT
    ATATGCTA C TTTCAACA 367
    TGTTGAAAGTAGCATAT 368
    Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 369
    D1Protein TTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACATTTCTTCTT
    Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 370
    AGT-ACT CGAGAATTGITGAAA G TAGCATATTGGAAAATCAATCGGCCAAAAT
    AACCGTGAGCAGCTACAATGTTGTAAGTTT
    ATATGCTA C TTTCAACA 371
    TGTTGAAA G TAGCATAT 372
    Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 373
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCGTTACACTTCTTCC
    Nicotiana tabacum TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 374
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATGTTATAAGTTT
    ATATGCTA C TTTCAACA 375
    TGTTGAAA GTAGCATAT 376
    Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 377
    D1Protein CTTCCAATATGCTA C TTTTAACAACTCTCGCTCTTTACATTTCTTCT
    Papulus deltoides TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGGTAAGAAGAAATGTAAAGAG 378
    AGT-AGT CGAGAGTTGTTAAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATATTATAAGTTT
    ATATGCTA C TTTTAACA 379
    TGTTAAAA G TAGCATAT 380
    Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 381
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCGTTACACTTCTTCC
    Petunia x hybrida TAGCTGGTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 382
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATATTATAAGTTT
    ATATGCTA C TTTCAACA 383
    TGTTGAAA G TAGCATAT 384
    Triazine Resistant AAACTTATAATATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 385
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACATTTCTTCC
    Magnolia pyramidata TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 386
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCAGCTACGATATTATAAGTTT
    ATATGCTA C TTTCAACA 387
    TGTTGAAA G TAGCATAT 388
    Triazine Resistant AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT 389
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCTTTACATTTGTTCC
    Medicago sativa TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 390
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCTGCTACAATATTATAGGTTT
    ATATGCTA C TTTCAACA 391
    TGTTGAAA G TAGCATAT 392
    Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 393
    D1Protein CTTCCAATATGCAA C TTTCAACAATTCTCGTTCTTTACATTTCTTCT
    Glycine max TAGCTGCTTGGCCTGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 394
    AGT-ACT CGAGAATTGTTGAAA G TTGCATATTGGAAGATCAATCGGGCAAAA
    TAACCATGAGCAGCTACAATATTATAGGTTT
    ATATGCAA C TTTCAACA 395
    TGTTGAAA G TTGCATAT 396
    Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 397
    D1Protein CTTCCAATATGCT AC TTTCAACAATTCTCGTTCTTTACATTTCTTCT
    Brassica napus TAGCGGCTTGGCCGGTAGTAGGTATTTG
    Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 398
    GGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCGTGAGCAGCTACAATGTTGTAAGTTT
    ATATGCT AC TTTCAACA 399
    TGTTGAAA GT AGCATAT 400
    Triazine Resistant AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT 401
    D1Protein CTTCCAATATGCTA C TTTTAACAACTCTCGTTCTTTACACTTCTTCT
    Oryza sativa TGGCTGCTTGGCCTGTAGTAGGGATTTG
    Ser264Ihr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 402
    AGT-ACT CGAGAGTTGTTAAAA G TAGCATATTGGAAGATTAATCGGCCAAAAT
    AACCATGAGCGGCCACAATATTATAAGTTT
    ATATGCTA C TTTTAACA 403
    TGTTAAAA G TAGCATAT 404
    Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT 405
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACACTTCTTCT
    Zea mays TGGCTGCTTGGCCTGTAGTAGGGATCTG
    Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 406
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATTAATCGACCAAAAT
    AACCGTGAGCAGCCACAATATTATAAGTCT
    ATATGCTA C TTTCAACA 407
    TGTTGAAAGTAGCATAT 408
    Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 409
    D1Protein TTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACATTTCTTCTT
    Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 410
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAAATCAATCGGCCAAAAT
    AACCGTGAGCAGCTACAATGTTGTAAGTTT
    ATATGCTA C TTTCAACA 411
    TGTTGAAA G TAGCATAT 412
    Triazine Resistant AAACCTACAATATTGTGGCTGCTCACGGTTATTTCGGCCGATTGAT 413
    D1Protein CTTCCAGTATGCTA C TTTCAACAACTCCCGTTCTTTACATTTCTTCT
    Picea abies TAGCTGCTTGGCCCGTAGCAGGTATCTG
    Ser264Thr CAGATACCTGCTACGGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 414
    AGT-ACT CGGGAGTTGTTGAAA G TAGCATACTGGAAGATCAATCGGCCGAAA
    TAACCGTGAGCAGCCACAATATTGTAGGTTT
    GTATGCTA C TTTCAACA 415
    TGTTGAAA G TAGCATAC 416
    Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 417
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGCTCTTTACATTTCTTCC
    Vicia faba TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG 418
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCGTGAGCAGCTACAATATTATAGGTTT
    ATATGCTA C TTTCAACA 419
    TGTTGAAA G TAGCATAT 420
    Triazine Resistant AGACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT 421
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCTTTACACTTCTTCT
    Hordeum vulgare TGGCTGCTTGGCCTGTAGTAGGAATCTG
    Ser264Thr CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 422
    AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAA
    TAACCATGAGCAGCCACAATATTATAAGTCT
    ATATGCTACTTTCAACA 423
    TGTTGAAAGTAGCATAT 424
    Triazine Resistant AAACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT 425
    D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT
    Triticum aestivum TGGCTGCTTGGCCTGTAGTAGGAATCTG
    Ser264Thr CAGATTCCTACTACAGGCCMGCAGCCAAGAAGAAGTGTAAAGAA 426
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATTAATCGGCCAAAA
    TAACCATGAGCAGCCACAATATTATAAGTTT
    ATATGCTA C TTTCAACA 427
    TGTTGAAA G+E TAGCATAT 428
    Triazine Resistant AAACTTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTAATC 429
    D1Protein TTCCAATATGCAA C TTTCMCAATTCTCGTTCTTTACATTTCTTCCT
    Vigna unguiculata AGCTGCTTGGCCTGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 430
    AGT-ACT CGAGAATTGTTGAAA G TTGCATATTGGAAGATTAATCGGCCAAAAT
    AACCATGAGCAGCTACAATATTATAAGTTT
    ATATGCAA C TTTCAACA 431
    TGTTGAAA G TTGCATAT 432
    Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 433
    D1Protein CTTCCAATATGCAA C TTTCAACAACTCTCGTTCTTTACACTTCTTCT
    Lotus japonicus TAGCTGCTTGGCCTGTTGTAGGTATCTG
    Ser264Thr CAGATACCTACAACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA 434
    AGT-ACT CGAGAGTTGTTGAAA G TTGCATATTGGAAGATCAATCGGCCAAAA
    TAACCGTGAGCAGCTACAATATTATAGGTTT
    ATATGCAA C TTTCAACA 435
    TGTTGAAA G TTGCATAT 436
    Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 437
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGTTCTTTACATTTCTTCT
    Sinapis alba TAGCGGCTTGGCCGGTAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 438
    AGT-ACT CGAGAATTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCGTGAGCAGCTACAATGTTGTAAGTTT
    ATATGCTA C TTTCAACA 439
    TGTTGAAA G TAGCATAT 440
    Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 441
    D1Protein CTTCCAATATGCTA C TTTCAACAATTCTCGCTCTTTACATTTCTTCC
    Pisum sativum TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTIAGGAAGAAATGTAAAGAG 442
    AGt-ACT CGAGAATTGTTGAAAGTAGCAtATTGGAAGATCAATCGGCCAAAA
    TAACCGTGAGCAGCTACAATATTATAGGTTT
    ATATGCTA C TTTCAACA 443
    TGTTGAAA G TAGCATAT 444
    Triazine Resistant AAACTTATAATATCGTAGGTGCTCATGGTTATTTTGGTCGATTGAT 445
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCTTTACACTTCTTCT
    Spinacia oleracea TAGCTGCTTGGCCTGIAGTAGGTATTTG
    Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA 446
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGACCAAAA
    TAACCATGAGCAGGTACGATATTATAAGTTT
    ATATGCTA C TTTCAACA 447
    TGTTGAAA G TAGCATAT 448
    Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 449
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCGTTACACTTCTTCC
    Nicotiana debneyi TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGAtACCtACTACAGGCGAAGCAGCtAGGAAGAAGTGTAACGAA 450
    AGT-ACT CGAGAGtTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATGTTATAAGTTT
    ATATGCTA C TTTCAACA 451
    TGTTGAAA G TAGCATAT 452
    Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 453
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTTCGTTACACTTCTTCC
    Solanum nigrum TAGCTGCTTGGCCTGTAGTAGGTATCTG
    Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 454
    AGT-ACT CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    TAACCATGAGCGGCTACGATATTATAAGTTT
    ATATGCTA C TTTCAACA 455
    TGTTGAAA G TAGCATAT 456
    Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 457
    D1Protein CTTCCAATATGCTA C TTTCAACAACTCTCGTICGTTACACTTCTTCC
    Nicotiana TAGCTGCTTGGCCTGTAGTAGGTATCTG
    plumbaginifolia CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 458
    Ser264Thr CGAGAGTTGTTGAAA G TAGCATATTGGAAGATCAATCGGCCAAAA
    AGT-ACT TAACCATGAGCGGCTACGATGTTATAAGTTT
    ATATGCTA C TTTCAACA 459
    TGTTGAAA G TAGCATAT 460
  • EXAMPLE 6 Engineering Male- or Female-Sterile Plants
  • Flower development in distantly related dicot plant species is increasingly better understood and appears to be regulated by a family of genes which encode regulatory proteins. These genes include, for example, AGAMOUS (AG), APETALA1 (AP1), and APETALA3 (AP3) and PISTILLATA (PI) in [0123] Arabidopsis thaliana, and DEFICIENS A (DEFA), GLOBOSA (GLO), SQUAMOSA (SQUA), and PLENA (PLE) in Antirrhinum majus. Genetic studies have shown that the DEFA, GLO and AP3 genes are essential for petal and stamen development. Sequence analysis of these genes revealed that the gene products contain a conserved MADS box region, a DNA-binding domain. Using these clones as probes, MADS box genes have also been isolated from other species including tomato, tobacco, petunia, Brassica napus, and maize.
  • Altering the expression of these genes results in altered floral morphology. For example, mutations in AP3 and PI result in male-sterile flowers because petals develop in place of stamens. [0124]
  • The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer altered floral structures in plants. [0125]
    TABLE 14
    Oligonucleotides to produce male-sterile plants
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Male-sterile TTGTCCTCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAG 461
    AP3 AGAAGAATATGGCG T GAGGGAAGATCCAGATCAAGAGGATAGAGA
    Arabidopsis thaliana ACCAGACAAACAGACAAGTGACGTATTCAA
    Arg3Term TTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTCTTGATC 462
    AGA-TGA TGGATCTTCCCTC A CGCCATATTCTTCTCTCTTIGTTTAATCTTTTT
    GTTGAAGAGATTTGGTGGAGAGGACAA
    ATATGGCG T GAGGGAAG 463
    CTTCCCTC A CGCCATAT 464
    Male-sterile TCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGA 465
    AP3 ATATGGCGAGAGGG T AGATCCAGATCAAGAGGATAGAGAACCAGA
    Arabidopsis thaliana CAAACAGACAAGTGACGTATTCAAAGAGAA
    Lys5Term TTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTC 466
    AAG-TAG TTGATCTGGATCT A CCCTCTCGCCATATTCTTCTCTCTTTGTTTAAT
    CTTTTTGTTGAAGAGATTTGGTGGAGA
    CGAGAGGG T AGATCCAG 467
    CTGGATCT A CCGTCTCG 468
    Male-sterile CCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGG 469
    AP3 CGAGAGGGAAGATC T AGATCAAGAGGATAGAGAAGCAGACAAACA
    Arabidopsis thaliana GACAAGTGACGTATTCAAAGAGAAGGAATG
    Gln7Term CATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCT 470
    CAG-TAG ATCCTCTTGATCT A GATCTTCCCTCTCGCCATATTCTTCTCTCTTTG
    TTTAATCTTTTTGTTGAAGAGATTTGG
    GGAAGATC T AGATCAAG 471
    CTTGATCT A GATCTTCC 472
    Male-sterile CTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGGCGAGAG 473
    AP3 GGAAGATCCAGATC T AGAGGATAGAGAACCAGACAAACAGAGAAG
    Arabidopsis thaliana TGACGTATTCAAAGAGAAGGAATGGTTTAT
    Lys9Term ATAAACCATTCGTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGG 474
    AAG-TAG TTCTCTATCCTCT A GATCTGGATCTTCCCTCTCGCCATATTCTTCTC
    TCTTTGTTTAATCTTTTTGTTGAAGAG
    TCCAGATC T AGAGGATA 475
    TATCCTCT A GATCTGGA 476
    Male-sterile AGAGGGAAGATCGAGATGAAGAGGATAGAGAACGAGAGGAACCG 477
    AP3 ACAAGTGACGTATTCT T AGAGAAGAAATGGTTTGTTCAAGAAAGCT
    Brassica oleracea CACGAGCTTACAGTTTTATGTGATGCTAGGG
    Lys23Term CCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAACAA 478
    AAG-TAG ACCATTTCTTCTCT A AGAATACGTCACTTGTCGGTTGGTCTGGTTC
    TCTATCCTCTTGATCTGGATCTTCCCTCT
    CGTATTCT T AGAGAAGA 479
    TCTTCTCT A AGAATACG 480
    Male-sterile GGGAAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAA 481
    AP3 GTGACGTATTCTAAG T GAAGAAATGGTTTGTTCAAGAAAGCTCACG
    Brassica oleracea AGCTTACAGTTTTATGTGATGCTAGGGTTT
    Arg24Term AAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAA 482
    AGA-TGA CAAACCATTTCTTC A CTTAGAATACGTCACTTGTGGGTTGGTCTGG
    TTCTCTATCCTCTTGATCTGGATCTTCCC
    ATTCTAAG T GAAGAAAT 483
    ATTTCTTC A CTTAGAAT 484
    Male-sterile AAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAAGTG 485
    AP3 ACGTATTCTAAGAGA T GAAATGGTTTGTTCAAGAAAGCTCACGAGC
    Brassica oleracea TTACAGTTTTATGTGATGCTAGGGTTTCGA
    Arg25Term TCGAAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTT 486
    AGA-TGA GAACAAACCATTTC A TCTCTTAGAATACGTCACTTGTCGGTTGGTC
    TGGTTCTCTATGCTCTTGATCTGGATCTT
    CTAAGAGA T GAAATGGT 487
    ACCATTTC A TCTCTTAG 488
    Male-sterile TCAAGAGGATAGAGAACCAGACCAACCGACAAGTGACGTATTCTA 489
    AP3 AGAGAAGAAATGGTT A GTTCAAGAAAGCTCACGAGCTTACAGTTTT
    Brassica oleracea ATGTGATGCTAGGGTTTCGATTATCATGTT
    Leu28Term AACATGATAATCGAAACCCTAGCATCACATAAAACTGTAAGCTCGT 490
    TTG-TAG GAGCTTTCTTGAAC T AACCATTTCTTCTCTTAGAATACGTCACTTGT
    CGGTTGGTCTGGTTCTCTATCCTCTTGA
    AAATGGTT A GTTCAAGA 491
    TCTTGAAC T AACCATTT 492
    Male-sterile GGCTCGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAA 493
    AP3 CAGGCAGGTCACCTA G TCCAAGAGAAGAAATGGTTTGTTCAAGAA
    Brassica napus AGCACACGAGCTCTCTGTTCTCTGTGATGCT
    Tyr21Term AGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAAACC 494
    TAC-TAG ATTTCTTCTCTTGGA C TAGGTGACCTGCCTGTTTGTTTGGTTCTCTA
    TCCTCTTAATCTGGATCTTCCCTCGAGCC
    GTCACCTA G TCCAAGAG 495
    CTCTTGGA C TAGGTGAC 496
    Male-sterile CGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGG 497
    AP3 CAGGTCACCTACTCC T AGAGAAGAAATGGTTTGTTCAAGAAAGCAC
    Brassica napus ACGAGCTCTCTGTTCTCTGTGATGCTAAAG
    Lys23Term CTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAA 498
    AAG-TAG ACCATTTCTTCTCT A GGAGTAGGTGACCTGCCTGTTTGTTTGGTTC
    TCTATCCTCTTAATCTGGATCTTCCCTCG
    CCTACTCC T AGAGAAGA 499
    TCTTCTCT A GGAGTAGG 500
    Male-sterile GGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAG 501
    AP3 GTCACCTACTCCAAG T GAAGAAATGGTTTGTTCAAGAAAGCACACG
    Brassica napus AGCTCTCTGTTCTCTGTGATGCTAAAGTTT
    Arg24Term AAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAA 502
    AGA-TGA CAAACCATTTGTTC A CTTGGAGTAGGTGACCTGCCTGTTTGTTTGG
    TTCTCTATCCTCTTAATCTGGATCTTCCC
    ACTCCAAG T GAAGAAAT 503
    ATTTCTTC A CTTGGAGT 504
    Male-sterile AAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAGGTC 505
    AP3 ACCTACTCCAAGAGA T GAAATGGTTTGTTCAAGAAAGCACACGAG
    Brassica napus CTCTCTGTTCTCTGTGATGCTAAAGTTTCCA
    Arg25Term TGGAAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTT 506
    AGA-TGA GAACAAACCATTTC A TCTCTTGGAGTAGGTGACCTGCCTGTTTGTT
    TGGTTCTCTATCCTCTTAATCTGGATCTT
    CCAAGAGA T GAAATGGT 507
    ACCATTTC A TCTCTTGG 508
    Male-sterile GGAGAGAAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGG 509
    DEFA TAGTGGTTCGATGGCT T GAGGGAAGATCCAGATTAAGAGGATAGA
    Antirrhinum majus GAACCAAACAAACAGGCAGGTCACCTACTCCA
    Arg3Term TGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCTCTTAAT 510
    CGA-TGA CTGGATCTTCCCTC A AGCCATCGAACCACTACCACTACTGCTCTTG
    TTTTCTTCTTCCAGCTTTCCTTTCTCTCC
    CGATGGCT T GAGGGAAG 511
    CTTCCCTC A AGCCATCG 512
    Male-sterile AAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGT 513
    DEFA TCCATGGCTCGAGGG T AGATCCAGATTAAGAGGATAGAGAACCAA
    Antirrhinum majus ACAAACAGGCAGGTCACCTACTCCAAGAGAA
    Lys5Term TTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCT 514
    AAG-TAG CTTAATCTGGATCT A CCCTCGAGCCATCGAACCACTAGCACTACTG
    CTCTTGTTTTCTTCTTCCAGCTTTCCTTT
    CTCGAGGG T AGATCCAG 515
    CTGGATCT A CCCTCGAG 516
    Male-sterile AAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATG 517
    DEFA GCTCGAGGGAAGATC T AGATTAAGAGGATAGAGAACCAAACAAAC
    Antirrhinum majus AGGCAGGTCACCTACTCCAAGAGAAGAAATG
    Gln7Term CATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTC 518
    CAG-TAG TATCCTCTTAATCT A GATCTTCCCTCGAGCCATCGAACCACTACCA
    CTACTGCTCTTGTTTTCTTCTTCCAGCTT
    GGAAGATC T AGATTAAG 519
    CTTAATCT A GATCTTCC 520
    Male-sterile GAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATGGCTCGA 521
    DEFA GGGAAGATCCAGATT T AGAGGATAGAGAACCAAACAAACAGGCAG
    Antirrhinum majus GTCACCTACTCCAAGAGAAGAAATGGTTTGT
    Lys9Term ACAAACCATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTG 522
    AAG-TAG GTTCTCTATCCTCT A AATCTGGATCTTCCCTCGAGCCATCGAACCA
    CTACCACTACTGCTCTTGTTTTCTTCTTC
    TCCAGATT T AGAGGATA 523
    TATCCTCT A AATCTGGA 524
    Male-sterile TCAGTAATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAAC 525
    AP3 TATGGCTCGTGGG T AGATCCAGATCAAGAGAATAGAGAACCAAAC
    Nicotiana tabacum AAACAGACAAGTCACTTATTCTAAGAGAA
    Lys5Term TTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCTATTCTC 526
    AAG-TAG TTGATCTGGATCT A CCCACGAGCCATAGTTTTTTTTTCTTTTTGCTC
    AAAGTTTGAGATCTTAAGAATTACTGA
    CTCGTGGG T AGATCCAG 527
    CTGGATCT A CCCACGAG 528
    Male-sterile ATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGC 529
    AP3 TCGTGGGAAGATC T AGATCAAGAGAATAGAGAACCAAACAAACAG
    Nicotiana tabacum ACAAGTCACTTATTCTAAGAGAAGAAATG
    Gln7Term CATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCT 530
    CAG-TAG ATTCTCTTGATCT A GATCTTCCCACGAGCCATAGTTTTTTTTTCTTT
    TTGCTCAAAGTTTGAGATCTTAAGAAT
    GGAAGATC T AGATCAAG 531
    CTTGATCT A GATCTTCC 532
    Male-sterile AAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTG 533
    AP3 GGAAGATCCAGATC T AGAGAATAGAGAACCAAACAAACAGACAAG
    Nicotiana tabacum TCACTTATTCTAAGAGAAGAAATGGACTTT
    Lys9Term AAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGG 534
    AAG-TAG TTCTCTATTCTCT A GATCTGGATCTTCCCACGAGCCATAGTTTTTTT
    TTCTTTTTGCTCAAAGTTTGAGATCTT
    TCCAGATC T AGAGAATA 535
    TATTCTCT+E,un AGATCTGGA 536
    Male-sterile ATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTGGGA 537
    AP3 AGATCCAGATCAAG T GAATAGAGAACCAAACAAACAGACAAGTCA
    Nicotiana tabacum CTTATTCTAAGAGAAGAAATGGACTTTTCA
    Arg10Term TGAAAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTT 538
    AGA-TGA TGGTTCTCTATTC A CTTGATCTGGATCTTCCCACGAGCCATAGTTT
    TTTTTTCTTTTTGCTCAAAGTTTGAGAT
    AGATCAAG T GAATAGAG 539
    CTCTATTC A CTTGATCT 540
    Male-sterile GGCTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAA 541
    AP3 CAGACAAGTAACTTA G TCAAAACGAAGGGATGGTCTTTTCAAGAAG
    Medicago sativa GCCAATGAGCTCACTGTTCTTTGTGATGCT
    Tyr21Term AGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGACCA 542
    TAC-TAG TCCCTTCGTTTTGA C TAAGTTACTTGTCTGTTCGTTGTGTTCTCTAT
    TCTCTTGATCTGGATCTTTCCTCGAGCC
    GTAACTTA G TCAAAACG 543
    CGTTTTGA C TAAGTTAC 544
    Male-sterile CTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACA 545
    AP3 GACAAGTAACTTACT G AAAACGAAGGGATGGTCTTTTCAAGAAGG
    Medicago sativa CCAATGAGCTCACTGTTCTTTGTGATGCTAA
    Ser22Term TTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGAC 546
    TCA-TGA CATCCCTTCGTTTT C AGTAAGTTACTTGTCTGTTCGTTGTGTTCTCT
    ATTCTCTTGATCTGGATCTTTCCTCGAG
    AACTTACT G AAAACGAA 547
    TTCGTTTT+E,un CAGTAAGTT 548
    Male-sterile CGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGA 549
    AP3 CAAGTAACTTACTCA T AACGAAGGGATGGTCTTTTCAAGAAGGCCA
    Medicago sativa ATGAGCTCACTGTTCTTTGTGATGCTAAGG
    Lys23Term CCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAG 550
    AAA-TAA ACCATCCCTTCGTT A TGAGTAAGTTACTTGTCTGTTCGTTGTGTTCT
    CTATTCTCTTGATCTGGATCTTTCCTCG
    CTTACTCA T AACGAAGG 551
    CCTTCGTT A TGAGTAAG 552
    Male-sterile GGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGACAA 553
    AP3 GTAACTTACTCAAAA T GAAGGGATGGTCTTTTCAAGAAGGCCAATG
    Medicago sativa AGCTCACTGTTCTTTGTGATGCTAAGGTTT
    Arg24Term AAACCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAA 554
    CGA-TGA AAGACCATCCCTTC A TTTTGAGTAAGTTACTTGTCTGTTCGTTGTGT
    TCTCTATTCTCTTGATCTGGATCTTTCC
    ACTCAAAA T GAAGGGAT 555
    ATCCCTTC A TTTTGAGT 556
    Male-sterile GGCTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAAT 557
    DEF4 AGGCAAGTGACTTA G TCAAAGAGAAGAAATGGGCTATTCAAGAAG
    Solanum tuberosum GCTAATGAACTTACAGTTCTTTGTGATGCT
    Tyr21Term AGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCCCA 558
    TAT-TAG TTTCTTCTCTTTGA C TAAGTCACTTGCCTATTTGTTTGGTTTTCTATT
    TTCTTGATCTGGATCTTACCACGAGCC
    GTGACTTA G TCAAAGAG 559
    CTCTTTGA C TAAGTCAC 560
    Male-sterile CTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAG 561
    DEF4 GCAAGTGACTTATT G AAAGAGAAGAAATGGGCTATTCAAGAAGGC
    Solanum tuberosum TAATGAACTTACAGTTCTTTGTGATGCTAA
    Ser22Term TTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCC 562
    TCA-TGA CATTTCTTCTCTTT C AATAAGTCACTTGCCTATTTGTTTGGTTTTCTA
    TTTTCTTGATCTGGATCTTACCACGAG
    GACTTATT G AAAGAGAA 563
    TTCTCTTT C AATAAGTC 564
    Male-sterile CGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGG 565
    DEF4 CAAGTGACTTATTCA T AGAGAAGAAATGGGCTATTCAAGAAGGCTA
    Solanum tuberosum ATGAACTTACAGTTCTTTGTGATGCTAAAG
    Lys23Term CTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAG 566
    AAG-TAG CCCATTTCTTCTCT A TGAATAAGTCACTTGCCTATTTGTTTGGTTTT
    CTATTTTCTTGATCTGGATCTTACCACG
    CTTATTCA T AGAGAAGA 567
    TCTTCTCT A TGAATAAG 568
    Male-sterile GGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGGCAA 569
    DEF4 GTGACTTATTCAAAG T GAAGAAATGGGCTATTCAAGAAGGCTAATG
    Solanum tuberosum AACTTACAGTTCTTTGTGATGCTAAAGTTT
    Arg24Term AAACTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAAT 570
    AGA-TGA AGCCCATTTCTTC A CTTTGAATAAGTCACTTGCCTATTTGTTTGGTT
    TTCTATTTTCTTGATCTGGATCTTACC
    ATTCAAAG T GAAGAAAT 571
    ATTTCTTC A GTTTGAAT 572
    Male-sterile GCTAATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTAT 573
    AP3 GATTTCTAGTACT T GAAAACTTCATGAGTTTATAAGTCCCTCTATCA
    Lycopersicon CGACCAAACAATTGTTCGATCTGTACC
    esculentum GGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTATAAA 574
    Gly27Term CTCATGAAGTTTTC A AGTACTAGAAATCATAACAATTGAAACTTTAG
    GGA-TGA CATCACAAAGAACAGTAAGTTCATTAGC
    CTAGTACT T GAAAACTT 575
    AAGTTTTC A AGTACTAG 576
    Male-sterile AATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGAT 577
    AP3 TTCTAGTACTGGA T AACTTCATGAGTTTATAAGTCCCTCTATCACGA
    Lycopersicon CCAAACAATTGTTCGATCTGTACCAGA
    esculentum TCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTAT 578
    Lys28Term AAACTCATGAAGTT A TCCAGTACTAGAAATCATAACAATTGAAACTT
    AAA-TAA TAGCATCACAAAGAACAGTAAGTTCATT
    GTACTGGA T AACTTCAT 579
    ATGAAGTT A TCCAGTAC 580
    Male-sterile ACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGATTTCTAGTAC 581
    AP3 TGGAAAACTTCAT T AGTTTATAAGTCCCTCTATCACGACCAAACAAT
    Lycopersicon TGTTCGATCTGTACCAGAAGACTATTG
    esculentum CAATAGTCTTCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGA 582
    Glu31Term GGGACTTATAAACT A ATGAAGTTTTCCAGTACTAGAAATCATAACA
    GAG-TAG ATTGAAACTTTAGCATCACAAAGAACAGT
    AACTTCAT T AGTTTATA 583
    TATAAACT A ATGAAGTT 584
    Male-sterile ATTGTTATGATTTCTAGTACTGGAAAACTTCATGAGTTTATAAGTCC 585
    AP3 CTCTATCACGACC T AACAATTGTTCGATCTGTACCAGAAGACTATT
    Lycopersicon GGAGTTGATATTTGGACTACTCACTATG
    esculentum CATAGTGAGTAGTCCAAATATCAACTCCAATAGTCTTCTGGTACAG 586
    Lys40Term ATCGAACAATTGTT A GGTCGTGATAGAGGGACTTATAAACTCATGA
    AAA-TAA AGTTTTCCAGTACTAGAAATCATAACAAT
    TCACGACC T AACAATTG 587
    CAATTGTT A GGTCGTGA 588
    Male-sterile GGGGCGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCA 589
    AP3 ACAGGCAGGTGACCTA G TCCAAGCGCCGGTCGGGGATCATGAAG
    Triticum aestivum AAGGCGCGGGAGCTCACCGTGCTCTGCGACGCC
    Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATGATCC 590
    TAC-TAG CCGACCGGCGCTTGGA C TAGGTCACCTGCCTGTTGGTGGCGTTCT
    CGATCCGCTTTATCTCAATCTTCCCCCGCCCC
    GTGACCTA G TCCAAGCG 591
    CGCTTGGA C TAGGTCAC 592
    Male-sterile CGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCAACAG 593
    AP3 GCAGGTGACCTACTCC T AGCGCCGGTCGGGGATCATGAAGAAGG
    Triticum aestivum CGCGGGAGCTCACCGTGCTCTGCGACGCCCAGG
    Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATG 594
    AAG-TAG ATCCCCGACCGGCGCT A GGAGTAGGTCACCTGCCTGTTGGTGGC
    GTTCTCGATCCGCTTTATCTCAATCTTCCCCCG
    CCTACTCC T AGCGCCGG 595
    CCGGCGCT A GGAGTAGG 596
    Male-sterile TTGAGATAAAGCGGATCGAGAACGCCACCAACAGGCAGGTGACCT 597
    AP3 ACTCGAAGCGCCGGT A GGGGATCATGAAGAAGGCGCGGGAGCTC
    Triticum aestivum ACCGTGCTCTGCGACGCCCAGGTCGCCATCAT
    Ser26Term ATGATGGCGACCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGC 598
    TCG-TAG CTTCTTCATGATCCCC T ACCGGCGCTTGGAGTAGGTCACCTGCCT
    GTTGGTGGCGTTGTCGATCCGCTTTATCTCAA
    GCGCCGGT A GGGGATCA 599
    TGATCCCC T ACCGGCGC 600
    Male-sterile CGGATCGAGAACGCCACCAACAGGCAGGTGACCTACTCCAAGCG 601
    AP3 CCGGTCGGGGATCATG T AGAAGGCGCGGGAGCTCACCGTGCTCT
    Triticum aestivum GCGACGCCCAGGTCGCCATCATCATGTTCTCCT
    Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG 602
    AAG-TAG AGCTCCCGCGCCTTCT A CATGATCCCCGACCGGCGCTTGGAGTAG
    GTCACCTGCCTGTTGGTGGCGTTGTCGATCCG
    GGATCATG T AGAAGGCG 603
    CGCCTTCT A CATGATCC 604
    Male-sterile GGGGCGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCA 605
    Silky1 ACCGCCAGGTGACCTA G TCCAAGCGCCGGACGGGGATCATGAAG
    Zea mays AAGGCACGCGAGCTCACCGTGCTCTGCGACGCC
    Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATGATCCC 606
    TAG-TAG CGTCCGGCGCTTGGA C TAGGTCACCTGGCGGTTGGTGGCGTTCT
    CGATCGGCTTGATCTCGATCTTGCCGCGCCCC
    GTGACCTA G TCCAAGCG 607
    CGCTTGGA C TAGGTCAC 608
    Male-sterile CGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCAACCG 609
    Silky1 CCAGGTGACCTACTCC T AGCGCCGGACGGGGATCATGAAGAAGG
    Zea mays CACGCGAGCTCACCGTGCTCTGCGACGCCCAGG
    Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATG 610
    AAG-TAG ATCCCCGTCCGGCGCT A GGAGTAGGTCACCTGGCGGTTGGTGGC
    GTTCTCGATCCGCTTGATCTCGATCTTGCCGCG
    CCTACTCC T AGCGCCGG 611
    CCGGCGCT A GGAGTAGG 612
    Male-sterile CGGATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCG 613
    Silky1 CCGGACGGGGATCATG T AGAAGGCACGCGAGCTCACCGTGCTCT
    Zea mays GCGACGCCCAGGTCGCCATCATCATGTTCTCCT
    Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG 614
    AAG-TAG AGCTCGCGTGCCTTCT A CATGATCCCGGTCCGGCGCTTGGAGTAG
    GTCACCTGGCGGTTGGTGGCGTTCTCGATCCG
    GGATCATG T AGAAGGCA 615
    TGCCTTCT A CATGATCC 616
    Male-sterile ATCGAGAACGCCACCAACCGCCAGGTGACGTACTCCAAGCGCCG 617
    Silky1 GACGGGGATCATGAAG T AGGCACGCGAGCTCACCGTGCTCTGCG
    Zea mays ACGCCCAGGTCGCCATCATCATGTTCTCCTCCA
    Lys31Term TGGAGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACG 618
    AAG-TAG GTGAGCTCGCGTGCCT A CTTCATGATCCCCGTCCGGCGCTTGGAG
    TAGGTCACCTGGCGGTTGGTGGCGTTCTCGAT
    TCATGAAG T AGGCACGC 619
    GCGTGCCT A CTTCATGA 620
    Male-sterile GCTAGCTGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGC 621
    AP3 GGCCATGGGGAGGGGC T AGATCGAGATCAAGCGGATCGAGAACG
    Oryza sativa CGACCAACAGGCAGGTGACCTACTCGAAGCGCC
    Lys5Term GGCGCTTGGAGTAGGTCACCTGCCTGTTGGTCGCGTTCTCGATCC 622
    AAG-TAG GCTTGATCTCGATCT A GCCCGTCCCCATGGCGGCCCCCTGCAGCA
    GCTATCTCTCTCGCCGGACAATGCAGCTAGC
    GGAGGGGC T AGATCGAG 623
    CTCGATCT A GCCCCTCC 624
    Male-sterile TGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCAT 625
    AP3 GGGGAGGGGCAAGATC T AGATCAAGCGGATCGAGAACGCGACCA
    Oryza sativa ACAGGCAGGTGACCTACTCGAAGCGCCGCACGG
    Glu7Term CCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCT 626
    GAG-TAG CGATCCGCTTGATCT A GATCTTGCCCCTCCCCATGGCCGCCCCCT
    GCAGCAGCTATCTCTCTCGCCGGACAATGCA
    GCAAGATC T AGATCAAG 627
    CTTGATCT A GATCTTGC 628
    Male-sterile GTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGA 629
    AP3 GGGGCAAGATCGAGATC T AGCGGATCGAGAACGCGACCAACAGG
    Oryza sativa CAGGTGACCTACTCGAAGCGCCGCACGGGGATCA
    Lys9Term TGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCG 630
    AAG-TAG CGTTCTCGATCCGCT A GATCTCGATCTTGCCCCTCCCCATGGCCG
    CCCCCTGCAGCAGCTATCTCTCTCGCCGGAC
    TCGAGATC T AGCGGATC 631
    GATCCGCT A GATCTCGA 632
    Male-sterile GAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGAGGGGCAAGA 633
    AP3 TCGAGATCAAGCGGATCT A GAACGCGACCAACAGGCAGGTGACCT
    Oryza sativa ACTCGAAGCGCCGCACGGGGATCATGAAGAAGG
    Glu12Term CCTTCTTCATGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCC 634
    GAG-TAG TGTTGGTCGCGTTCT A GATCCGCTTGATCTCGATCTTGCCCCTCCC
    CATGGCGGCCCCCTGCAGCAGCTATCTCTC
    AGCGGATC T AGAACGCG 635
    CGCGTTCT A GATCCGCT 636
  • [0126]
    TABLE 15
    Oligonucleotides to produce male-sterile plants
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Male-sterile TCTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCA 637
    AG GCAATCACGGCGTA G CAATCGGAGCTAGGAGGAGATTCCTCTCC
    Arabidopsis thaliana CTTGAGGAAATCTGGGAGAGGAAAGATCGAA
    Tyr35Term TTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCCT 638
    TAG-TAG CCTAGGTCCGATTG C TACGCCGTGATTGCTGCTCCAAAGCCAAAA
    ACGTTTAGGGCAAAATTTGATTAGTACAGA
    ACGGCGTA G CAATCGGA 639
    TCCGATTG C TACGCCGT 640
    Male-sterile CTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAG 641
    AG CAATCACGGCGTAC T AATCGGAGCTAGGAGGAGATTCCTCTCCCT
    Arabidopsis thaliana TGAGGAAATCTGGGAGAGGAAAGATCGAAA
    Gln36Term TTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCC 642
    CAA-TAA TCCTAGCTCCGATT A GTACGCCGTGATTGCTGCTCCAAAGCCAAA
    AACGTTTAGGGCAAAATTTGATTAGTACAG
    CGGCGTAC T AATCGGAG 643
    CTCCGATT A GTACGCCG 644
    Male-sterile ACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAAT 645
    AG CACGGCGTACCAAT A GGAGCTAGGAGGAGATTCCTCTCCCTTGA
    Arabidopsis thaliana GGAAATCTGGGAGAGGAAAGATCGAAATCAA
    Ser37Term TTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAAT 646
    TCG-TAG CTCCTCCTAGCTCC T ATTGGTACGCCGTGATTGCTGCTCCAAAGC
    CAAAAACGTTTAGGGCAAAATTTGATTAGT
    GTACCAAT A GGAGCTAG 647
    CTAGCTCC T ATTGGTAC 648
    Male-sterile TAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAATCA 649
    AG CGGCGTACCAATCG T AGCTAGGAGGAGATTCCTCTCCCTTGAGGA
    Arabidopsis thalana AATCTGGGAGAGGAAAGATCGAAATCAAAC
    Glu38Term GTTTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGA 650
    GAG-TAG ATCTCCTCCTAGCT A CGATTGGTACGCCGTGATTGCTGCTCCAAA
    GCCAAAAACGTTTAGGGCAAAATTTGATTA
    ACCAATCG T AGCTAGGA 651
    TCCTAGCT A CGATTGGT 652
    Male-sterile CTCTCCCACTTCTTTTCGGTGGTTTATTCATTTGGTGACGATATCA 653
    AG CAGAAGCAATGGAT T AAGGTGGGAGTAGTCACGATGCAGAGAGT
    Brassica napus AGCAAGAAGATAGGTAGAGGGAAGATAGAGA
    Glu3Term TCTCTATCTTCCCTCTACCTATCTTCTTGCTACTCTCTGCATCGTGA 654
    GAA-TAA CTACTCCCACCTT A ATCCATTGCTTCTGTGATATCGTCACCAAATG
    AATAAACCACCGAAAAGAAGTGGGAGAG
    CAATGGAT T AAGGTGGG 655
    CCCACCTT A ATCCATTG 656
    Male-sterile TATTCATTTGGTGACGATATCACAGAAGCAATGGATGAAGGTGGG 657
    AG AGTAGTCACGATGCA T AGAGTAGCAAGAAGATAGGTAGAGGGAA
    Brassica napus GATAGAGATAAAGAGGATAGAGAACACAACAA
    Glu11Term TTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCTCTACCTATC 658
    GAG-TAG TTCTTGCTACTCT A TGCATCGTGACTACTCCCACCTTCATCCATTG
    CTTCTGTGATATCGTCACCAAATGAATA
    ACGATGCA T AGAGTAGC 659
    GCTACTCT A TGCATCGT 660
    Male-sterile GGTGACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCA 661
    AG CGATGCAGAGAGTAGC T AGAAGATAGGTAGAGGGAAGATAGAGA
    Brassica napus TAAAGAGGATAGAGAACACAACAAATCGTCAAG
    Lys14Term CTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCT 662
    AAG-TAG GTACCTATCTTCT A GCTACTCTCTGCATCGTGACTACTCCCACCTT
    CATCCATTGCTTCTGTGATATCGTCACC
    AGAGTAGC T AGAAGATA 663
    TATCTTCT A GCTAGTCT 664
    Male-sterile GACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCACGA 665
    AG TGCAGAGAGTAGCAAG T AGATAGGTAGAGGGAAGATAGAGATAAA
    Brassica napus GAGGATAGAGAACACAACAAATCGTCAAGTAA
    Lys15Term TTACTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTC 666
    AAG-TAG CCTCTACCTATCT A CTTGCTACTCTCTGCATCGTGACTACTCCCAC
    CTTCATCCATTGCTTCTGTGATATCGTC
    GTAGCAAG T AGATAGGT 667
    ACCTATCT A CTTGCTAC 668
    Male-sterile CAACCAAAAAACTTAAAAATCTTCTCTTTCCTTTCCTTACAAGGTGA 669
    AG AGTAATGGACTTC T AAAGTGATCTAACCAGAGAGATCTCACCACAA
    Lycopersicon AGGAAACTAGGAAGGGGGAAAATTGAGA
    esculentum TCTCAATTTTCCCCCTTCCTAGTTTCCTTTGTGGTGAGATCTCTCT 670
    Glu4Term GGTTAGATCACTTT A GAAGTCCATTACTTCACCTTGTAAGGAAAGG
    CAA-TAA AAAGAGAAGATTTTTAAGTTTTTTGGTTG
    TGGACTTC+E,unc TAAAGTGAT 671
    ATCACTTT A GAAGTCCA 672
    Male-sterile AAAATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCC 673
    AG AAAGTGATCTAACC T GAGAGATCTCACCACAAAGGAAACTAGGAA
    Lycopersicon GGGGGAAAATTGAGATCAAAAGGATCGAAA
    esculentum TTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTTTGT 674
    Arg9Term GGTGAGATCTCTC A GGTTAGATCACTTTGGAAGTCCATTACTTCAC
    AGA-TGA CTTGTAAGGAAAGGAAAGAGAAGATTTT
    ATCTAACC T GAGAGATC 675
    GATCTCTC A GGTTAGAT 676
    Male-sterile ATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAA 677
    AG GTGATCTAACCAGA T AGATCTCACCACAAAGGAAACTAGGAAGGG
    Lycopersicon GGAAAATTGAGATCAAAAGGATCGAAAACA
    esculentum TGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTT 678
    Glu10Term TGTGGTGAGATCT A TCTGGTTAGATCACTTTGGAAGTCCATTACTT
    GAG-TAG CACCTTGTAAGGAAAGGAAAGAGAAGAT
    TAACCAGA T AGATCTCA 679
    TGAGATCT A TCTGGTTA 680
    Male-sterile CTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAAGTGATCT 681
    AG AACCAGAGAGATCT G ACCACAAAGGAAACTAGGAAGGGGGAAAA
    Lycopersicon TTGAGATCAAAAGGATCGAAAACACGACGAA
    esculentum TTCGTCGTGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAG 682
    Ser12Term TTTCCTTTGTGGT C AGATCTCTGTGGTTAGATCACTTTGGAAGTCC
    TCA-TGA ATTACTTCACCTTGTAAGGAAAGGAAAG
    AGAGATCT G ACCACAAA 683
    TTTGTGGT C AGATCTCT 684
    Male-sterile GTACTCTCTATTTTCATCTTCCAACCCTTTCTTTCCTTACCAGGTGA 685
    NAG1 AAGTATGGACTTC T AAAGTGATCTAACAAGAGAGATCTCTCCACAA
    Nicotiana tabacum AGGAAACTGGGAAGAGGAAAGATTGAGA
    Gln4Term TCTCAATCTTTCCTCTTCCCAGTTTCCTTTGTGGAGAGATCTCTCTT 686
    CAA-TAA GTTAGATCACTTT A GAAGTCCATACTTTCACCTGGTAAGGAAAGAA
    AGGGTTGGAAGATGAAAATAGAGAGTAC
    TGGACTTC T AAAGTGAT 687
    ATCACTTT A GAAGTCCA 688
    Male-sterile ATCTTCCAACCCTTTCTTTCCTTACCAGGTGAAAGTATGGACTTCC 689
    NAG1 AAAGTGATCTAACA T GAGAGATCTCTCCACAAAGGAAACTGGGAA
    Nicotiana tabacum GAGGAAAGATTGAGATCAAACGGATCGAAA
    Arg9Term TTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTTTGT 690
    AGA-TGA GGAGAGATCTCTC A TGTTAGATCACTTTGGAAGTCCATACTTTCAC
    CTGGTAAGGAAAGAAAGGGTTGGAAGAT
    ATCTAACA T GAGAGATC 691
    GATCTCTC A TGTTAGAT 692
    Male-sterile TTCCAACCCTTTCTTTCCTTAGCAGGTGAAAGTATGGACTTCCAAA 693
    NAG1 GTGATCTAACAAGA T AGATCTCTCCACAAAGGAAACTGGGAAGAG
    Nicotiana tabacum GAAAGATTGAGATCAAACGGATCGAAAACA
    Glu10Term TGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTT 694
    GAG-TAG TGTGGAGAGATCT A TCTTGTTAGATGACTTTGGAAGTCCATACTTT
    CACCTGGTAAGGAAAGAAAGGGTTGGAA
    TAACAAGA T AGATCTCT 695
    AGAGATCT A TCTTGTTA 696
    Male-sterile CTTTCCTTACCAGGTGAAAGTATGGACTTCCAAAGTGATCTAACAA 697
    NAG1 GAGAGATCTCTCCA T AAAGGAAACTGGGAAGAGGAAAGATTGAGA
    Nicotiana tabacum TCAAACGGATCGAAAACACAACGAATCGTC
    Gln14Term GACGATTCGTTGTGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTT 698
    CAA-TAA CCCAGTTTCCTTT A TGGAGAGATCTCTCTTGTTAGATCACTTTGGA
    AGTCCATACTTTCACCTGGTAAGGAAAG
    TCTCTCCA T AAAGGAAA 699
    TTTCCTTT A TGGAGAGA 700
    Male-sterile GCCTATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAA 701
    AG AGAAGATTGGGAAGG T GAAAGATCGAGATCAAGCGGATCGAAAA
    Rosa hybrida CACCACCAATCGTCAAGTCACCTTCTGCAAAA
    Gly22Term TTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCCGCT 702
    GGA-TGA TGATCTGGATCTTTC A CCTTCCCAATCTTCTTTGGGCATCAGCGTC
    CAGGACCGTGTTGGGTTTGTTTTCATAGGC
    TGGGAAGG T GAAAGATC 703
    GATCTTTC A CCTTCCCA 704
    Male-sterile TATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGA 705
    AG AGATTGGGAAGGGGA T AGATCGAGATCAAGCGGATCGAAAACAC
    Rosa hybrida CACCAATCGTCAAGTCACCTTCTGCAAAAGGC
    Lys23Term GCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCC 706
    AAG-TAG GCTTGATCTCGATCT A TCCCCTTCCCAATCTTCTTTGGGCATCAGC
    GTCCAGGACCGTGTTGGGTTTGTTTTCATA
    GAAGGGGA T AGATCGAG 707
    CTCGATCT A TCCCCTTC 708
    Male-sterile AACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTG 709
    AG GGAAGGGGAAAGATC T AGATCAAGCGGATCGAAAACACCACCAA
    Rosa hybrida TCGTCAAGTCACCTTCTGCAAAAGGCGCAATG
    Glu25Term CATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTT 710
    GAG-TAG CGATCCGCTTGATCT A GATCTTTCCCCTTCCCAATCTTCTTTGGGC
    ATCAGCGTCCAGGACCGTGTTGGGTTTGTT
    GAAAGATC T AGATCAAG 711
    CTTGATCT A GATCTTTC 712
    Male-sterile CCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTGGGAAG 713
    AG GGGAAAGATCGAGATC T AGCGGATCGAAAACACCACCAATCGTCA
    Rosa hybrida AGTCACCTTCTGCAAAAGGCGCAATGGTTTGC
    Lys27 GCAAACCATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGG 714
    AAG-TAG TGTTTTCGATCCGCT A GATCTCGATCTTTCCCCTTCCCAATCTTCT
    TTGGGCATCAGCGTCCAGGACCGTGTTGGG
    TCGAGATC T AGCGGATC 715
    GATCCGCT A GATCTCGA 716
    Male-sterile CAATTGCGTGTTTTTATTTTTTTTGTTTTTGACTAAGTAGAAATGGC 717
    far GTCTCTAAGCGAT T AATCGACCGAGGTATCGCGCGAGAGGAAAAT
    Antirrhinum majus CGGGAGAGGAAAGATCGAGATCAAACGGA
    Gln7Term TCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTCTCGGGCGA 718
    CAA-TAA TACCTCGGTCGATT A ATCGCTTAGAGACGCCATTTCTACTTAGTCA
    AAAAGAAAAAAAATAAAAACAGGCAATTG
    TAAGCGAT T AATCGACC 719
    GGTCGATT A ATCGCTTA 720
    Male-sterile GTTTTTATTTTTTTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAG 721
    far CGATCAATCGACC T AGGTATCGCCCGAGAGGAAAATCGGGAGAG
    Antirrhinum majus GAAAGATCGAGATCAAACGGATCGAAAACA
    Glu10Term TGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTC 722
    GAG-TAG TCGGGCGATACCT A GGTCGATTGATCGCTTAGAGACGCCATTTCT
    ACTTAGTCAAAAAGAAAAAAAATAAAAAC
    AATCGACC T AGGTATCG 723
    CGATACCT A GGTCGATT 724
    Male-sterile TTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGA 725
    far CCGAGGTATCGCCC T AGAGGAAAATCGGGAGAGGAAAGATCGAG
    Antirrhinum majus ATCAAACGGATCGAAAACAAAACAAATCAAC
    Glu14Term GTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTC 726
    GAG-TAG CCGATTTTCCTCT A GGGCGATACCTCGGTCGATTGATCGCTTAGA
    GACGCCATTTCTACTTAGTCAAAAAGAAA
    TATCGCCC T AGAGGAAA 727
    TTTCCTCT A GGGCGATA 728
    Male-sterile TTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGACCGAG 729
    far GTATCGCCCGAGAGG T AAATCGGGAGAGGAAAGATCGAGATCAA
    Antirrhinum majus ACGGATCGAAAACAAAACAAATCAACAGGTTA
    Lys16Term TAACCTGTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTT 730
    AAA-TAA CCTCTCCCGATTT A CCTCTCGGGCGATACCTCGGTCGATTGATCG
    CTTAGAGACGCCATTTCTACTTAGTCAAA
    CCGAGAGG T AAATCGGG 731
    CCCGATTT A CCTCTCGG 732
    Male-sterile TGTCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGA 733
    AG AGGAAAGGGTAAGT A GCAAATAAAGGGGATGTTCCAGAATCAAGA
    Cucumis sativus AGAGAAGATGTCAGACTCGCCTCAGAGGAA
    Leu21Term TTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAACA 734
    TTG-TAG TCCCCTTTATTTGC T ACTTACCCTTTCCTTCTTCCTTAATCATTCTT
    GTGAGTGGTGACTGATAATGCTTGGACA
    GGGTAAGT A GCAAATAA 735
    TTATTTGC T ACTTACCC 736
    Male-sterile TCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAA 737
    AG GGAAAGGGTAAGTTG T AAATAAAGGGGATGTTCCAGAATCAAGAA
    Cucumis sativus GAGAAGATGTCAGACTCGCCTCAGAGGAAGA
    Gln22Term TCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAA 738
    CAA-TAA CATCCCCTTTATTT A CAACTTACCCTTTCCTTCTTCCTTAATCATTC
    TTGTGAGTGGTGACTGATAATGCTTGGA
    GTAAGTTG T AAATAAAG 739
    CTTTATTT A CAACTTAC 740
    Male-sterile CATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAAGGAAAG 741
    AG GGTAAGTTGCAAAT A TAGGGGATGTTCCAGAATCAAGAAGAGAAG
    Cucumis sativus ATGTCAGACTCGCCTCAGAGGAAGATGGGAA
    Lys24Term TTCCCATCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATT 742
    AAG-TAG CTGGAACATCCCCT A TATTTGCAACTTACCCTTTCCTTCTTCCTTAA
    TCATTCTTGTGAGTGGTGACTGATAATG
    TGCAAATA T AGGGGATG 743
    CATCCCCT A TATTTGCA 744
    Male-sterile CCACTCACAAGAATGATTAAGGAAGAAGGAAAGGGTAAGTTGCAA 745
    AG ATAAAGGGGATGTTC T AGAATCAAGAAGAGAAGATGTCAGACTCG
    Cucumis sativus CCTCAGAGGAAGATGGGAAGAGGAAAGATTG
    Gln28Term CAATCTTTCCTCTTCCCATCTTCCTCTGAGGCGAGTCTGACATCTT 746
    CAG-TAG CTCTTCTTGATTCT A GAACATCCCCTTTATTTGCAACTTACCCTTTC
    CTTCTTCCTTAATCATTCTTGTGAGTGG
    GGATGTTC T AGAATCAA 747
    TTGATTCT A GAACATCC 748
    Male-sterile CCACCACCACCACCACCACCACCACCACACCATGCTCAACATGAT 749
    AG GACTGATCTGAGCTG A GGGCCGTCGTCCAAGGTCAAGGAGCAGG
    Zea mays TGGCGGCGGCGCCGACGGGCTCCGGCGACAGG
    Cys10Term CCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCTGCTCCTTGA 750
    TGC-TGA CCTTGGACGACGGCCC T CAGCTCAGATCAGTCATCATGTTGAGCA
    TGGTGTGGTGGTGGTGGTGGTGGTGGTGGTGG
    CTGAGCTG A GGGCCGTC 751
    GACGGCCC T CAGCTCAG 752
    Male-sterile ACCACCACCACCACCACCACACCATGCTCAACATGATGACTGATC 753
    AG TGAGCTGCGGGCCGT A GTCCAAGGTCAAGGAGCAGGTGGCGGC
    Zea mays GGCGCCGACGGGCTCCGGCGACAGGCAGGGGCA
    Ser13Term TGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCT 754
    TCG-TAG GCTCCTTGACCTTGGAC T ACGGCCCGCAGCTCAGATCAGTCATCA
    TGTTGAGCATGGTGTGGTGGTGGTGGTGGTGGT
    CGGGCCGT A GTCCAAGG 755
    CCTTGGAC T ACGGCCCG 756
    Male-sterile CACCACCACCACCACACCATGCTCAACATGATGACTGATCTGAGC 757
    AG TGCGGGCCGTCGTCC T AGGTCAAGGAGCAGGTGGCGGCGGCGC
    Zea mays CGACGGGCTCCGGCGACAGGCAGGGGCAGGGGA
    Lys15Term TCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGC 758
    AAG-TAG CACCTGCTCCTTGACCT A GGACGACGGCCCGCAGCTCAGATCAG
    TCATCATGTTGAGCATGGTGTGGTGGTGGTGGTG
    CGTCGTCC T AGGTCAAG 759
    CTTGACCT A GGACGACG 760
    Male-sterile CACCACCACACCATGCTCAACATGATGACTGATCTGAGCTGCGGG 761
    AG CCGTCGTCCAAGGTC T AGGAGCAGGTGGCGGCGGCGCCGACGG
    Zea mays GCTCCGGCGACAGGCAGGGGCAGGGGAGAGGCA
    Lys17Term TGCCTCTCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCC 762
    AAG-TAG GCCGCCACCTGCTCCT A GACCTTGGACGACGGCCCGCAGCTCAG
    ATCAGTCATCATGTTGAGCATGGTGTGGTGGTG
    CCAAGGTC T AGGAGCAG 763
    CTGCTCCT A GACCTTGG 764
    Male-sterile TCCTACCTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACA 765
    AG AGAGCATGCACATC T GAGAAGAGGAGGCTACACCATCCACAGTAA
    Zea mays CAGGCATCATGTCGACCCTGACTTCGGCGG
    Arg4Term CCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGATGGT 766
    CGA-TGA GTAGCCTCCTCTTCTC A GATGTGCATGCTCTTGTTCCTATCACACA
    GATTTTGAGGTCTGAAGGAGAAAAGGTAGGA
    TGCACATC T GAGAAGAG 767
    CTCTTCTC A GATGTGCA 768
    Male-sterile TACCTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGA 769
    AG GCATGCACATCCGA T AAGAGGAGGCTACACCATCCACAGTAACAG
    Zea mays GCATCATGTCGACCCTGACTTCGGCGGGGC
    Glu5Term GCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGAT 770
    GAA-TAA GGTGTAGCCTCCTCTT A TCGGATGTGCATGCTCTTGTTCCTATCAC
    ACAGATTTTGAGGTCTGAAGGAGAAAAGGTA
    ACATCCGA T AAGAGGAG 771
    CTCCTCTT A TCGGATGT 772
    Male-sterile CTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCA 773
    AG TGCACATCCGAGAA T AGGAGGCTACACCATCCACAGTAACAGGCA
    Zea mays TCATGTCGACCCTGACTTCGGCGGGGCAGC
    Glu6Term GCTGCCCCGCCGAAGTGAGGGTCGACATGATGCCTGTTACTGTG 774
    GAG-TAG GATGGTGTAGCCTCCT A TTCTCGGATGTGCATGCTCTTGTTCCTAT
    CACACAGATTTTGAGGTCTGAAGGAGAAAAG
    TCCGAGAA T AGGAGGCT 775
    AGCCTCCT A TTCTCGGA 776
    Male-sterile TTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCATG 777
    AG CACATCCGAGAAGAG T AGGCTACACCATCCACAGTAACAGGCATC
    Zea mays ATGTCGACCCTGACTTCGGCGGGGCAGCAGA
    Glu7Term TCTGCTGCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACT 778
    GAG-TAG GTGGATGGTGTAGCCT A CTCTTCTCGGATGTGCATGCTCTTGTTC
    CTATCACACAGATTTTGAGGTCTGAAGGAGAA
    GAGAAGAG T AGGCTACA 779
    TGTAGCCT A CTCTTCTC 780
    Male-sterile GCTGGGTCAGGATCGTCGGCGGCGGTGGCGGCGGGGAGCAGC 781
    AG GAGAAGATGGGGAGGGGG T AGATCGAGATAAAGCGGATCGAGAA
    Oryza sativa CACGACGAACCGGCAGGTGACCTTCTGCAAGCGCC
    Lys5Term GGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCTCGATC 782
    AAG-TAG CGCTTTATCTCGATCT A CCCCCTCCCCATCTTCTCGCTGCTCCCC
    GCCGCCACCGCCGCCGACGATCCTGACCCAGC
    GGAGGGGG T AGATCGAG 783
    CTCGATCT A CCCCCTCC 784
    Male-sterile TCAGGATCGTCGGCGGGGGTGGCGGCGGGGAGCAGCGAGAAGA 785
    AG TGGGGAGGGGGAAGATC T AGATAAAGCGGATCGAGAACACGACG
    Oryza sativa AACCGGCAGGTGACCTTCTGCAAGCGCCGCAATG
    GTu7Term CATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCT 786
    GAG-TAG CGATCCGCTTTATCT A GATCTTCCCCCTCCCCATCTTCTCGCTGCT
    CCCCGCCGCCACCGCCGCCGACGATCCTGA
    GGAAGATC T AGATAAAG 787
    CTTTATCT A GATCTTCC 788
    Male-sterile TCGTCGGCGGCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGG 789
    AG AGGGGGAAGATCGAGATA T AGCGGATCGAGAACACGACGAACCG
    Oryza sativa GCAGGTGACCTTCTGCAAGCGCCGCAATGGCCTCC
    Lys9Term GGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTC 790
    AAG-TAG GTGTTCTCGATCCGCT A TATCTCGATCTTCCCCCTCCCCATCTTCT
    CGCTGCTCCCCGCCGCCACCGCCGCCGACGA
    TCGAGATA T AGCGGATC 791
    GATCCGCT A TATCTCGA 792
    Male-sterile GCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGGAGGGGGAAG 793
    AG ATCGAGATAAAGCGGATC T AGAACACGACGAACCGGCAGGTGAC
    Oryza sativa CTTCTGCAAGCGCCGCAATGGCCTCCTGAAGAAGG
    Glu12Term CCTTCTTCAGGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGC 794
    GAG-TAG CGGTTCGTCGTGTTCT A GATCCGCTTTATCTCGATCTTCCCCCTCC
    CCATCTTCTCGCTGCTCCCCGCCGCCACCGC
    AGCGGATC T AGAACACG 795
    CGTGTTCT A GATCCGCT 796
  • [0127]
    TABLE 16
    Oligonucleotides to produce male-sterile plants
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Male-sterile GGGAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAA 797
    P1 TAGACAAGTTACATA G TCAAAGAGAAGAAATGGTATCATCAAAAAA
    Cucumis sativus GCCAAAGAAATTACTGTTCTTTGCGATGCT
    Tyr21Term AGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATACCAT 798
    TAT-TAG TTCTTCTCTTTGA C TATGTAACTTGTCTATTGCTTGAGTTCTCTATTC
    TTTTTATTTCTATTTTCCCTCTTCCC
    GTTACATA G TCAAAGAG 799
    CTCTTTGA C TATGTAAC 800
    Male-sterile GAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATA 801
    P1 GACAAGTTACATATT G AAAGAGAAGAAATGGTATCATCAAAAAAGC
    Cucumis sativus CAAAGAAATTACTGTTCTTTGCGATGCTCA
    Ser22Term TGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATAC 802
    TCA-TGA CATTTCTTCTCTTT C AATATGTAACTTGTCTATTGCTTGAGTTCTCTA
    TTGTTTTTATTTCTATTTTCCCTCTTC
    TACATATT G AAAGAGAA 803
    TTCTCTTT+E,un CAATATGTA 804
    Male-sterile AGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGAC 805
    P1 AAGTTAGATATTCA T AGAGAAGAAATGGTATCATCAAAAAAGCCAA
    Cucumis sativus AGAAATTACTGTTCTTTGCGATGCTCAAG
    Lys23Term CTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATA 806
    AAG-TAG CCATTTCTTCTCT A TGAATATGTAACTTGTCTATTGCTTGAGTTCTC
    TATTCTTTTTATTTCTATTTTCCCTCT
    CATATTCA T AGAGAAGA 807
    TCTTCTCT A TGAATATG 808
    Male-sterile GGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGACAAG 809
    P1 TTACATATTCAAAG T GAAGAAATGGTATCATCAAAAAAGCCAAAGA
    Cucumis sativus AATTACTGTTCTTTGCGATGCTCAAGTTT
    Arg24Term AAACTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATG 810
    AGA-TGA ATACCATTTCTTC A CTTTGAATATGTAACTTGTCTATTGCTTGAGTT
    CTCTATTCTTTTTATTTCTATTTTCCC
    ATTCAAAG T GAAGAAAT 811
    ATTTCTTC A CTTTGAAT 812
    Male-sterile GGGACGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTGAAGTAA 813
    P1 CAGGCAGGTGACCTA G TCCAAGAGGAGGAATGGGATTATCAAGAA
    Malus domestica GGCAAAGGAGATCACTGTTCTATGTGATGCT
    Tyr21Term AGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATCCCA 814
    TAG-TAG TTCCTCCTCTTGGA C TAGGTGACCTGCCTGTTACTTGAGTTCTCAA
    TCCTCTTGATCTCAACCTTCCCACGTCGC
    GTGACCTA G TGCAAGAG 815
    CTCTTGGA C TAGGTCAC 816
    Male-sterile CGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTCAAGTAACAGG 817
    P1 CAGGTGACCTACTCC T AGAGGAGGAATGGGATTATCAAGAAGGCA
    Malus domestica AAGGAGATCACTGTTCTATGTGATGCTAAAG
    Lys23Term CTTTAGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATC 818
    AAG-TAG CCATTCCTCCTCT A GGAGTAGGTCACCTGCCTGTTACTTGAGTTCT
    CAATCCTCTTGATCTCAACCTTCCCACG
    CCTACTCC T AGAGGAGG 819
    CCTCCTCT A GGAGTAGG 820
    Male-sterile AGGATTGAGAAGTCAAGTAACAGGCAGGTGACCTACTCCAAGAGG 821
    P1 AGGAATGGGATTATC T AGAAGGCAAAGGAGATGACTGTTCTATGT
    Malus domestica GATGCTAAAGTATCTCTTATCATTTATTCTA
    Lys30Term TAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGTGAT 822
    AAG-TAG CTCCTTTGCCTTCT A GATAATCGCATTCCTCCTCTTGGAGTAGGTC
    ACCTGCCTGTTACTTGAGTTCTCAATCCT
    GGATTATC T AGAAGGCA 823
    TGCCTTCT A GATAATCC 824
    Male-sterile ATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGGAGG 825
    P1 AATGGGATTATCAAG T AGGCAAAGGAGATCACTGTTCTATGTGATG
    Malus domestica CTAAAGTATCTCTTATCATTTATTCTAGCT
    Lys31Term AGCTAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGT 826
    AAG-TAG GATCTCCTTTGCCT A CTTGATAATGCCATTCCTCCTCTTGGAGTAG
    GTCACCTGCCTGTTACTTGAGTTCTCAAT
    TTATCAAG T AGGCAAAG 827
    CTTTGCCT A CTTGATAA 828
    Male-sterile CATTTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAA 829
    globosa AAACAAAAAAATG T GAAGAGGAAAAATTGAGATCAAAAGAATTGAG
    Antirrhinum majus AACTCAAGCAACAGGCAGGTTACTTACT
    Gly2Term AGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATCTCA 830
    GGA-TGA ATTTTTCCTCTTC A CATTTTTTTGTTTTTGTTTTTCTCTCTTGTTTTTG
    TTTGCAGATAACTATTGTAAAAATG
    AAAAAATG T GAAGAGGA 831
    TCCTCTTC A CATTTTTT 832
    Male-sterile TTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAA 833
    globosa CAAAAAAATGGGA T GAGGAAAAATTGAGATCAAAAGAATTGAGAAC
    Antirrhinum majus TCAAGCAACAGGCAGGTTACTTACTCAA
    Arg3Term TTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATC 834
    AGA-TGA TCAATTTTTCCTC A TCCCATTTTTTTGTTTTTGTTTTTCTCTCTTGTTT
    TTGTTTGCAGATAACTATTGTAAAA
    AAATGGGA T GAGGAAAA 835
    TTTTCCTC A TCCCATTT 836
    Male-sterile TACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACA 837
    globosa AAAAAATGGGAAGA T GAAAAATTGAGATCAAAAGAATTGAGAACTC
    Antirthinum majus AAGCAACAGGCAGGTTACTTACTCAAAGA
    Gly4Term TCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTG 838
    GGA-TGA ATCTCAATTTTTC A TCTTCCCATTTTTTTGTTTTTGTTTTTCTCTCTTG
    TTTTTGTTTGCAGATAACTATTGTA
    TGGGAAGA T GAAAAATT 839
    AATTTTTC A TCTTCCCA 840
    Male-sterile AATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACAAAA 841
    globosa AAATGGGAAGAGGA T AAATTGAGATCAAAAGAATTGAGAACTCAAG
    Antirrhinum majus CAACAGGCAGGTTACTTACTCAAAGAGAA
    Lys5Term TTCTCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTGTT 842
    AAA-TAA TTGATCTCAATTT A TCCTCTTCCCATTTTTTTGTTTTTGTTTTTCTCT
    CTTGTTTTTGTTTGCAGATAACTATT
    GAAGAGGA T AAATTGAG 843
    CTCAATTT A TCCTCTTC 844
    Male-sterile GCTGAGCTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGC 845
    P1 AGTATGGGGCGCGGC T AGATCAAGATCAAGAGGATCGAGAACTCT
    Zea mays ACCAACCGGCAGGTGACCTTCTCCAAGCGCC
    Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC 846
    AAG-TAG TCTTGATCTTGATCT A GCCGCGCCCCATACTGCGTTCTCCACTCCC
    AAACAGATCCAAGGGCAGCAAGAGCTCAGC
    GGCGCGGC T AGATGAAG 847
    CTTGATCT A GCCGCGCC 848
    Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG 849
    P1 GGGCGCGGCAAGATC T AGATCAAGAGGATCGAGAACTCTACCAAC
    Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG
    Lys7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 850
    AAG-TAG TCGATCCTCTTGATCT A GATCTTGCCGCGCCCCATACTGCGTTCTC
    CACTCCCAAACAGATCCAAGGGCAGCAAGAG
    GCAAGATC T AGATCAAG 851
    CTTGATCT A GATCTTGC 852
    Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG 853
    P1 GGGCGCGGCAAGATC T AGATCAAGAGGATCGAGAACTCTACCAAC
    Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG
    Lys9Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 854
    AAG-TAG TCGATCCTCTTGATCT A GATCTTGCCGCGCCCCATACTGCGTTCTC
    CACTCCCAAACAGATCCAAGGGCAGCAAGAG
    GCAAGATC T AGATCAAG 855
    GTTGATCT A GATCTTGC 856
    Male-sterile GATCTGTTTGGGAGTGGAGAACGCAGTATGGGGCGCGGCAAGAT 857
    P1 CAAGATCAAGAGGATC T AGAACTCTACCAACCGGCAGGTGACCTT
    Zea mays CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG
    Glu12Term CCTTCTTGACGAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC 858
    GAG-TAG CGGTTGGTAGAGTTCT A GATCCTCTTGATCTTGATCTTGCCGCGCC
    CCATACTGCGTTCTCCACTCCCAAACAGATC
    AGAGGATC T AGAACTCT 859
    AGAGTTCT A GATGCTCT 860
    Male-sterile GCTGAGCTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGG 861
    P1 AGTATGGGGCGCGGC T AGATCGAGATCAAGAGGATCGAGAACTCT
    Zea mays ACCAACCGGCAGGTGACCTTCTCCAAGCGCC
    Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC 862
    AAG-TAG TCTTGATCTCGATCT A GCCGCGCCCCATACTCCGTTCTCCACTCCC
    TAACAGATTCAAGGGCAGCAAGAGCTCAGC
    GGCGCGGC T AGATCGAG 863
    CTCGATCT A GCCGCGCC 864
    Male-sterile CTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATG 865
    P1 GGGCGCGGCAAGATC T AGATCAAGAGGATCGAGAACTCTACCAAC
    Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG
    Glu7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 866
    GAG-TAG TCGATCCTCTTGATCT A GATCTTGCCGCGCCCCATACTCCGTTCTC
    CACTCCCTAACAGATTCAAGGGCAGCAAGAG
    GCAAGATC T AGATCAAG 867
    CTTGATCT A GATCTTGC 868
    Male-sterile CTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCG 869
    P1 CGGCAAGATCGAGATC T AGAGGATCGAGAACTCTACCAACCGGCA
    Zea mays GGTGACCTTCTCCAAGCGCCGGGCCGGACTGG
    Lys9Term CCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTA 870
    AAG-TAG GAGTTCTCGATCCTCT A GATCTCGATCTTGCCGCGCCCCATACTC
    CGTTCTCCACTCCCTAACAGATTCAAGGGCAG
    TCGAGATC T AGAGGATC 871
    GATCCTCT A GATCTCGA 872
    Male-sterile AATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCGCGGCAAGAT 873
    P1 GGAGATGAAGAGGATC T AGAACTCTACCAACCGGCAGGTGACCTT
    Zea mays CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG
    Glu12Term CCTTCTTGACCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC 874
    GAG-TAG CGGTTGGTAGAGTTCT A GATCCTCTTGATCTCGATCTTGCCGCGC
    CCCATACTCCGTTCTCCACTCCCTAACAGATT
    AGAGGATC T AGAACTCT 875
    AGAGTTCT A GATCCTCT 876
    Male-sterile TTGCTGCTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGG 877
    P1 CGGGATGGGGCGCGGG+E,un TAGATCGAGATCAAGAGGATCGAGAACT
    Oryza sativa CCACCAACCGCCAGGTGACCTTCTCCAAGCGCA
    Lys5Term TGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCTCGATCC 878
    AAG-TAG TCTTGATGTCGATGT A CCCGCGCCCCATCCCGCCTCCTCCTCCTC
    CTCCTCCTTCCTCCAGCTAGCTTAGCAGCAA
    GGCGCGGG T AGATCGAG 879
    CTCGATCT A CCCGCGCC 880
    Male-sterile CTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGA 881
    P1 TGGGGCGCGGGAAGATC T AGATCAAGAGGATCGAGAACTCCACC
    Oryza sativa AACCGCCAGGTGACCTTCTCCAAGCGCAGGAGCG
    Glu7Term CGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCT 882
    GAG-TAG CGATCCTCTTGATCT A GATCTTCCCGCGCCCCATCCCGCCTCCTC
    CTCCTCCTCCTCCTTCCTCCAGCTAGCTTAG
    GGAAGATC T AGATCAAG 883
    CTTGATCT A GATCTTCC 884
    Male-sterile TAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGC 885
    P1 GCGGGAAGATCGAGATC T AGAGGATCGAGAACTCCACCAACCGC
    Oryza sativa CAGGTGACCTTCTCCAAGCGCAGGAGCGGGATCC
    Lys9Term GGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTG 886
    AAG-TAG GAGTTCTCGATCCTCT A GATCTCGATCTTCCCGCGCCCCATCCCG
    CCTCCTCCTCCTCCTCCTCCTTCCTCCAGCTA
    TCGAGATC T AGAGGATC 887
    GATCCTCT A GATCTCGA 888
    Male-sterile GAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGCGCGGGAAG 889
    P1 ATCGAGATCAAGAGGATC T AGAACTCCACCAACCGCCAGGTGACC
    Oryza sativa TTCTCCAAGCGCAGGAGCGGGATCCTCAAGAAGG
    Glu12Term CCTTCTTGAGGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGC 890
    GAG-TAG GGTTGGTGGAGTTCT A GATCCTCTTGATCTCGATCTTCCCGCGCC
    CCATCCCGCCTCCTCCTCCTCCTCCTCCTTC
    AGAGGATC T AGAACTCC 891
    GGAGTTCT A GATCCTCT 892
  • EXAMPLE 7 Engineering Plants for Abiotic Stress Tolerance
  • Environmental stresses, such as drought, increased soil salinity, soil contamination with heavy meals, and extreme temperature, are major factors limiting plant growth and productivity. The worldwide loss in yield of three major cereal crops, rice, maize, and wheat due to water stress (drought) has been estimated to be over ten billion dollars annually and many currently marginal soils could be brought into cultivation if suitable plant varieties were available. [0128]
  • Physiological and biochemical responses to high levels of ionic or nonionic solutes and decreased water potential have been studied in a variety of plants. It is known, for example, that increasing levels of alcohol dehydrogenase can confer enhances flooding resistance in plants. There are also several possible mechanisms to enhance plant salt tolerance. For example, one mechanism underlying the adaptation or tolerance of plants to osmotic stresses is the accumulation of compatible, low molecular weight osmolytes such as sugar alcohols, special amino acids, and glycinebetaine. Such accumulation can be engineered, for example, by removing feedback inhibition on 1-pyrroline-t-carboxylate synthetase, which results in accumulation of proline. Additionally, recent experiments suggest that altering the expression or activity of specific sodium or potassium transporters can confer enhanced salt tolerance. [0129]
  • Plant tolerance of contamination by heavy metals such as lead and aluminum in soils has also been investigated and one mechanism underlying tolerance is the production of dicarboxylic acids such as oxalate and citrate. In addition, individual genes involved in heavy metal sensitivity have been identified. [0130]
  • The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer stress tolerance in plants. [0131]
    TABLE 17
    Genome-Altering Oligos Conferring Stress Tolerance
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Salt Tolerance CGTCTTTTTGTGTGGTAGTTGGATGTGACGGTTGCTCAAATGCTT 893
    P5CS GTGACCGATAGCAGT GC TAGAGATAAGGATTTCAGGAAGCAACTT
    Arabidopsis thaliana AGTGAAACTGTCAAAGCGATGCTGAGGATGA
    Phe128Ala TCATCCTCAGCATCGCTTTGACAGTTTCACTAAGTTGCTTCCTGAA 894
    TTT-GCT ATCCTTATGTCTA GC ACTGCTATCGGTCACAAGCATTTGAGCAACC
    GTCACATCCAACTACCACACAAAAAGACG
    ATAGCAGT GC TAGAGAT 895
    ATCTCTA GC ACTGCTAT 896
    Salt Tolerance GAGAGTATGTTTGACCAGCTGGATGTGACGGCTGCTCAGCTGCTG 897
    P5CS 1 GTGAATGACAGTAGT GC CAGAGACAAGGAGTTCAGGAAGCAACTT
    Brassica napus AATGAGACAGTGAAGTCCATGCTTGATTTGA
    Phe128Ala TCAAATCAAGCATGGACTTCACTGTCTCATTAAGTTGCTTCCTGAA 898
    TTC-GCC CTCCTTGTCTCTG GC ACTACTGTCATTCACCAGCAGCTGAGCAGC
    CGTCACATCCAGCTGGTCAAACATAGTGTC
    ACAGTAGT GC CAGAGAC 899
    GTCTCTG GC ACTACTGT 900
    Salt Tolerance GAGACTATGTTTGACCAGATGGATGTGACGGTGGCTCAAATGCTG 901
    P505 2 GTGACTGATAGCAGT G TCAGAGATAAGGATTTCAGGAAGCAACTT
    Brassica napus AGTGAGACAGTCAAAGCTATGCTGAAAATGA
    Phe129Ala TCATTTTCAGCATAGCTTTGACTGTCTCACTAAGTTGCTTCCTGAA 902
    TTC-GCC ATCCTTATCTCTGA C ACTGCTATCAGTCACCAGCATTTGAGCCACC
    GTCACATCCATCTGGTCAAACATAGTCTC
    ATAGCAGT G TCAGAGAT 903
    ATCTCTGA C ACTGCTAT 904
    Salt Tolerance GATATGTTGTTTAACCAACTGGATGTCTCGTCATCTCAACTTCTTG 905
    P5GS TCACCGACAGTGAT GC TGAGAACCCAAAGTTCCGGGAGCAACTCA
    Oryza sativa CTGAAACTGTTGAGTCATTATTAGATCTTA
    Phe128Ala TAAGATCTAATAATGACTCAACAGTTTCAGTGAGTTGCTCCCGGAA 906
    TTT-GCT CTTTGGGTTCTCA GC ATCACTGTCGGTGACAAGAAGTTGAGATGA
    CGAGACATCCAGTTGGTTAAACAACATATC
    ACAGTGAT GC TGAGAAC 907
    GTTCTCA GC ATCACTGT 908
    Salt Tolerance GATATTTTGTTTAGTCAGCTGGATGTGACATCTGCTCAGCTTCTTG 909
    P5CS TTACTGACAATGAT GC TAGAGACCAAGATTTTAGAAAGCAACTTTC
    Medicago sativa TGAAACTGTGAGATCACTTCTAGCACTAA
    Phe128Ala TTAGTGCTAGAAGTGATCTCACAGTTTCAGAAAGTTGCTTTCTAAA 910
    TTT-GCT ATCTTGGTCTCTA GC ATCATTGTCAGTAAGAAGAAGCTGAGCAGAT
    GTCACATCCAGCTGACTAAACAAAATATC
    ACAATGAT GC TAGAGAC 911
    GTCTCTA GC ATCATTGT 912
    Salt Tolerance GATACATTGTTTAGTCAGCTGGATGTGACATCAGCTCAGCTACTC 913
    P5CS GTTACTGATAATGAT GC TAGGGATCCAGAATTCAGGAAGCAACTT
    Actinidia deliciosa ACTGAAACTGTAGAATCACTATTGAATTTGA
    Phe128Ala TCAAATTCAATAGTGATTCTACAGTTTCAGTAAGTTGCTTCCTGAAT 914
    TTT-GCT TCTGGATCCCTA GC ATCATTATCAGTAACGAGTAGCTGAGCTGAT
    GTCACATCCAGCTGACTAAACAATGTATC
    ATAATGAT GC TAGGGAT 915
    ATCCCTA GC ATCATTAT 916
    Salt Tolerance GACACACTCTTCAGTCAACTGGATGTGACATCAGCACAGCTTCTT 917
    P5CS GTAACAGATAATGAC GC CAGAAGTCCAGAATTTAGAAAACAACTTA
    Cichorium intybus CTGAAACAGTCGATTCTTTATTATCTTATA
    Phe122Ala TATAAGATAATAAAGAATCGACTGTTTCAGTAAGTTGTTTTCTAAAT 918
    TTC-GCC TCTGGACTTCTG GC GTCATTATCTGTTACAAGAAGCTGTGCTGAT
    GTCACATCCAGTTGACTGAAGAGTGTGTC
    ATAATGAC GC CAGAAGT 919
    ACTTCTG GC GTCATTAT 920
    Salt Tolerance GATTCTTTGTTCAGTCAGTTGGATGTGACATCAGCTCAGCTTCTGG 921
    P5CS TGACTGATAATGAC GC TAGAGATCCAGATTTTAGGAGACAACTCA
    Lycopersicon ATGACACAGTAAATTCGTTGCTTTCTCTAA
    esculentum TTAGAGAAAGCAACGAATTTACTGTGTCATTGAGTTGTCTCCTAAA 922
    Phe12BAla ATCTGGATCTCTA GC GTCATTATCAGTCACCAGAAGCTGAGCTGA
    TTT-GCT TGTCACATCCAACTGACTGAACAAAGAATC
    ATAATGAC GC TAGAGAT 923
    ATCTCTA GC GTCATTAT 924
    Salt Tolerance GATACCATGTTCAGCCAGCTTGATGTGACTTCTTCCCAACTTCTTG 925
    P5CS TGAATGATGGATTT GC TAGGGATGCTGGCTTCAGAAAACAACTTT
    Vigna unguiculata CGGACACAGTGAACGCGTTATTAGATTTAA
    Phe162Ala TTAAATCTAATAACGCGTTCACTGTGTCCGAAAGTTGTTTTCTGAA 926
    TTT-GCT GCCAGCATCCCTA GC AAATCCATCATTCACAAGAAGTTGGGAAGA
    AGTCACATCAAGCTGGCTGAACATGGTATC
    ATGGATTT GC TAGGGAT 927
    ATCCCTA GC AAATCCAT 928
    Salt Tolerance GACACCTTGTTTAGTCAGTTGGATCTGACTGCTGCTCAGCTGCTT 929
    P5CS GTGACGGACAACGAC GC TAGAGATCCAAGTTTTAGAACACAACTA
    Mesembryanthemum ACTGAAACAGTGTATCAGTTGTTGGATCTAA
    crystallinum TTAGATCCAACAACTGATACACTGTTTCAGTTAGTTGTGTTCTAAA 930
    Phe125Ala ACTTGGATCTCTA GC GTCGTTGTCCGTCACAAGCAGCTGAGCAGC
    TTT-GCT AGTCAGATCCAACTGACTAAACAAGGTGTC
    ACAACGAC GC TAGAGAT 931
    ATCTCTA GC GTCGTTGT 932
    Salt Tolerance GACACATTATTTAGCCAGCTGGATGTGACATCAGCTCAGCTTCTT 933
    P5CS GTGACTGATAATGAT GC TAGGGATGAAGCTTTCCGAAATCAACTTA
    Vitis vinifera CTCAAACAGTGGATTCATTGTTAGCTTTGA
    Phe130Ala TCAAAGCTAACAATGAATCCACTGTTTGAGTAAGTTGATTTCGGAA 934
    TTT-GCT AGCTTCATCCCTA GC ATCATTATCAGTCACAAGAAGCTGAGCTGAT
    GTCACATCCAGCTGGCTAAATAATGTGTC
    ATAATGAT GC TAGGGAT 935
    ATCCCTA GC ATCATTAT 936
    Salt Tolerance GATACGCTGTTCACTCAGCTCGATGTGACATCGGCTCAGCTTCTT 937
    P5CS GTGACGGATAACGAT GC TCGAGATAAGGATTTCAGGAAGCAGCTT
    Vigna aconitifolia ACTGAGACTGTGAAGTCGCTGTTGGGGCTGA
    Phe129Ala TCAGCGCCAACAGCGACTTCACAGTCTCAGTAAGCTGCTTCCTGA 938
    TTT-GCT AATCCTTATCTCGA GC ATCGTTATCCGTCACAAGAAGCTGAGCCG
    ATGTCACATCGAGCTGAGTGAACAGCGTATC
    ATAACGAT GC TCGAGAT 939
    ATCTCGA GC ATCGTTAT 940
    Salt Tolerance AGAGATGTTCTTAGTTCCAAAGAAATCTCACCTCTCAGTTTCTCCG 941
    HKT1 TCTTCACAACAGTT GT CACGTTTGCAAACTGCGGATTTGTCCCCAC
    Arabidopsis thaliana GAATGAGAACATGATCATCTTTCGCAAAA
    Ser207Val TTTTGCGAAAGATGATCATGTTCTCATTCGTGGGGACAAATCCGC 942
    TCC-GTC AGTTTGCAAACGTG AC AACTGTTGTGAAGACGGAGAAAGTGAGAG
    GTGAGATTTCTTTGGAACTAAGAACATCTCT
    CAACAGTT GT CACGTTT 943
    AAACGTG AC AACTGTTG 944
    Salt Tolerance CGAATGAGAACATGATCATCTTTCGCAAAAACTCTGGTCTCATCTG 945
    HKT1 GCTCCTAATCCCTC T AGTACTGATGGGAAACACTTTGTTCCCTTGC
    Arabidopsis thaliana TTCTTGGTTTTGCTCATATGGGGACTTTA
    Gln237Leu TAAAGTCCCCATATGAGCAAAACCAAGAAGCAAGGGAACAAAGTG 946
    CAA-CTA TTTCCCATCAGTACT A GAGGGATTAGGAGCCAGATGAGACCAGAG
    TTTTTGCGAAAGATGATCATGTTCTCATTCG
    AATCCCTC T AGTACTGA 947
    TCAGTACT A GAGGGATT 948
    Salt Tolerance AGTCTCTAGAAGGAATGAGTTCGTACGAGAAGTTGGTTGGATCGT 949
    HKT1 TGTTTCAAGTGGTGA G TTCGCGACACACCGGAGAAACTATAGTAG
    Arabidopsis thaliana ACCTCTCTACACTTTCCCCAGCTATCTTGGT
    Asn332Ser ACCAAGATAGCTGGGGAAAGTGTAGAGAGGTCTACTATAGTTTCT 950
    AAT-AGT CCGGTGTGTCGCGAA C TCACCACTTGAAACAACGATCCAACCAAC
    TTCTCGTACGAACTCATTCCTTCTAGAGACT
    AGTGGTGA G TTCGCGAC 951
    GTCGCGAA C TCACCACT 952
    Salt Tolerance AGAGATGTGCTAAAGAAGAAAGGTCTCAAAATGGTGACCTTTTCC 953
    HKT1 GTCTTCACCACCGTG GT GACCTTTGCCAGTTGTGGGTTTGTCCCG
    Eucalyptus ACCAATGAAAACATGATTATCTTCAGCAAAA
    camaldulensis TTTTGCTGAAGATAATCATGTTTTCATTGGTCGGGACAAACCCACA 954
    Ser256Val ACTGGCAAAGGTC AC CACGGTGGTGAAGACGGAAAAGGTCACCA
    TCG-GTG TTTTGAGACCTTTCTTCTTTAGCACATCTCT
    CCACCGTG GT GACCTTT 955
    AAAGGTC AC CACGGTGG 956
    Salt Tolerance CCAATGAAAACATGATTATCTTCAGCAAAAACTCTGGCCTCCTCCT 957
    HKT1 GATTCTCATCCCTC T GGCCCTTCTTGGGAACATGCTGTTCCCATC
    Eucalyptus GAGCCTACGTTTGACGCTTTGGCTCATCGG
    camaldulensis CCGATGAGCCAAAGCGTCAAACGTAGGCTCGATGGGAACAGCAT 958
    Gln286Leu GTTCCCAAGAAGGGCCA G AGGGATGAGAATCAGGAGGAGGCCA
    CAG-CTG GAGTTTTTGCTGAAGATAATCATGTTTTCATTGG
    CATCCCTC T GGCCCTTC 959
    GAAGGGCC A GAGGGATG 960
    Salt Tolerance AATCGTTGAATGGACTAAGCTCCTGTGAGAAAATCGTGGGCGCGC 961
    HKT1 TGTTTCAGTGCGTGA G CAGCAGACATACCGGCGAGACGGTCGTC
    Eucalyptus GATCTGTCCACAGTTGCTCCCGCCATCTTGGT
    camaldulensis ACCAAGATGGCGGGAGCAACTGTGGACAGATCGACGACCGTCTC 962
    Asn381Ser GCCGGTATGTCTGCTG C TCACGCACTGAAACAGCGCGCCCACGA
    AAC-AGC TTTTCTCACAGGAGCTTAGTCCATTCAACGATT
    GTGCGTGA G CAGCAGAC 963
    GTCTGCTG+E,un CTCACGCAC 964
    Salt Tolerance AAAGCTCCACTGAAGAAGAAAGGGATCAACATTGCACTCTTCTCA 965
    HKT1 TTCTCGGTCACGGTC GT CTCGTTTGCGAATGTGGGGCTCGTGCC
    Oryza sativa GACAAATGAGAACATGGCAATCTTCTCCAAGA
    Ser238Val TCTTGGAGAAGATTGCCATGTTCTCATTTGTCGGCACGAGCCCCA 966
    TCC-GTC CATTCGCAAACGAG AC GACCGTGACCGAGAATGAGAAGAGTGCA
    ATGTTGATCCCTTTCTTCTTCAGTGGAGCTTT
    TCACGGTC GT CTCGTTT 967
    AAACGAG AC GACCGTGA 968
    Salt Tolerance CAAATGAGAACATGGCAATCTTCTCCAAGAACCCGGGCCTCCTCC 969
    HKT1 TCCTGTTCATCGGCC T GATTGTTGCAGGCAATACACTTTACCCTCT
    Oryza sativa CTTCCTAAGGCTATTGATATGGTTCCTGGG
    Gln268Leu CCCAGGAACCATATCAATAGCCTTAGGAAGAGAGGGTAAAGTGTA 970
    CAG-CTG TTGCCTGCAAGAATC A GGCCGATGAACAGGAGGAGGAGGCCCGG
    GTTCTTGGAGAAGATTGCCATGTTCTCATTTG
    CATCGGCC T GATTCTTG 971
    CAAGAATC A GGCCGATG 972
    Salt Tolerance CAGTCTTTGATGGACTCAGCTCTTACCAGAAGATTATCAATGCATT 973
    HKT1 GTTCATGGCAGTGA G CGCAAGGCACTCGGGGGAGAACTCCATCG
    Oryza sativa ACTGCTCACTCATCGCCCCTGCTGTTCTAGT
    Asn363Ser ACTAGAACAGCAGGGGCGATGAGTGAGCAGTCGATGGAGTTCTC 974
    AAC-AGC CCCCGAGTGCCTTGCG C TCACTGCCATGAACAATGCATTGATAAT
    CTTCTGGTAAGAGCTGAGTCCATCAAAGACTG
    GGCAGTGA G CGCAAGGC 975
    GCCTTGCG C TCACTGCC 976
    Salt Tolerance GTGCCCCACTGAACAAGAAAGGGATCAACATCGTGCTCTTCTCAC 977
    HKT1 TATCAGTCACCGTTG T CTCCTGTGCGAATGCAGGACTCGTGCCCA
    Triticum aestivum CAAATGAGAACATGGTCATCTTCTCAAAGAA
    Ala240Val TTCTTTGAGAAGATGACCATGTTCTCATTTGTGGGCACGAGTCCT 978
    GCC-GTC GCATTCGCACAGGAG A CAACGGTGAGTGATAGTGAGAAGAGCAC
    GATGTTGATCCCTTTCTTGTTCAGTGGGGCAC
    CACCGTTG T CTCCTGTG 979
    CACAGGAG A CAACGGTG 980
    Salt Tolerance CAAATGAGAACATGGTCATCTTCTCAAAGAATTCAGGCCTCTTGTT 981
    HKT1 GCTGCTGAGTGGCC T GATGCTCGCAGGCAATACATTGTTCCCTCT
    Triticum aestivum CTTCCTGAGGCTACTGGTGTGGTTCCTGGG
    Gln270Leu CCCAGGAACCACACCAGTAGCCTCAGGAAGAGAGGGAACAATGT 982
    CAG-CTG ATTGCCTGCGAGCATC A GGCCACTCAGCAGCAACAAGAGGCCTG
    AATTCTTTGAGAAGATGACCATGTTCTCATTTG
    GAGTGGCC T GATGCTCG 983
    CGAGCATC A GGCCACTC 984
    Salt Tolerance CAGTCTTTGATGGGCTCAGCTCTTATCAGAAGACTGTCAATGCATT 985
    HKT1 CTTCATGGTGGTGA G TGCGAGGCACTCAGGGGAGAATTCCATCG
    Triticum aestivum ACTGCTCGCTCATGTCCCCTGCCATTATAGT
    Asn365Ser ACTATAATGGCAGGGGACATGAGCGAGCAGTCGATGGAATTCTCC 986
    AAT-AGT CCTGAGTGCCTCGCA C TCACCACCATGAAGAATGCATTGACAGTC
    TTCTGATAAGAGCTGAGCCCATCAAAGACTG
    GGTGGTGA G TGCGAGGC 987
    GCCTCGCA C TCACCACC 988
    Freezing Tolerance TTTTTTTTGTTTTCGTTTTCAAAAAGAAAATCTTTGAATTTTATGGCA 989
    praline oxidase ACCGGTCTTCTC T GAACAAACTTTATCCGGCGATCTTACCGTTTAG
    precursor CCGCTTTTAGCCCGGTGGGTCCTCCCA
    Arabidopsis thaliana TGGGAGGACCCACCGGGCTAAAAGCGGGTAAACGGTAAGATCGC 990
    Arg7Term GGGATAAAGTTTGTTC A GAGAAGACGGGTTGCCATAAAATTCAAA
    CGA-TGA GATTTTGTTTTTGAAAACGAAAACAAAAAAAA
    GTCTTCTC T GAACAAAC 991
    GTTTGTTC A GAGAAGAC 992
    Freezing Tolerance TCAAAAACAAAATCTTTGAATTTTATGGCAACCCGTCTTCTCAGAA 993
    proline oxidase CAAACTTTATCCGG T GATCTTACCGTTTACCGGCTTTTAGCCCGGT
    precursor GGGTCCTCCCACCGTGACTGCTTCCACCG
    Arabidopsis thaliana CGGTGGAAGCAGTCACGGTGGGAGGACCCAGCGGGCTAAAAGC 994
    Arg13Term GGGTAAACGGTAAGATC A CCGGATAAAGTTTGTTCTGAGAAGACG
    CGA-TGA GGTTGCCATAAAATTCAAAGATTTTGTTTTTGA
    TTATCCGG T GATCTTAC 995
    GTAAGATC A CCGGATAA 996
    Freezing Tolerance AAAATCTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTT 997
    praline oxidase ATCCGGCGATCTTA G CGTTTACCCGCTTTTAGCCCGGTGGGTCCT
    precursor CCCACCGTGACTGCTTCCACCGCCGTCGTC
    Arabidopsis thaliana GACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGG 998
    Tyr15Term CTAAAAGCGGGTAAACG C TAAGATCGCCGGATAAAGTTTGTTCGG
    TAG-TAG AGAAGAGGGGTTGCCATAAAATTCAAAGATTTT
    CGATCTTA G CGTTTACC 999
    GGTAAACG C TAAGATCG 1000
    Freezing Tolerance CTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTTATCCG 1001
    praline oxidase GCGATCTTACCGTT A ACCCGCTTTTAGCCCGGTGGGTCCTCCCAC
    precursor CGTGACTGCTTCCACCGCCGTCGTCCCGGA
    Arabidopsis thaliana TCCGGGACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCA 1002
    Leu17Term CCGGGCTAAAAGCGGGT T AACGGTAAGATCGGCGGATAAAGTTT
    TTA-TAA GTTCGGAGAAGACGGGTTGCCATAAAATTCAAAG
    TTACCGTT A ACCCGCTT 1003
    AAGCGGGT T AACGGTAA 1004
    Freezing Tolerance CCGGTGGGTCCTCCCACCGTGACTGCTTCCAGCGCCGTGGTCCC 1005
    proline oxidase GGAGATTCTCTCCTTT T GACAACAAGCACCGGAACCACCTCTTCA
    precursor CCACCCAAAACCCACCGAGCAATCTCACGATG
    Arabidopsis thaliana CATCGTGAGATTGCTCGGTGGGTTTTGGGTGGTGAAGAGGTGGT 1006
    Gly42Term TCCGGTGCTTGTTGTC A AAAGGAGAGAATCTCCGGGACGACGGC
    GGA-TGA GGTGGAAGCAGTCACGGTGGGAGGACCCACCGG
    TCTCCTTT T GACAACAA 1007
    TTGTTGTC A AAAGGAGA 1008
    Lead Tolerance ACATGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCT 1009
    cyclic nucleotide- AAACTATGAATTTC T GACAAGAGAAGTTTGTAAGGTCAGTGTTCCA
    regulated ion channel GATTTGTCTCATTGAATTCTAAGTCGTGA
    Arabidopsis thaliana TCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCTTAC 1010
    Arg4Term AAACTTCTCTTGTC A GAAATTCATAGTTTGAGACTAATAAGATTCAA
    CGA-TGA TACAAACAGAGATTTCACTGCTTCATGT
    TGAATTTC T GACAAGAG 1011
    CTCTTGTC A GAAATTCA 1012
    Lead Tolerance TGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAA 1013
    cyclic nucleotide- CTATGAATTTCCGA T AAGAGAAGTTTGTAAGGTCAGTGTTCCAGAT
    regulated ion channel TTGTCTCATTGAATTCTAAGTCGTGAAGC
    Arabidopsis thaliana GCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCT 1014
    Gln5Term TACAAACTTCTCTT A TCGGAAATTCATAGTTTGAGACTAATAAGATT
    CAA-TAA CAATACAAACAGAGATTTCACTGCTTCA
    ATTTCCGA T AAGAGAAG 1015
    CTTCTCTT A TCGGAAAT 1016
    Lead Tolerance AGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTAT 1017
    cyclic nucleotide- GAATTTCCGACAA T AGAAGTTTGTAAGGTCAGTGTTCCAGATTTGT
    regulated ion channel CTCATTGAATTCTAAGTCGTGAAGCTTA
    Arabidopsis thaliana TAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGA 1018
    Glu6Term CCTTACAAACTTCT A TTGTCGGAAATTCATAGTTTGAGACTAATAA
    GAG-TAG GATTCAATACAAACAGAGATTTCACTGCT
    TCCGACAA T AGAAGTTT 1019
    AAACTTCT A TTGTCGGA 1020
    Lead Tolerance AGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTATGAA 1021
    cyclic nucleotide- TTTCCGACAAGAG T AGTTTGTAAGGTCAGTGTTCCAGATTTGTCTC
    regulated ion channel ATTGAATTCTAAGTCGTGAAGCTTAATT
    Arabidopsis thaliana AATTAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACAC 1022
    Lys7Term TGACCTTACAAACT A CTCTTGTCGGAAATTCATAGTTTGAGACTAA
    AAG-TAG TAAGATTCAATACAAACAGAGATTTCACT
    GACAAGAG T AGTTTGTA 1023
    TACAAACT A CTCTTGTC 1024
    Lead Tolerance CATTGAATTCTAAGTCGTGAAGCTTAATTCGATTCTTCTTCACTTTC 1025
    cyclic nucleotide- TCGGATCAGGTTT T AAGATTGGAAGTCGGATAAGACTTCCTCCGA
    regulated ion channel CGTGGAATATTCCGGTAAAAACGAGATTC
    Arabidopsis thaliana GAATCTCGTTTTTACCGGAATATTCCACGTCGGAGGAAGTCTTATC 1026
    Gln12Term CGACTTCCAATCTT A AAACCTGATCCGAGAAAGTGAAGAAGAATC
    CAA-TAA GAATTAAGCTTCACGACTTAGAATTCAATG
    TCAGGTTT T AAGATTGG 1027
    CCAATCTT A AAACCTGA 1028
    Lead Tolerance TGGAAGTCAATCCCCCACGTTGAGCAGGTTGATGCATTGGGTAAA 1029
    cyclic nucleotide- GTTATGAATCACCGC T AAGACGAGTTTGTGAGGTTTCAGGATTGG
    gated calmodulin- AAATCAGAGAGAAGCTCTGAGGGAAATTTTC
    binding ion channel GAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTGAAACCT 1030
    (CBP4) CACAAACTCGTCTT A GCGGTGATTCATAACTTTAGCCAATGCATCA
    Nicotiana Tabacum ACCTGCTCAACGTGGGGGATTGACTTCCA
    Gln5Term ATCACCGC T AAGACGAG 1031
    CAA-TAA CTCGTCTT A GCGGTGAT 1032
    Lead Tolerance TCAATCCCCCACGTTGAGCAGGTTGATGCATTGGCTAAAGTTATG 1033
    cyclic nucleotide- AATCACCGCCAAGAC T AGTTTGTGAGGTTTCAGGATTGGAAATCA
    gated calmodulin- GAGAGAAGCTCTGAGGGAAATTTTCATGCTA
    binding ion channel TAGCATGAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTG 1034
    (CBP4) AAACCTCACAAACT A GTCTTGGCGGTGATTCATAACTTTAGCCAAT
    Nicotiana Tabacum GCATCAACCTGCTCAACGTGGGGGATTGA
    Gly7Term GCCAAGAC T AGTTTGTG 1035
    GAG-TAG CACAAACT A GTCTTGGC 1036
    Lead Tolerance GAGCAGGTTGATGCATTGGCTAAAGTTATGAATCACCGCCAAGAC 1037
    cyclic nucleotide- GAGTTTGTGAGGTTT T AGGATTGGAAATCAGAGAGAAGCTCTGAG
    gated calmodulin- GGAAATTTTCATGCTAAAGGTGGAGTCCACC
    binding ion channel GGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAGCTTCTCTC 1038
    (CBP4) TGATTTCCAATCCT A AAACCTCACAAACTCGTCTTGGCGGTGATTC
    Nicotiana Tabacum ATAACTTTAGCCAATGCATCAACCTGCTC
    Gln12Term TGAGGTTT T AGGATTGG 1039
    CAG-TAG CCAATCCT A AAACCTCA 1040
    Lead Tolerance TGATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGT 1041
    cyclic nucleotide- GAGGTTTCAGGATTG T AAATCAGAGAGAAGCTCTGAGGGAAATTT
    gated calmodulin- TCATGCTAAAGGTGGAGTCCACCGAAGTAAA
    binding ion channel TTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAG 1042
    (CBP4) CTTCTCTCTGATTT A CAATCCTGAAACCTCACAAACTCGTCTTGGC
    Nicotiana Tabacum GGTGATTCATAACTTTAGCCAATGCATCA
    Trp14Term CAGGATTG T AAATCAGA 1043
    TGG-TGA TCTGATTT A CAATCCTG 1044
    Lead Tolerance GATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGTG 1045
    cyclic nucleotide- AGGTTTCAGGATTGG T AATCAGAGAGAAGCTGTGAGGGAAATTTT
    gated calmoduin- CATGCTAAAGGTGGAGTCCACCGAAGTAAAG
    binding ion channel CTTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGA 1046
    (CBP4) GCTTCTCTCTGATT A CCAATCCTGAAACCTCACAAACTCGTCTTGG
    Nicotiana Tabacum CGGTGATTCATAACTTTAGCCAATGCATC
    Lys15Term AGGATTGG T AATCAGAG 1047
    AAA-TAA CTCTGATT A CCAATCCT 1048
    Lead Tolerance CTTGAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGG 1049
    calmoduin binding TGGAGATAATGATG T AAAGAGAGGACAGATATGTTAGATTTCAGG
    transport protein ACTGCAAATCAGAGCAATCTGTTATCTCAG
    Hordeum vulgare CTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATGTAACATA 1050
    Glu2Term TCTGTCCTCTCTTT A CATCATTATCTCCACCAGGCGAACAGTTAGC
    GAA-TAA AGCTAAGAGTGGTAGATCAATTCTTCAAG
    TAATGATG T AAAGAGAG 1051
    CTCTCTTT A CATCATTA 1052
    Lead Tolerance GAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTG 1053
    calmodulin binding GAGATAATGATGGAA T GAGAGGACAGATATGTTAGATTTCAGGAC
    transport protein TGCAAATCAGAGCAATCTGTTATCTCAGAGA
    Hordeum vulgare TCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAAC 1054
    Arg3Term ATATCTGTCCTCTC A TTCCATCATTATCTCCACCAGGCGAACAGTT
    AGA-TGA AGCAGCTAAGAGTGGTAGATCAATTCTTC
    TGATGGAA T GAGAGGAC 1055
    GTCCTCTC A TTCCATCA 1056
    Lead Tolerance GAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAG 1057
    calmodulin binding ATAATGATGGAAAGA T AGGACAGATATGTTAGATTTCAGGACTGC
    transport protein AAATCAGAGCAATCTGTTATCTCAGAGAACG
    Hordeum vulgare CGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCT 1058
    Glu4Term AACATATCTGTCCT A TCTTTCCATCATTATCTCCACCAGGCGAACA
    GAG-TAG GTTAGCAGCTAAGAGTGGTAGATCAATTC
    TGGAAAGA T AGGACAGA 1059
    TCTGTCCT A TCTTTCCA 1060
    Lead Tolerance ATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATG 1061
    calmodulin binding ATGGAAAGAGAGGAC T GATATGTTAGATTTCAGGACTGCAAATCA
    transport protein GAGCAATCTGTTATCTCAGAGAACGCAGTTT
    Hordeum vulgare AAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTG 1062
    Arg6Term AAATCTAACATATC A GTCCTCTCTTTCCATCATTATCTCCACCAGG
    AGA-TGA CGAACAGTTAGCAGCTAAGAGTGGTAGAT
    GAGAGGAC T GATATGTT 1063
    AACATATC A GTCCTCTC 1064
    Lead Tolerance CCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATGATGGA 1065
    calmodulin binding AAGAGAGGACAGATA G GTTAGATTTCAGGAGTGCAAATCAGAGCA
    transport protein ATCTGTTATCTCAGAGAACGCAGTTTCACCA
    Hordeum vulgare TGGTGAAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCA 1066
    Tyr7Term GTCCTGAAATCTAAC C TATCTGTCCTCTCTTTCCATCATTATCTCCA
    TAT-TAG CCAGGCGAACAGTTAGCAGCTAAGAGTGG
    GACAGATA G GTTAGATT 1067
    AATCTAAC C TATCTGTC 1068
    2,4-DB resistance ATCCTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCA 1069
    3-ketoacyl-CoA GCCGGAAAAAATG T AGAAAGCGATCGAGAGACAACGCGTTCTTCT
    thiolase TGAGCATCTCCGACCTTCTTCTTCTTCTT
    Arabidopsis thaliana AAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGTTGT 1070
    Glu2Term CTCTCGATCGCTTTCT A CATTTTTTCCGGCTGATTAAAGATAAAATT
    GAG-TAG CGGATCTGTTGTTTTTTCTCAGAGAAGGAT
    AAAAAATG T AGAAAGCG 1071
    CGCTTTCT A CATTTTTT 1072
    2,4-DB resistance CTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCAGC 1073
    3-ketoacyl-CoA CGGAAAAAATGGAG T AAGCGATCGAGAGACAACGCGTTCTTCTTG
    thiolase AGCATCTCCGACCTTCTTCTTCTTCTTCGC
    Arabidopsis thaliana GCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGT 1074
    Lys3Term TGTCTCTCGATCGCTT A CTCCATTTTTTCCGGCTGATTAAAGATAA
    AAA-TAA AATTCGGATCTGTTGTTTTTTCTCAGAGAAG
    AAATGGAG T AAGCGATC 1075
    GATCGCTT A CTCCATTT 1076
    2,4-DB resistance GAAAAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAA 1077
    3-ketoacyl-CoA TGGAGAAAGCGATC T AGAGACAACGCGTTCTTCTTGAGCATCTCC
    thiolase GACCTTCTTCTTCTTCTTCGCACAATTACG
    Arabidopsis thaliana CGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGA 1078
    Glu6Term AGAACGCGTTGTCTCT A GATCGCTTTCTCCATTTTTTCCGGCTGAT
    GAG-TAG TAAAGATAAAATTCGGATCTGTTGTTTTTTC
    AAGCGATC T AGAGACAA 1079
    TTGTCTCT A GATCGCTT 1080
    2,4-DB resistance AAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGG 1081
    3-ketoacyl-CoA AGAAAGCGATCGAG T GACAACGCGTTCTTCTTGAGCATCTCCGAC
    thiolase CTTCTTCTTCTTCTTCGCACAATTACGAGG
    Arabidopsis thaliana CCTCGTAATTGTGGGAAGAAGAAGAAGAAGGTCGGAGATGCTCAA 1082
    Arg7Term GAAGAACGCGTTGTC A CTCGATCGCTTTCTCCATTTTTTCCGGCT
    AGA-TGA GATTAAAGATAAAATTCGGATCTGTTGTTTT
    CGATCGAG T GACAACGC 1083
    GCGTTGTC A CTCGATCG 1084
    2,4-DB resistance ACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGGAGA 1085
    3-ketoacyl-CoA AAGCGATCGAGAGA T AACGCGTTCTTCTTGAGCATCTCCGACCTT
    thiolase CTTCTTCTTCTTCGCACAATTACGAGGCTT
    Arabidopsis thaliana AAGCCTCGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGC 1086
    Gln8Term TCAAGAAGAACGCGTT A TCTCTCGATCGCTTTCTCCATTTTTTCCG
    CAA-TAA GCTGATTAAAGATAAAATTCGGATCTGTTGT
    TCGAGAGA T AACGCGTT 1087
    AACGCGTT A TCTCTCGA 1088
    2,4-DB resistance GAGAGACAAAGAGTTCTTCTTGAACATCTCCGTCCTTCTTCTTCTT 1089
    glyoxysomal beta- CCTCTCACAGCTTT T AAGGCTCTCTCTCTGCTTCAGCTTGCTTGGC
    ketoacyol-thiolase TGGGGACAGTGCTGCGTATCAGAGGACCT
    precursor AGGTCGTCTGATACGCAGCACTGTCCCCAGCCAAGCAAGCTGAA 1090
    Brassica napus GCAGAGAGAGAGCCTT A AAAGCTGTGAGAGGAAGAAGAAGAAGG
    Glu26Term ACGGAGATGTTCAAGAAGAACTCTTTGTCTCTC
    GAA-TAA ACAGCTTT T AAGGCTCT 1091
    AGAGCCTT A AAAGCTGT 1092
    2,4-DB resistance TTGAACATCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGG 1093
    glyoxysomal beta- CTCTCTCTCTGCTT G AGCTTGCTTGGCTGGGGACAGTGCTGCGTA
    ketoacyol-thiolase TCAGAGGACCTCTCTCTATGGAGATGATGT
    precursor ACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGCACTGTCC 1094
    Brassica napus CCAGCCAAGCAAGCT C AAGCAGAGAGAGAGCCTTCAAAGCTGTG
    Ser32Term AGAGGAAGAAGAAGAAGGACGGAGATGTTCAA
    TCA-TGA CTCTGCTT G AGCTTGCT 1095
    AGCAAGCT C AAGCAGAG 1096
    2,4-DB resistance TCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGGCTCTCTC 1097
    glyoxysomal beta- TCTGCTTCAGCTTG A TTGGCTGGGGACAGTGCTGCGTATCAGAG
    ketoacyol-thiolase GACCTCTCTCTATGGAGATGATGTAGTCATT
    precursor AATGACTACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGC 1098
    Brassica napus ACTGTCCCCAGCCAA T CAAGCTGAAGCAGAGAGAGAGCCTTCAAA
    Cys34Term GCTGTGAGAGGAAGAAGAAGAAGGACGGAGA
    TGC-TGA TCAGCTTG A TTGGCTGG 1099
    CCAGCCAA T CAAGCTGA 1100
    2,4-DB resistance TCCGTCCTTCTTCTTGTTCCTCTCACAGCTTTGAAGGCTCTCTCTC 1101
    glyoxysomal beta- TGCTTCAGCTTGCT A GGCTGGGGACAGTGCTGCGTATCAGAGGA
    ketoacyol-thiolase CCTCTCTCTATGGAGATGATGTAGTCATTGT
    precursor ACAATGACTACATCATCTCCATAGAGAGAGGTCGTCTGATACGCA 1102
    Brassica napus GCACTGTCCCCAGCC T AGCAAGCTGAAGCAGAGAGAGAGCCTTC
    Leu35Term AAAGCTGTGAGAGGAAGAAGAAGAAGGACGGA
    TTG-TAG AGCTTGCT A GGCTGGGG 1103
    CCCCAGCC T AGCAAGCT 1104
    2,4-DB resistance TCACAGCTTTGAAGGCTCTCTCTCTGCTTCAGCTTGCTTGGCTGG 1105
    glyoxysomal beta- GGACAGTGCTGCGTA G CAGAGGACCTCTCTCTATGGAGATGATGT
    ketoacyol-thiolase AGTCATTGTTGCGGCACATAGGACTGCACTA
    precursor TAGTGCAGTCCTATGTGCCGCAACAATGACTACATCATCTCCATA 1106
    Brassica napus GAGAGAGGTCGTCTG C TACGCAGCACTGTCCCCAGCCAAGCAAG
    Tyr42Term CTGAAGCAGAGAGAGAGCCTTCAAAGCTGTGA
    TAT-TAG GCTGCGTA G CAGAGGAC 1107
    GTCCTCTG C TACGCAGC 1108
    2,4-DB resistance CAACAGACAGGAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTC 1109
    3-ketoacyl-CoA TTCTTCTCACAATTA Gee GAGTCCGCTCTTGCCGCATCAGTATGTGCT
    thiolase B GCAGGGGATAGCGCCGCATATCATAGGGCT
    Mangifera indica AGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATGC 1110
    Tyr25Term GGCAAGAGCGGACTC C TAATTGTGAGAAGAAGAATTAGAAGGGC
    TAC-TAG GGAGATGCTGGAGCAACACTTGCTGTCTGTTG
    CACAATTA G GAGTCCGC 1111
    GCGGACTC C TAATTGTG 1112
    2,4-DB resistance AACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTCTT 1113
    3-ketoacyol-CoA CTTCTCACAATTAC T AGTCCGCTCTTGCCGCATCAGTATGTGCTGC
    thiolase B AGGGGATAGCGCCGCATATCATAGGGCTT
    Magnifera indica AAGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATG 1114
    Glu26Term CGGCAAGAGCGGACT A GTAATTGTGAGAAGAAGAATTAGAAGGG
    GAG-TAG CGGAGATGCTGGAGCAACACTTGCTGTCTGTT
    ACAATTAC T AGTCCGCT 1115
    AGCGGACT A GTAATTGT 1116
    2,4-DB resistance TCCAGCATCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTC 1117
    3-ketoacy\to-CoA CGCTCTTGCCGCAT G AGTATGTGCTGCAGGGGATAGCGCCGCAT
    thioblase B ATCATAGGGCTTCTGTTTATGGAGACGATGT
    Mangifera indica ACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGCGCTATCC 1118
    Ser32Term CCTGCAGCACATACT C ATGCGGCAAGAGCGGACTCGTAATTGTGA
    TCA-TGA GAAGAAGAATTAGAAGGGCGGAGATGCTGGA
    TGCCGCAT G AGTATGTG 1119
    CACATACT C ATGCGGCA 1120
    2,4-DB resistance TCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTCCGCTCTT 1121
    3-ketoacyl-CoA GCCGCATCAGTATG A GCTGCAGGGGATAGCGCCGGATATCATAG
    thiolase B GGCTTCTGTTTATGGAGACGATGTGGTGATT
    Mangifera indica AATCACCACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGC 1122
    Cys34Term GCTATCCCCTGCAGC T CATACTGATGCGGCAAGAGCGGACTCGT
    TGT-TGA AATTGTGAGAAGAAGAATTAGAAGGGCGGAGA
    TCAGTATG A GCTGCAGG 1123
    CCTGCAGC T CATACTGA 1124
    2,4-DB resistance TCACAATTACGAGTCCGCTCTTGCCGCATCAGTATGTGCTGCAGG 1125
    3-ketoacyl-CoA GGATAGCGCCGCATA G CATAGGGCTTGTGTTTATGGAGACGATGT
    thiolase B GGTGATTGTGGCAGGTCATCGTACTGCACTT
    Mangifera indica AAGTGCAGTAGGATGAGCTGCCACAATCACCACATCGTCTCCATA 1126
    Tyr42Term AACAGAAGCCCTATG C TATGCGGCGCTATCCCCTGCAGCACATAC
    TAT-TAG TGATGCGGCAAGAGCGGACTCGTAATTGTGA
    GCCGCATA G CATAGGGC 1127
    GCCCTATG C TATGCGGC 1128
    2,4-DB resistance GAAGGCGATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCC 1129
    3-ketoacyl-CoA TTCTTCTTCCGCTTA G ACAAATGAATCTTCGCTCTCTGCATCGGTT
    thiolase TGTGCAGCTGGGGATAGTGCTTCGTATCAA
    Cucumis sativus TTGATACGAAGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG 1130
    Tyr22Term CGAAGATTCATTTGT C TAAGCGGAAGAAGAAGGCCGGAGATGATG
    TAG-TAG TAGCAAAATGCTCTGGCTGTTGATCGCCTTC
    TCCGCTTA G ACAAATGA 1131
    TCATTTGT C TAAGCGGA 1132
    2,4-DB resistance ATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTT 1133
    3-ketoacyl-CoA CCGCTTACACAAAT T AATCTTCGCTCTCTGCATCGGTTTGTGCAGC
    thiolase TGGGGATAGTGCTTCGTATCAAAGGACAT
    Cucumis sativus ATGTCCTTTGATACGAAGCAGTATCCCCAGCTGCACAAACCGATG 1134
    Glu25Term CAGAGAGCGAAGATT A ATTTGTGTAAGCGGAAGAAGAAGGCCGG
    GAA-TAA AGATGATGTAGCAAAATGCTCTGCCTGTTGAT
    ACACAAAT T AATCTTCG 1135
    CGAAGATT A ATTTGTGT 1136
    2,4-DB resistance GGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTTCCGCTTA 1137
    3-ketoacyl-CoA CACAAATGAATCTT A GCTCTCTGCATCGGTTTGTGCAGCTGGGGA
    thiolase TAGTGCTTCGTATCAAAGGACATCGGTGTT
    Cucumis sativus AACACCGATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAA 1138
    Ser27Term ACCGATGCAGAGAGC T AAGATTCATTTGTGTAAGCGGAAGAAGAA
    TCG-TAG GGCCGGAGATGATGTAGCAAAATGCTCTGCC
    TGAATCTT A GCTCTCTG 1139
    CAGAGAGC T AAGATTCA 1140
    2,4-DB resistance TGCTACATCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATC 1141
    3-ketoacyl-CoA TTCGCTCTCTGCAT A GGTTTGTGCAGCTGGGGATAGTGCTTCGTA
    thiolase TCAAAGGACATCGGTGTTTGGAGATGATGT
    Cucumis sativus ACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCACTATCCC 1142
    Ser31Term CAGCTGCACAAACC T ATGCAGAGAGCGAAGATTCATTTGTGTAAG
    TCG-TAG CGGAAGAAGAAGGCCGGAGATGATGTAGCA
    CTCTGCAT A GGTTTGTG 1143
    CACAAACC T ATGCAGAG 1144
    2,4-DB resistance TCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATCTTCGCTC 1145
    3-ketoacyl-CoA TCTGCATCGGTTTG A GCAGCTGGGGATAGTGCTTCGTATCAAAGG
    thiolase ACATCGGTGTTTGGAGATGATGTCGTGATT
    Cucumis sativus AATCACGACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCA 1146
    Cys33Term CTATCCCCAGCTGC T CAAACCGATGCAGAGAGCGAAGATTCATTT
    TGT-TGA GTGTAAGCGGAAGAAGAAGGCCGGAGATGA
    TCGGTTTG A GCAGCTGG 1147
    CCAGCTGC T CAAACCGA 1148
    2A-DB resistance GAAGGCAATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCC 1149
    3-ketoacyl-CoA TTCATCTTCGGCTTA G ACCCATGAATCTTCGCTCTCTGCATCGGTT
    thiolase TGTGCAGCTGGGGATAGTGCGTCGTATCAA
    Cucurbita sp. TTGATACGACGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG 1150
    Tyr22Term CGAAGATTCATGGCT C TAAGCCGAAGATGAAGGCCGGAGATGAT
    TAT-TAG GTAGCAGAATGCTCTGCCTGTTGATTGCCTTC
    TCGGCTTA G AGCCATGA 1151
    TCATGGCT C TAAGCCGA 1152
    2,4-DB resistance ATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTT 1153
    3-ketoacyl-CoA CGGCTTATAGCCAT T AATCTTCGCTCTCTGCATCGGTTTGTGCAGC
    thiolase TGGGGATAGTGCGTCGTATCAAAGAACGT
    Cucurbita sp. ACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAAACCGATG 1154
    Glu25Term CAGAGAGCGAAGATT A ATGGCTATAAGCCGAAGATGAAGGCCGG
    GAA-TAA AGATGATGTAGCAGAATGCTCTGCCTGTTGAT
    ATAGCCAT T AATCTTCG 1155
    CGAAGATT A ATGGCTAT 1156
    2,4-DB resistance GGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTTCGGCTT 1157
    3-ketoacyl-CoA ATAGCCATGAATCTT A GCTCTCTGCATCGGTTTGTGCAGCTGGGG
    thiolase ATAGTGCGTCGTATCAAAGAACGTCGGTGTT
    Cucurbita sp. AACACCGACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAA 1158
    Ser27Term ACCGATGCAGAGAGCTAAGATTCATGGCTATAAGCCGAAGATGAA
    TCG-TAG GGCCGGAGATGATGTAGCAGAATGCTCTGCC
    TGAATCTT A GCTCTCTG 1159
    CAGAGAGC T AAGATTCA 1160
    2,4-DB resistance TGCTACATCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATC 1161
    3-ketoacyl-CoA TTCGCTCTCTGCAT A GGTTTGTGCAGCTGGGGATAGTGCGTCGTA
    thiolase TCAAAGAACGTCGGTGTTTGGAGATGATGT
    Cucurbita sp. ACATCATCTCCAAACACCGACGTTCTTTGATACGACGCACTATCCC 1162
    Ser31Term CAGCTGCACAAACC T ATGCAGAGAGCGAAGATTCATGGCTATAAG
    TCG-TAG CCGAAGATGAAGGCCGGAGATGATGTAGCA
    CTCTGCAT A GGTTTGTG 1163
    CACAAACC T ATGCAGAG 1164
    2,4-DB resistance TCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATCTTCGCTC 1165
    3-ketoacyl-CoA TCTGCATCGGTTTG A GCAGCTGGGGATAGTGCGTCGTATCAAAGA
    thiolase ACGTCGGTGTTTGGAGATGATGTCGTGATA
    Cucurbita sp. TATCACGACATCATCTCCAAACACCGACGTTCTTTGATACGACGCA 1166
    Cys33Term CTATCCCCAGCTGC T CAAACCGATGCAGAGAGCGAAGATTCATGG
    TGT-TGA CTATAAGCCGAAGATGAAGGCCGGAGATGA
    TCGGTTTG A GCAGCTGG 1167
    CCAGCTGC T CAAACCGA 1168
    2,4 DB resistance TCATAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTG 1169
    Pex14 CTATGGCAACTCAT T AGCAAACGCAACCTCCTTCCGATTTTCCCGC
    Arabidopsis thaliana TCTTGCCGATGAAAATTCCCAGATTCCAG
    Gln5Term CTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGGAA 1170
    CAG-TAG GGAGGTTGCGTTTGCT A ATGAGTTGCCATAGCAGCTCACTAACCT
    TGGAAGAATCCAAGCGGCAAAAGAGACTATGA
    CAACTCAT T AGCAAACG 1171
    CGTTTGCT A ATGAGTTG 1172
    2,4 DB resistance TAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTA 1173
    Pex14 TGGCAACTCATCAG T AAACGCAACCTCCTTCCGATTTTCCCGCTCT
    Arabidopsis thaliana TGCCGATGAAAATTCCCAGATTGCAGGTT
    Gln6Term AACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGG 1174
    CAA-TAA AAGGAGGTTGCGTTT A CTGATGAGTTGCCATAGCAGCTCACTAAC
    CTTGGAAGAATCCAAGCGGCAAAAGAGACTA
    CTCATCAG T AAACGCAA 1175
    TTGCGTTT A CTGATGAG 1176
    2,4 DB resistance CTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTATGGCA 1177
    Pex14 ACTCATCAGCAAACG T AACCTCCTTCCGATTTTCCCGCTCTTGCCG
    Arabidopsis thaliana ATGAAAATTCCGAGATTCCAGGTTCAATTT
    Gln8Term AAATTGAACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAA 1178
    CAA-TAA AATCGGAAGGAGGTT A CGTTTGCTGATGAGTTGCCATAGCAGCTC
    ACTAACCTTGGAAGAATCCAAGCGGCAAAAG
    AGCAAACG T AACCTCCT 1179
    AGGAGGTT A CGTTTGCT 1180
    2,4 DB resistance GCTGCTATGGCAACTGATGAGCAAACGCAACCTCCTTCCGATTTT 1181
    Pex14 CCCGCTCTTGCCGAT T AAAATTCCCAGATTCCAGGTTCAATTTACA
    Arabidopsis thaliana CCTTCTAATCATTATTTCTTAATTTTTCTT
    Glu19Term AAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAATTGAACCTGG 1182
    GAA-TAA AATCTGGGAATTTT A ATCGGCAAGAGCGGGAAAATCGGAAGGAG
    GTTGCGTTTGCTGATGAGTTGCCATAGCAGC
    TTGCCGAT T AAAATTCC 1183
    GGAATTTT A ATCGGCAA 1184
    2,4 DB resistance GCAACTCATCAGCAAACGCAACCTCCTTCCGATTTTCCCGCTCTT 1185
    Pex14 GCCGATGAAAATTCC T AGATTCCAGGTTCAATTTACACCTTCTAAT
    Arabidopsis thaliana CATTATTTCTTAATTTTTCTTTGGTGGATT
    Gln22Term AATCCACCAAAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAAT 1186
    CAG-TAG TGAACCTGGAATCT A GGAATTTTCATCGGCAAGAGCGGGAAAATC
    GGAAGGAGGTTGCGTTTGCTGATGAGTTGC
    AAAATTCC T AGATTCCA 1187
    TGGAATCT A GGAATTTT 1188
  • EXAMPLE 8 Production of Albino Mutants for the Analysis of Photosynthetic Processes
  • Plant productivity is limited by resources available and the ability of plants to harness these resources. The conversion of light to chemical energy, which is then used to synthesize carbohydrates, fatty acids, sugars, amino acids and other compounds, requires a complex system which combines the light harvesting apparatus of pigments and proteins. The value of light energy to the plant can only be realized when it is efficiently converted into chemical energy by photosynthesis and fed into various biochemical processes. Significant effort has therefore been directed at studying photosynthetic processes in plants in order to improve productivity and/or the efficiency of photosynthesis. The analysis of the photosynthetic process is substantially aided by the ability to produce albino plants. [0132]
  • The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism. [0133]
    TABLE 18
    Oligonucleotides to produce albino plants
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    White leaves TTCTTTCCTGTGAAATTATCTGCTCAAATCTTTGGTTCCTGACGGAG 1189
    Immutans ATGGCGGCGATTT G AGGCATCTCCTCTGGTACGTTGACGATTTCA
    Arabidopsis thaliana CGGCCTTTGGTTACTCTTCGACGCTCTAG
    Ser5Term CTAGAGCGTCGAAGAGTAACCAAAGGCCGTGAAATCGTCAACGTA 1190
    TCA-TGA CCAGAGGAGATGCCT C AAATCGCCGCCATCTCCGTCAGGAACCAA
    AGATTTGAGCAGATAATTTCACAGGAAAGAA
    GGCGATTT G AGGCATCT 1191
    AGATGCCT C AAATCGCC 1192
    White leaves GCTCAAATCTTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCA 1193
    Immutans TCTCCTCTGGTACGT A GACGATTTCACGGCCTTTGGTTACTCTTCG
    Arabidopsis thaliana ACGCTCTAGAGCCGCCGTTTCGTACAGCTC
    Leu12Term GAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAGAGTAACCAAA 1194
    TTG-TAG GGCCGTGAAATCGTC T ACGTACCAGAGGAGATGCCTGAAATCGCC
    GCCATCTCCGTCAGGAACCAAAGATTTGAGC
    TGGTACGT A GACGATTT 1195
    AAATCGTC T ACGTACCA 1196
    White leaves TTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCATCTCCTCTG 1197
    Immutans GTACGTTGACGATTTGACGGCCTTTGGTTACTCTTCGACGCTCTAG
    Arabidopsis thaliana AGCCGCCGTTTCGTACAGCTCCTCTCACCG
    Ser15Term CGGTGAGAGGAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAG 1198
    TCA-TGA AGTAACCAAAGGCCGT C AAATCGTCAACGTACCAGAGGAGATGCC
    TGAAATCGCCGCCATCTCCGTCAGGAACCAAA
    GACGATTT G ACGGCCTT 1199
    AAGGCCGT C AAATCGTC 1200
    White leaves GCGGCGATTTCAGGCATCTCCTCTGGTACGTTGACGATTTCACGG 1201
    Immutans CCTTTGGTTACTCTT T GACGCTCTAGAGCCGCCGTTTCGTACAGCT
    Arabidopsis thaliana CCTCTCACCGATTGCTTCATCATCTTCCTC
    Arg22Term GAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTGTACGAAACG 1202
    CGA-TGA GCGGCTCTAGAGCGTC A AAGAGTAACCAAAGGCCGTGAAATCGTC
    AACGTACCAGAGGAGATGCCTGAAATCGCCGC
    TTACTCTT T GACGCTCT 1203
    AGAGCGTC A AAGAGTAA 1204
    White leaves TCAGGCATCTCCTCTGGTACGTTGACGATTTCACGGCCTTTGGTTA 1205
    Immutans CTCTTCGACGCTCT T GAGCCGCCGTTTCGTACAGCTCCTCTCACC
    Arabidopsis thaliana GATTGCTTCATCATCTTCCTCTCTCTTCTC
    Arg25Term GAGAAGAGAGAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTG 1206
    AGA-TGA TACGAAACGGCGGCTC A AGAGCGTCGAAGAGTAACCAAAGGCCG
    TGAAATCGTCAACGTACCAGAGGAGATGCCTGA
    GACGCTCT T GAGCCGCC 1207
    GGCGGCTC A AGAGCGTC 1208
    White leaves GATTCTTGTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATT 1209
    Immutans TCTGCTATGAGTTTT T GAACCTCAGTTTCTTCATATTCTTGTTTTAG
    Lycopersicon AGCTAGGAGTTTTGAGAAGTCATCAGTTT
    esculentum AAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAGAATATGA 1210
    Gly11Term AGAAACTGAGGTTC A AAAACTCATAGCAGAAATCGAAATCGCCATT
    GGA-TGA CTTGATCCTTCTTCCTTCCCACAAGAATC
    TGAGTTTT T GAACCTCA 1211
    TGAGGTTC A AAAACTCA 1212
    White leaves GTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTA 1213
    Immutans TGAGTTTTGGAACCT G AGTTTCTTCATATTCTTGTTTTAGAGCTAGG
    Lycopersicon AGTTTTGAGAAGTCATCAGTTTTATGCAA
    esculentum TTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAG 1214
    Ser13Term AATATGAAGAAACT C AGGTTCCAAAACTCATAGCAGAAATCGAAAT
    TCA-TGA CGCCATTCTTGATCCTTCTTCCTTCCCAC
    TGGAACCT G AGTTTCTT 1215
    AAGAAACT C AGGTTCCA 1216
    White leaves AAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGG 1217
    Immutans AACCTCAGTTTCTTGATATTCTTGTTTTAGAGCTAGGAGTTTTGAGA
    Lycopersicon AGTCATCAGTTTTATGCAATTCCCAGAA
    esculentum TTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTC 1218
    Ser16Term TAAAACAAGAATAT C AAGAAACTGAGGTTCCAAAACTCATAGCAGA
    TCA-TGA AATCGAAATCGCCATTCTTGATCCTTCTT
    AGTTTCTT G ATATTCTT 1219
    AAGAATAT C AAGAAACT 1220
    White leaves AGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACC 1221
    Immutans TCAGTTTCTTCATA G TCTTGTTTTAGAGCTAGGAGTTTTGAGAAGTC
    Lycopersicon ATCAGTTTTATGCAATTCCCAGAACCCA
    esculentum TGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTA 1222
    Tyr17Term GCTCTAAAACAAGA C TATGAAGAAACTGAGGTTCCAAAACTCATAG
    TAT-TAG CAGAAATCGAAATCGCCATTCTTGATCCT
    TCTTCATA G TCTTGTTT 1223
    AAACAAGA C TATGAAGA 1224
    White leaves AAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACCTCAGTT 1225
    Immutans TCTTCATATTCTTG A TTTAGAGCTAGGAGTTTTGAGAAGTCATCAGT
    Lycopersicon TTTATGCAATTCCCAGAACCCATGTCGG
    esculentum CCGACATGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAA 1226
    Cys19Term CTCCTAGCTCTAAA T CAAGAATATGAAGAAACTGAGGTTCCAAAAC
    TGT-TGA TCATAGCAGAAATCGAAATCGCCATTCTT
    TATTCTTG A TTTAGAGC 1227
    GCTCTAAA T CAAGAATA 1228
    White leaves CGCGTCCGATAAAAAAATCAAGAATGGCGATTTCCATATCTGCTAT 1229
    Immutans GAGTTTTCGAACTT G AGTTTCTTCTTCATATTCAGCATTTTTGTGCA
    Capsicum annuum ATTCCAAGAACCCATTTTGTTTGAATTC
    Ser13Term GAATTCAAACAAAATGGGTTCTTGGAATTGCACAAAAATGCTGAAT 1230
    TCA-TGA ATGAAGAAGAAACT C AAGTTCGAAAACTCATAGCAGATATGGAAAT
    CGCCATTCTTGATTTTTTTATCGGACGCG
    TCGAACTT G AGTTTCTT 1231
    AAGAAACT C AAGTTCGA 1232
    White leaves AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAAC 1233
    Immutans TTCAGTTTCTTCTT G ATATTCAGCATTTTTGTGCAATTCCAAGAACC
    Capsicum annuum CATTTTGTTTGAATTCTCTATTTTCACT
    Ser17Term AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA 1234
    TCA-TGA AAAATGCTGAATAT C AAGAAGAAACTGAAGTTCGAAAACTCATAGC
    AGATATGGAAATCGCCATTCTTGATTTTT
    TTCTTCTT G ATATTCAG 1235
    CTGAATAT C AAGAAGAA 1236
    White leaves CAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGT 1237
    Immutans TTCTTCTTCATATT G AGCATTTTTGTGCAATTCCAAGAACCCATTTT
    Capsicum annuum GTTTGAATTCTCTATTTTCACTTAGGAA
    Ser19Term TTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAAT 1238
    TCA-TGA TGCACAAAAATGCT C AATATGAAGAAGAAACTGAAGTTCGAAAACT
    CATAGCAGATATGGAAATCGCCATTCTTG
    TTCATATT G AGCATTTT 1239
    AAAATGCT C AATATGAA 1240
    White leaves CGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCA 1241
    Immutans TATTCAGCATTTT A GTGCAATTCCAAGAACCCATTTTGTTTGAATTC
    Capsicum annuum TCTATTTTCACTTAGGAATTCTCATAG
    Leu21Term CTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGT 1242
    TTG-TAG TCTTGGAATTGCAC T AAAATGCTGAATATGAAGAAGAAACTGAAGT
    TCGAAAACTCATAGCAGATATGGAAATCG
    AGCATTTT A GTGCAATT 1243
    AATTGCAC T AAAATGCT 1244
    White leaves TTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCATATT 1245
    Immutans CAGCATTTTTGTG A AATTCCAAGAACCCATTTTGTTTGAATTCTCTA
    Capsicum annuum TTTTCACTTAGGAATTCTCATAGAACT
    Cys22Term AGTTCTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAAT 1246
    TGC-TGA GGGTTCTTGGAATT T CACAAAAATGCTGAATATGAAGAAGAAACTG
    AAGTTCGAAAACTCATAGCAGATATGGAA
    TTTTTGTG A AATTCCAA 1247
    TTGGAATT T CACAAAAA 1248
    White leaves TTCGGCACGAGGGAGAAGGAGCAGACCGAGGTGGCCGTCGAGG 1249
    Immutans AGTCCTTCCCCTTCAGG T AGACGGCTCCTCCTGACGAGCCACTGG
    Oryza sativa TCACCGCCGAGGAGAGCTGGGTGGTTAAGCTCG
    Glu22Term CGAGCTTAACCACCCAGCTCTCCTCGGCGGTGACCAGTGGCTCGT 1250
    GAG-TAG CAGGAGGAGCCGTCT A CCTGAAGGGGAAGGACTCCTCGACGGCC
    ACCTCGGTCTGCTCCTTCTCCCTCGTGCCGAA
    CCTTCAGG T AGACGGCT 1251
    AGCCGTCT A CCTGAAGG 1252
    White leaves GAGCAGACCGAGGTGGCCGTCGAGGAGTCCTTCCCCTTCAGGGA 1253
    Immutans GACGGCTCCTCCTGAC T AGCCACTGGTCACCGCCGAGGAGAGCT
    Oryza sativa GGGTGGTTAAGCTCGAGCAGTCCGTGAACATTT
    Glu28Term AAATGTTCACGGACTGCTCGAGCTTAACCACCCAGCTCTCCTCGG 1254
    CAG-TAG CGGTGACCAGTGGCT A GTCAGGAGGAGCCGTCTCCCTGAAGGGG
    AAGGACTCCTCGACGGCCACCTCGGTCTGCTC
    CTCCTGAC T AGCCACTG 1255
    CAGTGGCT A GTCAGGAG 1256
    White leaves GTCGAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGA 1257
    Immutans GCCACTGGTCACCGCC T AGGAGAGCTGGGTGGTTAAGCTCGAGC
    Oryza sativa AGTCCGTGAACATTTTCCTCACGGAGTCAGTCA
    Glu34Term TGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCTTAA 1258
    GAG-TAG CCACCCAGCTCTCCTAGGCGGTGACCAGTGGCTCGTCAGGAGGA
    GCCGTCTCCCTGAAGGGGAAGGACTCCTCGAC
    TCACCGCC T AGGAGAGC 1259
    GCTCTCCT A GGCGGTGA 1260
    White leaves GAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCC 1261
    Immutans ACTGGTCACCGCCGAG T AGAGCTGGGTGGTTAAGCTCGAGCAGT
    Oryza sativa CCGTGAACATTTTCCTCACGGAGTCAGTCATCA
    Glu35Term TGATGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCT 1262
    GAG-TAG TAACCACCCAGCTCT A CTCGGCGGTGACCAGTGGCTCGTCAGGA
    GGAGCCGTCTCCCTGAAGGGGAAGGACTCCTC
    CCGCCGAG T AGAGCTGG 1263
    CCAGCTCT A CTCGGCGG 1264
    White leaves CTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCCACTGGTCAC 1265
    Immutans CGCCGAGGAGAGCTG A GTGGTTAAGCTCGAGCAGTCCGTGAACA
    Oryza sativa TTTTCCTCACGGAGTCAGTCATCACGATACTT
    Trp37Term AAGTATCGTGATGACTGACTCCGTGAGGAAAATGTTCACGGACTG 1266
    TGG-TGA CTCGAGCTTAACCAC T CAGCTCTCCTCGGCGGTGACCAGTGGCTC
    GTCAGGAGGAGCCGTCTCCCTGAAGGGGAAG
    GAGAGCTG A GTGGTTAA 1267
    TTAACCAC T CAGCTCTC 1268
    White leaves TCCGGAGGAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCG 1269
    Immutans GCGAGGACGGCGACTGAGTCGTCAGATTCGAGCAGTCCTTCAAC
    Triticum aestivum GTATTCCTCACGGATACTGTCATCTTTATACTC
    Trp22Term GAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAAGGACTG 1270
    TGG-TGA CTCGAATCTGACGAC T CAGTCGCCGTCCTCGCCGGCGAGGGTGA
    GCTCCTCGTCGAATCCCCCTTCCTCCTCCGGA
    GGCGACTG A GTCGTCAG 1271
    CTGACGAC T CAGTCGCC 1272
    White leaves GAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGG 1273
    Immutans ACGGCGACTGGGTCGTC T GATTCGAGCAGTCCTTCAACGTATTCC
    Triticum aestivum TCACGGATACTGTCATCTTTATACTCGATATTC
    Arg25Term GAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAA 1274
    AGA-TGA GGACTGCTCGAATC A GACGACCCAGTCGCCGTCCTCGCCGGCGA
    GGGTGAGCTCCTCGTCGAATCCCCCTTCCTC
    GGGTCGTC T GATTCGAG 1275
    CTCGAATC A GACGACCC 1276
    White leaves GGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCG 1277
    Immutans ACTGGGTCGTCAGATTCTAGCAGTCCTTCAACGTATTCCTCACGGA
    Triticum aestivum TACTGTCATCTTTATACTCGATATTCTGTATC
    Glu21Term GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC 1278
    GAG-TAG GTTGAAGGACTGCT A GAATCTGACGACCCAGTCGCCGTCCTCGCC
    GGCGAGGGTGAGCTCCTCGTCGAATCCCCC
    TCAGATTC T AGCAGTCC 1279
    GGACTGCT A GAATCTGA 1280
    White leaves GGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCGACTG 1281
    Immutans GGTCGTCAGATTCGAG T AGTCCTTCAACGTATTCCTCACGGATACT
    Triticum aestivum GTCATCTTTATACTCGATATTCTGTATCGTG
    Gln28Term CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA 1282
    CAG-TAG TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC
    GCCGGCGAGGGTGAGCTCCTCGTCGAATCC
    GATTCGAG T AGTCCTTC 1283
    GAAGGACT A CTCGAATC 1284
    White leaves CGAGCAGTCCTTCAACGTATTCCTCACGGATACTGTCATCTTTATA 1285
    Immutans CTCGATATTCTGTA G CGTGACCGCGACTACGCAAGGTTCTTCGTG
    Triticum aestivum CTCGAGACCATCGCCAGGGTGCCCTATTTC
    Tyr46Term GAAATAGGGCACCCTGGCGATGGTCTCGAGCACGAAGAACCTTG 1286
    TAT-TAG CGTAGTCGCGGTCACGCTACAGAATATCGAGTATAAAGATGACAG
    TATCCGTGAGGAATACGTTGAAGGACTGCTCG
    ATTCTGTA G CGTGACCG 1287
    CGGTCACG C TACAGAAT 1288
  • EXAMPLE 9 Altering Amino Acid Content of Plants
  • Another aim of biotechnology is to generate plants, especially crop plants, with added value traits. An example of such a trait is improved nutritional quality in food crops. For example, lysine, tryptophan and threonine, which are essential amino acids in the diet of humans and many animals, are limiting nutrients in most cereal crops. Consequently, grain-based diets, such as those based on corn, barley, wheat, rice, maize, millet, sorghum, and the like, must be supplemented with more expensive synthetic amino acids or amino-acid-containing oilseed protein meals. Increasing the lysine content of these grains or of any of the feed component crops would result in significant added value. [0134]
  • Naturally occurring mutants of plants that have different levels of particular essential amino acids have been identified. However, these mutants are generally not the result of increased free amino acid, but are instead the result of shifts in the overall protein profile of the grain. For example, in maize, reduced levels of lysine-deficient endosperm proteins (prolamines) are complemented by elevated levels of more lysine-rich proteins (albumins, globulins and glutelins). While nutritionally superior, these mutants are associated with reduced yields and poor grain quality, limiting their agronomic usefulness. [0135]
  • An alternative approach is to generate plants with mutations that render key amino acid biosynthetic enzymes insensitive to feedback inhibition. Many such mutations are known and mutation results in increased free amino acid. The increased production can optionally be coupled to increased expression of an abundant storage protein comprising the chosen amino acid. Alternatively, a normally abundant protein can be engineered to contain more of the target amino acid. [0136]
  • The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that remove feedback inhibition in plant amino acid biosynthetic enzymes. [0137]
    TABLE 19
    Genome-Altering Oligos Conferring Amino Acid Overproduction
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Met Overproduction TATCCTCCAGGATCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCT 1289
    CGS GAGCATTAAAGCCC A TAGAAACTGTAGCAACATCGGTGTTGCACA
    Arabidopsis thaliana GATCGTGGCGGCTAAGTGGTCCAACAACCC
    Arg77His GGGTTGTTGGACCACTTAGCCGCCACGATCTGTGCAACACCGAT 1290
    CGT-CAT GTTGCTACAGTTTCTA T GGGCTTTAATGCTCAGCTGACGGACGAA
    ATTAGGAGGAAATCTTAAGATCCTGGAGGATA
    TAAAGCCC A TAGAAACT 1291
    AGTTTCTA T GGGCTTTA 1292
    Met Overproduction TCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGC 1293
    CGS CCGTAGAAACTGTA A CAACATCGGTGTTGCACAGATCGTGGCGG
    Arabidopsis thaliana CTAAGTGGTCCAACAACCCATCCTCCGCGTT
    Ser81Asn AACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCCACGATCTG 1294
    AGC-AAC TGCAACACCGATGTTG T TACAGTTTCTACGGGCTTTAATGCTCAGC
    TGACGGACGAAATTAGGAGGAAATCTTAAGA
    AAACTGTA A CAACATCG 1295
    CGATGTTG T TACAGTTT 1296
    Met Overproduction TTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAA 1297
    CGS ACTGTAGCAACATC A GTGTTGCACAGATCGTGGCGGCTAAGTGGT
    Arabidopsis thaliana CCAACAACCCATCCTCCGCGTTACCTTCGG
    Gly84Ser CCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCC 1298
    GGT-AGT ACGATCTGTGCAACAC T GATGTTGCTACAGTTTCTACGGGCTTTAA
    TGCTCAGCTGACGGACGAAATTAGGAGGAAA
    GCAACATC A GTGTTGCA 1299
    TGCAACAC T GATGTTGC 1300
    Met Overproduction TTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAAA 1301
    CGS CTGTAGCAACATCG A TGTTGCACAGATCGTGGCGGCTAAGTGGTC
    Arabidopsis thaliana CAACAACCCATCCTCCGCGTTACCTTCGGC
    Gly84Asp GCCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGC 1302
    GGT-GAT CACGATCTGTGCAACA T CGATGTTGCTACAGTTTCTACGGGCTTTA
    ATGCTCAGCTGACGGACGAAATTAGGAGGAA
    CAACATCG A TGTTGCAC 1303
    GTGCAACA T CGATGTTG 1304
    Met Overproduction TATCGTCACTCATCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGC 1305
    CGS TCAGCACCAAGGCCC A CCGCAACTGCAGCAACATCGGCGTCGCG
    Fragraria vesca CAGATCGTCGCGGCTTCGTGGTCCAACAAAGA
    Arg73His TCTTTGTTGGACCACGAAGCCGCGACGATCTGCGCGACGCCGAT 1306
    CGC-CAC GTTGCTGCAGTTGCGG T GGGCCTTGGTGCTGAGCTGGCGGACGA
    AGTTGGGAGGGAAGCGGAGGATGAGTGACGATA
    CAAGGCCC A CCGCAACT 1307
    AGTTGCGG T GGGCCTTG 1308
    Met Overproduction TCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGG 1309
    CGS CCCGCCGCAACTGCA A CAACATCGGCGTCGCGCAGATCGTCGCG
    Fragraria vesca GCTTCGTGGTCCAACAAAGACTCCGACCTTTC
    Ser77Asn GAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCGACGATCTG 1310
    AGC-AAC CGCGACGCCGATGTTG T TGCAGTTGCGGCGGGCCTTGGTGCTGA
    GCTGGCGGACGAAGTTGGGAGGGAAGCGGAGGA
    CAACTGCA A CAACATCG 1311
    CGATGTTG T TGCAGTTG 1312
    Met Overproduction TTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCG 1313
    CGS CAACTGCAGCAACATC A GCGTCGCGCAGATCGTCGCGGCTTCGT
    Fragraria vesca GGTCCAACAAAGACTCCGACCTTTCGGCGGTGC
    Gly80Ser GCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCG 1314
    GGC-AGC ACGATCTGCGCGACGC T GATGTTGGTGCAGTTGCGGCGGGCCTT
    GGTGCTGAGCTGGCGGACGAAGTTGGGAGGGAA
    GCAACATC A GCGTCGCG 1315
    CGCGACGC T GATGTTGC 1316
    Met Overproduction TCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCGC 1317
    CGS AACTGCAGCAACATCG A CGTCGCGCAGATCGTCGCGGCTTCGTG
    Fragraria vesca GTCCAACAAAGACTCCGACCTTTCGGCGGTGCC
    Gly80Asp GGCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGC 1318
    GGC-GAC GACGATCTGCGCGACG T CGATGTTGCTGCAGTTGCGGCGGGCCT
    TGGTGCTGAGCTGGCGGACGAAGTTGGGAGGGA
    CAACATCG A CGTCGCGC 1319
    GCGCGACG T CGATGTTG 1320
    Met Overproduction TCTCCTCCCTCATCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGC 1321
    CGS TAAGCACCAAGGCG A GCCGCAACTGCAGCAACATCGGCGTCGCG
    Glycine max CAAATCGTCGCCGCTTCGTGGTCGAACAACAG
    Arg68His CTGTTGTTCGACCACGAAGCGGCGACGATTTGCGCGACGCCGAT 1322
    CGC-CAC GTTGCTGCAGTTGCGGC T CGCCTTGGTGCTTAGCTGGCGCTGGA
    AGTTGGGAGGGAAGCGGAGGATGAGGGAGGAGA
    CCAAGGCG A GCCGCAAC 1323
    GTTGCGGC T CGCCTTGG 1324
    Met Overproduction TCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGG 1325
    CGS CGCGCCGCAACTGCA A CAACATCGGCGTCGCGCAAATCGTCGCC
    Glycine max GCTTCGTGGTCGAACAACAGCGACAACTCTCC
    Ser72Asn GGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCGACGATTTG 1326
    AGC-AAC CGCGACGCCGATGTTG T TGCAGTTGCGGCGCGCCTTGGTGCTTA
    GCTGGCGCTGGAAGTTGGGAGGGAAGCGGAGGA
    CAACTGCA A CAACATCG 1327
    CGATGTTG T TGCAGTTG 1328
    Met Overproduction TTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCG 1329
    CGS CAACTGCAGCAACATC A GCGTCGCGCAAATCGTCGCCGCTTCGT
    Glycine max GGTCGAACAACAGCGACAACTCTCCGGCCGCCG
    Gly75Ser CGGCGGCCGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCG 1330
    GGC-AGC ACGATTTGCGCGACGC T GATGTTGCTGCAGTTGCGGCGCGCCTT
    GGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGAA
    GCAACATC A GCGTCGCG 1331
    CGCGACGC T GATGTTGC 1332
    Met Overproduction TCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCGC 1333
    CGS AACTGCAGCAACATCG A CGTCGCGCAAATCGTCGCCGCTTCGTG
    Glycine max GTCGAACAACAGCGACAACTCTCCGGCCGCCGG
    Gly75Asp CCGGCGGCGGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGC 1334
    GGC-GAC GACGATTTGCGCGACG T CGATGTTGCTGCAGTTGCGGCGCGCCT
    TGGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGA
    CAACATCG A CGTCGCGC 1335
    GCGCGACG T CGATGTTG 1336
    Met Overproduction TGTCTTCTCTGATTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCT 1337
    CGS AAGCATTAAGGCT CAC AGGAATTGCAGCAATATTGGCGTGGCTCA
    Solanum tuberosum AGTTGTGGCGGCTTCCTGGTCTAACAACCA
    Arg70His TGGTTGTTAGACCAGGAAGCCGCCACAACTTGAGCCACGCCAATA 1338
    AGG-CAC TTGCTGCAATTCCT GTG AGCCTTAATGCTTAGCTGCCTCACGAAAT
    TAGGAGGAAACCTGAAAATCAGAGAAGACA
    TAAGGCT CAC AGGAATT 1339
    AATTCCT GTG AGCCTTA 1340
    Met Overproduction TTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGC 1341
    CGS TAGGAGGAATTGCA A CAATATTGGCGTGGCTCAAGTTGTGGCGG
    Solanum tuberosum CTTCCTGGTCTAACAACCAAGCCGGTCCTGA
    Ser74Asn TCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCCACAACTTG 1342
    AGC-AAC AGCCACGCCAATATTGTTGCAATTCCTCCTAGCCTTAATGCTTAGC
    TGCCTCACGAAATTAGGAGGAAACCTGAAAA
    GAATTGCA A CAATATTG 1343
    CAATATTG T TGCAATTC 1344
    Met Overproduction TTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGG 1345
    CGS AATTGCAGCAATATT A GCGTGGCTCAAGTTGTGGCGGCTTCCTGG
    Solanum tuberosum TCTAACAACCAAGCCGGTCCTGAATTCACTC
    Gly77Ser GAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCC 1346
    GGC-AGC ACAACTTGAGCCACGC T AATATTGCTGCAATTCCTCCTAGCCTTAA
    TGCTTAGCTGCCTCACGAAATTAGGAGGAAA
    GCAATATT A GCGTGGGT 1347
    AGCCACGC T AATATTGC 1348
    Met Overproduction TTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGGA 1349
    CGS ATTGCAGCAATATTG A CGTGGCTCAAGTTGTGGCGGCTTCCTGGT
    Solanum tuberosum CTAACAACCAAGCCGGTCCTGAATTCACTCC
    Gly77Asp GGAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGC 1350
    GGC-GAC CACAACTTGAGCCACG T CAATATTGCTGCAATTCCTCCTAGCCTTA
    ATGCTTAGCTGCCTCACGAAATTAGGAGGAA
    CAATATTG A CGTGGCTC 1351
    GAGCCACG T CAATATTG 1352
    Met Overproduction CTTCCTCTCTTATCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCT 1353
    CGS CAGCACCAAGGCTCGCC A CAACTGCAGCAACATTGGTGTCGCAC
    Mesembryanthemum AGGTCGTCGCTGCCTCCTGGTCCAACAACTC
    crystallinum GAGTTGTTGGACCAGGAGGCAGCGACGACCTGTGCGACACCAAT 1354
    Arg73His GTTGCTGCAGTTG T GGCGAGCCTTGGTGCTGAGCTGACGGACAA
    CGC-CAC AGTTGGGAGGAAAGCGAAGGATAAGAGAGGAAG
    GGCTCGCC A CAACTGCA 1355
    TGCAGTTG T GGCGAGCC 1356
    Met Overproduction TCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGG 1357
    CGS CTCGCCGCAACTGCAACAACATTGGTGTCGCACAGGTCGTCGCT
    Mesembryanthemum GCCTCCTGGTCCAACAACTCCGATGCCGGCGC
    crystallinum GCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGCGACGACCT 1358
    Ser77Asn GTGCGACACCAATG T TGTTGCAGTTGCGGCGAGCCTTGGTGCTG
    AGC-AAC AGCTGACGGACAAAGTTGGGAGGAAAGCGAAGGA
    CAACTGCA A CAACATTG 1359
    CAATGTTG T TGCAGTTG 1360
    Met Overproduction TTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGC 1361
    CGS AACTGCAGCAACATT A GTGTCGCACAGGTCGTCGCTGCCTCCTG
    Mesembryanthemum GTCCAACAACTCCGATGCCGGCGCCACCTCTT
    crystallinum AAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGC 1362
    Gly80Ser GACGACCTGTGCGACAC T AATGTTGCTGCAGTTGCGGCGAGCCT
    GGT-AGT TGGTGCTGAGCTGACGGACAAAGTTGGGAGGAAA
    GCAACATT A GTGTCGCA 1363
    TGCGACAC T AATGTTGC 1364
    Met Overproduction TTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGCA 1365
    CGS ACTGCAGCAACATTG A TGTCGCACAGGTCGTCGCTGCCTCCTGGT
    Mesembryanthemum CCAACAACTCCGATGCCGGCGCCACCTCTTG
    crystallinum CAAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAG 1366
    Gly80Asp CGACGACCTGTGCGACA T CAATGTTGCTGCAGTTGCGGCGAGCC
    GGT-GAT TTGGTGCTGAGCTGACGGACAAAGTTGGGAGGAA
    CAACATTG A TGTCGCAC 1367
    GTGCGACA T CAATGTTG 1368
    Met Overproduction CCTCTGCTACCATCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGC 1369
    CGS TTAGCACCAAGGCACACGGCAACTGCAGCAACATCGGCGTCGCG
    Zea mays CAGATCGTCGCCGCCGCGTGGTCCGACTGCCC
    Arg41His GGGCAGTCGGACCACGCGGCGGCGACGATCTGCGCGACGCCGA 1370
    CGC-CAC TGTTGCTGCAGTTGCGG T GTGCCTTGGTGCTAAGCTGGCGGACA
    AAGTTTGGCGGAAAGCGGAGGATGGTAGCAGAGG
    CAAGGCAC A CCGCAACT 1371
    AGTTGCGG T GTGCCTTG 1372
    Met Overproduction TCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGG 1373
    CGS CACGCCGCAACTGCA A CAACATCGGCGTCGCGCAGATCGTCGCC
    Zea mays GCCGCGTGGTCCGACTGCCCCGCCGCTCGCCC
    Ser45Asn GGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGGCGACGATCT 1374
    AGC-AAC GCGCGACGCCGATGTTG T TGCAGTTGCGGCGTGCCTTGGTGCTA
    AGCTGGCGGACAAAGTTTGGCGGAAAGCGGAGGA
    CAACTGCA A CAACATCG 1375
    CGATGTTG T TGCAGTTG 1376
    Met Overproduction TTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGC 1377
    CGS AACTGCAGCAACATC A GCGTCGCGCAGATCGTCGCCGCCGCGTG
    Zea mays GTCCGACTGCCCCGCCGCTCGCCCCCACTTAG
    Gly48Ser CTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGG 1378
    GGC-AGC CGACGATCTGCGCGACGC T GATGTTGCTGCAGTTGCGGCGTGCC
    TTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAAA
    GCAACATC A GCGTCGCG 1379
    CGCGACGC T GATGTTGC 1380
    Met Overproduction TTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGCA 1381
    CGS ACTGCAGCAACATCG A CGTCGCGCAGATCGTCGCCGCCGCGTGG
    Zea mays TCCGACTGCCCCGCCGCTCGCCCCCACTTAGG
    Gly48Asp CCTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCG 1382
    GGC-GAC GCGACGATCTGCGCGACG T CGATGTTGCTGCAGTTGCGGCGTGC
    CTTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAA
    CAACATCG A CGTCGCGG 1383
    GCGCGACG T CGATGTTG 1384
    Met Overproduction GTATGAATGATCTGTGGGTGAAACACTGTGGGATTAGTCATACAG 1385
    TS GAAGTTTCAAGGATCGTGGAATGACTGTTTTGGTTAGTCAAGTTAA
    Arabidopsis thaliana TCGTCTGAGAAAGATGAAACGACCTGTGGT
    Leu205Arg ACCACAGGTCGTTTCATCTTTCTCAGACGATTAACTTGACTAACCA 1386
    CTT-CGT AAACAGTCATTCCA C GATCCTTGAAACTTCCTGTATGACTAATCCC
    ACAGTGTTTCACCCACAGATCATTCATAC
    CAAGGATC G TGGAATGA 1387
    TCATTCCA C GATCCTTG 1388
    Met Overproduction GCATGACTGATTTGTGGGTCAAACACTGTGGGATTAGCCATACTG 1389
    TS GTAGTTTTAAGGATCGTGGGATGACTGTTTTGGTGAGTCAAGTTAA
    Solanum tuberosum TCGCTTGCGGAAAATGCATAAACCGGTTGT
    Leu198Arg ACAACCGGTTTATGCATTTTCCGCAAGCGATTAACTTGACTCACCA 1390
    CTT-CGT AAACAGTCATCCCACGATCCTTAAAACTACCAGTATGGCTAATCCC
    ACAGTGTTTGACCCACAAATCAGTCATGC
    TAAGGATC G TGGGATGA 1391
    TCATCCCA C GATCCTTA 1392
    Lys Overproduction TCATTGGGCACACAGTGAACTGCTTTGGCTCTAGAATCAAAGTGA 1393
    DHPS TAGGCAACACAGGAA A CAACTCAACCAGAGAAGCCGTCCACGCA
    Zea mays ACAGAACAGGGATTTGCTGTTGGCATGCATGC
    Ser157Asn GCATGCATGCCAACAGCAAATCCCTGTTCTGTTGCGTGGACGGCT 1394
    AGC-AAC TCTCTGGTTGAGTTG T TTCCTGTGTTGCCTATCACTTTGATTCTAG
    AGCCAAAGCAGTTCACTGTGTGCCCAATGA
    CACAGGAA A CAACTCAA 1395
    TTGAGTTG T TTCCTGTG 1396
    Lys Overproduction GCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACCA 1397
    DHPS GAGAAGCCGTCCACG A AACAGAACAGGGATTTGCTGTTGGCATG
    Zea mays CATGCGGCTCTCCACATCAATCCTTACTACGG
    Ala166Val CCGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGC 1398
    GCA-GAA AAATCCCTGTTCTGTT T CGTGGACGGCTTCTCTGGTTGAGTTGCTT
    CCTGTGTTGCCTATCACTTTGATTCTAGAGC
    CGTCCACG A AACAGAAC 1399
    GTTCTGTT T CGTGGACG 1400
    Lys Overproduction GGCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACC 1401
    DHPS AGAGAAGCCGTCCAC A CAACAGAACAGGGATTTGCTGTTGGCAT
    Zea mays GCATGCGGCTCTCCACATCAATCCTTACTACG
    Ala166Thr CGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGCA 1402
    GCA-ACA AATCCCTGTTCTGTTG T GTGGACGGCTTCTCTGGTTGAGTTGCTTC
    CTGTGTTGCCTATCACTTTGATTCTAGAGCC
    CCGTCCAC A CAACAGAA 1403
    TTCTGTTG T GTGGACGG 1404
    Lys Overproduction TTATTGGGCATACAGTTAACTGCTTTGGCACTAAAATTAAAGTGGT 1405
    DHPS CGGCAACACAGGAA A TAACTCAACAAGGGAGGCTATTCACGCAAC
    Oryza sativa TGAGCAGGGATTCGCTGTAGGTATGCACGC
    Ser24Asn GCGTGCATACCTACAGCGAATCCCTGCTCAGTTGCGTGAATAGCC 1406
    AGT-AAT TCCCTTGTTGAGTTA T TTCCTGTGTTGCCGACCACTTTAATTTTAGT
    GCCAAAGCAGTTAACTGTATGCCCAATAA
    CACAGGAA A TAACTCAA 1407
    TTGAGTTA T TTCCTGTG 1408
    Lys Overproduction GCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACAA 1409
    DHPS GGGAGGCTATTCACGTAACTGAGCAGGGATTCGCTGTAGGTATG
    Oryza sativa CACGCGGCTCTCCACATCAATCCTTACTACGG
    Ala133Val CCGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGC 1410
    GCA-GTA GAATCCCTGCTCAGTT A CGTGAATAGCCTCCCTTGTTGAGTTACTT
    CCTGTGTTGCCGACCACTTTAATTTTAGTGC
    TATTCACG T AACTGAGC 1411
    GCTCAGTT A CGTGAATA 1412
    Lys Overproduction GGCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACA 1413
    DHPS AGGGAGGCTATTCACACAACTGAGCAGGGATTCGCTGTAGGTAT
    Oryza sativa GCACGCGGCTCTCCACATCAATCCTTACTACG
    Ala133Thr CGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGCG 1414
    GCA-ACA AATCCCTGCTCAGTTG T GTGAATAGCCTCCCTTGTTGAGTTACTTC
    CTGTGTTGCCGACCACTTTAATTTTAGTGCC
    CTATTCAC A CAACTGAG 1415
    CTCAGTTG T GTGAATAG 1416
    Lys Overproduction TCATCGGGCATACTGTTAACTGCTTTGGAGCCAACATTAAAGTGAT 1417
    DHPS 1 AGGCAACACGGGAA A TAACTCAACCAGAGAAGCTGTTCACGCGA
    Triticum aestivum CAGAGCAGGGATTTGCTGTTGGCATGCATGC
    Ser65Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGTCGCGTGAACAGCT 1418
    AGT-AAT TCTCTGGTTGAGTTA T TTCCCGTGTTGCCTATCACTTTAATGTTGG
    CTCCAAAGCAGTTAACAGTATGCCCGATGA
    CACGGGAA A TAACTCAA 1419
    TTGAGTTA T TTCCCGTG 1420
    Lys Overproduction GAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACCA 1421
    DHPS 1 GAGAAGCTGTTCACGTGACAGAGCAGGGATTTGCTGTTGGCATG
    Triticum aestivum CATGCAGCTCTTCATGTCAATCCTTACTACGG
    Ala174Val CCGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCA 1422
    GCG-GTG AATCCCTGCTCTGTC A CGTGAACAGCTTCTCTGGTTGAGTTACTTC
    CCGTGTTGCCTATCACTTTAATGTTGGCTC
    TGTTCACG T GACAGAGC 1423
    GCTCTGTC A CGTGAACA 1424
    Lys Overproduction GGAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACC 1425
    DHPS 1 AGAGAAGCTGTTCAC A CGACAGAGCAGGGATTTGCTGTTGGCAT
    Triticum aestivum GCATGCAGCTCTTCATGTCAATCCTTACTACG
    Ala174Thr CGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCAA 1426
    GCG-ACG ATCCCTGCTCTGTCG T GTGAACAGCTTCTCTGGTTGAGTTACTTCC
    CGTGTTGCCTATCACTTTAATGTTGGCTCC
    CTGTTCAC A GGACAGAG 1427
    CTCTGTCG T GTGAACAG 1428
    Lys Overproduction TCATCGGGCACACTGTTAACTGCTTTGGAACTAACATTAAAGTGAT 1429
    DHPS 2 AGGCAACACGGGAA A TAACTCAACTAGAGAAGCGATTCACGCTTC
    Triticum aestivum AGAGCAGGGATTTGCTGTTGGCATGCATGC
    Ser154Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGAAGCGTGAATCGCT 1430
    AGT-AAT TCTCTAGTTGAGTTA T TTCCCGTGTTGCCTATCACTTTAATGTTAGT
    TCCAAAGCAGTTAACAGTGTGCCCGATGA
    CACGGGAA A TAACTCAA 1431
    TTGAGTTA T TTCCCGTG 1432
    Lys Overproduction GAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACTA 1433
    DHPS 2 GAGAAGCGATTCACGTTTCAGAGCAGGGATTTGCTGTTGGCATGC
    Triticum aestivum ATGCAGCTCTCCATGTCAATCCTTACTATGG
    Ala163Val CCATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCA 1434
    GCT-GTT AATCCCTGCTCTGAA A CGTGAATCGCTTCTCTAGTTGAGTTACTTC
    CCGTGTTGCCTATCACTTTAATGTTAGTTC
    GATTCACG T TTCAGAGC 1435
    GCTCTGAA A CGTGAATC 1436
    Lys Overproduction GGAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACT 1437
    DHPS 2 AGAGAAGCGATTCACACTTCAGAGCAGGGATTTGCTGTTGGCATG
    Triticum aestivum CATGCAGCTCTCCATGTCAATCCTTACTATG
    Ala163Thr CATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCAA 1438
    GCT-ACT ATCCCTGCTCTGAAG T GTGAATCGCTTCTCTAGTTGAGTTACTTCC
    CGTGTTGCCTATCACTTTAATGTTAGTTCC
    CGATTCAC A CTTCAGAG 1439
    CTCTGAAG T GTGAATCG 1440
    Lys Overproduction CTCATTGGGCATACTGTGAACTGCTTTGGCTCTAGAATTAAAGTGA 1441
    DHPS TAGGCAACACAGGAA A TAACTCAACCAGAGAAGCTGTTCACGCAA
    Coix lacryma-jobi CAGAGCAGGGATTTGCTGTTGGCATGCATG
    Ser154Asn CATGCATGCCAACAGCAAATCCCTGCTCTGTTGCGTGAACAGCTT 1442
    AGT-AAT CTCTGGTTGAGTTA T TTCCTGTGTTGCCTATCACTTTAATTCTAGA
    GCCAAAGCAGTTCACAGTATGCCCAATGAG
    CACAGGAA A TAACTCAA 1443
    TTGAGTTA T TTCCTGTG 1444
    Lys Overproduction GCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACCA 1445
    DHPS GAGAAGCTGTTCACG T AACAGAGCAGGGATTTGCTGTTGGCATGC
    Coix lacryma-jobi ATGCAGCTCTCCACATCAATCCTTACTATGG
    Ala163Val CCATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCA 1446
    GCA-GTA AATCCCTGCTCTGTT A CGTGAACAGCTTCTCTGGTTGAGTTACTTC
    CTGTGTTGCCTATCACTTTAATTCTAGAGC
    TGTTCACG T AACAGAGC 1447
    GCTCTGTT A CGTGAACA 1448
    Lys Overproduction GGCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACC 1449
    DHPS AGAGAAGCTGTTCAC A CAACAGAGCAGGGATTTGCTGTTGGCATG
    Coix lacryma-jobi CATGCAGCTCTCCACATCAATCCTTACTATG
    Ala163Thr CATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCAA 1450
    GCA-ACA ATCCCTGCTCTGTTG T GTGAACAGCTTCTCTGGTTGAGTTACTTCC
    TGTGTTGCCTATCACTTTAATTCTAGAGCC
    CTGTTCAC A CAACAGAG 1451
    CTCTGTTG T GTGAACAG 1452
    Lys Overproduction TCATTGGTCACACAGTCAATTGTTTTGGAGGGTCCATCAAAGTCAT 1453
    DHPS CGGGAACACTGGAA A CAACTCCACAAGGGAAGCAATCCATGCAA
    Nicotiana tabacum CTGAACAGGGATTTGCTGTAGGTATGCATGC
    Ser136Asn GCATGCATACCTACAGCAAATCCCTGTTCAGTTGCATGGATTGCTT 1454
    AGC-AAC CCCTTGTGGAGTTG T TTCCAGTGTTCCCGATGACTTTGATGGACC
    CTCCAAAACAATTGACTGTGTGACCAATGA
    CACTGGAA A CAACTCCA 1455
    TGGAGTTG T TTCCAGTG 1456
    Lys Overproduction GAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCACAA 1457
    DHPS GGGAAGCAATCCATG T AACTGAACAGGGATTTGCTGTAGGTATGC
    Nicotiana tabacum ATGCAGCTCTTCACATTAATCCCTACTATGG
    Ala145Val CCATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCA 1458
    GCA-GTA AATCCCTGTTCAGTT A CATGGATTGCTTCCCTTGTGGAGTTGCTTC
    CAGTGTTCCCGATGACTTTGATGGACCCTC
    AATCCATG T AACTGAAC 1459
    GTTCAGTT A CATGGATT 1460
    Lys Overproduction GGAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCAC 1461
    DHPS AAGGGAAGCAATCCAT A CAACTGAACAGGGATTTGCTGTAGGTAT
    Nicotiana tabacum GCATGCAGCTCTTCACATTAATCCCTACTATG
    Ala145Thr CATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCAA 1462
    GCA-ACA ATCCCTGTTCAGTTG T ATGGATTGCTTCCCTTGTGGAGTTGCTTCC
    AGTGTTCCCGATGACTTTGATGGACCCTCC
    CAATCCAT A CAACTGAA 1463
    TTCAGTTG T ATGGATTG 1464
    Lys Overproduction TTATAGGCCATACCGTTAACTGTTTTGGCGGAAGCATCAAAGTCAT 1465
    DHPS TGGAAACACTGGAA A CAATTCGACTAGAGAAGCAATCCACGCGAC
    Arabidopsis thaliana TGAACAAGGATTCGCGGTTGGAATGCATGC
    Ser142Asn GCATGCATTCCAACCGCGAATCCTTGTTCAGTCGCGTGGATTGCT 1466
    AGC-AAC TCTCTAGTCGAATTG T TTCCAGTGTTTCCAATGACTTTGATGCTTC
    CGCCAAAACAGTTAACGGTATGGCCTATAA
    CACTGGAA A CAATTCGA 1467
    TCGAATTG T TTCCAGTG 1468
    Lys Overproduction GCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACTA 1469
    DHPS GAGAAGCAATCCACG T GACTGAACAAGGATTCGCGGTTGGAATG
    Arabidopsis thaliana CATGCTGCTCTTCATATAAACCCTTACTATGG
    Ala151Val CCATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCG 1470
    GCG-GTG AATCCTTGTTCAGTC A CGTGGATTGCTTCTCTAGTCGAATTGCTTC
    CAGTGTTTCCAATGACTTTGATGCTTCCGC
    AATCCACG T GACTGAAC 1471
    GTTCAGTC A CGTGGATT 1472
    Lys Overproduction GGCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACT 1473
    DHPS AGAGAAGCAATCCAC A CGACTGAACAAGGATTCGCGGTTGGAAT
    Arabidopsis thaliana GCATGCTGCTCTTCATATAAACCCTTACTATG
    Ala151Thr CATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCGA 1474
    GCG-ACG ATCCTTGTTCAGTCG T GTGGATTGCTTCTCTAGTCGAATTGCTTCC
    AGTGTTTCCAATGACTTTGATGCTTCCGCC
    CAATCCAC A CGACTGAA 1475
    TTCAGTCG T GTGGATTG 1476
    Lys Overproduction TTATTGCTCATACAGTCAACTGTTTTGGTGGGAAAATTAAGGTTAT 1477
    DHPS TGGAAATACTGGAA A CAACTCCACCAGGGAAGCAATTCATGCCAC
    Glycine max TGAGCAGGGTTTTGCTGTTGGAATGCATGC
    Ser103Asn GCATGCATTCCAACAGCAAAACCCTGCTCAGTGGCATGAATTGCT 1478
    AGC-AAC TCCCTGGTGGAGTTGTTTCCAGTATTTCCAATAACCTTAATTTTCC
    CACCAAAACAGTTGACTGTATGAGCAATAA
    TACTGGAA A CAACTCCA 1479
    TGGAGTTG T TTCCAGTA 1480
    Lys Overproduction GTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACCA 1481
    DHPS GGGAAGCAATTCATG T CACTGAGCAGGGTTTTGCTGTTGGAATGC
    Glycine max ATGCTGCCCTTCACATAAACCCTTACTATGG
    Ala112Val CCATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCA 1482
    GCC-GTC AAACCCTGCTCAGTG A CATGAATTGCTTCCCTGGTGGAGTTGCTT
    CCAGTATTTCCAATAACCTTAATTTTCCCAC
    AATTCATG T CACTGAGC 1483
    GCTCAGTG A CATGAATT 1484
    Lys Overproduction GGTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACC 1485
    DHPS AGGGAAGCAATTCAT A CCACTGAGCAGGGTTTTGCTGTTGGAATG
    Glycine max CATGCTGCCCTTCACATAAACCCTTACTATG
    Ala112Thr CATAGTAAGGGTTTATGTGAAGGGCAGCATGGATTCCAACAGCAA 1486
    GCC-ACC AACCCTGCTCAGTGG T ATGAATTGCTTCCCTGGTGGAGTTGCTTC
    CAGTATTTCCAATAACCTTAATTTTCCCACC
    CAATTCAT A CCACTGAG 1487
    CTCAGTGG T ATGAATTG 1488
    Trp Overproduction CTTGCAGGAGACATATTTCAGATCGTGCTGAGTCAACGTTTTGAG 1489
    AS CGGCGAACATTTGCA A ACCCCTTTGAAGTTTATAGAGCACTAAGA
    Arabidopsis thaliana GTTGTGAATCCAAGTCCGTATATGGGTTATT
    Asp341Asn AATAACCCATATACGGACTTGGATTCACAACTCTTAGTGCTCTATA 1490
    GAG-AAC AACTTCAAAGGGGT T TGCAAATGTTCGCCGCTCAAAACGTTGACT
    CAGCACGATCTGAAATATGTCTCCTGCAAG
    CATTTGCA A ACCCCTTT 1491
    AAAGGGGT T TGCAAATG 1492
    Trp Overproduction GCTGCAGGAGACATATTTCAAATCGTTTTAAGTCAACGCTTTGAGA 1493
    AS GAAGAACATTTGCT A ACCCATTTGAAGTGTACAGAGCATTAAGAAT
    Nicotiana tabacum TGTGAATCCAAGCCCATATATGACTTACA
    Asp326Asn TGTAAGTCATATATGGGCTTGGATTCACAATTCTTAATGCTCTGTA 1494
    GAC-AAC CACTTCAAATGGGT T AGCAAATGTTCTTCTCTCAAAGCGTTGACTT
    AAAACGATTTGAAATATGTCTCCTGCAGC
    CATTTGCT A ACCCATTT 1495
    AAATGGGT T AGCAAATG 1496
    Trp Overproduction CTAGCTGGTGACATTTTTCAAGTAGTCTTAAGCCAGCGTTTTGAGA 1497
    AS GGCGTACATTTGCT A ACCCCTTTGAGGTGTACCGTGCATTGCGTA
    Oryza sativa TTGTCAATCCTAGTCCTTATATGGCCTATC
    Asp323Asn GATAGGCCATATAAGGACTAGGATTGACAATACGCAATGCACGGT 1498
    GAC-AAC ACACCTCAAAGGGGT T AGCAAATGTACGCCTCTCAAAACGCTGGC
    TTAAGACTACTTGAAAAATGTCACCAGCTAG
    CATTTGCT A ACCCCTTT 1499
    AAAGGGGT T AGCAAATG 1500
    Trp Overproduction CTTGCTGGTGACATATTCCAGATCGTACTAAGTCAGCGTTTTGAAA 1501
    AS GGCGAACGTTCGCA A ACCCATTTGAAATCTATAGATCACTGAGGA
    Ruta graveolens TTGTTAATCCAAGCCCATATATGACTTATT
    Asp354Asn AATAAGTCATATATGGGCTTGGATTAACAATCCTCAGTGATCTATA 1502
    GAC-AAC GATTTCAAATGGGT T TGCGAACGTTCGCCTTTCAAAACGCTGACTT
    AGTACGATCTGGAATATGTCACCAGCAAG
    CGTTCGCA A ACCCATTT 1503
    AAATGGGT T TGCGAACG 1504
    Trp Overproduction CTGGCTGGGGACATATTCCAGCTTGTCCTAAGTCAGCGTTTTGAA 1505
    AS CGGCGAACATTTGCA A ATCCATTTGAAGTCTACCGAGCATTGAGA
    Catharanthus roseus ATTGTCAACCCAAGTCCATATATGACTTATT
    Asp354Asn AATAAGTCATATATGGACTTGGGTTGACAATTCTCAATGCTCGGTA 1506
    GAT-AAT GACTTCAAATGGAT T TGCAAATGTTCGCCGTTCAAAACGCTGACTT
    AGGACAAGCTGGAATATGTCCCCAGCCAG
    CATTTGCA A ATCCATTT 1507
    AAATGGAT T TGCAAATG 1508
  • EXAMPLE 10 Production of Modified Starch in Plants
  • A principal aim of biotechnology is the improvement of crop plants for food value, agriculture, and to produce a range of plant-derived raw materials. Along with oils, fats and proteins, polysaccharides constitute the main raw materials derived from plants, and apart from cellulose, the storage polymer starch is the most important polysaccharide raw material. Starch is derived from a range of plants, but maize is the most important cultivated plant for the production of starch. [0138]
  • The polysaccharide starch is a polymer made up of glucose molecules. However, starch is not a homogeneous raw material and is, in fact, a highly complex mixture of various types of molecules which differ from each other, for example, in their degree of polymerization and in the degree of branching of the glucose chains. For example, amylose-starch is a basically non-branched polymer made up of α-1,4-glycosidically branched glucose molecules, and amylopectin-starch is a complex mixture of variously branched glucose chains. The branching results from additional α-1,6-glycosidic linkages. In plants from which starch is typically isolated, for example maize or potato, the starch is approximately 25% amylose-starch and 75% amylopectin-starch. [0139]
  • In maize, various mutants in starch metabolism are known, for example waxy, sugary, shrunken and opaque-2. In addition to producing a modified starch, these mutations greatly improve grain quality in maize, and thus expand the use of maize not only as the food but also for the important industrial materials in food chemistry. It would therefore be advantageous to be able readily to obtain mutants in these genes in particular maize genotypes as well as other plants. Such plants can be obtained, for example, using traditional breeding methods and through specific genetic modification by means of recombinant DNA techniques. [0140]
  • The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism. [0141]
    TABLE 20
    Genome-Altering Oligos Conferring Increased Starch
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Increased Starch GAACTTGAGACTGAGAAAAGGGATCCAAGGACAGTTGCTTCCATT 1509
    ADPGPP ATTCTTGGAGGTGGA AA AGGAACTCGACTCTTTCCTCTCACAAAA
    Arabidopsis thaliana CGCCGCGCCAAGCCTGCCGTTCCTATCGGGG
    Ala99Lys CCCCGATAGGAACGGCAGGCTTGGCGCGGCGTTTTGTGAGAGGA 1510
    GCA-AAA AAGAGTCGAGTTCCT TT TCCACCTCCAAGAATAATGGAAGCAACT
    GTCCTTGGATCCCTTTTCTCAGTCTCAAGTTC
    GAGGTGGA AA AGGAACT 1511
    AGTTCCT TT TCCACCTC 1512
    Increased Starch CAAAACGCCGCGCCAAGCCTGCCGTTCCTATCGGGGGAGCCTAT 1513
    ADPGPP AGGTTGATAGATGTAC T AATGAGCAATTGTATTAACAGCGGAATCA
    Arabidopsis thaliana ACAAAGTCTACATACTCACACAATATAACTC
    Pro127Leu GAGTTATATTGTGTGAGTATGTAGACTTTGTTGATTCCGCTGTTAA 1514
    CCA-CTA TACAATTGCTCATT A GTACATCTATCAACCTATAGGCTCCCCCGAT
    AGGAACGGCAGGCTTGGCGCGGCGTTTTG
    AGATGTAC T AATGAGCA 1515
    TGCTCATT A GTACATCT 1516
    Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC 1517
    ADPGPP TTACAACTCCAAT AAT CTTGGCTTTGGAGATGGCTATGTTGAGGTT
    Arabidopsis thaliana CTTGCGGCCACTCAAACGCCAGGAGAATC
    Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA 1518
    GGA-AAT TCTCCAAAGCCAAG ATT ATTGGAGTTGTAAGCACGGGGTAAATGC
    CTGTTCAATGATGCTGAGTTATATTGTGTGA
    CTCCAAT AAT CTTGGCT 1519
    AGCCAAG ATT ATTGGAG 1520
    Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC 1521
    ADPGPP TTACAACTCCAAT AAC CTTGGCTTTGGAGATGGCTATGTTGAGGTT
    Arabidopsis thaliana CTTGCGGCCACTCAAACGCCAGGAGAATC
    Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA 1522
    GGA-AAC TCTCCAAAGCCAAG GTT ATTGGAGTTGTAAGCACGGGCTAAATGC
    CTGTTCAATGATGCTGAGTTATATTGTGTGA
    CTCCAAT AAC CTTGGCT 1523
    AGCCAAG GTT ATTGGAG 1524
    Increased Starch GTTTGAGAGAAGAAAGGTAGACCCGCAAAATGTGGCTGCAATCAT 1525
    ADPGPP TCTAGGAGGAGGCAA A GGAGCTAAACTCTTCCCTCTTACAATGAG
    Arabidopsis thaliana AGCCGCAACACCAGCTGTAAATATTCATCTT
    Asn100Lys AAGATGAATATTTACAGCTGGTGTTGCGGCTCTCATTGTAAGAGG 1526
    AAT-AAA GAAGAGTTTAGCTCC T TTGCCTCCTCCTAGAATGATTGCAGCCAC
    ATTTTGCGGGTCTACCTTTCTTCTCTCAAAC
    GGAGGCAA A GGAGCTAA 1527
    TTAGCTCC T TTGCCTCC 1528
    Increased Starch CTTGTGTCTTCAAATTATGTTAGGTTCCTGTTGGTGGATGCTACAG 1529
    ADPGPP GCTGATCGATATCC T GATGAGTAACTGTATTAACAGCTGCATCAAC
    Arabidopsis thaliana AAGATATTTGTGCTGACACAGTTCAACTC
    Pro128Leu GAGTTGAACTGTGTCAGCACAAATATCTTGTTGATGCAGCTGTTAA 1530
    CCG-CTG TACAGTTACTCATC A GGATATCGATCAGCCTGTAGCATCCACCAA
    CAGGAACCTAACATAATTTGAAGACACAAG
    CGATATCC T GATGAGTA 1531
    TACTCATC A GGATATCG 1532
    Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC 1533
    ADPGPP TTATTTTGGGAAT AAT ATAAACTTTGGAGGTGGTTTCGTAGAGGTA
    Arabidopsis thaliana CAAACACTATGACAATAATAACTCTCAGC
    Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC 1534
    GGC-AAT CTCCAAAGTTTAT ATT ATTCCCAAAATAAGTTCGTGCTAAATGTCG
    ATTAAGGGAAGCTGAGTTGAACTGTGTCA
    TGGGAAT AAT ATAAACT 1535
    AGTTTAT ATT ATTCCCA 1536
    Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC 1537
    ADPGPP TTATTTTGGGAAT AAC ATAAACTTTGGAGGTGGTTTCGTAGAGGTA
    Arabidopsis thaliana CAAACACTATGACAATAATAACTCTCAGC
    Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC 1538
    GGC-AAC CTCCAAAGTTTAT GTT ATTCCCAAAATAAGTTCGTGCTAAATGTCG
    ATTAAGGGAAGCTGAGTTGAACTGTGTCA
    TGGGAAT AAC ATAAACT 1539
    AGTTTAT GTT ATTCCCA 1540
    Increased Starch TTGAGGAACAACCAACGGCAGATCCAAAAGCTGTTGCCTCTGTCA 1541
    ADPGPP TTCTAGGTGGTGGT AAA GGAACTCGTCTTTTTCCTCTTACAAGCA
    Lycopersicon GAAGAGCTAAACCAGCTGTTCCTATTGGTGG
    esculentum CCACCAATAGGAACAGCTGGTTTAGCTCTTCTGCTTGTAAGAGGA 1542
    Val94Lys AAAAGACGAGTTCC TTT ACCACCACCTAGAATGACAGAGGCAACA
    GTT-AAA GCTTTTGGATCTGCCGTTGGTTGTTCCTCAA
    TGGTGGT AAA GGAACTC 1543
    GAGTTCC TTT ACCACCA 1544
    Increased Starch CAAGCAGAAGAGCTAAACCAGCTGTTCCTATTGGTGGTTGTTACC 1545
    ADPGPP GGCTAATTGATGTAC A AATGAGTAACTGCATTAACAGTGGCATAC
    Lycopersicon GGAAAATTTTCATCTTAACACAGTTCAATTC
    esculentum GAATTGAACTGTGTTAAGATGAAAATTTTCCGTATGCCACTGTTAA 1546
    Pro122Leu TGCAGTTACTCATT T GTACATCAATTAGCCGGTAACAACCACCAAT
    CCA-CAA AGGAACAGCTGGTTTAGCTCTTCTGGTTG
    TGATGTAC A AATGAGTA 1547
    TACTCATT T GTACATCA 1548
    Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 1549
    ADPGPP TAATTTTGGAAAT AAT GTGGGTTTTGGAGATGGATTTGTGGAGGTT
    Lycopersicon TTAGCTGCAACCCAGACTCCAGGGGATGC
    esculentum GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA 1550
    Gly158Asn TCTCCAAAACCCAC ATT ATTTCCAAAATTATACGTGCGGGCAAGGT
    GGA-AAT GACGATTGAGGGAAAAGGAATTGAACTGTG
    TGGAAAT AAT GTGGGTT 1551
    AACCCAC ATT ATTTCCA 1552
    Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 1553
    ADPGPP TAATTTTGGAAAT AAC GTGGGTTTTGGAGATGGATTTGTGGAGGT
    Lycopersicon TTTAGCTGCAACCCAGACTCCAGGGGATGC
    esculentum GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA 1554
    Gly158Asn TCTCCAAAACCCAC GTT ATTTCCAAAATTATACGTGCGGGCAAGGT
    GGA-AAC GACGATTGAGGGAAAAGGAATTGAACTGTG
    TGGAAAT AAC GTGGGTT 1555
    AACCCAC GTT ATTTCCA 1556
    Increased Starch ACGTAGATTTGGAAAAAAGAGACCCAAGTACAGTTGTAGCAATTAT 1557
    ADPGPP ACTAGGTGGAGGT AAA GGAACTCGTCTCTTCCCTCTCACCAAGCG
    Cicer arietinum ACGAGCCAAGCCTGCTGTTCCAATTGGAGG
    Ala101Lys CCTCCAATTGGAACAGCAGGCTTGGCTCGTCGCTTGGTGAGAGG 1558
    GCT-AAA GAAGAGACGAGTTCC TTT ACCTCCACCTAGTATAATTGCTACAACT
    GTACTTGGGTCTCTTTTTTCCAAATCTACGT
    TGGAGGT AAA GGAACTC 1559
    GAGTTCC TTT ACCTCCA 1560
    Increased Starch CCAAGCGACGAGCCAAGCCTGCTGTTCCAATTGGAGGTGCTTATA 1561
    ADPGPP GGCTGATAGATGTAC T AATGAGTAACTGCATCAATAGTGGGATCA
    Cicer arietinum ACAAAGTATACATTCTCACTCAATTTAATTC
    Pro129Leu GAATTAAATTGAGTGAGAATGTATACTTTGTTGATCCCACTATTGA 1562
    CCA-CTA TGCAGTTACTCATT A GTACATCTATCAGCCTATAAGCACCTCCAAT
    TGGAACAGCAGGCTTGGCTCGTCGCTTGG
    AGATGTAC T AATGAGTA 1563
    TACTCATT A GTACATCT 1564
    Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA 1565
    ADPGPP TAACTCTGGTACT AAT GTCACTTTTGGAGATGGCTATGTTGAGGTT
    Cicer arietinum CTTGCAGCAACTCAAACTCCAGGGGAGCA
    Gly165Asn TGCTCCCGTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA 1566
    GGA-AAT TCTCCAAAAGTGAC ATT AGTACCAGAGTTATAAGCACGTGCAATAT
    GCCTGTTGAGTGAGGCTGAATTAAATTGAG
    TGGTACT AAT GTCACTT 1567
    AAGTGAC ATT AGTACCA 1568
    Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA 1569
    ADPGPP TAACTCTGGTACT AAC GTCACTTTTGGAGATGGCTATGTTGAGGTT
    Cicer arietinum CTTGCAGCAACTCAAACTCCAGGGGAGCA
    Gly165Asn TGCTCCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA 1570
    GGA-AAC TCTCCAAAAGTGAC GTT AGTACCAGAGTTATAAGCACGTGCAATAT
    GCCTGTTGAGTGAGGCTGAATTAAATTGAG
    TGGTACT AAC GTCACTT 1571
    AAGTGAC GTT AGTACCA 1572
    Increased Starch ATATTGGAGAGGCGTCGGGCAAACCCTAAGAATGTGGCTGCAATC 1573
    ADPGPP ATACTGCCAGGCGGT AA AGGGACACACCTATTCCCTCTCACCAAT
    Ipomoea batatas CGAGCTGCAACCCCTGCTGTTCCACTTGGAG
    Ala94Lys CTCCAAGTGGAACAGCAGGGGTTGCAGCTCGATTGGTGAGAGGG 1574
    GCA-AAA AATAGGTGTGTCCCT TT ACCGCCTGGCAGTATGATTGCAGCCACA
    TTCTTAGGGTTTGCCCGACGCCTCTCCAATAT
    CAGGCGGT AA AGGGACA 1575
    TGTCCCT TT ACCGCCTG 1576
    Increased Starch CCAATCGAGCTGCAACCCCTGCTGTTCCACTTGGAGGATGCTATA 1577
    ADPGPP GGTTGATCGACATTC T AATGAGCAACTGCATCAACAGCGGGGTTA
    Ipomoea batatas ACAAGATCTTTGTGCTGACCCAGTTCAATTC
    Pro122Leu GAATTGAACTGGGTCAGCACAAAGATCTTGTTAACCCCGCTGTTG 1578
    CCA-CTA ATGCAGTTGCTCATT A GAATGTCGATCAACCTATAGCATCCTCCAA
    GTGGAACAGCAGGGGTTGCAGCTCGATTGG
    CGACATTC T AATGAGCA 1579
    TGCTCATT A GAATGTCG 1580
    Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC 1581
    ADPGPP CGTCTTTGGCAAT AAT GTGAGCTTCGGAGATGGATTTGTTGAGGT
    Ipomoea batatas GCTGGCTGCAACCCAAACACAAGGGGAAAC
    Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA 1582
    GGT-AAT TCTCCGAAGCTCAC ATT ATTGCCAAAGACGGTACGGGAAATGTGA
    CGGTTAAGAGAAGCTGAATTGAACTGGGTCA
    TGGCAAT AAT GTGAGCT 1583
    AGCTCAC ATT ATTGCCA 1584
    Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC 1585
    ADPGPP CGTCTTTGGCAAT AAC GTGAGCTTCGGAGATGGATTTGTTGAGGT
    Ipomoea batatas GCTGGCTGCAACCCAAACACAAGGGGAAAC
    Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA 1586
    GGT-AAC TCTCCGAAGCTCAC GTT ATTGCCAAAGACGGTACGGGAAATGTGA
    CGGTTAAGAGAAGCTGAATTGAACTGGGTCA
    TGGCAAT AAC GTGAGCT 1587
    AGCTCAC GTT ATTGCCA 1588
    Increased Starch CATTCCGGAGGAACTTTGCGGATCCAAATGAGGTTGCTGCTGTTA 1589
    ADPGPP TATTGGGTGGTGGCA AA GGGACTCAACTTTTTCCTCTCACAAGCA
    Oryza sativa CAAGGGCCACGCCTGCTGTTCCTATTGGAGG
    Thr96Lys CCTCCAATAGGAACAGCAGGCGTGGCCCTTGTGCTTGTGAGAGG 1590
    ACC-AAA AAAAAGTTGAGTCCC TT TGCCACCACCCAATATAACAGCAGCAAC
    CTCATTTGGATCCGCAAAGTTCCTCCGGAATG
    TGGTGGCA AA GGGACTC 1591
    GAGTCCC TT TGCCACCA 1592
    Increased Starch CAAGCACAAGGGCCACGCCTGCTGTTCCTATTGGAGGATGCTATA 1593
    ADPGPP GGCTTATCGATATCC T CATGAGCAACTGTTTCAACAGTGGCATAAA
    Oryza sativa CAAGATATTCATAATGACTCAATTCAACTC
    Pro124Leu GAGTTGAATTGAGTCATTATGAATATCTTGTTTATGCCACTGTTGA 1594
    CCC-CTC AACAGTTGCTCATG A GGATATCGATAAGCCTATAGCATCCTCCAAT
    AGGAACAGCAGGCGTGGCCCTTGTGCTTG
    CGATATCC T CATGAGCA 1595
    TGCTCATG A GGATATCG 1596
    Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC 1597
    ADPGPP GTACCTTGGTGGT AAT ATCAACTTTACTGATGGTTCTGTTGAGGTA
    Oryza sativa TTAGCCGCTACACAAATGCCTGGGGAGGC
    Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA 1598
    GGA-AAT TCAGTAAAGTTGAT ATT ACCACCAAGGTACGTACGATGAATGTGA
    CGATTAAGAGATGCTGAGTTGAATTGAGTCA
    TGGTGGT AAT ATCAACT 1599
    AGTTGAT ATT ACCACCA 1600
    Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC 1601
    ADPGPP GTACCTTGGTGGT AAC ATCAACTTTACTGATGGTTCTGTTGAGGTA
    Oryza sativa TTAGCCGCTACACAAATGCCTGGGGAGGC
    Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA 1602
    GGA-AAC TCAGTAAAGTTGAT GTT ACCACCAAGGTACGTACGATGAATGTGA
    CGATTAAGAGATGCTGAGTTGAATTGAGTCA
    TGGTGGT AAC ATCAACT 1603
    AGTTGAT GTT ACCACCA 1604
    Increased Starch GTCCTTCAGGAGGATTAAGCGATCCGAACGAGGTTGCGGCCGTC 1605
    ADPGPP ATACTCGGCGGCGGCA AA GGGACTCAGCTCTTCCCACTCACGAG
    Triticum aestivum CACAAGGGCCACACCTGCTGTTCCTATTGGAGG
    Thr80Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTCGTGAGTGG 1606
    ACC-AAA GAAGAGCTGAGTCCC TT TGCCGCCGCCGAGTATGACGGCCGCAA
    CCTCGTTCGGATCGCTTAATCCTCCTGAAGGAC
    CGGCGGCA AA GGGACTC 1607
    GAGTCCC TT TGCCGCCG 1608
    Increased Starch CGAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA 1609
    ADPGPP GGCTCATCGACATTC T CATGAGCAACTGCTTCAACAGTGGCATCA
    Triticum aestivum ACAAGATATTCGTCATGACCCAGTTCAACTC
    Pro108Leu GAGTTGAACTGGGTCATGACGAATATCTTGTTGATGCCACTGTTG 1610
    CCC-CTC AAGCAGTTGCTCATG A GAATGTCGATGAGCCTGTAACATCCTCCA
    ATAGGAACAGCAGGTGTGGCCCTTGTGCTCG
    CGACATTC T CATGAGCA 1611
    TGCTCATG A GAATGTCG 1612
    Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA 1613
    ADPGPP CCTACCTCGGCGGG AAT ATCAATTTCACTGATGGATCCGTTGAGG
    Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
    Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC 1614
    GGA-AAT ATCAGTGAAATTGAT ATT CCCGCCGAGGTAGGTGCGGTGAATGTG
    ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA
    CGGCGGG AAT ATCAATT 1615
    AATTGAT ATT CCCGCCG 1616
    Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA 1617
    ADPGPP CCTACCTCGGCGGG AAC ATCAATTTCACTGATGGATCCGTTGAGG
    Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
    Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC 1618
    GGA-AAC ATCAGTGAAATTGAT GTT CCCGCCGAGGTAGGTGCGGTGAATGTG
    ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA
    CGGCGGG AAC ATCAATT 1619
    AATTGAT GTT CCCGCCG 1620
    Increased Starch CCTCCCGAAAGAATTATGCTGATGCAAGCCACGTTTCTGCTGTCA 1621
    ADPGPP TTTTGGGTGGAGGCA AA GGAGTTCAACTCTTTCCTCTGACAAGCA
    Oryza sativa CAAGGGCTACCCCCGCTGTTCCTGTTGGAGG
    Thr95Lys CCTCCAACAGGAACAGCGGGGGTAGCCCTTGTGCTTGTCAGAGG 1622
    ACT-AAA AAAGAGTTGAACTCC TT TGCCTCCACCCAAAATGACAGCAGAAAC
    GTGGCTTGCATCAGCATAATTCTTTCGGGAGG
    TGGAGGCA AA GGAGTTC 1623
    GAACTCC TT TGCCTCCA 1624
    Increased Starch CAAGCACAAGGGCTACCCCCGCTGTTCCTGTTGGAGGATGTTACA 1625
    ADPGPP GGCTTATTGACATCC T TATGAGCAATTGCTTCAATAGCGGAATAAA
    Oryza sativa TAAAATATTTGTGATGACTCAGTTCAATTC
    Pro123Leu GAATTGAACTGAGTCATCACAAATATTTTATTTATTCCGCTATTGAA 1626
    CCT-CTT GCAATTGCTCATA A GGATGTCAATAAGCCTGTAACATCCTCCAACA
    GGAACAGCGGGGGTAGCCCTTGTGCTTG
    TGACATCC T TATGAGCA 1627
    TGCTCATA A GGATGTCA 1628
    Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA 1629
    ADPGPP TACCTTGGTGGG AAT ATCAACTTTACTGATGGGTCTGTGCAGGTA
    Oryza sativa TTGGCTGCTACACAAATGCCTGACGAACC
    Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA 1630
    GGG-AAT TCAGTAAAGTTGAT ATT CCCACCAAGGTATGTATGATGGATATGGC
    GATTAAGAGAAGCAGAATTGAACTGAGTCA
    TGGTGGG AAT ATCAACT 1631
    AGTTGATATTCCCACCA 1632
    Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA 1633
    ADPGPP TACCTTGGTGGG AAC ATCAACTTTACTGATGGGTCTGTGCAGGTA
    Oryza sativa TTGGCTGCTACACAAATGCCTGACGAACC
    Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA 1634
    GGG-AAC TCAGTAAAGTTGAT GTT CCCACCAAGGTATGTATGATGGATATGG
    CGATTAAGAGAAGCAGAATTGAACTGAGTCA
    TGGTGGG AAC ATCAACT 1635
    AGTTGAT GTT CCCACCA 1636
    Increased Starch CCTTCCGCAGGAATTACGCCGATCCGAACGAGGTCGCGGCCGTC 1637
    ADPGPP ATACTCGGCGGTGGCAAAGGGACTCAGCTCTTCCCTCTCACAAG
    Triticum pestivum CACAAGGGCCACACCTGCTGTTCCTATTGGAGG
    Thr99Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTTGTGAGAGG 1638
    ACC-AAA GAAGAGCTGAGTCCC TT TGCCACCGCCGAGTATGACGGCCGCGA
    CCTCGTTCGGATCGGCGTAATTCCTGCGGAAGG
    CGGTGGCA AA GGGACTC 1639
    GAGTCCC TT TGCCACCG 1640
    Increased Starch CAAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA 1641
    ADPGPP GGCTCATCGATATTC T CATGAGCAACTGCTTCAATAGTGGCATCAA
    Triticum aestivum CAAGATATTCGTCATGACGCAGTTCAACTC
    Pro127Leu GAGTTGAACTGCGTCATGACGAATATCTTGTTGATGCCACTATTGA 1642
    CCC-CTC AGCAGTTGCTCATG A GAATATCGATGAGCCTGTAACATCCTCCAA
    TAGGAACAGCAGGTGTGGCCCTTGTGCTTG
    CGATATTC T CATGAGCA 1643
    TGCTCATG A GAATATCG 1644
    Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA 1645
    ADPGPP CCTACCTCGGCGGG AAT ATCAATTTCACTGATGGATCTGTTGAGG
    Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
    Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1646
    GGA-AAT ATCAGTGAAATTGAT ATT CCCGCCGAGGTAGGTGCGGTGAATGTG
    ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA
    CGGCGGG AAT ATCAATT 1647
    AATTGAT ATT CCCGCCG 1648
    Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA 1649
    ADPGPP CCTACCTCGGCGGG AAC ATCAATTTCACTGATGGATCTGTTGAGG
    Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
    Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1650
    GGA-AAC ATCAGTGAAATTGAT GTT CCCGCCGAGGTAGGTGCGGTGAATGTG
    ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA
    CGGCGGG AAC ATCAATT 1651
    AATTGAT GTT CCCGCCG 1652
    Increased Starch CTTTTCGGAGGAATTATGCTGATCCTAATGAAGTCGCTGCCGTCA 1653
    ADPGPP TTTTGGGTGGTGGTA AA GGGACTCAGCTTTTCCCTCTCACAAGCA
    Zea mays CAAGGGCCACCCCTGCTGTTCCTATTGGAGG
    Thr96Lys CCTCCAATAGGAACAGCAGGGGTGGCCCTTGTGCTTGTGAGAGG 1654
    ACC-AAA GAAAAGCTGAGTCCC TT TACCACCACCCAAAATGACGGCAGCGAG
    TTCATTAGGATCAGCATAATTCCTCCGAAAAG
    TGGTGGTA AA GGGACTC 1655
    GAGTCCC TT TACCACCA 1656
    Increased Starch CAAGCACAAGGGCCACCCCTGCTGTTCCTATTGGAGGATGTTACA 1657
    ADPGPP GGCTTATTGATATCC T CATGAGCAACTGTTTCAACAGTGGCATAAA
    Zea mays CAAGATATTTGTTATGACTCAGTTCAACTC
    Pro124Leu GAGTTGAACTGAGTCATAACAAATATCTTGTTTATGCCACTGTTGA 1658
    CCC-CTC AACAGTTGCTCATG A GGATATCAATAAGCCTGTAACATCCTCCAAT
    AGGAACAGCAGGGGTGGCCCTTGTGCTTG
    TGATATCC T CATGAGCA 1659
    TGCTCATG A GGATATCA 1660
    Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC 1661
    ADPGPP CTATCTTGGTGGG AAT ATCAACTTCACTGATGGATCTGTTGAGGT
    Zea mays GCTGGCTGCAACACAAATGCCTGGGGAGGC
    Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA 1662
    GGG-AAT TCAGTGAAGTTGAT ATT CCCACCAAGATAGGTACGATGAATGTGA
    CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA
    TGGTGGG AAT ATCAACT 1663
    AGTTGAT ATT CCCACCA 1664
    Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC 1665
    ADPGPP CTATCTTGGTGGG AAC ATCAACTTCACTGATGGATCTGTTGAGGT
    Zea mays GCTGGCTGCAACACAAATGCCTGGGGAGGC
    Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA 1666
    GGG-AAC TCAGTGAAGTTGAT GTT CCCACCAAGATAGGTACGATGAATGTGA
    CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA
    TGGTGGG AAC ATCAACT 1667
    AGTTGAT GTT CCCACCA 1668
    Increased Starch CTTGAGAGGCAAAAGAAGGGCGATGCAAGGACAGTAGTAGCAAT 1669
    ADPGPP CATTCTAGGAGGGGGA AA GGGAACTCGTCTTTTCCCCCTCACCAA
    Solanum tuberosum ACGTCGTGCTAAGCCTGCCGTTCCAATGGGAG
    Ala58Lys CTCCCATTGGAACGGCAGGCTTAGCACGACGTTTGGTGAGGGGG 1670
    GCG-AAG AAAAGACGAGTTCCC TT TCCCCCTCCTAGAATGATTGCTACTACTG
    TCCTTGCATCGCCCTTCTTTTGCCTCTCAAG
    GAGGGGGA AA GGGAACT 1671
    AGTTCCC TT TCCCCCTC 1672
    Increased Starch CCAAACGTCGTGCTAAGCCTGCCGTTCCAATGGGAGGAGCATATA 1673
    ADPGPP GGCTAATTGATGTAC T AATGAGCAACTGTATTAACAGTGGCATCAA
    Solanum tuberosum CAAAGTATACATTCTCACTCAATTCAACTC
    Pro86Leu GAGTTGAATTGAGTGAGAATGTATACTTTGTTGATGCCACTGTTAA 1674
    CCA-CTA TACAGTTGCTCATT A GTACATCAATTAGCCTATATGCTCCTCCCAT
    TGGAACGGCAGGCTTAGCACGACGTTTGG
    TGATGTAC T AATGAGCA 1675
    TGCTCATT A GTACATCA 1676
    Increased Starch CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 1677
    ADPGPP CAACTTTGGCAAT AAT GTCACATTCGAGAGTGGCTATGTCGAGGT
    Solanum tuberosum CTTAGCAGCAACTCAAACACCAGGTGAATT
    Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA 1678
    GGG-AAT CTCTCGAATGTGAC ATT ATTGCCAAAGTTGTAAGCACGAGCTATAT
    GCCTGTTAAGTGAGGCTGAGTTGAATTGAG
    TGGCAAT AAT GTCACAT 1679
    ATGTGAC ATT ATTGCCA 1680
    Increased Starch CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 1681
    ADPGPP CAACTTTGGCAAT AAC GTCACATTCGAGAGTGGCTATGTCGAGGT
    Solanum tuberosum CTTAGCAGCAACTCAAACACCAGGTGAATT
    Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA 1682
    GGG-AAC CTCTCGAATGTGAC GTT ATTGCCAAAGTTGTAAGCACGAGCTATAT
    GCCTGTTAAGTGAGGCTGAGTTGAATTGAG
    TGGCAAT AAC GTCACAT 1683
    ATGTGACGTTATTGCCA 1684
    Increased Starch TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 1685
    ADPGPP GCTGGGTGGTGGT AAA GGGACTCGCCTCTTTCCTCTTACTAGCAG
    Beta vulgaris GAGAGCTAAGCCAGCAGTGCCAATTGGAGG
    Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA 1686
    GCT-AAA AAGAGGCGAGTCCC TTT ACCACCACCCAGCACAATTGCAGCCACA
    TTTTTTGGGTCAGCTTTTGGAGATTCAAATA
    TGGTGGT AAA GGGACTC 1687
    GAGTCCC TTT ACCACCA 1688
    Increased Starch TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 1689
    ADPGPP GCTGGGTGGTGGT AAC GGGACTCGCCTCTTTCCTCTTACTAGCAG
    Beta vulgaris GAGAGCTAAGCCAGCAGTGCCAATTGGAGG
    Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA 1690
    GCT-AAC AAGAGGCGAGTCCC GTT ACCACCACCCAGCACAATTGCAGCCAC
    ATTTTTTGGGTCAGCTTTTGGAGATTCAAATA
    TGGTGGT AAC GGGACTC 1691
    GAGTCCC GTT ACCACCA 1692
    Increased Starch CTAGCAGGAGAGCTAAGCCAGCAGTGCCAATTGGAGGGTGTTAC 1693
    ADPGPP AGGCTGATTGATGTGC T TATGAGCAACTGCATCAACAGTGGCATT
    Beta vulgaris AGAAAGATTTTCATTCTTACCCAGTTCAATTC
    Pro126Leu GAATTGAACTGGGTAAGAATGAAAATCTTTCTAATGCCACTGTTGA 1694
    CCT-CTT TGCAGTTGCTCATA A GCACATCAATCAGCCTGTAACACCCTCCAA
    TTGGCACTGCTGGCTTAGCTCTCCTGCTAG
    TGATGTGC T TATGAGCA 1695
    TGCTCATA A GCACATCA 1696
    Increased Starch CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 1697
    ADPGPP TAATTTTGGAGAT AAT GTGAATTTTGGGGATGGCTTTGTGGAGGTT
    Beta vulgaris TTTGCTGCTACACAAACACCTGGAGAATC
    Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA 1698
    GGT-AAT TCCCCAAAATTCAC ATT ATCTCCAAAATTATAGGTTCGAGCAAGAT
    GACGATTAAGCGAAAACGAATTGAACTGGG
    TGGAGAT AAT GTGAATT 1699
    AATTCAC ATT ATCTCCA 1700
    Increased Starch CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 1701
    ADPGPP TAATTTTGGAGAT AAC GTGAATTTTGGGGATGGCTTTGTGGAGGT
    Beta vulgaris TTTTGCTGCTACACAAACACCTGGAGAATC
    Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA 1702
    GGT-AAC TCCCCAAAATTCAC GTT ATCTCCAAAATTATAGGTTCGAGCAAGAT
    GACGATTAAGCGAAAACGAATTGAACTGGG
    TGGAGAT AAC GTGAATT 1703
    AATTCAC GTT ATCTCCA 1704
  • [0142]
    TABLE 21
    Oligonucleotides to produce plants with waxy starch
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Waxy starch GAATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTT 1705
    GBSS CTTCTAACTTTGTGT G AAGAACTTCACTTTTCAACAATCATGGTGCT
    Arabidopsis thaliana TCTTCATGCTCTGATGTCGCTCAGATTAC
    Ser12Term GTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGTTG 1706
    TCA-TGA AAAAGTGAAGTTCTT C ACACAAAGTTAGAAGAAGCAGTCACAGTTG
    CCATTATGAACTACCCGTTTACCTGGATTC
    CTTTGTGT G AAGAACTT 1707
    AAGTTCTT C ACACAAAG 1708
    Waxy starch ATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTT 1709
    GBSS CTAACTTTGTGTCA T GAACTTCACTTTTCAACAATCATGGTGCTTCT
    Arabidopsis thaliana TCATGCTCTGATGTCGCTCAGATTACCT
    Arg13Term AGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGT 1710
    AGA-TGA TGAAAAGTGAAGTTC A TGACACAAAGTTAGAAGAAGCAGTCACAGT
    TGCCATTATGAACTACCCGTTTACCTGGAT
    TTGTGTCA T GAACTTCA 1711
    TGAAGTTC A TGACACAA 1712
    Waxy starch TAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTTCTAACTT 1713
    GBSS TGTGTCAAGAACTTGACTTTTCAACAATCATGGTGCTTCTTCATGCT
    Arabidopsis thaliana CTGATGTCGCTCAGATTACCTTAAAAGG
    Ser15Term CCTTTTAAGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCAT 1714
    TCA-TGA GATTGTTGAAAAGT C AAGTTCTTGACACAAAGTTAGAAGAAGCAGT
    CACAGTTGCCATTATGAACTACCCGTTTA
    AAGAACTT G ACTTTTCA 1715
    TGAAAAGT C AAGTTCTT 1716
    Waxy starch TGACTGCTTCTTCTAACTTTGTGTCAAGAACTTGACTTTTCAACAAT 1717
    GBSS CATGGTGCTTCTT G ATGCTCTGATGTCGCTCAGATTACCTTAAAAG
    Arabidopsis thaliana GCCAATCCTTGACTCATTGTGGGTTAAG
    Ser24Term CTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATCTGAG 1718
    TCA-TGA CGACATCAGAGCAT C AAGAAGCACCATGATTGTTGAAAAGTGAAG
    TTCTTGACACAAAGTTAGAAGAAGCAGTCA
    TGCTTCTT G ATGCTCTG 1719
    CAGAGCAT C AAGAAGCA 1720
    Waxy starch TGCTTCTTCTAACTTTGTGTCAAGAACTTCACTTTTCAACAATCATG 1721
    GBSS GTGCTTCTTCATG A TCTGATGTCGCTCAGATTACCTTAAAAGGCCA
    Arabidopsis thaliana ATCCTTGACTCATTGTGGGTTAAGGTCA
    Cys25Term TGACCTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATC 1722
    TGC-TGA TGAGCGACATCAGATCATGAAGAAGCACCATGATTGTTGAAAAGT
    GAAGTTCTTGACACAAAGTTAGAAGAAGCA
    TCTTCATG A TCTGATGT 1723
    ACATCAGA T CATGAAGA 1724
    Waxy starch GTAACAGCTTCACAGTTGGTGTCACATGTCCATGGTGGAGCAACG 1725
    GBSS TCTTCACCGGATACT T AAACAAACTTGGCCCAGGTTGGCCTCAGG
    Antirrhinum majus AACCAGCAATTCACTCACAATGGGTTGAGAT
    Lys24Term ATCTCAAGCCATTGTGAGTGAATTGCTGGTTCGTGAGGCCAACCTG 1726
    AAA-TAA GGCCAAGTTTGTTT A AGTATCGGGTGAAGACGTTGCTCCACCATG
    GACATGTGACACCAACTGTGAAGGTGTTAC
    CGGATACT T AAACAAAC 1727
    GTTTGTTT A AGTATCCG 1728
    Waxy starch CACAGTTGGTGTCACATGTCCATGGTGGAGCAAGGTCTTCACCGG 1729
    GBSS ATAGTAAAACAAACT A GGGCGAGGTTGGCCTCAGGAACCAGCAAT
    Antirrhinum majus TCACTCACAATGGGTTGAGATCAATAAACAT
    Leu27Term ATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGA 1730
    TTG-TAG GGCCAACCTGGGCC T AGTTTGTTTTAGTATCGGGTGAAGACGTTG
    CTCCACCATGGACATGTGACACCAACTGTG
    AACAAACT A GGCCCAGG 1731
    CCTGGGCC T AGTTTGTT 1732
    Waxy starch TTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGGATACT 1733
    GBSS AAAACAAACTTGGCC T AGGTTGGCCTCAGGAACCAGCAATTCACT
    Antirrhinum majus CACAATGGGTTGAGATCAATAAACATGGTTG
    Gln29Term CAACCATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTT 1734
    GAG-TAG CCTGAGGCCAACCT A GGCCAAGTTTGTTTTAGTATCCGGTGAAGA
    CGTTGCTCCACCATGGACATGTGACACCAA
    ACTTGGCC T AGGTTGGC 1735
    GCCAACCT A GGCCAAGT 1736
    Waxy starch GGTGGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAG 1737
    GBSS GTTGGCCTCAGGAACTAGCAATTCACTCACAATGGGTTGAGATCA
    Antirrhinum majus ATAAACATGGTTGATAAGCTTCAAATGAGGA
    Gln35Term TCCTCATTTGAAGCTTATCAACCATGTTTATTGATGTCAACCCATTG 1738
    GAG-TAG TGAGTGAATTGCT A GTTCCTGAGGCCAACCTGGGCCAAGTTTGTTT
    TAGTATCCGGTGAAGACGTTGCTCCACC
    TCAGGAAC T AGCAATTC 1739
    GAATTGCT A GTTCCTGA 1740
    Waxy starch GGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAGGTT 1741
    GBSS GGCCTCAGGAACCAG T AATTCACTCACAATGGGTTGAGATCAATAA
    Antirrhinum majus ACATGGTTGATAAGCTTCAAATGAGGAACA
    Gln36Term TGTTCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCA 1742
    CAA-TAA TTGTGAGTGAATT A CTGGTTCCTGAGGCCAACCTGGGCCAAGTTT
    GTTTTAGTATCCGGTGAAGACGTTGCTCC
    GGAACCAG T AATTCACT 1743
    AGTGAATT A CTGGTTCC 1744
    Waxy starch GTGATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTG 1745
    GBSS GGGGTGCCACTTCTTGAGAATCAAAAGTGGGGTTGGGTCAATTAG
    Ipomoea batatas CCCTGAGGAGCCAAGCTGTGACTCACAATG
    Gly20Term CATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCAACC 1746
    GGA-TGA CCACTTTTGATTCTC A AGAAGTGGCACCCCCACAGACATGAGAAA
    CAAAGTGTGAGGCAGTTATAGTCGCCATCAC
    CCACTTCT T GAGAATCA 1747
    TGATTCTC A AGAAGTGG 1748
    Waxy starch ATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGG 1749
    GBSS GTGCCACTTCTGGA T AATCAAAAGTGGGGTTGGGTCAATTAGCCC
    Ipomoea batatas TGAGGAGCCAAGCTGTGACTCACAATGGGT
    Glu21Term ACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCA 1750
    GAA-TAA ACCCCACTTTTGATT A TCCAGAAGTGGCACCCCCACAGACATGAG
    AAACAAAGTGTGAGGCAGTTATAGTCGCCAT
    CTTCTGGA T AATCAAAA 1751
    TTTTGATT A TCCAGAAG 1752
    Waxy starch CGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGC 1753
    GBSS CACTTCTGGAGAAT G AAAAGTGGGGTTGGGTCAATTAGCCCTGAG
    Ipomoea batatas GAGCCAAGCTGTGACTCACAATGGGTTGAG
    Ser22Term CTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGA 1754
    TCA-TGA CCCAACCCCACTTTT C ATTCTCCAGAAGTGGCACCCCCACAGACAT
    GAGAAACAAAGTGTGAGGCAGTTATAGTCG
    TGGAGAAT G AAAAGTGG 1755
    CCACTTTT C ATTCTCCA 1756
    Waxy starch ACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCA 1757
    GBSS CTTCTGGAGAATCA T AAGTGGGGTTGGGTCAATTAGCCCTGAGGA
    Ipomoea batatas GCCAAGCTGTGACTCACAATGGGTTGAGAC
    Lys23Term GTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATT 1758
    AAA-TAA GACCCAACCCCACTT A TGATTCTCCAGAAGTGGCACCCCCACAGA
    CATGAGAAACAAAGTGTGAGGCAGTTATAGT
    GAGAATCA T AAGTGGGG 1759
    CCCCACTT A TGATTCTC 1760
    Waxy starch CCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCACTTCTGGAGA 1761
    G BSS ATCAAAAGTGGGGT A GGGTCAATTAGCCCTGAGGAGCCAAGCTGT
    Ipomoea batatas GACTCACAATGGGTTGAGACCTGTGAACAA
    Leu26Term TTGTTCACAGGTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCA 1762
    TTG-TAG GGGCTAATTGACCC T ACCCCACTTTTGATTCTCCAGAAGTGGCACC
    CCCACAGACATGAGAAACAAAGTGTGAGG
    AGTGGGGT A GGGTCAAT 1763
    ATTGACCC T ACCCCACT 1764
    Waxy starch CATCGGCGATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACG 1765
    GBSS GTGACGGGGTCTTA G GTGGTGTCGAGAAGCGCGTGCTTCAATTCC
    Astragalus CAGGGAAGAACAGAAGCCAAAGTGAATTCA
    membranaeus TGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGAAGCACGCG 1766
    Tyr8Term CTTCTCGACACCAC C TAAGACCCCGTCACCGTTGCCATTCTGTGA
    TAT-TAG GAGAGCAGTAAGGAGCAACAATCGCCGATG
    GGGTCTTA G GTGGTGTC 1767
    GACACCAC C TAAGACCC 1768
    Waxy starch ATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGG 1769
    GBSS GGTCTTATGTGGTGT A GAGAAGCGCGTGCTTCAATTCCCAGGGAA
    Astragalus GAACAGAAGCCAAAGTGAATTCACCTCAGAA
    membranaeus TTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGA 1770
    Ser11Term AGCACGCGCTTCTCTACACCACATAAGACCCCGTCACCGTTGCCA
    TCG-TAG TTCTGTGAGAGAGCAGTAAGGAGCAACAAT
    TGTGGTGT A GAGAAGCG 1771
    CGCTTCTC T ACACCACA 1772
    Waxy starch TGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGGGG 1773
    GBSS TCTTATGTGGTGTCGTGAAGCGCGTGCTTCAATTCCCAGGGAAGA
    Astragalus ACAGAAGCCAAAGTGAATTCACCTCAGAAGA
    membranaeus TCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATT 1774
    Arg12Term GAAGCACGCGCTTC A CGACACCACATAAGACCCCGTCACCGTTGC
    AGA-TGA CATTCTGTGAGAGAGCAGTCAGGAGCAACA
    TGGTGTCG T GAAGCGCG 1775
    CGCGCTTC A CGACACCA 1776
    Waxy starch ACTGCTCTCTCACAGAATGGCAACGGTGACGGGGTCTTATGTGGT 1777
    GBSS GTCGAGAAGCGCGTG A TTCAATTCCCAGGGAAGAACAGAAGCCAA
    Astragalus AGTGAATTCACCTCAGAAGATAAATCTGAAT
    membranaeus ATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTC 1778
    Cys15Term CCTGGGAATTGAATCACGCGCTTCTCGACACCACATAAGACCCCG
    TGC-TGA TCACCGTTGCCATTCTGTGAGAGAGCAGT
    AGCGCGTG A TTCAATTC 1779
    GAATTGAA T CACGCGCT 1780
    Waxy starch CACAGAATGGCAACGGTGACGGGGTCTTATGTGGTGTCGAGAAG 1781
    GBSS CGCGTGGTTCAATTCCTAGGGAAGAACAGAAGCCAAAGTGAATTC
    Astragalus ACCTCAGAAGATAAATCTCAATAGCCAAGCAT
    membranaeus ATGCTTGGCTATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCT 1782
    Gln19Term TCTGTTCTTCCCTAGGAATTGAAGCACGCGCTTCTCGACACCACAT
    CAG-TAG AAGACCCCGTCACCGTTGCCATTCTGTG
    TCAATTCC T AGGGAAGA 1783
    TCTTCCCT A GGAATTGA 1784
    Waxy starch TGTAGCTTGGTAGATTCCCCTTTTTGTCGACCACACATCACATGGC 1785
    GBSS AAGCATCACAGCTT G ACACCACTTTGTGTCAAGAAGCCAAACTTCA
    Solanum tuberosum CTAGACACCAAATCAACCTTGTCACAGAT
    Ser7Term ATCTGTGACAAGGTTGATTTGGTGTCTAGTGAAGTTTGGCTTCTTG 1786
    TCA-TGA ACACAAAGTGGTGT C AAGCTGTGATGCTTGCCATGTGATGTGTGG
    TCTACAAAAAGGGGAATCTACCAAGCTACA
    CACAGCTT G ACACCACT 1787
    AGTGGTGT C AAGCTGTG 1788
    Waxy starch TCCCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTC 1789
    GBSS ACACCACTTTGTGT G AAGAAGCCAAACTTCACTAGACACCAAATCA
    Solanum tuberosum ACCTTGTCACAGATAGGACTCAGGAACCA
    Ser12Term TGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAGTG 1790
    TCA-TGA AAGTTTGGCTTCTT C ACACAAAGTGGTGTGAAGCTGTGATGCTTGC
    CATGTGATGTGTGGTCTACAAAAAGGGGA
    CTTTGTGT G AAGAAGCC 1791
    GGCTTCTT C ACACAAAG 1792
    Waxy starch CCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTCAC 1793
    GBSS ACCACTTTGTGTCATGAAGCCAAACTTCACTAGACACCAAATCAAC
    Solanum tuberosum CTTGTCACAGATAGGACTCAGGAACCATA
    Arg13Term TATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAG 1794
    AGA-TGA TGAAGTTTGGCTTC A TGACACAAAGTGGTGTGAAGCTGTGATGCTT
    GCCATGTGATGTGTGGTCTACAAAAAGGG
    TTGTGTCA T GAAGCCAA 1795
    TTGGCTTC A TGACACAA 1796
    Waxy starch TTGTAGACCACACATCACATGGCAAGCATCACAGCTTCACACCACT 1797
    GBSS TTGTGTCAAGAAGCTAAACTTCACTAGACACCAAATCAACCTTGTC
    Solanum tuberosum ACAGATAGGACTCAGGAACCATACTCTGA
    Gln15Term TCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGT 1798
    CAA-TAA GTCTAGTGAAGTTT A GCTTCTTGACACAAAGTGGTGTGAAGCTGTG
    ATGCTTGCCATGTGATGTGTGGTCTACAA
    CAAGAAGC T AAACTTCA 1799
    TGAAGTTT A GCTTCTTG 1800
    Waxy starch CCACACATCACATGGCAAGCATCACAGCTTCACACCACTTTGTGTC 1801
    GBSS AAGAAGCCAAACTT G ACTAGACACCAAATCAACCTTGTCACAGATA
    Solanum tuberosum GGACTCAGGAACCATACTCTGACTCACAA
    Sen17Term TTGTGAGTCAGAGTCTGGTTCCTGAGTCCTATCTGTGACAAGGTTG 1802
    TCA-TGA ATTTGGTGTCTAGT C AAGTTTGGCTTGTTGACACAAAGTGGTGTGA
    AGCTGTGATGCTTGCCATGTGATGTGTGG
    CCAAACTT G ACTAGACA 1803
    TGTCTAGT C AAGTTTGG 1804
    Waxy starch GTCGATCACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAA 1805
    GBSS TGGCAACAATAACG T GATCTTCAATGCCGACGAGAACCGCGTGCT
    Pisum sativum TCAATTACCAAGGAAGATCAGCAGAGTCTA
    Gly6Term TAGACTCTGCTGATCTTCCTTGGTCATTGAAGCACGCGGTTCTCGT 1806
    GGA-TGA CGGCATTGAAGATC A CGTTATTGTTGCCATTTTTGTGTCAAAATCT
    GTTTCGGCGGTGAGAGAAGAGTGATCGAC
    CAATAACG T GATCTTCA 1807
    TGAAGATC A CGTTATTG 1808
    Waxy starch ACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAATGGCAAC 1809
    GBSS AATAACGGGATCTT G AATGCCGACGAGAACCGCGTGCTTCAATTA
    Pisum sativum CCAAGGAAGATCAGCAGAGTCTAAACTGAA
    Ser8Term TTCAGTTTAGACTCTGCTGATCTTCCTTGGTCATTGAAGCACGCGG 1810
    TCA-TGA TTCTCGTCGGCATT C AAGATCCCGTTATTGTTGCCATTTTTGTGTCA
    AAATCTGTTTCGGCGGTGAGAGAAGAGT
    GGGATCTT G AATGCCGA 1811
    TCGGCATT C AAGATCCC 1812
    Waxy starch ACCGCCGAAACAGATTTTGACACAAAAATGGCAACAATAACGGGA 1813
    GBSS TCTTCAATGCCGACG T GAACCGCGTGCTTCAATTACCAAGGAAGA
    Pisum sativum TCAGCAGAGTCTAAACTGAATTTGCCTCAGA
    Arg12Term TCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTTCCTTGGTCATT 1814
    AGA-TGA GAAGCACGCGGTTC A CGTCGGCATTGAAGATCCCGTTATTGTTGC
    CATTTTTGTGTCAAAATCTGTTTCGGCGGT
    TGCCGACG T GAACCGCG 1815
    CGCGGTTC A CGTCGGCA 1816
    Waxy starch AGATTTTGACACAAAAATGGCAACAATAACGGGATCTTCAATGCCG 1817
    GBSS ACGAGAACCGCGTG A TTCAATTACCAAGGAAGATCAGCAGAGTCT
    Pisum sativum AAACTGAATTTGCCTCAGATACACTTCAAT
    Cys15Term ATTGAAGTGTCTCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTT 1818
    TGC-TGA CCTTGGTCATTGAA T CACGCGGTTCTCGTCGGCATTGAAGATCCC
    GTTATTGTTGCCATTTTTGTGTCAAAATCT
    ACCGCGTG A TTCAATTA 1819
    TAATTGAA T CACGCGGT 1820
    Waxy starch CACAAAAATGGCAACAATAACGGGATCTTCAATGCCGACGAGAAC 1821
    GBSS CGCGTGCTTCAATTA G CAAGGAAGATCAGCAGAGTCTAAACTGAA
    Pisum sativum TTTGCCTCAGATACACTTCAATAACAACCAA
    Tyr18Term TTGGTTGTTATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCT 1822
    TAC-TAG GCTGATCTTCCTTG C TAATTGAAGCACGCGGTTCTCGTCGGCATTG
    AAGATCCCGTTATTGTTGCCATTTTTGTG
    TTCAATTA G CAAGGAAG 1823
    CTTCCTTG C TAATTGAA 1824
    Waxy starch TCTACACCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATT 1825
    GBSS TCGTTTCCAGGAGCT G ACACTTGAGCATCCATGCATTAGAGACTAA
    Manihot esculenta GGCTAATAATTTGTCTCACACTGGACCCTG
    Ser14Term CAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTAATGCAT 1826
    TCA-TGA GGATGCTCAAGTGT C AGCTCCTGGAAACGAAATGTGCAGCTATTA
    CAGTTGCCATGGTGCTCTCTCCGGTGTAGA
    CAGGAGCT G ACACTTGA 1827
    TCAAGTGT C AGCTCCTG 1828
    Waxy starch CCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATTTCGTTT 1829
    GBSS CCAGGAGCTCACACT A GAGCATCCATGCATTAGAGACTAAGGCTA
    Manihot esculenta ATAATTTGTCTCACACTGGACCCTGGACCCA
    Leu16Term TGGGTCCAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTA 1830
    TTG-TAG ATGCATGGATGCTC T AGTGTGAGCTCCTGGAAACGAAATGTGCAG
    CTATTACAGTTGCCATGGTGCTCTCTCCGG
    CTCACACT A GAGCATCC 1831
    GGATGCTC T AGTGTGAG 1832
    Waxy starch TGGCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTT 1833
    GBSS GAGCATCCATGCAT G AGAGACTAAGGCTAATAATTTGTCTCACACT
    Manihot esculenta GGACCCTGGACCCAAACTATCACTCCCAA
    Leu21Term TTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAATTA 1834
    TTA-TGA TTAGCCTTAGTCTCT C ATGCATGGATGCTCAAGTGTGAGCTCCTGG
    AAACGAAATGTGCAGCTATTACAGTTGCCA
    CCATGCAT G AGAGACTA 1835
    TAGTCTCT C ATGCATGG 1836
    Waxy starch GCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGA 1837
    GBSS GCATCCATGCATTA T AGACTAAGGCTAATAATTTGTCTCACACTGG
    Manihot esculenta ACCCTGGACCCAAACTATCACTCCCAATG
    Glu22Term CATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAAT 1838
    GAG-TAG TATTAGCCTTAGTCT A TAATGCATGGATGCTCAAGTGTGAGCTCCT
    GGAAACGAAATGTGCAGCTATTACAGTTGC
    ATGCATTA T AGACTAAG 1839
    CTTAGTCT A TAATGCAT 1840
    Waxy starch GTCATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGAGCATCC 1841
    GBSS ATGCATTAGAGACT T AGGCTAATAATTTGTCTCACACTGGACCCTG
    Manihot esculenta GACCCAAACTATCACTCCCAATGGTTTAA
    Lys24Term TTAAACCATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAG 1842
    AAG-TAG ACAAATTATTAGCCT A AGTCTCTAATGCATGGATGCTCAAGTGTGA
    GCTCCTGGAAACGAAATGTGCAGCTATTAC
    TAGAGACT T AGGCTAAT 1843
    ATTAGCCT A AGTCTCTA 1844
    Waxy starch ACAACTCCTCCGTCACCGGTATAAGCATGGCAACGGTATCGATGG 1845
    GBSS CATCGTGCGTGGCGT G AAAAGGCGCGTGGAGTACAGAGACAAAA
    Phaseolus vulgaris GTGAAATCTTCGGGTCAGATGAGCCTGAACCG
    Ser12Term CGGTTCAGGCTCATCTGACCCGAAGATTTCACTTTTGTCTCTGTCC 1846
    TCA-TGA TCCACGCGCCTTTT C ACGCCACGCACGATGCCATCGATACCGTTG
    CCATGCTTATACCGGTGACGGAGGAGTTGT
    CGTGGCGT G AAAAGGCG 1847
    CGCCTTTT C ACGCCACG 1848
    Waxy starch CACCGGTCTAAGCATGGCAACGGTATCGATGGCATCGTGCGTGGC 1849
    GBSS GTCAAAAGGCGCGTG A AGTACAGAGACAAAAGTGAAATCTTCGGG
    Phaseolus vulgaris TCAGATGAGCCTGAACCGTCATGAATTGAAA
    Trp16Term TTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGATTTCACT 1850
    TGG-TGA TTTGTCTCTGTACT T CACGCGCCTTTTGACGCCACGCACGATGCCA
    TCGATACCGTTGGCATGCTTATACCGGTG
    GGCGCGTG A AGTACAGA 1851
    TCTGTACT T CACGCGCC 1852
    Waxy starch ATAAGCATGGCAACGGTCTCGATGGCATCGTGCGTGGCGTCAAAA 1853
    GBSS GGCGCGTGGAGTACA T AGACAAAAGTGAAATCTTCGGGTCAGATG
    Phaseolus vulgaris AGCCTGAACCGTCATGAATTGAAATACGATG
    Glu19Term CATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGA 1854
    GAG-TAG TTTCACTTTTGTCT A TGTACTCCACGCGCCTTTTGACGCCACGCAC
    GATGCCATCGATACCGTTGCCATGCTTAT
    GGAGTACA T AGACAAAA 1855
    TTTTGTCT A TGTACTCC 1856
    Waxy starch ATGGCAACGGTATCGATGGCATCGTGCGTGGGGTCAAAAGGCGC 1857
    GBSS GTGGAGTACAGAGACA T AAGTGAAATCTTCGGGTCAGATGAGCCT
    Phaseolus vulgaris GAACCGTCATGAATTGAAATACGATGGGTTGA
    Lys21Term TCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACC 1858
    AAA-TAA CGAAGATTTCACTT A TGTCTCTGTACTCCACGCGCCTTTTGACGCC
    ACGCACGATGCCATCGATACCGTTGCCAT
    CAGAGACA T AAGTGAAA 1859
    TTTCACTT A TGTCTCTG 1860
    Waxy starch ACGGTATCGATGGCATCGTGCGTGGCGTCAAAAGGCGCGTGGAG 1861
    GBSS TACAGAGACAAAAGTG T AATCTTCGGGTCAGATGAGCCTGAACCG
    Phaseolus vulgaris TCATGAATTGAAATACGATGGGTTGAGATCTC
    Lys23Term GAGATCTCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCAT 1862
    AAA-TAA CTGACCCGAAGATT A CACTTTTGTCTCTGTACTCCACGCGCCTTTT
    GACGCCACGCACGATGCCATCGATACCGT
    CAAAAGTG T AATCTTCG 1863
    CGAAGATT A CACTTTTG 1864
    Waxy starch GCGCCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGG 1865
    GBSS GTTCCATTCCTAATTA G TGTTCTTATCAAACAAACAGTGTTGGTTCA
    Triticum aestivum CTGAAACTGTCGCCTCACATCCAATTCCAG
    Tyr7Term CTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACTGTT 1866
    TAT-TAG TGTTTGATAAGAACA C TAATTAGGAATGGAACCCATTGGTGCAGCC
    TCTCAATGACGACCTTTTCGAGCTAGGCGC
    CCTAATTA G TGTTCTTA 1867
    TAAGAACA C TAATTAGG 1868
    Waxy starch CCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTC 1869
    GBSS CATTCCTAATTATTG A TCTTATCAAACAAACAGTGTTGGTTCACTGA
    Triticum aestivum AACTGTCGCCTCACATCCAATTCCAGCAA
    Cys8Term TTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACT 1870
    TGT-TGA GTTTGTTTGATAAGA T CAATAATTAGGAATGGAACCCATTGGTGCA
    GCCTCTCAATGACGACCTTTTCGAGCTAGG
    AATTATTG A TCTTATCA 1871
    TGATAAGA T CAATAATT 1872
    Waxy starch TCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCC 1873
    GBSS TAATTATTGTTCTTA G CAAACAAACAGTGTTGGTTCACTGAAACTGT
    Triticum aestivum CGCCTCACATCCAATTCCAGCAATCTTGT
    Tyr10Term ACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACC 1874
    TAT-TAG AACACTGTTTGTTTG C TAAGAACAATAATTAGGAATGGAACCCATT
    GGTGCAGCCTCTCAATGACGACCTTTTCGA
    TGTTCTTA G CAAACAAA 1875
    TTTGTTTG C TAAGAACA 1876
    Waxy starch CGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCCT 1877
    GBSS AATTATTGTTCTTAT T AAACAAACAGTGTTGGTTCACTGAAACTGTC
    Triticum aestivum GCCTCACATCCAATTCCAGCAATCTTGTA
    Gln11Term TACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAAC 1878
    CAA-TAA CAACACTGTTTGTTT A ATAAGAACAATAATTAGGAATGGAACCCATT
    GGTGCAGCCTCTCAATGACGACCTTTTCG
    GTTCTTAT T AAACAAAC 1879
    GTTTGTTT A ATAAGAAC 1880
    Waxy starch AGGCTGCACCAATGGGTTCCATTCCTAATTATTGTTCTTATCAAACA 1881
    GBSS AACAGTGTTGGTT G ACTGAAACTGTCGCCTCACATCCAATTCCAGC
    Triticum aestivum AATCTTGTCACAATGAAGTTATGTTCCT
    Ser17Term AGGAACATAACTTCATTGTTACAAGATTGCTGGAATTGGATGTGAG 1882
    TCA-TGA GCGACAGTTTCAGT C AACCAACACTGTTTGTTTGATAAGAACAATA
    ATTAGGAATGGAACCCATTGGTGCAGCCT
    TGTTGGTT G ACTGAAAC 1883
    GTTTCAGT C AACCAACA 1884
    Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1885
    GBSS CCGGCGTGCAGGTTTC T AGGGCGTGAGGCCCCGGAGCCCGGCG
    Triticum aestivum GATGCGGCTCTCGGCATGAGGACCGTCGGAGCTA
    Gln28Term TAGCTCCGACGGTCCTCATGCCGAGAGCCGCATCCGCCGGGCTC 1886
    CAG-TAG CGGGGCCTCACGCCCT A GAAACCTGCACGCCGGAACCTGTCGGT
    GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
    CAGGTTTC T AGGGCGTG 1887
    CACGCCCT A GAAACCTG 1888
    Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCGGATGCGGCTCT 1889
    GBSS CGGCATGAGGACCGTC T GAGCTAGCGCCGCCCCAACGCAAAGCC
    Triticum aestivum GGAAAGCGCACCGCGGGACCCGGCGGTGCCTCT
    Gly46Term AGAGGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGCGTT 1890
    GGA-TGA GGGGCGGCGCTAGCTC A GACGGTCCTCATGCCGAGAGCCGCATC
    CGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC
    GGACCGTC T GAGCTAGC 1891
    GCTAGCTC A GACGGTCC 1892
    Waxy starch CGGAGCCCGGCGGATGCGGCTCTCGGCATGAGGACCGTCGGAG 1893
    GBSS CTAGCGCCGCCCCAACG T AAAGCCGGAAAGCGCACCGCGGGACC
    Triticum aestivum CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACCG
    Gln53Term CGGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1894
    CAA-TAA GTGCGCTTTCCGGCTTT A CGTTGGGGCGGCGCTAGCTCCGACGG
    TCCTCATGCCGAGAGCCGCATCCGCCGGGCTCCG
    CCCCAACG T AAAGCCGG 1895
    CCGGCTTT A CGTTGGGG 1896
    Waxy starch GCGGATGCGGCTCTCGGCATGAGGACCGTCGGAGCTAGCGCCGC 1897
    GBSS CCCAACGCAAAGCCGG T AAGCGCACCGCGGGACCCGGCGGTGC
    Triticum aestivum CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCG
    Lys56Term CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1898
    AAA-TAA GGTCCCGCGGTGCGCTT A CCGGCTTTGCGTTGGGGCGGCGCTAG
    CTCCGACGGTCCTCATGCCGAGAGCCGCATCCGC
    AAAGCCGG T AAGCGCAC 1899
    GTGCGCTT A CCGGCTTT 1900
    Waxy starch CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCGGCATGAACCT 1901
    GBSS CGTGTTCGTCGGCGCC T AGATGGCGCCCTGGACCAAGACCGGCG
    Triticum aestivum GCCTCGGCGACGTCCTCGGGGGCCTCCCCCCAG
    Glu85Term CTGGGGGGAGGCCCCCGAGGACGTCGCCGAGGCCGCCGGTCTT 1902
    GAG-TAG GCTCCAGGGCGCCATCT A GGCGCCGACGAACACGAGGTTCATGC
    CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAG
    TCGGCGCC T AGATGGCG 1903
    CGCCATCT A GGCGCCGA 1904
    Waxy starch GTGGTCTCTCGCTGCAGGTAGCCACACCCTGCGCGCGCGATGGC 1905
    GBSS GGCTCTGGTCACGTCG T AGCTCGCCACCTCCGGCACCGTCCTCG
    Triticum aestivum GCATCACCGACAGGTTCCGGCGTGCAGGTTTTC
    Gln8Term GAAAACCTGCACGCCGGAACCTGTCGGTGATGCCGAGGACGGTG 1906
    CAG-TAG CCGGAGGTGGCGAGCT A CGACGTGACCAGAGCCGCCATCGCGC
    GCGCAGGGTGTGGCTACCTGCAGCGAGAGACGAC
    TCACGTCG T AGCTCGCC 1907
    GGCGAGCT A CGACGTGA 1908
    Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1909
    GBSS CCGGCGTGCAGGTTTT T AGGGTGTGAGGCCCCGGAGCCCGGCAG
    Triticum aestivum ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA
    Gln28Term TCGCTCCGGTCGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC 1910
    GAG-TAG CGGGGCCTCACACCCT A AAAACCTGCACGCCGGAACCTGTCGGT
    GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
    CAGGTTTT T AGGGTGTG 1911
    CACACCCT A AAAACCTG 1912
    Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG 1913
    GBSS AGCGAGCGCCGCCCCG T AGCAACAAAGCCGGAAAGCGCACCGCG
    Triticum aestivum GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG
    Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC 1914
    AAG-TAG TTTCCGGCTTTGTTGCT A CGGGGCGGCGCTCGCTCCGGTAGTCCT
    CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG
    CCGCCCCG T AGCAACAA 1915
    TTGTTGCT A CGGGGCGG 1916
    Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1917
    GBSS CGAGCGCCGCCCCGAAG T AACAAAGCCGGAAAGCGCACCGCGG
    Triticum aestivum GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA
    Gln53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG 1918
    CAA-TAA CGCTTTCCGGCTTTGTT A CTTCGGGGCGGCGCTCGCTCCGGTAGT
    CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG
    CCCCGAAG T AACAAAGC 1919
    GCTTTGTT A CTTCGGGG 1920
    Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG 1921
    GBSS CGCCGCCCCGAAGCAA T AAAGCCGGAAAGCGCACCGCGGGACCC
    Triticum aestivum GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG
    Gln54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1922
    CAA-TAA GTGCGCTTTCCGGCTTT A TTGCTTCGGGGCGGCGCTCGCTCCGGT
    AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT
    CGAAGCAA T AAAGCCGG 1923
    CCGGCTTT A TTGCTTCG 1924
    Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1925
    GBSS CCGGCGTGCAGGTTTC T AGGGCGTGAGGCCCCGGAACCCGGCG
    Triticum durum GATGCGGCCCTCGTCATGAGGACTATCGGAGCGA
    Gln28Term TCGCTCCGATAGTCCTCATGACGAGGGCCGCATCCGCCGGGTTC 1926
    CAG-TAG CGGGGCCTCACGCCCT A GAAACCTGCACGCCGGAACCTGTCGGT
    GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
    CAGGTTTC T AGGGCGTG 1927
    CACGCCCT A GAAACCTG 1928
    Waxy starch CCCCGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGG 1929
    GBSS AGCGAGCGCCGCCCCG T AGCAAAGCCGGAAAGCGCACCGCGGG
    Triticum durum AGCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA
    Lys52Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCGGTG 1930
    AAG-TAG CGCTTTCCGGCTTTGCT A CGGGGCGGCGCTCGCTCCGATAGTCCT
    CATGACGAGGGCCGCATCCGCCGGGTTCCGGGG
    CCGCCCCG T AGCAAAGC 1931
    GCTTTGCT A CGGGGCGG 1932
    Waxy starch CGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGGAGC 1933
    GBSS GAGCGCCGCCCCGAAG T AAAGCCGGAAAGCGCACCGCGGGAGC
    Triticum durum CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG
    Gln53Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCG 1934
    CAA-TAA GTGCGCTTTCCGGCTTT A CTTCGGGGCGGCGCTCGCTCCGATAGT
    CCTCATGACGAGGGCCGCATCCGCCGGGTTCCG
    CCCCGAAG T AAAGCCGG 1935
    CCGGCTTT A CTTCGGGG 1936
    Waxy starch GCGGATGCGGCCCTCGTCATGAGGACTATCGGAGCGAGCGCCGC 1937
    GBSS CCCGAAGCAAAGCCGG T AAGCGCACCGCGGGAGCCGGCGGTGC
    Triticum durum CTCTCCATGGTGGTGCGCGCCACGGGCAGCGGCG
    Lys56Term CGCCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1938
    AAA-TAA GCTCCCGCGGTGCGCTT A CCGGCTTTGCTTCGGGGCGGGGCTCG
    CTCCGATAGTCCTCATGACGAGGGCCGCATCCGC
    AAAGCCGG T AAGCGCAC 1939
    GTGCGCTT A CCGGCTTT 1940
    Waxy starch TATCGGAGCGAGCGCCGCCCCGAAGCAAAGCCGGAAAGCGCACC 1941
    GBSS GCGGGAGCCGGCGGTG A CTCTCCATGGTGGTGCGCGCCACGGG
    Triticum durum CAGCGGCGGCATGAACCTCGTGTTCGTCGGCGCC
    Cys64Term GGCGCCGACGAACACGAGGTTCATGCCGCCGCTGCCCGTGGCGC 1942
    TGC-TGA GCACCACCATGGAGAG T CACCGCCGGCTCCCGCGGTGCGCTTTC
    CGGCTTTGCTTCGGGGCGGCGCTCGCTCCGATA
    CGGCGGTG A CTCTCCAT 1943
    ATGGAGAG T CACCGCCG 1944
    Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1945
    GBSS CCGGCGTGCAGGTTTT T AGGGTGTGAGGCCCCGGAGCCCGGCAG
    Triticum turgidum ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA
    Gln28Term TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCGGGGCTC 1946
    CAG-TAG CGGGGCCTCACACCCT A AAAACGTGCACGCCGGAACCTGTCGGT
    GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
    CAGGTTTT T AGGGTGTG 1947
    CACACCCT A AAAACCTG 1948
    Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG 1949
    GBSS AGCGAGCGCCGCCCCG T AGCAACAAAGCCGGAAAGCGCACCGCG
    Triticum turgidum GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG
    Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC 1950
    AAG-TAG TTTCCGGCTTTGTTGCT A CGGGGCGGCGCTCGCTCCGGTAGTCCT
    CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG
    CCGCCCCG T AGCAACAA 1951
    TTGTTGCT A CGGGGCGG 1952
    Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1953
    GBSS CGAGCGCCGCCCCGAAG T AACAAAGCCGGAAAGCGCACCGCGG
    Triticum turgidum GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA
    Gln53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG 1954
    CAA-TAA CGCTTTCCGGCTTTGTT A CTTCGGGGCGGCGCTCGCTCCGGTAGT
    CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG
    CCCCGAAG T AACAAAGC 1955
    GCTTTGTT A CTTCGGGG 1956
    Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG 1957
    GBSS CGCCGCCCCGAAGCAA T AAAGCCGGAAAGCGCACCGCGGGACCC
    Triticum turgidum GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG
    Gln54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1958
    CAA-TAA GTGCGCTTTCCGGCTTT A TTGCTTCGGGGCGGCGCTCGCTCCGGT
    AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT
    CGAAGCAA T AAAGCCGG 1959
    CCGGCTTT A TTGCTTCG 1960
    Waxy starch GATGCGCCGCTCGGCATGAGGACTACCGGAGCGAGCGCCGCCCC 1961
    GBSS GAAGCAACAAAGCCGG T AAGCGCACCGCGGGACCCGGCGGTGC
    Triticum turgidum CTCTCCATGGTGGTGCGCGCCACGGGCAGCGCCG
    Lys57Term CGGCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1962
    AAA-TAA GGTCCCGCGGTGCGCTT A CCGGCTTTGTTGCTTCGGGGCGGCGC
    TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATC
    AAAGCCGG T AAGCGCAC 1963
    GTGCGCTT A CCGGCTTT 1964
    Waxy starch CAGCTCGCCACCTCCGCCACCGTCCTCGGCATCACCGACAGGTTC 1965
    GBSS CGCCATGCAGGTTTC T AGGGCGTGAGGCCCCGGAGCCCGGCAGA
    Aegilops speltoides TGCGCCGCTCGGCATGAGGACTGTCGGAGCGA
    Gln28Term TCGCTCCGACAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC 1966
    CAG-TAG CGGGGCCTCACGCCCT A GAAACCTGCATGGCGGAACCTGTCGGT
    GATGCCGAGGACGGTGGCGGAGGTGGCGAGCTG
    CAGGTTTC T AGGGCGTG 1967
    CACGCCCT A GAAACCTG 1968
    Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCAGATGCGCCGCT 1969
    GBSS CGGCATGAGGACTGTC T GAGCGAGCGCCGCCCCGAAGCAACAAA
    Aegilops speltoides GCCGGAAAGCGCACCGCGGGACCCGGCGGTGCC
    Gly46Term GGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGTTGCTTC 1970
    GGA-TGA GGGGCGGCGCTCGCTC A GACAGTCCTCATGCCGAGCGGCGCATC
    TGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC
    GGACTGTC T GAGCGAGC 1971
    GCTCGCTC A GACAGTCC 1972
    Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGG 1973
    GBSS AGCGAGCGCCGCCCCG T AGCAACAAAGCCGGAAAGCGCACCGCG
    Aegilops speltoides GGACCCGGCGGTGCCTCTCGATGGTGGTGCGCG
    Lys52Term CGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTGCGCT 1974
    AAG-TAG TTCCGGCTTTGTTGCT A CGGGGCGGCGCTCGCTCCGACAGTCCTC
    ATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG
    CCGCCCCG T AGCAACAA 1975
    TTGTTGCT A CGGGGCGG 1976
    Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAG 1977
    GBSS CGAGCGCCGCCCCGAAG T AACAAAGCCGGAAAGCGCACCGCGG
    Aegilops speltoides GACCCGGCGGTGCCTCTCGATGGTGGTGCGCGCCA
    Gln53Term TGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTG 1978
    CAA-TAA CGCTTTCCGGCTTTGTT A CTTCGGGGCGGCGCTCGCTCCGACAGT
    CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG
    CCCCGAAG T AACAAAGC 1979
    GCTTTGTT A CTTCGGGG 1980
    Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAGCGAG 1981
    GBSS CGCCGCCCCGAAGCAA T AAAGCCGGAAAGCGCACCGCGGGACCC
    Aegilops speltoides GGCGGTGCCTCTCGATGGTGGTGCGCGCCACCG
    Gln54Term CGGTGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCG 1982
    CAA-TAA GTGCGCTTTCCGGCTTT A TTGCTTCGGGGCGGCGCTCGCTCCGAC
    AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT
    CGAAGCAA T AAAGCCGG 1983
    CCGGCTTT A TTGCTTCG 1984
    Waxy starch AGTGCAGAGATCTTCCACAGCAACAGCTAGACAACCACCATGTCG 1985
    GBSS GCTCTCACCACGTCC T AGCTCGCCACCTCGGCCACCGGCTTCGG
    Oryza glaberrima CATCGCTGACAGGTCGGCGCCGTCGTCGCTGC
    Gln8Term GCAGCGACGACGGCGCCGACCTGTCAGCGATGCCGAAGCCGGT 1986
    GAG-TAG GGCCGAGGTGGCGAGCT A GGACGTGGTGAGAGCCGACATGGTG
    GTTGTCTAGCTGTTGCTGTGGAAGATCTCTGCACT
    CCACGTCC T AGCTCGCC 1987
    GGCGAGCT A GGACGTGG 1988
    Waxy starch TCCACAGCAACAGCTAGACAACCACCATGTCGGCTCTCACCACGT 1989
    GBSS CCCAGCTCGCCACCT A GGCCACCGGCTTCGGCATCGCTGACAGG
    Oryza glaberrima TCGGCGCCGTCGTCGCTGCTCCGCCACGGGTT
    Ser12Term AACCCGTGGCGGAGCAGCGACGACGGCGCCGACCTGTCAGCGAT 1990
    TCG-TAG GCCGAAGCCGGTGGCC T AGGTGGCGAGCTGGGACGTGGTGAGA
    GCCGACATGGTGGTTGTCTAGCTGTTGCTGTGGA
    CGCCACCT A GGCCACCG 1991
    CGGTGGCC T AGGTGGCG 1992
    Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC 1993
    GBSS GGCATCGCTGACAGGT A GGCGCCGTCGTCGCTGCTCCGCCACGG
    Oryza glaberrima GTTCCAGGGCCTCAAGCCCCGCAGCCCCGCCGG
    Ser22Term CCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACCCGTGGCGGA 1994
    TCG-TAG GCAGCGACGACGGCGCC T ACCTGTCAGCGATGCCGAAGCCGGTG
    GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG
    TGACAGGT A GGCGCCGT 1995
    ACGGCGCC T ACCTGTCA 1996
    Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCT 1997
    GBSS GACAGGTCGGCGCCGT A GTCGCTGCTCCGCCACGGGTTCCAGGG
    Oryza glaberrima CCTCAAGCCCCGCAGCCCCGCCGGCGGCGACGC
    Ser25Term GCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACC 1998
    TCG-TAG CGTGGCGGAGCAGCGAC T ACGGCGCCGACCTGTCAGCGATGCCG
    AAGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG
    GGCGCCGT A GTCGCTGC 1999
    GCAGCGAC T ACGGCGCC 2000
    Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCTGAC 2001
    GBSS AGGTCGGCGCCGTCGT A GCTGCTCCGCCACGGGTTCCAGGGCCT
    Oryza glaberrima CAAGCCCCGCAGCCCCGCCGGCGGCGACGCGAC
    Ser26Term GTCGCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGA 2002
    TCG-TAG ACCCGTGGCGGAGCAGC T ACGACGGCGCCGACCTGTCAGCGATG
    CCGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG
    GCCGTCGT A GCTGCTCC 2003
    GGAGCAGC T ACGACGGC 2004
    Waxy starch TCCACAGCAAGAGCTAAACAGCCGACCGTGTGCACCACCATGTCG 2005
    GBSS GCTGTCACCACGTCC T AGCTCGCCACCTCGGCCACCGGCTTCGG
    Oryza sativa CATCGCCGACAGGTCGGCGCCGTCGTCGCTGG
    Gln8Term GCAGCGACGACGGCGCCGACCTGTCGGCGATGCCGAAGCCGGT 2006
    CAG-TAG GGCCGAGGTGGCGAGCT A GGACGTGGTGAGAGCCGACATGGTG
    GTGCACACGGTCGGCTGTTTAGCTCTTGCTGTGGA
    CCACGTCC T AGCTCGCC 2007
    GGCGAGCT A GGACGTGG 2008
    Waxy starch CTAAACAGCCGACCGTGTGCACCACCATGTCGGCTCTCACCACGT 2009
    GBSS CCCAGCTCGCCACCT A GGCCACCGGCTTCGGCATCGCCGACAGG
    Oryza sativa TCGGCGCCGTCGTCGCTGCTTCGCCACGGGTT
    Ser12Term AACCCGTGGCGAAGCAGCGACGACGGCGCCGACCTGTCGGCGAT 2010
    TCG-TAG GCCGAAGCCGGTGGCC T AGGTGGCGAGCTGGGACGTGGTGAGA
    GCCGACATGGTGGTGCACACGGTCGGCTGTTTAG
    CGCCACCT A GGCCACCG 2011
    CGGTGGCC T AGGTGGCG 2012
    Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC 2013
    GBSS GGCATCGCCGACAGGT A GGCGCCGTCGTCGCTGCTTCGCCACGG
    Oryza sativa GTTCCAGGGCCTCAAGCCCCGTAGCCCAGCCGG
    Ser22Term CCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCCGTGGCGAA 2014
    TCG-TAG GGAGCGACGACGGCGCC T ACCTGTCGGCGATGCCGAAGCCGGTG
    GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG
    CGACAGGT A GGCGCCGT 2015
    ACGGCGCC T ACCTGTCG 2016
    Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCC 2017
    GBSS GACAGGTCGGCGCCGT A GTCGCTGCTTCGCCACGGGTTCCAGGG
    Oryza sativa CCTCAAGCCCCGTAGCCCAGCCGGCGGGGACGC
    Ser25Term GCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCC 2018
    TCG-TAG GTGGCGAAGCAGCGAC T ACGGCGCCGACCTGTCGGCGATGCCGA
    AGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG
    GGCGCCGT A GTCGCTGC 2019
    GCAGCGAC T ACGGCGCC 2020
    Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCCGAC 2021
    GBSS AGGTCGGCGCCGTCGT A GCTGCTTCGCCACGGGTTCCAGGGCCT
    Oryza sativa CAAGCCCCGTAGCCCAGCCGGCGGGGACGCATC
    Ser26Term GATGCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAA 2022
    TCG-TAG CCCGTGGCGAAGCAGC T ACGACGGCGCCGACCTGTCGGCGATGC
    CGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG
    GCCGTCGT A GCTGCTTC 2023
    GAAGCAGC T ACGACGGC 2024
    Waxy starch GTCTCTCACTGCAGGTAGCCACACCCTGTGCGCGGCGCCATGGC 2025
    GBSS GGCTCTGGCCACGTCC T AGCTCGCCACCTCCGGCACCGTCCTCG
    Hordeum vulgare GCGTCACCGACAGATTCCGGCGTCCAGGTTTTC
    Gln8Term GAAAACCTGGACGCCGGAATCTGTCGGTGACGCCGAGGACGGTG 2026
    GAG-TAG CCGGAGGTGGCGAGCT A GGACGTGGCCAGAGCCGGCATGGCGC
    CGCGCACAGGGTGTGGCTACCTGCAGTGAGAGAC
    CCACGTCC T AGCTCGCC 2027
    GGCGAGCT A GGACGTGG 2028
    Waxy starch ATGGCGGCTCTGGCCACGTCCCAGCTCGCCACGTCCGGCACCGT 2029
    GBSS CCTCGGCGTCACCGAC T GATTCCGGCGTCCAGGTTTTGAGGGCCT
    Hordeum vulgare CAGGCCCCGGAACCCGGCGGATGCGGCGCTTG
    Arg21Term CAAGCGCGGCATCCGCCGGGTTCCGGGGCCTGAGGCCGTGAAAA 2030
    AGA-TGA CCTGGACGCCGGAATC A GTCGGTGACGCCGAGGACGGTGCCGG
    AGGTGGCGAGCTGGGACGTGGCCAGAGCCGCCAT
    TCACCGAC T GATTCCGG 2031
    CCGGAATC A GTCGGTGA 2032
    Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCGTCACCGACAGATT 2033
    GBSS CCGGCGTCCAGGTTTT T AGGGCCTCAGGCCCCGGAACCCGGCGG
    Hordeum vulgare ATGCGGCGCTTGGTCTGAGGACTATCGGAGCAA
    Gln28Term TTGCTCCGATAGTCCTCATACCAAGCGCCGCATCCGCCGGGTTCC 2034
    CAG-TAG GGGGCCTGAGGCCCT A AAAACCTGGACGCCGGAATCTGTCGGTG
    ACGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
    CAGGTTTT T AGGGCCTC 2035
    GAGGCCCT A AAAACCTG 2036
    Waxy starch GGTTTTCAGGGCCTCAGGCCGCGGAACCCGGCGGATGCGGCGCT 2037
    GBSS TGGTATGAGGACTATCTGAGCAAGCGCCGCCCCGAAGCAAAGGC
    Hordeum vulgare GGAAAGCGGACCGCGGGAGCCGGCGGTGCCTCT
    Gly46Term AGAGGCACCGCCGGCTCCCGCGGTGCGCTTTCCGGCTTTGCTTC 2038
    GGA-TGA GGGGCGGCGCTTGCTC A GATAGTCCTCATACCAAGCGCCGCATC
    CGCCGGGTTCCGGGGCCTGAGGCCCTGAAAACC
    GGACTATC T GAGCAAGC 2039
    GCTTGCTC A GATAGTCC 2040
    Waxy starch CCCCGGAACCCGGCGGATGCGGCGCTTGGTATGAGGACTATCGG 2041
    GBSS AGCAAGCGCCGCCCCG T AGCAAAGCCGGAAAGCGCACCGCGGG
    Hordeum vulgare AGCCGGCGGTGCCTCTCCGTGGTGGTGAGCGCCA
    Lys52Term TGGCGCTCACCACCACGGAGAGGCACCGCCGGCTCCCGCGGTGC 2042
    AAG-TAG GCTTTGCGGCTTTGCT A CGGGGCGGCGCTTGCTCCGATAGTCCTC
    ATACCAAGCGCCGCATCCGCCGGGTTCCGGGG
    CCGCCCCG T AGCAAAGC 2043
    GCTTTGCT A CGGGGCGG 2044
    Waxy starch ACGTCTTTTCTCTCTCTCCTACGCAGTGGATTAATCGGCATGGCGG 2045
    GBSS CTCTGGCCACGTCG T AGCTCGTCGCAACGCGGGCCGGCCTGGGC
    Zea mays GTCCCGGACGCGTCCACGTTCCGCCGCGGCG
    Gln8Term CGCCGCGGCGGAACGTGGACGCGTCCGGGACGCCCAGGCCGGC 2046
    GAG-TAG GCGCGTTGCGACGAGCT A CGACGTGGCCAGAGCCGCCATGCCGA
    TTAATCCACTGCGTAGGAGAGAGAGAAAAGACGT
    CCACGTCG T AGCTCGTC 2047
    GACGAGCT A CGACGTGG 2048
    Waxy starch GTCGCAACGCGCGCCGGCCTGGGCGTCCCGGACGCGTCCACGTT 2049
    GBSS CCGCCGCGGCGCCGCG T AGGGCCTGAGGGGGGCCCGGGCGTCG
    Zea mays GCGGGGGCGGACACGCTCAGCATGCGGACCAGCG
    Gln30Term CGCTGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGCCCGG 2050
    CAG-TAG GCCCCCCTCAGGCCCT A CGCGGCGCCGCGGCGGAACGTGGACG
    CGTCCGGGACGCCCAGGCCGGCGCGCGTTGCGAC
    GCGCCGCG T AGGGCCTG 2051
    CAGGCCCT A CGCGGCGC 2052
    Waxy starch TCCCGGACGCGTCCACGTTCCGCCGCGGCGCCGCGCAGGGCCT 2053
    GBSS GAGGGGGGCCCGGGCGT A GGCGGCGGCGGACACGCTCAGCATG
    Zea mays CGGACCAGCGCGCGCGCGGCGCCCAGGCACCAGCA
    Ser38Term TGCTGGTGCCTGGGCGCCGCGCGCGCGCTGGTCCGCATGCTGAG 2054
    TCG-TAG CGTGTCCGCCGCCGCC T ACGCCCGGGCCCCCCTCAGGCCCTGCG
    CGGCGCCGCGGCGGAACGTGGACGCGTCCGGGA
    CCGGGCGT A GGCGGCGG 2055
    CCGCCGCC T ACGCCCGG 2056
    Waxy starch GCGTCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGC 2057
    GBSS GCGCGGCGCCCAGGCAC T AGCAGCAGGCGCGCCGCGGGGGCAG
    Zea mays GTTCCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCA
    Ser57Term TGCCGGCGCTGGCGCACACGACGAGCGACGGGAACCTGCCCCC 2058
    GAG-TAG GCGGCGCGCCTGCTGCT A GTGCCTGGGCGCCGCGCGCGCGCTG
    GTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGC
    CCAGGCAC T AGCAGCAG 2059
    CTGCTGCT A GTGCCTGG 2060
    Waxy starch TCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGCGCG 2061
    GBSS CGGCGCCCAGGCACCAG T AGCAGGCGCGCCGCGGGGGCAGGTT
    Zea mays CCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCATGA
    Gln58Term TCATGCCGGGGCTGGCGCACACGACGAGCGACGGGAACCTGCCC 2062
    CAG-TAG CCGCGGCGCGCCTGCT A CTGGTGCCTGGGCGCCGCGCGCGCGC
    TGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGA
    GGCACCAG T AGCAGGCG 2063
    CGCCTGCT A CTGGTGCC 2064
  • EXAMPLE 11 Altering Fatty Acid Content of Plants
  • Improved means to manipulate fatty acid compositions, from biosynthetic or natural plant sources, are needed. For example, oils containing reduced saturated fatty acids are desired for dietary reasons and oils containing increased saturated fatty acids are also needed as alternatives to current sources of highly saturated oil products, such as tropical oils or chemically hydrogenated oils. It would therefore be advantageous to influence directly the production and composition of fatty acids in crop plants. [0143]
  • Higher plants synthesize fatty acids, primarily palmitic, stearic and oleic acids, in the plastids (i.e., chloroplasts, proplastids, or other related organelles) as part of the Fatty Acid Synthase (FAS) complex. Fatty acid synthesis is the result of the three enzymatic activities: acyl-ACP elongase, acyl-ACP desaturase and acyl-ACP thioesterases specific for each of palmitoyl-, stearoyl- and oleoyl-ACP. [0144]
  • A variety of enzymes have been identified that influence the relative levels of saturated vs. unsaturated fatty acids in plants. For example, the enzymes stearoyl-acyl carrier protein (stearoyl-ACP) desaturase, oleoyl desaturase and linoleate desaturase produce unsaturated fatty acids from saturated precursors. Similarly, relative enzymatic activities of the various acyl-ACP thioesterases influences the relative acyl-chain composition of the resultant fatty acids. Consequently a reduction or an increase of the activity of these enzymes can alter the properties of oils produced in a plant. In fact, specific targeting of particular enzymatic activities can results in altered levels of particular fatty acids. [0145]
  • The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes encoding proteins involved in fatty acid biosynthesis. [0146]
    TABLE 22
    Oligonucleotides to produce plants with reduced palmitate
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Reduced palmitate TTTGGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGC 2065
    Acyl-ACP-thioesterase CACCTCTGCTACGT A GTCATTCTTTCCTGTACCATCTTCTTCACTTG
    Arabidopsis thaliana ATCCTAATGGAAAAGGCAATAAGATTGG
    Ser8Term CCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATGGTA 2066
    TCG-TAG CAGGAAAGAATGAC T ACGTCGCAGAGGTGGCCACCATGACGAGG
    AGATGAAGCGTTCAAAGACACTGCCACCAAA
    TGCTACGT A GTCATTCT 2067
    AGAATGAC T ACGTAGCA 2068
    Reduced palmitate GGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGCCA 2069
    Acyl-ACP-thioesterase CCTCTGCTACGTCGT G ATTCTTTCCTGTACCATCTTCTTCACTTGAT
    Arabidopsis thaliana CCTAATGGAAAAGGCAATAAGATTGGGTC
    Ser9Term GACCCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATG 2070
    TCA-TGA GTACAGGAAAGAAT C ACGACGTAGCAGAGGTGGCCACCATGACG
    AGGAGATGAAGCGTTCAAAGACACTGCCACC
    TACGTCGT G ATTCTTTC 2071
    GAAAGAAT C ACGACGTA 2072
    Reduced palmitate ATCTCCTCGTCATGGTGGCCACCTCTGCTACGTCGTCATTCTTTCC 2073
    Acyl-ACP-thioesterase TGTACCATCTTCTT G ACTTGATCCTAATGGAAAAGGCAATAAGATT
    Arabidopsis thaliana GGGTCTACGAATCTTGCTGGACTCAATTC
    Ser17Term GAATTGAGTCCAGCAAGATTCGTCGACCCAATCTTATTGCCTTTTC 2074
    TCA-TGA CATTAGGATCAAGT C AAGAAGATGGTCCAGGAAAGAATGACGACG
    TAGCAGAGGTGGCCACCATGACGAGGAGAT
    ATCTTCTT G ACTTGATC 2075
    GATCAAGT C AAGAAGAT 2076
    Reduced palmitate GTGGCCACCTCTGCTACGTCGTCATTCTTTCCTGTACCATCTTCTT 2077
    Acyl-AGP-thioesterase CACTTGATCCTAAT T GAAAAGGCAATAAGATTGGGTCTACGAATCT
    Arabidopsis thaliana TGCTGGACTCAATTCTGCACCTAACTCTG
    Gly22Term CAGAGTTAGGTGCAGAATTGAGTCCAGCAAGATTCGTCGACCCAA 2078
    GGA-TGA TCTTATTGCCTTTTC A ATTAGGATCAAGTGAAGAAGATGGTCCAGG
    AAAGAATGACGACGTAGCAGAGGTGGCCAC
    ATCCTAAT T GAAAAGGC 2079
    GCCTTTTC A ATTAGGAT 2080
    Reduced palmitate GCTTGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGC 2081
    Acyl-ACP-thioesterase TACTGCCGCCACGT G ATCATTCTTTCCGTTGACTTCCCCTTCTGGG
    Garcinia mangostana GATGCCAAATCGGGCAATCCCGGAAAAGG
    Ser8Term CCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAAGTC 2082
    TCA-TGA AACGGAAAGAATGAT C ACGTGGCGGCAGTAGCAACCATTGTGGCC
    ACAATTAACCAATCAGATCACAAATTCAAGC
    CGCCACGT G ATCATTCT 2083
    AGAATGAT C ACGTGGCG 2084
    Reduced palmitate TGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGCTAC 2085
    Acyl-ACP-thioesterase TGCCGCCACGTCAT G ATTCTTTCCGTTGACTTCCCCTTCTGGGGAT
    Garcinia mangostana GCCAAATCGGGCAATCCCGGAAAAGGGTC
    Ser9Term GACCCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAA 2086
    TCA-TGA GTCAACGGAAAGAAT C ATGACGTGGCGGCAGTAGCAACCATTGTG
    GCCACAATTAACCAATCAGATCACAAATTCA
    CACGTCAT G ATTCTTTC 2087
    GAAAGAAT C ATGACGTG 2088
    Reduced palmitate CTGATTGGTTAATTGTGGCCACAATGGTTGCTACTGCCGCCACGT 2089
    Acyl-ACP-thioesterase CATCATTCTTTCCGT A GACTTCCCCTTCTGGGGATGCCAAATCGGG
    Garcinia mangostana CAATCCCGGAAAAGGGTCGGTGAGTTTTGG
    Leu13Term CCAAAACTCACCGACCCTTTTCCGGGATTGCCCGATTTGGCATCC 2090
    TTG-TAG CCAGAAGGGGAAGTC T ACGGAAAGAATGATGACGTGGCGGCAGT
    AGCAACCATTGTGGCCACAATTAACCAATCAG
    CTTTCCGT A GACTTCCC 2091
    GGGAAGTC T ACGGAAAG 2092
    Reduced palmitate ATGGTTGCTACTGCCGCCACGTCATCATTCTTTCCGTTGACTTCCC 2093
    Acyl-ACP-thioesterase CTTCTGGGGATGCC T AATCGGGCAATCCCGGAAAAGGGTCGGTG
    Garcinia mangostana AGTTTTGGGTCAATGAAGTCGAAATCCGCGG
    Lys21Term CCGCGGATTTCGACTTCATTGACCCAAAACTCACCGACCCTTTTCC 2094
    AAA-TAA GGGATTGCCCGATT A GGCATCCCCAGAAGGGGAAGTCAACGGAA
    AGAATGATGACGTGGCGGCAGTCGCAACCAT
    GGGATGCC T AATCGGGC 2095
    GCCCGATT A GGCATCCC 2096
    Reduced palmitate GGGATTTCAGCACGAAATTGAAGTTGTTTTTAAAAACCATGGTTGC 2097
    Acyl-ACP-thioesterase TACTGCTGTGACAT A GGCGTTTTTCCCAGTCACTTCTTCACCTGAC
    Gossypium hirsutum TCCTCTGACTCGAAAAACAAGAAGCTCGG
    Ser8Term CCGAGCTTCTTGTTTTTCGAGTCAGAGGAGTCAGGTGAAGAAGTG 2098
    TCG-TAG ACTGGGAAAAACGCC T ATGTCACAGCAGTAGCAACCATGGTTTTTA
    AAAACAACTTCAATTTCGTGCTGAAATCCC
    TGTGACAT A GGCGTTTT 2099
    AAAACGCC T ATGTCACA 2100
    Reduced palmitate TGTTTTTAAAAACCATGGTTGCTACTGCTGTGACATCGGCGTTTTT 2101
    Acyl-ACP-thioesterase CCCAGTCACTTCTT G ACCTGACTCCTCTGACTCGAAAAACAAGAAG
    Gossypium hirsutum CTCGGAAGCATCAAGTCGAAGCCATCGGT
    Ser16Term ACCGATGGCTTCGACTTGATGCTTCCGAGCTTCTTGTTTTTCGAGT 2102
    TCA-TGA CAGAGGAGTCAGGT C AAGAAGTGACTGGGAAAAACGCCGATGTCA
    CAGCAGTAGCAACCATGGTTTTTAAAAACA
    CACTTCTT G ACCTGACT 2103
    AGTCAGGT C AAGAAGTG 2104
    Reduced palmitate TTGCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACC 2105
    Acyl-ACP-thioesterase TGACTCCTCTGACT A GAAAAACAAGAAGCTCGGAAGCATCAAGTC
    Gossypium hirsutum GAAGCCATCGGTTTCTTCTGGAAGTTTGCA
    Ser22Term TGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCCG 2106
    TCG-TAG AGCTTCTTGTTTTTC T AGTCAGAGGAGTCAGGTGAAGAAGTGACTG
    GGAAAAACGCCGATGTCACAGCAGTCGCAA
    CTCTGACT A GAAAAACA 2107
    TGTTTTTC T AGTCAGAG 2108
    Reduced palmitate GCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACCTG 2109
    Acyl-ACP-thioesterase ACTCCTCTGACTCG T AAAACAAGAAGCTCGGAAGCATCAAGTCGA
    Gossypium hirsutum AGCCATCGGTTTGTTCTGGAAGTTTGCAAG
    Lys23Term CTTGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCC 2110
    AAA-TAA GAGCTTCTTGTTTT A CGAGTCAGAGGAGTCAGGTGAAGAAGTGAC
    TGGGAAAAACGCCGATGTCACAGCAGTAGC
    CTGACTCG T AAAACAAG 2111
    CTTGTTTT A GGAGTCAG 2112
    Reduced palmitate CTCCCGCTCGTTGAAAGACAATGGTGGCTACCGCTGCAAGCTCTG 2113
    Acyl-ACP-thioesterase CATTCTTCCCCGTGT A GTCCCCGGTCACCTCCTCTAGACCAGGAA
    Cuphea hookeriana AGCCCGGAAATGGGTCATCGAGCTTCAGCCC
    Ser14Term GGGCTGAAGCTCGATGACCCATTTCCGGGCTTTCCTGGTCTAGAG 2114
    TCG-TAG GAGGTGACCGGGGAC T ACACGGGGAAGAATGCAGAGCTTGCAGC
    GGTAGCCACCATTGTCTTTCAACGAGCGGGAG
    CCCCGTGT A GTCCCCGG 2115
    CCGGGGAC T ACACGGGG 2116
    Reduced palmitate ATGGTGGCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCC 2117
    Acyl-ACP-thioesterase CCGGTCACCTCCTCT T GACCAGGAAAGCCCGGAAATGGGTCATCG
    Cuphea hookeriana AGCTTCAGCCCCATCAAGCCCAAATTTGTCG
    Arg21Term CGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACCCATTTC 2118
    AGA-TGA CGGGCTTTCCTGGTC A AGAGGAGGTGACCGGGGACGACACGGG
    GAAGAATGCAGAGCTTGCAGCGGTAGCCACCAT
    CCTCCTCT T GACCAGGA 2119
    TCCTGGTC A AGAGGAGG 2120
    Reduced palmitate GCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTC 2121
    Acyl-ACP-thioesterase ACCTCCTCTAGACCA T GAAAGCCCGGAAATGGGTCATCGAGCTTC
    Cuphea hookeriana AGCCCCATCAAGCCCAAATTTGTCGCCAATG
    Gly23Term CATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACC 2122
    GGA-TGA CATTTCCGGGCTTTC A TGGTCTAGAGGAGGTGACCGGGGACGAC
    ACGGGGAAGAATGCAGAGCTTGCAGCGGTAGC
    CTAGACCA T GAAAGCCC 2123
    GGGCTTTC A TGGTCTAG 2124
    Reduced palmitate ACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTCACC 2125
    Acyl-ACP-thioesterase TCCTCTAGACCAGGA T AGCCCGGAAATGGGTCATGGAGCTTCAGC
    Cuphea hookeriana CCCATCAAGCCCAAATTTGTCGCCAATGGCG
    Lys24Term CGCCATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATG 2126
    AAG-TAG ACCCATTTCCGGGCT A TCCTGGTCTAGAGGAGGTGACCGGGGAC
    GACACGGGGAAGAATGCAGAGCTTGCAGCGGT
    GACCAGGA T AGCCCGGA 2127
    TCCGGGCT A TCCTGGTC 2128
    Reduced palmitate GCCACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGAC 2129
    Acyl-ACP-thioesterase ACCTCCTCTAGGCCG T GAAAGCTGGGAAATGGGTCATCGAGCTTG
    Cuphea lanceolata AGCCCCCTCAAGCCCAAATTTGTCGCCAATG
    Gly23Term CATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGATGACC 2130
    GGA-TGA CATTTCCGAGCTTTC A CGGCCTAGAGGAGGTGTCCGGGGACGGC
    AGGGGGAAGAATGCAGAACTTGCAGCGGTGGC
    CTAGGCCG T GAAAGCTC 2131
    GAGCTTTC A CGGCCTAG 2132
    Reduced palmitate ACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACC 2133
    Acyl-ACP-thioesterase TCCTCTAGGCCGGGA T AGCTCGGAAATGGGTCATCGAGCTTGAGC
    Cuphea lanceolata CCCCTCAAGCCCAAATTTGTCGCCAATGCCG
    Lys24Term CGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGAT 2134
    AAG-TAG GACCCATTTCCGAGCT A TCCCGGCCTAGAGGAGGTGTCCGGGGA
    CGGCAGGGGGAAGAATGCAGAACTTGCAGCGGT
    GGCCGGGA T AGCTCGGA 2135
    TCCGAGCT A TCCCGGCC 2136
    Reduced palmitate GCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCT 2137
    Acyl-ACP-thioesterase AGGCCGGGAAAGCTC T GAAATGGGTCATCGAGCTTGAGCCCCCT
    Cuphea lanceolata CAAGCCCAAATTTGTCGCCAATGCCGGGTTGA
    Gly26Term TCAACCCGGCATTGGCGACAAATTTGGGGTTGAGGGGGCTCAAGC 2138
    GGA-TGA TCGATGACCCATTTC A GAGCTTTCCCGGCCTAGAGGAGGTGTCCG
    GGGACGGCAGGGGGAAGAATGCAGAACTTGC
    GAAAGCTC T GAAATGGG 2139
    CCCATTTC A GAGCTTTC 2140
    Reduced palmitate CATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCTAGGCCGGGAA 2141
    Acyl-ACP-thioesterase AGCTCGGAAATGGGT G ATCGAGCTTGAGCCCCCTCAAGCCCAAAT
    Cuphea lanceolata TTGTCGCCAATGCCGGGTTGAAGGTTAAGGC
    Ser29Term GCCTTAACCTTCAACCCGGCATTGGCGACAAATTTGGGCTTGAGG 2142
    TCA-TGA GGGCTCAAGCTCGAT C ACCCATTTCCGAGCTTTCCCGGCCTAGAG
    GAGGTGTCCGGGGACGGCAGGGGGAAGAATG
    AAATGGGT G ATCGAGCT 2143
    AGCTCGAT C ACCCATTT 2144
    Reduced palmitate CGTTTAAGTGGATCGGACATTTAAGTGTTTTAATCATGGTAGCTAT 2145
    Acyl-ACP-thioesterase GAGTGCTACTGCGT A GCTGTTTCCGGTTTCTTCCCCAAAACCTCAC
    Helianthus annuus TCTGGAGCCAAGACATCTGATAAGCTTGG
    Ser9Term CCAAGCTTATCAGATGTCTTGGCTCCAGAGTGAGGTTTTGGGGAA 2146
    TCG-TAG GAAACCGGAAACAGC T ACGCAGTCGCACTCATAGCTACCATGATT
    AAAACACTTAAATGTCCGATCCACTTAAACG
    TACTGCGT A GCTGTTTC 2147
    GAAACAGC T ACGCAGTA 2148
    Reduced palmitate AGTGTTTTAATCATGGTCGCTATGAGTGCTACTGCGTCGCTGTTTC 2149
    Acyl-ACP-thioesterase CGGTTTCTTCCCCA T AACCTCACTCTGGAGCCAAGACATCTGATAA
    Helianthus annuus GCTTGGAGGTGAACCAGGTAGTGTTGCTG
    Lys17Term CAGCAACACTACCTGGTTCACCTCCAAGCTTATCAGATGTCTTGGC 2150
    AAA-TAA TCCAGAGTGAGGTT A TGGGGAAGAAACCGGAAACAGCGACGCAG
    TAGCACTCATAGCTACCATGATTAAAACACT
    CTTCCCCA T AACCTCAC 2151
    GTGAGGTT A TGGGGAAG 2152
    Reduced palmitate ATGGTAGCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCC 2153
    Acyl-ACP-thioesterase CAAAACCTCACTCT T GAGCCAAGACATCTGATAAGCTTGGAGGTG
    Helianthus annuus AACCAGGTAGTGTTGCTGTGCGCGGAATCA
    Gly21Term TGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAGCTTATC 2154
    GGA-TGA AGATGTCTTGGCTC A AGAGTGAGGTTTTGGGGAAGAAACCGGAAA
    CAGCGACGCAGTAGCACTCATAGCTACCAT
    CTCACTCT T GAGCCAAG 2155
    CTTGGCTC A AGAGTGAG 2156
    Reduced palmitate GCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCCCAAAAC 2157
    Acyl-ACP-thioesterase CTCACTCTGGAGCCT A GACATCTGATAAGCTTGGAGGTGAACCAG
    Helianthus annuus GTAGTGTTGCTGTGCGCGGAATCAAGACAA
    Lys23Term TTGTCTTGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAG 2158
    AAG-TAG CTTATCAGATGTCT A GGCTCCAGAGTGAGGTTTTGGGGAAGAAAC
    CGGAAACAGCGACGCAGTCGCACTCATAGC
    CTGGAGCC T AGACATCT 2159
    AGATGTCT A GGCTCCAG 2160
    Reduced palmitate ATGGTGGCTGCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCC 2161
    Acyl-ACP-thioesterase CCAGGAGCCTCCCCT T AACCTGGGAAGTTAGGCAACTGGTCATCG
    Cuphea palustris AGTTTGAGCCCTTCCTTGAAGCCCAAGTCAA
    Lys21Term TTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATGACCAGTTGC 2162
    AAA-TAA CTAACTTCCCAGGTT A AGGGGAGGCTCCTGGGGATGGAACAGGG
    AAGCATGCAGAACTTGCTGCAGCAGCCACCAT
    CCTCCCCT T AACCTGGG 2163
    CCCAGGTT A AGGGGAGG 2164
    Reduced palmitate GCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCCCCAGGAGCC 2165
    Acyl-ACP-thioesterase TCCCCTAAACCTGGG T AGTTAGGCAACTGGTCATCGAGTTTGAGC
    Cuphea palustris CCTTCCTTGAAGCCCAAGTCAATCCCCAATG
    Lys24Term CATTGGGGATTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATG 2166
    AAG-TAG ACCAGTTGCCTAACT A CCCAGGTTTAGGGGAGGCTCCTGGGGATG
    GAACAGGGAAGCATGCAGAACTTGCTGCAGC
    AACCTGGG T AGTTAGGC 2167
    GCCTAACT A CCCAGGTT 2168
    Reduced palmitate TGCATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGG 2169
    Acyl-ACP-thioesterase GAAGTTAGGCAACTG A TCATCGAGTTTGAGCCCTTCCTTGAAGCC
    Cuphea palustris CAAGTCAATCCCCAATGGCGGATTTCAGGTT
    Trp28Term AACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAAGG 2170
    TGG-TGA GCTCAAACTCGATGA T CAGTTGCCTAACTTCCCAGGTTTAGGGGA
    GGCTCCTGGGGATGGAACAGGGAAGCATGCA
    GGCAACTG A TCATCGAG 2171
    CTCGATGA T CAGTTGCC 2172
    Reduced palmitate CATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGGGA 2173
    Acyl-ACP-thioesterase AGTTAGGCAACTGGT G ATCGAGTTTGAGCCCTTCCTTGAAGCCCA
    Cuphea palustris AGTCAATCCCCAATGGCGGATTTCAGGTTAA
    Ser29Term TTAACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAA 2174
    TCA-TGA GGGCTCAAACTCGAT C ACCAGTTGCCTAACTTCCCAGGTTTAGGG
    GAGGCTCCTGGGGATGGAACAGGGAAGCATG
    CAACTGGT G ATCGAGTT 2175
    AACTCGAT C ACCAGTTG 2176
    Reduced paimitate ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACC 2175
    Acyl-ACP-thioesterase CCGGGAATCTCCCCT T AACCCGGGAAGTTCGGTAATGGTGGCTTT
    Cuphea hookeriana CAGGTTAAGGCAAACGCCAATGCCCATCCTA
    Lys21Term TAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGCCACCATTAC 2178
    AAA-TAA CGAACTTCCCGGGTT A AGGGGAGATTCCCGGGGTTGGAACGGAG
    AAGAATGCAGAACTTGCTGCGGCAGCCACCAT
    TCTCCCCT T AACCCGGG 2179
    CCCGGGTT A AGGGGAGA 2180
    Reduced palmitate GCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACCCCGGGAATC 2181
    Acyl-ACP-thioesterase TCCCCTAAACCCGGG T AGTTCGGTAATGGTGGCTTTCAGGTTAAG
    Cuphea hookeriana GCAAACGCCAATGCCCATCCTAGTCTAAAGT
    Lys24Term ACTTTAGACTAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGC 2182
    AAG-TAG CACCATTACCGAACT A CCCGGGTTTAGGGGAGATTCCCGGGGTTG
    GAACGGAGAAGAATGCAGAACTTGCTGCGGC
    AACCCGGG T AGTTCGGT 2183
    ACCGAACT A CCCGGGTT 2184
    Reduced palmitate TTCTCCGTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTC 2185
    Acyl-ACP-thioesterase GGTAATGGTGGCTTT T AGGTTAAGGCAAACGCCAATGCCCATCCT
    Cuphea hookeriana AGTCTAAAGTCTGGCAGCCTCGAGACTGAAG
    Gln31Term CTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGGCATTGG 2186
    CAG-TAG CGTTTGCCTTAACCT A AAAGCCACCATTACCGAACTTCCCGGGTTT
    AGGGGAGATTCCCGGGGTTGGAACGGAGAA
    GTGGCTTT T AGGTTAAG 2187
    CTTAACCT A AAAGCCAC 2188
    Reduced palmitate GTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTCGGTAAT 2189
    Acyl-ACP-thioesterase GGTGGCTTTCAGGTT T AGGCAAACGCCAATGCCCATCCTAGTCTA
    Cuphea hookeriana AAGTCTGGCAGCCTCGAGACTGAAGATGACA
    Lys33Term TGTCATCTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGG 2190
    AAG-TAG CATTGGCGTTTGCCT A AACCTGAAAGCCACCATTACCGAACTTCCC
    GGGTTTAGGGGAGATTCCCGGGGTTGGAAC
    TTCAGGTT T AGGCAAAC 2191
    GTTTGCCT A AACCTGAA 2192
    Reduced palmitate ATGTTGAAGCTCTCGTGTAATGCGACTGATAAGTTACAGACCCTCT 2193
    Acyl-ACP-thioesterase TCTCGCATTCTCAT T AACCGGATCCGGCACACCGGAGAACCGTCT
    Brassica rapa CCTCCGTGTCGTGCTCTCATCTGAGGAAAC
    Gln21Term GTTTCCTCAGATGAGAGCACGACACGGAGGAGACGGTTCTCCGGT 2194
    CAA-TAA GTGCCGGATCCGGTT A ATGAGAATGCGAGAAGAGGGTCTGTAACT
    TATCAGTCGCATTACACGAGAGCTTCAACAT
    ATTCTCAT T AACCGGAT 2195
    ATCCGGTT A ATGAGAAT 2196
    Reduced palmitate GCGACTGATAAGTTACAGACCCTCTTCTCGCATTCTCATCAACCGG 2197
    Acyl-ACP-thioesterase ATCCGGCACACCGG T GAACCGTCTCCTCCGTGTCGTGCTCTCATC
    Brassica rapa TGAGGAAACCGGTTCTCGATCCTTTGCGAG
    Arg28Term CTCGCAAAGGATCGAGAACCGGTTTCCTCAGATGAGAGCACGACA 2198
    AGA-TGA CGGAGGAGACGGTTC A CCGGTGTGCCGGATCCGGTTGATGAGAA
    TGCGAGAAGAGGGTCTGTAACTTATCAGTCGC
    CACACCGG T GAACCGTC 2199
    GACGGTTC A CCGGTGTG 2200
    Reduced palmitate CCCTCTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAA 2201
    Acyl-ACP-thioesterase CCGTCTCCTCCGTGT A GTGCTCTCATCTGAGGAAACCGGTTCTCG
    Brassica rapa ATCCTTTGCGAGCGATCGTATCTGCTGATCA
    Ser24Term TGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGGTTTC 2202
    TCG-TAG CTCAGATGAGAGCAC T ACACGGAGGAGACGGTTCTCCGGTGTGC
    CGGATCCGGTTGATGAGAATGCGAGAAGAGGG
    CTCCGTGT A GTGCTCTC 2203
    GAGAGCAC T ACACGGAG 2204
    Reduced palmitate CTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAACCGT 2205
    Acyl-ACP-thioesterase CTCCTCCGTGTCGTG A TCTCATCTGAGGAAACCGGTTCTCGATCC
    Brassica rapa TTTGCGAGCGATCGTATCTGCTGATCAAGGA
    Cys25Term TCCTTGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGG 2206
    TGC-TGA TTTCCTCAGATGAGA T CACGACACGGAGGAGACGGTTCTCCGGTG
    TGCCGGATCCGGTTGATGAGAATGCGAGAAG
    GTGTCGTG A TCTCATCT 2207
    AGATGAGA T CACGACAC 2208
    Reduced palmitate ATTCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGG 2209
    Acyl-ACP-thioesterase GCATCAAAAATGT A GAAGCTTTCGTGTAATGTGACTAACAACTTAC
    Brassica napus ACACCTTCTCCTTCTTCTCCGATTCCTC
    Leu2Term GAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCACA 2210
    TTG-TAG TTACACGAAAGCTTC T ACATTTTTGATGCCCTTTTTTTTTTATGGTTC
    CTGAGGTTTTGGTTTATAGAAGAAGAAT
    AAAAATGT A GAAGCTTT 2211
    AAAGCTTC T ACATTTTT 2212
    Reduced palmitate TCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGG 2213
    Acyl-ACP-thioesterase CATCAAAAATGTTG T AGCTTTCGTGTAATGTGACTAACAACTTACAC
    Brassica napus ACCTTCTCCTTCTTCTCCGATTCCTCCC
    Lys3Term GGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCA 2214
    AAG-TAG CATTACACGAAAGCT A CAACATTTTTGATGCCCTTTTTTTTTTATGG
    TTCCTGAGGTTTTGGTTTATAGAAGAAGA
    AAATGTTG T AGCTTTCG 2215
    CGAAAGCT A CAACATTT 2216
    Reduced palmitate CTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAA 2217
    Acyl-ACP-thioesterase AATGTTGAAGCTTT A GTGTAATGTGACTAACAACTTACACACCTTCT
    Brassica napus CCTTCTTCTCCGATTCCTCCCTTTTCAT
    Ser5Term ATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTT 2218
    TCG-TAG GTTAGTCACATTACAC T AAAGCTTCAACATTTTTGATGCCCTTTTTT
    TTTTATGGTTCCTGAGGTTTTGGTTTATAG
    GAAGCTTT A GTGTAATG 2219
    CATTACAC T AAAGCTTC 2220
    Reduced palmitate AAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAAAATG 2221
    Acyl-ACP-thioesterase TTGAAGCTTTCGTG A AATGTGACTAACAACTTACACACCTTCTCCTT
    Brassica napus CTTCTCCGATTCCTCCCTTTTCATCCCG
    Cys6Term CGGGATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTA 2222
    TGT-TGA AGTTGTTAGTCACATT T CACGAAAGCTTCAACATTTTTGATGCCCTT
    TTTTTTTTATGGTTCCTGAGGTTTTGGTTT
    CTTTCGTG A AATGTGAC 2223
    GTCACATT T CACGAAAG 2224
  • [0147]
    TABLE 23
    Oligonucleotides to produce plants with increased stearate
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Increased stearate GGGAGAGCTCTAGCTCTGTAGAAAAGAAGGATTCATTCATCATATC 2225
    stearoyl-ACP CAGAAATGGCTCTA T AGTTTAACCCTTTGGTGGCATCTCAGCCTTA
    desaturase CAAATTCCCTTCCTCGACTCGTCCGCCAA
    Arabidopsis thaliana TTGGCGGACGAGTCGAGGAAGGGAATTTGTAAGGCTGAGATGCC 2226
    Lys4 Term ACCAAAGGGTTAAACT A TAGAGCCATTTCTGGATATGATGAATGAA
    AAG-TAG TCCTTCTTTTCTACAGAGCTAGAGCTCTCCC
    TGGCTCTA T AGTTTAAC 2227
    GTTAAACT A TAGAGCCA 2228
    Increased stearate CTCTGTAGAAAAGAAGGATTCATTCATCATATCCAGAAATGGCTCT 2229
    stearoyl-ACP AAAGTTTAACCCTT A GGTGGCATCTCAGCCTTACAAATTCCCTTCC
    desaturase TCGACTCGTCCGCCAACTCCTCTTTCAG
    Arabidopsis thaliana CTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAAGGGAATTTGTA 2230
    Leu8 Term AGGCTGAGATGCCACC T AAGGGTTAAACTTTAGAGCCATTTCTGG
    TTG-TAG ATATGATGAATGAATCCTTCTTTTCTACAGAG
    TAACCCTT A GGTGGCAT 2231
    ATGCCACC T AAGGGTTA 2232
    Increased stearate AGAAGGATTCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACC 2233
    stearoyl-ACP CTTTGGTGGCATCT T AGCCTTACAAATTCCCTTCCTCGACTCGTCC
    desaturase GCCAACTCCTTCTTTCAGATCTCCCAAGT
    Arabidopsis thaliana ACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAA 2234
    Gln12 Term GGGAATTTGTAAGGCT A AGATGCCACCAAAGGGTTAAACTTTAGA
    CAG-TAG GCCATTTCTGGATATGATGAATGAATCCTTCT
    TGGCATCT T AGCCTTAC 2235
    GTAAGGCT A AGATGCCA 2236
    Increased stearate TCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACCCTTTGGTG 2237
    stearoyl-ACP GCATCTCAGCCTTA G AAATTCCCTTCCTCGACTCGTCCGCCAACTC
    desaturase CTTCTTTCAGATCTCCCAAGTTCCTCTGC
    Arabidopsis thaliana GCAGAGGAACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAG 2238
    Phe14 Term TCGAGGAAGGGAATTT C TAAGGCTGAGATGCCACCAAAGGGTTAA
    TAC-TAG ACTTTAGAGCCATTTCTGGATATGATGAATGA
    CAGCCTTA G AAATTCCC 2239
    GGGAATTT C TAAGGCTG 2240
    Increased stearate GAGAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAA 2241
    stearoyl-ACP AAAGAAAATGGCAT A GAAGCTTAACCCTTTGGCATCTCAGCCTTAC
    desaturase AAACTCCCTTCCTCGGCTCGTCCGCCAAT
    Brassica napus ATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGATGC 2242
    Leu3 Term CAAAGGGTTAAGCTTC T ATGCCATTTTCTTTTTTTTGATACGAGGTT
    TTG-TAG TGATGTTCTTTCAGACACGAGCGAGCTCTC
    AATGGCAT A GAAGCTTA 2243
    TAAGCTTC T ATGCCATT 2244
    Increased stearate GAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAAAA 2245
    stearoyl-ACP AGAAAATGGCATTG T AGCTTAACCCTTTGGCATCTCAGCCTTACAA
    desaturase ACTCCCTTCCTCGGCTCGTCCGCCAATCT
    Brassica napus AGATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGAT 2246
    Lys4 Term GCCAAAGGGTTAAGCT A CAATGCCATTTTCTTTTTTTTGATACGAG
    AAG-TAG GTTTGATGTTCTTTCAGACACGAGCGAGCTC
    TGGCATTG T AGCTTAAC 2247
    GTTAAGCT A CAATGCCA 2248
    Increased stearate TCTGAAAGAACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATT 2249
    stearoyl-ACP GAAGCTTAACCCTT A GGCATCTCAGCCTTACAAACTCCCTTCCTCG
    desaturase GCTCGTCCGCCAATCTCTACTCTCAGATC
    Brassica napus GATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAAGGGAGTTT 2250
    Leu8 Term GTAAGGCTGAGATGCC T AAGGGTTAAGCTTCAATGCCATTTTCTTT
    TTG-TAG TTTTTGATACGAGGTTTGATGTTCTTTCAGA
    TAACCCTT A GGCATCTC 2251
    GAGATGCC T AAGGGTTA 2252
    Increased stearate AACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATTGAAGCTTA 2253
    stearoyl-ACP ACCCTTTGGCATCT T AGCCTTACAAACTCCCTTCCTCGGCTCGTCC
    desaturase GCCAATCTCTACTCTCAGATCTCCCAAGT
    Brassica napus ACTTGGGAGATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAA 2254
    Gln11 Term GGGAGTTTGTAAGGCT A AGATGCCAAAGGGTTAAGCTTCAATGCC
    CAG-TAG ATTTTCTTTTTTTTGATACGAGGTTTGATGTT
    TGGCATCT T AGCCTTAC 2255
    GTAAGGCT A AGATGCCA 2256
    Increased stearate AACCAAAAGAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCA 2257
    stearoyl-ACP ATCCTTTCCTTTCT T AAACCCAAAAGTTACCTTCTTTCGCTCTTCCA
    desaturase CCAATGGCCAGTACCAGATCTCCTAAGT
    Ricinus communis ACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGAAAGAAG 2258
    Gln27 Term GTAACTTTTGGGTTT A AGAAAGGATTGAGCTTGAGAGCCAT
    CAA-TAA TGTTTTTTTTCTTACCTTTTTCTTTTGGTT
    TCCTTTCT T AAACCCAA 2259
    TTGGGTTT A AGAAAGGA 2260
    Increased stearate AAGAAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTT 2261
    stearoyl-ACP TCCTTTCTCAAACC T AAAAGTTACCTTCTTTCGCTCTTCCACCAATG
    desaturase GCCAGTACCAGATCTCCTAAGTTCTACA
    Ricinus communis TGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGA 2262
    Gln29 Term AAGAAGGTAACTTTT A GGTTTGAGAAAGGAAAGGATTGAGCTTGA
    CAA-TAA GAGCCATTGTTTTTTTTCTTACCTTTTTCTT
    CTCAAACC T AAAAGTTA 2263
    TAACTTTT A GGTTTGAG 2264
    Increased stearate AAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTTTCC 2265
    stearoyl-ACP TTTCTCAAACCCAA T AGTTACCTTCTTTCGCTCTTCCACCAATGGCC
    desaturase AGTACCAGATCTCCTAAGTTCTACATGG
    Ricinus communis CCATGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAG 2266
    Lys30 TermCGAAAGAAGGTAACT A TTGGGTTTGAGAAAGGAAAGGATTGAGCT
    AAG-TAG TGAGAGCCATTGTTTTTTTTCTTACCTTTTT
    AAACCCAA T AGTTACCT 2267
    AGGTAACT A TTGGGTTT 2268
    Increased stearate TCTCAAACCCAAAAGTTACCTTCTTTCGCTCTTCCACCAATGGCCA 2269
    stearoyl-ACP GTACCAGATCTCCT T AGTTCTACATGGCCTCTACCCTCAAGTCTGG
    desaturase TTCTAAGGAAGTTGAGAATCTCAAGAAGC
    Ricinus communis GCTTCTTGAGATTCTCAACTTCCTTAGAACCAGACTTGAGGGTAGA 2270
    Lys46 Term GGCCATGTAGAACT A AGGAGATCTGGTACTGGCCATTGGTGGAG
    AAG-TAG AGCGAAAGAAGGTAACTTTTGGGTTTGAGA
    GATCTCCT T AGTTCTAC 2271
    GTAGAACT A AGGAGATC 2272
    Increased stearate TCTTCTGATTCATTTAATCTTTACTCATCAATGGCTCTGAGACTGAA 2273
    stearoyl-ACP CCCTATCCCCACC T AAACCTTCTCCCTCCCCCAAATGGCCAGTCTC
    desaturase AGATCTCCCAGGTTCCGCATGGCCTCTA
    Glycine max TAGAGGCCATGCGGAACCTGGGAGATCTGAGACTGGCCATTTGG 2274
    Gln11 Term GGGAGGGAGAAGGTTT A GGTGGGGATAGGGTTCAGTCTCAGAGC
    CAA-TAA CATTGATGAGTAAAGATTAAATGAATCAGAAGA
    TCCCCACC T AAACCTTC 2275
    GAAGGTTT A GGTGGGGA 2276
    Increased stearate CTTTACTCATCAATGGCTCTGAGACTGAACCCTATCCCCACCCAAA 2277
    stearoyl-ACP CCTTCTCCCTCCCC T AAATGGCCAGTCTCAGATCTCCCAGGTTCC
    desaturase GCATGGCCTCTACCCTCCGCTCCGGTTCCA
    Glycine max TGGAACCGGAGCGGAGGGTAGAGGCCATGCGGAACCTGGGAGAT 2278
    Gln17 Term CTGAGACTGGCCATTT A GGGGAGGGAGAAGGTTTGGGTGGGGAT
    CAA-TAA AGGGTTCAGTCTCAGAGCCATTGATGAGTAAAG
    CCCTCCCC T AAATGGCC 2279
    GGCCATTT A GGGGAGGG 2280
    Increased stearate GCTCTGAGACTGAACCCTATCCCCACCCAAACCTTCTCCCTCCCC 2281
    stearoyl-ACP CAAATGGCCAGTCTC T GATCTCCCAGGTTCCGCATGGCCTCTACC
    desaturase CTCCGCTCCGGTTCCAAAGAGGTTGAAAATA
    Glycine max TATTTTCAACCTCTTTGGAACCGGAGCGGAGGGTAGAGGCCATGC 2282
    Arg22 Term GGAACCTGGGAGATC A GAGACTGGCCATTTGGGGGAGGGAGAAG
    AGA-TGA GTTTGGGTGGGGATAGGGTTCAGTCTCAGAGC
    CCAGTCTC T GATCTCCC 2283
    GGGAGATC A GAGACTGG 2284
    Increased stearate CAAATGGCCAGTCTCAGATCTCCCAGGTTCCGCATGGCCTCTACC 2285
    stearoyl-ACP CTCCGCTCCGGTTCC T AAGAGGTTGAAAATATTAAGAAGCCATTCA
    desaturase CTCCTCCCAGAGAAGTGCATGTTCAAGTAA
    Glycine max TTACTTGAACATGCACTTCTCTGGGAGGAGTGAATGGCTTCTTAAT 2286
    Lys37 Term ATTTTCAACCTCTT A GGAACCGGAGCGGAGGGTAGAGGCCATGCG
    AAA-TAA GAACCTGGGAGATCTGAGACTGGCCATTTG
    CCGGTTCC T AAGAGGTT 2287
    AACCTCTT A GGAACCGG 2288
    Increased stearate CAACAAGCACACACAAGAACAACATCAACAATGGCGATTCGCATC 2289
    stearoyl-ACP AATACGGCGACGTTT T AATCAGACCTGTACCGTTCATTCGCGTTTC
    desaturase CTCAACCGAAACCTCTCAGATCTCCCAAAT
    Helianthus annuus ATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAATGAAC 2290
    Gln11 Term GGTACAGGTCTGATT A AAACGTCGCCGTATTGATGCGAATCGCCA
    CAA-TAA TTGTTGATGTTGTTCTTGTGTGTGCTTGTTG
    CGACGTTT T AATCAGAC 2291
    GTCTGATT A AAACGTCG 2292
    Increased stearate AAGCACACACAAGAAGCAACATCAACAATGGCGATTCGCATCAATAC 2293
    stearoyl-ACP GGCGACGTTTCAAT G AGACCTGTACCGTTCATTCGCGTTTCCTCAA
    desaturase CCGAAACCTCTCAGATCTCCCAAATTCGC
    Helianthus annuus GCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAAT 2294
    Ser12 Term GAACGGTACAGGTCT C ATTGAAACGTCGCCGTATTGATGCGAATC
    TCA-TGA GCCATTGTTGATGTTGTTCTTGTGTGTGCTT
    GTTTCAAT G AGACCTGT 2295
    ACAGGTCT C ATTGAAAC 2296
    Increased stearate AAGAACAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTT 2297
    stearoyl-ACP CAATCAGACCTGTA G CGTTCATTCGCGTTTCCTCAACCGAAACCTC
    desaturase TCAGATCTCCCAAATTCGCCATGGCTTCC
    Helianthus annuus GGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGG 2298
    Tyr15 Term AAACGCGAATGAACG C TACAGGTCTGATTGAAACGTCGCCGTATT
    TAC-TAG GATGCGAATCGCCATTGTTGATGTTGTTCTT
    GACCTGTA G CGTTCATT 2299
    AATGAACG C TACAGGTC 2300
    Increased stearate CAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTTCAATC 2301
    stearoyl-ACP AGACCTGTACCGTT G ATTCGCGTTTCCTCAACCGAAACCTCTCAGA
    desaturase TCTCCCAAATTCGCCATGGCTTCCACCAT
    Helianthus annuus ATGGTGGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGT 2302
    Ser17 Term TGAGGAAACGCGAAT C AACGGTACAGGTCTGATTGAAACGTCGCC
    TCA-TGA GTATTGATGCGAATCGCCATTGTTGATGTTG
    GTACCGTT G ATTCGCGT 2303
    ACGCGAAT C AACGGTAC 2304
    Increased stearate ACACACAACACACACTCAATCACACACACATCATCATCTTCTTCATC 2305
    stearoyl-ACP AACGATGGCGCTT T GAATGAGTCCGGTGACGCTTCAACGGGAGAT
    desaturase ATATCCTTCATACACTTTTCATCAATCGA
    Helianthus annuus TCGATTGATGAAAAGTGTATGAAGGATATATCTCCCGTTGAAGCGT 2306
    Arg4 Term CACCGGACTCATTC A AAGCGCCATCGTTGATGAAGAAGATGATGA
    CGA-TGA TGTGTGTGTGATTGAGTGTGTGTTGTGTGT
    TGGCGCTT T GAATGAGT 2307
    ACTCATTC A AAGCGCCA 2308
    Increased stearate ACACACACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGA 2309
    stearoyl-ACP GTCCGGTGACGCTT T AACGGGAGATATATCCTTCATACACTTTTCA
    desaturase TCAATCGAAAAATCTCAGATCTCCTAAAT
    Helianthus annuus ATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTATGAAGG 2310
    Gln11 Term ATATATCTCCCGTT A AAGCGTCACCGGACTCATTCGAAGCGCCATC
    CAA-TAA GTTGATGAAGAAGATGATGATGTGTGTGT
    TGACGCTT T AACGGGAG 2311
    CTCCCGTT A AAGCGTCA 2312
    Increased stearate ACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGG 2313
    stearoyl-ACP TGACGCTTCAACGG T AGATATATCCTTCATACACTTTTCATCAATCG
    desaturase AAAAATCTCAGATCTCCTAAATTCGCGA
    Helianthus annuus TCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTA 2314
    Glu13 Term TGAAGGATATATCT A CCGTTGAAGCGTCACCGGACTCATTCGAAG
    GAG-TAG CGCCATCGTTGATGAAGAAGATGATGATGT
    TTCAACGG T AGATATAT 2315
    ATATATCT A CCGTTGAA 2316
    Increased stearate ATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGGTGACGCTT 2317
    stearoyl-ACP CAACGGGAGATATA G CCTTCATACACTTTTCATCAATCGAAAAATC
    desaturase TCAGATCTCCTAAATTCGCGATGGCTTCC
    Helianthus annuus GGAAGCCATCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGA 2318
    Tyr15 Term AAAGTGTATGAAGG C TATATCTCCCGTTGAAGCGTCACCGGACTC
    TAT-TAG ATTCGAAGCGCCATCGTTGATGAAGAAGAT
    GAGATATA G CCTTCATA 2319
    TATGAAGG C TATATCTC 2320
    Increased stearate AACTCAGCCAGCTTGCCCCCAAACAACAGCGCAGAAAAACCTTCA 2321
    stearoyl-ACP ACAACAATGGCTCTC T AGCTCAACCCAGTCACCACCTTCCCTTCAA
    desaturase CACGCTCCCTCAACAACTTCTCCTCCAGAT
    Linum usitatissimum ATCTGGAGGAGAAGTTGTTGAGGGAGCGTGTTGAAGGGAAGGTG 2322
    Lys4 Term GTGACTGGGTTGAGCT A GAGAGCCATTGTTGTTGAAGGTTTTTCT
    AAG-TAG GCGCTGTTGTTTGGGGGCAAGCTGGCTGAGTT
    TGGCTCTC T AGCTCAAC 2323
    GTTGAGCT A GAGAGCCA 2324
    Increased stearate GCGCAGAAAAACCTTCAACAACAATGGCTCTCAAGCTCAACCCAG 2325
    stearoyl-ACP TCACCACCTTCCCTT G AACACGCTCCCTCAACAACTTCTCCTCCAG
    desaturase ATCTCCTCGCACCTTTCTCATGGCTGCTTC
    Linum usitatissimum GAAGCAGCCATGAGAAAGGTGCGAGGAGATCTGGAGGAGAAGTT 2326
    Ser13 Term GTTGAGGGAGCGTGTT C AAGGGAAGGTGGTGACTGGGTTGAGCT
    TCA-TGA TGAGAGCCATTGTTGTTGAAGGTTTTTCTGCGC
    CTTCCCTT G AACACGCT 2327
    AGCGTGTT C AAGGGAAG 2328
    Increased stearate CTCAAGCTCAACCCAGTCACCACCTTCCCTTCAACACGCTCCCTCA 2329
    stearoyl-ACP ACAACTTCTCCTCC T GATCTCCTCGCACCTTTCTCATGGCTGCTTC
    desaturase CACTTTCAATTCCACCTCCACCAAGTAAG
    Linum usitatissimum CTTACTTGGTGGAGGTGGAATTGAAAGTGGAAGCAGCCATGAGAA 2330
    Arg23 Term AGGTGCGAGGAGATC A GGAGGAGAAGTTGTTGAGGGAGCGTGTT
    AGA-TGA GAAGGGAAGGTGGTGACTGGGTTGAGCTTGAG
    TCTCCTCC T GATCTCCT 2331
    AGGAGATC A GGAGGAGA 2332
    Increased stearate TCCTCCAGATCTCCTCGCACCTTTCTCATGGCTGCTTCCACTTTCA 2333
    stearoyl-ACP ATTCCACCTCCACC T AGTAAGCATCTCCTCCTCCTCGGAATCTCCG
    desaturase CCGATTTCTTTTAAGCGATTGATCGTAGA
    Linum usitatissimum TCTACGATCAATCGCTTAAAAGAAATCGGCGGAGATTCCGAGGAG 2334
    Lys411 Term GAGGAGATGCTTACT A GGTGGAGGTGGAATTGAAAGTGGAAGCA
    AAG-TAG GCCATGAGAAAGGTGCGAGGAGATCTGGAGGA
    CCTCCACC T AGTAAGCA 2335
    TGCTTACT A GGTGGAGG 2336
    Increased stearate ATGGCACTGAAACTTTGCTTTCCACCCCACAAGATGCCTTCCTTCC 2337
    stearoyl-ACP CCGATGCTCGTATC T GATCTCACAGGGTTTTCATGGCTTCAACTAT
    desaturase TCATTCTCCTTCTATGGAGGTCGGAAAAG
    Olea europaeap CTTTCCGACCTCCATAGAAGGAGAATGAATAGTTGAAGCCATGAA 2338
    Arg21 Term AACCCTGTGAGATC A GATACGAGCATCGGGGAAGGAAGGCATCTT
    AGA-TGA GTGGGGTGGAAAGCAAAGTTTCAGTGCCAT
    CTCGTATC T GATCTCAC 2339
    GTGAGATC A GATACGAG 2340
    Increased stearate CCCACAAGATGCCTTCCTTCCCCGATGCTCGTATCAGATCTCACAG 2341
    stearoyl-ACP GGTTTTCATGGCTT G AACTATTCATTCTCCTTCTATGGAGGTCGGA
    desaturase AAAGTTAAAAAGCCTTTCACGCCTCCACG
    Olea europaeap CGTGGAGGCGTGAAAGGCTTTTTAACTTTTCCGACCTCCATAGAA 2342
    Ser29 Term GGAGAATGAATAGTT C AAGCCATGAAAACCCTGTGAGATCTGATAC
    TCA-TGA GAGCATCGGGGAAGGAAGGCATCTTGTGGG
    CATGGCTT G AACTATTC 2343
    GAATAGTT C AAGCCATG 2344
    Increased stearate GATGCTCGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTC 2345
    stearoyl-ACP ATTCTCCTTCTATG T AGGTCGGAAAAGTTAAAAAGCCTTTCACGCC
    desaturase TCCACGAGAGGTACATGTTCAAGTAACCC
    Olea europaeap GGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAGGCTTTT 2346
    Glu37 Term TAACTTTTCCGACCT A CATGAAGGAGAATGAATAGTTGAAGCCAT
    GAG-TAG GAAAACCCTGTGAGATCTGATACGAGCATC
    CTTCTATG T AGGTCGGA 2347
    TCCGACCT A CATAGAAG 2348
    Increased stearate CGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTCATTCTC 2349
    stearoyl-ACP CTTCTATGGAGGTC T GAAAAGTTAAAAAGCCTTTCACGCCTCCACG
    desaturase AGAGGTACATGTTCAAGTAACCCATTCCT
    Olea europaeap AGGAATGGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAG 2350
    Gly39 Term GCTTTTTAACTTTTC A GACCTCCATAGAAGGAGAATGAATAGTTGA
    GGA-TGA AGCCATGAAAACCCTGTGAGATCTGATACG
    TGGAGGTC T GAAAAGTT 2351
    AACTTTTC A GACCTCCA 2352
    Increased stearate TTCTCGTTTTTGTCGTCCCCTCTGCTCTCTCTCTCTATCAGGCACG 2353
    stearoyl-ACP GAGAAATGGCACTG T AACTCAGTCCAGTCATGTTTCAATCTCAGAA
    desaturase GCTTCCATTTCTTGCCTCCTATCCGCCTT
    Persea americana AAGGCGGATAGGAGGCAAGAAATGGAAGCTTCTGAGATTGAAACA 2354
    Lys4 Term TGACTGGACTGAGTT A CAGTGCCATTTCTCCGTGCCTGATAGAGA
    AAA-TAA GAGAGAGCAGAGGGGACGACAAAAACGAGAA
    TGGCACTG T AACTCAGT 2355
    ACTGAGTT A CAGTGCCA 2356
    Increased stearate CTGCTCTCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCA 2357
    stearoyl-ACP GTCCAGTCATGTTT T AATCTCAGAAGCTTCCATTTCTTGCCTCCTAT
    desaturase CCGCCTTCCAATCTCAGATCTCCGAGGG
    Persea americana CCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAAGAAAT 2358
    Gln11 Term GGAAGCTTCTGAGATT A AAACATGACTGGACTGAGTTTCAGTGCC
    CAA-TAA ATTTCTCCGTGCCTGATAGAGAGAGAGAGCAG
    TCATGTTT T AATCTCAG 2359
    CTGAGATT A AAACATGA 2360
    Increased stearate TCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCA 2361
    stearoyl-ACP GTCATGTTTCAATCT T AGAAGCTTCCATTTCTTGCCTCCTATCCGCC
    desaturase TTCCAATCTCAGATCTCCGAGGGTTTTCA
    Persea americana TGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAA 2362
    Gln13 Term GAAATGGAAGCTTCT A AGATTGAAACATGACTGGACTGAGTTTCAG
    CAG-TAG TGCCATTTCTCCGTGCCTGATAGAGAGAGA
    TTCAATCT T AGAAGCTT 2363
    AAGCTTCT A AGATTGAA 2364
    Increased stearate CTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCAGTC 2365
    stearoyl-ACP ATGTTTCAATCTCAG T AGCTTCCATTTCTTGCCTCCTATCCGCCTTC
    desaturase CAATCTCAGATCTCCGAGGGTTTTCATGG
    Persea americana CCATGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAG 2366
    Lys14 Term GCAAGAAATGGAAGCT A CTGAGATTGAAACATGACTGGACTGAGT
    AAG-TAG TTCAGTGCCATTTCTCCGTGCCTGATAGAGAG
    AATCTCAG T AGCTTCCA 2367
    TGGAAGCT A CTGAGATT 2368
    Increased stearate CCCCGAGATCTCGCTGCCGCTGCTCATGGCGTTCGCGGCGTCCC 2369
    stearoyl-ACP ACACCGCATCGCCGTA G TCCTGCGGCGGCGTGGCGCAGAGGAG
    desaturase GAGCAATGGGATGTCGAAGATGGTGGCCATGGCC
    Oryza sativa GGCCATGGCCACCATCTTCGACATCCCATTGCTCCTCCTCTGCGC 2370
    Tyr12 Term CACGCCGCCGCAGGA C TACGGCGATGCGGTGTGGGACGCCGCG
    TAC-TAG AACGCCATGAGCAGCGGCAGCGAGATCTCGGGG
    TCGCCGTA G TCCTGCGG 2371
    CCGCAGGA C TACGGCGA 2372
    Increased stearate CTGCTCATGGCGTTCGCGGCGTCCCACACCGCATCGCCGTACTCC 2373
    stearoyl-ACP TGCGGCGGCGTGGCG T AGAGGAGGAGCAATGGGATGTCGAAGAT
    desaturase GGTGGCCATGGCCTCCACCATCAACAGGGTCA
    Oryza sativa TGACCCTGTTGATGGTGGAGGCCATGGCCACCATCTTCGACATCC 2374
    Gln19 Term CATTGCTCCTCCTCT A CGCCACGCCGCCGCAGGAGTACGGCGAT
    CAG-TAG GCGGTGTGGGACGCCGCGAACGCCATGAGCAG
    GCGTGGCG T AGAGGAGG 2375
    CCTCCTCT A CGCCACGC 2376
    Increased stearate CCCACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGG 2377
    stearoyl-ACP AGGAGCAATGGGATGT A GAAGATGGTGGCCATGGCCTCCACCAT
    desaturase CAACAGGGTCAAGACTGCTAAGAAGCCCTACAC
    Oryza sativa GTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGGCC 2378
    Ser26 Term ATGGCCACCATCTTC T ACATCCCATTGCTCCTCCTCTGCGCCACGC
    TCG-TAG CGCCGCAGGAGTACGGCGATGCGGTGTGGG
    TGGGATGT A GAAGATGG 2379
    CCATCTTC T ACATCCCA 2380
    Increased stearate CACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGGAG 2381
    stearoyl-ACP GAGCAATGGGATGTCG T AGATGGTGGCCATGGCCTCCACCATCAA
    desaturase CAGGGTCAAGACTGCTAAGAAGCCCTACACTC
    Oryza sativa GAGTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGG 2382
    Lys27 Term CCATGGCCACCATCT A CGACATCCCATTGCTCCTCCTCTGCGCCA
    AAG-TAG CGCCGCCGCAGGAGTACGGCGATGCGGTGTG
    GGATGTCG T AGATGGTG 2383
    CACCATCT A CGACATCC 2384
    Increased stearate TTCTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGA 2385
    stearoyl-ACP GAGAAGCAATGGCGT A GAAGCTTCACCACACGGCCTTCAATCCTT
    desaturase CCATGGCGGTTACCTCTTCGGGACTTCCTCG
    Simmondsia chinensis CGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAGGC 2386
    Leu3 Term CGTGTGGTGAAGCTTC T ACGCCATTGCTTCTCTCTCCTAAGTGCTT
    TTG-TAG CTGTTGGTAACCGCTCAACCTAGAGAGAGAA
    AATGGCGT A GAAGCTTC 2387
    GAAGCTTC T ACGCCATT 2388
    Increased stearate CTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGAGA 2389
    stearoyl-ACP GAGCAATGGCGTTG T AGCTTCACCACACGGCCTTCAATCCTTCC
    desaturase ATGGCGGTTACCTCTTCGGGACTTCCTCGAT
    Simmondsia chinensis ATCGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAG 2390
    Lys4 Term GCCGTGTGGTGAAGCT A CAACGCCATTGCTTCTCTCTCCTAAGTG
    AAG-TAG CTTCTGTTGGTAACCGCTCAACCTAGAGAGAG
    TGGCGTTG T AGCTTCAC 2391
    GTGAAGCT A CAACGCCA 2392
    Increased stearate AAGCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCAT 2393
    stearoyl-ACP GGCGGTTACCTCTT A GGGACTTCCTCGATCGTATCACCTCAGATCT
    desaturase CACCGCGTTTTCATGGCTTCTTCTACAAT
    Simmondsia chinensis ATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGATAC 2394
    Ser19 Term GATCGAGGAAGTCCC T AAGAGGTAACCGCCATGGAAGGATTGAAG
    TCG-TAG GCCGTGTGGTGAAGCTTCAACGCCATTGCTT
    TACCTCTT A GGGACTTC 2395
    GAAGTCCC T AAGAGGTA 2396
    Increased stearate GCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCATG 2397
    stearoyl-ACP GCGGTTACCTCTTCG T GACTTCCTCGATCGTATCACCTCAGATCTC
    desaturase ACCGCGTTTTCATGGCTTCTTCTACAATTG
    Simmondsia chinensis CAATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGAT 2398
    Gly20 Term ACGATCGAGGAAGTC A CGAAGAGGTAACCGCCATGGAAGGATTG
    GGA-TGA AAGGCCGTGTGGTGAAGCTTCAACGCCATTGC
    CCTCTTCG T GACTTCCT 2399
    AGGAAGTC A CGAAGAGG 2400
    Increased stearate TGGCTCTGAATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCG 2401
    stearoyl-ACP ATTGCCGTCTTTCT G ACCTCGTCAAACGCCTTCTCGCAGATCTCCC
    desaturase AAATTCTTCATGGCTTCCACTCTCAGCAG
    Spinacia oleracea CTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATCTGCGAGAA 2402
    Ser21 Term GGCGTTTGACGAGGT C AGAAAGACGGCAATCGACGACACTGAAAT
    TCA-TGA GGTGTGGAAACGGGGTTGAGATTCAGAGCCA
    GTCTTTCT G ACCTCGTC 2403
    GACGAGGT C AGAAAGAC 2404
    Increased stearate AATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCGATTGCCGT 2405
    stearoyl-ACP CTTTCTCACCTCGT T AAACGCCTTCTCGCAGATCTCCCAAATTCTT
    desaturase CATGGCTTCCACTCTCAGCAGCTCTTCTC
    Spinacia oleracea GAGAAGAGCTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATC 2406
    Gln24 Term TGCGAGAAGGCGTTT A ACGAGGTGAGAAAGACGGCAATCGACGA
    CAA-TAA CACTGAAATGGTGTGGAAACGGGGTTGAGATT
    CACCTCGT T AAACGCCT 2407
    AGGCGTTT A ACGAGGTG 2408
    Increased stearate TCCACACCATTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTC 2409
    stearoyl-ACP AAACGCCTTCTCGC T GATCTCCCAAATTCTTCATGGCTTCCACTCT
    desaturase CAGCAGCTCTTCTCCTAAGGAAGCGGAAA
    Spinacia oleracea TTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGGAAGCCATGA 2410
    Arg29 Term AGAATTTGGGAGATC A GCGAGAAGGCGTTTGACGAGGTGAGAAA
    AGA-TGA GACGGCAATCGACGACACTGAAATGGTGTGGA
    CTTCTCGC T GATCTCCC 2411
    GGGAGATC A GCGAGAAG 2412
    Increased stearate TTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTCAAACGCCTT 2413
    stearoyl-ACP CTCGCAGATCTCCC T AATTCTTCATGGCTTCCACTCTCAGCAGCTC
    desaturase TTCTCCTAAGGAAGCGGAAAGCCTGAAGA
    Spinacia oleracea TCTTCAGGCTTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGG 2414
    Lys32 Term AAGCCATGAAGAATT A GGGAGATCTGCGAGAAGGCGTTTGACGAG
    AAA-TAA GTGAGAAAGACGGCAATCGACGACACTGAAA
    GATCTCCC T AATTCTTC 2415
    GAAGAATT A GGGAGATC 2416
    Increased stearate AAATAGTCGAGGTGAAAAACAGAGCATCAACAATGGCACTGAATAT 2417
    stearoyl-ACP CAATGGGGTGTCGT G AAAATCTCACAAAATGTTACCATTTCCTTGT
    desaturase TCTTCAGCCAGATCTGAGCGAGTTTTCAT
    Solanum tuberosum ATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTAAC 2418
    Leu10 Term ATTTTGTGAGATTTT C ACGACACCCCATTGATATTCAGTGCCATTGT
    TTA-TGA TGATGCTCTGTTTTTCACCTCGACTATTT
    GGTGTCGT G AAAATCTC 2419
    GAGATTTT C ACGACACC 2420
    Increased stearate ATAGTCGAGGTGAAAACAGAGCATCAACAATGGCACTGAATATCA 2421
    stearoyl-ACP ATGGGGTGTCGTTA T AATCTCACAAAATGTTACCATTTCCTTGTTCT
    desaturase TCAGCCAGATCTGAGCGAGTTTTCATGG
    Solanum tuberosum CCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTA 2422
    Lys11 Term ACATTTTGTGAGATT A TAACGACACCCCATTGATATTCAGTGCCATT
    AAA-TAA GTTGATGCTCTGTTTTTCACCTCGACTAT
    TGTCGTTA T AATCTCAC 2423
    GTGAGATT A TAACGACA 2424
    Increased stearate GTGAAAAACAGAGCATCAACAATGGCACTGAATATCAATGGGGTG 2425
    stearoyl-ACP TCGTTAAAATCTCAC T AAATGTTACCATTTCCTTGTTCTTCAGCCAG
    desaturase ATCTGAGCGAGTTTTCATGGCTTCAACCA
    Solanum tuberosum TGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAG 2426
    Lys14 Term GAAATGGTAACATTT A GTGAGATTTTAACGACACCCCATTGATATT
    AAA-TAA CAGTGCCATTGTTGATGCTCTGTTTTTCAC
    AATCTCAC T AAATGTTA 2427
    TAACATTT A GTGAGATT 2428
    Increased stearate ACAGAGCATCAACAATGGCACTGAATATCAATGGGGTGTCGTTAAA 2429
    stearoyl-ACP ATCTCACAAAATGT G ACCATTTCCTTGTTCTTCAGCCAGATCTGAG
    desaturase CGAGTTTTCATGGCTTCAACCATTCATCG
    Solanum tuberosum CGATGAATGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAA 2430
    Leu16 Term GAACAAGGAAATGGT C ACATTTTGTGAGATTTTAACGACACCCCAT
    TTA-TGA TGATATTCAGTGCCATTGTTGATGCTCTGT
    CAAAATGT G ACCATTTC 2431
    GAAATGGT C ACATTTTG 2432
    Increased stearate TGGCTCTGAGGCTGAACCCTAACCCTTCACAGAAGCTCTTTCTCTC 2433
    stearoyl-ACP TCCTTCTTCATCAT G ATCTTCTTCTTCTTCATCGTTCTCGCTTCCTC
    desaturase AAATGGCTAGCCTCAGATCTCCAAGGTT
    Arachis hypogaea AACCTTGGAGATCTGAGGCTAGCCATTTGAGGAAGCGAGAACGAT 2434
    Ser21 Term GAAGAAGAAGAAGAT C ATGATGAAGAAGGAGAGAGAAAGAGCTTC
    TCA-TGA TGTGAAGGGTTAGGGTTCAGCCTCAGAGCCA
    TTCATCAT G ATCTTCTT 2435
    AAGAAGAT C ATGATGAA 2436
    Increased stearate ACCCTAACCCTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCA 2437
    stearoyl-ACP TCTTCTTCTTCTT G ATCGTTCTCGCTTCCTCAAATGGCTAGCCTCA
    desaturase GTCTCCAAGGTTCCGCATGGCCTCCAC
    Arachis hypogaea GTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCATTTGA 2438
    Ser26 Term GGAAGCGAGAACGAT C AAGAAGAAGAAGATGATGATGAAGAAGGA
    TCA-TGA GAGAGAAAGAGCTTCTGTGAAGGGTTAGGGT
    TTCTTCTT G ATCGTTCT 2439
    AGAACGAT C AAGAAGAA 2440
    Increased stearate CTAACCCTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCT 2441
    stearoyl-ACP TCTTCTTCTTCAT A GTTCTCGCTTCCTCAAATGGCTAGCCTCAGAT
    desaturase CTCCAAGGTTCCGCATGGCCTCCACCCT
    Arachis hypogaea AGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCAT 2442
    Ser27 Term TTGAGGAAGCGAGAAC T ATGAAGAAGAAGAAGATGATGATGAAGA
    TCG-TAG AGGAGAGAGAAAGAGCTTCTGTGAAGGGTTAG
    TTCTTCAT A GTTCTCGC 2443
    GCGAGAAC T ATGAAGAA 2444
    Increased stearate CTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCTTCTTCT 2445
    stearoyl-ACP TCTTCATCGTTCT A GCTTCCTCAAATGGCTAGCCTCAGATCTCCAA
    desaturase GGTTCCGCATGGCCTCCACCCTCCGCAC
    Arachis hypogaea GTGCGGAGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCT 2446
    Ser29 Term AGCCATTTGAGGAAGC T AGAACGATGAAGAAGAAGAAGATGATGA
    TCG-TAG TGAAGAAGGAGAGAGAAAGAGCTTCTGTGAAG
    ATCGTTCT A GCTTCCTC 2447
    GAGGAAGC T AGAACGAT 2448
    Increased stearate AAAGTTAAAAGCCGTCCAAAACCCAAACCAGGAAAGGCAAACGAA 2449
    stearoyl-ACP AAGAAAAAATGGCTT A GAATTTTAATGCCATCGCCTCGAAATCTCA
    desaturase GAAGCTCCCTTGCTTTGCTCTTCCACCAAA
    Gossypium hirsutum TTTGGTGGAAGAGCAAAGCAAGGGAGCTTCTGAGATTTCGAGGCG 2450
    Leu3 Term ATGGCATTAAAATTC T AAGCCATTTTTTCTTTTCGTTTGCCTTTCCT
    TTG-TAG GGTTTGGGTTTTGGACGGCTTTTAACTTT
    AATGGCTT A GAATTTTA 2451
    TAAAATTC T AAGCCATT 2452
    Increased stearate CCCAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTT 2453
    stearoyl-ACP TAATGCCATCGCCT A GAAATCTCAGAAGCTCCCTTGCTTTGCTCTT
    desaturase CCACCAAAGGCCACCCTTAGATCTCCCAA
    Gossypium hirsutum TTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAGG 2454
    Ser1-Term GAGCTTCTGAGATTTC T AGGCGATGGCATTAAAATTCAAAGCCATT
    TCG-TAG TTTTCTTTTCGTTTGCCTTTCCTGGTTTGGG
    CATCGCCT A GAAATCTC 2455
    GAGATTTC T AGGCGATG 2456
    Increased stearate CAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTA 2457
    stearoyl-ACP ATGCCATCGCCTCG T AATCTCAGAAGCTCCCTTGCTTTGCTCTTCC
    desaturase ACCAAAGGCCACCCTTAGATCTCCCAAGT
    Gossypium hirsutum ACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAG 2458
    Lys11 Term GGAGCTTCTGAGATT A CGAGGCGATGGCATTAAAATTCAAAGCCAA
    AAA-TAA TTTTTTCTTTTCGTTTGCCTTTCCTGGTTTG
    TCGCCTCG T AATCTCAG 2459
    CTGAGATT A CGAGGCGA 2460
    Increased stearate AGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTAATGCCA 2461
    stearoyl-ACP TCGCCTCGAAATCT T AGAAGCTCCCTTGCTTTGCTCTTCCACCAAA
    desaturase GGCCACCCTTAGATCTCCCAAGTTTTCCA
    Gossypium hirsutum TGGAAAACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAA 2462
    Gln13 Term AGCAAGGGAGCTTCT A AGATTTCGAGGCGATGGCATTAAAATTCA
    CAG-TAG AAGCCATTTTTTCTTTTCGTTTGCCTTTCCT
    CGAAATCT T AGAAGCTC 2463
    GAGCTTCT A AGATTTCG 2464
  • [0148]
    TABLE 24
    Oligonucleotides to produce plants with reduced linolenic acid
    Phenotype, Gene,
    Plant & Targeted SEQ ID
    Alteration Altering Oligos NO:
    Reducing linolenic acid AATAGAACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGC 2465
    omega-3 fatty acid TCCAATGGCGAGCT A GGTTTTATCAGAATGTGGTTTTAGACCTCTC
    desaturase CCCAGATTCTACCCTAAACACACAACCTC
    Arabidopsis thaliana GAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTAAAACCA 2466
    Ser4 Term CATTCTGATAAAACC T AGCTCGCCATTGGAGCCTCTTCCCAAGAAG
    TCG-TAG AAAAGAGGAAAAAGTCTCTGTCGTTCTATT
    GGCGAGCT T GGTTTTAT 2467
    ATAAAACC A AGCTCGCC 2468
    Reducing linolenic acid ACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAAT 2469
    omega-3 fatty acid GGCGAGCTCGGTTT G ATCAGAATGTGGTTTTAGACCTCTCCCCAG
    desaturase ATTCTACCCTAAACACACAACCTCTTTTGC
    Arabidopsis thaliana GCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTA 2470
    Leu6 Term AAACCACATTCTGAT C AAACCGAGCTCGCCATTGGAGCCTCTTCCC
    TTA-TGA AAGAAGAAAAGAGGAAAAAGTCTCTGTCGT
    CTCGGTTT G ATCAGAAT 2471
    ATTCTGAT C AAACCGAG 2472
    Reducing linolenic acid ACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGC 2473
    omega-3 fatty acid GAGCTCGGTTTTAT G AGAATGTGGTTTTAGACCTCTCCCCAGATTC
    desaturase TACCCTAAACACACAACCTCTTTTGCCTC
    Arabidopsis thaliana GAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGT 2474
    Ser7 Term CTAAAACCACATTCT C ATAAAACCGAGCTCGCCATTGGAGCCTCTT
    TCA-TGA CCAAGAAGAAAAGAGGAAAAAGTCTCTGT
    GGTTTTAT G AGAATGTG 2475
    CACATTCT C ATAAAACC 2476
    Reducing linolenic acid AGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGCGA 2477
    omega-3 fatty acid GCTCGGTTTTATCA T AATGTGGTTTTAGACCTCTCCCCAGATTCTA
    desaturase CCCTAAACACACAACCTCTTTTGCCTCTA
    Arabidopsis thaliana TAGAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAG 2478
    Glu8 Term GTCTAAAACCACATT A TGATAAAACCGAGCTCGCCATTGGAGCCTC
    GAA-TAA TTCCCAAGAAGAAAAGAGGAAAAAGTCTCT
    TTTTATCA T AATGTGGT 2479
    ACCACATT A TGATAAAA 2480
    Reducing linolenic acid TCATCATCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTC 2481
    omega-3 fatty acid TAGCAATGGCGAACT A GGTCTTATCCGAATGTGGCATAAGACCTC
    desaturase TCCCCAGAATCTACACCACACCCAGATCCAC
    Brassica juncea GTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTTATGCCA 2482
    Leu4 Term CATTCGGATAAGACC T AGTTCGCCATTGCTAGAGCTCTTTTGCTCT
    TTG-TAG CTCTCTCTCCCCAGAAGAAGAAGATGATGA
    GGCGAACT A GGTCTTAT 2483
    ATAAGACC T AGTTCGCC 2484
    Reducing linolenic acid TCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAA 2485
    omega-3 fatty acid TGGCGAACTTGGTCT G ATCCGAATGTGGCATAAGACCTCTCCCCA
    desaturase GAATCTACACCACACCCAGATCCACTTTCCT
    Brassica juncea AGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTT 2486
    Leu6 Term ATGCCACATTCGGAT C AGACCAAGTTCGCCATTGCTAGAGCTCTTT
    TTA-TGA TGCTCTCTCTCTCTCCCCAGAAGAAGAAGA
    CTTGGTCT G ATCCGAAT 2487
    ATTCGGAT C AGACCAAG 2488
    Reducing linolenic acid TTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCG 2489
    omega-3 fatty acid AACTTGGTCTTATCC T AATGTGGCATAAGACCTCTCCCCAGAATCT
    desaturase ACACCACACCCAGATCCACTTTCCTCTCCA
    Brassica juncea TGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGA 2490
    Glu8 Term GGTCTTATGCCACATT A GGATAAGACCAAGTTCGCCATTGCTAGA
    GAA-TAA GCTCTTTTGCTCTCTCTCTCTCCCCAGAAGAA
    TCTTATCC T AATGTGGC 2491
    GCCACATT A GGATAAGA 2492
    Reducing linolenic acid CTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCGAACT 2493
    omega-3 fatty acid TGGTCTTATCCGAATG A GGCATAAGACCTCTCCCCAGAATCTACAC
    desaturase CACACCCAGATCCACTTTCCTCTCCAACACC
    Brassica juncea GGTGTTGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGG 2494
    Cys9 Term GGAGAGGTCTTATGCC T CATTCGGATAAGACCAAGTTCGCCATTG
    TGT-TGA CTAGAGCTCTTTTGCTCTCTCTCTCTCCCCAG
    TCCGAATG A GGCATAAG 2495
    CTTATGCC T CATTCGGA 2496
    Reducing linolenic acid ATAACAGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAA 2497
    omega-3 fatty acid TGGCTGCTGGTTG A GTATTATCAGAATGTGGTTTAAGGCCTCTCCC
    desaturase AAGAATCTACTCACGACCCAGAATTGGT
    Ricinus communis ACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTTAAACC 2498
    Trp5 Term ACATTCTGATAATAC T CAACCAGCAGCCATTGAAAACCCAGAAGCT
    TGG-TGA AAAAATGCAAGAATTCAGCAATTCTGTTAT
    GCTGGTTG A GTATTATC 2499
    GATAATAC T CAACCAGC 2500
    Reducing linolenic acid AGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCT 2501
    omega-3 fatty acid GCTGGTTGGGTAT G ATCAGAATGTGGTTTAAGGCCTCTCCCAAGA
    desaturase ATCTACTCACGACCCAGAATTGGTTTTAC
    Ricinus communis GTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTT 2502
    Leu7 Term AAACCACATTCTGAT C ATACCCAACCAGCAGCCATTGAAAACCCAG
    TTA-TGA AAGCTAAAAATGCAAGAATTCAGCAATTCT
    TTGGGTAT GATCAGAAT 2503
    ATTCTGAT C ATACCCAA 2504
    Reducing linolenic acid ATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCT 2505
    omega-3 fatty acid GGTTGGGTATTAT G AGAATGTGGTTTAAGGCCTCTCCCAAGAATCT
    desaturase ACTCACGACCCAGAATTGGTTTTACATC
    Ricinus communis GATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGC 2506
    Ser8 Term CTTAAACCACATTCT C ATAATACCCAACCAGCAGCCATTGAAAACC
    TCA-TGA CAGAAGCTAAAAATGCAAGAATTCAGCAAT
    GGTATTAT G AGAATGTG 2507
    CACATTCT C ATAATACC 2508
    Reducing linolenic acid TGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCTG 2509
    omega-3 fatty acid GTTGGGTATTATCA T AATGTGGTTTAAGGCCTCTCCCAAGAATCTA
    desaturase CTCACGACCCAGAATTGGTTTTACATCGA
    Ricinus communis TCGATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGFGGAGAG 2510
    Glu9 Term CGCCTTAAACCACATT A TGATAATACCCAACCAGCAGCCATTGAAAA
    GAA-TAA CCCAGAAGCTAAAAATGCAAGAATTCAGCA
    TATTATCA T AATGTGGT 2511
    ACCACATT A TGATAATA 2512
    Reducing linolenic acid GCAAGTTGGTTTTATCAGAATGTGGTCTTAGACCACTCCCAAGAA 2513
    omega-3 fatty acid TCTACCCTAAGCCC T GAACTGGGGCAGCCACTTCTGCCTCCTCTC
    desaturase ACATTAAGTTGAGAATTTCACGTACAGATC
    Nicotiana tabacum GATCTGTACGTGAAATTCTCAACTTAATGTGAGAGGAGGCAGAAGT 2514
    Arg22 Term GGCTGCCCCAGTTC A GGGCTTAGGGTAGFATTCTTGGGAGTGGTCT
    AGA-TGA AAGACCACATTCTGATAAAACCCAACTTGC
    CTAAGCCC T GAACTGGG 2515
    CCCAGTTC A GGGCTTAG 2516
    Reducing linolenic acid CTCCCAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCT 2517
    omega-3 fatty acid GCCTCCTCTCACATT T AGTTGAGAATTTCACGTACAGATCTGAGTG
    desaturase GTTCTGCAATTTCTTTGTCTAATACTAAT
    Nicotiana tabacum TATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGTACG 2518
    Lys34 Term TGAAATTCTCAACT A AATGTGAGAGGAGGCAGAAGTGGCTGCCCC
    AAG-TAG AGTTCTGGGCTTAGGGTAGATTCTTGGGAG
    CTCACATT T AGTTGAGA 2519
    TCTCAACT A AATGTGAG 2520
    Reducing linolenic acid CAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCT 2521
    omega-3 fatty acid CCTCTCACATTAAGT A GAGAATTTCACGTACAGATCTGAGTGGTTC
    desaturase TGCAATTTCTTTGTCTAATACTAATAAAGA
    Nicotiana tabacum TCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGT 2522
    Leu35 Term ACGTGAAATTCTC T ACTTAATGTGAGAGGAGGCAGAAGTGGCTGC
    TTG-TAG CCCAGTTCTGGGCTTAGGGTAGATTCTTG
    CATTAAGT A GAGAATTT 2523
    AAATTCTC T ACTTAATG 2524
    Reducing linolenic acid AGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCTCC 2525
    omega-3 fatty acid TCTCACATTAAGTTG T GAATTTCACGTACAGATCTGAGTGGTTCTG
    desaturase CAATTTCTTTGTCTAATACTAATAAAGAGA
    Nicotiana tabacum TCTCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCT 2526
    Arg36 Term GTACGTGAAATTC A CAACTTAATGTGAGAGGAGGCAGAAGTGGCT
    AGA-TGA GCCCCAGTTCTGGGCTTAGGGTAGATTCT
    TTAAGTTG T GAATTTCA 2527
    TGAAATTC A CAACTTAA 2528
    Reducing linolenic acid GCGAGTTGGGTTTTATCAGAATGTGGTCTGAGGCCACTCCCGAGG 2529
    omega-3 fatty acid GTCTATCCTAAGCCA T GAACTGGCCACCCTTTGTTGAATTCCAATC
    desaturase CCACAAAGCTGAGATTTTCAAGAACAGATC
    Sesamum indicum GATCTGTTCTTGAAAATCTCAGCTTTGTGGGATTGGAATTCAACAA 2530
    Arg22 Term AGGGTGGCCAGTTC A TGGCTTAGGATAGACCCTCGGGAGTGGCC
    AGA-TGA TCAGACCACATTCTGATAAAACCCAACTCGC
    CTAAGCCA T GAACTGGC 2531
    GCCAGTTC A TGGCTTAG 2532
    Reducing linolenic acid CAGAATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAA 2533
    omega-3 fatty acid GAACTGGCCACCCTT A GTTGAATTCCAATCCCACAAAGCTGAGATT
    desaturase TTCAAGAACAGATCTTGGAAATGGTTCTTC
    Sesamum indicum GAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGTGG 2534
    Leu27 Term GATTGGAATTCAAC T AAGGGTGGCCAGTTCTTGGCTTAGGATAGA
    TTG-TAG CCCTCGGGAGTGGCCTCAGACCACATTCTG
    CCACCCTT A GTTGAATT 2535
    AATTCAAC T AAGGGTGG 2536
    Reducing linolenic acid AATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAAGAA 2537
    omega-3 fatty acid CTGGCCACCCTTTGT A GAATTCCAATCCCACAAAGCTGAGATTTTC
    desaturase AAGAACAGATCTTGGAAATGGTTCTTCATT
    Sesamum indicum AATGAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGT 2538
    Leu28 Term GGGATTGGAATTC T ACAAAGGGTGGCCAGTTCTTGGCTTAGGATA
    TTG-TAG GACCCTCGGGAGTGGCCTCAGACCACATT
    CCCTTTGT A GAATTCCA 2539
    TGGAATTC T ACAAAGGG 2540
    Reducing linolenic acid CTCCCGAGGGTCTATCCTAAGCCAAGAACTGGCCACCCTTTGTTG 2541
    omega-3 fatty acid AATTCCAATCCCACA T AGCTGAGATTTTCAAGAACAGATCTTGGAA
    desaturase ATGGTTCTTCATTCTGTTTGTCGAGTGGGA
    Sesamum indicum TCCCACTCGACAAACAGAATGAAGAACCATTTCCAAGATCTGTTCT 2542
    Lys34 Term TGAAAATCTCAGCT A TGTGGGATTGGAATTCAACAAAGGGTGGCC
    AAG-TAG AGTTCTTGGCTTAGGATAGACCCTCGGGAG
    ATCCCACA T AGCTGAGA 2543
    TCTCAGCT A TGTGGGAT 2544
    Reducing linolenic acid CATCAGAGCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATG 2545
    omega-3 fatty acid GAAGTCTATGAGTTA G GTCGTCAGAGAGCTAGCCATCGTGTTCGC
    desaturase ACTAGCTGCTGGAGCTGCTTACCTCAACAAT
    Brassica napus ATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACACGATGGC 2546
    Tyr3 Term TAGCTCTCTGACGAC C TAACTCATAGACTTCCATGGATTCTTAACC
    TAC-TAG CAGCAATGCTTAGGTATCGCCGCTCTGATG
    ATGAGTTA G GTCGTCAG 2547
    CTGACGAC C TAACTCAT 2548
    Reducing linolenic acid GCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCT 2549
    omega-3 fatty acid ATGAGTTACGTCGTC T GAGAGCTAGCCATCGTGTTCGCACTAGCT
    desaturase GCTGGAGCTGCTTACCTCAACAATTGGCTTG
    Brassica napus CAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACA 2550
    Arg6 Term CGATGGCTAGCTCTC A GACGACGTAACTCATAGACTTCCATGGAT
    AGA-TGA CTTAACCCAGCAATGCTTAGGTATCGCCGC
    ACGTCGTC T GAGAGCTA 2551
    TAGCTCTC A GACGACGT 2552
    Reducing linolenic acid GCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCTATGA 2553
    omega-3 fatty acid GTTACGTCGTCAGA T AGCTAGCCATCGTGTTCGCACTAGCTGCTG
    desaturase GAGCTGCTTACCTCAACAATTGGCTTGTTT
    Brassica napus AAACAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGA 2554
    Glu7 Term ACACGATGGCTAGCT A TCTGACGACGTAACTCATAGACTTCCATG
    GAG-TAG GATTCTTAACCCAGCAATGCTTAGGTATCGC
    TCGTCAGA T AGCTAGCC 2555
    GGCTAGCT A TCTGACGA 2556
    Reducing linolenic acid CCATGGAAGTCTATGAGTTACGTCGTCAGAGAGCTAGCCATCGTG 2557
    omega-3 fatty acid TTCGCACTAGCTGCT T GAGCTGCTTACCTCAACAATTGGCTTGTTT
    desaturase GGCCTCTCTATTGGATTGCTCAAGGAACCA
    Brassica napus TGGTTCCTTGAGCAATCCAATAGAGAGGCCAAACAAGCCAATTGTT 2558
    Gly17 Term GAGGTAAGCAGCTC A AGCAGCTAGTGCGAACACGATGGCTAGCT
    GGA-TGA CTCTGACGACGTAACTCATAGACTTCCATGG
    TAGCTGCT T GAGCTGCT 2559
    AGCAGCTC A AGCAGCTA 2560
    Reducing linolenic acid GCAAGTTGGGTTCTATCAGAATGTGGTCTTAGACCACTACCAAGAA 2561
    omega-3 fatty acid TATACCCAAAGCCC T GAATAGGGTCTTCTTCCGTTTGCGCCACCAA
    desaturase TTTAAATCTGAGAAGAATTTCACCTTCAC
    Solanum tuberosum GTGAAGGTGAAATTCTTCTCAGATTTAAATTGGTGGCGCAAACGGA 2562
    Arg22 Term AGAAGACCCTATTC A GGGCTTTGGGTATATTCTTGGTAGTGGTCTA
    AGA-TGA AGACCACATTCTGATAGAACCCAACTTGC
    CAAAGCCC T GAATAGGG 2563
    CCCTATTC A GGGCTTTG 2564
    Reducing linolenic acid TGGTCTTAGACCACTACCAAGAATATACCCAAAGCCCAGAATAGG 2565
    omega-3 fatty acid GTCTTCTTCCGTTTG A GCCACCAATTTAAATCTGAGAAGAATTTCA
    desaturase CCTTCACCTATACGAACAGATCGGAATTGT
    Solanum tuberosum ACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAATTCTTCTCAGA 2566
    Cys29 Term TTTAAATTGGTGGC T CAAACGGAAGAAGACCCTATTCTGGGCTTTG
    TGC-TGA GGTATATTCTTGGTAGTGGTCTAAGACCA
    TCCGTTTG A GCCACCAA 2567
    TTGGTGGC T CAAACGGA 2568
    Reducing linolenic acid CACTACCAAGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGT 2569
    omega-3 fatty acid TTGCGCCACCAATT G AAATCTGAGAAGAATTTCACCTTCACCTATA
    desaturase CGAACAGATCGGAATTGTTGGGCATTGAG
    Solanum tuberosum CTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAA 2570
    Leu33 Term TTCTTCTCAGATTT C AATTGGTGGCGCAAACGGAAGAAGACCCTAT
    TTA-TGA TCTGGGTTTGGGTATATTCTTGGTAGTG
    CACCAATT G AAATCTGA 2571
    TCAGATTT C AATTGGTG 2572
    Reducing linolenic acid AGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGTTTGCGCCA 2573
    omega-3 fatty acid CCAATTTAAATCTG T GAAGAATTTCACCTTCACCTATACGAACAGAT
    desaturase CGGAATTGTTGGGCATTGAGGGTAAGTG
    Solanum tuberosum CACTTACCCTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGA 2574
    Arg36 Term AGGTGAAATTCTTC A CAGATTTAAATTGGTGGCGCAAACGGAAGAA
    AGA-TGA GACCCTATTCTGGGCTTTGGGTATATTCT
    TAAATCTG T GAAGAATT 2575
    AATTCTTC A CAGATTTA 2576
    Reducing linolenic acid CTCTTTATTATCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACC 2577
    omega-3 fatty acid TATGGCAAGTTG A GTGATTTCAGAATGTGGGCTAAGGCCACTTCC
    desaturase AAGAATCTATGCCAGGCCCAGAAGTGGA
    Petroselinum crispum TCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGCCTTAGCCC 2578
    Trp4 Term ACATTCTGAAATCAC T CAACTTGCCATAGGTGACTCAGAACTCAAA
    TGG-TGA AAAAACAAAGAAGAGGAGGATAATAAAGAG
    GCAAGTTG A GTGATTTC 2579
    GAAATCAC T CAACTTGC 2580
    Reducing linolenic acid TATCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCA 2581
    omega-3 fatty acid AGTTGGGTGATTT G AGAATGTGGGCTAAGGCCACTTCCAAGAATC
    desaturase TATGCCAGGCCCAGAAGTGGAGCTTCATG
    Petroselinum crispum CATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGC 2582
    Ser7 Term CTTAGCCCACATTCT C AAATCACCCAACTTGCCATAGGTGACTCAG
    TCA-TGA AACTCAAAAAAAACAAAGAAGAGGAGGATA
    GGTGATTT G AGAATGTG 2583
    CACATTCT C AAATCACC 2584
    Reducing linolenic acid TCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAG 2585
    omega-3 fatty acid TTGGGTGATTTCA T AATGTGGGCTAAGGCCACTTCCAAGAATCTAT
    desaturase GCCAGGCCCAGAAGTGGAGCTTCATGTT
    Petroselinum crispum AACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTG 2586
    Glu8 Term GCCTTAGCCCACATT A TGAAATCACCCAACTTGCCATAGGTGACTC
    GAA-TAA AGAACTCAAAAAAAACAAAGAAGAGGAGGA
    TGATTTCA T AATGTGGG 2587
    CCCACATT A TGAAATCA 2588
    Reducing linolenic acid CTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAGTTGGG 2589
    omega-3 fatty acid TGATTTCAGAAT G AGGGCTAAGGCCACTTCCAAGAATCTATGCCA
    desaturase GGCCCAGAAGTGGAGCTTCATGTTTCAAC
    Petroselinum crispum GTTGAAACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGG 2590
    Cys9 Term AAGTGGCCTTAGCCC T CATTCTGAAATCACCCAACTTGCCATAGGT
    TGT-TGA GACTCAGAACTCAAAAAAAACAAAGAAGAG
    TCAGAATG A GGGCTAAG 2591
    CTTAGCCC T CATTCTGA 2592
    Reducing linolenic acid ATGAAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTA 2593
    omega-3 fatty acid ATGGTTTTCATGCT T AAGAAGAAGAAGAAGAAGAGGATTTCGACTT
    desaturase AAGCAATCCTCCTCCATTCAATATTGGTC
    Vernicia fordii GACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTCTTC 2594
    Lys21 Term TTCTTCTTCTTCTT A AGCATGAAAACCATTAACGCCATTTAGAATTG
    AAA-TAA GGGTGTCTTTGTACTGTTGCTGCTTCAT
    TTCATGCT T AAGAAGAA 2595
    TTCTTCTT A AGCATGAA 2596
    Reducing linolenic acid AAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATG 2597
    omega-3 fatty acid GTTTTCATGCTAAA T AAGAAGAAGAAGAAGAGGATTTCGACTTAAG
    desaturase CAATCCTCCTCCATTCAATATTGGTCAGA
    Vernicia fordii TCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTC 2598
    Glu22 Term TTCTTCTTCTTCTT A TTTAGCATGAAAACCATTAACGCCATTTAGAA
    GAA-TAA TTGGGGTGTCTTTGTACTGTTGCTGCTT
    ATGCTAAA T AAGAAGAA 2599
    TTCTTCTT A TTTAGCAT 2600
    Reducing linolenic acid CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 2601
    omega-3 fatty acid TTCATGCTAAAGAA T AAGAAGAAGAAGAGGATTTCGACTTAAGCAA
    desaturase TCCTCCTCCATTCAATATTGGTCAGATCC
    Vernicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 2602
    Glu23 Term CTCTTCTTCTTCTT A TTCTTTAGCATGAAAACCATTAACGCCATTTA
    GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG
    CTAAAGAA T AAGAAGAA 2603
    TTCTTCTT A TTCTTTAG 2604
    Reducing linolenic acid CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 2605
    omega-3 fatty acid TTCATGCTAAAGAA T AAGAAGAAGAAGAGGATTTCGACTTAAGCAA
    desaturase TCCTCCTCCATTCAATATTGGTCAGATCC
    Vernicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 2606
    Glu24 Term CTCTTCTTCTTCTT A TTCTTTAGCATGAAAACCATTAACGCCATTTA
    GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG
    CTAAAGAA T AAGAAGAA 2607
    TTCTTCTT A TTCTTTAG 2608
    Reducing linolenic acid GGTCCAAGCACAGCCTCTACAACATGTTGGTAATGGTGCAGGGAA 2609
    omega-3 fatty acid AGAAGATCAAGCTTA G TTTGATCCAAGTGCTCCACCACCCTTCAAG
    desaturase ATTGCAAATATCAGAGCAGCAATTCCAAAA
    Glycine max TTTTGGAATTGCTGCTCTGATATTTGCAATCTTGAAGGGTGGTGGA 2610
    Tyr21 Term GCACTTGGATCAAA C TAAGCTTGATCTTCTTTCCCTGCACCATTAC
    TAT-TAG CAACATGTTGTAGAGGCTGTGCTTGGACC
    CAAGCTTA G TTTGATCC 2611
    GGATCAAA C TAAGCCTG 2612
    Reducing linolenic acid GGTAATGGTGCAGGGAAAGAAGATCAAGCTTATTTTGATCCAAGT 2613
    omega-3 fatty acid GCTCCACCACCCTTC T AGATTGCAAATATCAGAGCAGCAATTCCAA
    desaturase AACATTGCTGGGAGAAGAACACATTGAGAT
    Glycine max ATCTCAATGTGTTCTTCTCCCAGCAATGTTTTGGAATTGCTGCTCT 2614
    Lys31 Term GATATTTGCAATCT A GAAGGGTGGTGGAGCACTTGGATCAAAATAA
    AAG-TAG GCTTGATCTTCTTTCCCTGCACCATTACC
    CACCCTTC T AGATTGCA 2615
    TGCAATCT A GAAGGGTG 2616
    Reducing linolenic acid AAAGAAGATCAAGCTTATTTTGATCCAAGTGCTCCACCACCCTTCA 2617
    omega-3 fatty acid AGATTGCAAATATC T GAGCAGCAATTCCAAAACATTGCTGGGAGAA
    desaturase GAACACATTGAGATCTCTGAGTTATGTTC
    Glycine max GAACATAACTCAGAGATCTCAATGTGTTCTTCTCCCAGCAATGTTTT 2618
    Arg36 Term GGAATTGCTGCTC A GATATTTGCAATCTTGAAGGGTGGTGGAGCA
    AGA-TGA CTTGGATCAAAATAAGCTTGATCTTCTTT
    CAAATATC T GAGCAGCA 2619
    TGCTGCTC A GATATTTG 2620
    Reducing linolenic acid TATTTTGATCCAAGTGCTCCACCACCCTTCAAGATTGCAAATATCA 2621
    omega-3 fatty acid GAGCAGCAATTCCA T AACATTGCTGGGAGAAGAACACATTGAGAT
    desaturase CTCTGAGTTATGTTCTGAGGGATGTGTTGG
    Glycine max CCAACACATCCCTCAGAACATAACTCAGAGATCTCAATGTGTTCTT 2622
    Leu41 Term CTCCCAGCAATGTT A TGGAATTGCTGCTCTGATATTTGCAATCTTG
    AAA-TAA AAGGGTGGTGGAGCACTTGGATCAAAATA
    CAATTCCA T AACATTGC 2623
    GCAATGTT A TGGAATTG 2624
    Reducing linolenic acid CATCCACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGC 2625
    omega-3 fatty acid CCGGCTCGTGCTCTCC T AGTGCTCGGGCCTCGCGCCCGTCCGCC
    desaturase GCCTGCGCGCCGGCCGGGGCGCCATTGCGGCGC
    Zea mays GCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGGACGG 2626
    Glu8 Term GCGCGAGGCCCGAGCACT A GGAGAGCACGAGCCGGGCCATTGC
    GAG-TAG CGCCGTCAGCGGGGCGGGTGCGGGTGCGGGTGGATG
    TGCTCTCC T AGTGCTCG 2627
    CGAGCACT A GGAGAGCA 2628
    Reducing linolenic acid ACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGG 2629
    omega-3 fatty acid CTCGTGCTCTCCGAGTG A TCGGGCCTCGCGCCCGTCCGCCGCCT
    desaturase GCGCGCCGGCCGGGGCGCCATTGCGGCGCGGTCA
    Zea mays TGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGG 2630
    Cys9 Term ACGGGCGCGAGGCCCGA T CACTCGGAGAGCACGAGCCGGGCCA
    TGC-TGA TTGCCGCCGTCAGCGGGGCGGGTGCGGGTGCGGGT
    TCCGAGTG A TCGGGCCT 2631
    AGGCCCGA T CACTCGGA 2632
    Reducing linolenic acid CCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGGCT 2633
    omega-3 fatty acid CGTGCTCTCCGAGTGCT A GGGCCTCGCGCCCGTCCGCCGCCTGC
    desaturase GCGCCGGCCGGGGCGCCATTGCGGCGCGGTCACC
    Zea mays GGTGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGC 2634
    Ser10 Term GGACGGGCGCGAGGCCC T AGCACTCGGAGAGCACGAGCCGGGC
    TCG-TAG CATTGCCGCCGTCAGCGGGGCGGGTGCGGGTGCGG
    CGAGTGCT A GGGCCTCG 2635
    CGAGGCCC T AGCACTCG 2636
    Reducing linolenic acid GCTCGGGCCTCGCGCCCGTCCGCCGCCTGCGCGCCGGCCGGGG 2637
    omega-3 fatty acid CGCCATTGCGGCGCGGT G ACCCCCCGCGCTCTCCGCGGCGCCG
    desaturase CGCCGTCGTCCCGCGTCCGCGTCCATCCACCGCGA
    Zea mays TCGCGGTGGATGGACGCGGACGCGGGACGACGGCGCGGCGCCG 2638
    Ser29 Term CGGAGAGCGCGGGGGGT C ACCGCGCCGCAATGGCGCCCCGGCC
    TCA-TGA GGCGCGCAGGCGGCGGACGGGCGCGAGGCCCGAGC
    GGCGCGGT G ACCCCCCG 2639
    CGGGGGGT C ACCGCGCC 2640
    Reducing linolenic acid CCCCCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGC 2641
    omega-3 fatty acid CCCCGCAATGAGGCCG T AGCAGGAGGCGAGCTGCAAGGCCACCG
    desaturase AGGACCACCGCTCCGAGTTCGACGCCGCCAAGC
    Triticum aestivum GCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCCTTG 2642
    Glu8 Term CAGCTCGCCTCCTGCT A CGGCCTCATTGCGGGGGCCATGGCCGC
    GAG-TAG GGATGGATCTGTGCGTGTGCGTGGGGGAGGGGG
    TGAGGCCG T AGCAGGAG 2643
    CTCCTGCT A CGGCCTCA 2644
    Reducing linolenic acid CCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCC 2645
    omega-3 fatty acid CGCAATGAGGCCGGAG T AGGAGGCGAGCTGCAAGGCCACCGAG
    desaturase GACCACCGCTCCGAGTTCGACGCCGCCAAGCCGC
    Triticum aestivum GCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCC 2646
    Gln9 Term TTGCAGCTCGCCTCCT A CTCCGGCCTCATTGCGGGGGCCATGGC
    CAG-TAG CGCGGATGGATCTGTGCGTGTGCGTGGGGGAGG
    GGCCGGAG T AGGAGGCG 2647
    CGCCTCCT A CTCCGGCC 2648
    Reducing linolenic acid CCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCCCGC 2649
    omega-3 fatty acid AATGAGGCCGGAGCAG T AGGCGAGCTGCAAGGCCACCGAGGACC
    desaturase ACCGCTCCGAGTTCGACGCCGCCAAGCCGCCGC
    Triticum aestivum GCGGCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGT 2650
    Glu10 Term GGCCTTGCAGCTCGCCT A CTGCTCCGGCCTCATTGCGGGGGCCA
    GAG-TAG TGGCCGCGGATGGATCTGTGCGTGTGCGTGGGGG
    CGGAGCAG T AGGCGAGC 2651
    GCTCGCCT A CTGCTCCG 2652
    Reducing linolenic acid ACGCACAGATCCATCCGCGGCCATGGCCCCCGCAATGAGGCCGG 2653
    omega-3 fatty acid AGCAGGAGGCGAGCTG A AAGGCCACCGAGGACCACCGCTCCGA
    desaturase GTTCGACGCCGCCAAGCCGCCGCCCTTCCGCATC
    Triticum aestivum GATGCGGAAGGGCGGCGGCTTGGCGGCGTCGAACTCGGAGCGG 2654
    Cys13 TermTGGTCCTCGGTGGCCTT T CAGCTCGCCTCCTGCTCCGGCCTCATT
    TGC-TGA GCGGGGGCCATGGCCGCGGATGGATCTGTGCGT
    GCGAGCTG A AAGGCCAC 2655
    GTGGCCTT T CAGCTCGC 2656
    Reducing linolenic acid CTTCACAAATCACAAATCGGAATCAGATCCACCACGACACCCCGG 2657
    omega-3 fatty acid CGGCAATGGCGGCGT A GGCGACCCAGGAGGCCGACTGCAAGGC
    desaturase TTCCGAGGACGCCCGTCTCTTCTTCGACGCCGC
    Oryza sativa GCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGCCTTGCAGTC 2658
    Ser4 Term GGCCTCCTGGGTCGCC T ACGCCGCCATTGCCGCCGGGGTGTCGT
    TCG-TAG GGTGGATCTGATTCCGATTTGTGATTTGTGAAG
    GGCGGCGT A GGCGACCC 2659
    GGGTCGCC T ACGCCGCC 2660
    Reducing linolenic acid ATCACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATG 2661
    omega-3 fatty acid GCGGCGTCGGCGACC T AGGAGGCCGACTGCAAGGCTTCCGAGGA
    desaturase CGCCCGTCTCTTCTTCGACGCCGCCAAGCCCC
    Oryza sativa GGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGC 2662
    Gln7 Term CTTGCAGTCGGCCTCCT A GGTCGCCGACGCCGCCATTGCCGCCG
    CAG-TAG GGGTGTCGTGGTGGATCTGATTCCGATTTGTGAT
    CGGCGACC T AGGAGGCC 2663
    GGCCTCCT A GGTCGCCG 2664
    Reducing linolenic acid ACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATGGC 2665
    omega-3 fatty acid GGCGTCGGCGACCCAG T AGGCCGACTGCAAGGCTTCCGAGGACG
    desaturase CCCGTCTCTTCTTCGACGCCGCCAAGCCCCCGC
    Oryza sativa GCGGGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGA 2666
    Glu8 Term AGCCTTGCAGTCGGCCT A CTGGGTCGCCGACGCCGCCATTGCCG
    GAG-TAG CCGGGGTGTCGTGGTGGATCTGATTCCGATTTGT
    CGACCCAG T AGGCCGAC 2667
    GTCGGCCT A CTGGGTCG 2668
    Reducing linolenic acid TCAGATCCACCACGACACCCCGGCGGCAATGGCGGCGTCGGCGA 2669
    omega-3 fatty acid CCCAGGAGGCCGACTG A AAGGCTTCCGAGGACGCCCGTCTCTTC
    desaturase TTCGACGCCGCCAAGCCCCCGCCCTTCCGCATC
    Oryza sativa GATGCGGAAGGGCGGGGGCTTGGCGGCGTCGAAGAAGAGACGG 2670
    Cys10 Term GCGTCCTCGGAAGCCTT T CAGTCGGCCTCCTGGGTCGCCGACGC
    TGC-TGA CGCCATTGCCGCCGGGGTGTCGTGGTGGATCTGA
    GCCGACTG A AAGGCTTC 2671

Claims (20)

What is claimed is:
1. An oligonucleotide for targeted alteration of genetic sequence, comprising a single-stranded oligonucleotide having a DNA domain, said DNA domain having at least one mismatch with respect to the genetic sequence to be altered, and further comprising chemical modifications of the oligonucleotide, said chemical modifications selected from the group consisting of an o-methyl modification, an LNA modification including LNA derivatives and analogs, two or more phosphorothioate linkages on a terminus, and a combination of any two or more of these modifications.
2. The oligonucleotide according to claim one that comprises two or more phosphorothioate linkages on at least the 3′ terminus.
3. The oligonucleotide according to claim one that comprises a 2′-O-methyl analog.
4. The oligonucleotide according to claim one that comprises an LNA nucleotide, including an LNA derivative or analog.
5. The oligonucleotide according to claim one that comprises a combination of at least two modifications selected from the group of a phosphorothioate linkage, a 2′-O-methyl analog, a locked nucleotide analog and a ribonucleotide.
6. The oligonucleotide according to any one of claims 1 to 5 that comprises at least one unmodified ribonucleotide.
7. The oligonucleotide according to any one of claims 1 to 6, wherein the sequence of said oligonucleotide is selected from the group consisting of SEQ ID NOS: 1-2672.
8. A method of targeted alteration of genetic material, comprising combining the target genetic material with an oligonucleotide according to any one of claims 1 to 7 in the presence of purified proteins.
9. A method of targeted alteration of genetic material, comprising administering to a cell extract an oligonucleotide of any one of claims 1 to 7.
10. A method of targeted alteration of genetic material, comprising administering to a cell an oligonucleotide of any one of claims 1 to 7.
11. A method of targeted alteration of genetic sequence in callus, comprising administering to the callus an oligonucleotide of any one of claims 1 to 7.
12. A method of targeted alteration of genetic sequence, comprising combining target genetic material with an oligonucleotide according to any one of claims 1 to 7, said target genetic material being a non-transcribed DNA strand of a duplex DNA.
13. The genetic material obtained by any one of the methods of claim 8, 9 or claim 10.
14. A cell comprising the genetic material of claim 13.
15. A plant organism comprising the cell according to claim 14.
16. A plant or plant part produced by the method of claim 11.
17. A method of determining whether an oligonucleotide is optimized for targeted alteration of a genetic sequence, which comprises:
(a) comparing the efficiency of alteration of a targeted genetic sequence by an oligonucleotide of any one of claims 1 to 7 with the efficiency of alteration of the same targeted genetic sequence by a second oligonucleotide, said second oligonucleotide selected from the group of an oligonucleotide that lacks the mismatch, a fully modified phosphorothiolated oligonucleotide, a fully modified 2′-O-methylated oligonucleotide and a chimeric double-stranded double hairpin containing RNA and DNA nucleotides.
18. The method of claim 17 in which the alteration is produced in a plant cell extract.
19. The method of claim 17 in which the alteration is produced in a cell.
20. A kit comprising the oligonucleotide according to any one of claims 1 to 7 and a second oligonucleotide selected from the group of an oligonucleotide that lacks the mismatch, a fully modified phosphorothiolated oligonucleotide, a fully modified 2-O-methylated oligonucleotide and a chimeric double stranded double hairpin containing RNA and DNA nucleotides.
US10/307,005 2000-06-01 2002-11-26 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides Abandoned US20030236208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/307,005 US20030236208A1 (en) 2000-06-01 2002-11-26 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US20853800P 2000-06-01 2000-06-01
US24498900P 2000-10-30 2000-10-30
US09/818,875 US6936467B2 (en) 2000-03-27 2001-03-27 Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
PCT/US2001/017672 WO2001092512A2 (en) 2000-06-01 2001-06-01 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
US10/307,005 US20030236208A1 (en) 2000-06-01 2002-11-26 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/017672 Continuation WO2001092512A2 (en) 2000-06-01 2001-06-01 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides

Publications (1)

Publication Number Publication Date
US20030236208A1 true US20030236208A1 (en) 2003-12-25

Family

ID=27395218

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/818,875 Expired - Fee Related US6936467B2 (en) 2000-03-27 2001-03-27 Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
US10/209,787 Expired - Lifetime US7258854B2 (en) 2000-03-27 2002-07-30 Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
US10/307,005 Abandoned US20030236208A1 (en) 2000-06-01 2002-11-26 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/818,875 Expired - Fee Related US6936467B2 (en) 2000-03-27 2001-03-27 Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
US10/209,787 Expired - Lifetime US7258854B2 (en) 2000-03-27 2002-07-30 Targeted chromosomal genomic alterations with modified single stranded oligonucleotides

Country Status (6)

Country Link
US (3) US6936467B2 (en)
EP (1) EP1297122A2 (en)
AU (2) AU6527701A (en)
CA (1) CA2410523A1 (en)
IL (1) IL153122A0 (en)
WO (1) WO2001092512A2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094084A2 (en) 2005-03-02 2006-09-08 Instituto Nacional De Tecnologia Agropecuaria Herbicide-resistant rice plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
WO2007037676A1 (en) * 2005-09-29 2007-04-05 Keygene N.V. Method and means for targeted nucleotide exchange
US20070118920A1 (en) * 2005-11-09 2007-05-24 Basf Agrochemical Products B.V. Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US20080216187A1 (en) * 2006-12-07 2008-09-04 Kansas State University Research Foundation Acetolactate Synthase Herbicide Resistant Sorghum
US20090205064A1 (en) * 2007-10-05 2009-08-13 Christian Schopke Mutated Acetohydroxyacid Synthase Genes in Brassica
US20100115650A1 (en) * 2007-04-04 2010-05-06 Kening Yao Herbicide-Resistant Brassica Plants and Methods of Use
US20100287641A1 (en) * 2007-04-04 2010-11-11 Basf Plant Science Gmbh Ahas mutants
US20110126327A1 (en) * 2008-05-06 2011-05-26 Christopher Pittock Herbicide resistant barley
US20110209232A1 (en) * 2005-07-01 2011-08-25 Nidera Semillas S.A. Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US20110214196A1 (en) * 2008-06-20 2011-09-01 University Of Georgia Research Foundation Development of herbicide-resistant grass species
US20120060243A1 (en) * 2008-09-26 2012-03-08 Peter Beetham Herbicide-Resistant AHAS-Mutants and Methods of Use
WO2012074386A1 (en) 2010-12-02 2012-06-07 Keygene N.V. Targeted alteration of dna with oligonucleotides
WO2012074385A1 (en) 2010-12-02 2012-06-07 Keygene N.V. Targeted alteration of dna
US20120322102A1 (en) * 2008-12-31 2012-12-20 Sapphire Energy, Inc. Genetically engineered herbicide resistant algae
US20130074214A1 (en) * 2008-09-25 2013-03-21 University Of Guelph Nitrogen Responsive Early Nodulin Gene
US20130145498A1 (en) * 2011-11-02 2013-06-06 University Of North Texas MtNIP REGULATED PLANTS WITH SIGNIFICANTLY INCREASED SIZE AND BIOMASS
US20130167265A1 (en) * 2010-08-30 2013-06-27 David Panik Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US20130190170A1 (en) * 2001-08-09 2013-07-25 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
US20130198896A1 (en) * 2011-10-03 2013-08-01 University Of Kentucky Research Foundation Systems and methods for the production of linear and branched-chain hydrocarbons
US20130205445A1 (en) * 2010-03-27 2013-08-08 Technische Universitat Kaiserslautern Method of Enhancing the Seed Yield and Promoting the Growth of Plants
US20130219560A1 (en) * 2010-09-02 2013-08-22 Richard T. Sayre Reduction of post-harvest physiological deterioration
US20130219563A1 (en) * 2008-03-18 2013-08-22 Mendel Biotechnology, Inc. Enhancement of plant yield vigor and stress tolerance
US20130326728A1 (en) * 2010-12-08 2013-12-05 Katholieke Universiteit Leuven Agents for increased resistance against oxidative stress conditions
US20140123342A1 (en) * 2011-06-02 2014-05-01 Board Of Regents, The University Of Texas System Regulation of Stomatal Apertures by Apyrases and Extracellular Nucleotides
US20140157457A1 (en) * 2011-02-25 2014-06-05 Plant Bioscience Limited Plant protease
US20140165229A1 (en) * 2011-06-23 2014-06-12 Basf Plant Science Company Gmbh Plants Having Enhanced Yield-Related Traits and a Method for Making the Same
US20140165228A1 (en) * 2010-01-06 2014-06-12 E.I. Dupont De Nemours Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
US20140189906A1 (en) * 2010-08-03 2014-07-03 Cibus Europe B.V. Mutated protoporphyrinogen ix oxidase (ppx) genes
US20140199760A1 (en) * 2011-05-20 2014-07-17 University Of Toronto Plants having enhanced abiotic stress resistance
US20140223604A1 (en) * 2011-05-13 2014-08-07 Andy Pereira Crop plants with improved water use efficiency and grain yield and methods of making them
US20140234904A1 (en) * 2011-10-06 2014-08-21 University Of Wyoming Method for harvesting photosynthetic unicells using genetically induced flotation
US20140237684A1 (en) * 2013-02-05 2014-08-21 Clemson University Methods and compositions for transgenic plants with enhanced resistance to biotic and abiotic stress
US20140325699A1 (en) * 2013-03-15 2014-10-30 United States Of America, As Represented By The Secretary Of Agriculture Engineering rubber production in plants
US20140331347A1 (en) * 2011-11-16 2014-11-06 The State Of Queensland Acting Through The Department Of Agriculture, Fisheries And Forestry Drought tolerant plants produced by modification of the stay-green stgx locus
US20140359899A1 (en) * 2011-12-08 2014-12-04 Carnegie Institution Of Washington Sucrose Transporters and Methods of Generating Pathogen-Resistant Plants
US20150121570A1 (en) * 2013-10-24 2015-04-30 Industry-Academic Cooperation Foundation, Yonsei University Gene implicated in drought stress tolerance and transformed plants with the same
US20150128305A1 (en) * 2012-05-07 2015-05-07 National Institute Of Plant Genome Research POLYNUCLEOTIDE ENCODING CaTLP1 PROTEIN AND USES THEREOF
US20150135361A1 (en) * 2011-05-10 2015-05-14 China Agricultural University Drought Tolerance Associated Protein DT1 and Coding Sequence and Application Thereof
US20150135373A1 (en) * 2012-06-21 2015-05-14 Toyota Jidosha Kabushiki Kaisha Technique for regulating flower bud formation in sugarcane
US20150184193A1 (en) * 2013-12-30 2015-07-02 Dow Agrosciences Llc Trait stacking strategy for corn introgression
US20150203863A1 (en) * 2011-03-31 2015-07-23 Shanghai Institutes For Biological Sciences, Cas Genetic engineering method and material for increasing plant yield
US20150240251A1 (en) * 2012-09-13 2015-08-27 Postech Academy-Industry Foundation Composition for regulating flowering of a plant containing the gene coding for abi3 protein
US20150247161A1 (en) * 2013-12-24 2015-09-03 National Institute Of Plant Genome Research METHOD OF PRODUCING STRESS TOLERANT PLANTS OVER-EXPRESSING OsAlba1
US20150252379A1 (en) * 2010-12-16 2015-09-10 Basf Se Plants Having Increased Tolerance to Herbicides
US20150315250A1 (en) * 2014-05-02 2015-11-05 Academia Sinica Transgenic plants with increased trace element contents and methods for producing the same
US9399772B2 (en) * 2008-07-01 2016-07-26 Arcadia Biosciences, Inc. Tomatoes that soften more slowly post-harvest due to non-transgenic alterations in an expansin gene
US20160222405A1 (en) * 2007-04-04 2016-08-04 Basf Agrochemical Products, B.V. Herbicide-resistant sunflower plants with multiple herbicide resistant alleles of ahasl1 and methods of use
US20160244774A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160244776A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160244773A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160244775A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160264987A1 (en) * 2011-05-27 2016-09-15 Industry-Academic Cooperation Foundation, Yonsei University Gene associated with non-biological stress resistance, and transformed plant
JP2016220685A (en) * 2010-08-03 2016-12-28 キブス ユーエス エルエルシー Mutated protoporphyrinogen ix oxidase (ppx) genes
US20170088854A1 (en) * 2009-12-06 2017-03-30 A.B. Seeds Ltd. MicroRNA Compositions and Methods for Enhancing Plant Resistance to Abiotic Stress
EP3178312A1 (en) 2009-09-01 2017-06-14 BASF Agrochemical Products, B.V. Herbicide-tolerant plants
KR101806342B1 (en) * 2009-12-24 2017-12-07 고쿠리츠겐큐가이하츠호징 노우교 · 쇼쿠힝 산교기쥬츠 소고겐큐기코 Gene Dro1 controlling deep-rooted characteristics of plant and utilization of same
US20180080037A1 (en) * 2014-04-11 2018-03-22 Kws Saat Se Tonoplast proton/sugar antiporter proteins and the use thereof to increase the saccharose concentration in a saccharose storage organ of plants
US20180112228A1 (en) * 2016-10-26 2018-04-26 Salk Institute For Biological Studies Environmental stress response transcriptional regulatory network
US9957520B2 (en) 2013-03-13 2018-05-01 The Board Of Trustees Of The University Of Arkansas Methods of increasing resistance of crop plants to heat stress and selecting crop plants with increased resistance to heat stress
US10041087B2 (en) 2012-06-19 2018-08-07 BASF Agro B.V. Plants having increased tolerance to herbicides
US20180223304A1 (en) * 2011-11-02 2018-08-09 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US10087460B2 (en) 2013-08-12 2018-10-02 BASF Agro B.V. Transgenic or non-transgenic plants with mutated protoporphyrinogen oxidase having increased tolerance to herbicides
US10100329B2 (en) 2012-06-19 2018-10-16 BASF Agro B.V. Plants having increased tolerance to herbicides
US10106815B2 (en) * 2016-01-22 2018-10-23 Nanjing Agricultural University Fusarium head blight resistant gene Tafhb1 of wheat and use thereof
US10392630B2 (en) 2013-08-12 2019-08-27 BASF Agro B.V. Plants having increased tolerance to herbicides
US10494641B2 (en) * 2013-12-27 2019-12-03 Toyota Jidosha Kabushiki Kaisha Transformed plant and method for producing exudate containing sugar using transformed plant
CN110545659A (en) * 2017-01-31 2019-12-06 赖斯泰克有限公司 Effect of multiple mutations on increasing herbicide resistance/tolerance in Rice
US11096346B2 (en) 2009-09-01 2021-08-24 Basf Se Method for treating post-emergent rice
US11111499B2 (en) 2011-05-03 2021-09-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US11193140B2 (en) * 2008-09-09 2021-12-07 Stora Enso Oyj Method for the alteration of plants using CLE polypeptides/peptides
US11236365B2 (en) * 2015-06-30 2022-02-01 Sumitomo Rubber Industries, Ltd. Method for producing polyisoprenoid, transformed plant, method for producing pneumatic tire and method for producing rubber product
US20220073941A1 (en) * 2019-01-02 2022-03-10 Smart Earth Camelina Corp. Herbicide-resistant camelina sativa plants, and variant camelina acetohydroxyacid synthase polypeptides
US11312972B2 (en) * 2016-11-16 2022-04-26 Cellectis Methods for altering amino acid content in plants through frameshift mutations

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
OA12240A (en) * 2000-03-27 2006-05-10 Univ Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides.
US6936467B2 (en) 2000-03-27 2005-08-30 University Of Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
WO2002026967A2 (en) * 2000-09-25 2002-04-04 Thomas Jefferson University Targeted gene correction by single-stranded oligodeoxynucleotides
WO2002079495A2 (en) 2001-03-27 2002-10-10 University Of Delaware Genomics applications for modified oligonucleotides
US7053195B1 (en) * 2001-06-12 2006-05-30 Syngenta Participatious Ag Locked nucleic acid containing heteropolymers and related methods
US20030109476A1 (en) * 2001-08-07 2003-06-12 Kmiec Eric B. Compositions and methods for the prevention and treatment of Huntington's disease
AU2002322212B8 (en) 2001-08-09 2008-08-21 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
US7897845B2 (en) 2001-08-09 2011-03-01 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
EP1448766A2 (en) * 2001-09-27 2004-08-25 University Of Delaware Coisogenic eukaryotic cell collections
US7468244B2 (en) 2001-09-27 2008-12-23 University Of Delaware Polymorphism detection and separation
EP1446503A2 (en) * 2001-09-27 2004-08-18 University Of Delaware Composition and methods for enhancing oligonucleotide-directed nucleic acid sequence alteration
EP1466973A4 (en) * 2001-12-20 2006-08-09 Univ Okayama Nat Univ Corp Characteristic base sequences occurring in plant genes and method of utilizing the same
ATE458047T1 (en) * 2002-03-07 2010-03-15 Univ Delaware METHOD FOR ENHANCING OLIGONUCLEOTIDE-MEDIATED NUCLEIC ACID SEQUENCE CHANGE USING COMPOSITIONS CONTAINING A HYDROXYUREA
DE10221224A1 (en) * 2002-05-13 2003-12-04 Frommer Wolf Bernd Process for the production of a transgenic plant with an altered mass transport
WO2004016073A2 (en) 2002-07-10 2004-02-26 The Department Of Agriculture, Western Australia Wheat plants having increased resistance to imidazolinone herbicides
WO2004033708A2 (en) * 2002-10-07 2004-04-22 University Of Delaware Methods and compositions for reducing screening in oligonucleotide-directed nucleic acid sequence alteration
CA2498511A1 (en) * 2002-10-29 2004-05-13 Basf Plant Science Gmbh Compositions and methods for identifying plants having increased tolerance to imidazolinone herbicides
WO2004040011A1 (en) * 2002-10-29 2004-05-13 Advanta Canada Inc. Assay for imidazolinone resistance mutations in brassica species
US20040198640A1 (en) * 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
US20040205840A1 (en) * 2003-04-11 2004-10-14 Pioneer Hi-Bred International, Inc. Method for reducing gene expression
RS20050889A (en) 2003-05-28 2008-04-04 Basf Aktiengesellschaft, Wheat plants having increased tolerance to imidaz olinone herbicides
US20060281092A1 (en) * 2003-07-24 2006-12-14 Tanja Wille Method for the reverse transcription and/or amplification of nucleic acids
AU2004276226B2 (en) * 2003-08-05 2009-07-30 Avi Biopharma, Inc. Oligonucleotide analog and method for treating flavivirus infections
US7825235B2 (en) 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
FR2866349B1 (en) * 2004-02-12 2008-05-16 Biomerieux Sa METHOD FOR DIAGNOSING / PROGNOSING THROMBOSIS
US7432082B2 (en) 2004-03-22 2008-10-07 Basf Ag Methods and compositions for analyzing AHASL genes
US8314226B2 (en) 2004-03-29 2012-11-20 The General Hospital Corporation Oligonucleotide complex compositions and methods of use as gene alteration tools
KR101147147B1 (en) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Modified polynucleotides for reducing off-target effects in rna interference
US7355098B2 (en) 2004-06-22 2008-04-08 Saskatchewan Wheat Poo1 Brassica AHAS genes and gene alleles that provide resistance to imidazolinone herbicides
US7759479B1 (en) * 2004-09-13 2010-07-20 Isis Pharmaceuticals, Inc. Compositions and their uses directed to Gemin Genes
US7923207B2 (en) 2004-11-22 2011-04-12 Dharmacon, Inc. Apparatus and system having dry gene silencing pools
US20060166234A1 (en) 2004-11-22 2006-07-27 Barbara Robertson Apparatus and system having dry control gene silencing compositions
US7935811B2 (en) 2004-11-22 2011-05-03 Dharmacon, Inc. Apparatus and system having dry gene silencing compositions
AR051690A1 (en) 2004-12-01 2007-01-31 Basf Agrochemical Products Bv MUTATION INVOLVED IN THE INCREASE OF TOLERANCE TO IMIDAZOLINONE HERBICIDES IN PLANTS
WO2007073149A1 (en) * 2005-12-22 2007-06-28 Keygene N.V. Alternative nucleotides for improved targeted nucleotide exchange
JP5713377B2 (en) 2005-12-28 2015-05-07 ザ スクリプス リサーチ インスティテュート Natural antisense and non-coding RNA transcripts as drug targets
JP5635772B2 (en) * 2006-08-01 2014-12-03 ジェン−プロウブ インコーポレイテッド Method for capturing non-specific target of nucleic acid
CA2663601C (en) 2006-09-22 2014-11-25 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by rna interference
US20080124712A1 (en) * 2006-10-26 2008-05-29 Hantash Feras M Alpha globin gene dosage assay
UA108733C2 (en) 2006-12-12 2015-06-10 Sunflower herbicide tolerant to herbicide
US10017827B2 (en) 2007-04-04 2018-07-10 Nidera S.A. Herbicide-resistant sunflower plants with multiple herbicide resistant alleles of AHASL1 and methods of use
EP2152915A2 (en) * 2007-05-14 2010-02-17 Insight Genetics, Inc. Methods of screening nucleic acids for single nucleotide variations
KR20100051795A (en) * 2007-06-22 2010-05-18 키진 엔.브이. Targeted nucleotide exchange with improved modified oligonucleotides
US7845686B2 (en) * 2007-12-17 2010-12-07 S & B Technical Products, Inc. Restrained pipe joining system for plastic pipe
US8188060B2 (en) 2008-02-11 2012-05-29 Dharmacon, Inc. Duplex oligonucleotides with enhanced functionality in gene regulation
AU2014262183B2 (en) * 2008-05-06 2017-02-02 Agriculture Victoria Services Pty Ltd Herbicide resistant barley (2)
EP2998397B1 (en) 2008-09-11 2017-11-01 Keygene N.V. Method for diagnostic marker development
CA2739464C (en) 2008-10-03 2020-03-31 Opko Curna, Llc Treatment of apolipoprotein-a1 related diseases by inhibition of natural antisense transcript to apolipoprotein-a1
CN102317458B (en) 2008-12-04 2018-01-02 库尔纳公司 Pass through treatment of the suppression of erythropoietin(EPO) (EPO) natural antisense transcript to EPO relevant diseases
US8927511B2 (en) 2008-12-04 2015-01-06 Curna, Inc. Treatment of vascular endothelial growth factor (VEGF) related diseases by inhibition of natural antisense transcript to VEGF
WO2010065787A2 (en) 2008-12-04 2010-06-10 Curna, Inc. Treatment of tumor suppressor gene related diseases by inhibition of natural antisense transcript to the gene
JP5766126B2 (en) 2009-02-12 2015-08-19 クルナ・インコーポレーテッド Treatment of brain-derived neurotrophic factor (BDNF) -related diseases by suppression of natural antisense transcripts against BDNF
EA021797B1 (en) 2009-02-13 2015-09-30 Икс-Чем, Инк. Methods of creating and screening dna-encoded libraries
CN102482677B (en) 2009-03-16 2017-10-17 库尔纳公司 Nuclear factor (red blood cell derives 2) sample 2 (NRF2) relevant disease is treated by suppressing NRF2 natural antisense transcript
CN102549159B (en) 2009-03-17 2016-08-10 库尔纳公司 By suppressing to treat the disease that DLK1 is correlated with for the natural antisense transcript of δ sample 1 congener (DLK1)
ES2609655T3 (en) 2009-05-06 2017-04-21 Curna, Inc. Treatment of diseases related to tristetraproline (TTP) by inhibition of natural antisense transcript for TTP
WO2010129799A2 (en) 2009-05-06 2010-11-11 Curna, Inc. Treatment of lipid transport and metabolism gene related diseases by inhibition of natural antisense transcript to a lipid transport and metabolism gene
WO2010129861A2 (en) 2009-05-08 2010-11-11 Curna, Inc. Treatment of dystrophin family related diseases by inhibition of natural antisense transcript to dmd family
EP2432881B1 (en) 2009-05-18 2017-11-15 CuRNA, Inc. Treatment of reprogramming factor related diseases by inhibition of natural antisense transcript to a reprogramming factor
WO2010135695A2 (en) 2009-05-22 2010-11-25 Curna, Inc. TREATMENT OF TRANSCRIPTION FACTOR E3 (TFE3) and INSULIN RECEPTOR SUBSTRATE 2 (IRS2) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENSE TRANSCRIPT TO TFE3
ES2618576T3 (en) 2009-05-28 2017-06-21 Curna, Inc. Treatment of diseases related to an antiviral gene by inhibiting a natural antisense transcript to an antiviral gene
JP6128846B2 (en) 2009-06-16 2017-05-17 クルナ・インコーポレーテッド Treatment of PON1 gene-related diseases by suppression of natural antisense transcripts against paraoxonase (PON1)
WO2010148050A2 (en) 2009-06-16 2010-12-23 Curna, Inc. Treatment of collagen gene related diseases by inhibition of natural antisense transcript to a collagen gene
WO2010151671A2 (en) 2009-06-24 2010-12-29 Curna, Inc. Treatment of tumor necrosis factor receptor 2 (tnfr2) related diseases by inhibition of natural antisense transcript to tnfr2
CA2765815A1 (en) 2009-06-26 2010-12-29 Opko Curna, Llc Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene
CA2768947C (en) 2009-07-24 2018-06-19 Opko Curna, Llc Treatment of sirtuin (sirt) related diseases by inhibition of natural antisense transcript to a sirtuin (sirt)
CA2769665A1 (en) 2009-08-05 2011-02-10 Opko Curna, Llc Treatment of insulin gene (ins) related diseases by inhibition of natural antisense transcript to an insulin gene (ins)
ES2599986T3 (en) 2009-08-11 2017-02-06 Curna, Inc. Treatment of adiponectin-related diseases (ADIPOQ) by inhibiting a natural antisense transcript of an adiponectin (ADIPOQ)
EP2982755B1 (en) 2009-08-21 2020-10-07 CuRNA, Inc. Treatment of 'c terminus of hsp70-interacting protein' (chip) related diseases by inhibition of natural antisense transcript to chip
KR101892760B1 (en) 2009-08-25 2018-08-28 큐알엔에이, 인크. Treatment of 'iq motif containing gtpase activating protein' (iqgap) related diseases by inhibition of natural antisense transcript to iqgap
CA2775111C (en) 2009-09-25 2019-12-31 Opko Curna, Llc Treatment of filaggrin (flg) related diseases by modulation of flg expression and activity
NO2513310T3 (en) 2009-12-16 2018-03-31
CN102869776B (en) 2009-12-23 2017-06-23 库尔纳公司 HGF relevant diseases are treated by suppressing the natural antisense transcript of HGF (HGF)
US9068183B2 (en) 2009-12-23 2015-06-30 Curna, Inc. Treatment of uncoupling protein 2 (UCP2) related diseases by inhibition of natural antisense transcript to UCP2
KR101853508B1 (en) 2009-12-29 2018-06-20 큐알엔에이, 인크. TREATMENT OF TUMOR PROTEIN 63 (p63) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENSE TRANSCRIPT TO p63
CA2785173A1 (en) 2009-12-29 2011-07-28 Curna, Inc. Treatment of nuclear respiratory factor 1 (nrf1) related diseases by inhibition of natural antisense transcript to nrf1
ES2677044T3 (en) 2009-12-31 2018-07-27 Curna, Inc. Treatment of diseases related to insulin receptor substrate 2 (IRS2) by inhibition of natural antisense transcript for IRS2 and transcription factor E3 (TFE3)
US8946181B2 (en) 2010-01-04 2015-02-03 Curna, Inc. Treatment of interferon regulatory factor 8 (IRF8) related diseases by inhibition of natural antisense transcript to IRF8
RU2612161C2 (en) 2010-01-06 2017-03-02 Курна, Инк. Treatment of pancreatic developmental gene related diseases by inhibition of natural antisense transcript to pancreatic developmental gene
WO2011085347A2 (en) 2010-01-11 2011-07-14 Opko Curna, Llc Treatment of sex hormone binding globulin (shbg) related diseases by inhibition of natural antisense transcript to shbg
CN102782135A (en) 2010-01-25 2012-11-14 库尔纳公司 Treatment of RNase H1 related diseases by inhibition of natural antisense transcript to RNase H1
CA2790506A1 (en) 2010-02-22 2011-08-25 Curna, Inc. Treatment of pyrroline-5-carboxylate reductase 1 (pycr1) related diseases by inhibition of natural antisense transcript to pycr1
CN102869777B (en) 2010-04-02 2018-11-02 库尔纳公司 CSF3 relevant diseases are treated by inhibiting the natural antisense transcript of colony stimulating factor 3 (CSF3)
TWI644675B (en) 2010-04-09 2018-12-21 可娜公司 Treatment of fibroblast growth factor 21 (fgf21) related diseases by inhibition of natural antisense transcript to fgf21
CN107988228B (en) 2010-05-03 2022-01-25 库尔纳公司 Treatment of Sirtuin (SIRT) related diseases by inhibition of natural antisense transcript to Sirtuin (SIRT)
TWI531370B (en) 2010-05-14 2016-05-01 可娜公司 Treatment of par4 related diseases by inhibition of natural antisense transcript to par4
DK2576783T3 (en) 2010-05-26 2018-03-12 Curna Inc TREATMENT OF ATONAL HOMOLOGY 1- (ATOH1) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENCE TRANSCRIPTS AT ATOH1
DK2576784T3 (en) 2010-05-26 2018-02-26 Curna Inc TREATMENT OF METHIONIN SULPHOXIDE REDUCTASE A (MSRA) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENCE TRANSCRIPTION TO MSRA
CA2803882C (en) 2010-06-23 2022-10-18 Opko Curna, Llc Treatment of sodium channel, voltage-gated, alpha subunit (scna) related diseases by inhibition of natural antisense transcript to scna
NO2593547T3 (en) 2010-07-14 2018-04-14
RU2624048C2 (en) 2010-10-06 2017-06-30 Курна, Инк. Treatment of diseases associated with the sialidase 4 (neu4) gene, by gene neu4 natural antisense transcript inhibition
JP6049623B2 (en) 2010-10-22 2016-12-21 カッパーアールエヌエー,インコーポレイテッド Treatment of IDUA-related diseases by inhibition of natural antisense transcripts to α-L-iduronidase (IDUA)
US10000752B2 (en) 2010-11-18 2018-06-19 Curna, Inc. Antagonat compositions and methods of use
JP6071893B2 (en) 2010-11-23 2017-02-01 カッパーアールエヌエー,インコーポレイテッド Treatment of NANOG-related diseases by inhibition of natural antisense transcripts to NANOG
CN103620036B (en) 2011-06-09 2016-12-21 库尔纳公司 FXN relevant disease is treated by the natural antisense transcript of suppression Frataxin (FXN)
KR101991980B1 (en) 2011-09-06 2019-06-21 큐알엔에이, 인크. TREATMENT OF DISEASES RELATED TO ALPHA SUBUNITS OF SODIUM CHANNELS, VOLTAGE-GATED (SCNxA) WITH SMALL MOLECULES
CA2848023C (en) 2011-09-07 2022-03-15 X-Chem, Inc. Methods for tagging dna-encoded libraries
US20140322717A1 (en) * 2011-11-18 2014-10-30 The Trustees Of Columbia University In The City Of New York Selective amplification and detection of mutant gene alleles
BR112014014664B1 (en) 2011-12-16 2023-02-28 Basf Agrochemical Products, B.V METHOD FOR ANALYZING A PLANT AHASL GENE AND KIT FOR ANALYZING A PLANT AHASL GENE
ES2694592T3 (en) 2012-03-15 2018-12-21 Curna, Inc. Treatment of diseases related to brain-derived neurotrophic factor (BDNF) by inhibition of the natural antisense transcript of BDNF
NZ703766A (en) 2012-07-13 2018-03-23 X Chem Inc Dna-encoded libraries having encoding oligonucleotide linkages not readable by polymerases
EP2966980A4 (en) 2013-03-15 2016-12-28 Cibus Us Llc Methods and compositions for increasing efficiency of increased efficiency of targeted gene modification using oligonucleotide-mediated gene repair
SI3102673T1 (en) 2014-02-03 2020-11-30 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a beta thalessemia
PE20180800A1 (en) 2015-07-10 2018-05-09 Ionis Pharmaceuticals Inc DIACIGLYCEROL ACILTRANSFERASE 2 (DGAT2) MODULATORS
US20190300872A1 (en) 2016-05-06 2019-10-03 Tod M. Woolf Improved Methods of Genome Editing with and without Programmable Nucleases
AU2017340511B2 (en) * 2016-10-04 2022-06-02 Membrane Protective Technologies, Inc. Systems and methods for natural cryoprotectants for preservation of cells
EP3568470B1 (en) * 2017-01-10 2022-07-06 Christiana Care Health Services, Inc. Methods for in vitro site-directed mutagenesis using gene editing technologies
CN108396072B (en) * 2018-03-21 2021-04-30 新疆维吾尔自治区药物研究所 Method for rapidly identifying cichorium hirsutum and cichorium intybus
CN110100732A (en) * 2019-05-27 2019-08-09 东北林业大学 A kind of black nightshade method for in-vitro rapid propagation

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US51270A (en) * 1865-11-28 Improvement in children s bedclothes-retainers
US119570A (en) * 1871-10-03 Improvement in coopers crozes and howels
US163849A (en) * 1875-06-01 Improvement in grading apparatus
US193334A (en) * 1877-07-24 Improvement in show-cases
US217377A (en) * 1879-07-08 hislop
US4459355A (en) * 1982-07-12 1984-07-10 International Paper Company Method for transforming plant cells
US5188642A (en) * 1985-08-07 1993-02-23 Monsanto Company Glyphosate-resistant plants
US5312910A (en) * 1987-05-26 1994-05-17 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5422251A (en) * 1986-11-26 1995-06-06 Princeton University Triple-stranded nucleic acids
US5565350A (en) * 1993-12-09 1996-10-15 Thomas Jefferson University Compounds and methods for site directed mutations in eukaryotic cells
US5731181A (en) * 1996-06-17 1998-03-24 Thomas Jefferson University Chimeric mutational vectors having non-natural nucleotides
US5792903A (en) * 1993-10-25 1998-08-11 Yissum Research Development Company Of Hebrew University Of Jerusalem Lycopene cyclase gene
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
US5810222A (en) * 1996-09-27 1998-09-22 Shoemaker; Randy R. Holster with handgun detent means
US5880277A (en) * 1994-07-15 1999-03-09 City Of Hope Ribozyme cleavage of 5α-reductase mRNA
US5882941A (en) * 1994-05-04 1999-03-16 Massachusette Institute Of Technology Programmable genotoxic agents and uses therefor
US5905185A (en) * 1995-11-30 1999-05-18 Ppl Therapeutics Protein C production in non-human transgenic mammals
US5912340A (en) * 1995-10-04 1999-06-15 Epoch Pharmaceuticals, Inc. Selective binding complementary oligonucleotides
US5955363A (en) * 1990-01-03 1999-09-21 Promega Corporation Vector for in vitro mutagenesis and use thereof
US6004804A (en) * 1998-05-12 1999-12-21 Kimeragen, Inc. Non-chimeric mutational vectors
US6010907A (en) * 1998-05-12 2000-01-04 Kimeragen, Inc. Eukaryotic use of non-chimeric mutational vectors
US6046380A (en) * 1994-05-03 2000-04-04 Ppl Therapeutics (Scotland) Limited Factor IX production in transgenic non-human mammals and factor IX DNA sequences with modified splice sites
US6136601A (en) * 1991-08-21 2000-10-24 Epoch Pharmaceuticals, Inc. Targeted mutagenesis in living cells using modified oligonucleotides
US6271360B1 (en) * 1999-08-27 2001-08-07 Valigen (Us), Inc. Single-stranded oligodeoxynucleotide mutational vectors
US6387699B1 (en) * 2000-09-08 2002-05-14 Isis Pharmaceuticals, Inc. Antisense inhibition of A20 expression
US6528700B1 (en) * 1997-11-18 2003-03-04 Pioneer Hi-Bred International, Inc. Targeted manipulation of genes in plants
US6982169B2 (en) * 2001-01-15 2006-01-03 Morphotek, Inc. Chemical inhibitors of mismatch repair

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ502929A (en) * 1997-08-05 2001-09-28 Kimeragen Inc The use of mixed duplex oligonucleotides to effect localized genetic changes in plants
EP1557424A1 (en) 1997-09-12 2005-07-27 Exiqon A/S Bi-cyclic nucleoside, nucleotide and oligonucleoide analogues
ATE465168T1 (en) 1999-03-18 2010-05-15 Exiqon As XYLO-LNA ANALOGUE
CN102180924A (en) 1999-05-04 2011-09-14 桑塔里斯制药公司 L-ribo-LNA analogues
AR025996A1 (en) * 1999-10-07 2002-12-26 Valigen Us Inc NON-TRANSGENIC PLANTS RESISTANT TO HERBICIDES.
OA12240A (en) * 2000-03-27 2006-05-10 Univ Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides.
US6936467B2 (en) 2000-03-27 2005-08-30 University Of Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
WO2002026967A2 (en) 2000-09-25 2002-04-04 Thomas Jefferson University Targeted gene correction by single-stranded oligodeoxynucleotides

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US51270A (en) * 1865-11-28 Improvement in children s bedclothes-retainers
US119570A (en) * 1871-10-03 Improvement in coopers crozes and howels
US163849A (en) * 1875-06-01 Improvement in grading apparatus
US193334A (en) * 1877-07-24 Improvement in show-cases
US217377A (en) * 1879-07-08 hislop
US4459355A (en) * 1982-07-12 1984-07-10 International Paper Company Method for transforming plant cells
US5188642A (en) * 1985-08-07 1993-02-23 Monsanto Company Glyphosate-resistant plants
US5422251A (en) * 1986-11-26 1995-06-06 Princeton University Triple-stranded nucleic acids
US5312910A (en) * 1987-05-26 1994-05-17 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5955363A (en) * 1990-01-03 1999-09-21 Promega Corporation Vector for in vitro mutagenesis and use thereof
US6136601A (en) * 1991-08-21 2000-10-24 Epoch Pharmaceuticals, Inc. Targeted mutagenesis in living cells using modified oligonucleotides
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
US5792903A (en) * 1993-10-25 1998-08-11 Yissum Research Development Company Of Hebrew University Of Jerusalem Lycopene cyclase gene
US5565350A (en) * 1993-12-09 1996-10-15 Thomas Jefferson University Compounds and methods for site directed mutations in eukaryotic cells
US6046380A (en) * 1994-05-03 2000-04-04 Ppl Therapeutics (Scotland) Limited Factor IX production in transgenic non-human mammals and factor IX DNA sequences with modified splice sites
US5882941A (en) * 1994-05-04 1999-03-16 Massachusette Institute Of Technology Programmable genotoxic agents and uses therefor
US5880277A (en) * 1994-07-15 1999-03-09 City Of Hope Ribozyme cleavage of 5α-reductase mRNA
US5912340A (en) * 1995-10-04 1999-06-15 Epoch Pharmaceuticals, Inc. Selective binding complementary oligonucleotides
US5905185A (en) * 1995-11-30 1999-05-18 Ppl Therapeutics Protein C production in non-human transgenic mammals
US5731181A (en) * 1996-06-17 1998-03-24 Thomas Jefferson University Chimeric mutational vectors having non-natural nucleotides
US5810222A (en) * 1996-09-27 1998-09-22 Shoemaker; Randy R. Holster with handgun detent means
US6528700B1 (en) * 1997-11-18 2003-03-04 Pioneer Hi-Bred International, Inc. Targeted manipulation of genes in plants
US6010907A (en) * 1998-05-12 2000-01-04 Kimeragen, Inc. Eukaryotic use of non-chimeric mutational vectors
US6004804A (en) * 1998-05-12 1999-12-21 Kimeragen, Inc. Non-chimeric mutational vectors
US6271360B1 (en) * 1999-08-27 2001-08-07 Valigen (Us), Inc. Single-stranded oligodeoxynucleotide mutational vectors
US6479292B1 (en) * 1999-08-27 2002-11-12 Valigen (Us), Inc. Genetic alteration in plants using single-stranded oligodeoxynucleotide vectors
US6387699B1 (en) * 2000-09-08 2002-05-14 Isis Pharmaceuticals, Inc. Antisense inhibition of A20 expression
US6982169B2 (en) * 2001-01-15 2006-01-03 Morphotek, Inc. Chemical inhibitors of mismatch repair

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746343B2 (en) 2001-08-09 2023-09-05 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
US20130190170A1 (en) * 2001-08-09 2013-07-25 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
US20120233723A1 (en) * 2005-03-02 2012-09-13 Instituto Nacional De Tecnologia Agropecuaria Herbicide-resistant rice plants, polynucleotides encoding herbicide resistant acetohydroxyacid synthase large subunit proteins, and methods of use
WO2006094084A2 (en) 2005-03-02 2006-09-08 Instituto Nacional De Tecnologia Agropecuaria Herbicide-resistant rice plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US20100029485A1 (en) * 2005-03-02 2010-02-04 Instituto Nacional De Tecnologia Agropecuaria Herbicide-resistant rice plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US20160230184A1 (en) * 2005-07-01 2016-08-11 Basf Aktiengesellschaft Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US20160222403A1 (en) * 2005-07-01 2016-08-04 Basf Aktiengesellschaft Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US20110209232A1 (en) * 2005-07-01 2011-08-25 Nidera Semillas S.A. Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
WO2007037676A1 (en) * 2005-09-29 2007-04-05 Keygene N.V. Method and means for targeted nucleotide exchange
US20070118920A1 (en) * 2005-11-09 2007-05-24 Basf Agrochemical Products B.V. Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use
US10647991B2 (en) * 2006-12-07 2020-05-12 Kansas State University Research Foundation Acetolactate synthase herbicide resistant sorghum
US10519461B2 (en) * 2006-12-07 2019-12-31 Kansas State University Research Foundation Acetolactate synthase herbicide resistant sorghum
US10674690B2 (en) 2006-12-07 2020-06-09 Kansas State University Research Foundation Acetolactate synthase herbicide resistant sorghum
US20080216187A1 (en) * 2006-12-07 2008-09-04 Kansas State University Research Foundation Acetolactate Synthase Herbicide Resistant Sorghum
US20160222404A1 (en) * 2007-04-04 2016-08-04 Basf Agrochemical Products, B.V. Herbicide-resistant sunflower plants with multiple herbicide resistant alleles of ahasl1 and methods of use
US20160222405A1 (en) * 2007-04-04 2016-08-04 Basf Agrochemical Products, B.V. Herbicide-resistant sunflower plants with multiple herbicide resistant alleles of ahasl1 and methods of use
US20100287641A1 (en) * 2007-04-04 2010-11-11 Basf Plant Science Gmbh Ahas mutants
US20100115650A1 (en) * 2007-04-04 2010-05-06 Kening Yao Herbicide-Resistant Brassica Plants and Methods of Use
US20120178628A1 (en) * 2007-10-05 2012-07-12 Incima Us Llc Mutated acetohydroxyacid synthase genes in brassica
US20090205064A1 (en) * 2007-10-05 2009-08-13 Christian Schopke Mutated Acetohydroxyacid Synthase Genes in Brassica
US20130219563A1 (en) * 2008-03-18 2013-08-22 Mendel Biotechnology, Inc. Enhancement of plant yield vigor and stress tolerance
US8889951B2 (en) * 2008-05-06 2014-11-18 Agriculture Victoria Services Pty Ltd Herbicide resistant barley expressing mutant acetohydroxy acid synthase
US20110126327A1 (en) * 2008-05-06 2011-05-26 Christopher Pittock Herbicide resistant barley
US20110214196A1 (en) * 2008-06-20 2011-09-01 University Of Georgia Research Foundation Development of herbicide-resistant grass species
US9399772B2 (en) * 2008-07-01 2016-07-26 Arcadia Biosciences, Inc. Tomatoes that soften more slowly post-harvest due to non-transgenic alterations in an expansin gene
US11193140B2 (en) * 2008-09-09 2021-12-07 Stora Enso Oyj Method for the alteration of plants using CLE polypeptides/peptides
US20130074214A1 (en) * 2008-09-25 2013-03-21 University Of Guelph Nitrogen Responsive Early Nodulin Gene
US20120060243A1 (en) * 2008-09-26 2012-03-08 Peter Beetham Herbicide-Resistant AHAS-Mutants and Methods of Use
US20140335562A1 (en) * 2008-12-31 2014-11-13 Sapphire Energy, Inc. Genetically Engineered Herbicide Resistant Algae
US20120322102A1 (en) * 2008-12-31 2012-12-20 Sapphire Energy, Inc. Genetically engineered herbicide resistant algae
EP3178312A1 (en) 2009-09-01 2017-06-14 BASF Agrochemical Products, B.V. Herbicide-tolerant plants
US11096345B2 (en) 2009-09-01 2021-08-24 Basf Se Method for treating post-emergent rice
US11096346B2 (en) 2009-09-01 2021-08-24 Basf Se Method for treating post-emergent rice
US20170088854A1 (en) * 2009-12-06 2017-03-30 A.B. Seeds Ltd. MicroRNA Compositions and Methods for Enhancing Plant Resistance to Abiotic Stress
KR101806342B1 (en) * 2009-12-24 2017-12-07 고쿠리츠겐큐가이하츠호징 노우교 · 쇼쿠힝 산교기쥬츠 소고겐큐기코 Gene Dro1 controlling deep-rooted characteristics of plant and utilization of same
US20140165228A1 (en) * 2010-01-06 2014-06-12 E.I. Dupont De Nemours Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
US20130205445A1 (en) * 2010-03-27 2013-08-08 Technische Universitat Kaiserslautern Method of Enhancing the Seed Yield and Promoting the Growth of Plants
US11111500B2 (en) * 2010-08-03 2021-09-07 Cibus Us Llc Mutated protoporphyrinogen IX oxidase (PPX) genes
US20140189906A1 (en) * 2010-08-03 2014-07-03 Cibus Europe B.V. Mutated protoporphyrinogen ix oxidase (ppx) genes
JP2016220685A (en) * 2010-08-03 2016-12-28 キブス ユーエス エルエルシー Mutated protoporphyrinogen ix oxidase (ppx) genes
JP2019004899A (en) * 2010-08-03 2019-01-17 キブス ユーエス エルエルシー Mutated protoporphyrinogen ix oxidase (ppx) genes
US10457954B2 (en) * 2010-08-30 2019-10-29 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US11130957B2 (en) 2010-08-30 2021-09-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US20130167265A1 (en) * 2010-08-30 2013-06-27 David Panik Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US20130219560A1 (en) * 2010-09-02 2013-08-22 Richard T. Sayre Reduction of post-harvest physiological deterioration
EP2857512A1 (en) 2010-12-02 2015-04-08 Keygene N.V. Targeted alteration of DNA
US9518258B2 (en) 2010-12-02 2016-12-13 Keygene N.V. Targeted alteration of DNA with oligonucleotides
US9150854B2 (en) 2010-12-02 2015-10-06 Keygene N.V. Targeted alteration of DNA
WO2012074385A1 (en) 2010-12-02 2012-06-07 Keygene N.V. Targeted alteration of dna
WO2012074386A1 (en) 2010-12-02 2012-06-07 Keygene N.V. Targeted alteration of dna with oligonucleotides
US20130326728A1 (en) * 2010-12-08 2013-12-05 Katholieke Universiteit Leuven Agents for increased resistance against oxidative stress conditions
US11274313B2 (en) * 2010-12-16 2022-03-15 BASF Agro B.V. Plants having increased tolerance to herbicides
US20150252379A1 (en) * 2010-12-16 2015-09-10 Basf Se Plants Having Increased Tolerance to Herbicides
US20140157457A1 (en) * 2011-02-25 2014-06-05 Plant Bioscience Limited Plant protease
US20150203863A1 (en) * 2011-03-31 2015-07-23 Shanghai Institutes For Biological Sciences, Cas Genetic engineering method and material for increasing plant yield
US11111499B2 (en) 2011-05-03 2021-09-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US9879276B2 (en) * 2011-05-10 2018-01-30 China Agricultural University Drought tolerance associated protein DT1 and coding sequence and application thereof
US20150135361A1 (en) * 2011-05-10 2015-05-14 China Agricultural University Drought Tolerance Associated Protein DT1 and Coding Sequence and Application Thereof
US20140223604A1 (en) * 2011-05-13 2014-08-07 Andy Pereira Crop plants with improved water use efficiency and grain yield and methods of making them
US20140199760A1 (en) * 2011-05-20 2014-07-17 University Of Toronto Plants having enhanced abiotic stress resistance
US20160264987A1 (en) * 2011-05-27 2016-09-15 Industry-Academic Cooperation Foundation, Yonsei University Gene associated with non-biological stress resistance, and transformed plant
US20140123342A1 (en) * 2011-06-02 2014-05-01 Board Of Regents, The University Of Texas System Regulation of Stomatal Apertures by Apyrases and Extracellular Nucleotides
US20140165229A1 (en) * 2011-06-23 2014-06-12 Basf Plant Science Company Gmbh Plants Having Enhanced Yield-Related Traits and a Method for Making the Same
US20130198896A1 (en) * 2011-10-03 2013-08-01 University Of Kentucky Research Foundation Systems and methods for the production of linear and branched-chain hydrocarbons
US11149282B2 (en) * 2011-10-03 2021-10-19 University Of Kentucky Research Foundation Systems and methods for the production of linear and branched-chain hydrocarbons
US20140234904A1 (en) * 2011-10-06 2014-08-21 University Of Wyoming Method for harvesting photosynthetic unicells using genetically induced flotation
US20180223304A1 (en) * 2011-11-02 2018-08-09 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US10557143B2 (en) * 2011-11-02 2020-02-11 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US20130145498A1 (en) * 2011-11-02 2013-06-06 University Of North Texas MtNIP REGULATED PLANTS WITH SIGNIFICANTLY INCREASED SIZE AND BIOMASS
US10472646B2 (en) 2011-11-02 2019-11-12 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US9297021B2 (en) * 2011-11-02 2016-03-29 University Of North Texas MtNIP regulated plants with significantly increased size and biomass
US10590431B2 (en) * 2011-11-16 2020-03-17 The State Of Queensland Drought tolerant plants produced by modification of the stay-green STGX locus
US20140331347A1 (en) * 2011-11-16 2014-11-06 The State Of Queensland Acting Through The Department Of Agriculture, Fisheries And Forestry Drought tolerant plants produced by modification of the stay-green stgx locus
US20140359899A1 (en) * 2011-12-08 2014-12-04 Carnegie Institution Of Washington Sucrose Transporters and Methods of Generating Pathogen-Resistant Plants
US20150128305A1 (en) * 2012-05-07 2015-05-07 National Institute Of Plant Genome Research POLYNUCLEOTIDE ENCODING CaTLP1 PROTEIN AND USES THEREOF
US10041087B2 (en) 2012-06-19 2018-08-07 BASF Agro B.V. Plants having increased tolerance to herbicides
US10100329B2 (en) 2012-06-19 2018-10-16 BASF Agro B.V. Plants having increased tolerance to herbicides
US11441154B2 (en) 2012-06-19 2022-09-13 BASF Agro B.V. Plants having increased tolerance to herbicides
US11572571B2 (en) * 2012-06-19 2023-02-07 BASF Agro B.V. Plants having increased tolerance to herbicides
US9512441B2 (en) * 2012-06-21 2016-12-06 Toyota Jidosha Kabushiki Kaisha Technique for regulating flower bud formation in sugarcane
US20150135373A1 (en) * 2012-06-21 2015-05-14 Toyota Jidosha Kabushiki Kaisha Technique for regulating flower bud formation in sugarcane
US20150240251A1 (en) * 2012-09-13 2015-08-27 Postech Academy-Industry Foundation Composition for regulating flowering of a plant containing the gene coding for abi3 protein
US9441241B2 (en) * 2013-02-05 2016-09-13 Clemson University Methods and compositions for transgenic plants with enhanced resistance to biotic and abiotic stress
US20140237684A1 (en) * 2013-02-05 2014-08-21 Clemson University Methods and compositions for transgenic plants with enhanced resistance to biotic and abiotic stress
US10801034B2 (en) 2013-03-13 2020-10-13 The Board Of Trustees Of The University Of Arkansas Methods of increasing resistance of crop plants to heat stress and selecting crop plants with increased resistance to heat stress
US9957520B2 (en) 2013-03-13 2018-05-01 The Board Of Trustees Of The University Of Arkansas Methods of increasing resistance of crop plants to heat stress and selecting crop plants with increased resistance to heat stress
US9523097B2 (en) * 2013-03-15 2016-12-20 The United States Of America, As Represented By The Secretary Of Agriculture Engineering rubber production in plants
US20140325699A1 (en) * 2013-03-15 2014-10-30 United States Of America, As Represented By The Secretary Of Agriculture Engineering rubber production in plants
US11866720B2 (en) 2013-08-12 2024-01-09 BASF Agro B.V. Transgenic or non-transgenic plants with mutated protoporphyrinogen oxidase having increased tolerance to herbicides
US11827896B2 (en) 2013-08-12 2023-11-28 BASF Agro B.V. Plants having increased tolerance to herbicides
US10087460B2 (en) 2013-08-12 2018-10-02 BASF Agro B.V. Transgenic or non-transgenic plants with mutated protoporphyrinogen oxidase having increased tolerance to herbicides
US10968462B2 (en) 2013-08-12 2021-04-06 BASF Agro B.V. Plants having increased tolerance to herbicides
US10982227B2 (en) 2013-08-12 2021-04-20 BASF Agro B.V. Transgenic or non-transgenic plants with mutated protoporphyrinogen oxidase having increased tolerance to herbicides
US10392630B2 (en) 2013-08-12 2019-08-27 BASF Agro B.V. Plants having increased tolerance to herbicides
US20150121570A1 (en) * 2013-10-24 2015-04-30 Industry-Academic Cooperation Foundation, Yonsei University Gene implicated in drought stress tolerance and transformed plants with the same
US20150247161A1 (en) * 2013-12-24 2015-09-03 National Institute Of Plant Genome Research METHOD OF PRODUCING STRESS TOLERANT PLANTS OVER-EXPRESSING OsAlba1
US10494641B2 (en) * 2013-12-27 2019-12-03 Toyota Jidosha Kabushiki Kaisha Transformed plant and method for producing exudate containing sugar using transformed plant
US20150184193A1 (en) * 2013-12-30 2015-07-02 Dow Agrosciences Llc Trait stacking strategy for corn introgression
US10961543B2 (en) * 2014-04-11 2021-03-30 KWS SAAT SE & Co. KGaA Tonoplast proton/sugar antiporter proteins and the use thereof to increase the saccharose concentration in a saccharose storage organ of plants
US20180080037A1 (en) * 2014-04-11 2018-03-22 Kws Saat Se Tonoplast proton/sugar antiporter proteins and the use thereof to increase the saccharose concentration in a saccharose storage organ of plants
CN105441475A (en) * 2014-05-02 2016-03-30 中央研究院 Transgenic plants with increased trace element contents and methods for producing the same
US20150315250A1 (en) * 2014-05-02 2015-11-05 Academia Sinica Transgenic plants with increased trace element contents and methods for producing the same
US20160244773A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160244776A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160244774A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US20160244775A1 (en) * 2015-02-23 2016-08-25 Sumitomo Rubber Industries, Ltd. Vector comprising specific promoter and gene encoding specific protein, transgenic plant into which the vector has been introduced, and method for improving polyisoprenoid production by introducing the vector into plant
US11236365B2 (en) * 2015-06-30 2022-02-01 Sumitomo Rubber Industries, Ltd. Method for producing polyisoprenoid, transformed plant, method for producing pneumatic tire and method for producing rubber product
US10106815B2 (en) * 2016-01-22 2018-10-23 Nanjing Agricultural University Fusarium head blight resistant gene Tafhb1 of wheat and use thereof
US20180112228A1 (en) * 2016-10-26 2018-04-26 Salk Institute For Biological Studies Environmental stress response transcriptional regulatory network
US10913952B2 (en) * 2016-10-26 2021-02-09 Salk Institute For Biological Studies Environmental stress response transcriptional regulatory network
US11312972B2 (en) * 2016-11-16 2022-04-26 Cellectis Methods for altering amino acid content in plants through frameshift mutations
CN110545659A (en) * 2017-01-31 2019-12-06 赖斯泰克有限公司 Effect of multiple mutations on increasing herbicide resistance/tolerance in Rice
US11877553B2 (en) * 2017-01-31 2024-01-23 Ricetec, Inc. Effects of a plurality of mutations to improve herbicide resistance/tolerance in rice
US20220073941A1 (en) * 2019-01-02 2022-03-10 Smart Earth Camelina Corp. Herbicide-resistant camelina sativa plants, and variant camelina acetohydroxyacid synthase polypeptides

Also Published As

Publication number Publication date
WO2001092512A2 (en) 2001-12-06
AU2001265277B2 (en) 2006-09-07
WO2001092512A3 (en) 2003-01-09
EP1297122A2 (en) 2003-04-02
US7258854B2 (en) 2007-08-21
US20030217377A1 (en) 2003-11-20
AU6527701A (en) 2001-12-11
US6936467B2 (en) 2005-08-30
IL153122A0 (en) 2003-06-24
US20030051270A1 (en) 2003-03-13
CA2410523A1 (en) 2001-12-06

Similar Documents

Publication Publication Date Title
AU2001265277B2 (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
AU2001265277A1 (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
AU2013203454B2 (en) Improved techniques for transfecting protoplasts
US20070122822A1 (en) Compositions and methods for enhancing oligonucleotide-directed nucleic acid sequence alteration
NZ582721A (en) Targeted nucleotide exchange with improved modified oligonucleotides
CA2404780A1 (en) Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
WO2003104451A2 (en) Modifying dna recombination and repair
DK2857512T3 (en) Targeted DNA change
EP1490013B1 (en) Methods for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising hydroxyurea
US20110312094A1 (en) Use of double stranded rna to increase the efficiency of targeted gene alteration in plant protoplasts
CN111954462A (en) FAD2 gene and mutations
NZ524366A (en) Methods for enhancing targeted gene alteration using oligonucleotides
CA3080234A1 (en) Lodging resistance in plants
US10676755B2 (en) Mutated acetohydroxyacid synthase genes in euphorbiaceae and plant material comprising such genes
ZA200209833B (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides.
US20040175722A1 (en) Methods and compositions for reducing screening in oligonucleotide-directed nucleic acid sequence alteration
CN114787364A (en) TAL effector nucleases for gene editing

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF DELAWARE, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KMIEC, ERIC B.;GAMPER, HOWARD B.;RICE, MICHAEL C.;AND OTHERS;REEL/FRAME:014341/0378

Effective date: 20010525

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION