US20030215467A1 - Bifidobacteriumin the treatment of inflammatory disease - Google Patents

Bifidobacteriumin the treatment of inflammatory disease Download PDF

Info

Publication number
US20030215467A1
US20030215467A1 US10/388,652 US38865203A US2003215467A1 US 20030215467 A1 US20030215467 A1 US 20030215467A1 US 38865203 A US38865203 A US 38865203A US 2003215467 A1 US2003215467 A1 US 2003215467A1
Authority
US
United States
Prior art keywords
strain
bifidobacterium
formulation
cells
lactobacillus salivarius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/388,652
Inventor
John Collins
Gerald O'Sullivan
Liam O'Mahony
Fergus Shanahan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enterprise Ireland
Original Assignee
Enterprise Ireland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IE990033A external-priority patent/IE990033A1/en
Application filed by Enterprise Ireland filed Critical Enterprise Ireland
Priority to US10/388,652 priority Critical patent/US20030215467A1/en
Publication of US20030215467A1 publication Critical patent/US20030215467A1/en
Priority to US10/975,353 priority patent/US20060002908A1/en
Priority to US11/478,545 priority patent/US20070141039A1/en
Priority to US12/123,052 priority patent/US20080311080A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/179Sakei
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/542Mucosal route oral/gastrointestinal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/853Lactobacillus

Definitions

  • This invention relates to probiotic Bifidobacterium strains which have various applications in foodstuffs and in medicine. More particularly, the invention relates to probiotic strains of bifidobacteria which are capable of beneficially modifying and consequently alleviating observable symptoms in inflammatory disease.
  • GIT gastrointestinal tract
  • IBS irritable bowel syndrome
  • IBD inflammatory bowel disease
  • Probiotics have been defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance, or more broadly, as living micro-organisms, which upon ingestion in certain numbers, exert health effects beyond inherent basic nutrition.
  • Criteria which have been suggested for the selection of potentially effective probiotic microorganisms may be summarised as follows: human origin, non-pathogenic behaviour, resistance to technological processes (i.e., viability and activity in delivery vehicles), resistance to gastric acidity and bile toxicity, adhesion to gut epithelial tissue, ability to colonise the GIT, production of antimicrobial substances, ability to modulate immune responses, and the ability to influence metabolic activities (e.g., cholesterol assimilation, lactase activity, vitamin production) (Huis in't Veld J, Shortt C. Selection criteria for probiotic micro-organisms. In: Leeds; A. R., Rowland, I. R. eds. Gut Fora and Health—Past, Present and Future. London: The Royal Society of Medicine Press Ltd., 1996:19-26).
  • Bifidobacteria are one of several predominant culturable bacteria present in the colonic microflora.
  • Bifidobacteria are considered to be probiotics as they are living organisms which exert healthy effects beyond basic nutrition when ingested in sufficient numbers. Numerous ingested bifidobacteria must reach the site of action in the gut in order to exert a probiotic effect. A minimum level of approximately 10 6 -10 7 viable bifidobacteria per gram intestinal contents has been suggested (Bouhnik, Y., Lait 1993: 73:241-247). There are reports in the literature which show that in vivo studies completed in adults and in infants indicate that some strains of bifidobacteria are capable of surviving passage through the gastrointestinal tract. Significant differences have been observed between the abilities of different bifidobacteria strains to tolerate acid and bile salts, indicating that survival is an important criterion for the selection of potential probiotic strains.
  • Antimicrobial activity has been reported to be associated with bifidobacteria. Also, bifidobacteria have been shown to modulate various parameters of the immune system.
  • the invention provides a strain of Bifidobacterium isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans.
  • the strain of Bifidobacterium preferably effects changes in an immunological marker when introduced into a system comprising cells which interact with the immune system and cells of the immune system.
  • the cells which interact with the immune system are epithelial cells.
  • the immunological marker is a cytokine, especially TNF ⁇ .
  • the cells which interact with the immune system and the immune system cells are of matched origin.
  • the cells which interact with the immune system are of gastrointestinal, respiratory or genitourinary origin.
  • the cells of the immune system are preferably of gastrointestinal, respiratory or genitourinary origin.
  • the invention also provides a strain of Bifidobacterium longum infantis isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans.
  • the strain of Bifidobacterium is preferably isolated from resected and washed human gastrointestinal tract which is capable of combating the effects of inflammatory bowel disease, said capability being maintained in the presence of physiological concentrations of human bile and human gastric juice.
  • the capability of combating the effects of inflammatory bowel disease is measured by measuring a reversal of a wasting disease induced in severe combined immunodeficient recipient mice (SCID) which have been administered purified CD4 + , CD45R high T cells.
  • SCID severe combined immunodeficient recipient mice
  • the capability of the strain of Bifidobacterium longum infantis to combat the effects of inflammatory bowel disease can also be measured by measuring the reduction in colonic inflammation in IL-10 deficient mice (IL-10 + 129 Svex strain) following administration of one or more of the strains of Bifidobacterium longum infantis according to the invention alone or in combination with a strain of Lactobacillus salivarius as hereinafter defined.
  • Interleukin 10 is an important regulatory cytokine that supresses effector functions of macrophage/monocytes, T helper 1 (Th1) cells, and natural killer cells.
  • Th1 T helper 1
  • IL-10 augments proliferation and differentiation of B cells.
  • Murine models lacking the IL-10 gene spontaneously develop inflammatory bowel disease and gastrointestinal tumors. The gastrointestinal flora have been implicated in the pathogenesis of these disease states as germ free animals do not develop disease.
  • the strain of Bifidobacterium preferably has inhibitory activity against a broad range of Gram positive and Gram negative bacteria.
  • the strain of Bifidobacterium exhibits a broad-spectrum of activity against bacteria including Staphylococcus, Pseudomonas, Coliform and Bacillus species.
  • the invention provides strain of Bifidobacterium longum infantis UCC35624 or mutant or variant thereof.
  • a deposit of Bifidobacterium longum infantis strain UCC 35624 was made at the National Collections of Industrial and Marine Bacteria Limited (NCIMB) on Jan. 13, 1999 and accorded the accession number NCIMB 41003.
  • the mutant is a genetically modified mutant.
  • the variant is a naturally occurring variant of Bifidobacterium longum infantis UCC35624.
  • the strain of Bifidobacterium may be in the form of viable cells.
  • the strain of Bifidobacterium is in the form of non-viable cells.
  • the invention also provides an antimicrobial agent obtained from a strain of Bifidobacterium of the invention which is antagonistic to the growth of other organisms.
  • the invention provides a formulation which comprises a strain of Bifidobacterium of the invention.
  • the formulation may comprise two or more strains of Bifidobacterium.
  • the formulation may include another probiotic material.
  • the formulation includes a prebiotic material.
  • the formulation may which include a strain of Lactobacillus salivarius.
  • the strain of Lactobacillus salivarius may be in the form of viable cells or in the form of non-viable cells.
  • the Lactobacillus salivarius is preferably isolated from resected and washed human gastrointestinal tract, the Lactobacillus salivarius being significantly immunomodulatory following oral consumption in humans.
  • the strain of Lactobacillus salivarius is isolated from resected and washed human gastrointestinal tract which inhibits a broad range of Gram positive and Gram negative micro-organisms.
  • the strain of Lactobacillus salivarius secretes a product having antimicrobial activity into a cell—free supernatant, said activity being produced only by growing cells and being destroyed by proteinase K and pronase E, the inhibitory properties of said strain and its secretory products being maintained in the presence of physiological concentration of human bile and human gastric juice.
  • the strain of Lactobacillus salivarius is Lactobacillus salivarius strain UCC 118 or a mutant or variant thereof.
  • the mutant is a genetically modified mutant.
  • the variant may be a naturally occurring variant of Lactobacillus salivarius.
  • Lactobacillus salivarius strain UCC 118 was made at the NCIMB on Nov. 27, 1996 and accorded the accession number NCIMB 40829.
  • the formulation includes an ingestable carrier.
  • the ingestable carrier may be a pharmaceutically acceptable carrier such as a capsule, tablet or powder.
  • the ingestable carrier may be a food product such as acidified milk, yoghurt, frozen yoghurt, milk powder, milk concentrate, cheese spreads, dressings or beverages.
  • the formulation may comprise a protein and/or peptide, in particular proteins and/or peptides that are rich in glutamine/glutamate, a lipid, a carbohydrate, a vitamin, mineral and/or trace element.
  • the Bifidobacterium is present at more than 10 6 cfu per gram of delivery system.
  • the formulation includes an adjuvant.
  • the formulation may include a bacterial component.
  • the formulation may alternatively or additionally include a drug entity.
  • the formulation may also include a biological compound.
  • the formulation may be in a form for oral immunization.
  • the invention further provides a strain of Bifidobacterium or a formulation thereof for use in foodstuffs.
  • the invention provides a strain of Bifidobacterium or a formulation thereof for use as a medicament.
  • the strain or formulation may be for use in the prophylaxis and/or treatment of undesirable inflammatory activity.
  • the strain or formulation may be for use in the prophylaxis and/or treatment of undesirable gastrointestinal inflammatory activity such as inflammatory bowel disease eg. Crohns disease or ulcerative colitis, irritable bowel syndrome, pouchitis or post infection colitis.
  • undesirable gastrointestinal inflammatory activity such as inflammatory bowel disease eg. Crohns disease or ulcerative colitis, irritable bowel syndrome, pouchitis or post infection colitis.
  • the undesirable inflammatory activity may be due to cancer.
  • strain or formulation may be for use in the prophylaxis and/or treatment of gastrointestinal cancer(s).
  • the strain or formulation may be used for the prophylaxis of cancer. Further, the strain or formulation may be for use in the prophylaxis and/or treatment of systemic disease such as rheumatoid arthritis.
  • the strain or formulation may be for use in the prophylaxis and/or treatment of autoimmune disorders due to undesirable inflammatory activity.
  • the strain or formulation may be for use in the prophylaxis and/or treatment of cancer due to undesirable inflammatory activity.
  • the strain or formulation may be for use in the prophylaxis and/or treatment of diarrhoeal disease due undesirable inflammatory activity, such as Clostridium difficile associated diarrhoea, Rotavirus associated diarrhoea or post infective diarrhoea.
  • FIG. 1 is a graph of cfu/ml versus time for Bifidobacterium longum infantis strain 35612 as described in Example 2;
  • FIG. 2 is a graph of cfu/ml versus time for Bifidobacterium longum infantis strain 35624 as described in Example 2;
  • FIG. 3 is a graph of percentage weight change versus time (days) for five SCID mice (1-5) administered strain UCC 35624 as described in Example 5;
  • FIG. 4 is a graph of average percentage weight change versus time (days) for the SCID mice (1-5) administered strain UCC 35624 as described in Example 5;
  • FIG. 5 is a graph of percentage weight change versus time (days) for mice (6-10) administered a combination of strains Lactobacillus salivarius UCC 118 and UCC 35624 as described in Example 5;
  • FIG. 6 is a graph of average percentage weight change versus time (days) for mice (6-10) administered a combination of strains UCC 118 and UCC 35624 as described in Example 5;
  • FIG. 7 is a graph of percentage weight change versus time (days) for mice (11-15) administered a combination of strains UCC 118 and UCC 35624 as described in Example 5;
  • FIG. 8 is a graph of average percentage weight change versus time (days) for mice (11-15) administered a combination of strains UCC 118 and UCC 35624 as described in Example 5;
  • FIG. 9 is a bar chart of TNF ⁇ levels in patient and control samples in the presence of PBMCs and Bifidobacteria longum infantis as described in Example 7;
  • FIG. 10 is a bar chart showing TNF ⁇ and IL-8 levels in co-cultures of epithelial cells, PBMCs and Bifidobacterium longum infantis as described in Example 7. Controls represent co-cultures of epithelial cells and PBMCs alone;
  • FIG. 13 is a bar chart of TNF ⁇ levels in cell-free spent culture supernatant of Bifidobacterium longum infantis and an MRS control as described in Example 9;
  • FIG. 14 is a diagrammatic representation of a SCID mouse lower intestine after treatment with Bifidobacterium longum infantis.
  • FIG. 15 is a diagrammatic representation of the lower intestine of an untreated SCID mouse.
  • strains of probiotic bacteria which are capable of beneficially modifying and consequently alleviating observable symptoms in inflammatory disorders.
  • These strains and the formulations prepared may be used in a variety of foodstuffs and medicaments to combat the effect of inflammatory disorders.
  • mice consuming Bifidobacterium longum infantis retained solid stools while control mice suffered from diarrhoea.
  • This anti-diarrhoeal effect could be related to the anti-inflammatory activity of this invention, possibly mediated via cAMP modulation.
  • LPS lipopolysaccharide
  • Bifidobacterium longum infantis UCC35624 is in the form of viable cells. However, it can also be extended to non-viable cells such as killed cultures or compositions containing beneficial factors expressed by Bifidobacterium longum infantis UCC35624. This could include thermally killed micro-organisms or micro-organisms killed by exposure to altered pH or subjection to pressure. With non-viable cells product preparation is simpler, cells may be incorporated easily into pharmaceuticals and storage requirements are much less limited than viable cells. Lactobacillus casei YIT 9018 offers an example of the effective use of heat killed cells as a method for the treatment and/or prevention of tumour growth as described in U.S. Pat. No. 4,347,240.
  • the solutions were serially diluted (dilution 10 ⁇ 1 from a wash sample was labelled W1, dilution 10.2 was labelled W2 and the same labelling system was used for the ‘S’ and ‘H’ samples) and spread-plated (100 ⁇ l) on to the following agar media: RCM (reinforced clostridial media) and RCM adjusted to pH 5.5 using acetic acid; TPY (trypticase, peptone and yeast extract), Chevalier, P. et al. (1990) J. Appl. Bacteriol 68, 619-624).
  • MRS deMann, Rogosa and Sharpe
  • ROG acetate medium (SL) of Rogosa
  • LLA Liver-lactose agar of Lapiere
  • BHI brain heart infusion agar
  • LBS Lactobacillus selective agar
  • TSAYE tryptone soya agar supplemented with 0.6% yeast extract. All agar media was supplied by Oxoid Chemicals with the exception of TPY agar. Plates were incubated in anaerobic jars (BBL, Oxoid) using CO 2 generating kits (Anaerocult A, Merck) for 2-5 days at 37° C.
  • Gram positive, catalase negative rod-shaped or bifurcated/pleomorphic bacteria isolates were streaked for purity on to complex non-selective media (TPY). Isolates were routinely cultivated in TPY medium unless otherwise stated at 37° C. under anaerobic conditions. Presumptive Bifidobacteria species were stocked in 40% glycerol and stored at ⁇ 20° and ⁇ 80° C.
  • Biochemical and physiological traits of the bacterial isolates were determined to aid identification. Nitrate reduction, indole formation and expression of ⁇ -galactosidase activity were assayed. Growth at both 15° C. and 45° C. and protease activity on gelatin were determined. Growth characteristics of the strains in litmus milk were also assessed.
  • Antibiotic sensitivity profiles of the isolates were determined using the ‘disc susceptibility’ assay. Cultures were grown up in the appropriate broth medium for 24-48 h, spread-plated (100 ⁇ l) onto agar media and discs containing known concentrations of the antibiotics were placed onto the agar. Strains were examined for antibiotic sensitivity after 1-2 days incubation at 37° C. under anaerobic conditions. Strains were considered sensitive if zones of inhibition of 1 mm or greater were seen.
  • tissue sections taken from the human G.I.T. were screened for the presence of strains belonging to the Bifidobacterium genus. There was some variation between tissue samples as follows. Samples A (ileum) and E (appendix) had the lowest counts with approximately 10 2 cells isolated per gram of tissue. In comparison, greater than 10 3 cfu/g tissue were recovered from the other samples. Similar numbers of bacteria were isolated during the ‘wash’ and ‘sample’ steps with slightly higher counts in the ‘sample’ solutions of F (ileum) and G (ileal-caecal). Of those screened for tightly-adhering bacteria (homogenised), C (ileal-caecal) was the only tissue section that gave significant counts.
  • Antibiotics of human clinical importance were used to ascertain the sensitivity profiles of selected bifidobacteria.
  • the bifidobacteria tested were sensitive to ampicillin, amoxycillin ceftaxime, ceftriaxone, ciprofloxacin, cephradine, rifampicin, amikacin, gentamicin and chloramphenicol. They were also resistant to netilmicin, trimethoprim, nalidixic acid, cefuroxime, vancomycin and tetracycline.
  • the first line of host defence that a micro-organism reaches following human consumption is gastric acid in the stomach.
  • a key factor influencing bacteria is survival in gastric juice.
  • the survival and growth of Bifidobacterium longum infantis strains 35612 and 35624 in a low pH environment were examined.
  • the strains were routinely cultured in trypticase-peptone-yeast extract (TPY) medium at 37° C. under strict anaerobic conditions (BBL Gas jars using the Merck Anaerocult A gas pak system) for 12-24 h.
  • TPY trypticase-peptone-yeast extract
  • BBL Gas jars using the Merck Anaerocult A gas pak system for 12-24 h.
  • Human gastric juice was obtained from healthy subjects by aspiration through a nasogastric tube (Mercy Hospital, Cork, Ireland).
  • Human bile was obtained from several human gall bladders and sterilised at 80° C. for 10 min.
  • the bile acid composition of human bile was determined using reverse phase High Performance Liquid Chromatography (HPLC) in combination with a pulsed amperometric detector according to the method of Dekker, R. R. et al., Chromatographia, 1991, 31 (11/12), 255-256.
  • Human bile was added at a concentration of 0.3% (v/v). Freshly streaked cultures were examined for growth after 24 and 48 h.
  • Strain 35624 was capable of growth in the presence of physiologically relevant human bile (0.3% (v/v)).
  • glycocholic acid (GCA); glycodeoxycholic acid (GDCA); and glycochenodeoxycholic acid (GCDCA);
  • Bifidobacterium species exert inhibitory effects on other bacteria by excluding long term colonisation by invasive pathogens. Their antagonistic activity is due to the production of acetic and lactic acid though fermentation (Scardovi, V. (1986) Bifidobacterium in Bergey's Manual of systemic bacteriology, Vol. 2. Eds. Sheath, P. H., Main, N. S., Sharpe, M. and Holdt, J. G., Williams and Wilkins Publishers, Baltimore Md., p1418). Very few reports exist on the production of antimicrobial compounds other than acids (Anand, S. K. et al. Cult. Prods. 1985;J. 2, 21-23). Bacteriocins and other compounds may influence the survival of a bacterium in an ecological niche and allow them to effectively dominate fermenting ecosystems. Such a feature is a good trait for a probiotic strain.
  • the inhibitory spectra of various bifidobacterial strains was determined by the method of Tagg et al. (Tagg. J. R. et al. Bacteriol. Rev. 1976; 40, 722-756). Cell free supernatant was assayed for inhibitory activity against a wide range of Gram positive and Gram negative micro-organisms. Overlays of each indicator were prepared on agar plates and allowed to dry. Spots (5 ml) of cell free supernatant were placed on the seeded plates, allowed to dry and the plates were incubated overnight.
  • mice [0123] A number of mouse models have recently been generated by either genetic or immunological means to study the mechanisms of IBD.
  • One of these models involves the transfer of spleen or lymph node-derived CD4 + T lymphocytes from normal mice into severe combined immunodeficient recipient mice (SCID). It has been demonstrated that mice who receive purified CD4 + , CD45RB high T cells develop a wasting disease characterised by chronic intestinal inflammation which is more severe in the colon.
  • SCID mice a control group of SCID mice was injected with CD4 + CD45RB high and the mice developed a progressive wasting disease including hunched over appearance, piloerection of the coat, diarrhoea, weight loss and macro and microscopic colon damage.
  • a feeding trail was set up administering UCC 118 and strain 35624 (also referred to herein as UCC 35624) to determine if the symptoms of IBD could be modified in this model.
  • Lactobacillus salivarius subsp. Salivarius UCC 118 and Bifidobacterium longum infantis UCC 35624 were isolated from the ileal-caecal region of an adult human as described in. Example 1.
  • spontaneous rifampicin and streptomycin resistant derivatives of the strains were generated by plating cells, previously grown overnight and subsequently washed in quarter strength Ringer's solution on MRS and TPY agar containing 50 ⁇ g/ml rifampicin (Sigma) respectively and MRS containing 400 ⁇ g/ml streptomycin (Sigma). Plates were incubated for 2 days at 37° C. anaerobically. The resulting antibiotic resistant derivatives were determined to be otherwise phenotypically similar to the parent strain. This selectable trait enabled the strains to be readily enumerated following gut transit.
  • Donor mice C57BL/6 ⁇ BALB/c F1 were purchased from Simosen Laboratories (Gilroy, Calif.) and maintained at the University of California—Los Angeles vivarium in ventilated cage racks (Thoren caging systems, Hazelton, Pa.) under specific pathogen free (SPF) conditions.
  • CB17 SCID mice were bred in ventilated cage racks originally obtained from the University of California—Los Angeles SCID core facility. The mice were reduced flora (RF) mice rather than germ free and acting as the recipient mice (Aranda R. et al. J. of Immunol. 1997; 158(7), 3464-3473).
  • mice Eight week old, female CB-17 (SCID) mice were housed in pairs in filter top cages in ventilated racks. The mice were divided into four groups Group A: consumed 10% skim milk, control; Group B: consumed Lactobacillus salivarius UCC 118, Group C: consumed Lactobacillus salivarius UCC 118 and Bifidobacterium longum UCC 35624 9 (1:1 ratio); Group D: consumed Bifidobacterium longum UCC 35624.
  • Group A consumed 10% skim milk, control
  • Group B consumed Lactobacillus salivarius UCC 118
  • Group C consumed Lactobacillus salivarius UCC 118 and Bifidobacterium longum UCC 35624 9 (1:1 ratio)
  • Group D consumed Bifidobacterium longum UCC 35624.
  • UCC 118 and UCC 35624 which were grown overnight in MRS broth and MRS broth supplemented with 0.05% cysteine (Sigma) respectively, were washed in PBS, resuspended in skim milk (10% (v/v)) and administered in the otherwise sterile drinking water (PBS).
  • the mice in each respective group received 2.55 ⁇ 10 8 cfu/ml of UCC 118 and 2.35 ⁇ 10 8 cfu/ml of UCC 35624 daily for the duration of the feeding period.
  • Control mice received sterile milk diluted in sterile phosphate buffered saline (PBS) and were maintained under identical conditions as the test group.
  • PBS sterile phosphate buffered saline
  • mice were administered their respective feed according to their grouping for 2 days prior to injection with the CD4 + CD45RB high cells.
  • the sorted donor lymphocytes (3-4 ⁇ 10 5 ) were represented in 200 ⁇ l of sterile PBS and injected i.p. into the recipient CB-17 SCID mice. All mice were weighed initially, then twice weekly thereafter. They were observed for clinical signs of illness: hunched over appearance, piloerection of the coat and diarrhoea.
  • the selective media used were; de Mann Rogosa & Sharpe (MRS) agar; MRS agar supplemented with 0.2% lithium chloride (BDH), 0.3% sodium propionate (Fluke chemie), 0.5% cysteine hydrochloride (Sigma), and 5% sheep's blood; Slanetz and Bartley agar; Wilkins and Chalgren agar supplemented with anaerobic supplement SR 108 and 5% horse blood; and Violet Red Bile Agar. (All Oxoid unless otherwise stated).
  • VRBA and Slanetz and Bartley plates were incubated aerobically for 24 and 45 h respectively. All other plates were incubated anaerobically for 48 h at 37° C.
  • mice were sacrificed and dissected. Segments of the ileal-caecal region, small intestine, and the large intestine were removed. A peripheral lymph node (PLN), mesenteric lymph node (MLN) and a piece of the spleen were also taken. All tissues were weighed before being resuspended in 10 ml of PBS. Samples were then homogenised and serially diluted in PBS and either spread plated or pour plated in appropriate dilutions on appropriate media in duplicate. The bacterial groups were enumerated the same as those enumerated in the faecal analysis and samples were incubated as described previously.
  • PPN peripheral lymph node
  • MN mesenteric lymph node
  • Tissue samples were taken from the small intestine, large intestine, and ileal caecal region and fixed in 10% formalin. The procedure was as described in Aranda, R. et al. ((1997) supra).
  • mice reconstituted with CD4 + CD45RB high T lymphocytes and consuming skim milk alone developed a progressive wasting disease, identified by their significant weight loss. Disease became apparent at about 2 and a half to three weeks and the sick mice characteristically manifested a hunched over appearance, piloerection of their coat, and loose stool.
  • mice in the control group died after 25 days and mice 1, 2, 3 and 5 showed a ⁇ 20%, 25%, 21% and ⁇ 35% percentage weight change respectively as depicted in FIGS. 3 and 4.
  • mice consuming UCC 118 alone gave a similar result as the controls with the characteristic weight loss.
  • Mouse 3 died after 14 days, and mice 4, 5 and 6 showed a ⁇ 15%, ⁇ 25% and ⁇ 28% percentage weight change respectively (data not shown).
  • the mice consuming a combination of UCC 118 and UCC 35624 were found to have a marked improvement on the control mice. These mice did not lose as much weight as the control mice over the feeding period. Even after 35 days three of the mice in this group showed little percentage weight change. (FIGS. 5 and 6). Two of the mice in this group showed a weight loss only after about 30 days whereas control mice showed weight loss at 14 days (FIGS. 3 and 4).
  • Table 8 is a summary of experimental data for the study on the treatment of CD45RB colitis induced CB17 and SCID mice with a cocktail of UCC 118 and UCC 35624.
  • mice were successfully reconstituted with lymphocytes and lymphocytes having been derived from the donor model (data not shown).
  • TABLE 8 Treatment of CD45RB colitis induced CB 17 SCID mice with a cocktail of Lactobacillus salivarius UCC 118 and Bifidobacteria.
  • TNF ⁇ and Interleukin-8 were measured in the presence and absence of Bifidobacterium longum infantis in the PBMC compartment
  • Co-culture of epithelial cells, PBMCs and Bifidobacterium longum infantis resulted in significant suppression of TNF ⁇ and IL-8 production (FIG. 10).
  • a tri-cellular network involving epithelial cells, PBMCs and Bifidobacterium longum infantis results in suppression of proinflammatory cytokine production.
  • Bifidobacterium longum infants (1 ⁇ 10 9 cells per day) was consumed by 18 healthy humans in a fermented milk (yoghurt) product for three weeks. Serum was collected for cytokine analysis pre and post consumption of this probiotic strain. Faecal samples were obtained for microbiological analysis.
  • Targeted in vitro selection criteria reflecting the complex interactions of the GI environment allow for the identification of probiotic strains capable of functioning effectively when reintroduced into that environment.
  • the probiotic bacteria Bifidobacterium longum infantis has demonstrable immunomodulating properties in vitro. Following consumption by SCID mice and human volunteers, significant modification of systemic immune parameters was noted. Thus, the use of Bifidobacterium longum infantis as a biotherapeutic agent in the treatment of immune mediated diseases is warranted.
  • Bifidobacterium longum infantis UCC35624 secretes a factor that antagonises TNF ⁇ activity. Production of this factor by Bifidobacterium longum infantis at the surface of the gastrointestinal tract, in vivo, would significantly restrict the host inflammatory response.
  • Inflammation is the term used to describe the local accumulation of fluid, plasma proteins and white blood cells at a site that has sustained physical damage, infection or where there is an ongoing immune response. Control of the inflammatory response is exerted on a number of levels (for review see Henderson B., and Wilson M. 1998. In “Bacteria-Cytokine interactions in health and disease. Portland Press, 79-130).
  • the controlling factors include cytokines, hormones (e.g. hydrocortisone), prostaglandins, reactive intermediates and leukotrienes. Cytokines are low molecular weight biologically active proteins that are involved in the generation and control of immunological and inflammatory responses, while also regulating development, tissue repair and haematopoiesis.
  • TNF ⁇ is a pivotal proinflammatory cytokine as it initiates a cascade of cytokines and biological effects resulting in the inflammatory state. Therefore, agents which inhibit TNF ⁇ are currently being used for the treatment of inflammatory diseases, e.g. infliximab.
  • Pro-inflammatory cytokines are thought to play a major role in the pathogenesis of many inflammatory diseases, including inflammatory bowel disease (IBD).
  • IBD inflammatory bowel disease
  • Current therapies for treating IBD are aimed at reducing the levels of these pro-inflammatory cytokines, including IL-8 and TNF ⁇ . It has been suggested that such therapies may also play a significant role in the treatment of systemic inflammatory diseases such as rheumatoid arthritis.
  • Humans fed with yoghurt containing Bifidobacterium longum infantis UCC35624 have shown marked decreases in their systemic levels of IL-8. his strain may therefore have potential application in the treatment of a range of inflammatory diseases, particularly if used in combination with current anti-inflammatory therapies, such as non-steroid anti-inflammatory drugs (NSAIDs) or Infliximab.
  • NSAIDs non-steroid anti-inflammatory drugs
  • the barrier function of the intestinal epithelium can be diminished during nervous (acetylcholine) and immune (histamine) mediated secretion.
  • Certain bacterial toxins may also induce Ca2+ and PKC dependent secretion and thereby can disturb the epithelial barrier (Ganguly N K and Kaur T. Indian J Med Res 1996;104:28-37, Groot J A. Vet Q 1998;20(S3):45-9).
  • Several studies have examined the prevention and treatment of diarrhoea using probiotic bacteria.
  • FIGS. 14 and 15 illustrate the lower intestine of treated and untreated SCID mice.
  • the lower intestine shown includes the caecum 2, intestine 3 and anus 5.
  • FIG. 14 the mice were treated with Bifidobacterium longum infantis UCC 35624 and it is apparent that solid stools 4 have been retained in the intestine.
  • FIG. 15 shows the untreated mouse intestine 3, characteristically inflamed. No water absorption has occurred so that no solid stools are retained resulting in diarrhoea.
  • the anti-diarrhoeal effect observed may be related to the anti-inflammatory activity, possibly mediated via cAMP modulation.
  • Cyclic AMP-dependent Cl-secretion is the major secretory pathway in the human intestine (Brzuszczak I M, et al., J. Gastroenterol. Hepatol. 1996;11(9):804-10). It can be inferred that the anti-diarrhoeal effect of Bifidobacterium longum infantis UCC 35624 is not restricted just to diarrhoea resulting from gastrointestinal inflammation, but can be applied to the general treatment of diarrhoeal disease.
  • the immune system has a large repertoire of specificities expressed by B and T cells. Some of these specificities will be directed to self-components. Self recognition is normally controlled by clonal deletion and inactivation of self-reactive lymphocytes. However, there is a constant background of autoimmunity with antibodies to many proteins being found in serum. A breakdown in the self-nonself recognition system results in autoimmunity. When autoimmune disease does occur, the resulting immune response damages the tissue bearing the offending antigen. Immune complex deposition, type II hypersensitivity and cell-mediated reactions are the most important mechanisms by which immunopathological damage occurs.
  • autoimmune diseases include, but are not limited to, systemic lupus erythematosus, rheumatoid arthritis, insulin dependent diabetes mellitus, myasthenia gravis and pernicious anaemia.
  • Bifidobacterium longum infantis and Lactobacillus salivarius subsp. salivarius are immunomodulatory bacteria. Thus, consumption either as single components or in combination of these bacteria by patients suffering from autoimmune disease may restrict organ damage and help restore normal body homeostasis.
  • intestinal bacteria can produce, from dietary compounds, substances with genotoxic, carcinogenic and tumour-promoting activity and gut bacteria can activate pro-carcinogens to DNA reactive agents (Rowland I. R. (1995). Toxicology of the colon: role of the intestinal microflora. In: Gibson G. R. (ed). Human colonic bacteria: role in nutrition, physiology and pathology, pp 155-174. Boca Raton CRC Press).
  • species of Bifidobacteria and Lactobacillus have low activities of xenobiotic metabolising enzymes compared to other populations within the gut such as bacteroides, eubacteria and clostridia (Saito Y., et al., Microb. Ecol. Health Dis., 1992;5, 105-110). Therefore, increasing the number of lactic acid bacteria in the gut could beneficially modify the levels of these enzymes.
  • probiotic organisms are accomplished by the ingestion of the microorganism in a suitable carrier. It would be advantageous to provide a medium that would promote the growth of these probiotic strains in the large bowel.
  • the addition of one or more oligosaccharides, polysaccharides, or other prebiotics enhances the growth of lactic acid bacteria in the gastrointestinal tract (Gibson, G R. Br. J. Nutr. 1998;80 (4):S209-12).
  • Prebiotics refers to any non-viable food component that is specifically fermented in the colon by indigenous bacteria thought to be of positive value, e.g. bifidobacteria, lactobacilli.
  • Types of prebiotics may include those which contain fructose, xylose, soya, galactose, glucose and mannose.
  • the combined administration of a probiotic strain with one or more prebiotic compounds may enhance the growth of the administered probiotic in vivo resulting in a more pronounced health benefit, and is termed synbiotic.
  • the Bifidobacterium may be administered prophylactically or as a method of treatment either on its own or with other probiotic and/or prebiotic materials as described above.
  • the bacteria may be used as part of a prophylactic or treatment regime using other active materials such as those used for treating inflammation or other disorders, especially those of the gastrointestinal tract.
  • Such combinations may be administered in a single formulation or as separate formulations administered at the same or different times and using the same or different routes of administration.

Abstract

A strain of Bifidobacterium isolated from resected and washed human gastrointestinal tract is significantly immunomodulatory following oral consumption in humans. The strain is useful in the prophylaxis and/or treatment of undesirable inflammatroy activity, especially gastrointestinal inflammatory activity such as inflammatory bowel disease or irritable bowel syndrome. The inflammatory activity may also be due to cancer.

Description

  • This invention relates to probiotic Bifidobacterium strains which have various applications in foodstuffs and in medicine. More particularly, the invention relates to probiotic strains of bifidobacteria which are capable of beneficially modifying and consequently alleviating observable symptoms in inflammatory disease. [0001]
  • Consumers are becoming increasingly aware of matters which may be necessary for maintenance of their environment, health and nutrition. In response, scientific research has focussed upon the roles that diet, stress, and modern medical practices (e.g. antibiotics and radiotherapy) may play in threatening human health. In particular, population dynamics shifting towards older societies are increasing the incidence of illnesses which may be caused by deficient or compromised microflora such as gastrointestinal tract (GIT) infections, constipation, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD)—Crohn's disease and ulcerative colitis, food allergies, antibiotic-induced diarrhoea, cardiovascular disease, and certain cancers (e.g. colorectal cancer). [0002]
  • Probiotics have been defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance, or more broadly, as living micro-organisms, which upon ingestion in certain numbers, exert health effects beyond inherent basic nutrition. Cocktails of various micro-organisms, particularly species of Lactobacillus and Streptococcus, have traditionally been used in fermented dairy products to promote health. [0003]
  • In recent years the commercial manufacture and marketing of functional foods (foods which affect functions of the body in a targeted manner so as to bring about positive affects on physiology and nutrition), particularly probiotic (Acidophilus-Bifidus) yoghurts, has spread from the well-established Japanese niche market place into the lucrative and expanding European Union. While a number of probiotic bacteria of human origin are now being exploited commercially (e.g., [0004] L. acidophilus LA-1), many consumers, consumer organisations, and members of the scientific community are sceptical of such products and their publicised probiotic claims. The diary-food industry is therefore under considerable pressure to scientifically validate these new probiotic food products.
  • Criteria which have been suggested for the selection of potentially effective probiotic microorganisms may be summarised as follows: human origin, non-pathogenic behaviour, resistance to technological processes (i.e., viability and activity in delivery vehicles), resistance to gastric acidity and bile toxicity, adhesion to gut epithelial tissue, ability to colonise the GIT, production of antimicrobial substances, ability to modulate immune responses, and the ability to influence metabolic activities (e.g., cholesterol assimilation, lactase activity, vitamin production) (Huis in't Veld J, Shortt C. Selection criteria for probiotic micro-organisms. In: Leeds; A. R., Rowland, I. R. eds. Gut Fora and Health—Past, Present and Future. London: The Royal Society of Medicine Press Ltd., 1996:19-26). [0005]
  • Bifidobacteria are one of several predominant culturable bacteria present in the colonic microflora. [0006]
  • The functions of endogenous bifidobacteria in the colon have not been completely elucidated. However, it is recognised that exclusively breast-fed infants have a reduced risk of diarrhoea compared with formula-fed infants. The fact that these infants have greater numbers of colonic bifidobacteria may in part explain this observed health advantage as the occupation of available niches in the GIT by large numbers of nonpathogenic bifidobacteria may help prevent bacterial infection. The pathogenesis of Crohn's disease is thought to be related to colonic bacterial microflora (Targan, S. and Shanahan, F. Inflammatory bowel disease: From bench to bedside. Williams and Wilkins 1994.) It has recently been found that patients suffering from active Crohn's disease have significantly less recoverable bifidobacteria in their faeces compared with healthy individuals. This reduction in bifidobacteria numbers was observed to be directly correlated with decreased levels of β-D galactosidase production and activity (Favier, C. et al, Dig. Dis. Sci. 1997;42:817-822). β-D galactosidase is an enzyme produced by bifidobacteria. These results support suggestions proposed in other studies that strains of bifidobacteria may play important roles in maintaining a balanced healthy intestinal microflora. [0007]
  • Bifidobacteria are considered to be probiotics as they are living organisms which exert healthy effects beyond basic nutrition when ingested in sufficient numbers. Numerous ingested bifidobacteria must reach the site of action in the gut in order to exert a probiotic effect. A minimum level of approximately 10[0008] 6-107 viable bifidobacteria per gram intestinal contents has been suggested (Bouhnik, Y., Lait 1993: 73:241-247). There are reports in the literature which show that in vivo studies completed in adults and in infants indicate that some strains of bifidobacteria are capable of surviving passage through the gastrointestinal tract. Significant differences have been observed between the abilities of different bifidobacteria strains to tolerate acid and bile salts, indicating that survival is an important criterion for the selection of potential probiotic strains.
  • Ingestion of bifidobacteria can improve gastrointestinal transit. [0009]
  • Furthermore, indirect evidence in humans demonstrates that consuming milk fermented by bifidobacteria can lead to reduced levels of certain faecal enzymes such as β-D galactosidase implicated in the conversion of procarcinogens to carcinogens (Bouhnik Y. et al; Eur. J. Clin. Nutr. 1996;50:269-273). Faecal-borne putrefaction metabolities such as p-cresol, indole and ammonia were also reduced when subjects consumed milk fermented by [0010] Bifidobacterium longum and S. thermophilus (Takiguchi, R. et al. Bifidus—Flores, Fructus et Semina 1996;9:135-140).
  • Antimicrobial activity has been reported to be associated with bifidobacteria. Also, bifidobacteria have been shown to modulate various parameters of the immune system. [0011]
  • Mucosal inflammation in IL-10 deficient mice has been reported to be reduced by feeding the subject animals a preparation of lactic acid bacteria (Madsen, K. et al. Gastroenterol. 1997;112:A1030.). Further studies completed in rats have demonstrated that ingestion of bifidobacteria can suppress aberrant crypt foci (early preneoplastic lesions) formation in the colon (Kulkarni, N. and Reddy, B. Proc. Soc. Experim. Biol. Med. 1994; 207;278-283.) in addition to significant decreases in colon tumor incidence and in the numbers of tumors present (Singh, J. et al Carcinogenesis 1997;18:833-841). [0012]
  • There is an on-going search for probiotic strains with particular beneficial effects on nutrition and therapy and on health generally. [0013]
  • STATEMENTS OF INVENTION
  • The invention provides a strain of Bifidobacterium isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans. [0014]
  • The strain of Bifidobacterium preferably effects changes in an immunological marker when introduced into a system comprising cells which interact with the immune system and cells of the immune system. Preferably the cells which interact with the immune system are epithelial cells. Preferably the immunological marker is a cytokine, especially TNFα. [0015]
  • In a preferred embodiment the cells which interact with the immune system and the immune system cells are of matched origin. [0016]
  • The cells which interact with the immune system are of gastrointestinal, respiratory or genitourinary origin. [0017]
  • The cells of the immune system are preferably of gastrointestinal, respiratory or genitourinary origin. [0018]
  • The invention also provides a strain of [0019] Bifidobacterium longum infantis isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans.
  • The strain of Bifidobacterium which has significant anti-inflammatory effect following oral consumption in humans. [0020]
  • The strain of Bifidobacterium is preferably isolated from resected and washed human gastrointestinal tract which is capable of combating the effects of inflammatory bowel disease, said capability being maintained in the presence of physiological concentrations of human bile and human gastric juice. The capability of combating the effects of inflammatory bowel disease is measured by measuring a reversal of a wasting disease induced in severe combined immunodeficient recipient mice (SCID) which have been administered purified CD4[0021] +, CD45Rhigh T cells.
  • The capability of the strain of [0022] Bifidobacterium longum infantis to combat the effects of inflammatory bowel disease can also be measured by measuring the reduction in colonic inflammation in IL-10 deficient mice (IL-10+129 Svex strain) following administration of one or more of the strains of Bifidobacterium longum infantis according to the invention alone or in combination with a strain of Lactobacillus salivarius as hereinafter defined.
  • Interleukin 10 (IL-10) is an important regulatory cytokine that supresses effector functions of macrophage/monocytes, T helper 1 (Th1) cells, and natural killer cells. In addition, IL-10 augments proliferation and differentiation of B cells. Murine models lacking the IL-10 gene spontaneously develop inflammatory bowel disease and gastrointestinal tumors. The gastrointestinal flora have been implicated in the pathogenesis of these disease states as germ free animals do not develop disease. [0023]
  • The strain of Bifidobacterium preferably has inhibitory activity against a broad range of Gram positive and Gram negative bacteria. [0024]
  • Preferably the strain of Bifidobacterium exhibits a broad-spectrum of activity against bacteria including Staphylococcus, Pseudomonas, Coliform and Bacillus species. [0025]
  • In a particular aspect the invention provides strain of [0026] Bifidobacterium longum infantis UCC35624 or mutant or variant thereof.
  • A deposit of [0027] Bifidobacterium longum infantis strain UCC 35624 was made at the National Collections of Industrial and Marine Bacteria Limited (NCIMB) on Jan. 13, 1999 and accorded the accession number NCIMB 41003.
  • In one embodiment the mutant is a genetically modified mutant. [0028]
  • In one embodiment the variant is a naturally occurring variant of [0029] Bifidobacterium longum infantis UCC35624.
  • The strain of Bifidobacterium may be in the form of viable cells. Alternatively the strain of Bifidobacterium is in the form of non-viable cells. [0030]
  • The invention also provides an antimicrobial agent obtained from a strain of Bifidobacterium of the invention which is antagonistic to the growth of other organisms. [0031]
  • In a further aspect the invention provides a formulation which comprises a strain of Bifidobacterium of the invention. [0032]
  • The formulation may comprise two or more strains of Bifidobacterium. [0033]
  • The formulation may include another probiotic material. Alternatively or additionally the formulation includes a prebiotic material. [0034]
  • The formulation may which include a strain of [0035] Lactobacillus salivarius.
  • The strain of [0036] Lactobacillus salivarius may be in the form of viable cells or in the form of non-viable cells.
  • The [0037] Lactobacillus salivarius is preferably isolated from resected and washed human gastrointestinal tract, the Lactobacillus salivarius being significantly immunomodulatory following oral consumption in humans. Preferably the strain of Lactobacillus salivarius is isolated from resected and washed human gastrointestinal tract which inhibits a broad range of Gram positive and Gram negative micro-organisms.
  • In a preferred embodiment the strain of [0038] Lactobacillus salivarius secretes a product having antimicrobial activity into a cell—free supernatant, said activity being produced only by growing cells and being destroyed by proteinase K and pronase E, the inhibitory properties of said strain and its secretory products being maintained in the presence of physiological concentration of human bile and human gastric juice.
  • Such strains of [0039] Lactobacillus salivarius are disclosed in WO 98/35014.
  • Ideally the strain of [0040] Lactobacillus salivarius is Lactobacillus salivarius strain UCC 118 or a mutant or variant thereof. The mutant is a genetically modified mutant. The variant may be a naturally occurring variant of Lactobacillus salivarius.
  • A deposit of [0041] Lactobacillus salivarius strain UCC 118 was made at the NCIMB on Nov. 27, 1996 and accorded the accession number NCIMB 40829.
  • Preferably the formulation includes an ingestable carrier. The ingestable carrier may be a pharmaceutically acceptable carrier such as a capsule, tablet or powder. [0042]
  • The ingestable carrier may be a food product such as acidified milk, yoghurt, frozen yoghurt, milk powder, milk concentrate, cheese spreads, dressings or beverages. [0043]
  • The formulation may comprise a protein and/or peptide, in particular proteins and/or peptides that are rich in glutamine/glutamate, a lipid, a carbohydrate, a vitamin, mineral and/or trace element. [0044]
  • In one embodiment the Bifidobacterium is present at more than 10[0045] 6 cfu per gram of delivery system.
  • In another embodiment the formulation includes an adjuvant. [0046]
  • The formulation may include a bacterial component. The formulation may alternatively or additionally include a drug entity. The formulation may also include a biological compound. [0047]
  • The formulation may be in a form for oral immunization. [0048]
  • The invention further provides a strain of Bifidobacterium or a formulation thereof for use in foodstuffs. [0049]
  • In another aspect the invention provides a strain of Bifidobacterium or a formulation thereof for use as a medicament. [0050]
  • The strain or formulation may be for use in the prophylaxis and/or treatment of undesirable inflammatory activity. [0051]
  • The strain or formulation may be for use in the prophylaxis and/or treatment of undesirable gastrointestinal inflammatory activity such as inflammatory bowel disease eg. Crohns disease or ulcerative colitis, irritable bowel syndrome, pouchitis or post infection colitis. [0052]
  • The undesirable inflammatory activity may be due to cancer. [0053]
  • In addition the strain or formulation may be for use in the prophylaxis and/or treatment of gastrointestinal cancer(s). [0054]
  • The strain or formulation may be used for the prophylaxis of cancer. Further, the strain or formulation may be for use in the prophylaxis and/or treatment of systemic disease such as rheumatoid arthritis. [0055]
  • The strain or formulation may be for use in the prophylaxis and/or treatment of autoimmune disorders due to undesirable inflammatory activity. [0056]
  • The strain or formulation may be for use in the prophylaxis and/or treatment of cancer due to undesirable inflammatory activity. [0057]
  • The strain or formulation may be for use in the prophylaxis and/or treatment of diarrhoeal disease due undesirable inflammatory activity, such as [0058] Clostridium difficile associated diarrhoea, Rotavirus associated diarrhoea or post infective diarrhoea.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings: [0059]
  • FIG. 1 is a graph of cfu/ml versus time for [0060] Bifidobacterium longum infantis strain 35612 as described in Example 2;
  • FIG. 2 is a graph of cfu/ml versus time for [0061] Bifidobacterium longum infantis strain 35624 as described in Example 2;
  • FIG. 3 is a graph of percentage weight change versus time (days) for five SCID mice (1-5) administered strain UCC 35624 as described in Example 5; [0062]
  • FIG. 4 is a graph of average percentage weight change versus time (days) for the SCID mice (1-5) administered strain UCC 35624 as described in Example 5; [0063]
  • FIG. 5 is a graph of percentage weight change versus time (days) for mice (6-10) administered a combination of strains [0064] Lactobacillus salivarius UCC 118 and UCC 35624 as described in Example 5;
  • FIG. 6 is a graph of average percentage weight change versus time (days) for mice (6-10) administered a combination of strains UCC 118 and UCC 35624 as described in Example 5; [0065]
  • FIG. 7 is a graph of percentage weight change versus time (days) for mice (11-15) administered a combination of strains UCC 118 and UCC 35624 as described in Example 5; [0066]
  • FIG. 8 is a graph of average percentage weight change versus time (days) for mice (11-15) administered a combination of strains UCC 118 and UCC 35624 as described in Example 5; [0067]
  • FIG. 9 is a bar chart of TNFα levels in patient and control samples in the presence of PBMCs and [0068] Bifidobacteria longum infantis as described in Example 7;
  • FIG. 10 is a bar chart showing TNFα and IL-8 levels in co-cultures of epithelial cells, PBMCs and [0069] Bifidobacterium longum infantis as described in Example 7. Controls represent co-cultures of epithelial cells and PBMCs alone;
  • FIG. 11 are bar charts of peripheral blood cytokine levels following consumption of [0070] Bifidobacterium longum infantis by healthy human volunteers (n=18) for three weeks as described in Example 8;
  • FIG. 12 are bar charts of serum levels of TNFα and IL-1RA following consumption of [0071] Bifidobacterium longum infantis to healthy human volunteers (n=18) as described in Example 8;
  • FIG. 13 is a bar chart of TNFα levels in cell-free spent culture supernatant of [0072] Bifidobacterium longum infantis and an MRS control as described in Example 9;
  • FIG. 14 is a diagrammatic representation of a SCID mouse lower intestine after treatment with [0073] Bifidobacterium longum infantis; and
  • FIG. 15 is a diagrammatic representation of the lower intestine of an untreated SCID mouse.[0074]
  • DETAILED DESCRIPTION
  • We have isolated strains of probiotic bacteria which are capable of beneficially modifying and consequently alleviating observable symptoms in inflammatory disorders. These strains and the formulations prepared may be used in a variety of foodstuffs and medicaments to combat the effect of inflammatory disorders. [0075]
  • In vivo and in vitro studies were carried out using the probiotic bacteria strains. It was found that humans fed with yoghurt containing [0076] Bifidobacterium longum infantis UCC35624 show marked decreases in their systemic levels of IL-8. This strain may therefore have potential application in the treatment of a range of inflammatory disorders, particularly if used in combination with current anti-inflammatory therapies, such as non-steroid anti-inflammatory drugs (NSAIDs) or Infliximab.
  • The consumption of [0077] Bifidobacterium longum infantis by SCID mice was also examined. While this experiment significantly attenuated inflammatory activity, mice consuming Bifidobacterium longum infantis retained solid stools while control mice suffered from diarrhoea. This anti-diarrhoeal effect could be related to the anti-inflammatory activity of this invention, possibly mediated via cAMP modulation.
  • It is unknown whether intact bacteria are required to exert an anti-inflammatory effect or if individual active components of the invention can be utilised alone. Proinflammatory components of certain bacterial strains have been identified. The proinflammatory effects of gram-negative bacteria are mediated by lipopolysaccharide (LPS). LPS alone induces a proinflammatory network, partially due to LPS binding to the CD14 receptor on monocytes. It is assumed that components of probiotic bacteria possess anti-inflammatory activity, due to the effects of the whole cell. Upon isolation of these components, pharmaceutical grade manipulation is anticipated. [0078]
  • The general use of [0079] Bifidobacterium longum infantis UCC35624 is in the form of viable cells. However, it can also be extended to non-viable cells such as killed cultures or compositions containing beneficial factors expressed by Bifidobacterium longum infantis UCC35624. This could include thermally killed micro-organisms or micro-organisms killed by exposure to altered pH or subjection to pressure. With non-viable cells product preparation is simpler, cells may be incorporated easily into pharmaceuticals and storage requirements are much less limited than viable cells. Lactobacillus casei YIT 9018 offers an example of the effective use of heat killed cells as a method for the treatment and/or prevention of tumour growth as described in U.S. Pat. No. 4,347,240.
  • The invention will be more clearly understood from the following Examples. [0080]
  • EXAMPLE 1
  • Isolation of Probiotic Bacteria [0081]
  • Appendices and sections of the large and small intestine of the human G.I.T., obtained during reconstructive surgery, were screened for probiotic bacterial strains as shown in Table 1. [0082]
    TABLE 1
    Gastrointestinal tract tissue samples screened for the presence
    of probiotic bacteria
    Sample Location
    A Ileum
    B Colon
    C Ileal-caecal region
    D Appendix
    E Appendix
    F Ileum
    G Ileal-caecal region
  • All samples were stored immediately after surgery at −80° C. in sterile containers. Frozen tissues were thawed, weighed and placed in cysteinated (0.05%) one quarter strength Ringers' solution. Each sample was gently shaken to remove loosely adhering microorganisms (termed—wash ‘W’). Following transfer to a second volume of Ringers' solution, the sample was vortexed for 7 min to remove tightly adhering bacteria (termed—Sample ‘S’). In order to isolate tissue embedded bacteria, samples A, B and C were also homogenised in a Braun blender (termed—homogenate ‘H’). The solutions were serially diluted ([0083] dilution 10−1 from a wash sample was labelled W1, dilution 10.2 was labelled W2 and the same labelling system was used for the ‘S’ and ‘H’ samples) and spread-plated (100 μl) on to the following agar media: RCM (reinforced clostridial media) and RCM adjusted to pH 5.5 using acetic acid; TPY (trypticase, peptone and yeast extract), Chevalier, P. et al. (1990) J. Appl. Bacteriol 68, 619-624). MRS (deMann, Rogosa and Sharpe); ROG (acetate medium (SL) of Rogosa); LLA (Liver-lactose agar of Lapiere); BHI (brain heart infusion agar); LBS(Lactobacillus selective agar) and TSAYE (tryptone soya agar supplemented with 0.6% yeast extract). All agar media was supplied by Oxoid Chemicals with the exception of TPY agar. Plates were incubated in anaerobic jars (BBL, Oxoid) using CO2 generating kits (Anaerocult A, Merck) for 2-5 days at 37° C.
  • Gram positive, catalase negative rod-shaped or bifurcated/pleomorphic bacteria isolates were streaked for purity on to complex non-selective media (TPY). Isolates were routinely cultivated in TPY medium unless otherwise stated at 37° C. under anaerobic conditions. Presumptive [0084] Bifidobacteria species were stocked in 40% glycerol and stored at −20° and −80° C.
  • Fermentation End-Product Analysis [0085]
  • Metabolism of the carbohydrate glucose and the subsequent organic acid end-products were examined using an LKB Bromma, Aminex HPX-87H High Performance Liquid Chromatography (HPLC) column. The column was maintained at 60° C. with a flow rate of 0.6 ml/min (constant pressure). The HPLC buffer used was 0.01 N H[0086] 2SO4. Prior to analysis, the column was calibrated using 10 mM citrate, 10 mM glucose, 20 mM lactate and 10 mM acetate as standards. Cultures were propagated in modified MRS broth for 1-2 days at 37° C. anaerobically. Following centrifugation for 10 min at 14,000 g, the supernatant was diluted 1:5 with HPLC buffer and 200 μl was analysed in the HPLC. All supernatants were analysed in duplicate.
  • Biochemical and Physiological Characterisation [0087]
  • Biochemical and physiological traits of the bacterial isolates were determined to aid identification. Nitrate reduction, indole formation and expression of β-galactosidase activity were assayed. Growth at both 15° C. and 45° C. and protease activity on gelatin were determined. Growth characteristics of the strains in litmus milk were also assessed. [0088]
  • Antibiotic Sensitivity Profiles [0089]
  • Antibiotic sensitivity profiles of the isolates were determined using the ‘disc susceptibility’ assay. Cultures were grown up in the appropriate broth medium for 24-48 h, spread-plated (100 μl) onto agar media and discs containing known concentrations of the antibiotics were placed onto the agar. Strains were examined for antibiotic sensitivity after 1-2 days incubation at 37° C. under anaerobic conditions. Strains were considered sensitive if zones of inhibition of 1 mm or greater were seen. [0090]
  • Isolation of Bifidobacteria sp. [0091]
  • Seven tissue sections taken from the human G.I.T. were screened for the presence of strains belonging to the Bifidobacterium genus. There was some variation between tissue samples as follows. Samples A (ileum) and E (appendix) had the lowest counts with approximately 10[0092] 2 cells isolated per gram of tissue. In comparison, greater than 103 cfu/g tissue were recovered from the other samples. Similar numbers of bacteria were isolated during the ‘wash’ and ‘sample’ steps with slightly higher counts in the ‘sample’ solutions of F (ileum) and G (ileal-caecal). Of those screened for tightly-adhering bacteria (homogenised), C (ileal-caecal) was the only tissue section that gave significant counts.
  • During the screening of some tissue sections, for example C and B, there was not a direct correlation between counts obtained during a dilution series. This would indicate that some growth factors, either blood or tissue derived were being provided for the growth of the fastidious bacteria in the initial suspension which was subsequently diluted out. [0093]
  • Strain Selection and Characterization [0094]
  • Approximately fifteen hundred catalase negative bacterial isolates from different samples were chosen and characterised in terms of their Gram reaction, cell size and morphology, growth at 15° C. and 45° C. and fermentation end-products from glucose. Greater than sixty percent of the isolates tested were Gram positive, homofermentative cocci arranged either in tetrads, chains or bunches. Eighteen percent of the isolates were Gram negative rods and heterofermentative [0095] coccobacilli.
  • The remaining isolates (twenty-two percent) were predominantly homofermentative [0096] coccobacilli. Thirty eight strains were characterised in more detail-13 isolates from G; 4 from F; 8 from D; 9 from C; 3 from B and 1 from E. All thirty eight isolates tested negative both for nitrate reduction and production of indole from tryptophan.
  • Antibiotic Sensitivity Profiles [0097]
  • Antibiotics of human clinical importance were used to ascertain the sensitivity profiles of selected bifidobacteria. The bifidobacteria tested were sensitive to ampicillin, amoxycillin ceftaxime, ceftriaxone, ciprofloxacin, cephradine, rifampicin, amikacin, gentamicin and chloramphenicol. They were also resistant to netilmicin, trimethoprim, nalidixic acid, cefuroxime, vancomycin and tetracycline. [0098]
  • EXAMPLE 2
  • Acid Resistance [0099]
  • The first line of host defence that a micro-organism reaches following human consumption is gastric acid in the stomach. A key factor influencing bacteria is survival in gastric juice. The survival and growth of [0100] Bifidobacterium longum infantis strains 35612 and 35624 in a low pH environment were examined. The strains were routinely cultured in trypticase-peptone-yeast extract (TPY) medium at 37° C. under strict anaerobic conditions (BBL Gas jars using the Merck Anaerocult A gas pak system) for 12-24 h. Human gastric juice was obtained from healthy subjects by aspiration through a nasogastric tube (Mercy Hospital, Cork, Ireland). It was immediately centrigued at 13,000 g for 30 min. to remove all solid particles, sterilised through 0.45 μm filters and 0.2 μm filters and stored at 4° C. The pH and pepsin activity were measured prior to experimental use. Pepsin activity was measured using the quantitative haemoglobin assay (Guantam, S. and R. S. de la Motte. 1989. Proteolytic enzymes, a practical approach. Chapter 3. R. J. Beynon and J. S. Bond(eds.), IRL Press, Oxford University Press; Dawson, R. M. 1969. pH and buffers. In Data for Biochemical Research p 138. R. M. Dawson, D. C. Elliot and K. M. Jones(eds.), Clarendon Press, Oxford). Survival of the strains at low pH in vitro was investigated using the following assays:
  • (a) Cells were harvested from fresh overnight cultures, washed twice in phosphate buffer (pH 6.5) and resuspended in MRS broth adjusted to pH 3.5, 3.0, 2.5 and 2.0 (with 1N HCl) to a final concentration of approximately 10[0101] 6 cfu/ml. Cells were incubated at 37° C. and survival measured at intervals of 5, 30, 60 and 120 min. using the plate count method.
  • The strains survived with no loss of viability at pH 3.5. At pH 2.5 there was a 3 log reduction over the 60 min. incubation period as depicted in FIGS. 1 and 2. [0102]
  • Survival of Strains of Bifidobacterium in Human Gastric Juice [0103]
  • Fresh overnight cultures were harvested, washed twice in buffer (pH 6.5) and resuspended in human gastric juice to a final concentration of 10[0104] 6 cfu/ml. Survival was monitored over a 30-60 min incubation period at 37° C. The experiment was performed using gastric juice at pH 1.2 (unadjusted) and pH 2.0 and 2.5 (adjusted using 1N NaOH).
  • Survival of the strains was increased in gastric juice at pH 2.0, when compared with gastric juice at pH 1.2. After 30 min incubation no viable cells were recovered at either pH as shown in Table 2. [0105]
    TABLE 2
    Survival of Bifidobacterium sp. in human gastric juice*
    TIME (min)
    STRAIN pH 0 5 30 60
    35612 1.2 7.56 0.00 0.00 0.00
    2.0 6.27 6.31 2.88 0.00
    35624 1.2 5.96 4.18 0.00 0.00
    2.0 6.33 6.32 0.00 0.00
    35652 1.2 6.16 3.78 0.00 0.00
    2.0 8.45 8.40 3.45 0.00
    35648 1.2 6.00 0.00 0.00 0.00
    2.0 7.89 6.45 0.00 0.00
    35687 1.2 6.68 0.00 0.00 0.00
    2.0 8.75 8.77 3.34 0.00
    BO 2.0 8.41 8.56 8.42 8.43
    10 2.0 8.39 8.56 4.64 0.00
    6.3 2.0 8.75 8.75 8.29 8.42
    B. 6 2.0 8.15 8.02 0.00 0.00
    longum
  • EXAMPLE 3
  • Bile Resistance [0106]
  • In the evaluation of the effectiveness of using lactic acid bacteria as beneficial members of the gastrointestinal tract, it is considered that resistance to bile acids is an important biological strain characteristic required for survival in this hostile environment and in addition they must not impinge on the health of the host by producing toxic compounds such as deoxycholic (DCA) and lithocholic acid (LCA) which have been implicated in a number of cytotoxic phenomena. [0107]
  • A number of [0108] Bifidobacterium longum infantis strains were streaked onto TPY agar plates supplemented with porcine bile (B-8631, Sigma Chemical Co. ltd., Poole) at concentrations of 0.3, 0.5, 1.0, 1.5, 5.0 and 7.5% (w/v) (Legrand-Defretin, R. et al., Lipids 1991; 26 (8), 578-583). Porcine bile is the closest in composition to human bile with respect to bile salt/cholesterol and phospholipid/cholesterol ratios. Plates were incubated at 37° C. under anaerobic conditions and growth was recorded after 24-48 h. Strain 35624 was found to be strongly bile resistant and grew to confluence at up to 55 porcine bile as shown in Table 3.
    TABLE 3
    Growth of Bifidobacterium sp. isolates in the presence of porcine bile
    % (w/v) PORCINE BILE
    STRAIN 0.0 0.3 0.5 1.0 1.5 5.0 7.5
    34612 +
    35624 + + + + + +
    35652 +
    35658 + + + +
    35687 +
  • Human bile was obtained from several human gall bladders and sterilised at 80° C. for 10 min. The bile acid composition of human bile was determined using reverse phase High Performance Liquid Chromatography (HPLC) in combination with a pulsed amperometric detector according to the method of Dekker, R. R. et al., [0109] Chromatographia, 1991, 31 (11/12), 255-256. Human bile was added at a concentration of 0.3% (v/v). Freshly streaked cultures were examined for growth after 24 and 48 h.
  • Strain 35624 was capable of growth in the presence of physiologically relevant human bile (0.3% (v/v)). [0110]
  • Growth of the strains was examined in the presence of individual conjugated and deconjugated bile acids. Under physiological conditions bile acids are often found as sodium salts. The strains were screened for growth on TPY agar containing the conjugated and deconjugated sodium salts of each of the following bile acids. [0111]
  • (a) conjugated form: glycocholic acid (GCA); glycodeoxycholic acid (GDCA); and glycochenodeoxycholic acid (GCDCA); [0112]
  • (b) deconjugated form: lithocholic acid (LCA); chenodeoxycholic acid (CDCA); deoxycholic acid (DCA) and cholic acid (CA). For each bile acid concentrations of 1, 3 and 4 mM were used. Growth was recorded after 24 and 48 h anaerobic incubation. [0113]
  • The five strains studied grew on agar medium supplemented with 5 mM GCA and GCDCA and on agar medium supplemented with 1 mM GDCA as shown in Table 4. Strain 35624 was resistant to concentrations of 5 mM LCA (data not shown) and strains 35612 and 35624 were capable of growth at concentrations of 5 mM CA as shown in Table 5. No growth was observed in the presence of 1 mM CDCA (data not shown). [0114]
    TABLE 4
    Growth of Bifidobacterium sp. isolates in the presence of glycine-
    conjugated bile acids
    BILE ACIDS (mM)
    GCDCA GDCA GCA
    STRAIN
    0 1 3 5 0 1 3 5 0 1 3 5
    35612 + + + + + + + + + + + +
    35624 + + + + + + + + + + + +
    35652 + + + + + + + + + + + +
    35658 + + + + + + + + + + + +
    35687 + + + + + + + + + + + +
  • [0115]
    TABLE 5
    Growth of Bifidobacterium sp. isolates in the presence of
    unconjugated cholic acid (CA)
    CHOLIC ACID (mM)
    STRAIN 0 1 3 5
    35612 + + + +
    35624 + + + +
    35652 + +
    35658 + +
    35687 + +
  • EXAMPLE 4
  • Antimicrobial Activity [0116]
  • Bifidobacterium species exert inhibitory effects on other bacteria by excluding long term colonisation by invasive pathogens. Their antagonistic activity is due to the production of acetic and lactic acid though fermentation (Scardovi, V. (1986) Bifidobacterium in Bergey's Manual of systemic bacteriology, Vol. 2. Eds. Sheath, P. H., Main, N. S., Sharpe, M. and Holdt, J. G., Williams and Wilkins Publishers, Baltimore Md., p1418). Very few reports exist on the production of antimicrobial compounds other than acids (Anand, S. K. et al. Cult. Prods. 1985;J. 2, 21-23). Bacteriocins and other compounds may influence the survival of a bacterium in an ecological niche and allow them to effectively dominate fermenting ecosystems. Such a feature is a good trait for a probiotic strain. [0117]
  • The inhibitory spectra of various bifidobacterial strains was determined by the method of Tagg et al. (Tagg. J. R. et al. Bacteriol. Rev. 1976; 40, 722-756). Cell free supernatant was assayed for inhibitory activity against a wide range of Gram positive and Gram negative micro-organisms. Overlays of each indicator were prepared on agar plates and allowed to dry. Spots (5 ml) of cell free supernatant were placed on the seeded plates, allowed to dry and the plates were incubated overnight. [0118]
  • It was observed that the strains were inhibitory to a wide range of Staphylococcus, Pseudomonas, Coliform and Bacillus sp. when testes on TPY medium. Zones of inhibition of up to 4.4 mm were recorded against Pseudomonas and Staphylococcus and up to 7.0 mm surrounding Bacillus sp. as shown in Tables 6 and 7. However, when the deferred assays were performed on buffered TPY medium zones of inhibition were not observed against any indicator strain. Therefore, inhibition appeared to be solely due to the presence of acid produced by the bifidobacteria. [0119]
    TABLE 6
    Inhibition of Staphylococcus strains by Bifidobacterium sp. on
    unbuffered medium*
    B. longum 1 B. longum 9 B. longum 10 63 35612 35624 35652 35658 35675 35678 35687
    S. aureus MHS 1.5 2 1.5 3.5 1.5 1 2 2 1 2.5 1.5
    S. aureus HC 1.5 1.5 2 2.5 2 1.5 2.5 2 1.5 1.5 2
    S. aureus 771 1.5 3 1.5 3 2 2 2.5 2 3 2 3.5
    S. aureus 949 2 3.5 2.5 2 3 3.5 3 2.5 3.5 3.5 2.5
    S. aureus 1018 1 3.5 1.5 1.5 2 3.5 1 3 3.5 2.5 2
    S. aureus 1502 1.5 3.5 1 2 2.5 2.5 1.5 3 4 2.5 1.5
    S. aureus 1505 3 4 3 2.5 2.5 3 2.5 4.5 5.5 5 5.5
    S. aureus 1511 1 3.5 2 1.5 2 2.5 3 3.5 4 2.5 3
    S. aureus 1522 1.5 3 2.5 1 2.5 1.5 2.5 2.5 3.5 3.5 3
    S. aureus 1499 1.5 3.5 1.5 1.5 2 2 3 2 3.5 3.5 1.5
    S. aureus 1963 2 3 2 2.5 3.5 3.5 3.5 3.5 2.5 3 2.5
    S. aureus PRMM 1 3.5 1 1.5 1 3.5 2 2 3 2 2.5
    S. albus 1 2 1.5 1 2 2.5 2 1.5 2 1.5 1
    S. carnosus 1 1.5 2 2.5 2.5 2.5 2 2.5 2 1.5 1
  • [0120]
    TABLE 7
    Inhibition of Pseudomonas and Bacillus strains by Bifidobacterium sp.
    on unbuffered medium*
    B. longum 1 B. longum 9 B. longum 10 63 35612 35624 35652 35658 35675 35678 35687
    P. fluorescens HC 1 2.5 1.5 1 1.5 2 3 2 1.5 2 2.5
    P. fluorescens MHP 1.5 4.5 3.5 2 2.5 3.5 2.5 2.5 3.5 2 4
    P. fluorescens DW 1.5 4 4 3.5 2.5 3.5 2.5 4.5 5.5 3.5 5
    B. cereus 3 3 5 3 4 4 3.5 5 6 4.5 5.5
    B. subtilius 2 2.5 5 2 3 6 3 6 7 3 6
    B. circulans 1 2 4 1.5 2.5 1.5 2 3.5 4.5 2 4.5
    B. thuringensis 2.5 3.5 5 3 3.5 4.5 4 5.5 6.5 4.5 5.5
  • EXAMPLE 5
  • Murine Feeding Trial to Investigate the Ability of [0121] Lactobacillus salivarius subsp. Salivarius UCC 118 and Bifidobacteria longum infantis 35624 to Alleviate the Symptoms of Inflammatory Bowel Disease (IBD)
  • Background [0122]
  • A number of mouse models have recently been generated by either genetic or immunological means to study the mechanisms of IBD. One of these models involves the transfer of spleen or lymph node-derived CD4[0123] +T lymphocytes from normal mice into severe combined immunodeficient recipient mice (SCID). It has been demonstrated that mice who receive purified CD4+, CD45RBhigh T cells develop a wasting disease characterised by chronic intestinal inflammation which is more severe in the colon. In this study a control group of SCID mice was injected with CD4+CD45RBhigh and the mice developed a progressive wasting disease including hunched over appearance, piloerection of the coat, diarrhoea, weight loss and macro and microscopic colon damage. A feeding trail was set up administering UCC 118 and strain 35624 (also referred to herein as UCC 35624) to determine if the symptoms of IBD could be modified in this model.
  • Bacterial Strains [0124]
  • [0125] Lactobacillus salivarius subsp. Salivarius UCC 118 and Bifidobacterium longum infantis UCC 35624 were isolated from the ileal-caecal region of an adult human as described in. Example 1. In this example, spontaneous rifampicin and streptomycin resistant derivatives of the strains were generated by plating cells, previously grown overnight and subsequently washed in quarter strength Ringer's solution on MRS and TPY agar containing 50 μg/ml rifampicin (Sigma) respectively and MRS containing 400 μg/ml streptomycin (Sigma). Plates were incubated for 2 days at 37° C. anaerobically. The resulting antibiotic resistant derivatives were determined to be otherwise phenotypically similar to the parent strain. This selectable trait enabled the strains to be readily enumerated following gut transit.
  • Animals and Maintenance [0126]
  • Donor mice (C57BL/6× BALB/c) F1 were purchased from Simosen Laboratories (Gilroy, Calif.) and maintained at the University of California—Los Angeles vivarium in ventilated cage racks (Thoren caging systems, Hazelton, Pa.) under specific pathogen free (SPF) conditions. CB17 SCID mice were bred in ventilated cage racks originally obtained from the University of California—Los Angeles SCID core facility. The mice were reduced flora (RF) mice rather than germ free and acting as the recipient mice (Aranda R. et al. J. of Immunol. 1997; 158(7), 3464-3473). [0127]
  • Eight week old, female CB-17 (SCID) mice were housed in pairs in filter top cages in ventilated racks. The mice were divided into four groups Group A: consumed 10% skim milk, control; Group B: consumed [0128] Lactobacillus salivarius UCC 118, Group C: consumed Lactobacillus salivarius UCC 118 and Bifidobacterium longum UCC 35624 9 (1:1 ratio); Group D: consumed Bifidobacterium longum UCC 35624. UCC 118 and UCC 35624 which were grown overnight in MRS broth and MRS broth supplemented with 0.05% cysteine (Sigma) respectively, were washed in PBS, resuspended in skim milk (10% (v/v)) and administered in the otherwise sterile drinking water (PBS). The mice in each respective group received 2.55×108 cfu/ml of UCC 118 and 2.35×108 cfu/ml of UCC 35624 daily for the duration of the feeding period. Control mice received sterile milk diluted in sterile phosphate buffered saline (PBS) and were maintained under identical conditions as the test group.
  • Experimental Design [0129]
  • All CB17 mice were administered their respective feed according to their grouping for 2 days prior to injection with the CD4[0130] + CD45RBhigh cells. The sorted donor lymphocytes (3-4×105) were represented in 200 μl of sterile PBS and injected i.p. into the recipient CB-17 SCID mice. All mice were weighed initially, then twice weekly thereafter. They were observed for clinical signs of illness: hunched over appearance, piloerection of the coat and diarrhoea.
  • Evaluation of the Effects of the Administered Probiotics on the Numbers of Indigenous Bacteria Culturable from Mouse Faeces. [0131]
  • The influence exerted by the administered UCC 118 and UCC 35624 when either administered alone or in combination with each other, on the microflora of the CB17 SCID murine gut Was investigated. Faecal samples were collected from each mouse weekly, weighed and resuspended in 10 ml PBS. The samples were then serially diluted in PBS and either pour plated or spread plated in appropriate dilutions on appropriate media in duplicate. The following bacterial groups were enumerated: lactobacilli; bifidobacteria; enterococci; bacteroides and coliforms. The selective media used were; de Mann Rogosa & Sharpe (MRS) agar; MRS agar supplemented with 0.2% lithium chloride (BDH), 0.3% sodium propionate (Fluke chemie), 0.5% cysteine hydrochloride (Sigma), and 5% sheep's blood; Slanetz and Bartley agar; Wilkins and Chalgren agar supplemented with [0132] anaerobic supplement SR 108 and 5% horse blood; and Violet Red Bile Agar. (All Oxoid unless otherwise stated). VRBA and Slanetz and Bartley plates were incubated aerobically for 24 and 45 h respectively. All other plates were incubated anaerobically for 48 h at 37° C.
  • Enumeration of Culturable Indigenous Flora from Specific Segments of the CB. 17 SCID murine G.I.T. [0133]
  • After the feeding period all mice were sacrificed and dissected. Segments of the ileal-caecal region, small intestine, and the large intestine were removed. A peripheral lymph node (PLN), mesenteric lymph node (MLN) and a piece of the spleen were also taken. All tissues were weighed before being resuspended in 10 ml of PBS. Samples were then homogenised and serially diluted in PBS and either spread plated or pour plated in appropriate dilutions on appropriate media in duplicate. The bacterial groups were enumerated the same as those enumerated in the faecal analysis and samples were incubated as described previously. [0134]
  • Preparation of Intraepithelial and Lamiinapropria Lymphocytes [0135]
  • The isolation of the mucosal lymphocytes was carried out according to the method of Aranda, R. et al ((1997) supra). [0136]
  • Flow Cytometric Analysis of Lymphocyte Populations. [0137]
  • The analysis was conducted as described by Aranda, R et al. ((1997) supra) [0138]
  • Preparation of Tissue for Histopathological Analysis [0139]
  • Tissue samples were taken from the small intestine, large intestine, and ileal caecal region and fixed in 10% formalin. The procedure was as described in Aranda, R. et al. ((1997) supra). [0140]
  • It was observed from the experiment carried out that, consistent with previous results, the SCID mice reconstituted with CD4[0141] + CD45RBhigh T lymphocytes and consuming skim milk alone (control) developed a progressive wasting disease, identified by their significant weight loss. Disease became apparent at about 2 and a half to three weeks and the sick mice characteristically manifested a hunched over appearance, piloerection of their coat, and loose stool. One of the mice in the control group (mouse 4) died after 25 days and mice 1, 2, 3 and 5 showed a −20%, 25%, 21% and −35% percentage weight change respectively as depicted in FIGS. 3 and 4.
  • CB17 SCID mice consuming UCC 118 alone gave a similar result as the controls with the characteristic weight loss. [0142] Mouse 3 died after 14 days, and mice 4, 5 and 6 showed a −15%, −25% and −28% percentage weight change respectively (data not shown). The mice consuming a combination of UCC 118 and UCC 35624 were found to have a marked improvement on the control mice. These mice did not lose as much weight as the control mice over the feeding period. Even after 35 days three of the mice in this group showed little percentage weight change. (FIGS. 5 and 6). Two of the mice in this group showed a weight loss only after about 30 days whereas control mice showed weight loss at 14 days (FIGS. 3 and 4).
  • Mice consuming UCC 35624 alone appeared in good health and again weight loss when compared to the controls was considerably less (FIGS. 7 and 8). It can be concluded therefore that consumption of UCC 35624 either alone or in combination with UCC 118 alleviates the symptoms of inflammatory bowel disease. [0143]
  • Table 8 is a summary of experimental data for the study on the treatment of CD45RB colitis induced CB17 and SCID mice with a cocktail of UCC 118 and UCC 35624. [0144]
  • It was found in the studies that the mice were successfully reconstituted with lymphocytes and lymphocytes having been derived from the donor model (data not shown). [0145]
    TABLE 8
    Treatment of CD45RB colitis induced CB 17 SCID mice with a cocktail of
    Lactobacillus salivarius UCC 118 and Bifidobacteria.
    Mouse 1 Mouse 2
    Untreated Untreated
    (RB hi cells + (RB hi cells + Mouse 3 Mouse 4 Mouse 5 Mouse 6
    skimmed skimmed Cocktail Cocktail Cocktail Cocktail
    Organ milk) milk) Treated Treated Treated Treated
    % weight 31.25 27.74 14.50 14.05 21.88 11.18
    loss
    Final looks ill very ill very slightly ill healthy healthy
    Appearance healthy
    Stool very mushy very mushy mushy solid semi solid semi solid
    Appearance
    Colon thickened very slightly slight slightly slight
    Appearance thickened thickened proximal thickened proximal
    thickening thickening
    No. SIEL 100,000  200,000 0 0 512,000  28,000
    No. LIEL 25,000  72,000 100,000  50,000 384,000  96,000
    No. SLPL 200,000  100,000 264,000 200,000 640,000 104,000
    No. LLPL 96,000 256,000 160,000 160,000 256,000 160,000
    No. MLN 0 N/A  81,900 N/A  28,800 N/A
    No. PLN 0 192,000 0 120,000  64,000 0
    Spleen # 960,000  512,000 640,000 640,000 512,000 6,400,000  
    Lymphos.
    CD3+/H-2Kb+ Flow correction %
    No. SIEL 62,000 114,000 0 0 450,560  17,920
    No. LIEL 21,250  48,960  74,800  38,000 345,600  65,280
    No. SLPL 74,000  42,000 158,400 136,000 384,000  66,460
    No. LLPL 67,200 161,280 115,200 108,000 184,320 108,800
    No. MLN 0 N/A 130,00  N/A  64,000 N/A
    No. PLN 0 126,720 0  87,600  54,400 0
    Spleen 518,400  102,400 211,200 307,200 230,400 4,480,000  
    UCC 118 bacterial counts (per biopsy) post mortem
    SI
    0 0  1,200 0 0 0
    LI 0 0 >30,000 >30,000 100  11,600
    Caecum 0 0 >30,000 >30,000 >30,000 >30,000
    Spleen 0 0 0  1,350 0 0
    Colon Pathological Scoring
    A (0-3) 1.0 1.0 2.0
    B (0-2) 1.5 1.0 1.0
    C (0-3) 2.5 1.0 2.0
    D (0-3) 2.0 3.0 3.0
    E (1-3) 1.0 1.0 2.0
    Remarks
    Total Score 8.0 7.0 10.0
  • EXAMPLE 7
  • In vitro Studies to Examine the Immune Perception of [0146] Bifidobacterium longum infantis.
  • Overnight washed cultures of Bifidobacteria were incubated with human peripheral blood mononuclear cells (PBMCs) from both healthy volunteers (n=9) and patients suffering from inflammatory bowel disease n=5). Production of the proinflammatory cytokine tumour necrosis factor α (TNFα) was measured by ELISA in seventy two hour culture supernatants. Co-incubation of [0147] Bifidobacterium longum infantis with human PBMCs did not result in the stimulation of TNFα production (FIG. 9). Thus, exposure of the systemic immune system to this bacterium does induce an inflammatory response.
  • In order to assess the immune perception of [0148] Bifidobacterium longum infantis at mucosal surfaces, co-culturing of epithelial cells and PBMCs was performed in transwell chambers. Briefly, an epithelial cell monolayer was grown in the upper chamber and PBMCs were incubated in the lower compartment. These were seperated from each other by a porous membrane which allowed the passage of soluble mediators between the two compartments but did not allow cell-cell contact. Using this model, the production of TNFα and Interleukin-8 (IL-8) was measured in the presence and absence of Bifidobacterium longum infantis in the PBMC compartment Co-culture of epithelial cells, PBMCs and Bifidobacterium longum infantis resulted in significant suppression of TNFα and IL-8 production (FIG. 10). Thus, a tri-cellular network involving epithelial cells, PBMCs and Bifidobacterium longum infantis results in suppression of proinflammatory cytokine production.
  • EXAMPLE 8
  • In vivo Anti-Inflammatory Activity of [0149] Bifidobacterium longum infantis
  • [0150] Bifidobacterium longum infants (1×109 cells per day) was consumed by 18 healthy humans in a fermented milk (yoghurt) product for three weeks. Serum was collected for cytokine analysis pre and post consumption of this probiotic strain. Faecal samples were obtained for microbiological analysis.
  • Considerable modification of peripheral blood cytokine levels were observed in this feeding study. Serum soluble Interleukin-6 receptor (sIL-6R, p=0.007), Interferon-γ (IFNγ, p=0.041) and IL-8 (p=0.004) levels were significantly reduced following consumption of this probiotic strain (FIG. 11). No alteration in serum TNFα and Interleukin-1 receptor antagonist (IL-1RA) levels were observed (FIG. 12). [0151] Bifidobacterium longum infantis was detected at approximately 1×105 colony forming units per gram of faecal matter over the course of this feeding study.
  • Targeted in vitro selection criteria reflecting the complex interactions of the GI environment allow for the identification of probiotic strains capable of functioning effectively when reintroduced into that environment. Using the selection criteria outlined above, the probiotic bacteria [0152] Bifidobacterium longum infantis has demonstrable immunomodulating properties in vitro. Following consumption by SCID mice and human volunteers, significant modification of systemic immune parameters was noted. Thus, the use of Bifidobacterium longum infantis as a biotherapeutic agent in the treatment of immune mediated diseases is warranted.
  • EXAMPLE 9
  • Measurement of TNFα in [0153] Bifidobacterium longum infantis UCC 35624 Cell Free Supernatant
  • Overnight cultures of [0154] Bifidobacterium longum infants were centrifuged and the cell-free culture supernatant was examined for the presence of cytokine inhibitors. Cell free supernatants were incubated with human TNFα for 20 minutes at 37° C. TNFα levels were quantified thereafter by ELISA. Following exposure to the Bifidobacteria supernatant, TNFα levels were significantly reduced (FIG. 13). Thus, Bifidobacterium longum infantis UCC35624 secretes a factor that antagonises TNFα activity. Production of this factor by Bifidobacterium longum infantis at the surface of the gastrointestinal tract, in vivo, would significantly restrict the host inflammatory response.
  • This indicates that the antagonism of TNFα also occurs at a molecular level due to a soluble factor released by UCC 35624 [0155]
  • Inflammation [0156]
  • Inflammation is the term used to describe the local accumulation of fluid, plasma proteins and white blood cells at a site that has sustained physical damage, infection or where there is an ongoing immune response. Control of the inflammatory response is exerted on a number of levels (for review see Henderson B., and Wilson M. 1998. In “Bacteria-Cytokine interactions in health and disease. Portland Press, 79-130). The controlling factors include cytokines, hormones (e.g. hydrocortisone), prostaglandins, reactive intermediates and leukotrienes. Cytokines are low molecular weight biologically active proteins that are involved in the generation and control of immunological and inflammatory responses, while also regulating development, tissue repair and haematopoiesis. They provide a means of communication between leukocytes themselves and also with other cell types. Most cytokines are pleiotrophic and express multiple biologically overlapping activities. Cytokine cascades and networks control the inflammatory response rather than the action of a particular cytokine on a particular cell type (Arai K I, et al., Annu Rev Biochem 1990;59:783-836). Waning of the inflammatory response results in lower concentrations of the appropriate activating signals and other inflammatory mediators leading to the cessation of the inflammatory response. TNFα is a pivotal proinflammatory cytokine as it initiates a cascade of cytokines and biological effects resulting in the inflammatory state. Therefore, agents which inhibit TNFα are currently being used for the treatment of inflammatory diseases, e.g. infliximab. [0157]
  • Pro-inflammatory cytokines are thought to play a major role in the pathogenesis of many inflammatory diseases, including inflammatory bowel disease (IBD). Current therapies for treating IBD are aimed at reducing the levels of these pro-inflammatory cytokines, including IL-8 and TNFα. It has been suggested that such therapies may also play a significant role in the treatment of systemic inflammatory diseases such as rheumatoid arthritis. Humans fed with yoghurt containing [0158] Bifidobacterium longum infantis UCC35624 have shown marked decreases in their systemic levels of IL-8. his strain may therefore have potential application in the treatment of a range of inflammatory diseases, particularly if used in combination with current anti-inflammatory therapies, such as non-steroid anti-inflammatory drugs (NSAIDs) or Infliximab.
  • Diarrhoeal Disease. [0159]
  • The barrier function of the intestinal epithelium can be diminished during nervous (acetylcholine) and immune (histamine) mediated secretion. Certain bacterial toxins may also induce Ca2+ and PKC dependent secretion and thereby can disturb the epithelial barrier (Ganguly N K and Kaur T. Indian J Med Res 1996;104:28-37, Groot J A. Vet Q 1998;20(S3):45-9). Several studies have examined the prevention and treatment of diarrhoea using probiotic bacteria. Prospective studies have demonstrated the efficacy of lactic acid bacteria administration for both prophylactic and therapeutic use against diarrhoea in pre-mature infants, new borns, children (Isolauri E, et al., Dig Dis Sci December 1994;39(12):2595-600) and in the treatment of antibiotic related diarrhoea (Siitonen S, et al., Ann Med February 1990;22(1):57-9) and traveller's diarrhoea (Oksanen P J, et al., Ann Med February 1990;22(1):53-6). [0160]
  • We have examined consumption of [0161] Bifidobacterium longum infantis UCC 35624 by SCID mice. It was found that inflammatory activity was significantly attenuated and mice consuming Bifidobacterium longum infantis UCC 35624 retained solid stools while control mice suffered from diarrhoea. FIGS. 14 and 15 illustrate the lower intestine of treated and untreated SCID mice. The lower intestine shown includes the caecum 2, intestine 3 and anus 5. In FIG. 14 the mice were treated with Bifidobacterium longum infantis UCC 35624 and it is apparent that solid stools 4 have been retained in the intestine. In comparison FIG. 15 shows the untreated mouse intestine 3, characteristically inflamed. No water absorption has occurred so that no solid stools are retained resulting in diarrhoea.
  • The anti-diarrhoeal effect observed may be related to the anti-inflammatory activity, possibly mediated via cAMP modulation. Cyclic AMP-dependent Cl-secretion is the major secretory pathway in the human intestine (Brzuszczak I M, et al., J. Gastroenterol. Hepatol. 1996;11(9):804-10). It can be inferred that the anti-diarrhoeal effect of [0162] Bifidobacterium longum infantis UCC 35624 is not restricted just to diarrhoea resulting from gastrointestinal inflammation, but can be applied to the general treatment of diarrhoeal disease.
  • Autoimmune Disease [0163]
  • The immune system has a large repertoire of specificities expressed by B and T cells. Some of these specificities will be directed to self-components. Self recognition is normally controlled by clonal deletion and inactivation of self-reactive lymphocytes. However, there is a constant background of autoimmunity with antibodies to many proteins being found in serum. A breakdown in the self-nonself recognition system results in autoimmunity. When autoimmune disease does occur, the resulting immune response damages the tissue bearing the offending antigen. Immune complex deposition, type II hypersensitivity and cell-mediated reactions are the most important mechanisms by which immunopathological damage occurs. Examples of autoimmune diseases include, but are not limited to, systemic lupus erythematosus, rheumatoid arthritis, insulin dependent diabetes mellitus, myasthenia gravis and pernicious anaemia. [0164] Bifidobacterium longum infantis and Lactobacillus salivarius subsp. salivarius are immunomodulatory bacteria. Thus, consumption either as single components or in combination of these bacteria by patients suffering from autoimmune disease may restrict organ damage and help restore normal body homeostasis.
  • Inflammation and Cancer [0165]
  • The production of multifunctional cytokines across a wide spectrum of tumour types suggests that significant inflammatory responses are ongoing in patients with cancer. It is currently unclear what protective effect this response has against the growth and development of tumour cells in vivo. However, these inflammatory responses could adversely affect the tumour bearing host. Complex cytokine interactions are involved in the regulation of cytokine production and cell proliferation within tumour and normal tissues (McGee D W, et al., Immunology September 1995;86(1):6-11, Wu S, et al., Gynecol Oncol April 1994;53(1):59-63). It has long been recognised that weight loss (cachexia) is the single most common cause of death in patients with cancer (Inagaki J, et al., Cancer February 1974;33(2):568-73) and initial malnutrition indicates a poor prognosis (Van Eys J. Nutr Rev December 1982;40(12):353-9). For a tumour to grow and spread it must induce the formation of new blood vessels and degrade the extracellular matrix. The inflammatory response may have significant, roles to play in the above mechanisms, thus contributing to the decline of the host and progression of the tumour. Due to the anti-inflammatory nature of these bacterial strains, they may reduce the rate of malignant cell transformation. Furthermore, intestinal bacteria can produce, from dietary compounds, substances with genotoxic, carcinogenic and tumour-promoting activity and gut bacteria can activate pro-carcinogens to DNA reactive agents (Rowland I. R. (1995). Toxicology of the colon: role of the intestinal microflora. In: Gibson G. R. (ed). Human colonic bacteria: role in nutrition, physiology and pathology, pp 155-174. Boca Raton CRC Press). In general, species of Bifidobacteria and Lactobacillus have low activities of xenobiotic metabolising enzymes compared to other populations within the gut such as bacteroides, eubacteria and clostridia (Saito Y., et al., Microb. Ecol. Health Dis., 1992;5, 105-110). Therefore, increasing the number of lactic acid bacteria in the gut could beneficially modify the levels of these enzymes. [0166]
  • Prebiotics [0167]
  • The introduction of probiotic organisms is accomplished by the ingestion of the microorganism in a suitable carrier. It would be advantageous to provide a medium that would promote the growth of these probiotic strains in the large bowel. The addition of one or more oligosaccharides, polysaccharides, or other prebiotics enhances the growth of lactic acid bacteria in the gastrointestinal tract (Gibson, G R. Br. J. Nutr. 1998;80 (4):S209-12). Prebiotics refers to any non-viable food component that is specifically fermented in the colon by indigenous bacteria thought to be of positive value, e.g. bifidobacteria, lactobacilli. Types of prebiotics may include those which contain fructose, xylose, soya, galactose, glucose and mannose. The combined administration of a probiotic strain with one or more prebiotic compounds may enhance the growth of the administered probiotic in vivo resulting in a more pronounced health benefit, and is termed synbiotic. [0168]
  • Other Active Ingredients [0169]
  • It will be appreciated that the Bifidobacterium may be administered prophylactically or as a method of treatment either on its own or with other probiotic and/or prebiotic materials as described above. In addition, the bacteria may be used as part of a prophylactic or treatment regime using other active materials such as those used for treating inflammation or other disorders, especially those of the gastrointestinal tract. Such combinations may be administered in a single formulation or as separate formulations administered at the same or different times and using the same or different routes of administration. [0170]
  • The invention is not limited to the embodiments hereinbefore described which may be varied in detail. [0171]

Claims (54)

1. A strain of Bifidobacterium isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans.
2. A strain of Bifidobacterium as claimed in claim 1 which effects changes in an immunological marker when introduced into a system comprising cells which interact with the immune system and cells of the immune system.
3. A strain of Bifidobacterium as claimed in claim 2 wherein the cells which interact with the immune system are epithelial cells.
4. A strain of Bifidobacterium as claimed in claim 2 or 3 wherein the immunological marker is a cytokine.
5. A strain of Bifidobacterium as claimed in claim 4 wherein the cytokine is TNFα.
6. A strain of Bifidobacterium as claimed in any of claims 2 to 5 wherein the cells which interact with the immune system and the immune system cells are of matched origin.
7. A strain of Bifidobacterium as claimed in any of claims 2 to 6 wherein the cells which interact with the immune system are of gastrointestinal, respiratory or genitourinary origin.
8. A strain of Bifidobacterium as claimed in any of claims 2 to 6 wherein the cells of the immune system are of gastrointestinal, respiratory or genitourinary origin.
9. A strain of Bifidobacterium longum infantis isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans.
10. A strain of Bifidobacterium as claimed in any of claims 1 to 9 which has significant anti-inflammatory effect following oral consumption in humans.
11. A strain of Bifidobacterium isolated from resected and washed human gastrointestinal tract which is capable of combating the effects of inflammatory bowel disease, said capability being maintained in the presence of physiological concentrations of human bile and human gastric juice.
12. A strain of Bifidobacterium longum infantis according to claim 11, wherein the capability of combating the effects of inflammatory bowel disease is measured by measuring a reversal of a wasting disease induced in severe combined immunodeficient recipient mice (SCID) which have been administered purified CD4+, CD45RBhigh T cells.
13. A strain of Bifidobacterium as claimed in any preceding claim, which has inhibitory activity against a broad range of Gram positive and Gram negative bacteria.
14. A strain of Bifidobacterium as claimed in preceding claim, wherein the strain exhibits a broad-spectrum of activity against bacteria including Staphylococcus, Pseudomonas, Coliform and Bacillus species.
15. A strain of Bifidobacterium longum infantis UCC35624.
16. A strain of Bifidobacterium longum infantis UCC35624 or mutant or variant thereof isolated from resected and washed human gastrointestinal tract which is significantly immunomodulatory following oral consumption in humans.
17. A strain of Bifidobacterium longum infantis UCC35624 as claimed in claim 16 wherein the mutant is a genetically modified mutant.
18. A strain of Bifidobacterium longum infantis UCC35624 as claimed in claim 16 wherein the variant is a naturally occurring variant of Bifidobacterium longum infantis UCC35624.
19. A strain of Bifidobacterium as claimed in any of claims 1 to 18 in the form of viable cells.
20. A strain of Bifidobacterium as claimed in any of claims 1 to 18 in the form of non-viable cells.
21. An antimicrobial agent obtained from a strain of Bifidobacterium as claimed in any of claims 1 to 20 which is antagonistic to the growth of other organisms.
22. A formulation which comprises a strain of Bifidobacterium as claimed in any of claims 1 to 20.
23. A formulation as claimed in claim 22, which comprises two or more strains of Bifidobacterium.
24. A formulation as claimed in claim 22 or 23, which includes another probiotic material.
25. A formulation as claimed in any of claims 22 to 24, which includes a prebiotic material.
26. A formulation as claimed in any of claims 22 to 25, which includes a strain of Lactobacillus salivarius.
27. A formulation as claimed in claim 26 wherein the strain of Lactobacillus salivarius is in the form of viable cells.
28. A formulation as claimed in claim 26 wherein the strain of Lactobacillus salivarius is in the form of non-viable cells.
29. A formulation as claimed in any of claims 26 to 28, wherein the Lactobacillus salivarius is isolated from resected and washed human gastrointestinal tract, the Lactobacillus salivarius being significantly immunomodulatory following oral consumption in humans.
30. A formulation as claimed in any of claims 26 to 29, wherein the strain of Lactobacillus salivarius is isolated from resected and washed human gastrointestinal tract which inhibits a broad range of Gram positive and Gram negative micro-organisms.
31. A formulation as claimed in any of claims 26 to 30 wherein the strain of Lactobacillus salivarius secretes a product having antimicrobial activity into a cell—free supernatant, said activity being produced only by growing cells and being destroyed by proteinase K and pronase E, the inhibitory properties of said strain and its secretory products being maintained in the presence of physiological concentration of human bile and human gastric juice.
32. A formulation as claimed in any of claims 26 to 31, wherein the strain of Lactobacillus salivarius is Lactobacillus salivarius strain UCC 118 or a mutant or variant thereof.
33. A formulation as claimed in claim 32 wherein the mutant is a genetically modified mutant.
34. A formulation as claimed in claim 32 wherein the variant is a naturally occurring variant of Lactobacillus salivarius.
35. A formulation as claimed in any of claims 22 to 34 which includes an ingestable carrier.
36. A formulation as claimed in claim 35 wherein the ingestable carrier is a pharmaceutically acceptable carrier such as a capsule, tablet or powder.
37. A formulation as claimed in claim 36 wherein the ingestable carrier is a food product such as acidified milk, yoghurt, frozen yoghurt, milk powder, milk concentrate, cheese spreads, dressings or beverages.
38. A formulation as claimed in any of claims 22 to 37 which further comprises a protein and/or peptide, in particular proteins and/or peptides that are rich in glutamine/glutamate, a lipid, a carbohydrate, a vitamin, mineral and/or trace element.
39. A formulation as claimed in claims 22 to 38 wherein the Bifidobacterium is present at more than 106 cfu per gram of delivery system.
40. A formulation as claimed in claims 22 to 39 which includes an adjuvant.
41. A formulation as claimed in claims 22 to 40 which includes a bacterial component.
42. A formulation as claimed in claims 22 to 41 which includes a drug entity.
43. A formulation as claimed in claims 22 to 42 which includes a biological compound.
44. A formulation as claimed in claims 22 to 43 for oral immunisation.
45. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in foodstuffs.
46. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use as a medicament.
47. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of undesirable inflammatory activity.
48. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of undesirable gastrointestinal inflammatory activity such as inflammatory bowel disease eg. Crohns disease or ulcerative colitis, irritable bowel syndrome; pouchitis; or post infection colitis.
49. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of gastrointestinal cancer(s).
50. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of systemic disease such as rheumatoid arthritis.
51. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of autoimmune disorders due to undesirable inflammatory activity.
52. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of cancer due to undesirable inflammatory activity.
53. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis of cancer.
54. A strain of Bifidobacterium as claimed in any of claims 1 to 20 or a formulation as claimed in any of claims 22 to 44 for use in the prophylaxis and/or treatment of diarrhoeal disease due undesirable inflammatory activity, such as Clostridium difficile associated diarrhoea, Rotavirus associated diarrhoea or post infective diarrhoea.
US10/388,652 1999-01-15 2003-03-17 Bifidobacteriumin the treatment of inflammatory disease Abandoned US20030215467A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/388,652 US20030215467A1 (en) 1999-01-15 2003-03-17 Bifidobacteriumin the treatment of inflammatory disease
US10/975,353 US20060002908A1 (en) 1999-01-15 2004-10-29 Bifidobacterium in the treatment of inflammatory disease
US11/478,545 US20070141039A1 (en) 1999-01-15 2006-06-29 Bifidobacterium in the treatment of inflammatory disease
US12/123,052 US20080311080A1 (en) 1999-01-15 2008-05-19 Bifidobacterium in the treatment of inflammatory disease

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
IE990033 1999-01-15
IE990033A IE990033A1 (en) 1999-01-15 1999-01-15 Bifidobacterium longum infantis in the treatment of inflammatory bowel disease
IE990782 1999-09-20
IE990782 1999-09-20
PCT/IE2000/000008 WO2000042168A2 (en) 1999-01-15 2000-01-17 Bifidobacterium in the treatment of inflammatory disease
US09/903,681 US20020006432A1 (en) 1999-01-15 2001-07-13 Bifidobacterium in the treatment of inflammatory disease
US10/388,652 US20030215467A1 (en) 1999-01-15 2003-03-17 Bifidobacteriumin the treatment of inflammatory disease

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/903,681 Division US20020006432A1 (en) 1999-01-15 2001-07-13 Bifidobacterium in the treatment of inflammatory disease

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/975,353 Continuation US20060002908A1 (en) 1999-01-15 2004-10-29 Bifidobacterium in the treatment of inflammatory disease

Publications (1)

Publication Number Publication Date
US20030215467A1 true US20030215467A1 (en) 2003-11-20

Family

ID=26320235

Family Applications (13)

Application Number Title Priority Date Filing Date
US09/903,681 Abandoned US20020006432A1 (en) 1999-01-15 2001-07-13 Bifidobacterium in the treatment of inflammatory disease
US10/241,797 Abandoned US20030166257A1 (en) 1999-01-15 2002-09-12 Use of Lactobacillus salivarius
US10/376,602 Abandoned US20030170217A1 (en) 1999-01-15 2003-03-03 Bifidobacterium in the treatment of inflammatory disease
US10/388,652 Abandoned US20030215467A1 (en) 1999-01-15 2003-03-17 Bifidobacteriumin the treatment of inflammatory disease
US10/783,020 Expired - Lifetime US7195906B2 (en) 1999-01-15 2004-02-23 Bifidobacterium in the treatment of inflammatory disease
US10/804,223 Abandoned US20050084482A1 (en) 1999-01-15 2004-03-19 Use of lactobacillus salivarius
US10/956,330 Abandoned US20050214272A1 (en) 1999-01-15 2004-10-04 Bifidobacterium in the treatment of inflammatory disease
US10/975,353 Abandoned US20060002908A1 (en) 1999-01-15 2004-10-29 Bifidobacterium in the treatment of inflammatory disease
US11/311,632 Abandoned US20060292133A1 (en) 1999-01-15 2005-12-20 Use of lactobacillus salivarius
US11/478,545 Abandoned US20070141039A1 (en) 1999-01-15 2006-06-29 Bifidobacterium in the treatment of inflammatory disease
US11/699,115 Abandoned US20080057109A1 (en) 1999-01-15 2007-01-29 Bifidobacterium in the treatment of inflammatory disease
US12/123,052 Abandoned US20080311080A1 (en) 1999-01-15 2008-05-19 Bifidobacterium in the treatment of inflammatory disease
US12/479,364 Abandoned US20100112003A1 (en) 1999-01-15 2009-06-05 Bifidobacterium in the treatment of inflammatory disease

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/903,681 Abandoned US20020006432A1 (en) 1999-01-15 2001-07-13 Bifidobacterium in the treatment of inflammatory disease
US10/241,797 Abandoned US20030166257A1 (en) 1999-01-15 2002-09-12 Use of Lactobacillus salivarius
US10/376,602 Abandoned US20030170217A1 (en) 1999-01-15 2003-03-03 Bifidobacterium in the treatment of inflammatory disease

Family Applications After (9)

Application Number Title Priority Date Filing Date
US10/783,020 Expired - Lifetime US7195906B2 (en) 1999-01-15 2004-02-23 Bifidobacterium in the treatment of inflammatory disease
US10/804,223 Abandoned US20050084482A1 (en) 1999-01-15 2004-03-19 Use of lactobacillus salivarius
US10/956,330 Abandoned US20050214272A1 (en) 1999-01-15 2004-10-04 Bifidobacterium in the treatment of inflammatory disease
US10/975,353 Abandoned US20060002908A1 (en) 1999-01-15 2004-10-29 Bifidobacterium in the treatment of inflammatory disease
US11/311,632 Abandoned US20060292133A1 (en) 1999-01-15 2005-12-20 Use of lactobacillus salivarius
US11/478,545 Abandoned US20070141039A1 (en) 1999-01-15 2006-06-29 Bifidobacterium in the treatment of inflammatory disease
US11/699,115 Abandoned US20080057109A1 (en) 1999-01-15 2007-01-29 Bifidobacterium in the treatment of inflammatory disease
US12/123,052 Abandoned US20080311080A1 (en) 1999-01-15 2008-05-19 Bifidobacterium in the treatment of inflammatory disease
US12/479,364 Abandoned US20100112003A1 (en) 1999-01-15 2009-06-05 Bifidobacterium in the treatment of inflammatory disease

Country Status (22)

Country Link
US (13) US20020006432A1 (en)
EP (4) EP1141235B1 (en)
JP (2) JP4706016B2 (en)
CN (3) CN101744841B (en)
AT (3) ATE326012T1 (en)
AU (3) AU3071700A (en)
BR (2) BR0007550A (en)
CA (3) CA2359334C (en)
DE (3) DE60028003T2 (en)
DK (2) DK1143985T3 (en)
ES (2) ES2290008T3 (en)
HK (1) HK1044964B (en)
ID (2) ID29150A (en)
IE (1) IE20000033A1 (en)
IL (3) IL144184A0 (en)
MX (2) MXPA01007152A (en)
NO (2) NO327792B1 (en)
NZ (2) NZ529353A (en)
PT (1) PT1141235E (en)
RU (2) RU2308483C2 (en)
TR (2) TR200102058T2 (en)
WO (3) WO2000042168A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074441A1 (en) * 1999-01-15 2005-04-07 Enterprise Ireland (Trading As Bioresearch Ireland) Bifidobacterium in the treatment of inflammatory disease
US20060018890A1 (en) * 2004-07-01 2006-01-26 Erika Isolauri Method for preventing or treating respiratory infections and acute otitis media in infants
KR100568036B1 (en) 2004-08-12 2006-04-07 하남주 Bifidobacterium strain activating intestinal functions and potentiating immune functions, and probiotics containing the same
WO2006097415A1 (en) * 2005-03-16 2006-09-21 Actial Farmacêutica Lda. Mixture of at least 6 species of lactic acid bacteria and/or bifidobacteria in the manufacture of sourdough
US20080085267A1 (en) * 2005-04-15 2008-04-10 Bristol-Myers Squibb Company Method for preventing or treating the development of respiratory allergies
US20080206213A1 (en) * 2007-02-28 2008-08-28 Bristol-Myers Squibb Company Method for reducing or preventing systemic inflammation
US20080292604A1 (en) * 2003-12-19 2008-11-27 Thomas William-Maxwell Boileau Canine probiotic lactobacilli
US20100310520A1 (en) * 2007-12-24 2010-12-09 Consejo Superior De Investigaciones Cientificas Microorganisms for improving the health of individuals with disorders related to gluten ingestion
KR101434220B1 (en) * 2013-03-26 2014-08-28 삼육대학교산학협력단 Novel lactic acid bacteria having inhibitory activity against multidrug resistant bacteria

Families Citing this family (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060116330A1 (en) * 1997-07-08 2006-06-01 The Iams Company Methods of mimicking the metabolic effects of caloric restriction by administration of mannoheptulose
US8563522B2 (en) 1997-07-08 2013-10-22 The Iams Company Method of maintaining and/or attenuating a decline in quality of life
US20020035071A1 (en) * 1997-07-08 2002-03-21 Josef Pitha Mimicking the metabolic effects of caloric restriction by administration of glucose antimetabolites
US7029702B2 (en) * 1998-07-07 2006-04-18 Ritter Natural Sciences Llc Method for increasing lactose tolerance in mammals exhibiting lactose intolerance
EP1212066A4 (en) * 1999-08-09 2004-03-03 Univ Maryland Pro-gut maturation and anti-inflammatory effects of lactobacillus and lactobacillus secreted proteins, carbohydrates and lipids
EP1409010A4 (en) * 2000-07-03 2005-06-29 Probendo Pty Ltd Treating endotoxemia and related disorders with probiotics
AUPQ899700A0 (en) 2000-07-25 2000-08-17 Borody, Thomas Julius Probiotic recolonisation therapy
CA2342040C (en) * 2000-09-21 2012-07-10 Kyowa Hakko Kogyo Co., Ltd. Anaerobic bacterium as a drug for cancer gene therapy
AU2058702A (en) 2000-10-06 2002-04-15 Nestle Sa Use of probiotic lactic acid bacteria for balancing the skin's immune system
IT1320772B1 (en) * 2000-11-02 2003-12-10 Proge Farm Srl PHARMACEUTICAL COMPOSITION BASED ON ACTIVE AGENTS AGAINST THE CANDIDER FOR THE TREATMENT OF DISORDERS OF THE ORAL AND INTESTINAL MUCOSA
JPWO2002061118A1 (en) * 2001-02-01 2004-06-03 株式会社ヤクルト本社 Evaluation method of intestinal reach of Bifidobacterium bacteria in fermented milk food and drink
EP1373475A2 (en) * 2001-04-02 2004-01-02 Alimentary Health Limited Immunotherapy based on dendritic cells
JP4671384B2 (en) * 2001-05-15 2011-04-13 雪印乳業株式会社 New lactic acid strain
EP1264893A1 (en) * 2001-06-08 2002-12-11 Teagasc Dairy Products Research Centre CLA biosynthesis by bifidobacteria
PE20030274A1 (en) 2001-07-26 2003-05-08 Alimentary Health Ltd LACTOBACILLUS SALIVARIUS STRAINS
PE20030284A1 (en) * 2001-07-26 2003-05-01 Alimentary Health Ltd BIFIDOBACTERIUM STRAINS
JP5116194B2 (en) * 2001-09-04 2013-01-09 株式会社ヤクルト本社 Inflammatory bowel disease preventive and therapeutic agent
US20040241149A1 (en) * 2001-09-05 2004-12-02 Claudio De Simone Use of unmethylatd cpg
GB0124580D0 (en) * 2001-10-12 2001-12-05 Univ Reading New composition
DK1449915T3 (en) * 2001-12-07 2006-08-14 Morinaga Milk Industry Co Ltd Bifidobacterium longum
US6941649B2 (en) * 2002-02-05 2005-09-13 Force10 Networks, Inc. Method of fabricating a high-layer-count backplane
DE10206995B4 (en) * 2002-02-19 2014-01-02 Orthomol Pharmazeutische Vertriebs Gmbh Micronutrient combination product with pro- and prebiotics
EP1511502A2 (en) * 2002-06-13 2005-03-09 Alimentary Health Limited Probiotic therapies using lactobacillus reuteri
US8168170B2 (en) 2002-10-03 2012-05-01 The Procter And Gamble Company Compositions having an inner core and at least three surrounding layers
IL152127A0 (en) 2002-10-06 2003-05-29 Bio Balance Corp Probiotic compositions for the treatment of inflammatory bowel disease
US7105336B2 (en) * 2002-10-07 2006-09-12 Biogaia Ab Selection and use of lactic acid bacteria for reducing inflammation caused by Helicobacter
US20070148147A1 (en) * 2002-12-05 2007-06-28 Veronique Dennin Bacterial composition and its use
FR2848115B1 (en) * 2002-12-05 2005-03-25 Rhodia Chimie Sa BACTERIAL COMPOSITION AND USE THEREOF
JP2004189672A (en) * 2002-12-11 2004-07-08 Gen Corp:Kk Antidiarrhetic composition
US20040208863A1 (en) * 2003-01-30 2004-10-21 James Versalovic Anti-inflammatory activity from lactic acid bacteria
SE526711C2 (en) * 2003-01-31 2005-10-25 Probi Ab Novel strains of Bifidobacterium having ability to survive in intestinal tract and produce glutamine and arginine in vivo, useful for preparing medicament for treatment of intensive care patients with intestinal failure
US20040197304A1 (en) 2003-04-01 2004-10-07 The Procter & Gamble Company And Alimentary Health, Ltd. Methods of determining efficacy of treatments of inflammatory diseases of the bowel
US20040265279A1 (en) * 2003-05-08 2004-12-30 Timothy Dinan Probiotics in the treatment of atypical depression and other disorders characterized by hypothalamic pitiuitary-adrenal axis over-activity
US7749509B2 (en) * 2003-08-29 2010-07-06 Cobb And Company, Llp Treatment of autism using probiotic composition
US7759105B2 (en) * 2003-08-29 2010-07-20 Cobb & Company, Llp Probiotic composition useful for dietary augmentation and/or combating disease states and adverse physiological conditions
US20060177424A1 (en) * 2003-08-29 2006-08-10 Cobb Mark L Treatment of disease states and adverse physiological conditions utilizing anti-fungal compositions
US7731976B2 (en) * 2003-08-29 2010-06-08 Cobb And Company, Llp Treatment of irritable bowel syndrome using probiotic composition
US8192733B2 (en) * 2003-08-29 2012-06-05 Cobb & Associates Probiotic composition useful for dietary augmentation and/or combating disease states and adverse physiological conditions
GB0323039D0 (en) * 2003-10-01 2003-11-05 Danisco Method
AU2004315890A1 (en) * 2003-12-04 2005-09-01 Burwell, Steve Mr. Methods and compositions for preventing biofilm formations, reducing existing biofilms, and for reducing existing biofilms, and for reducing populations of bacteria
US7785635B1 (en) 2003-12-19 2010-08-31 The Procter & Gamble Company Methods of use of probiotic lactobacilli for companion animals
US20050152884A1 (en) 2003-12-19 2005-07-14 The Procter & Gamble Company Canine probiotic Bifidobacteria globosum
US20050158294A1 (en) 2003-12-19 2005-07-21 The Procter & Gamble Company Canine probiotic Bifidobacteria pseudolongum
US8877178B2 (en) 2003-12-19 2014-11-04 The Iams Company Methods of use of probiotic bifidobacteria for companion animals
WO2005072718A1 (en) * 2004-01-28 2005-08-11 Kurume University Pharmaceutical compositions containing fermented whey
US20080126195A1 (en) * 2004-07-22 2008-05-29 Ritter Andrew J Methods and Compositions for Treating Lactose Intolerance
JP2006166829A (en) * 2004-12-17 2006-06-29 Best Ecology:Kk Ice supplement and method for producing the same
ES2640212T3 (en) 2005-04-08 2017-11-02 The Procter & Gamble Company Use of probiotic bifidobacteria administered orally to obtain beauty benefits in humans
AU2011205121B2 (en) * 2005-04-08 2012-07-05 Alimentary Health Ltd Method of use of orally administered probiotic bifidobacteria for human beauty benefits
US20060228448A1 (en) 2005-04-11 2006-10-12 The Iams Company Pet food compositions comprising two components
PL1885383T3 (en) 2005-05-31 2017-06-30 Iams Europe B.V. Feline probiotic bifidobacteria
WO2006130187A1 (en) 2005-05-31 2006-12-07 The Iams Company Feline probiotic lactobacilli
US20090035288A1 (en) * 2005-07-20 2009-02-05 Ruud Albers Edible product containing beneficial bacteria
ITMI20051510A1 (en) * 2005-08-02 2007-02-03 Proge Farm Srl USE OF SPECIFIC LACTIC BACTERIA FOR THE PREPARATION OF SINGLE-MODELING COMPOSITIONS
RU2297835C1 (en) * 2005-09-26 2007-04-27 Закрытое акционерное общество "Партнер" Preparation for treatment of noninfectious inflammatory intestine diseases
US8246946B2 (en) * 2005-09-27 2012-08-21 Cobb & Associates Treatment of bipolar disorder utilizing anti-fungal compositions
US7943328B1 (en) 2006-03-03 2011-05-17 Prometheus Laboratories Inc. Method and system for assisting in diagnosing irritable bowel syndrome
WO2007122885A1 (en) * 2006-03-31 2007-11-01 Morinaga Milk Industry Co., Ltd. Interleukin production regulator, pharmaceutical composition or food comprising the interleukin production regulator, and method for production of the interleukin production regulator
WO2007133188A1 (en) * 2006-05-01 2007-11-22 Cobb & Company, Llp Treatment of disease states and adverse physiological conditions utilizing anti-fungal compositions
US20080085524A1 (en) 2006-08-15 2008-04-10 Prometheus Laboratories Inc. Methods for diagnosing irritable bowel syndrome
US20080118473A1 (en) * 2006-11-01 2008-05-22 The Procter & Gamble Company Methods of treating a respiratory condition comprising probiotic treatment
US7964238B2 (en) * 2007-01-29 2011-06-21 Guardian Industries Corp. Method of making coated article including ion beam treatment of metal oxide protective film
BRPI0808391A2 (en) 2007-02-01 2014-07-08 Lams Company METHOD FOR REDUCING INFLAMMATION AND STRESS IN A MAMMALIAN BY USING GLUCOSE ANTITABOLITES, AVOCADO OR AVOCRATE EXTRACTS.
CN101678052A (en) * 2007-02-22 2010-03-24 于尔根·施赖岑米尔 Be used for preventing, suppress or eliminate allergic beneficial natural disposition gram-positive bacterium the people
CA2682763A1 (en) * 2007-03-27 2008-10-02 The Procter & Gamble Company Methods and kits for administering probiotics
MX2009010418A (en) 2007-03-28 2010-02-18 Alimentary Health Ltd Probiotic bifidobacterium strains.
NZ580005A (en) 2007-03-28 2012-03-30 Alimentary Health Ltd Probiotic bifidobacterium strain 41382
ES2640351T3 (en) * 2007-05-04 2017-11-02 Alimentary Health Limited Exopolysaccharide of Bifidobacterium infantis 35624 (NICMB 41003)
ES2611277T3 (en) 2007-06-27 2017-05-08 Laboratorios Ordesa, S.L. Peptides against a rotavirus infection
JP2009057346A (en) * 2007-09-03 2009-03-19 Kirin Holdings Co Ltd Composition for regulating immune balance
FR2921795B1 (en) * 2007-10-03 2011-04-29 Gervais Danone Sa USE OF A BIFIDOBACTERIUM STRAIN FOR THE PREPARATION OF A COMPOSITION FOR THE PREVENTION AND / OR TREATMENT OF ALLERGIC-LIKE MANIFESTATIONS
AU2008328584A1 (en) * 2007-11-26 2009-06-04 Plant Bioscience Limited Novel polypeptides having endolysin activity and uses thereof
US20110223248A1 (en) * 2007-12-12 2011-09-15 Ritter Pharmaceuticals, Inc. Methods and compositions for treating lactose intolerance
EP2072053B1 (en) * 2007-12-21 2012-11-07 Compagnie Gervais Danone Method for decreasing abdominal girth by administering a bifidobacterium bacteria
EP2110028A1 (en) 2008-04-15 2009-10-21 Nestec S.A. Bifidobacterium longum and hippocampal BDNF expression
US9771199B2 (en) 2008-07-07 2017-09-26 Mars, Incorporated Probiotic supplement, process for making, and packaging
EP2293802A4 (en) * 2008-06-25 2011-11-09 Ritter Pharmaceuticals Inc Lactose compositions with decreased lactose content
US9232813B2 (en) * 2008-07-07 2016-01-12 The Iams Company Probiotic supplement, process for making, and packaging
DK2318513T3 (en) * 2008-07-11 2012-10-22 Chr Hansen As NEW PROBIOTIC BIFIDOBACTERIUM LONGUM
RU2453320C2 (en) * 2008-08-05 2012-06-20 Виктор Владимирович Чалов Oral composition containing nonpathogenic microorganisms showing ability to normalise intestinal microflora (versions)
US20100233320A1 (en) * 2008-09-11 2010-09-16 Gregory Dean Sunvold Animal Feed Kibble with Protein-Based Core and Related Methods
US20100074870A1 (en) * 2008-09-19 2010-03-25 Bristol-Myers Squibb Company Probiotic infant products
KR101057357B1 (en) 2008-09-22 2011-08-17 광주과학기술원 Pharmaceutical and Food Compositions for Preventing or Treating Arthritis Comprising Lactic Acid Bacteria and Collagen as Active Ingredients
MX339907B (en) * 2008-11-11 2016-06-14 Alimentary Health Ltd Bifidobacterium longum.
JP2012518635A (en) 2009-02-24 2012-08-16 リター ファーマシューティカルズ インコーポレイテッド Prebiotic formulations and methods of use
GB0908949D0 (en) 2009-05-26 2009-07-01 Plant Bioscience Ltd Novel polypeptides having endolysin activity and uses thereof
US20100330151A1 (en) * 2009-06-25 2010-12-30 Mary Elaine Freeland Method of Promoting Gastrointestinal Health Using a Combination of a Probiotic Microorganism and Chocolate
US10104903B2 (en) 2009-07-31 2018-10-23 Mars, Incorporated Animal food and its appearance
US20110027412A1 (en) 2009-07-31 2011-02-03 Kris Eugene Spence Compositions and Methods for Promoting Gastrointestinal and/or Cardiovascular Health
EP2289527B1 (en) 2009-08-25 2018-02-21 Nestec S.A. Bifidobacterium longum and functional GI disorders
US8765706B2 (en) 2009-09-02 2014-07-01 Kyoto Prefectural Public University Corporation Composition comprising rna derived from lactic acid bacterium as effective component
US20110091431A1 (en) * 2009-10-09 2011-04-21 Prothera, Inc. Compositions and methods comprising pediococcus for reducing at least one symptom associated with autism spectrum disease in a person diagnosed with an autism spectrum disease
EP2498790A1 (en) * 2009-11-11 2012-09-19 Alimentary Health Limited A bifidobacterium strain
BR112012011315B1 (en) * 2009-11-11 2022-03-22 Precisionbiotics Group Limited Formulation comprising probiotic bifidobacteria strain
KR101840239B1 (en) 2010-01-28 2018-03-20 에이비-바이오틱스, 에스.에이. Probiotic composition for use in the treatment of bowel inflammation
EP4032586A1 (en) * 2010-02-01 2022-07-27 Rebiotix, Inc. Bacteriotherapy for clostridium difficile colitis
FR2955774A1 (en) 2010-02-02 2011-08-05 Aragan PREPARATION FOR TREATING PONDERAL EXCES AND ASSOCIATED DISORDERS AND APPLICATIONS THEREOF
WO2011118060A1 (en) * 2010-03-26 2011-09-29 株式会社明治 Method for screening intestinal immunity suppression agents
RU2451741C2 (en) * 2010-04-26 2012-05-27 Татьяна Александровна Левченко Bifidobacterium longum ABD-3 STRAIN USED TO OBTAIN BIFIDO-CONTAINING PRODUCT
RU2451740C2 (en) * 2010-04-26 2012-05-27 Татьяна Александровна Левченко Bifidobacterium longum ABD-7 STRAIN USED TO OBTAIN BIFIDO-CONTAINING PRODUCT
EP3202406A1 (en) 2010-04-28 2017-08-09 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
WO2011148219A1 (en) * 2010-05-28 2011-12-01 Compagnie Gervais Danone Probiotic strains for use in improving the enteric nervous system
CN102269858A (en) 2010-06-02 2011-12-07 北京智朗芯光科技有限公司 Automatic focusing system and automatic focusing method
WO2011151941A1 (en) 2010-06-04 2011-12-08 国立大学法人東京大学 Composition having activity of inducing proliferation or accumulation of regulatory t cell
FR2962045B1 (en) * 2010-07-05 2012-08-17 Bifinove MACROMOLECULAR COMPLEX OF BACTERIAL ORIGIN AND USE OF SAID MOLECULAR COMPLEX FOR PREVENTING AND TREATING INFLAMMATORY RHUMATISMS
EP3311825A1 (en) 2010-08-04 2018-04-25 Thomas Julius Borody Compositions for fecal floral transplantation and methods for making and using them
CN103209596A (en) * 2010-11-11 2013-07-17 雀巢产品技术援助有限公司 Frozen confections containing probiotic micro-organisms
ES2610908T3 (en) 2011-01-31 2017-05-04 Synformulas Gmbh Bifidobacterium bifidum strains for application in gastrointestinal diseases
WO2012122478A1 (en) 2011-03-09 2012-09-13 Regents Of The University Of Minnesota Compositions and methods for transplantation of colon microbiota
WO2012140636A1 (en) * 2011-04-11 2012-10-18 Alimentary Health Limited A probiotic formulation
RU2460777C1 (en) * 2011-04-21 2012-09-10 Общество с ограниченной ответственностью "Бифилюкс" Bifidobacterium longum strain used for preparing bifidus products
GB201112091D0 (en) 2011-07-14 2011-08-31 Gt Biolog Ltd Bacterial strains isolated from pigs
GB201117313D0 (en) 2011-10-07 2011-11-16 Gt Biolog Ltd Bacterium for use in medicine
KR101355440B1 (en) 2011-10-26 2014-02-05 주식회사한국야쿠르트 Lactobacillus helveticus HY7801 having anti- rheumatoid arthritis functions, and products containing thereof as effective component
CN103131647B (en) * 2011-11-29 2017-06-27 上海上药信谊药厂有限公司 Bifidobacterium infantis and its preparation
CA2892588A1 (en) 2011-12-01 2013-06-06 School Corporation, Azabu Veterinary Medicine Educational Institution Human-derived bacteria that induce proliferation or accumulation of regulatory t cells
US9856451B2 (en) 2011-12-28 2018-01-02 Yamada Bee Company Inc. Lactic acid bacterium having IgA production promoting activity, and use thereof
ES2659947T3 (en) 2012-01-19 2018-03-20 University College Cork-National University Of Ireland, Cork Cultivable GABA producing bacteria derived from the human gastrointestinal tract
US9173910B2 (en) 2012-02-29 2015-11-03 The General Hospital Corporation Compositions of microbiota and methods related thereto
US10588857B2 (en) 2012-03-29 2020-03-17 Therabiome, Llc Gastrointestinal site-specific oral vaccination formulations active on the ileum and appendix
WO2013176774A1 (en) 2012-05-25 2013-11-28 Arizona Board Of Regents Microbiome markers and therapies for autism spectrum disorders
EP2925332A4 (en) 2012-08-20 2016-12-21 Boris Markosian Placental vaccination therapy for cancer
FR2999601B1 (en) * 2012-12-17 2015-01-30 Urgo Lab METHOD FOR PREVENTING AND / OR TREATING INFECTIONS, COLONIZATIONS OR DISEASES ASSOCIATED WITH STAPHYLOCOCCUS AUREUS, PSEUDOMONAS AERUGINOSA, STREPTOCOCCUS PYOGENES, ENTEROCOCCUS FAECIUM, ENTEROBACTER CLOACAE, PROTEUS MIRABILIS AND / OR BACTEROIDES FRAGILIS
CN110075130A (en) 2013-03-14 2019-08-02 塞拉拜姆有限责任公司 The delivering of the targeting gastrointestinal tract of probiotics and/or therapeutic agent
GB201306536D0 (en) 2013-04-10 2013-05-22 Gt Biolog Ltd Polypeptide and immune modulation
US9511100B2 (en) 2013-06-05 2016-12-06 Rebiotix, Inc. Microbiota restoration therapy (MRT), compositions and methods of manufacture
US9782445B2 (en) 2013-06-05 2017-10-10 Rebiotix, Inc. Microbiota restoration therapy (MRT), compositions and methods of manufacture
US10383901B2 (en) 2013-06-05 2019-08-20 Rebiotix, Inc. Microbiota restoration therapy (MRT), compositions and methods of manufacture
US9511099B2 (en) 2013-06-05 2016-12-06 Rebiotix, Inc. Microbiota restoration therapy (MRT), compositions and methods of manufacture
PT3003330T (en) 2013-06-05 2018-10-10 Rebiotix Inc Microbiota restoration therapy (mrt), compositions and methods of manufacture
US9694039B2 (en) 2013-06-05 2017-07-04 Rebiotix, Inc. Microbiota restoration therapy (MRT), compositions and methods of manufacture
US10633714B2 (en) 2013-07-21 2020-04-28 Pendulum Therapeutics, Inc. Methods and systems for microbiome characterization, monitoring and treatment
CN106414709A (en) 2014-01-24 2017-02-15 宝洁公司 Filaments comprising a microorganism and method for making same
CN106414708A (en) 2014-01-24 2017-02-15 宝洁公司 Web comprising a microorganism-containing fibrous element and method for making same
US20150209468A1 (en) 2014-01-24 2015-07-30 The Procter & Gamble Company Hygiene article containing microorganism
EP3212001A4 (en) 2014-10-31 2018-04-25 Whole Biome Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
HUE037476T2 (en) 2014-12-23 2018-08-28 4D Pharma Res Ltd Pirin polypeptide and immune modulation
KR20220151045A (en) 2014-12-23 2022-11-11 4디 파마 리서치 리미티드 Immune modulation
AU2016219070B2 (en) 2015-02-13 2020-06-11 Mars, Incorporated Pet food feeding system
BR112017023059B1 (en) 2015-04-28 2022-07-05 Mars, Incorporated PROCESS FOR PREPARING A STERILIZED MOIST FOOD PRODUCT, STERILIZED MOIST FOOD PRODUCT, AND THEIR USE
KR102561989B1 (en) 2015-05-14 2023-07-31 핀치 테라퓨틱스 홀딩스 엘엘씨 Compositions for fecal floral transplantation and methods for making and using them and devices for delivering them
HUE058209T2 (en) 2015-05-22 2022-07-28 Univ Arizona State Methods for treating autism spectrum disorder and associated symptoms
RU2017141448A (en) * 2015-06-01 2019-07-15 Зэ Юниверсити Оф Чикаго TREATMENT OF CANCER BY MANIPULATION WITH COMMENSAL MICROFLORA
US20160354507A1 (en) 2015-06-07 2016-12-08 The Procter & Gamble Company Article of commerce containing absorbent article
US10799539B2 (en) 2015-06-09 2020-10-13 Rebiotix, Inc. Microbiota restoration therapy (MRT) compositions and methods of manufacture
US10905726B2 (en) 2015-06-09 2021-02-02 Rebiotix, Inc. Microbiota restoration therapy (MRT) compositions and methods of manufacture
CN107921072A (en) 2015-06-09 2018-04-17 雷柏奥提斯有限公司 Micropopulation resumes treatment(MRT)Composition and manufacture method
US10828340B2 (en) 2015-06-09 2020-11-10 Rebiotix, Inc. Microbiota restoration therapy (MRT) compositions and methods of manufacture
MA41010B1 (en) 2015-06-15 2020-01-31 4D Pharma Res Ltd Compositions comprising bacterial strains
EA201890048A1 (en) 2015-06-15 2018-06-29 4Д Фарма Рисёрч Лимитед COMPOSITIONS CONTAINING BACTERIAL STRAINS
ME03511B (en) 2015-06-15 2020-04-20 4D Pharma Res Ltd Compositions comprising bacterial strains
EA201890050A1 (en) 2015-06-15 2018-06-29 4Д Фарма Рисёрч Лимитед COMPOSITIONS CONTAINING BACTERIAL STRAINS
MA41060B1 (en) 2015-06-15 2019-11-29 4D Pharma Res Ltd Compositions comprising bacterial strains
US20170020750A1 (en) 2015-07-23 2017-01-26 The Procter & Gamble Company Patch containing microorganism
WO2017032897A1 (en) 2015-08-27 2017-03-02 Alimentary Health Limited Use of bifidobacterium longum and an exopolysaccharide produced thereby
RU2018105356A (en) 2015-08-27 2019-09-30 Дзе Проктер Энд Гэмбл Компани BIFIDOBACTERIUM BIFIDOBACTERIUM LONGUM
JP2018534277A (en) 2015-10-05 2018-11-22 シュヴァイツェリッシェ フォルシュングスインスティテュート フュア ホーフゲブリクスクリーマ ウント メディツィン イン ダヴォス Use of Akkermansia muciniphila for treating inflammatory conditions
EP3209310B1 (en) 2015-11-20 2018-01-31 4D Pharma Research Limited Compositions comprising bacterial strains
GB201520497D0 (en) 2015-11-20 2016-01-06 4D Pharma Res Ltd Compositions comprising bacterial strains
GB201520638D0 (en) 2015-11-23 2016-01-06 4D Pharma Res Ltd Compositions comprising bacterial strains
GB201520631D0 (en) 2015-11-23 2016-01-06 4D Pharma Res Ltd Compositions comprising bacterial strains
WO2017152072A1 (en) * 2016-03-04 2017-09-08 California Institute Of Technology New germanosilicate compositions and methods of preparing the same
LT3313423T (en) 2016-03-04 2019-06-25 4D Pharma Plc Compositions comprising bacterial blautia strains for treating visceral hypersensitivity
GB201612191D0 (en) 2016-07-13 2016-08-24 4D Pharma Plc Compositions comprising bacterial strains
RU2659240C2 (en) * 2016-05-23 2018-06-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) Method for obtaining a functional food for aftercare of oncologic patients
US20170360848A1 (en) 2016-06-15 2017-12-21 Arizona Board Of Regents On Behalf Of Arizona State University Methods for treating autism spectrum disorder and associated symptoms
US10849936B2 (en) 2016-07-01 2020-12-01 Regents Of The University Of Minnesota Compositions and methods for C. difficile treatment
TWI802545B (en) 2016-07-13 2023-05-21 英商4D製藥有限公司 Compositions comprising bacterial strains
US20180036352A1 (en) 2016-08-03 2018-02-08 Crestovo Holdings Llc Methods for treating ulcerative colitis
WO2018071536A1 (en) 2016-10-11 2018-04-19 Crestovo Holdings Llc Compositions and methods for treating primary sclerosing cholangitis and related disorders
US11026978B2 (en) 2016-10-11 2021-06-08 Finch Therapeutics Holdings Llc Compositions and methods for treating multiple sclerosis and related disorders
US10092601B2 (en) 2016-10-11 2018-10-09 Crestovo Holdings Llc Compositions and methods for treating multiple sclerosis and related disorders
IT201600121481A1 (en) * 2016-11-30 2018-05-30 Sintal Dietetics Srl L. SALIVARIUS SGL03: PROBIOTIC ACTIVITIES AND PRODUCTION OF ANTIMICROBIAL PROTEINS
GB201621123D0 (en) 2016-12-12 2017-01-25 4D Pharma Plc Compositions comprising bacterial strains
CN107043705A (en) * 2016-12-30 2017-08-15 大连医科大学 Prebiotic bacterial screening method for setting up clinical nutrition microorganism resource storehouse
KR101999259B1 (en) * 2017-01-31 2019-07-11 경희대학교 산학협력단 Novel lactic acid bacteria and use thereof
EP3589726A1 (en) 2017-02-28 2020-01-08 Alimentary Health Limited Bifidobacterium longum able to beneficially modulate immune response to respiratory virus infection
CA3058818A1 (en) 2017-04-05 2018-10-11 Crestovo Holdings Llc Compositions and methods for treating parkinson's disease (pd) and related disorders
US11040073B2 (en) 2017-04-05 2021-06-22 Finch Therapeutics Holdings Llc Compositions and methods for treating diverticulitis and related disorders
RS61872B1 (en) 2017-05-22 2021-06-30 4D Pharma Res Ltd Compositions comprising bacterial strains
EP3630942B1 (en) 2017-05-24 2022-11-30 4D Pharma Research Limited Compositions comprising bacterial strain
EP3630190B1 (en) 2017-05-26 2024-02-21 Finch Therapeutics Holdings LLC Lyophilized compositions comprising fecal microbe-based therapeutic agents and methods for making and using same
EP3638271B1 (en) 2017-06-14 2020-10-14 4D Pharma Research Limited Compositions comprising bacterial strains
AU2018285453B2 (en) 2017-06-14 2020-03-19 Cj Bioscience, Inc. Compositions comprising a bacterial strain of the genus Megasphaera and uses thereof
WO2019010255A1 (en) 2017-07-05 2019-01-10 Evelo Biosciences, Inc. Compositions and methods of treating cancer using bifidobacterium animalis ssp. lactis
AU2018313766A1 (en) * 2017-08-07 2020-02-20 Finch Therapeutics, Inc. Compositions and methods for maintaining and restoring a healthy gut barrier
WO2019046646A1 (en) 2017-08-30 2019-03-07 Whole Biome Inc. Methods and compositions for treatment of microbiome-associated disorders
RU2665173C1 (en) * 2017-09-18 2018-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный медицинский университет" Министерства здравоохранения Российской Федерации Method of preventing atopic dermatitis in infants by modulating microbial mechanism of histamine formation
US20200338144A1 (en) * 2017-11-01 2020-10-29 Biofermin Pharmaceutical Co., Ltd. Agent for preventing or treating small intestinal injury induced by non-steroidal anti-inflammatory drug and proton pump inhibitor
WO2019103198A1 (en) 2017-11-24 2019-05-31 주식회사 고바이오랩 Lactobacillus fermentum kbl 375 strain and use thereof
ES2898876T3 (en) 2018-01-26 2022-03-09 Probisearch S L U Composition comprising a new strain of Lactobacillus salivarius and a method for the prevention and treatment of otitis and upper respiratory tract infections
DK3745870T3 (en) * 2018-01-29 2023-02-20 Prec Group Limited A COMBINATION PRODUCT FOR THE PROPHYLAXIS AND TREATMENT OF IRRITABLE BOWEL SYNDROME
US11825856B2 (en) * 2018-03-28 2023-11-28 Morinaga Milk Industry Co., Ltd. Composition for preventing or improving functional gastrointestinal disorders, and, pharmaceutical composition, food/beverage composition, and method of preventing or improving functional gastrointestinal disorders using the composition for preventing or improving functional gastrointestinal disorders
RU2670054C1 (en) * 2018-04-24 2018-10-17 Федеральное государственное бюджетное учреждение науки Институт клеточного и внутриклеточного симбиоза Уральского отделения Российской академии наук BIFIDOBACTERIUM BIFIDUM ICIS-310 BACTERIUM STRAIN - PRODUCER OF INHIBITOR OF PRO-INFLAMMATORY CYTOKINE INF-γ
SG11202010944RA (en) 2018-05-09 2020-12-30 Ko Biolabs Inc Lactobacillus paracasei strain and use thereof
CN110468061B (en) * 2018-05-11 2024-03-08 韩国亿诺生物有限公司 Novel strain having cancer preventing or treating effect
JP7088573B2 (en) 2018-05-23 2022-06-21 コバイオラブズ・インコーポレイテッド Lactobacillus gasserie KBL697 strain and its use
CN112236154A (en) * 2018-05-31 2021-01-15 深圳华大生命科学研究院 Composition and application thereof
US11166990B2 (en) 2018-07-13 2021-11-09 Finch Therapeutics Holdings Llc Methods and compositions for treating ulcerative colitis
CN109486700A (en) * 2018-08-31 2019-03-19 石家庄君乐宝乳业有限公司 Lactobacillus paracasei N1115 prevents application and the corresponding probiotic powder, application of colitis
WO2020069280A1 (en) 2018-09-27 2020-04-02 Crestovo Holdings Llc Compositions and methods for treating epilepsy and related disorders
ES2752798B2 (en) * 2018-10-05 2020-08-12 Consejo Superior Investigacion Bifidobacterium longum sub strain. infantis and use of it
KR102074445B1 (en) * 2018-12-12 2020-02-06 주식회사 비피도 Bifidobacterium longum RAPO for improvement, prevention or treatment of rheumatoid arthritis and composition comprising the same
WO2021021765A1 (en) * 2019-07-26 2021-02-04 Evolve Biosystems, Inc. Nutritive compositions with bioactive proteins
KR102224072B1 (en) * 2019-08-19 2021-03-10 주식회사 빙그레 Bifidobacterium longum subsp. longum having both abilities of reducing total cholesterol in serum and immune regulation and its application
CN110547915A (en) * 2019-08-29 2019-12-10 云南白药清逸堂实业有限公司 sanitary cotton product using probiotics and preparation method thereof
CN110452860A (en) * 2019-09-24 2019-11-15 厦门大学 A kind of streptococcus salivarius and its application in treatment inflammatory bowel medicine
EP4117697A1 (en) 2020-03-13 2023-01-18 PrecisionBiotics Group Limited Bifidobacterium longum
TWI748395B (en) * 2020-03-31 2021-12-01 豐華生物科技股份有限公司 Composition for relieving allergies and improving exercise performance and uses thereof
CN113943681B (en) * 2020-11-12 2023-07-04 江南大学 Bifidobacterium longum capable of reducing inflammatory reaction and relieving constipation
KR102307603B1 (en) * 2020-11-13 2021-10-05 주식회사 비피도 Composition with Bifidobacterium longum RAPO (KCTC13773BP) for preventing or treating cancer
CN114317310B (en) * 2021-03-31 2023-09-22 江苏蓝泽生物科技有限公司 Antiallergic bifidobacterium infantis preparation and preparation method thereof
CN114558037B (en) * 2022-02-24 2023-08-15 同济大学 Application of AKK and LS in preparation of anti-aging products for improving cognition level

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435389A (en) * 1980-07-07 1984-03-06 Kabushiki Kaisha Yakult Honsha Composition for promoting growth of bifidobacteria
US5032399A (en) * 1985-04-17 1991-07-16 Sherwood L. Gorbach L. acidophilus strains
US5443826A (en) * 1988-08-02 1995-08-22 Borody; Thomas J. Treatment of gastro-intestinal disorders with a fecal composition or a composition of bacteroides and E. Coli
US5922375A (en) * 1998-03-20 1999-07-13 Wisconsin Alumni Research Foundation Probiotic Bifidobacterium strain
US6077504A (en) * 1996-06-28 2000-06-20 Cavaliere Ved. Vesley; Renata Maria Anna Enteral dietary compositions comprising a mixture of live lactic bacteria consisting of Streptococcus thermophilus, Bifidobacterium longum and Bifidobacterium infantis
US6132710A (en) * 1997-03-17 2000-10-17 Probiotix, Inc. Preventing/treating neonatal NEC by administering lactobacillus salivarius and lactobacillus plantarum or a combination thereof
US6368591B2 (en) * 1998-05-15 2002-04-09 Shanghai Sine Pharmaceutical Corporation Ltd. Beneficial microbe composition, new protective materials for the microbes, method to prepare the same and uses thereof

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038372B2 (en) 1975-04-09 1985-08-31 日清製粉株式会社 How to prevent and treat dog diarrhea
JPS55113718A (en) * 1979-02-27 1980-09-02 Yakult Honsha Co Ltd Antitumor agent
JPS59118712A (en) * 1982-12-27 1984-07-09 Morinaga Milk Ind Co Ltd Antitumor agent and its preparation
US4678773A (en) * 1983-08-26 1987-07-07 Chugai Seiyaku Kabushiki Kaisha Antitumor agent
JPH0696538B2 (en) * 1985-12-19 1994-11-30 株式会社アドバンス Anti-carcinogen
JPS63196521A (en) * 1987-02-10 1988-08-15 Yakult Honsha Co Ltd Tumor cell disorder factor inducer
US5352586A (en) * 1987-05-01 1994-10-04 Biogaia Ab Method of determining the presence of an antibiotic produced by Lactobacillus reuteri
DK686187D0 (en) 1987-12-23 1987-12-23 Hansens Chr Bio Syst VETERINATED PREPARATION
WO1990001335A1 (en) 1988-08-02 1990-02-22 Borody Thomas J Treatment of gastro-intestinal disorders
SE8900546D0 (en) 1989-02-17 1989-02-17 Bioinvent Int Ab Means for inhibiting pathogens' growth and / or survival
NZ232512A (en) 1989-02-21 1993-09-27 Viskase Corp Compositions and firms containing antibacterial agents, methods of treating foodstuffs therewith
JP2932283B2 (en) * 1989-07-14 1999-08-09 雪印乳業株式会社 Method for producing fermented milk containing bifidobacteria
GB9107305D0 (en) 1991-04-08 1991-05-22 Unilever Plc Probiotic
US5413785A (en) * 1993-01-27 1995-05-09 New England Deaconess Hospital Corp. Methodology employing lactobacillus GG for reduction of plasma endotoxin levels circulating in-vivo
RU2031586C1 (en) * 1993-02-05 1995-03-27 Тамара Георгиевна Извекова Biologically active product of sour milk and method for its production
JPH0782158A (en) * 1993-09-16 1995-03-28 Yakult Honsha Co Ltd Antiulcer agent
JP3623977B2 (en) * 1993-10-29 2005-02-23 明治乳業株式会社 Treatment for ulcerative colitis
JPH07265064A (en) * 1993-11-23 1995-10-17 Taketoshi Yamada Composition for improving enterobacterial flora
CA2171614C (en) * 1994-07-15 2008-04-15 Mamoru Koketsu Pharmaceutical composition containing sialic acid derivatives
JP2780154B2 (en) * 1995-02-17 1998-07-30 株式会社ヤクルト本社 Yogurt
JPH092959A (en) * 1995-06-16 1997-01-07 Yakult Honsha Co Ltd Immuno-globulin e antibody production suppressant and antiallergic agent
RU2091075C1 (en) 1995-06-28 1997-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Complex bacterial preparation for treatment and prophylaxis of gastroenteric disease in animals
JP4021951B2 (en) * 1996-03-01 2007-12-12 わかもと製薬株式会社 Anti-gastritis, anti-ulcer and fermented food containing lactic acid bacteria as active ingredients
JPH09241179A (en) * 1996-03-01 1997-09-16 Meiji Seika Kaisha Ltd Water-soluble immunopotentiator derived from bacterium of genus bifidobacterium and its purification
US5902578A (en) 1996-03-25 1999-05-11 Abbott Laboratories Method and formula for the prevention of diarrhea
TW357191B (en) * 1996-06-04 1999-05-01 Food Industry Development Res Institute Bifidobacteria strains with acid, bile salt and oxygen tolerance and their culture method the invention relates to bifidobacteria strains with acid, bile salt and oxygen tolerance and their culture method
NZ337505A (en) * 1997-02-11 2001-07-27 Univ College Cork Nat Univ Ie Isolated antimicrobial agents from Lactobacillus salivarius
RU2109054C1 (en) 1997-04-01 1998-04-20 Московский научно-исследовательский институт эпидемиологии и микробиологии им.Г.Н.Габричевского Consortium of bifidobacterium bifidum 791, b longum b379m, b breve 79-119, b infantis 73-15, b adolescentis g7513 for preparing lactic acid nonfermented foodstuffs and bacterial preparations
CN1178703A (en) * 1997-08-06 1998-04-15 北京东方百信生物技术有限公司 Gastrointestinal tract preparation for bady and its producing technology
EP0904784A1 (en) 1997-09-22 1999-03-31 N.V. Nutricia Probiotic nutritional preparation
FI980782A (en) 1998-04-03 1999-10-04 Timo Korhonen A protein-binding protein region and the protein coding DNA sequence
WO1999062348A1 (en) 1998-05-29 1999-12-09 Enterprise Ireland (Trading As Bioresearch Ireland) Process for the manufacture of probiotic cheese
ES2214049T3 (en) * 1998-10-20 2004-09-01 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw. USE OF A LACTOCOCCUS PRODUCER OF CYTOKINES TO TREAT COLITIS.
ID29150A (en) 1999-01-15 2001-08-02 Entpr Ireland Cs USE OF LACTOBACILLUS SALIVARIUS
AUPQ415899A0 (en) 1999-11-19 1999-12-16 Vasse Research Institute Pty Ltd Compositions for and methods of treatment of allergic diseases
DE60137235D1 (en) 2000-08-25 2009-02-12 Wakamoto Pharma Co Ltd L. salivarius strain containing probiotic products
US6618973B2 (en) * 2001-05-15 2003-09-16 Ned H. Nelson Banner holder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435389A (en) * 1980-07-07 1984-03-06 Kabushiki Kaisha Yakult Honsha Composition for promoting growth of bifidobacteria
US5032399A (en) * 1985-04-17 1991-07-16 Sherwood L. Gorbach L. acidophilus strains
US5443826A (en) * 1988-08-02 1995-08-22 Borody; Thomas J. Treatment of gastro-intestinal disorders with a fecal composition or a composition of bacteroides and E. Coli
US6645530B1 (en) * 1988-08-02 2003-11-11 Gastro Services Pty Limited Treatment of gastro-intestinal disorders
US6077504A (en) * 1996-06-28 2000-06-20 Cavaliere Ved. Vesley; Renata Maria Anna Enteral dietary compositions comprising a mixture of live lactic bacteria consisting of Streptococcus thermophilus, Bifidobacterium longum and Bifidobacterium infantis
US6132710A (en) * 1997-03-17 2000-10-17 Probiotix, Inc. Preventing/treating neonatal NEC by administering lactobacillus salivarius and lactobacillus plantarum or a combination thereof
US5922375A (en) * 1998-03-20 1999-07-13 Wisconsin Alumni Research Foundation Probiotic Bifidobacterium strain
US6368591B2 (en) * 1998-05-15 2002-04-09 Shanghai Sine Pharmaceutical Corporation Ltd. Beneficial microbe composition, new protective materials for the microbes, method to prepare the same and uses thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195906B2 (en) 1999-01-15 2007-03-27 Enterprise Ireland (Trading As Bioresearch Ireland) Bifidobacterium in the treatment of inflammatory disease
US20050214272A1 (en) * 1999-01-15 2005-09-29 Enterprise Ireland (Trading As Bioresearch Ireland) Bifidobacterium in the treatment of inflammatory disease
US20050074441A1 (en) * 1999-01-15 2005-04-07 Enterprise Ireland (Trading As Bioresearch Ireland) Bifidobacterium in the treatment of inflammatory disease
US20080057109A1 (en) * 1999-01-15 2008-03-06 University College Cork-National University Of Ireland, Cork & Enterprise Ireland (Trading As Bifidobacterium in the treatment of inflammatory disease
US20070141039A1 (en) * 1999-01-15 2007-06-21 University College Cork - National University Of Ireland, Cork Bifidobacterium in the treatment of inflammatory disease
US20080292604A1 (en) * 2003-12-19 2008-11-27 Thomas William-Maxwell Boileau Canine probiotic lactobacilli
US7906112B2 (en) * 2003-12-19 2011-03-15 The Procter & Gamble Company Canine probiotic Lactobacilli
US20060018890A1 (en) * 2004-07-01 2006-01-26 Erika Isolauri Method for preventing or treating respiratory infections and acute otitis media in infants
US7862808B2 (en) 2004-07-01 2011-01-04 Mead Johnson Nutrition Company Method for preventing or treating respiratory infections and acute otitis media in infants using Lactobacillus rhamnosus LGG and Bifidobacterium lactis Bb-12
KR100568036B1 (en) 2004-08-12 2006-04-07 하남주 Bifidobacterium strain activating intestinal functions and potentiating immune functions, and probiotics containing the same
AU2006224660B2 (en) * 2005-03-16 2011-12-01 Actial Farmaceutica S.R.L. Mixture of at least 6 species of lactic acid bacteria and/or bifidobacteria in the manufacture of sourdough
EA015575B1 (en) * 2005-03-16 2011-10-31 Атьял Фармасеутика Лда. Sourdough, method for production and use thereof
WO2006097415A1 (en) * 2005-03-16 2006-09-21 Actial Farmacêutica Lda. Mixture of at least 6 species of lactic acid bacteria and/or bifidobacteria in the manufacture of sourdough
US20080131556A1 (en) * 2005-03-16 2008-06-05 Vsl Pharmaceuticals, Inc. Mixture of at Least 6 Species of Lactic Acid Bacteria and/or Bifidobacteria in the Manufacture of Sourdough
US7923006B2 (en) 2005-04-15 2011-04-12 Mead Johnson Nutrition Company Method for preventing or treating the development of respiratory allergies
US20080118485A1 (en) * 2005-04-15 2008-05-22 Bristol-Myers Squibb Company Method for preventing or treating the development of respiratory allergies
US20080085267A1 (en) * 2005-04-15 2008-04-10 Bristol-Myers Squibb Company Method for preventing or treating the development of respiratory allergies
US20080118483A1 (en) * 2005-04-15 2008-05-22 Bristol-Myers Squibb Company Method for preventing or treating the development of respiratory allergies
US7867486B2 (en) 2005-04-15 2011-01-11 Mead Johnson Nutrition Company Method for preventing or treating the development of respiratory allergies
US7867485B2 (en) 2005-04-15 2011-01-11 Mead Johnson Nutrition Company Method for preventing or treating the development of respiratory allergies
US20080131413A1 (en) * 2005-04-15 2008-06-05 Bristol-Myers Squibb Company Method for preventing or treating the development of respiratory allergies
US7837989B2 (en) 2005-04-15 2010-11-23 Mead Johnson Nutrition Company Method for preventing or treating the development of respiratory allergies
US20080206213A1 (en) * 2007-02-28 2008-08-28 Bristol-Myers Squibb Company Method for reducing or preventing systemic inflammation
US9408819B2 (en) 2007-02-28 2016-08-09 Mead Johnson Nutrition Company Method for reducing or preventing systemic inflammation
US20100310520A1 (en) * 2007-12-24 2010-12-09 Consejo Superior De Investigaciones Cientificas Microorganisms for improving the health of individuals with disorders related to gluten ingestion
US8501169B2 (en) * 2007-12-24 2013-08-06 Consejo Superior De Investigaciones Cientificas Microorganisms for improving the health of individuals with disorders related to gluten ingestion
AU2008341708B2 (en) * 2007-12-24 2014-07-17 Consejo Superior De Investigaciones Cientificas Microorganisms for improving the health of individuals with disorders related to gluten ingestion
KR101434220B1 (en) * 2013-03-26 2014-08-28 삼육대학교산학협력단 Novel lactic acid bacteria having inhibitory activity against multidrug resistant bacteria

Also Published As

Publication number Publication date
BRPI0007481A (en) 2002-04-09
US20030166257A1 (en) 2003-09-04
CA2724287A1 (en) 2000-07-20
IE20000033A1 (en) 2000-08-09
EP1141235A2 (en) 2001-10-10
RU2001119046A (en) 2003-06-20
WO2000042429A2 (en) 2000-07-20
ID30449A (en) 2001-12-06
US20070141039A1 (en) 2007-06-21
US7195906B2 (en) 2007-03-27
CA2359334C (en) 2011-03-22
WO2000041707A2 (en) 2000-07-20
NO20013467D0 (en) 2001-07-12
BRPI0007481B8 (en) 2021-07-06
AU779405B2 (en) 2005-01-20
TR200102059T2 (en) 2002-02-21
NO20013429D0 (en) 2001-07-10
WO2000042429A3 (en) 2001-10-11
CA2359334A1 (en) 2000-07-20
BRPI0007481B1 (en) 2015-12-15
IL144184A0 (en) 2002-05-23
CN100552016C (en) 2009-10-21
EP1688481A1 (en) 2006-08-09
RU2279282C2 (en) 2006-07-10
US20080311080A1 (en) 2008-12-18
ATE326012T1 (en) 2006-06-15
JP2002534113A (en) 2002-10-15
PT1141235E (en) 2006-10-31
AU3071600A (en) 2000-08-01
HK1044964B (en) 2010-01-15
MXPA01007152A (en) 2003-04-02
TR200102058T2 (en) 2001-12-21
AU3071700A (en) 2000-08-01
DE60035670D1 (en) 2007-09-06
EP1143985A3 (en) 2002-08-28
DE60028003T2 (en) 2007-04-12
EP1143985A2 (en) 2001-10-17
IL144185A (en) 2009-05-04
US20100112003A1 (en) 2010-05-06
NO20013467L (en) 2001-09-14
NO20013429L (en) 2001-08-27
EP1143985B1 (en) 2007-07-25
DK1143985T3 (en) 2007-11-19
ES2290008T3 (en) 2008-02-16
BR0007550A (en) 2001-10-30
DK1141235T3 (en) 2006-09-18
WO2000041707A3 (en) 2001-09-27
JP2004502633A (en) 2004-01-29
CN101744841A (en) 2010-06-23
DE60027866D1 (en) 2006-06-14
EP1141235B1 (en) 2006-05-17
DE60035670T2 (en) 2008-04-30
US20080057109A1 (en) 2008-03-06
JP4706016B2 (en) 2011-06-22
US20050214272A1 (en) 2005-09-29
ES2265331T3 (en) 2007-02-16
IL144185A0 (en) 2002-05-23
NZ530273A (en) 2005-04-29
US20020006432A1 (en) 2002-01-17
EP1145001B1 (en) 2006-05-10
ATE367820T1 (en) 2007-08-15
MXPA01007144A (en) 2002-04-24
CN1338940A (en) 2002-03-06
US20030170217A1 (en) 2003-09-11
CN1245994C (en) 2006-03-22
CN101744841B (en) 2013-05-15
DE60028003D1 (en) 2006-06-22
WO2000042168A3 (en) 2000-11-16
HK1044964A1 (en) 2002-11-08
US20060002908A1 (en) 2006-01-05
NZ529353A (en) 2005-06-24
AU3071500A (en) 2000-08-01
US20050074441A1 (en) 2005-04-07
US20060292133A1 (en) 2006-12-28
CN1342196A (en) 2002-03-27
NO327792B1 (en) 2009-09-28
ATE326525T1 (en) 2006-06-15
RU2308483C2 (en) 2007-10-20
WO2000042168A2 (en) 2000-07-20
EP1145001A2 (en) 2001-10-17
CA2360243A1 (en) 2000-07-20
ID29150A (en) 2001-08-02
US20050084482A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
CA2359334C (en) Bifidobacterium in the treatment of inflammatory disease
US20030092163A1 (en) Probiotic bifidobacterium strains
NZ543584A (en) Probiotic lactobacillus salivarius strains AH102 (NCIMB 41044)
ZA200105617B (en) Bifidobacterium in the treatment of inflammatory disease.
IE20000034A1 (en) Bifidobacterium in the treatment of Inflammatory Disease
ZA200400555B (en) Probiotic bifidobacterium strains.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION