US20030216608A1 - Transvaginal bone anchor implantation device - Google Patents

Transvaginal bone anchor implantation device Download PDF

Info

Publication number
US20030216608A1
US20030216608A1 US10/456,748 US45674803A US2003216608A1 US 20030216608 A1 US20030216608 A1 US 20030216608A1 US 45674803 A US45674803 A US 45674803A US 2003216608 A1 US2003216608 A1 US 2003216608A1
Authority
US
United States
Prior art keywords
bone
anchor
bone anchor
pubic
urethra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/456,748
Inventor
S. Kovac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/111,525 external-priority patent/US6039686A/en
Application filed by Individual filed Critical Individual
Priority to US10/456,748 priority Critical patent/US20030216608A1/en
Publication of US20030216608A1 publication Critical patent/US20030216608A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0004Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
    • A61F2/0031Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
    • A61F2/0036Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
    • A61F2/0045Support slings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00805Treatment of female stress urinary incontinence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/044Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws

Definitions

  • the invention relates to a system and method for the effective long-term cure of recurrent female urinary incontinence, and more particularly to a urethra stabilization and support system attached to the posterior/inferior pubic bone and a method for accomplishing this in which a hypermobile urethra is repositioned in the anatomically proper position.
  • continence is considered to be a function of urethral support and coaptation.
  • the urethra For coaptation to successfully prevent or cure incontinence, the urethra must be supported and stabilized in its normal anatomic position.
  • the female's natural support system for the urethra is a hammock-like supportive layer composed of endopelvic fascia, the anterior vaginal wall, and the arcus tendineus (a distal attachment to the pubic bone).
  • the pubovaginal sling procedure in which a mesh is placed under the urethra to provide elevation and support of the urethra and bladder neck, is performed through an abdominal incision, and has enjoyed an excellent surgical success rate. It is generally preferable for more complicated cases of recurrent genuine stress urinary incontinence, particularly in patients who have failed prior surgery, who are obese, or whose lifestyles involve heavy lifting and accompanying increased intraabdominal pressure.
  • problems with voiding disjunction and urinary retention, detrusor instability, and infection and erosion of sling materials that can lead to urethrovesical and vesicovaginal fistulas are cause for concern.
  • this procedure is more technically challenging, presents greater blood loss, longer operative time, and a prolonged postoperative recovery.
  • a related difficulty that contributes to the unnatural positioning of the urethra is that some attachment sites, such as the rectus abdominus fascia, require very long sutures and accompanying difficulty in achieving the proper tension in the sutures. This can result in increased lateral movement and momentum of the support structures or mesh sling when they are moved due to intraabdominal pressures.
  • the present invention addresses and corrects these and other difficulties by affecting the continence mechanism directly and providing a predictable and lasting permanent cure for the problem of recurrent female urinary incontinence.
  • the key site for control of continence has not been heretofore addressed. It has further been found that the urethral hypermobility observed in most incontinent patients is caused by a lax or torn arcus tendineus facie pelvis attachment at its origin near the anterior levator arch in the immediate retropubic position at the site of the pubourethral ligaments. Repair and reinforcement of this area to stabilize the urethra in its normal position may be equally important as repair of the endopelvic facie. Therefore, the key site for control of continence is the paraurethral attachments of the pubourethral ligaments to the sides of the urethra at the intermediate 60% of the urethral length.
  • the superior portion of the pubic bone is a functional and secure fixation site for incontinence repair
  • a key to restoring the urethra to its normal anatomical position is using the posterior/inferior border of the pubic bone, not the superior portion, as the attachment sites for the mesh sling system.
  • the sling system is anchored to the pubic bone near the point of attachment of the arcus tendineus to the pubic bone.
  • Proper tensioning of the mesh sling system is made easier by using this portion of the pubic bone as the attachment site, due in part to the fact that shorter sutures and an innovative mesh suturing pattern is used. This serves to avoid the problems heretofore discussed associated with an improperly high retropubic positioning of the urethra.
  • a pubic bone-mounted urethra stabilization and support system and a method for the long term cure of recurrent female urinary incontinence.
  • the system comprises a pair of anchors which are affixed to the posterior/inferior pubic bone near the point of attachment of the arcus tendineus to the pubic bone, sutures attached to the anchors, and a sling which is passed behind and about the urethra and the adjacent endopelvic fascia. Ends of the sling are attached to the anchors by the anchor-mounted sutures.
  • a pair of anchor screws are located on either side of the symphysis pubis in the retropubic area posteriorly and at about 0.5 cm superiorly of the inferior edge of the ischial ramus.
  • Sutures connect the anchor screws to the mesh sling.
  • the mesh sling directly supports the urethra by its placement on the endopelvic fascia in the area of the intermediate 60 percent portion of the urethra as will be later described in greater detail.
  • the method includes the steps of accessing said urethra and pubic bone, properly locating and attaching the anchors to the pubic bone, properly locating the sling about the urethra and suturing and tensioning the ends of the sling to the anchors, causing said sling to restore, support and stabilize functional urethral continence anatomy and prevent urethral descent under intraabdominal pressure.
  • the pubic bone is next located by palpation.
  • the course of the arcus from the ischial spine to the arcus insertion into the posterior/inferior aspect of the pubic bone is palpated to locate the proper site for the anchor screws, which is at either side of the symphysis pubis in the retropubic area posteriorly and at about 0.5 cm superiorly of the inferior edge of the ischial ramus.
  • An anchor screw which is provided with a pair of permanent sutures, is driven into the pubic bone at this location and set.
  • An identical anchor screw is then driven into a symmetrically located position on the other side of the symphysis pubis.
  • a sling which can be made of a substantially rectangular patch of surgical mesh, is next laid upon the endopelvic fascia such that its longitudinal edges extend transversely of the urethra which is below the endopelvic fascia
  • Four permanent sutures are used to transfix the mesh along the lateral borders of the urethra at the edges of the mesh. These sutures are so positioned as to create a slight trough-like space between the mesh and the endopelvic fascia and urethra. This space prevents undue tension on the urethra by the mesh when the mesh is formed into a sling.
  • the permanent sutures of the anchor screws are then woven transversely of the mesh in opposite directions between the longitudinal edges of the mesh and inset from the transverse mesh edges. These sutures are then bilaterally tied with appropriate tensioning to transform the mesh into a sling.
  • any additional necessary repairs including the sequential tying of the repair sutures for attaching the endopelvic fascia to the arcus tendineus fascia pelvis, are made.
  • the cut edges of the anterior vaginal wall are approximated with sutures, and the cul-de-sac and posterior vaginal segment defects are repaired.
  • the bone anchor can either be a bone screw or a harpoon-type anchor. If the bone anchor is a screw, it is preferably implanted using a bone drill, such as disclosed in WO 97/30638. If a harpoon-type bone anchor is used, a transvaginal bone anchor implantation device of the present invention is preferably used.
  • the bone anchor implantation device of the present invention comprises a shaft or body having a grip at a first end of the shaft, an anchor mount at a distal end of the shaft, and a bone anchor removably mounted in the anchor mount.
  • the shaft is preferably bent so that the anchor mount generally faces the grip such that the bone anchor can be implanted at an anchoring site in a bone by pulling rearwardly on the device.
  • the body is adapted to be separable from the anchor after the anchor has been implanted in bone.
  • a suture thread is attached to the bone anchor such that the suture thread is accessible to a surgeon using the device after the bone anchor has been implanted in bone and after the body has been separated from the bone anchor.
  • the shaft is at least partially hollow, and the suture thread is housed in the shaft.
  • the anchor mount comprises a cannula at the distal end of the shaft. The cannula being sized to removably receive an end of the anchor.
  • the procedure is substantially the same as described above.
  • the only difference lies in the method in which the bone anchor is inserted into the bone.
  • the device is introduced into the patient transvaginally through the vaginal wall incision.
  • the anchor is placed at the anchor site on the pubic bone, and the device is pulled to drive the anchor into the pubic bone.
  • the shaft is separated from the anchor and removed from the patient. is hook shaped.
  • FIG. 1 is a fragmentary midsagittal cross-sectional view of the pelvic region illustrating the disposition of the urethra, bladder and vagina together with neighboring organs in a healthy woman;
  • FIG. 2 is a fragmentary transverse view generally as seen along the line 2 - 2 of FIG. 1, illustrating the pubic bone, the bladder, the urethra, the arcus tendineus fascia, the endopelvic fascia and the pubourethral ligaments;
  • FIG. 3 is a fragmentary midsagittal cross-sectional view, similar to FIG. 1, and illustrating the prolapse of the urethra against the anterior wall of the vagina;
  • FIG. 4 is a frontal surgical view of the external female genitalia in surgical preparation with the labia minora in open position exposing the vestibule and the lower vagina of a female patient having the prolapse condition illustrated in FIG. 3;
  • FIG. 5 is a fragmentary surgical view, similar to FIG. 4, and illustrates the posterior orifice of the vagina distended by means of a vaginal retractor, together with an incision made in the anterior wall of the vagina exposing the fascia tissue covering the urethra;
  • FIG. 6 is a fragmentary surgical view similar to FIG. 5 and illustrates the lateral edges of the incision stretched in open position and the placement of a suture-bearing anchor screw retropubically at the posterior/inferior border of the pubic bone to the left of the pubic symphysis and within 1 to 2 mm from the insertion of the arcus tendineus fascia pelvis;
  • FIG. 7 is a fragmentary surgical view, similar to FIG. 6, and illustrates both suture-bearing anchor screws in place in the pubic bone and a rectangular piece of surgical mesh overlying the urethra and sutured adjacent either side of the urethra to the endopelvic fascia;
  • FIG. 8 is a fragmentary surgical view, similar to FIG. 7, and illustrates the sutures of each anchor screw oppositely threaded through its respective side of the mesh;
  • FIG. 9 is a fragmentary surgical view, similar to FIG. 8 and illustrates the anchor screw sutures being tensioned and tied, bringing the lateral edges of the mesh into conjunction with the anchor screws, forming a sling support for the urethra;
  • FIG. 10 is a fragmentary midsagittal cross-sectional view, similar to FIG. 1, and illustrates the urethra, bladder and neighboring organs of a woman whose urinary prolapse has been corrected by the system of the present invention
  • FIG. 11 is a fragmentary view of the pubic bone and the urethra, the urethra being supported by the system of the present invention
  • FIG. 12 is an elevational view of another embodiment of a surgical mesh sling
  • FIG. 13 is an elevational view of yet another embodiment of a surgical mesh sling
  • FIG. 14 is a plan view, partly in cross-section, of a transvaginal bone implantation device of the present invention.
  • FIG. 15 is a fragmentary view of the bone implantation device being used to implant a bone anchor in a pubic bone.
  • FIGS. 1 and 2 These Figures illustrate the location of the urethra and bladder of a healthy, continent female.
  • the pelvis is generally indicated at 1 in FIGS. 1 and 2.
  • the forward bony portions of the pelvis 1 a and 1 b i.e. the pubic bone
  • the bladder 3 is located above and behind the pubic bone 1 a and 1 b .
  • the urethra extends from the bladder 3 downwardly to the urinary meatus 5 .
  • the vagina 6 is located behind the bladder and urethra and is surmounted by the uterus 7 which overlies the bladder.
  • the upper 20 percent of the urethra constitutes the urethra-vesical junction 4 a or bladder neck portion.
  • the lowermost 20 percent 4 b of the urethra leads to the urinary meatus 5 .
  • the intermediate 60 percent of the urethra (shown between index numerals 4 a and 4 b ), is provided with a sphincteric mechanism, and support of this part of the urethra is believed to be of key importance for continence. This is the part of the urethra which is subject to the greatest pressure as the result of prolapse.
  • FIG. 1 Attention is again directed to FIG. 1, and particularly to FIG. 2. It has long been understood that female continence is largely a factor of the proper support and stabilization of the bladder 3 and urethra 4 in their normal retropubic state and particularly during coughing, straining and the like.
  • the urethra and bladder are separated from the extraabdominal area by a hammock-like supportive layer comprising the web of endopelvic fascia 8 and the anterior vaginal wall 6 a
  • the web of endopelvic fascia 8 is attached to the arcus tendineus fascia pelvis 9 at the right side of the pelvis (as viewed in FIG.
  • the arcus tendineus fascia pelvis 9 extends from the ischial spine 11 to its insertion in the pubic bone portion 1 a at 12 .
  • the arcus tendineus fascia pelvis 10 extends from the ischial spine 13 to the insertion of the arcus tendineus fascia pelvis in the pelvic bone portion 1 b , at 14 .
  • the urethra 4 is additionally supported by a pair of pubourethral ligaments 15 and 16 .
  • Pubourethral ligament 15 is attached to the side of urethra 4 and extends forwardly to the pubic bone 1 a adjacent the insertion 12 of the arcus tendineus fascia pelvis 9 .
  • the pubourethral ligament 16 extends from the opposite side of the urethra 4 to the pubic bone 1 b adjacent the insertion 14 of the arcus tendineus fascia pelvis 10 .
  • the attachment of the pubourethral ligaments to the sides of urethra 4 are located at the above-noted intermediate 60 percent of the urethra.
  • the sling of the present invention not only supports the urethra in its normal position, but also limits urethral descent at the site of continence control. Since the urethra cannot be elevated above the level of attachment of the sling to the inferior/posterior border of the pubis, it functions only with increasing intraabdominal pressure to prevent urethral descent.
  • FIG. 4 is a frontal or surgical view of the female genitalia with the labia minora 17 and 18 parted to reveal the urethral meatus 5 and the vestibule 19 .
  • the opening of the vagina 6 is shown at 6 b .
  • the anterior wall 6 a of the vagina is also shown. Prolapse of the bladder, the urethra and the anterior wall 6 of the vagina is evidenced by a bulging of the vagina (as shown) and the fact that the anterior wall 6 a falls away less steeply than would be the case in a healthy woman.
  • the anterior wall 6 a of the vagina may extend through the vaginal opening 6 b.
  • FIG. 5 In this Figure the posterior wall of the vagina and the adjacent portion of the vaginal opening 6 b are distended by means of a vaginal retractor 20 .
  • a pair of divergent incisions 21 and 22 is made, beginning at posterior urethral fold, indicated at 23 .
  • the portion 24 of the anterior vaginal wall 6 between the incisions 21 and 22 is carefully separated from the endopelvic fascia 8 forming a triangular flap 24 .
  • the vaginal wall flap 24 can be used as a tractor to pull the operative field into better view. With the flap 24 in the position shown, it will be noted that a triangular incision, generally indicated at 25 , results.
  • the above described triangular incision 25 has certain advantages. First of all, the vaginal wall edges may be trimmed of excess material having been stretched by prolapse. Furthermore, the endopelvic fascia has been left intact with minimal damage to the local nerve supply to the urethra and bladder, and with little damage to the blood supply of the endopelvic fascia.
  • the incision 25 may be stretched to a more open position and held in that position by retractors, or temporary stitches engaging the adjacent drape, as shown at 26 in FIG. 6.
  • dissection is carried out laterally to assess the integrity of the lateral attachment of the endopelvic fascia to each arcus tendineus fascia pelvis 9 and 10 . Evaluation is made by palpation and direct visualization. Repairs by suturing may be made, if required. These sutures are left untied until the system of the present invention is in place. Additional repairs may also be made, if required.
  • a pair of pubic bone anchors are located in the pubic bone portions 1 a and 1 b .
  • an anchor screw 27 is shown being drilled in place in the pubic bone portion 1 b .
  • the site of the pubic bone anchor screw 27 is determined by palpating the course of the arcus 10 (see FIG. 2) from the ischial spine 13 to the arcus insertion 14 into the posterior/inferior aspect of pubic bone portion 1 b .
  • the anchor screw 27 is provided with a pair of sutures 27 a and 27 b (FIG. 7) affixed thereto.
  • the anchor screw 27 and its sutures 27 a and 27 b are located within a driver 27 c which, in turn, may be mounted in a surgical drill (not shown).
  • a surgical drill (not shown).
  • a non-limiting example of such an anchor screw and driver is taught in U.S. Pat. No. 4,632,100.
  • sutures 27 a and 27 b excellent results have been achieved with permanent 0 sutures manufactured by Ethicon, Inc. of Summerville, N.J. and sold under the registered trademark Mersilene@.
  • Anchor screw 27 is placed approximately one fingerbreadth laterally of the urethra 4 and approximately 1 cm laterally of the symphysis pubis 2 .
  • the anchor screw 27 is then directed to the retropubic area approximately 0.5 cm posteriorly and superiorly from the inferior edge of the ischial ramus.
  • This anchor site is near the insertion point of the arcus tendineus to the pubic bone.
  • the anchor screw 27 is driven into the pubic bone and is set.
  • the sutures 27 a and 27 b are temporarily laid aside as is shown in FIG. 7. It will be understood that a second anchor screw 28 will be attached to the pubic bone portion 1 a in precisely the same manner and at the corresponding position on the pubic bone portion 1 a . This is shown in FIG. 7.
  • the anchor screw 28 is provided with a pair of sutures 28 a and 28 b which are laid aside as shown in FIG. 7.
  • a substantially rectangular patch 29 of surgical mesh is then provided. Excellent results have been achieved by using a surgical mesh manufactured by Ethicon, Inc. of Summerville, N.J. and sold under the registered trademark Mersilene®.
  • the surgical mesh patch is shown in FIG. 7 at 29 .
  • the patch is provided with longitudinal edges 29 a and 29 b and transverse edges 29 c and 29 d .
  • the mesh 29 is laid upon the endopelvic fascia 8 with its longitudinal edges 29 a and 29 b extending transversely of the urethra 4 beneath the endopelvic fascia 8 .
  • the mesh 29 from longitudinal edge 29 a to longitudinal edge 29 b extends along the above-described intermediate 60% of the length of the urethra 4 , as indicated by the points 4 a and 4 b shown in FIG. 7.
  • FIG. 8 it is shown that the permanent anchor sutures 27 a and 27 b of anchor screw 27 are woven transversely of the mesh 29 in opposite directions between the longitudinal mesh edges 29 a and 29 b , and inset from the transverse mesh edge 29 d .
  • the anchor sutures 28 a and 28 b are woven transversely of mesh 29 in opposite directions between the longitudinal edges 29 a and 29 b of the mesh, and inset from the transverse mesh edge 29 c .
  • the placement of the anchor sutures through the mesh is determined by placing upward tension on the mesh under cystoscopic guidance to determine the approximate tension required for urethral coaptation from each end of the mesh. As is shown in FIGS.
  • the sutures 27 a and 27 b and sutures 28 a and 28 b are tied in a bilateral fashion to their respective points of attachment to the pubic bone portions 1 a and 1 b so that the transverse edges 29 c and 29 d are gathered and are substantially adjacent the pubic bone. This causes the mesh 29 to be transformed into a sling, the ends of which are substantially adjacent the pubic bone.
  • the repair sutures for attaching the endopelvic fascia to the arcus tendineus fascia pelvis 9 and/or 10 are tied sequentially. Any mid-line or transverse defects are noted and repaired. Additional repairs may be made depending upon the requirement of the individual patient.
  • the triangular flap 24 is removed and the cut edges of the anterior vaginal wall are approximated with absorbable 00 polyglycolic sutures in a running fashion. At this point, the cul-de-sac and posterior vaginal segment defects are repaired. Cystoscopic examination of the urethra and the urethral orifices with indigo carmine dye are performed. Bladder drainage is provided by a suprapubic cystotomy.
  • Prior art incontinence procedures involving the use of a sling have enjoyed excellent surgical success rates. They have, on the other hand, been plagued with numerous drawbacks including voiding dysfunction, urinary retention, detrusor instability, infection, and erosion of the sling material. A number of these problems are, in all likelihood, related to difficulty in achieving the proper tension of the sling.
  • the system of the present invention i.e. the anchor screws 26 and 28 and their placement, the sutures 26 a , 26 b , 28 a and 28 b and the sling 29 and its placement
  • urethral hypermobility is caused by deficiencies in the arcus tendineus fascia pelvis and the pubourethral ligaments.
  • the pubourethral ligaments are subject to stretching or elongation. None of these damaged, or elongated, or deficient muscular and fascial paraurethral tissues is used to supply the support and stabilization provided by the system of the present invention.
  • the system of the present invention does not hyperelevate the urethra (see FIG. 10) by attachment to the superior border of the pubis, to Cooper's ligament or to the rectus abdominus fascia. It is to be noted that in the normal continent female, the urethral position is never found to be hyperelevated (see FIG. 1). By suturing the mesh sling of the present invention to anchor screws located, as described above, to either side of the symphysis pubis in the retropubic area posteriorly and at about 0.5 cm superiorly of the inferior edge of the ischial ramus, such hyperelevation is precluded.
  • the sutures that connect the mesh sling to the anchor screws are, themselves, short which not only assists in developing the proper tension, but also minimizes lateral movement cause by intraabdominal pressure. Such movement is characteristic of long length sutures.
  • the sling of the present invention differs from the pubourethral ligaments primarily in that the sling passes about and behind the urethra, rather than being attached to the urethra sides.
  • sutures 30 through 33 simulate an attachment to the urethra sides. Those portions of the sling between each anchor and its respective pair of sutures 30 - 32 and 31 - 33 bear most of the support load and closely simulate the pubourethral ligaments.
  • the sling not only serves much the same purpose as the pubourethral ligaments, but also serves much the same purpose as the endopelvic fascia and the anterior vaginal wall in a healthy woman.
  • the sling engages the urethra and stabilizes it by passing about the above-described intermediate 60 percent of the urethra, believed to be the primary continence control portion of the urethra. It has been found that repair of other site-specific defects of genital prolapse corrects only those defects and does not alter the incontinence mechanism. For example, paravaginal repairs of the endopelvic fascia from one arcus to the other can only be expected to correct the protrusion causing a cystourethrocele. If the pubourethral ligaments are damaged, their ability to limit urethral descent with increasing intraabdominal pressures will remain impaired no matter how tight the endopelvic fascia is stretched from one arcus to the other.
  • the procedure of the present invention is a relatively simple one and, as indicated above, proper tension on the sling is far easier to determine than in prior art procedures.
  • FIG. 12 illustrates another embodiment of the surgical mesh member which serves as a urethral sling.
  • the mesh member is generally indicated at 34 and preferably is made of the same material described with respect to the surgical mesh member 29 of FIG. 7.
  • the surgical mesh member 34 is provided with a pair of holes 35 and 36 .
  • the holes 35 and 36 are sized to just nicely receive the shanks of headed surgical anchor screws.
  • Surgical mesh member 34 is provided with four permanent sutures equivalent to sutures 30 - 33 of FIG. 7 whereby it is attached to the endopelvic fascia 8 . Again, the sutures are so positioned as to allow a slight trough-like space between the mesh 34 and the endopelvic fascia 8 and urethra 4 . As indicated with respect to sutures 30 - 33 of FIG. 7, this trough-like space prevents undue tension on the urethra by the mesh, when the mesh is formed into a sling.
  • An anchor screw (not shown) is caused to have its shank inserted through hole 35 in mesh member 34 and is located in the posterior/inferior aspect of the pubic bone portion 1 a .
  • the site of the anchor screw is determined in exactly the same manner as that described with respect to anchor screw 27 of FIG. 7.
  • the shank of a second headed anchor screw is passed through the hole 36 in mesh member 34 and is located in the posterior/inferior aspect of pubic bone portion 1 b.
  • mesh member 34 is provided with more than one pair of holes. In this way, the surgeon can select an appropriate pair of holes to achieve the best placement of the gauze member sling 34 when it is attached to the posterior/inferior aspect of the pubic bone portions 1 a and 1 b . To this end, mesh member 34 is shown 5 having a second pair of holes 37 and 38 .
  • the holes 35 - 38 are provided with reinforced stitching about their edges in a manner somewhat similar to button holes.
  • the ends of the mesh member is illustrated in FIG. 13 wherein the mesh member 39 , having a first pair of holes 40 - 41 and a second pair of holes 42 - 43 , is provided with somewhat pointed ends 44 and 45 . It will be understood that the ends may be otherwise shaped. For example, they could be arcuate or rounded.
  • the mesh sling elements 34 and 39 of FIGS. 12 and 13 tend to simplify the surgical procedure since it is no longer necessary to weave pairs of sutures transversely of the mesh member ends as shown in FIG. 8, and to tie these sutures as shown in FIG. 9.
  • the number of pairs of holes in the mesh elements 34 and 39 does not constitute a limitation of the present invention. Excellent results can be achieved using gauze elements 34 or 39 having a length of about 6 centimeters and a width of about 3 centimeters.
  • the anchor used in the procedure described above is a bone screw, which is screwed into the pubic bone.
  • the screw is a self-tapping screw to avoid the need to pre-drill a hole which will accept the screw.
  • a harpoon-type anchor may be used in lieu of the bone screw.
  • harpoon-type anchors have been inserted into bone using a straight shafted instrument. Such an instrument cannot be used to implant a harpoon-type anchor in the posterior-inferior aspect of the pubic bone, especially when accessed transvaginally.
  • the anchor implantation device 100 shown in FIGS. 14 and 15 is used.
  • the anchor implantation device 100 of the present invention has a hooked shaft with a bone anchor mount for releasably engaging a bone anchor on the distal end of the shaft. This embodiment reduces the amount of force required to drive the bone anchor into the bone by utilizing the patient's body weight to provide an opposing force.
  • the anchor implantation device 100 comprises a handle 103 , a hooked shaft 105 secured to the handle and a bone anchor mount 107 at the distal end 111 of the shaft which releasably engages a bone anchor 109 .
  • the bone anchor mount 107 generally points toward the handle 103 , such that the user can drive the bone anchor 109 into the bone by simply pulling back on the handle 103 and using the patient's body weight to provide an opposing force.
  • the shaft 105 comprises a straight proximal section 113 , and a generally curved section 115 at the end of the straight section 113 giving the shaft a generally hooked shape.
  • the anchor mount 107 is at the end of the curved section 115 and comprises a hollow portion or cannula 116 at the distal end 111 of the shaft 105 .
  • the shaft 105 is, at least partially hollow, to define a chamber or cannula which receives the sutures 117 secured to the end of the anchor 109 .
  • the cannula or chamber which receives the sutures can be a continuation of the cannula 116 which receives the bone anchor 109 .
  • the hooked bone anchor implantation device 100 is used as follows. An incision is made in the anterior vaginal wall and the site for bone anchor implantation is located by palpation as described above.
  • the hooked bone anchor implantation device 100 is inserted into the incision, and the bone anchor 109 is positioned against the pubic bone at the determined anchor site.
  • the bone anchor 109 is then inserted or implanted into the bone by applying a retrograde force to the bone anchor 109 .
  • the retrograde force can be applied in a number of ways as will be apparent to one of skill in the art.
  • the bone anchor 109 is implanted in the bone by pulling the handle 105 .
  • the handle 105 may be pulled in a retrograde direction (toward the user) to implant the bone anchor 109 .
  • the bone anchor 109 is driven into the pubic bone.
  • the device 100 is then pushed away from the implanted bone anchor 109 to disengage the device 100 from the anchor 109 .
  • the device 100 is then removed from the incision, leaving the bone anchor 109 in the pubic bone with the sutures 117 extending therefrom.
  • the urethra is then suspended and stabilized with the sling as described above.
  • the sling of the present invention has been described as a mesh sling. It will be understood by one skilled in the art that the sling could also be made of other acceptable man-made materials, or of autologous fascia, cadaveric fascia, or other fascia.
  • the device 100 as shown and described is manually operated (i.e., it requires that the doctor pull back on the device to implant the bone anchor) the device 100 could be modified to incorporate a pressurized gas supply, which, when released, would deliver a predetermined pressure to the anchor to implant the anchor in the bone without the need for the doctor to manually implant the anchor.
  • the system and method of the present invention are described in their application to women, they could also be applied to men, as well. These examples are merely illustrative.

Abstract

The bone anchor implantation device of the present invention comprises a shaft or body having a grip at a first end of the shaft, an anchor mount at a distal end of the shaft, and a bone anchor removably mounted in the anchor mount. The shaft is preferably bent so that the anchor mount generally faces the grip such that the bone anchor can be implanted at an anchoring site in a bone by pulling rearwardly on the device. The body is adapted to be separable from the anchor after the anchor has been implanted in bone. A suture thread is attached to the bone anchor such that the suture thread is accessible to a surgeon using the device after the bone anchor has been implanted in bone and after the body has been separated from the bone anchor. The shaft is at least partially hollow, and the suture thread is housed in the shaft. The anchor mount comprises a cannula at the distal end of the shaft. The cannula is sized to removably receive an end of the anchor.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of co-pending application Ser. No. 09/111,525, filed Jul. 8, 1998, in the name of S. Robert Kovac, entitled A SYSTEM AND A METHOD FOR THE LONG TERM CURE OF RECURRENT URINARY FEMALE INCONTINENCE, and which is incorporated herein by reference.[0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable. [0002]
  • BACKGROUND OF THE INVENTION
  • The invention relates to a system and method for the effective long-term cure of recurrent female urinary incontinence, and more particularly to a urethra stabilization and support system attached to the posterior/inferior pubic bone and a method for accomplishing this in which a hypermobile urethra is repositioned in the anatomically proper position. [0003]
  • The problem of recurrent female urinary incontinence, or the inability to control urination, is a major and debilitating one affecting millions of women in the United States alone. One particular type that frequently occurs in women is stress urinary incontinence, which is precipitated by coughing, straining, or heavy lifting. Mild cases may be treated by exercises involving tightening and relaxing of the perineal and gluteal muscles or by sympathomimetic drug therapy. Severe cases, however, may require surgery to correct the underlying anatomic defect. It is this surgical correction which is the subject of the present invention. [0004]
  • In general, continence is considered to be a function of urethral support and coaptation. For coaptation to successfully prevent or cure incontinence, the urethra must be supported and stabilized in its normal anatomic position. The female's natural support system for the urethra is a hammock-like supportive layer composed of endopelvic fascia, the anterior vaginal wall, and the arcus tendineus (a distal attachment to the pubic bone). Weakening and elongation of the pubourethral ligaments and the arcus tendineus fascia pelvis, weakening of the endopelvic fascia and pubourethral prolapse of the anterior vaginal wall, and their complex interaction with intraabdominal forces are all suspected to play a role in the loss of pelvic support for the urethra and subsequent hypermobility to an unnaturally low non-anatomic position, leading to urinary incontinence. [0005]
  • Many procedures have been devised to treat urinary incontinence with the goal of elevating the neck of the bladder to return it to a higher retropubic position. Some involve the creation of a compensatory pubovaginal sling through a variety of needle suspension procedures; others employ a suburethral mesh to act as a compensatory suburethral sling to avoid the possibility that the sutures used in the needles suspension procedures will easily tear. [0006]
  • Many of the needle suspension procedures involve placing sutures in the endopelvic fascia or the anterior vaginal wall on either side of the urethra and attaching them to fixation sites such as bone and soft tissue. Alternatively, the sutures are attached to artificial anchors placed within the pelvis, at the superior border of the pubis, or rectus abdominus fascia. A major problem with this type of procedure is that the very fascial and muscular support structures that are sutured for support are often stretched, damaged, or otherwise deficient to begin with, and remain so after the procedure. It is therefore difficult to employ them successfully as reinforcements for surgical repair. [0007]
  • The pubovaginal sling procedure, in which a mesh is placed under the urethra to provide elevation and support of the urethra and bladder neck, is performed through an abdominal incision, and has enjoyed an excellent surgical success rate. It is generally preferable for more complicated cases of recurrent genuine stress urinary incontinence, particularly in patients who have failed prior surgery, who are obese, or whose lifestyles involve heavy lifting and accompanying increased intraabdominal pressure. However, problems with voiding disjunction and urinary retention, detrusor instability, and infection and erosion of sling materials that can lead to urethrovesical and vesicovaginal fistulas are cause for concern. Additionally, because of the abdominal incision, this procedure is more technically challenging, presents greater blood loss, longer operative time, and a prolonged postoperative recovery. [0008]
  • These techniques use a variety of attachment sites for bladder neck and urethral support, such as the superior portion of the pubis, Cooper's ligament, or rectus abdominus fascia. This results in placement of the urethra in an unnaturally high position with respect to its normal anatomical retropubic position so that problems with voiding and urinary retention frequently arise after the procedure. Further, this abnormal positioning of the urethra in conjunction with failure of the supporting tissues and poor surgical technique have often led to a recurrence of incontinence since all of these operations create a compensatory abnormality rather than restoring the normal anatomy. [0009]
  • A related difficulty that contributes to the unnatural positioning of the urethra is that some attachment sites, such as the rectus abdominus fascia, require very long sutures and accompanying difficulty in achieving the proper tension in the sutures. This can result in increased lateral movement and momentum of the support structures or mesh sling when they are moved due to intraabdominal pressures. [0010]
  • The present invention addresses and corrects these and other difficulties by affecting the continence mechanism directly and providing a predictable and lasting permanent cure for the problem of recurrent female urinary incontinence. [0011]
  • It has been found that the key site for control of continence has not been heretofore addressed. It has further been found that the urethral hypermobility observed in most incontinent patients is caused by a lax or torn arcus tendineus facie pelvis attachment at its origin near the anterior levator arch in the immediate retropubic position at the site of the pubourethral ligaments. Repair and reinforcement of this area to stabilize the urethra in its normal position may be equally important as repair of the endopelvic facie. Therefore, the key site for control of continence is the paraurethral attachments of the pubourethral ligaments to the sides of the urethra at the intermediate 60% of the urethral length. This is simulated through the employment of a mesh sling system which supports this site and restores the bladder neck and urethra to their normal anatomic retropubic position. Additionally, when placed in this position, the lateral sides of the mesh serve to act as pubourethral ligaments which help to prevent undue descent of the urethra. [0012]
  • It has also been found that although the superior portion of the pubic bone is a functional and secure fixation site for incontinence repair, a key to restoring the urethra to its normal anatomical position is using the posterior/inferior border of the pubic bone, not the superior portion, as the attachment sites for the mesh sling system. In particular, the sling system is anchored to the pubic bone near the point of attachment of the arcus tendineus to the pubic bone. Proper tensioning of the mesh sling system is made easier by using this portion of the pubic bone as the attachment site, due in part to the fact that shorter sutures and an innovative mesh suturing pattern is used. This serves to avoid the problems heretofore discussed associated with an improperly high retropubic positioning of the urethra. [0013]
  • BRIEF SUMMARY OF THE INVENTION
  • According to the invention there is provided a pubic bone-mounted urethra stabilization and support system and a method for the long term cure of recurrent female urinary incontinence. [0014]
  • The system comprises a pair of anchors which are affixed to the posterior/inferior pubic bone near the point of attachment of the arcus tendineus to the pubic bone, sutures attached to the anchors, and a sling which is passed behind and about the urethra and the adjacent endopelvic fascia. Ends of the sling are attached to the anchors by the anchor-mounted sutures. In particular, a pair of anchor screws are located on either side of the symphysis pubis in the retropubic area posteriorly and at about 0.5 cm superiorly of the inferior edge of the ischial ramus. Sutures connect the anchor screws to the mesh sling. The mesh sling directly supports the urethra by its placement on the endopelvic fascia in the area of the intermediate 60 percent portion of the urethra as will be later described in greater detail. [0015]
  • The method includes the steps of accessing said urethra and pubic bone, properly locating and attaching the anchors to the pubic bone, properly locating the sling about the urethra and suturing and tensioning the ends of the sling to the anchors, causing said sling to restore, support and stabilize functional urethral continence anatomy and prevent urethral descent under intraabdominal pressure. [0016]
  • To access the urethra and pubic bone, a pair of divergent incisions are made, beginning at the posterior urethral fold, in the anterior vaginal wall. This creates a triangular flap to expose the operative field. Care must be taken to separate the anterior vaginal wall from the adjoining endopelvic fascia to leave the endopelvic fascia intact. Direct visualization and palpation is next employed to evaluate the integrity of the lateral attachment of the endopelvic fascia to each arcus tendineus fascia pelvis, repairing any damage by suturing if necessary. [0017]
  • The pubic bone is next located by palpation. The course of the arcus from the ischial spine to the arcus insertion into the posterior/inferior aspect of the pubic bone is palpated to locate the proper site for the anchor screws, which is at either side of the symphysis pubis in the retropubic area posteriorly and at about 0.5 cm superiorly of the inferior edge of the ischial ramus. An anchor screw, which is provided with a pair of permanent sutures, is driven into the pubic bone at this location and set. An identical anchor screw is then driven into a symmetrically located position on the other side of the symphysis pubis. [0018]
  • A sling, which can be made of a substantially rectangular patch of surgical mesh, is next laid upon the endopelvic fascia such that its longitudinal edges extend transversely of the urethra which is below the endopelvic fascia Four permanent sutures are used to transfix the mesh along the lateral borders of the urethra at the edges of the mesh. These sutures are so positioned as to create a slight trough-like space between the mesh and the endopelvic fascia and urethra. This space prevents undue tension on the urethra by the mesh when the mesh is formed into a sling. The permanent sutures of the anchor screws are then woven transversely of the mesh in opposite directions between the longitudinal edges of the mesh and inset from the transverse mesh edges. These sutures are then bilaterally tied with appropriate tensioning to transform the mesh into a sling. [0019]
  • Finally, any additional necessary repairs, including the sequential tying of the repair sutures for attaching the endopelvic fascia to the arcus tendineus fascia pelvis, are made. The cut edges of the anterior vaginal wall are approximated with sutures, and the cul-de-sac and posterior vaginal segment defects are repaired. [0020]
  • The bone anchor can either be a bone screw or a harpoon-type anchor. If the bone anchor is a screw, it is preferably implanted using a bone drill, such as disclosed in WO 97/30638. If a harpoon-type bone anchor is used, a transvaginal bone anchor implantation device of the present invention is preferably used. The bone anchor implantation device of the present invention comprises a shaft or body having a grip at a first end of the shaft, an anchor mount at a distal end of the shaft, and a bone anchor removably mounted in the anchor mount. The shaft is preferably bent so that the anchor mount generally faces the grip such that the bone anchor can be implanted at an anchoring site in a bone by pulling rearwardly on the device. The body is adapted to be separable from the anchor after the anchor has been implanted in bone. [0021]
  • A suture thread is attached to the bone anchor such that the suture thread is accessible to a surgeon using the device after the bone anchor has been implanted in bone and after the body has been separated from the bone anchor. The shaft is at least partially hollow, and the suture thread is housed in the shaft. The anchor mount comprises a cannula at the distal end of the shaft. The cannula being sized to removably receive an end of the anchor. [0022]
  • In use, the procedure is substantially the same as described above. The only difference lies in the method in which the bone anchor is inserted into the bone. Once the anchor site is located, the device is introduced into the patient transvaginally through the vaginal wall incision. The anchor is placed at the anchor site on the pubic bone, and the device is pulled to drive the anchor into the pubic bone. Once the anchor has been implanted, the shaft is separated from the anchor and removed from the patient. is hook shaped.[0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a fragmentary midsagittal cross-sectional view of the pelvic region illustrating the disposition of the urethra, bladder and vagina together with neighboring organs in a healthy woman; [0024]
  • FIG. 2 is a fragmentary transverse view generally as seen along the line [0025] 2-2 of FIG. 1, illustrating the pubic bone, the bladder, the urethra, the arcus tendineus fascia, the endopelvic fascia and the pubourethral ligaments;
  • FIG. 3 is a fragmentary midsagittal cross-sectional view, similar to FIG. 1, and illustrating the prolapse of the urethra against the anterior wall of the vagina; [0026]
  • FIG. 4 is a frontal surgical view of the external female genitalia in surgical preparation with the labia minora in open position exposing the vestibule and the lower vagina of a female patient having the prolapse condition illustrated in FIG. 3; [0027]
  • FIG. 5 is a fragmentary surgical view, similar to FIG. 4, and illustrates the posterior orifice of the vagina distended by means of a vaginal retractor, together with an incision made in the anterior wall of the vagina exposing the fascia tissue covering the urethra; [0028]
  • FIG. 6 is a fragmentary surgical view similar to FIG. 5 and illustrates the lateral edges of the incision stretched in open position and the placement of a suture-bearing anchor screw retropubically at the posterior/inferior border of the pubic bone to the left of the pubic symphysis and within 1 to 2 mm from the insertion of the arcus tendineus fascia pelvis; [0029]
  • FIG. 7 is a fragmentary surgical view, similar to FIG. 6, and illustrates both suture-bearing anchor screws in place in the pubic bone and a rectangular piece of surgical mesh overlying the urethra and sutured adjacent either side of the urethra to the endopelvic fascia; [0030]
  • FIG. 8 is a fragmentary surgical view, similar to FIG. 7, and illustrates the sutures of each anchor screw oppositely threaded through its respective side of the mesh; [0031]
  • FIG. 9 is a fragmentary surgical view, similar to FIG. 8 and illustrates the anchor screw sutures being tensioned and tied, bringing the lateral edges of the mesh into conjunction with the anchor screws, forming a sling support for the urethra; [0032]
  • FIG. 10 is a fragmentary midsagittal cross-sectional view, similar to FIG. 1, and illustrates the urethra, bladder and neighboring organs of a woman whose urinary prolapse has been corrected by the system of the present invention; [0033]
  • FIG. 11 is a fragmentary view of the pubic bone and the urethra, the urethra being supported by the system of the present invention; [0034]
  • FIG. 12 is an elevational view of another embodiment of a surgical mesh sling; [0035]
  • FIG. 13 is an elevational view of yet another embodiment of a surgical mesh sling; [0036]
  • FIG. 14 is a plan view, partly in cross-section, of a transvaginal bone implantation device of the present invention; and [0037]
  • FIG. 15 is a fragmentary view of the bone implantation device being used to implant a bone anchor in a pubic bone.[0038]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Throughout the drawings, like parts have been given like index numerals. Reference is first made to FIGS. 1 and 2. These Figures illustrate the location of the urethra and bladder of a healthy, continent female. [0039]
  • The pelvis is generally indicated at [0040] 1 in FIGS. 1 and 2. The forward bony portions of the pelvis 1 a and 1 b (i.e. the pubic bone) are joined together by the pubic symphysis 2. The bladder 3 is located above and behind the pubic bone 1 a and 1 b. The urethra extends from the bladder 3 downwardly to the urinary meatus 5.
  • The [0041] vagina 6 is located behind the bladder and urethra and is surmounted by the uterus 7 which overlies the bladder.
  • The upper 20 percent of the urethra constitutes the urethra-[0042] vesical junction 4 a or bladder neck portion. The lowermost 20 percent 4 b of the urethra leads to the urinary meatus 5. The intermediate 60 percent of the urethra (shown between index numerals 4 a and 4 b), is provided with a sphincteric mechanism, and support of this part of the urethra is believed to be of key importance for continence. This is the part of the urethra which is subject to the greatest pressure as the result of prolapse.
  • Attention is again directed to FIG. 1, and particularly to FIG. 2. It has long been understood that female continence is largely a factor of the proper support and stabilization of the [0043] bladder 3 and urethra 4 in their normal retropubic state and particularly during coughing, straining and the like. In the healthy, continent female, the urethra and bladder are separated from the extraabdominal area by a hammock-like supportive layer comprising the web of endopelvic fascia 8 and the anterior vaginal wall 6 a As is most clearly shown in FIG. 2, the web of endopelvic fascia 8 is attached to the arcus tendineus fascia pelvis 9 at the right side of the pelvis (as viewed in FIG. 2) and to the arcus tendineus fascia pelvis 10 on the left side of the pelvis (as viewed in FIG. 2). The arcus tendineus fascia pelvis 9 extends from the ischial spine 11 to its insertion in the pubic bone portion 1 a at 12. Similarly, the arcus tendineus fascia pelvis 10 extends from the ischial spine 13 to the insertion of the arcus tendineus fascia pelvis in the pelvic bone portion 1 b, at 14.
  • The [0044] urethra 4 is additionally supported by a pair of pubourethral ligaments 15 and 16. Pubourethral ligament 15 is attached to the side of urethra 4 and extends forwardly to the pubic bone 1 a adjacent the insertion 12 of the arcus tendineus fascia pelvis 9. In a similar fashion, the pubourethral ligament 16 extends from the opposite side of the urethra 4 to the pubic bone 1 b adjacent the insertion 14 of the arcus tendineus fascia pelvis 10. The attachment of the pubourethral ligaments to the sides of urethra 4 are located at the above-noted intermediate 60 percent of the urethra.
  • From the above, it will be apparent that weakening of the [0045] endopelvic fascia 8, weakening of the anterior vaginal wall 6 a, weakening of the attachments to the pubic bone and stretching of the pubourethral ligaments 15 and 16 can result in urethral hyper-mobility and incontinence. The sling of the present invention not only supports the urethra in its normal position, but also limits urethral descent at the site of continence control. Since the urethra cannot be elevated above the level of attachment of the sling to the inferior/posterior border of the pubis, it functions only with increasing intraabdominal pressure to prevent urethral descent.
  • At this point, the manner in which the system of the present invention is applied and used will now be described. Reference is first made to FIG. 4 which is a frontal or surgical view of the female genitalia with the [0046] labia minora 17 and 18 parted to reveal the urethral meatus 5 and the vestibule 19. The opening of the vagina 6 is shown at 6 b. The anterior wall 6 a of the vagina is also shown. Prolapse of the bladder, the urethra and the anterior wall 6 of the vagina is evidenced by a bulging of the vagina (as shown) and the fact that the anterior wall 6 a falls away less steeply than would be the case in a healthy woman. Depending upon the severity of the prolapse, the anterior wall 6 a of the vagina may extend through the vaginal opening 6 b.
  • Reference is now made to FIG. 5. In this Figure the posterior wall of the vagina and the adjacent portion of the [0047] vaginal opening 6 b are distended by means of a vaginal retractor 20. A pair of divergent incisions 21 and 22 is made, beginning at posterior urethral fold, indicated at 23. The portion 24 of the anterior vaginal wall 6 between the incisions 21 and 22 is carefully separated from the endopelvic fascia 8 forming a triangular flap 24. The vaginal wall flap 24 can be used as a tractor to pull the operative field into better view. With the flap 24 in the position shown, it will be noted that a triangular incision, generally indicated at 25, results.
  • While incisions of other configurations can be used, the above described [0048] triangular incision 25 has certain advantages. First of all, the vaginal wall edges may be trimmed of excess material having been stretched by prolapse. Furthermore, the endopelvic fascia has been left intact with minimal damage to the local nerve supply to the urethra and bladder, and with little damage to the blood supply of the endopelvic fascia.
  • The endopelvic fascia attachment to the vaginal epithelium having been separated, the [0049] incision 25 may be stretched to a more open position and held in that position by retractors, or temporary stitches engaging the adjacent drape, as shown at 26 in FIG. 6. At this point, dissection is carried out laterally to assess the integrity of the lateral attachment of the endopelvic fascia to each arcus tendineus fascia pelvis 9 and 10. Evaluation is made by palpation and direct visualization. Repairs by suturing may be made, if required. These sutures are left untied until the system of the present invention is in place. Additional repairs may also be made, if required.
  • The system of the present invention can now be put in place. To this end, a pair of pubic bone anchors (preferably screw anchors or harpoon type anchors) are located in the [0050] pubic bone portions 1 a and 1 b. In FIG. 6, an anchor screw 27 is shown being drilled in place in the pubic bone portion 1 b. The site of the pubic bone anchor screw 27 is determined by palpating the course of the arcus 10 (see FIG. 2) from the ischial spine 13 to the arcus insertion 14 into the posterior/inferior aspect of pubic bone portion 1 b. The anchor screw 27 is provided with a pair of sutures 27 a and 27 b (FIG. 7) affixed thereto. The anchor screw 27 and its sutures 27 a and 27 b are located within a driver 27 c which, in turn, may be mounted in a surgical drill (not shown). A non-limiting example of such an anchor screw and driver is taught in U.S. Pat. No. 4,632,100. With respect to the sutures 27 a and 27 b, excellent results have been achieved with permanent 0 sutures manufactured by Ethicon, Inc. of Summerville, N.J. and sold under the registered trademark Mersilene@.
  • [0051] Anchor screw 27 is placed approximately one fingerbreadth laterally of the urethra 4 and approximately 1 cm laterally of the symphysis pubis 2. The anchor screw 27 is then directed to the retropubic area approximately 0.5 cm posteriorly and superiorly from the inferior edge of the ischial ramus. This anchor site is near the insertion point of the arcus tendineus to the pubic bone. Once the anchor site is located, the anchor screw 27 is driven into the pubic bone and is set. The sutures 27 a and 27 b are temporarily laid aside as is shown in FIG. 7. It will be understood that a second anchor screw 28 will be attached to the pubic bone portion 1 a in precisely the same manner and at the corresponding position on the pubic bone portion 1 a. This is shown in FIG. 7. The anchor screw 28 is provided with a pair of sutures 28 a and 28 b which are laid aside as shown in FIG. 7.
  • A substantially [0052] rectangular patch 29 of surgical mesh, approximately 3 cm wide and 6 cm long is then provided. Excellent results have been achieved by using a surgical mesh manufactured by Ethicon, Inc. of Summerville, N.J. and sold under the registered trademark Mersilene®. The surgical mesh patch is shown in FIG. 7 at 29. The patch is provided with longitudinal edges 29 a and 29 b and transverse edges 29 c and 29 d. The mesh 29 is laid upon the endopelvic fascia 8 with its longitudinal edges 29 a and 29 b extending transversely of the urethra 4 beneath the endopelvic fascia 8. Four permanent sutures are used to transfix the mesh 29 along the lateral borders of the urethra at the edges 29 a and 29 b of mesh 29. These sutures are shown at 30, 31, 32 and 33 in FIG. 7. The sutures are so positioned as to allow a slight trough-like space between the mesh 29 and the endopelvic fascia 8 and urethra 4. This trough-like space prevents undue tension on the urethra by the mesh when the mesh is formed into a sling, as will be apparent hereinafter. Excellent results were achieved when the sutures 30-33 constituted permanent 000 sutures manufactured by Ethicon, Inc. of Summerville, N.J. and sold under the registered trademark Ethibond®. It will further be noted in FIG. 7 that the mesh 29, from longitudinal edge 29 a to longitudinal edge 29 b extends along the above-described intermediate 60% of the length of the urethra 4, as indicated by the points 4 a and 4 b shown in FIG. 7.
  • Reference is now made to FIG. 8. In this Figure, it is shown that the permanent anchor sutures [0053] 27 a and 27 b of anchor screw 27 are woven transversely of the mesh 29 in opposite directions between the longitudinal mesh edges 29 a and 29 b, and inset from the transverse mesh edge 29 d. In a similar fashion, the anchor sutures 28 a and 28 b are woven transversely of mesh 29 in opposite directions between the longitudinal edges 29 a and 29 b of the mesh, and inset from the transverse mesh edge 29 c. The placement of the anchor sutures through the mesh is determined by placing upward tension on the mesh under cystoscopic guidance to determine the approximate tension required for urethral coaptation from each end of the mesh. As is shown in FIGS. 9 and 10, the sutures 27 a and 27 b and sutures 28 a and 28 b are tied in a bilateral fashion to their respective points of attachment to the pubic bone portions 1 a and 1 b so that the transverse edges 29 c and 29 d are gathered and are substantially adjacent the pubic bone. This causes the mesh 29 to be transformed into a sling, the ends of which are substantially adjacent the pubic bone.
  • Thereafter, the repair sutures for attaching the endopelvic fascia to the arcus tendineus fascia [0054] pelvis 9 and/or 10 are tied sequentially. Any mid-line or transverse defects are noted and repaired. Additional repairs may be made depending upon the requirement of the individual patient. Then, the triangular flap 24 is removed and the cut edges of the anterior vaginal wall are approximated with absorbable 00 polyglycolic sutures in a running fashion. At this point, the cul-de-sac and posterior vaginal segment defects are repaired. Cystoscopic examination of the urethra and the urethral orifices with indigo carmine dye are performed. Bladder drainage is provided by a suprapubic cystotomy.
  • Prior art incontinence procedures involving the use of a sling have enjoyed excellent surgical success rates. They have, on the other hand, been plagued with numerous drawbacks including voiding dysfunction, urinary retention, detrusor instability, infection, and erosion of the sling material. A number of these problems are, in all likelihood, related to difficulty in achieving the proper tension of the sling. [0055]
  • The system of the present invention (i.e. the anchor screws [0056] 26 and 28 and their placement, the sutures 26 a, 26 b, 28 a and 28 b and the sling 29 and its placement) is characterized by a number of advantages (see FIG. 11). It is generally believed (as indicated above) that urethral hypermobility is caused by deficiencies in the arcus tendineus fascia pelvis and the pubourethral ligaments. In addition, the pubourethral ligaments are subject to stretching or elongation. None of these damaged, or elongated, or deficient muscular and fascial paraurethral tissues is used to supply the support and stabilization provided by the system of the present invention. The system of the present invention does not hyperelevate the urethra (see FIG. 10) by attachment to the superior border of the pubis, to Cooper's ligament or to the rectus abdominus fascia. It is to be noted that in the normal continent female, the urethral position is never found to be hyperelevated (see FIG. 1). By suturing the mesh sling of the present invention to anchor screws located, as described above, to either side of the symphysis pubis in the retropubic area posteriorly and at about 0.5 cm superiorly of the inferior edge of the ischial ramus, such hyperelevation is precluded. The sutures that connect the mesh sling to the anchor screws are, themselves, short which not only assists in developing the proper tension, but also minimizes lateral movement cause by intraabdominal pressure. Such movement is characteristic of long length sutures. In addition, it will be noted that the sling of the present invention differs from the pubourethral ligaments primarily in that the sling passes about and behind the urethra, rather than being attached to the urethra sides. However, sutures 30 through 33 simulate an attachment to the urethra sides. Those portions of the sling between each anchor and its respective pair of sutures 30-32 and 31-33 bear most of the support load and closely simulate the pubourethral ligaments. As a result of this, the sling not only serves much the same purpose as the pubourethral ligaments, but also serves much the same purpose as the endopelvic fascia and the anterior vaginal wall in a healthy woman. The sling engages the urethra and stabilizes it by passing about the above-described intermediate 60 percent of the urethra, believed to be the primary continence control portion of the urethra. It has been found that repair of other site-specific defects of genital prolapse corrects only those defects and does not alter the incontinence mechanism. For example, paravaginal repairs of the endopelvic fascia from one arcus to the other can only be expected to correct the protrusion causing a cystourethrocele. If the pubourethral ligaments are damaged, their ability to limit urethral descent with increasing intraabdominal pressures will remain impaired no matter how tight the endopelvic fascia is stretched from one arcus to the other.
  • Finally, the procedure of the present invention is a relatively simple one and, as indicated above, proper tension on the sling is far easier to determine than in prior art procedures. [0057]
  • The present invention has been described in the terms of vaginal installation of the system of the present invention. At this time, this is the preferred procedure. Nevertheless, it will be understood that the system of the present invention could be installed abdominally or laproscopically. [0058]
  • Reference is now made to FIG. 12 which illustrates another embodiment of the surgical mesh member which serves as a urethral sling. The mesh member is generally indicated at [0059] 34 and preferably is made of the same material described with respect to the surgical mesh member 29 of FIG. 7. The surgical mesh member 34 is provided with a pair of holes 35 and 36. The holes 35 and 36 are sized to just nicely receive the shanks of headed surgical anchor screws.
  • The procedure for installing the [0060] surgical mesh member 34 is substantially identical to that described with respect to surgical mesh member 29, with the exception that surgical mesh member 34 is not tied to anchors by sutures. Surgical mesh member 34 is provided with four permanent sutures equivalent to sutures 30-33 of FIG. 7 whereby it is attached to the endopelvic fascia 8. Again, the sutures are so positioned as to allow a slight trough-like space between the mesh 34 and the endopelvic fascia 8 and urethra 4. As indicated with respect to sutures 30-33 of FIG. 7, this trough-like space prevents undue tension on the urethra by the mesh, when the mesh is formed into a sling.
  • An anchor screw (not shown) is caused to have its shank inserted through [0061] hole 35 in mesh member 34 and is located in the posterior/inferior aspect of the pubic bone portion 1 a. The site of the anchor screw is determined in exactly the same manner as that described with respect to anchor screw 27 of FIG. 7. In a similar fashion, the shank of a second headed anchor screw is passed through the hole 36 in mesh member 34 and is located in the posterior/inferior aspect of pubic bone portion 1 b.
  • Preferably, [0062] mesh member 34 is provided with more than one pair of holes. In this way, the surgeon can select an appropriate pair of holes to achieve the best placement of the gauze member sling 34 when it is attached to the posterior/inferior aspect of the pubic bone portions 1 a and 1 b. To this end, mesh member 34 is shown 5 having a second pair of holes 37 and 38.
  • Preferably, the holes [0063] 35-38 are provided with reinforced stitching about their edges in a manner somewhat similar to button holes.
  • It is within the scope of the invention to shape the ends of the mesh member. This is illustrated in FIG. 13 wherein the [0064] mesh member 39, having a first pair of holes 40-41 and a second pair of holes 42-43, is provided with somewhat pointed ends 44 and 45. It will be understood that the ends may be otherwise shaped. For example, they could be arcuate or rounded.
  • The [0065] mesh sling elements 34 and 39 of FIGS. 12 and 13 tend to simplify the surgical procedure since it is no longer necessary to weave pairs of sutures transversely of the mesh member ends as shown in FIG. 8, and to tie these sutures as shown in FIG. 9. The number of pairs of holes in the mesh elements 34 and 39 does not constitute a limitation of the present invention. Excellent results can be achieved using gauze elements 34 or 39 having a length of about 6 centimeters and a width of about 3 centimeters.
  • The anchor used in the procedure described above is a bone screw, which is screwed into the pubic bone. Preferable, the screw is a self-tapping screw to avoid the need to pre-drill a hole which will accept the screw. A harpoon-type anchor may be used in lieu of the bone screw. Traditionally, harpoon-type anchors have been inserted into bone using a straight shafted instrument. Such an instrument cannot be used to implant a harpoon-type anchor in the posterior-inferior aspect of the pubic bone, especially when accessed transvaginally. To enable a harpoon-type anchor to be implanted in the pubic bone, the [0066] anchor implantation device 100 shown in FIGS. 14 and 15 is used. The anchor implantation device 100 of the present invention has a hooked shaft with a bone anchor mount for releasably engaging a bone anchor on the distal end of the shaft. This embodiment reduces the amount of force required to drive the bone anchor into the bone by utilizing the patient's body weight to provide an opposing force.
  • In this embodiment, the [0067] anchor implantation device 100 comprises a handle 103, a hooked shaft 105 secured to the handle and a bone anchor mount 107 at the distal end 111 of the shaft which releasably engages a bone anchor 109. The bone anchor mount 107 generally points toward the handle 103, such that the user can drive the bone anchor 109 into the bone by simply pulling back on the handle 103 and using the patient's body weight to provide an opposing force.
  • The [0068] shaft 105 comprises a straight proximal section 113, and a generally curved section 115 at the end of the straight section 113 giving the shaft a generally hooked shape. The anchor mount 107 is at the end of the curved section 115 and comprises a hollow portion or cannula 116 at the distal end 111 of the shaft 105.
  • The [0069] shaft 105 is, at least partially hollow, to define a chamber or cannula which receives the sutures 117 secured to the end of the anchor 109. The cannula or chamber which receives the sutures can be a continuation of the cannula 116 which receives the bone anchor 109.
  • The hooked bone [0070] anchor implantation device 100 is used as follows. An incision is made in the anterior vaginal wall and the site for bone anchor implantation is located by palpation as described above.
  • The hooked bone [0071] anchor implantation device 100 is inserted into the incision, and the bone anchor 109 is positioned against the pubic bone at the determined anchor site. The bone anchor 109 is then inserted or implanted into the bone by applying a retrograde force to the bone anchor 109. The retrograde force can be applied in a number of ways as will be apparent to one of skill in the art. Preferably, the bone anchor 109 is implanted in the bone by pulling the handle 105. For example, the handle 105 may be pulled in a retrograde direction (toward the user) to implant the bone anchor 109. As the device 100 is pulled in a retrograde motion, the bone anchor 109 is driven into the pubic bone. The device 100 is then pushed away from the implanted bone anchor 109 to disengage the device 100 from the anchor 109. The device 100 is then removed from the incision, leaving the bone anchor 109 in the pubic bone with the sutures 117 extending therefrom. The urethra is then suspended and stabilized with the sling as described above.
  • As used herein and in the claims such works as “uppermost”, “lowermost”, “right”, “left”, and the like are used in conjunction with the drawings for clarity. [0072]
  • Modifications may be made in the invention without departing from the spirit of it. For example, throughout the specification, the sling of the present invention has been described as a mesh sling. It will be understood by one skilled in the art that the sling could also be made of other acceptable man-made materials, or of autologous fascia, cadaveric fascia, or other fascia. Although the [0073] device 100 as shown and described is manually operated (i.e., it requires that the doctor pull back on the device to implant the bone anchor) the device 100 could be modified to incorporate a pressurized gas supply, which, when released, would deliver a predetermined pressure to the anchor to implant the anchor in the bone without the need for the doctor to manually implant the anchor. Furthermore, while the system and method of the present invention are described in their application to women, they could also be applied to men, as well. These examples are merely illustrative.

Claims (30)

What is claimed is:
1. A transvaginal bone anchor implantation device comprising a body including a first portion having a gripping end and a second portion having an anchor mount, and a bone anchor removably mounted in the anchor mount; the body second portion being angled relative to the body first portion when the device is in use such that the bone anchor can be implanted at an anchoring site in a bone by pulling rearwardly on the body first portion, the body being adapted to be separable from the anchor after the anchor has been implanted in bone.
2. The transvaginal bone anchor implantation device of claim 1 wherein the body is bent, such that the body second portion mounting end generally faces toward the first portion gripping end.
3. The transvaginal bone anchor implantation device of claim 1 wherein the body comprises a shaft.
4. The transvaginal bone anchor implantation device of claim 3 including a suture thread attached to the bone anchor such that the suture thread is accessible to a surgeon using the device after the bone anchor has been implanted in bone and after the body has been separated from the bone anchor.
5. The transvaginal bone anchor implantation device of claim 4 wherein the shaft is at least partially hollow, the suture thread being housed in the shaft.
6. The transvaginal bone anchor implantation device of claim 1 wherein the bone anchor is a harpoon-type anchor.
7. The transvaginal bone anchor implantation device of claim 1 wherein the anchor mount comprises a cannula at the distal end of the body second portion defines a hollow portion; the cannula being sized to removably receive an end of the anchor.
8. A method of implanting a bone anchor in the pubic bone of a female patient comprising:
creating an incision in the vaginal wall;
locating an anchor site on the pubic bone;
introducing an anchoring device into the patient transvaginally through the vaginal wall incision; the anchoring device comprising a body having a forward end and a gripping end and a bone anchor removably mounted to the forward end of the anchoring device; the forward end of the anchoring device facing generally toward the gripping end;
placing the anchor at the anchor site on the pubic bone;
pulling on the anchoring device to drive the anchor into the pubic bone; and
separating the anchoring device body from the anchor and removing the anchoring device from the patient.
9. The method of claim 8 wherein the anchoring device includes suture threads pre-attached to the anchor; the method including a step of making the suture threads available to the surgeon after the body has been separated from the anchor.
10. The method of claim 9 wherein the anchoring device is at least partially hollow and the suture threads are housed in the anchoring device body; said step of making the suture threads available comprising the step of separating the anchoring device body from the anchor.
11. The method of claim 10 wherein the step of locating the anchoring point on the pubic bone comprises locating the anchoring point on a posterior surface of the pubic bone.
12. The method of claim 11 wherein the step of locating the anchoring point on the pubic bone comprises locating the anchoring point on an inferior, posterior surface of the pubic bone.
13. The method of claim 12 wherein the step of locating the anchoring point on the pubic bone comprises locating the point of connection of the arcus tendineus to the pubic bone.
14. A method of implanting a bone anchor in the pubic bone of a female patient comprising:
locating an anchor site on the pubic bone;
transvaginally introducing a bone anchor implanting device into the patient; the bone anchor implanting device comprising a body having a forward end and a gripping end and a bone anchor removably mounted to the forward end of the bone anchor implanting device; the forward end of the bone anchor implanting device facing generally toward the gripping end;
placing the bone anchor at the anchor site on the pubic bone;
pulling on the bone anchor implanting device to drive the bone anchor into the pubic bone; and
separating the bone anchor implanting device body from the bone anchor.
15. A bone anchor implantation device, comprising:
an elongated member having a first end and a second end; and
a bone anchor releasably engaged to said elongated member in the vicinity of said first end.
16. A device for inserting a bone anchor into a bone comprising:
a handle having a proximal end and a distal end;
a shaft having a first end and a second end, said first end being connected to said distal end of said handle; and
a bone anchor mount for releasably engaging said bone anchor, said bone anchor mount connected to said second end of said shaft and oriented toward said handle so that said bone anchor may be inserted into the bone by applying a retrograde force to said bone anchor.
17. The device of claim 16 wherein said shaft is hook shaped.
18. A method for inserting a bone anchor releasably engaged to a bone anchor implantation device into a bone comprising the steps of:
locating a bone anchor implantation site on the bone; and
applying a retrograde force to said bone anchor to implant said bone anchor into said bone.
19. A method for inserting a bone anchor releasably engaged to a bone anchor implantation device into a bone comprising the steps of: locating a bone anchor implantation site on the bone; and pulling said bone anchor implantation device to implant said bone anchor into said bone.
20. The method of claim 19 wherein said pulling step comprises applying a retrograde force to said bone anchor implantation device.
21. The method of claim 20 wherein the locating and implanting steps are accomplished transvaginally
22. The method of claim 19 wherein the bone anchor is implanted transvaginally into the pubic bone
23. The method of claim 22 wherein the bone anchor is implanted in posterior pubic bone.
24. The method of claim 23 wherein the bone anchor is implanted lateral to the symphysis pubis and cephalad to the inferior edge of the pubic bone.
25. The method of claim 24 wherein at least one bone anchor is implanted on either side of the urethra.
26. The method of claim 19 further comprising stabilizing the bladder neck with a suture attached to the bone anchor.
27. The method of claim 19 further comprising:
creating an opening in the tissue between the vaginal wall and the urethra;
positioning a sling in the opening; and
stabilizing the bladder neck with the sling using sutures connected between the sling and the bone anchors.
28. The method of claim 27 wherein the two bone anchors are implanted on each side of the urethra.
29. The method of claim 28 wherein one bone anchor on each side of the urethra is located lateral to the symphysis pubis and cephalad to the inferior edge of the pubic bone.
30. The method of claim 29 wherein the second bone anchor is located on the cephalad aspect of the ramus.
US10/456,748 1997-03-18 2003-06-06 Transvaginal bone anchor implantation device Abandoned US20030216608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/456,748 US20030216608A1 (en) 1997-03-18 2003-06-06 Transvaginal bone anchor implantation device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US82005397A 1997-03-18 1997-03-18
US09/111,525 US6039686A (en) 1997-03-18 1998-07-08 System and a method for the long term cure of recurrent urinary female incontinence
US23621199A 1999-01-23 1999-01-23
US09/742,750 US6599235B2 (en) 1997-03-18 2000-12-20 Transvaginal bone anchor implantation device
US10/456,748 US20030216608A1 (en) 1997-03-18 2003-06-06 Transvaginal bone anchor implantation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/742,750 Continuation US6599235B2 (en) 1997-03-18 2000-12-20 Transvaginal bone anchor implantation device

Publications (1)

Publication Number Publication Date
US20030216608A1 true US20030216608A1 (en) 2003-11-20

Family

ID=29424713

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/742,750 Expired - Lifetime US6599235B2 (en) 1997-03-18 2000-12-20 Transvaginal bone anchor implantation device
US10/456,748 Abandoned US20030216608A1 (en) 1997-03-18 2003-06-06 Transvaginal bone anchor implantation device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/742,750 Expired - Lifetime US6599235B2 (en) 1997-03-18 2000-12-20 Transvaginal bone anchor implantation device

Country Status (1)

Country Link
US (2) US6599235B2 (en)

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406480B1 (en) 1992-11-13 2002-06-18 American Med Syst Bone anchor inserter with retractable shield
US6635058B2 (en) 1992-11-13 2003-10-21 Ams Research Corporation Bone anchor
US6382214B1 (en) * 1998-04-24 2002-05-07 American Medical Systems, Inc. Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele
AU1998600A (en) * 1999-01-08 2000-07-24 American Medical Systems International, Inc. Tack device
DE60117977D1 (en) * 2000-06-05 2006-05-11 Boston Scient Ltd DEVICES FOR TREATING HARNINE CONTINENCE
FR2811218B1 (en) 2000-07-05 2003-02-28 Patrice Suslian IMPLANTABLE DEVICE FOR CORRECTING URINARY INCONTINENCE
US6638211B2 (en) * 2000-07-05 2003-10-28 Mentor Corporation Method for treating urinary incontinence in women and implantable device intended to correct urinary incontinence
US8167785B2 (en) 2000-10-12 2012-05-01 Coloplast A/S Urethral support system
US20060205995A1 (en) 2000-10-12 2006-09-14 Gyne Ideas Limited Apparatus and method for treating female urinary incontinence
GB0025068D0 (en) 2000-10-12 2000-11-29 Browning Healthcare Ltd Apparatus and method for treating female urinary incontinence
US6582443B2 (en) 2000-12-27 2003-06-24 Ams Research Corporation Apparatus and methods for enhancing the functional longevity and for facilitating the implantation of medical devices
US7070556B2 (en) 2002-03-07 2006-07-04 Ams Research Corporation Transobturator surgical articles and methods
US20020147382A1 (en) 2001-01-23 2002-10-10 Neisz Johann J. Surgical articles and methods
US7229453B2 (en) * 2001-01-23 2007-06-12 Ams Research Corporation Pelvic floor implant system and method of assembly
US6612977B2 (en) 2001-01-23 2003-09-02 American Medical Systems Inc. Sling delivery system and method of use
US20020161382A1 (en) * 2001-03-29 2002-10-31 Neisz Johann J. Implant inserted without bone anchors
US6641525B2 (en) 2001-01-23 2003-11-04 Ams Research Corporation Sling assembly with secure and convenient attachment
US8915927B2 (en) * 2001-03-09 2014-12-23 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US20050131393A1 (en) * 2001-03-09 2005-06-16 Scimed Life Systems, Inc. Systems, methods and devices relating to delivery of medical implants
US9149261B2 (en) * 2001-03-09 2015-10-06 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
GB0108088D0 (en) * 2001-03-30 2001-05-23 Browning Healthcare Ltd Surgical implant
US20020183762A1 (en) * 2001-06-01 2002-12-05 Ams Research Corporation Bone anchor inserters and methods
DE60136013D1 (en) * 2001-06-27 2008-11-13 Promedon Do Brasil Produtos Me ADJUSTABLE SELF-FIXING SLING FOR THE TREATMENT OF HARNINE CONTINENCE
US7407480B2 (en) * 2001-07-27 2008-08-05 Ams Research Corporation Method and apparatus for correction of urinary and gynecological pathologies, including treatment of incontinence cystocele
US6911003B2 (en) * 2002-03-07 2005-06-28 Ams Research Corporation Transobturator surgical articles and methods
CA2478448C (en) * 2002-03-07 2011-06-21 Ams Research Corporation Transobturator surgical articles and methods
EP1492459A2 (en) * 2002-04-11 2005-01-05 Gyne Ideas Limited Apparatus and method for treating female urinary incontinence
CA2483906C (en) * 2002-05-09 2011-01-25 Tyco Healthcare Group Lp Organ retractor and method of using the same
CA2483905C (en) * 2002-05-09 2011-01-25 Tyco Healthcare Group Lp Endoscopic organ retractor and method of using the same
ES1058519Y (en) * 2004-10-06 2005-04-01 Maroto Jesus Romero MESH FOR THE SURGICAL TREATMENT OF URINARY INCONTINENCE.
DE60334919D1 (en) 2002-08-02 2010-12-23 Bard Inc C R SELF-ANCHORING SLING AND INTRODUCTION SYSTEM
DE60325374D1 (en) 2002-08-14 2009-01-29 Boston Scient Ltd SYSTEMS AND DEVICES FOR INTRODUCING MEDICAL IMPLANTS
FR2843876B1 (en) * 2002-08-30 2004-11-26 Bernard Bouffier SURGICAL PROSTHESIS DEVICE FOR THE IMPLANTATION OF A SUPPORT OF A MAMMALIAN BODY
DE60336497D1 (en) * 2002-10-04 2011-05-05 Tyco Healthcare ENDOSCOPIC RETRACTOR
US7018381B2 (en) * 2002-10-18 2006-03-28 Zimmer Technology, Inc. Apparatus for removing an osteophyte
DK1990023T3 (en) * 2002-11-15 2013-01-02 Ethicon Inc Devices suitable for use in surgical repair of the vagina damaged by pelvic prolapse
GB0307082D0 (en) 2003-03-27 2003-04-30 Gyne Ideas Ltd Drug delivery device and method
ITRM20030210A1 (en) * 2003-04-30 2004-11-01 Mauro Cervigni PROSTHESIS TO BE USED IN THE PROLASSO SURGICAL THERAPY
US7361138B2 (en) * 2003-07-31 2008-04-22 Scimed Life Systems, Inc. Bioabsorbable casing for surgical sling assembly
CA2535594A1 (en) * 2003-08-14 2005-02-24 Jamie Li Surgical slings
US8545386B2 (en) 2003-08-14 2013-10-01 Boston Scientific Scimed, Inc. Surgical slings
US7347812B2 (en) 2003-09-22 2008-03-25 Ams Research Corporation Prolapse repair
EP1696803B1 (en) * 2003-11-17 2016-09-28 Boston Scientific Limited Systems relating to associating a medical implant with a delivery device
US7500945B2 (en) * 2004-04-30 2009-03-10 Ams Research Corporation Method and apparatus for treating pelvic organ prolapse
US7811222B2 (en) * 2004-04-30 2010-10-12 Ams Research Corporation Method and apparatus for treating pelvic organ prolapse
US7351197B2 (en) * 2004-05-07 2008-04-01 Ams Research Corporation Method and apparatus for cystocele repair
GB0411360D0 (en) 2004-05-21 2004-06-23 Mpathy Medical Devices Ltd Implant
US20050278037A1 (en) * 2004-06-11 2005-12-15 Analytic Biosurgical Solutions-Abiss Implant for the treatment of cystocele and rectocele
AU2011203197B2 (en) * 2004-12-20 2013-06-27 Rosenblatt Associates Llc Treatment of Anal Incontinence
US7794385B2 (en) * 2004-12-20 2010-09-14 Ams Research Corporation System and method for treatment of anal incontinence and pelvic organ prolapse
US8172745B2 (en) 2004-12-20 2012-05-08 Ams Research Corporation Treatment of anal incontinence and defecatory dysfunction
CA2591493C (en) * 2004-12-20 2014-10-28 Peter L. Rosenblatt Treatment of anal incontinence
US20060173468A1 (en) * 2005-01-28 2006-08-03 Marc Simmon Obturator introducer with snare
US20060195006A1 (en) * 2005-02-28 2006-08-31 Daurelle Bernard Adrien S Intraurethral incontinence device and methods
US20100094079A1 (en) * 2005-06-21 2010-04-15 Ams Research Corporation Method and Apparatus for Securing a Urethral Sling to Pubic Bone
WO2007002012A1 (en) 2005-06-21 2007-01-04 Ams Research Corporation Apparatus for securing a urethral sling to pubic bone
CA2615130A1 (en) 2005-07-26 2007-02-08 Ams Research Corporation Methods and systems for treatment of prolapse
WO2007027592A1 (en) * 2005-08-29 2007-03-08 Ams Research Corporation System for positioning support mesh in a patient
US7878970B2 (en) 2005-09-28 2011-02-01 Boston Scientific Scimed, Inc. Apparatus and method for suspending a uterus
WO2007059199A2 (en) 2005-11-14 2007-05-24 C.R. Bard, Inc. Sling anchor system
US9144483B2 (en) 2006-01-13 2015-09-29 Boston Scientific Scimed, Inc. Placing fixation devices
US20070219558A1 (en) * 2006-03-15 2007-09-20 Allen Deutsch Method and apparatus for arthroscopic surgery using suture anchors
EP2617385B1 (en) 2006-03-16 2017-07-19 Boston Scientific Limited System for treating tissue wall prolapse
WO2007137226A2 (en) 2006-05-19 2007-11-29 Ams Research Corporation Method and articles for treatment of stress urinary incontinence
CA2654966A1 (en) * 2006-06-16 2007-12-27 Ams Research Corporation Surgical implants and tools for treating pelvic conditions
WO2007149593A2 (en) * 2006-06-22 2007-12-27 Ams Research Corporation Adjustable tension incontinence sling assemblies
WO2008033950A2 (en) 2006-09-13 2008-03-20 C. R. Bard, Inc. Urethral support system
EP2676614B1 (en) * 2006-10-26 2016-03-09 AMS Research Corporation Surgical articles for treating pelvic conditions
US8951185B2 (en) * 2007-10-26 2015-02-10 Ams Research Corporation Surgical articles and methods for treating pelvic conditions
US20110082328A1 (en) * 2007-01-03 2011-04-07 Christian Gozzi Methods for installing sling to treat fecal incontinence, and related devices
CN104138278B (en) 2007-09-21 2017-10-24 Ams研究公司 It is surgically inserted into instrument and its engaging member combined with the extension of implant
US8206280B2 (en) 2007-11-13 2012-06-26 C. R. Bard, Inc. Adjustable tissue support member
US20090156891A1 (en) * 2007-12-12 2009-06-18 Ams Research Corporation Prolapse and Perineal Repair Concepts
US9078728B2 (en) 2007-12-28 2015-07-14 Boston Scientific Scimed, Inc. Devices and methods for delivering female pelvic floor implants
US9282958B2 (en) 2007-12-28 2016-03-15 Boston Scientific Scimed, Inc. Devices and method for treating pelvic dysfunctions
US8430807B2 (en) 2007-12-28 2013-04-30 Boston Scientific Scimed, Inc. Devices and methods for treating pelvic floor dysfunctions
US9017382B2 (en) * 2008-05-19 2015-04-28 Ams Research Corporation Collapsible tissue anchor device and method
US8727963B2 (en) 2008-07-31 2014-05-20 Ams Research Corporation Methods and implants for treating urinary incontinence
US9017243B2 (en) 2008-08-25 2015-04-28 Ams Research Corporation Minimally invasive implant and method
US8968181B2 (en) 2008-08-25 2015-03-03 Ams Research Corporation Minimally invasive implant and method
CN102245111B (en) * 2008-10-27 2014-07-16 Ams研究公司 Surgical needle and anchor system with retractable features
US8449573B2 (en) 2008-12-05 2013-05-28 Boston Scientific Scimed, Inc. Insertion device and method for delivery of a mesh carrier
US9226809B2 (en) 2009-02-10 2016-01-05 Ams Research Corporation Surgical articles and methods for treating urinary incontinence
US9125716B2 (en) 2009-04-17 2015-09-08 Boston Scientific Scimed, Inc. Delivery sleeve for pelvic floor implants
US8968334B2 (en) 2009-04-17 2015-03-03 Boston Scientific Scimed, Inc. Apparatus for delivering and anchoring implantable medical devices
US20110087067A1 (en) * 2009-10-09 2011-04-14 Tyco Healthcare Group Lp Internal retractor systems
US9301750B2 (en) 2009-11-03 2016-04-05 Boston Scientific Scimed, Inc. Device and method for delivery of mesh-based devices
WO2011082330A1 (en) 2009-12-30 2011-07-07 Ams Research Corporation Implantable sling systems and methods
AU2010339575B2 (en) 2009-12-30 2013-04-18 Boston Scientific Scimed, Inc. Elongate implant system and method for treating pelvic conditions
WO2011082287A1 (en) 2009-12-30 2011-07-07 Ams Research Corporation Implant systems with tensioning feedback
US9393091B2 (en) * 2009-12-31 2016-07-19 Astora Women's Health, Llc Suture-less tissue fixation for implantable device
US9445881B2 (en) 2010-02-23 2016-09-20 Boston Scientific Scimed, Inc. Surgical articles and methods
EP3721832B1 (en) 2010-02-23 2023-03-29 Boston Scientific Scimed, Inc. Surgical articles for treating incontinence
US10028813B2 (en) 2010-07-22 2018-07-24 Boston Scientific Scimed, Inc. Coated pelvic implant device and method
US8911348B2 (en) 2010-09-02 2014-12-16 Boston Scientific Scimed, Inc. Pelvic implants and methods of implanting the same
US9572648B2 (en) 2010-12-21 2017-02-21 Justin M. Crank Implantable slings and anchor systems
US9125717B2 (en) 2011-02-23 2015-09-08 Ams Research Corporation Implant tension adjustment system and method
US8808162B2 (en) 2011-03-28 2014-08-19 Ams Research Corporation Implants, tools, and methods for treatment of pelvic conditions
US9750590B2 (en) 2011-03-28 2017-09-05 Andrew P. VanDeWeghe Implants, tools, and methods for treatment of pelvic conditions
US9492259B2 (en) 2011-03-30 2016-11-15 Astora Women's Health, Llc Expandable implant system
US10058240B2 (en) 2011-06-29 2018-08-28 Boston Scientific Scimed, Inc. Systems, implants, tools, and methods for treatments of pelvic conditions
US20130006049A1 (en) 2011-06-30 2013-01-03 Alexander James A Implants, tools, and methods for treatments of pelvic conditions
US9351723B2 (en) 2011-06-30 2016-05-31 Astora Women's Health, Llc Implants, tools, and methods for treatments of pelvic conditions
EP2734148B1 (en) 2011-07-22 2019-06-05 Boston Scientific Scimed, Inc. Pelvic implant system
US9414903B2 (en) 2011-07-22 2016-08-16 Astora Women's Health, Llc Pelvic implant system and method
US9492191B2 (en) 2011-08-04 2016-11-15 Astora Women's Health, Llc Tools and methods for treatment of pelvic conditions
US20130035555A1 (en) 2011-08-05 2013-02-07 Alexander James A Systems, implants, tools, and methods for treatment of pelvic conditions
US10098721B2 (en) 2011-09-01 2018-10-16 Boston Scientific Scimed, Inc. Pelvic implant needle system and method
USD721175S1 (en) 2011-09-08 2015-01-13 Ams Research Corporation Backers for surgical indicators
USD721807S1 (en) 2011-09-08 2015-01-27 Ams Research Corporation Surgical indicators
USD736382S1 (en) 2011-09-08 2015-08-11 Ams Research Corporation Surgical indicator with backers
US9168120B2 (en) 2011-09-09 2015-10-27 Boston Scientific Scimed, Inc. Medical device and methods of delivering the medical device
US10265152B2 (en) 2011-10-13 2019-04-23 Boston Scientific Scimed, Inc. Pelvic implant sizing systems and methods
US9814555B2 (en) 2013-03-12 2017-11-14 Boston Scientific Scimed, Inc. Medical device for pelvic floor repair and method of delivering the medical device
US9962251B2 (en) 2013-10-17 2018-05-08 Boston Scientific Scimed, Inc. Devices and methods for delivering implants
RU2595131C1 (en) * 2015-03-19 2016-08-20 Наталья Николаевна Белкина Method of surgical treatment of insolvency of the pelvic floor muscles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580313A (en) * 1969-01-07 1971-05-25 Mcknight Charles A Surgical instrument
US5520700A (en) * 1992-11-13 1996-05-28 Technion Research & Development Foundation, Ltd. Stapler device particularly useful in medical suturing
US5988171A (en) * 1997-06-26 1999-11-23 Influence Medical Technologies, Ltd. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US6053935A (en) * 1996-11-08 2000-04-25 Boston Scientific Corporation Transvaginal anchor implantation device
US6096041A (en) * 1998-01-27 2000-08-01 Scimed Life Systems, Inc. Bone anchors for bone anchor implantation device
US6334446B1 (en) * 1992-11-13 2002-01-01 American Medical Systems, Inc. Medical sling procedures and anchor insertion methods and devices

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124136A (en) 1964-03-10 Method of repairing body tissue
US3054406A (en) 1958-10-17 1962-09-18 Phillips Petroleum Co Surgical mesh
US3384073A (en) 1964-04-21 1968-05-21 Ethicon Inc Surgical device for correction of urinary incontinence
US3789828A (en) 1972-09-01 1974-02-05 Heyer Schulte Corp Urethral prosthesis
US4246660A (en) 1978-12-26 1981-01-27 Queen's University At Kingston Artificial ligament
US4452245A (en) 1980-06-06 1984-06-05 Usher Francis C Surgical mesh and method
GB8611129D0 (en) 1986-05-07 1986-06-11 Annis D Prosthetic materials
ATE95399T1 (en) 1987-10-30 1993-10-15 Howmedica DEVICE FOR RESTORING A TENDOOR OR LANDAGE.
ATE119758T1 (en) 1988-10-04 1995-04-15 Peter Emmanuel Petros SURGICAL INSTRUMENT, PROSTHESIS.
US4938760A (en) 1989-03-29 1990-07-03 American Medical Systems, Inc. Female suspension procedure
EP0734687A3 (en) 1991-12-03 1996-10-16 Vesica Medical, Inc. Support structure for supporting and positioning medical equipment
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
WO1993010715A2 (en) 1991-12-03 1993-06-10 Vesitec Medical, Inc. Surgical treatment of stress urinary incontinence
WO1993017635A1 (en) 1992-03-04 1993-09-16 C.R. Bard, Inc. Composite prosthesis and method for limiting the incidence of postoperative adhesions
US5337736A (en) 1992-09-30 1994-08-16 Reddy Pratap K Method of using a laparoscopic retractor
BR9302774A (en) 1993-07-06 1995-02-14 Antoine Jean Henri Robert Adjustable peri-urethral expander
CA2124651C (en) 1993-08-20 2004-09-28 David T. Green Apparatus and method for applying and adjusting an anchoring device
US5899909A (en) 1994-08-30 1999-05-04 Medscand Medical Ab Surgical instrument for treating female urinary incontinence
US5591163A (en) 1995-06-14 1997-01-07 Incont, Inc. Apparatus and method for laparoscopic urethropexy
AUPN562295A0 (en) 1995-09-26 1995-10-19 Compton, Jeffrey Spencer Dr Easy load device for raney style scalp clips
CA2280812A1 (en) 1997-02-13 1998-08-20 Rodney Brenneman Percutaneous and hiatal devices and methods for use in minimally invasive pelvic surgery
JP2001511685A (en) * 1997-02-13 2001-08-14 ボストン サイエンティフィック リミテッド Stabilized sling for use in minimally invasive pelvic surgery
US6039686A (en) * 1997-03-18 2000-03-21 Kovac; S. Robert System and a method for the long term cure of recurrent urinary female incontinence
US5934283A (en) 1997-04-15 1999-08-10 Uroplasty, Inc. Pubovaginal sling device
US6068591A (en) 1998-02-17 2000-05-30 Bruckner; Norman I. Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence
ES2149091B1 (en) 1998-03-10 2001-05-16 Gil Vernet Vila Jose Maria DEVICE FOR FIXING AND ADJUSTABLE SUPPORT AT HEIGHT OF INTERNAL ANATOMICAL ORGANS.
US6106545A (en) 1998-04-16 2000-08-22 Axya Medical, Inc. Suture tensioning and fixation device
US6382214B1 (en) 1998-04-24 2002-05-07 American Medical Systems, Inc. Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele
US6010447A (en) 1998-07-31 2000-01-04 Kardjian; Paul M. Bladder sling
US6042536A (en) 1998-08-13 2000-03-28 Contimed, Inc. Bladder sling
US6648903B1 (en) 1998-09-08 2003-11-18 Pierson, Iii Raymond H. Medical tensioning system
US6050937A (en) 1998-09-21 2000-04-18 Benderev; Theodore V. Surgical tension/pressure monitor
US6302840B1 (en) 1998-09-21 2001-10-16 Theodore V. Benderev Surgical monitor
IL130307A0 (en) 1999-06-04 2000-06-01 Influence Med Tech Ltd Bone suturing device
US7083637B1 (en) 1999-06-09 2006-08-01 Tannhauser Robert J Method and apparatus for adjusting flexible areal polymer implants
US6273852B1 (en) 1999-06-09 2001-08-14 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
AUPQ362199A0 (en) 1999-10-22 1999-11-18 Kaladelfos, George Intra-vaginal sling placement device
US6599318B1 (en) 1999-11-30 2003-07-29 Shlomo Gabbay Implantable support apparatus and method of using same
US6406423B1 (en) 2000-01-21 2002-06-18 Sofradim Production Method for surgical treatment of urinary incontinence and device for carrying out said method
GB2359256B (en) 2000-01-21 2004-03-03 Sofradim Production Percutaneous device for treating urinary stress incontinence in women using a sub-urethral tape
DE10004832A1 (en) 2000-01-31 2001-08-16 Ethicon Gmbh Flat implant with X-ray visible elements
US6596001B2 (en) 2000-05-01 2003-07-22 Ethicon, Inc. Aiming device for surgical instrument and method for use for treating female urinary incontinence
WO2002045774A2 (en) 2000-10-23 2002-06-13 Ethicon, Inc. Apparatus and method for measurement and assessment of sling-tension for treatment of female urinary incontinence
US6802807B2 (en) 2001-01-23 2004-10-12 American Medical Systems, Inc. Surgical instrument and method
US6602260B2 (en) 2001-02-02 2003-08-05 Ams Research Corporation Powered bone screw device
JP4298296B2 (en) 2001-03-09 2009-07-15 ボストン サイエンティフィック リミテッド Medical sling
WO2002071953A2 (en) 2001-03-09 2002-09-19 Scimed Life Systems, Inc. System for implanting an implant and method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580313A (en) * 1969-01-07 1971-05-25 Mcknight Charles A Surgical instrument
US5520700A (en) * 1992-11-13 1996-05-28 Technion Research & Development Foundation, Ltd. Stapler device particularly useful in medical suturing
US6334446B1 (en) * 1992-11-13 2002-01-01 American Medical Systems, Inc. Medical sling procedures and anchor insertion methods and devices
US6053935A (en) * 1996-11-08 2000-04-25 Boston Scientific Corporation Transvaginal anchor implantation device
US6319272B1 (en) * 1996-11-08 2001-11-20 Boston Scientific Corporation Transvaginal anchor implantation device and method of use
US5988171A (en) * 1997-06-26 1999-11-23 Influence Medical Technologies, Ltd. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US6096041A (en) * 1998-01-27 2000-08-01 Scimed Life Systems, Inc. Bone anchors for bone anchor implantation device

Also Published As

Publication number Publication date
US20010000533A1 (en) 2001-04-26
US6599235B2 (en) 2003-07-29

Similar Documents

Publication Publication Date Title
US6599235B2 (en) Transvaginal bone anchor implantation device
US6328686B1 (en) Transvaginal system and method for treating female urinary incontinence
US10285792B2 (en) System and method for treatment of anal incontinence and pelvic organ prolapse
US10631967B2 (en) Methods and apparatus for securing and tensioning a urethral sling to pubic bone
US8480556B2 (en) Method and apparatus for treating pelvic organ prolapses in female patients
AU2007257870B2 (en) Method and apparatus for levator distension repair
Kovac et al. Pubic bone suburethral stabilization sling for recurrent urinary incontinence
US7811222B2 (en) Method and apparatus for treating pelvic organ prolapse
US11547542B2 (en) Minimally invasive implant and method
US20100261956A1 (en) Apparatus and Method for Pelvic Floor Repair in the Human Female
US20110011407A1 (en) Apparatus and method for pelvic floor repair in the human female

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION