US20030211801A1 - Hydroentangled continuous filament nonwoven fabric and the articles thereof - Google Patents

Hydroentangled continuous filament nonwoven fabric and the articles thereof Download PDF

Info

Publication number
US20030211801A1
US20030211801A1 US10/339,537 US33953703A US2003211801A1 US 20030211801 A1 US20030211801 A1 US 20030211801A1 US 33953703 A US33953703 A US 33953703A US 2003211801 A1 US2003211801 A1 US 2003211801A1
Authority
US
United States
Prior art keywords
imaged
nonwoven fabric
fabrics
layer
continuous filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/339,537
Inventor
Michael Putnam
Ralph Moody
Greg Day
Nick Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avintiv Specialty Materials Inc
Original Assignee
Polymer Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymer Group Inc filed Critical Polymer Group Inc
Priority to US10/339,537 priority Critical patent/US20030211801A1/en
Assigned to JPMORGAN CHASE BANK reassignment JPMORGAN CHASE BANK SECURITY AGREEMENT Assignors: POLYMER GROUP, INC.
Assigned to POLYMER GROUP, INC. reassignment POLYMER GROUP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARTER, NICK, DAY, GREG, PUTNAM, MICHAEL, MOODY, RALPH A., III
Publication of US20030211801A1 publication Critical patent/US20030211801A1/en
Assigned to FIBERTECH GROUP, INC., POLYMER GROUP, INC. reassignment FIBERTECH GROUP, INC. RELEASE OF SECURITY INTEREST Assignors: JPMORGAN CHASE BANK, AS ADMINISTRATIVE AGENT
Assigned to CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATERAL AGENT reassignment CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC, POLY-BOND, INC., POLYMER GROUP, INC.
Assigned to WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT reassignment WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC., POLY-BOND, INC., POLYMER GROUP, INC.
Assigned to FABRENE GROUP L.L.C., PRISTINE BRANDS CORPORATION, POLYMER GROUP, INC., CHICOPEE, INC., DOMINION TEXTILE (USA) INC., POLY-BOND INC., LORETEX CORPORATION, FABPRO ORIENTED POLYMERS, INC., BONLAM (S.C.), INC., FABRENE CORP., FIBERGOL CORPORATION, FNA POLYMER CORP., PGI POLYMER, INC., POLYLONIX SEPARATION TECHNOLOGIES, INC., FIBERTECH GROUP, INC., PGI EUROPE, INC., FNA ACQUISITION, INC., TECHNETICS GROUP, INC., PNA CORPORATION reassignment FABRENE GROUP L.L.C. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT
Assigned to CITICORP NORTH AMERICA, INC., AS COLLATERAL AGENT reassignment CITICORP NORTH AMERICA, INC., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC., PGI POLYMER, INC., POLY-BOND INC., POLYMER GROUP, INC.
Assigned to CHICOPEE, INC., FNA POLYMER CORP., POLYLONIX SEPARATION TECHNOLOGIES, INC., TECHNETICS GROUP, INC., FNA ACQUISITION, INC., FIBERTECH GROUP, INC., PRISTINE BRANDS CORPORATION, FABPRO ORIENTED POLYMERS, INC., FABRENE CORP., BONLAM (S.C.), INC., PNA CORPORATION, LORETEX CORPORATION, DOMINION TEXTILE (USA) INC., FABRENE GROUP L.L.C., PGI POLYMER, INC., POLY-BOND INC., PGI EUROPE, INC., POLYMER GROUP, INC., FIBERGOL CORPORATION reassignment CHICOPEE, INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT
Priority to US11/342,758 priority patent/US20060128249A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • D04H1/495Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet for formation of patterns, e.g. drilling or rearrangement
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/666Mechanically interengaged by needling or impingement of fluid [e.g., gas or liquid stream, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/668Separate nonwoven fabric layers comprise chemically different strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/689Hydroentangled nonwoven fabric

Definitions

  • the present invention relates generally to nonwoven fabrics, and more particularly, to hydroentangled nonwoven fabrics exhibiting desirable softness, strength and bulk characteristics, which are manufactured from at least one layer of lightly bonded continuous filament substrate facilitating efficient and high-speed production, said continuous filament nonwoven fabric being formed upon a three-dimensional image transfer device, and said imaged continuous filament nonwoven fabric being of particular utility in hygiene, industrial, and medical article fabrication.
  • Nonwoven fabrics are used in a wide variety of applications where the engineered qualities of the fabric can be advantageously employed. These types of fabrics differ from traditional woven or knitted fabrics in that the fibers or filaments of the fabric are integrated into a coherent web without the practice of traditional textile processes. Entanglement of the fibrous elements of the fabric provides the fabric with the desired integrity, with the selected entanglement process permitting fabrics to be patterned to achieve desired utility.
  • U.S. Pat. No. 5,369,858, to Gilmore et al. discloses an apertured nonwoven fabric formed from melt-blown microfibers using the Evans-type technology. These types of microfibers are attenuated during the practice of well-known melt-blowing formation techniques, whereby the fibers have relatively small diameters and constrained fiber lengths.
  • This patent discloses the use of a belt or drum support. Plural hydroentangling manifolds act against fibers positioned on the forming surface to displace the fibers from “knuckles” of the forming surface, and into openings or lower parts of the forming surface topography, as in Evans.
  • This patent contemplates use of a polymeric net or scrim for fabric formation, and the formation of fabric having apertures therein of two different sizes, including formation of fabric from a first layer of textile fibers or polymeric filaments, and a second layer of melt-blown microfibers.
  • U.S. Pat. No. 4,805,275 to Suzuki et al., also discloses a method for forming nonwoven fabrics by hydroentanglement. This patent contemplates that hydroentanglement of a fibrous web be effected on a non-three-dimensional smooth-surfaced water-impermeable endless belt.
  • U.S. Pat. No. 5,516,572, to Roe discloses a disposable absorbent article including a liquid pervious topsheet, wherein the topsheet comprises a nonwoven fabric prepared from a homogeneous admixture of melt-blown fibers and staple length synthetic fibers.
  • the patent contemplates that fabrics formed in accordance with its teachings comprise a blend including up to 50% by weight of melt-blown fibers.
  • the present invention contemplates a nonwoven fabric employing at least one continuous filament layer and a hydroentangling device having a foraminous forming surface, which results in an efficiently produced nonwoven fabrics having a high degree of tunable aesthetic and/or physical performance properties.
  • Such aesthetic and performance attributes imparted into the resulting imaged nonwoven fabric facilitating use in a wide variety of end-use applications.
  • a three-dimensionally imaged nonwoven fabric contemplates a material formed by hydroentanglement of at least one lightly bonded continuous filament layer upon a device having a three-dimensional foraminous forming surface.
  • the preferred continuous filament substrate is in the form of a precursor web comprising spunbond continuous polymeric filaments.
  • spunbond entails extrusion, or “spinning”, of thermoplastic polymeric material with the resultant filaments cooled and drawn, or attenuated, as they are collected.
  • the continuous, or essentially endless, filaments may be bonded to facilitate off-line formation, with the process of the subject invention contemplating that such spunbond material be employed as the precursor web.
  • thermoplastic polymers of the spunbond material are chosen from the group consisting of polyolefins, polyamides, and polyesters, wherein the polyolefins are chosen from the group consisting of polypropylene, polyethylene, and combinations thereof. It is within the purview of the present invention that more than one layer of spunbond material may be used in the formation of the precursor web, each layer of spunbond material comprising either the same or different thermoplastic polymers. Further, the spunbond material layer or layers may comprise homogeneous, bi-component, and/or multi-component profiles of the same or differing thermoplastic polymers, as well as, aesthetic and/or performance modifying additives, and the blends thereof.
  • hydroentanglement is effected by application of high pressure liquid streams upon the precursor web. Filaments of the precursor web are rearranged on the three-dimensional topography of the device. The forming surface of the device, thus acts in concert with the high pressure liquid streams, to rearrange the filaments of the precursor web.
  • the characteristics of the spunbond precursor web in particular the strength of its bonds, has a direct influence on the strength characteristics of the resultant nonwoven fabric.
  • a nonwoven fabric formed in accordance with the present invention may be formed to include substantially continuous filaments (from a relatively lightly bonded spunbond precursor web), with the resulting fabric having a machine direction tensile strength of at least about 1,472 grams per centimeter at 47% machine-direction elongation.
  • the degree of bonding of the precursor web is specifically selected to facilitate handling of the web, with the contemplation that higher strength fabrics can be achieved if the filaments of the precursor web are maintained in a substantially continuous form.
  • the spunbond precursor web is subjected to bonding which provides no more than a minimum tensile strength, which permits winding and unwinding, or similar processing, of the precursor web.
  • the minimal tensile strength of the precursor web is selected to facilitate efficient handling during manufacturing of the present three-dimensionally nonwoven fabric.
  • a further embodiment of the present invention is the incorporation of one or more continuous filament layers into a single imaged nonwoven fabric.
  • one or more imaged continuous filament nonwoven fabrics may be formed into compound constructs, of either laminate or composite structure, by combination with one or more layers selected from the group consisting of: un-imaged nonwoven fabrics, un-imaged woven fabrics, un-imaged knitted fabrics, imaged nonwoven fabrics, imaged woven fabrics, imaged knitted fabrics, pulp tissues, planar films, apertured films, scrims, supporting sublayers, and the combinations thereof.
  • a secondary material layer may be essentially planar, or be formed so as to have the same, or different, three-dimensional image as the essential imaged continuous filament nonwoven layer.
  • Other aesthetic or performance modifying fillers such as absorbents, soaps, or medicinals, may be included between the at least one imaged continuous filament nonwoven layer and the at least one secondary material layer.
  • FIG. 1 is a diagrammatic view of a hydroentangling apparatus for practicing the process of the present invention, whereby imaged continuous filament nonwoven fabrics embodying the principles of the present invention can be formed;
  • FIG. 2 is a diagrammatic view of an alternate hydroentangling apparatus for practicing the process of the present invention.
  • FIG. 3 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “hexagon-Z”;
  • FIG. 4 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “square-Z”;
  • FIG. 5 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “bar-Z”;
  • FIG. 6 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “crisscross-Z”;
  • FIG. 7 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “no hole-Z”;
  • FIG. 8 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large segmented diamond”;
  • FIG. 9 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “wave”;
  • FIG. 10 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large basket weave”;
  • FIG. 11 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large square”;
  • FIG. 12 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “zig-zag”;
  • FIG. 13 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large honeycomb”;
  • FIG. 14 is a photomicrograph of a three-dimensional image nonwoven fabric of the present invention, having a “20 ⁇ 20” image imparted therein, magnification is about 12 ⁇ ;
  • FIG. 15 is a top-plan view of a three-dimensional image nonwoven fabric of the present invention, having a “8 ⁇ 20” image imparted therein, magnification is about 12 ⁇ ;
  • FIG. 16 is a plan view of a disposable diaper article
  • FIG. 17 is a front view of a protective garment article.
  • the present invention relates generally to nonwoven fabrics, and more particularly, to hydroentangled nonwoven fabrics exhibiting desirable softness, strength, and bulk characteristics, which are manufactured from at least one layer of lightly bonded continuous filament substrate facilitating efficient and high-speed production, said continuous filament nonwoven fabric being formed upon a three-dimensional image transfer device, and said imaged continuous filament nonwoven fabric being of particular utility in hygiene, industrial, and medical article fabrication.
  • FIG. 1 therein is illustrated a hydroentangling apparatus, generally designated 10 , which can be employed for practicing the formation of a three-dimensionally imaged continuous filament nonwoven fabric.
  • the apparatus is configured generally in accordance with the teachings of U.S. Pat. No. 5,098,764, to Drelich et al., hereby incorporated by reference.
  • the apparatus 10 includes an entangling drum 12 and an imaging drum 14 .
  • Imaging drum 14 comprises a hydroentangling device having a three-dimensional foraminous forming surface upon which hydroentangling of a precursor web is effected for formation of the present nonwoven fabric.
  • the image transfer device shown as imaging drum 14 can be selected from a broad variety of three-dimensional image types.
  • Exemplary FIGS. 3, 4, 5 , 6 and 7 are three-dimensional images of the “nub” type. Fibrous nubs are formed during the process of entangling on the imaging drum 14 , these nubs extending out of the planar background of the resulting fabric. These fibrous nubs can act as high points with which to distance the nonwoven fabric from a contact surface.
  • FIGS. 8, 11, 12 , and 13 are examples of a “geodesic” type of image.
  • FIGS. 9 and 10 represent images of the “natural” type. Due to the flexibility inherent to the fabrication of the image on the image transfer device, variations in three-dimensional image including multi-planar images, variations in image juxtaposition, and the ability to create complex images having controlled discontinuities allow for the creation of textures in textiles not seen in the art. Apertures, or holes, can also be created in the nonwoven fabric, regardless of image type. Such apertures can allow for air transfer between layers when combined in a compound construct, and/or can be used to allow the passage of liquid, particularly human exudates, through the plane of the material and into the transfer layer or absorbent core of a disposable hygiene article.
  • precursor webs including fibrous and continuous filament webs
  • spunbond continuous filament webs comprising thermoplastic polymer filaments.
  • Filament denier is preferably in the range of about 0.2 to 10.0, with the range of 1.5 to 2.2 denier filaments being particularly preferred for general applications.
  • the precursor web preferably has a basis weight from about 10 to 300 grams per square meter, more preferably from about 15 to 130 grams per square meter, and most preferably in the range of about 30 to 90 grams per square meter.
  • filaments are essentially endless, and thus facilitate use of relatively high energy input during entanglement without undesirably driving filaments into a image transfer device of the entangling drum, as can occur with staple length fibers or mel;t-blown microfibers.
  • the preferred use of filamentary precursor webs permits the filament to be subjected to elevated hydraulic energy levels without undesirable fouling of the three-dimensional forming surface.
  • fabrics are formed continuously and at economical rates, without substantially altering the basis weight of the precursor webs or inducing rate related deleterious aesthetic effects.
  • a particular benefit of finished fabrics formed in accordance with the present invention is uniformity of three-dimensional imaging. Fiber movement from the water jets from the hydroentangling manifolds is controlled by the shape and depth of the forming surface and drainage design. The use of higher pressures and flows is desirably achieved, thus permitting processing of webs at high speeds and lower basis weights. Finished products are produced at operating speeds of up to hundreds of feet per minute.
  • the following is an example of an imaged continuous filament nonwoven fabric formed in accordance with the present invention.
  • Reference to manifold pressures is in connection with water pressure, in pounds per square inch (psi), in hydroentangling manifolds 18 , illustrated in FIG. 1.
  • Each of these manifolds included orifice strips having 33.3 holes or orifices per inch, each having a diameter of 0.0059 inches.
  • the example was made using a single pass beneath the hydroentangling manifolds, with each manifold acting against the same side of the precursor web to form the resultant fabric. Testing of fabrics was conducted in accordance with ASTM testing protocols.
  • a lightly bonded precursor web may be produced on a commercial spunbond production line using standard processing conditions, except thermal point bonding calender temperatures are reduced, and may be at ambient temperature (sometimes referred to as cold calendering).
  • thermal point bonding calender is set at a temperature of 200 to 210 degrees C. to produce the bonded finished product.
  • the calender temperature is reduced to 160 degrees C.
  • the common thermal point calender conditions are 300 degrees F., and 320 pounds per linear inch (PLI) nip pressure. For a lightly bonded polypropylene precursor web to be entangled and imaged, these conditions are reduced to 100 degrees F. and 100 PLI.
  • a relatively lightly bonded spunbond polyester precursor web was employed having a basis weight of 28 grams per square meter, with 1.8 denier filaments.
  • the precursor was lightly bonded as described above.
  • the precursor web was entangled at 80 feet per minute, with successive manifold pressures of 700, 4,000, and 4,000 psi.
  • Energy input was 3.2 horse-powerhour per pound.
  • the resultant fabric exhibited a basis weight of 32.4 grams per square meter, a bulk of 0.470 millimeter, a cross-direction strip tensile strength of 327 grams per centimeter, at a cross-direction elongation of 72%, and a machine direction strip tensile strength of 1,472 grams per centimeter at a machine direction elongation of 47%.
  • the fabric thus exhibited a strip tensile strength of at least 45 grams-force per centimeter per gram per square meter.
  • the precursor web used in the above Example which was characterized as lightly bonded were formed as specified, whereby the precursor web was bonded to exhibit no more than a minimal tensile strength which permits winding and unwinding of the web. If hydroentanglement is effected in-line with production of a spunbond precursor web, the precursor web may be lightly bonded to a sufficient degree as to permit efficient movement of the precursor web into the hydroentangling apparatus.
  • Example 1 exhibited relatively high tensile strength characteristics per given basis weight. It has been observed that this is a result of the degree of bonding of the precursor web for the various examples.
  • a relatively lightly bonded precursor web was employed and it is believed that when this type of web is subjected to hydroentanglement, there is a disruption of the bonds, without significant breakage of the polymeric filaments of the precursor web.
  • precursor webs that were used during development which were relatively well-bonded exhibited less strength. It is believed that during hydroentanglement, disruption of the well-formed filament bonds resulted in a relatively higher degree of filament breakage.
  • Fabrics formed in accordance with the present invention are desirably strong, exhibiting desirable softness and bulk characteristics. Fabrics produced in accordance with the present invention are useful for nonwoven disposable products such as diaper facing layers, with the present fabrics exhibiting improved softness compared to typical spunbond materials.
  • the present fabrics are preferable to thermally bonded lightweight webs, which tend to be undesirably stiff. It is believed that fabrics in accordance with the present invention can be readily employed in place of traditional point bonded, latex bonded, and hydroentangled staple length nonwoven fabrics, dependent upon basis weight and performance requirements.
  • the fabric being formed may be subjected to dewatering, as generally illustrated at 20, with chemical application (if any) and typical drying of the fabric thereafter effected.
  • At least one secondary material layer can be combined with the imaged continuous filament layer.
  • Technologies capable of forming a secondary material layer include those which form continuous filament nonwoven fabrics, staple fiber nonwoven fabrics, continuous filament or staple fiber woven textiles (to include knits), and films.
  • Fibers and/or filaments comprising the secondary material layer are selected from natural or synthetic composition, of homogeneous or mixed fiber length. Suitable natural fibers include, but are not limited to, cotton, wood pulp and viscose rayon.
  • Synthetic fibers which may be blended in whole or part, include thermoplastic and thermoset polymers.
  • Thermoplastic polymers suitable for use generally include polyolefins, polyamides and polyesters.
  • the thermoplastic polymers may be further selected from homopolymers; copolymers, conjugates and other derivatives including those thermoplastic polymers having incorporated melt additives or surface-active agents.
  • the secondary material layer may be combined with the imaged continuous filament layer by such suitable means as represented by adhesive bonding, thermal bonding, hydroentanglement, and the combinations thereof.
  • suitable means as represented by adhesive bonding, thermal bonding, hydroentanglement, and the combinations thereof.
  • Manufacture of nonwoven compound fabrics embodying the principles of the present invention includes the use of fibers and/or filaments having different composition. Differing polymeric resins can be compounded with the same or different aesthetic and performance improvement additives. Further, fibers and/or filaments may be blended with fibers and/or filaments that have not been modified by the compounding of additives.
  • Continuous filament nonwoven fabric formation involves the practice of the spunbond process.
  • a spunbond process involves supplying a molten polymer, which is then extruded under pressure through a large number of orifices in a plate known as a spinneret or die.
  • the resulting continuous filaments are quenched and drawn by any of a number of methods, such as slot draw systems, attenuator guns, or Godet rolls.
  • the continuous filaments are collected as a loose web upon a moving foraminous surface, such as a wire mesh conveyor belt.
  • the subsequent webs are collected upon the uppermost surface of the previously formed web.
  • the web is then at least temporarily consolidated, usually by means involving heat and pressure, such as by thermal point bonding.
  • the web or layers of webs are passed between two hot metal rolls, one of which has an embossed pattern to impart and achieve the desired degree of point bonding, usually on the order of 10 to 40 percent of the overall surface area being so bonded.
  • a related means to the spunbond process for forming a layer of a nonwoven fabric is the meltblown process.
  • a molten polymer is extruded under pressure through orifices in a spinneret or die.
  • High velocity air impinges upon and entrains the filaments as they exit the die.
  • the energy of this step is such that the formed filaments are greatly reduced in diameter and are fractured so that microfibers of finite length are produced. This differs from the spunbond process whereby the continuity of the filaments is preserved.
  • the process to form either a single layer or a multiple-layer fabric is continuous, that is, the process steps are uninterrupted from extrusion of the filaments to form the first layer until the bonded web is wound into a roll.
  • meltblown process as well as the cross-sectional profile of the spunbond filament or meltblown microfiber, is not a critical limitation to the practice of the present invention.
  • Suitable nano-denier continuous filament barrier layers can be formed by either direct spinning of nano-denier filaments or by formation of a multi-component filament that is divided into nano-denier filaments prior to deposition on a substrate layer.
  • Multi-component filament spinning with integrated division into nano-denier filaments can be practiced in accordance with the teachings of U.S. Pat. Nos. 5,225,018 and 5,783,503, both incorporated herein by reference.
  • Staple fibers used to form nonwoven fabrics begin in a bundled form as a bale of compressed fibers.
  • the bale is bulk-fed into a number of fiber openers, such as a garnet, then into a card.
  • the card further frees the fibers by the use of co-rotational and counter-rotational wire combs, then depositing the fibers into a lofty batt.
  • the lofty batt of staple fibers can then optionally be subjected to fiber reorientation, such as by air-randomization and/or cross-lapping, depending upon the ultimate tensile properties of the resulting nonwoven fabric desired.
  • the fibrous batt is integrated into a nonwoven fabric by application of suitable bonding means, including, but not limited to, use of adhesive binders, thermobonding by calender or through-air oven, and hydroentanglement.
  • the production of conventional textile fabrics is known to be a complex, multi-step process.
  • the production of staple fiber yarns involves the carding of the fibers to provide feedstock for a roving machine, which twists the bundled fibers into a roving yarn.
  • continuous filaments are formed into bundle known as a tow, the tow then serving as a component of the roving yarn.
  • Spinning machines blend multiple roving yarns into yarns that are suitable for the weaving of cloth.
  • a first subset of weaving yarns is transferred to a warp beam, which, in turn, contains the machine direction yarns, which will then feed into a loom.
  • a second subset of weaving yarns supply the weft or fill yarns which are the cross direction threads in a sheet of cloth.
  • commercial high-speed looms operate at a speed of 1000-1500 picks per minute, whereby each pick is a single yarn.
  • the weaving process produces the final fabric at manufacturing speeds of 60 inches to 200 inches per minute.
  • thermoplastic polymers suitable as a strong and durable substrate layer
  • Thermoplastic polymer films can be formed by either dispersion of a quantity of molten polymer into a mold having the dimensions of the desired end product, known as a cast film, or by continuously forcing the molten polymer through a die, known as an extruded film.
  • Extruded thermoplastic polymer films can either be formed such that the film is cooled then wound as a completed material, or dispensed directly onto a secondary substrate material to form a composite material having performance of both the substrate and the film layers.
  • suitable secondary substrate materials include other films, polymeric or metallic sheet stock, and woven or nonwoven fabrics.
  • Extruded films utilizing the composition of the present invention can be formed in accordance with the following representative direct extrusion film process.
  • Blending and dosing storage comprising at least one hopper loader for thermoplastic polymer chip and, optionally, one for pelletized additive in thermoplastic carrier resin, feed into variable speed augers.
  • the variable speed augers transfer predetermined amounts of polymer chip and additive pellet into a mixing hopper.
  • the mixing hopper contains a mixing propeller to further the homogeneity of the mixture.
  • Basic volumetric systems such as that described are a minimum requirement for accurately blending the additive into the thermoplastic polymer.
  • the polymer chip and additive pellet blend feeds into a multi-zone extruder.
  • the polymer compound Upon mixing and extrusion from the multi-zone extruder, the polymer compound is conveyed via heated polymer piping through a screen changer, wherein breaker plates having different screen meshes are employed to retain solid or semi-molten polymer chips and other macroscopic debris.
  • the mixed polymer is then fed into a melt pump, and then to a combining block.
  • the combining block allows for multiple film layers to be extruded, the film layers being of either the same composition or fed from different systems as described above.
  • the combining block is connected to an extrusion die, which is positioned in an overhead orientation such that molten film extrusion is deposited at a nip between a nip roll and a cast roll.
  • a secondary substrate material source is provided in roll form to a tension-controlled unwinder.
  • the secondary substrate material is unwound and moves over the nip roll.
  • the molten film extrusion from the extrusion die is deposited onto the secondary substrate material at the nip point between the nip roll and the cast roll to form a strong and durable substrate layer.
  • the newly formed substrate layer is then removed from the cast roll by a stripper roll and wound onto a new roll.
  • Breathable barrier films can be combined with the improved aesthetic and performance properties imparted by combining a breathable barrier film with an imaged continuous filament nonwoven fabric layer.
  • Monolithic films as taught in U.S. Pat. No. 6,191,211, and microporous films, as taught in U.S. Pat. No. 6,264,864, both patents herein incorporated by reference, represent the mechanisms of forming such breathable barrier films.
  • a secondary material layer may be essentially planar, or be formed so as to have the same, or different, three-dimensional image as the essential imaged continuous filament nonwoven layer. Further, other aesthetic or performance modifying fillers may be included between the at least one imaged continuous filament nonwoven layer and at least one secondary material layer.
  • a number of end-use articles can benefit from the inclusion or substitution of a pre-existing layer or layers, including, but not limited to, such articles as disposable, semi-durable, and durable applications in hygiene, medical, and industrial fields.
  • Disposable waste-containment garments are generally described in U.S. Pat. Nos. 4,573,986, 5,843,056, and 6,198,018, which are incorporated herein by reference.
  • An absorbent article incorporating an imaged continuous filament fabric of the present invention is represented by the unitary disposable absorbent article, diaper 20 , shown in FIG. 16.
  • diaper refers to an absorbent article generally worn by infants and incontinent persons that is worn about the lower torso of the wearer. It should be understood, however, that the present invention is also applicable to other absorbent articles such as incontinence briefs, incontinence undergarments, diaper holders and liners, feminine hygiene garments, training pants, pull-on garments, and the like.
  • FIG. 16 is a plan view of a diaper 20 in an uncontracted state (i.e., with elastic induced contraction pulled out) with portions of the structure being cut-away to more clearly show the construction of the diaper 20 .
  • the diaper 20 preferably comprises a containment assembly 22 comprising a liquid pervious topsheet 24 ; a liquid impervious backsheet 26 joined to the topsheet; and an absorbent core 28 positioned between the topsheet 24 and the backsheet 26 .
  • the absorbent core 28 has a pair of opposing longitudinal edges, an inner surface and an outer surface.
  • the diaper can further comprise elastic leg features 32 ; elastic waist features 34 ; and a fastening system 36 , which preferably comprises a pair of securement members 37 and a landing member 38 .
  • an improved barrier fabric comprising imaged continuous filament fabric as described in this invention for backsheet 26 results in a diaper that is lighter in weight while maintaining performance.
  • a lighter weight backsheet material is expected to be more flexible and therefore more conforming to deformation of the overall structure as the diaper is applied and worn.
  • An imaged continuous filament fabric can also be employed as the liquid pervious topsheet, particularly when an aperture forming image is used in the manufacture of the material, to improve the control of human exudates, and specifically loose bowel movements, from inducing a critical failure of the absorbent article.
  • Catamenial products such as feminine hygiene pads, are of the same general construction as the aforementioned diaper structure. Again, a topsheet and a backsheet are affixed about a central absorbent core. The overall design of the catamenial product is altered to best conform to the human shape and for absorbing human exudates.
  • Representative prior art to such article fabrication include U.S. Pat. Nos. 4,029,101, 4,184,498, 4,195,634, 4,408,357 and 4,886,513, which are together incorporated herein by reference.
  • Application of the material of the present invention allows for cleaning aids, for both home and body, which exhibit reduced inherent elongation properties, while benefitting significantly from enhanced physical and aesthetic properties, as represented by; improved ductile and tactile softness, increased material bulk improving the exfoliation and lathering performance, and the ability of the continuous filaments to resist disentanglement, linting, and loss of three-dimensionality. Further, selection of differing filament deniers during formation of the precursor webs allows for the creation of cleaning wipes that have varying frictional coefficients.
  • a disposable garment generally designated 110 comprising a surgical gown 112 .
  • the gown 112 comprises a body portion 114 , which may be one-piece, having a front panel 116 for covering the front of the wearer, and a pair of back panels 118 and 120 extending from opposed sides of the front panel 116 for covering the back of the wearer.
  • the back panels 118 and 120 have a pair of side edges 122 and 124 , respectively, which define an opening on the back of the gown.
  • the gown 112 has a pair of sleeves 126 and 128 secured to the body portion 114 of the gown for the arms of the wearer. In use, the back panels 118 and 120 overlap on the back of the wearer in order to close the back opening of the gown, and suitable belt means (not shown) is utilized to secure the back panels 118 and 120 in the overlapping relationship.

Abstract

A three-dimensionally imaged nonwoven fabric, as formed in accordance with the principles of the present invention, contemplates a material formed by hydroentanglement of at least one lightly bonded continuous filament layer upon a device having a three-dimensional foraminous forming surface. The preferred continuous filament substrate is in the form of a precursor web comprising spunbond continuous polymeric filaments. A nonwoven fabric formed in accordance with the present invention may be formed to include substantially continuous filaments (from a relatively lightly bonded spunbond precursor web), with the resulting fabric having a machine direction tensile strength of at least about 1,472 grams per centimeter at 47% machine-direction elongation.

Description

    TECHNICAL FIELD
  • The present invention relates generally to nonwoven fabrics, and more particularly, to hydroentangled nonwoven fabrics exhibiting desirable softness, strength and bulk characteristics, which are manufactured from at least one layer of lightly bonded continuous filament substrate facilitating efficient and high-speed production, said continuous filament nonwoven fabric being formed upon a three-dimensional image transfer device, and said imaged continuous filament nonwoven fabric being of particular utility in hygiene, industrial, and medical article fabrication. [0001]
  • BACKGROUND OF THE INVENTION
  • Nonwoven fabrics are used in a wide variety of applications where the engineered qualities of the fabric can be advantageously employed. These types of fabrics differ from traditional woven or knitted fabrics in that the fibers or filaments of the fabric are integrated into a coherent web without the practice of traditional textile processes. Entanglement of the fibrous elements of the fabric provides the fabric with the desired integrity, with the selected entanglement process permitting fabrics to be patterned to achieve desired utility. [0002]
  • Various prior art patents disclose nonwoven fabrics manufactured by application of a hydroentangling processes. U.S. Pat. No. 3,485,706, to Evans, hereby incorporated by reference, discloses a hydroentanglement process for manufacture of nonwoven fabrics. Hydroentanglement entails the application of high-pressure water jets to webs of fibers or filaments, whereby the fibers or filaments are rearranged under the influence of water impingement. The web is typically positioned on a support surface as it is subjected to impingement by the water jets, whereby the fibers or filaments of the web become entangled, thus creating a fabric with coherency and integrity. [0003]
  • U.S. Pat. No. 5,369,858, to Gilmore et al., discloses an apertured nonwoven fabric formed from melt-blown microfibers using the Evans-type technology. These types of microfibers are attenuated during the practice of well-known melt-blowing formation techniques, whereby the fibers have relatively small diameters and constrained fiber lengths. This patent discloses the use of a belt or drum support. Plural hydroentangling manifolds act against fibers positioned on the forming surface to displace the fibers from “knuckles” of the forming surface, and into openings or lower parts of the forming surface topography, as in Evans. This patent contemplates use of a polymeric net or scrim for fabric formation, and the formation of fabric having apertures therein of two different sizes, including formation of fabric from a first layer of textile fibers or polymeric filaments, and a second layer of melt-blown microfibers. [0004]
  • U.S. Pat. No. 4,805,275, to Suzuki et al., also discloses a method for forming nonwoven fabrics by hydroentanglement. This patent contemplates that hydroentanglement of a fibrous web be effected on a non-three-dimensional smooth-surfaced water-impermeable endless belt. [0005]
  • U.S. Pat. No. 5,516,572, to Roe, discloses a disposable absorbent article including a liquid pervious topsheet, wherein the topsheet comprises a nonwoven fabric prepared from a homogeneous admixture of melt-blown fibers and staple length synthetic fibers. The patent contemplates that fabrics formed in accordance with its teachings comprise a blend including up to 50% by weight of melt-blown fibers. [0006]
  • In contrast to the above-referenced patents, the present invention contemplates a nonwoven fabric employing at least one continuous filament layer and a hydroentangling device having a foraminous forming surface, which results in an efficiently produced nonwoven fabrics having a high degree of tunable aesthetic and/or physical performance properties. Such aesthetic and performance attributes imparted into the resulting imaged nonwoven fabric facilitating use in a wide variety of end-use applications. [0007]
  • SUMMARY OF THE INVENTION
  • A three-dimensionally imaged nonwoven fabric, as formed in accordance with the principles of the present invention, contemplates a material formed by hydroentanglement of at least one lightly bonded continuous filament layer upon a device having a three-dimensional foraminous forming surface. The preferred continuous filament substrate is in the form of a precursor web comprising spunbond continuous polymeric filaments. As is known in the art, the formation of a “spunbond” entails extrusion, or “spinning”, of thermoplastic polymeric material with the resultant filaments cooled and drawn, or attenuated, as they are collected. The continuous, or essentially endless, filaments may be bonded to facilitate off-line formation, with the process of the subject invention contemplating that such spunbond material be employed as the precursor web. [0008]
  • The thermoplastic polymers of the spunbond material are chosen from the group consisting of polyolefins, polyamides, and polyesters, wherein the polyolefins are chosen from the group consisting of polypropylene, polyethylene, and combinations thereof. It is within the purview of the present invention that more than one layer of spunbond material may be used in the formation of the precursor web, each layer of spunbond material comprising either the same or different thermoplastic polymers. Further, the spunbond material layer or layers may comprise homogeneous, bi-component, and/or multi-component profiles of the same or differing thermoplastic polymers, as well as, aesthetic and/or performance modifying additives, and the blends thereof. [0009]
  • With the precursor web positioned on the hydroentangling device, hydroentanglement is effected by application of high pressure liquid streams upon the precursor web. Filaments of the precursor web are rearranged on the three-dimensional topography of the device. The forming surface of the device, thus acts in concert with the high pressure liquid streams, to rearrange the filaments of the precursor web. [0010]
  • Notably, the characteristics of the spunbond precursor web, in particular the strength of its bonds, has a direct influence on the strength characteristics of the resultant nonwoven fabric. Development has shown that if the spunbound precursor web is only relatively lightly bonded, hydroentanglement acts to break or disrupt the bonds without substantially breaking the continuous filaments from which the spunbond precursor web is formed. As a consequence, a nonwoven fabric formed in accordance with the present invention may be formed to include substantially continuous filaments (from a relatively lightly bonded spunbond precursor web), with the resulting fabric having a machine direction tensile strength of at least about 1,472 grams per centimeter at 47% machine-direction elongation. [0011]
  • The degree of bonding of the precursor web is specifically selected to facilitate handling of the web, with the contemplation that higher strength fabrics can be achieved if the filaments of the precursor web are maintained in a substantially continuous form. In accordance with the present invention, it is contemplated that the spunbond precursor web is subjected to bonding which provides no more than a minimum tensile strength, which permits winding and unwinding, or similar processing, of the precursor web. Thus, the minimal tensile strength of the precursor web is selected to facilitate efficient handling during manufacturing of the present three-dimensionally nonwoven fabric. [0012]
  • A further embodiment of the present invention is the incorporation of one or more continuous filament layers into a single imaged nonwoven fabric. [0013]
  • It is also within the purview of the present invention that one or more imaged continuous filament nonwoven fabrics may be formed into compound constructs, of either laminate or composite structure, by combination with one or more layers selected from the group consisting of: un-imaged nonwoven fabrics, un-imaged woven fabrics, un-imaged knitted fabrics, imaged nonwoven fabrics, imaged woven fabrics, imaged knitted fabrics, pulp tissues, planar films, apertured films, scrims, supporting sublayers, and the combinations thereof. [0014]
  • Further, a secondary material layer may be essentially planar, or be formed so as to have the same, or different, three-dimensional image as the essential imaged continuous filament nonwoven layer. Other aesthetic or performance modifying fillers, such as absorbents, soaps, or medicinals, may be included between the at least one imaged continuous filament nonwoven layer and the at least one secondary material layer. [0015]
  • In the construction of end-use articles, particularly hygiene articles, the ability to thermally bond the imaged continuous filament nonwoven fabric, whether as a single layer, or as a compound fabric has also been found to be highly advantageous. [0016]
  • Other features and advantages of the present invention will become readily apparent from the following detailed description, the accompanying drawings, and the appended claims.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic view of a hydroentangling apparatus for practicing the process of the present invention, whereby imaged continuous filament nonwoven fabrics embodying the principles of the present invention can be formed; [0018]
  • FIG. 2 is a diagrammatic view of an alternate hydroentangling apparatus for practicing the process of the present invention. [0019]
  • FIG. 3 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “hexagon-Z”; [0020]
  • FIG. 4 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “square-Z”; [0021]
  • FIG. 5 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “bar-Z”; [0022]
  • FIG. 6 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “crisscross-Z”; [0023]
  • FIG. 7 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “no hole-Z”; [0024]
  • FIG. 8 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large segmented diamond”; [0025]
  • FIG. 9 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “wave”; [0026]
  • FIG. 10 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large basket weave”; [0027]
  • FIG. 11 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large square”; [0028]
  • FIG. 12 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “zig-zag”; [0029]
  • FIG. 13 is a plan view of a three-dimensional image transfer device of the type used for practicing the present invention, referred to herein as “large honeycomb”; [0030]
  • FIG. 14 is a photomicrograph of a three-dimensional image nonwoven fabric of the present invention, having a “20×20” image imparted therein, magnification is about 12×; [0031]
  • FIG. 15 is a top-plan view of a three-dimensional image nonwoven fabric of the present invention, having a “8×20” image imparted therein, magnification is about 12×; [0032]
  • FIG. 16 is a plan view of a disposable diaper article; and [0033]
  • FIG. 17 is a front view of a protective garment article.[0034]
  • DETAILED DESCRIPTION
  • While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiments, with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiment illustrated. [0035]
  • The present invention relates generally to nonwoven fabrics, and more particularly, to hydroentangled nonwoven fabrics exhibiting desirable softness, strength, and bulk characteristics, which are manufactured from at least one layer of lightly bonded continuous filament substrate facilitating efficient and high-speed production, said continuous filament nonwoven fabric being formed upon a three-dimensional image transfer device, and said imaged continuous filament nonwoven fabric being of particular utility in hygiene, industrial, and medical article fabrication. [0036]
  • With reference to FIG. 1, therein is illustrated a hydroentangling apparatus, generally designated [0037] 10, which can be employed for practicing the formation of a three-dimensionally imaged continuous filament nonwoven fabric. The apparatus is configured generally in accordance with the teachings of U.S. Pat. No. 5,098,764, to Drelich et al., hereby incorporated by reference. The apparatus 10 includes an entangling drum 12 and an imaging drum 14. Imaging drum 14 comprises a hydroentangling device having a three-dimensional foraminous forming surface upon which hydroentangling of a precursor web is effected for formation of the present nonwoven fabric.
  • The image transfer device shown as [0038] imaging drum 14, can be selected from a broad variety of three-dimensional image types. Exemplary FIGS. 3, 4, 5, 6 and 7, are three-dimensional images of the “nub” type. Fibrous nubs are formed during the process of entangling on the imaging drum 14, these nubs extending out of the planar background of the resulting fabric. These fibrous nubs can act as high points with which to distance the nonwoven fabric from a contact surface. FIGS. 8, 11, 12, and 13, are examples of a “geodesic” type of image. In this image type, regular blocks of entangled constituent filaments extended out of the planar background, the fibrous blocks creating, for example, particulate capturing asperities useful in cleaning wipes, dusting cloths and exfoliating facial wipes. FIGS. 9 and 10 represent images of the “natural” type. Due to the flexibility inherent to the fabrication of the image on the image transfer device, variations in three-dimensional image including multi-planar images, variations in image juxtaposition, and the ability to create complex images having controlled discontinuities allow for the creation of textures in textiles not seen in the art. Apertures, or holes, can also be created in the nonwoven fabric, regardless of image type. Such apertures can allow for air transfer between layers when combined in a compound construct, and/or can be used to allow the passage of liquid, particularly human exudates, through the plane of the material and into the transfer layer or absorbent core of a disposable hygiene article.
  • While it is within the purview of the present invention to employ various types of precursor webs, including fibrous and continuous filament webs, it is presently preferred to employ spunbond continuous filament webs comprising thermoplastic polymer filaments. Filament denier is preferably in the range of about 0.2 to 10.0, with the range of 1.5 to 2.2 denier filaments being particularly preferred for general applications. The precursor web preferably has a basis weight from about 10 to 300 grams per square meter, more preferably from about 15 to 130 grams per square meter, and most preferably in the range of about 30 to 90 grams per square meter. Use of continuous filament precursor webs is presently preferred because the filaments are essentially endless, and thus facilitate use of relatively high energy input during entanglement without undesirably driving filaments into a image transfer device of the entangling drum, as can occur with staple length fibers or mel;t-blown microfibers. The preferred use of filamentary precursor webs permits the filament to be subjected to elevated hydraulic energy levels without undesirable fouling of the three-dimensional forming surface. Thus, fabrics are formed continuously and at economical rates, without substantially altering the basis weight of the precursor webs or inducing rate related deleterious aesthetic effects. [0039]
  • A particular benefit of finished fabrics formed in accordance with the present invention is uniformity of three-dimensional imaging. Fiber movement from the water jets from the hydroentangling manifolds is controlled by the shape and depth of the forming surface and drainage design. The use of higher pressures and flows is desirably achieved, thus permitting processing of webs at high speeds and lower basis weights. Finished products are produced at operating speeds of up to hundreds of feet per minute. The following is an example of an imaged continuous filament nonwoven fabric formed in accordance with the present invention. Reference to manifold pressures is in connection with water pressure, in pounds per square inch (psi), in [0040] hydroentangling manifolds 18, illustrated in FIG. 1. Each of these manifolds included orifice strips having 33.3 holes or orifices per inch, each having a diameter of 0.0059 inches. The example was made using a single pass beneath the hydroentangling manifolds, with each manifold acting against the same side of the precursor web to form the resultant fabric. Testing of fabrics was conducted in accordance with ASTM testing protocols.
  • A lightly bonded precursor web, as referenced below, may be produced on a commercial spunbond production line using standard processing conditions, except thermal point bonding calender temperatures are reduced, and may be at ambient temperature (sometimes referred to as cold calendering). For example, during production of standard polyester spunbond, the thermal point bonding calender is set at a temperature of 200 to 210 degrees C. to produce the bonded finished product. In contrast, to prepare a similar precursor web for subsequent entangling and imaging, the calender temperature is reduced to 160 degrees C. Similarly, during production of standard polypropylene spunbond products, the common thermal point calender conditions are 300 degrees F., and 320 pounds per linear inch (PLI) nip pressure. For a lightly bonded polypropylene precursor web to be entangled and imaged, these conditions are reduced to 100 degrees F. and 100 PLI. [0041]
  • EXAMPLE 1
  • A relatively lightly bonded spunbond polyester precursor web was employed having a basis weight of 28 grams per square meter, with 1.8 denier filaments. The precursor was lightly bonded as described above. The precursor web was entangled at 80 feet per minute, with successive manifold pressures of 700, 4,000, and 4,000 psi. Energy input was 3.2 horse-powerhour per pound. The resultant fabric exhibited a basis weight of 32.4 grams per square meter, a bulk of 0.470 millimeter, a cross-direction strip tensile strength of 327 grams per centimeter, at a cross-direction elongation of 72%, and a machine direction strip tensile strength of 1,472 grams per centimeter at a machine direction elongation of 47%. The fabric thus exhibited a strip tensile strength of at least 45 grams-force per centimeter per gram per square meter. [0042]
  • The precursor web used in the above Example which was characterized as lightly bonded were formed as specified, whereby the precursor web was bonded to exhibit no more than a minimal tensile strength which permits winding and unwinding of the web. If hydroentanglement is effected in-line with production of a spunbond precursor web, the precursor web may be lightly bonded to a sufficient degree as to permit efficient movement of the precursor web into the hydroentangling apparatus. [0043]
  • It will be noted from the above that Example 1 exhibited relatively high tensile strength characteristics per given basis weight. It has been observed that this is a result of the degree of bonding of the precursor web for the various examples. In Example 1, a relatively lightly bonded precursor web was employed and it is believed that when this type of web is subjected to hydroentanglement, there is a disruption of the bonds, without significant breakage of the polymeric filaments of the precursor web. In contrast, precursor webs that were used during development which were relatively well-bonded, exhibited less strength. It is believed that during hydroentanglement, disruption of the well-formed filament bonds resulted in a relatively higher degree of filament breakage. [0044]
  • Fabrics formed in accordance with the present invention are desirably strong, exhibiting desirable softness and bulk characteristics. Fabrics produced in accordance with the present invention are useful for nonwoven disposable products such as diaper facing layers, with the present fabrics exhibiting improved softness compared to typical spunbond materials. The present fabrics are preferable to thermally bonded lightweight webs, which tend to be undesirably stiff. It is believed that fabrics in accordance with the present invention can be readily employed in place of traditional point bonded, latex bonded, and hydroentangled staple length nonwoven fabrics, dependent upon basis weight and performance requirements. [0045]
  • As illustrated in FIG. 1, subsequent to hydroentanglement, the fabric being formed may be subjected to dewatering, as generally illustrated at 20, with chemical application (if any) and typical drying of the fabric thereafter effected. [0046]
  • It is within the purview of the present invention that at least one secondary material layer can be combined with the imaged continuous filament layer. Technologies capable of forming a secondary material layer include those which form continuous filament nonwoven fabrics, staple fiber nonwoven fabrics, continuous filament or staple fiber woven textiles (to include knits), and films. Fibers and/or filaments comprising the secondary material layer are selected from natural or synthetic composition, of homogeneous or mixed fiber length. Suitable natural fibers include, but are not limited to, cotton, wood pulp and viscose rayon. Synthetic fibers, which may be blended in whole or part, include thermoplastic and thermoset polymers. Thermoplastic polymers suitable for use generally include polyolefins, polyamides and polyesters. The thermoplastic polymers may be further selected from homopolymers; copolymers, conjugates and other derivatives including those thermoplastic polymers having incorporated melt additives or surface-active agents. [0047]
  • The secondary material layer may be combined with the imaged continuous filament layer by such suitable means as represented by adhesive bonding, thermal bonding, hydroentanglement, and the combinations thereof. In the construction of end-use articles, particularly hygiene articles, the ability to thermally bond the imaged continuous filament nonwoven fabric, whether as a single layer, or as a compound fabric is highly advantageous. [0048]
  • Manufacture of nonwoven compound fabrics embodying the principles of the present invention includes the use of fibers and/or filaments having different composition. Differing polymeric resins can be compounded with the same or different aesthetic and performance improvement additives. Further, fibers and/or filaments may be blended with fibers and/or filaments that have not been modified by the compounding of additives. [0049]
  • Continuous filament nonwoven fabric formation, involves the practice of the spunbond process. A spunbond process involves supplying a molten polymer, which is then extruded under pressure through a large number of orifices in a plate known as a spinneret or die. The resulting continuous filaments are quenched and drawn by any of a number of methods, such as slot draw systems, attenuator guns, or Godet rolls. The continuous filaments are collected as a loose web upon a moving foraminous surface, such as a wire mesh conveyor belt. When more than one spinneret is used in line for the purpose of forming a multi-layered fabric, the subsequent webs are collected upon the uppermost surface of the previously formed web. The web is then at least temporarily consolidated, usually by means involving heat and pressure, such as by thermal point bonding. Using this means, the web or layers of webs are passed between two hot metal rolls, one of which has an embossed pattern to impart and achieve the desired degree of point bonding, usually on the order of 10 to 40 percent of the overall surface area being so bonded. [0050]
  • A related means to the spunbond process for forming a layer of a nonwoven fabric is the meltblown process. Again, a molten polymer is extruded under pressure through orifices in a spinneret or die. High velocity air impinges upon and entrains the filaments as they exit the die. The energy of this step is such that the formed filaments are greatly reduced in diameter and are fractured so that microfibers of finite length are produced. This differs from the spunbond process whereby the continuity of the filaments is preserved. The process to form either a single layer or a multiple-layer fabric is continuous, that is, the process steps are uninterrupted from extrusion of the filaments to form the first layer until the bonded web is wound into a roll. Methods for producing these types of fabrics are described in U.S. Pat. No. 4,041,203, incorporated herein by reference. The meltblown process, as well as the cross-sectional profile of the spunbond filament or meltblown microfiber, is not a critical limitation to the practice of the present invention. [0051]
  • Suitable nano-denier continuous filament barrier layers can be formed by either direct spinning of nano-denier filaments or by formation of a multi-component filament that is divided into nano-denier filaments prior to deposition on a substrate layer. U.S. Pat. Nos. 5,678,379 and 6,114,017, both incorporated herein by reference, exemplify direct spinning processes practicable in support of the present invention. Multi-component filament spinning with integrated division into nano-denier filaments can be practiced in accordance with the teachings of U.S. Pat. Nos. 5,225,018 and 5,783,503, both incorporated herein by reference. [0052]
  • Staple fibers used to form nonwoven fabrics begin in a bundled form as a bale of compressed fibers. In order to decompress the fibers, and render the fibers suitable for integration into a nonwoven fabric, the bale is bulk-fed into a number of fiber openers, such as a garnet, then into a card. The card further frees the fibers by the use of co-rotational and counter-rotational wire combs, then depositing the fibers into a lofty batt. The lofty batt of staple fibers can then optionally be subjected to fiber reorientation, such as by air-randomization and/or cross-lapping, depending upon the ultimate tensile properties of the resulting nonwoven fabric desired. The fibrous batt is integrated into a nonwoven fabric by application of suitable bonding means, including, but not limited to, use of adhesive binders, thermobonding by calender or through-air oven, and hydroentanglement. [0053]
  • The production of conventional textile fabrics is known to be a complex, multi-step process. The production of staple fiber yarns involves the carding of the fibers to provide feedstock for a roving machine, which twists the bundled fibers into a roving yarn. Alternately, continuous filaments are formed into bundle known as a tow, the tow then serving as a component of the roving yarn. Spinning machines blend multiple roving yarns into yarns that are suitable for the weaving of cloth. A first subset of weaving yarns is transferred to a warp beam, which, in turn, contains the machine direction yarns, which will then feed into a loom. A second subset of weaving yarns supply the weft or fill yarns which are the cross direction threads in a sheet of cloth. Currently, commercial high-speed looms operate at a speed of 1000-1500 picks per minute, whereby each pick is a single yarn. The weaving process produces the final fabric at manufacturing speeds of 60 inches to 200 inches per minute. [0054]
  • The formation of finite thickness films from thermoplastic polymers, suitable as a strong and durable substrate layer, is a well-known practice. Thermoplastic polymer films can be formed by either dispersion of a quantity of molten polymer into a mold having the dimensions of the desired end product, known as a cast film, or by continuously forcing the molten polymer through a die, known as an extruded film. Extruded thermoplastic polymer films can either be formed such that the film is cooled then wound as a completed material, or dispensed directly onto a secondary substrate material to form a composite material having performance of both the substrate and the film layers. Examples of suitable secondary substrate materials include other films, polymeric or metallic sheet stock, and woven or nonwoven fabrics. [0055]
  • Extruded films utilizing the composition of the present invention can be formed in accordance with the following representative direct extrusion film process. Blending and dosing storage comprising at least one hopper loader for thermoplastic polymer chip and, optionally, one for pelletized additive in thermoplastic carrier resin, feed into variable speed augers. The variable speed augers transfer predetermined amounts of polymer chip and additive pellet into a mixing hopper. The mixing hopper contains a mixing propeller to further the homogeneity of the mixture. Basic volumetric systems such as that described are a minimum requirement for accurately blending the additive into the thermoplastic polymer. The polymer chip and additive pellet blend feeds into a multi-zone extruder. Upon mixing and extrusion from the multi-zone extruder, the polymer compound is conveyed via heated polymer piping through a screen changer, wherein breaker plates having different screen meshes are employed to retain solid or semi-molten polymer chips and other macroscopic debris. The mixed polymer is then fed into a melt pump, and then to a combining block. The combining block allows for multiple film layers to be extruded, the film layers being of either the same composition or fed from different systems as described above. The combining block is connected to an extrusion die, which is positioned in an overhead orientation such that molten film extrusion is deposited at a nip between a nip roll and a cast roll. [0056]
  • When a secondary substrate material is to receive a film layer extrusion, a secondary substrate material source is provided in roll form to a tension-controlled unwinder. The secondary substrate material is unwound and moves over the nip roll. The molten film extrusion from the extrusion die is deposited onto the secondary substrate material at the nip point between the nip roll and the cast roll to form a strong and durable substrate layer. The newly formed substrate layer is then removed from the cast roll by a stripper roll and wound onto a new roll. [0057]
  • Breathable barrier films can be combined with the improved aesthetic and performance properties imparted by combining a breathable barrier film with an imaged continuous filament nonwoven fabric layer. Monolithic films, as taught in U.S. Pat. No. 6,191,211, and microporous films, as taught in U.S. Pat. No. 6,264,864, both patents herein incorporated by reference, represent the mechanisms of forming such breathable barrier films. [0058]
  • A secondary material layer may be essentially planar, or be formed so as to have the same, or different, three-dimensional image as the essential imaged continuous filament nonwoven layer. Further, other aesthetic or performance modifying fillers may be included between the at least one imaged continuous filament nonwoven layer and at least one secondary material layer. [0059]
  • Utilizing the above-discussed single and multi-layer manufacturing technologies, utilizing at least one imaged continuous filament nonwoven layer, a number of end-use articles can benefit from the inclusion or substitution of a pre-existing layer or layers, including, but not limited to, such articles as disposable, semi-durable, and durable applications in hygiene, medical, and industrial fields. [0060]
  • Disposable waste-containment garments are generally described in U.S. Pat. Nos. 4,573,986, 5,843,056, and 6,198,018, which are incorporated herein by reference. [0061]
  • An absorbent article incorporating an imaged continuous filament fabric of the present invention is represented by the unitary disposable absorbent article, [0062] diaper 20, shown in FIG. 16. As used herein, the term “diaper” refers to an absorbent article generally worn by infants and incontinent persons that is worn about the lower torso of the wearer. It should be understood, however, that the present invention is also applicable to other absorbent articles such as incontinence briefs, incontinence undergarments, diaper holders and liners, feminine hygiene garments, training pants, pull-on garments, and the like.
  • FIG. 16 is a plan view of a [0063] diaper 20 in an uncontracted state (i.e., with elastic induced contraction pulled out) with portions of the structure being cut-away to more clearly show the construction of the diaper 20. As shown in FIG. 16, the diaper 20 preferably comprises a containment assembly 22 comprising a liquid pervious topsheet 24; a liquid impervious backsheet 26 joined to the topsheet; and an absorbent core 28 positioned between the topsheet 24 and the backsheet 26. The absorbent core 28 has a pair of opposing longitudinal edges, an inner surface and an outer surface. The diaper can further comprise elastic leg features 32; elastic waist features 34; and a fastening system 36, which preferably comprises a pair of securement members 37 and a landing member 38.
  • Practical application of an improved barrier fabric comprising imaged continuous filament fabric as described in this invention for [0064] backsheet 26 results in a diaper that is lighter in weight while maintaining performance. A lighter weight backsheet material is expected to be more flexible and therefore more conforming to deformation of the overall structure as the diaper is applied and worn. An imaged continuous filament fabric can also be employed as the liquid pervious topsheet, particularly when an aperture forming image is used in the manufacture of the material, to improve the control of human exudates, and specifically loose bowel movements, from inducing a critical failure of the absorbent article.
  • Catamenial products, such as feminine hygiene pads, are of the same general construction as the aforementioned diaper structure. Again, a topsheet and a backsheet are affixed about a central absorbent core. The overall design of the catamenial product is altered to best conform to the human shape and for absorbing human exudates. Representative prior art to such article fabrication include U.S. Pat. Nos. 4,029,101, 4,184,498, 4,195,634, 4,408,357 and 4,886,513, which are together incorporated herein by reference. [0065]
  • Cleansing and cleaning wipes are generally described in the prior art, as represented by U.S. Pat. Nos. 6,280,757, 6,074,655, 5,951,991, 5,605,749, 4,690,821, 6,217,854, 6,063,390 and applicants copending application Serial No. 60/308,331, filed Jul. 27, 2001. [0066]
  • Application of the material of the present invention allows for cleaning aids, for both home and body, which exhibit reduced inherent elongation properties, while benefitting significantly from enhanced physical and aesthetic properties, as represented by; improved ductile and tactile softness, increased material bulk improving the exfoliation and lathering performance, and the ability of the continuous filaments to resist disentanglement, linting, and loss of three-dimensionality. Further, selection of differing filament deniers during formation of the precursor webs allows for the creation of cleaning wipes that have varying frictional coefficients. [0067]
  • Medical and industrial protective products, such as CSR, gauzes and absorbent packings, medical gown, surgical drape and protective oversuits can benefit significantly from the inclusion of an improved barrier fabric as described in the present invention. Of particular utility in the fabrication of such protective products is the use of lighter weight fabrics with improved barrier to weight ratios, as it is important for the finished product to be as lightweight as possible and yet still perform its desired function. The low elongation properties of the imaged continuous filament layer, or layers, is beneficial in forming gauze materials, which resists deformation when placed under a wet load. Patents generally describing such protective products include U.S. Pat. Nos. 4,845,779, 4,876,746, 5,655,374, 6,029,274, and 6,103,647, which are together incorporated herein by reference. [0068]
  • Referring now to FIG. 17, there is shown a disposable garment generally designated [0069] 110 comprising a surgical gown 112. The gown 112 comprises a body portion 114, which may be one-piece, having a front panel 116 for covering the front of the wearer, and a pair of back panels 118 and 120 extending from opposed sides of the front panel 116 for covering the back of the wearer. The back panels 118 and 120 have a pair of side edges 122 and 124, respectively, which define an opening on the back of the gown. The gown 112 has a pair of sleeves 126 and 128 secured to the body portion 114 of the gown for the arms of the wearer. In use, the back panels 118 and 120 overlap on the back of the wearer in order to close the back opening of the gown, and suitable belt means (not shown) is utilized to secure the back panels 118 and 120 in the overlapping relationship.
  • From the foregoing, numerous modifications and variations can be effected without departing from the true spirit and scope of the novel concept of the present invention. It is to be understood that no limitation with respect to the specific embodiments disclosed herein is intended or should be inferred. [0070]

Claims (6)

What is claimed is:
1. A nonwoven fabric, comprised of a plurality of essentially continuous thermoplastic filaments, said thermoplastic filaments imparted with a three-dimensional image by impingement of fluid streams, said three-dimensional image imparting apertures to said imaged, continuous filament nonwoven fabric, said nonwoven fabric having a strip tensile of at least 45 grams-force per centimeter per grams per square meter.
2. A nonwoven fabric, comprised of first and second layers, said first layer comprising a plurality of essentially continuous thermoplastic filaments, said thermoplastic filaments imparted with a three-dimensional image by impingement of fluid streams, said nonwoven fabric having a strip tensile of at least 45 grams-force per centimeter per grams per square meter, and said second layer comprising at least one material selected from the group consisting of un-imaged nonwoven fabrics, un-imaged woven fabrics, un-imaged knitted fabrics, imaged nonwoven fabrics, imaged woven fabrics, imaged knitted fabrics, pulp tissues, planar films, apertured films, scrims, supporting sublayers, and the combinations thereof.
3. A nonwoven fabric as in claim 2, wherein the first and second layers are joined by a means selected from the group consisting of adhesive bonding, thermal bonding, hydroentanglement, and the combinations thereof.
4. A nonwoven fabric, comprised of first and second layers, said first layer comprising a plurality of essentially continuous thermoplastic filaments, said thermoplastic filaments imparted with a three-dimensional image by impingement of fluid streams, said three-dimensional image imparting apertures to said imaged, continuous filament nonwoven fabric, said nonwoven fabric having a strip tensile of at least 45 grams-force per centimeter per grams per square meter, and said second layer comprising at least one material selected from the group consisting of un-imaged nonwoven fabrics, un-imaged woven fabrics, un-imaged knitted fabrics, imaged nonwoven fabrics, imaged woven fabrics, imaged knitted fabrics, pulp tissues, planar films, apertured films, scrims, supporting sublayers, and the combinations thereof.
5. A nonwoven fabric, in accordance with claim 2, further comprising an aesthetic or performance modifying filler positioned between said first and second layer.
6. A nonwoven fabric, in accordance with claim 4, further comprising an aesthetic or performance modifying filler positioned between said first and second layer.
US10/339,537 2002-01-09 2003-01-09 Hydroentangled continuous filament nonwoven fabric and the articles thereof Abandoned US20030211801A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/339,537 US20030211801A1 (en) 2002-01-09 2003-01-09 Hydroentangled continuous filament nonwoven fabric and the articles thereof
US11/342,758 US20060128249A1 (en) 2002-01-09 2006-01-30 Hydroentangled continuous filament nonwoven fabric and the articles thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34697102P 2002-01-09 2002-01-09
US10/339,537 US20030211801A1 (en) 2002-01-09 2003-01-09 Hydroentangled continuous filament nonwoven fabric and the articles thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/342,758 Continuation US20060128249A1 (en) 2002-01-09 2006-01-30 Hydroentangled continuous filament nonwoven fabric and the articles thereof

Publications (1)

Publication Number Publication Date
US20030211801A1 true US20030211801A1 (en) 2003-11-13

Family

ID=23361799

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/339,537 Abandoned US20030211801A1 (en) 2002-01-09 2003-01-09 Hydroentangled continuous filament nonwoven fabric and the articles thereof
US11/342,758 Abandoned US20060128249A1 (en) 2002-01-09 2006-01-30 Hydroentangled continuous filament nonwoven fabric and the articles thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/342,758 Abandoned US20060128249A1 (en) 2002-01-09 2006-01-30 Hydroentangled continuous filament nonwoven fabric and the articles thereof

Country Status (4)

Country Link
US (2) US20030211801A1 (en)
EP (1) EP1470278A4 (en)
AU (1) AU2003202939A1 (en)
WO (1) WO2003060215A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020159A1 (en) * 2003-04-11 2005-01-27 Jerry Zucker Hydroentangled continuous filament nonwoven fabric and the articles thereof
US6903034B1 (en) * 1999-04-07 2005-06-07 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
US20050148970A1 (en) * 2002-12-05 2005-07-07 Uni-Charm Corporation Absorbent article with liquid acquisition layer
US20080028581A1 (en) * 2006-08-04 2008-02-07 Stork Prints Austria Gmbh Screen, in particular for manufacturing nonwoven fabrics by means of a gaz jet or liquid jet solidification process
US20080256768A1 (en) * 2004-06-18 2008-10-23 Erkki Lampila Method and Apparatus for Manufacturing Nonwoven Fabric
EP2010703A2 (en) * 2006-04-10 2009-01-07 First Quality Nonwovens, Inc. Cotendered nonwoven/pulp composite fabric and method for making the same.
USD667641S1 (en) * 2011-10-27 2012-09-25 Cascades Canada Ulc Embossed tissue sheet
US20140308518A1 (en) * 2013-04-12 2014-10-16 The Procter & Gamble Company Fibrous structures exhibiting improved whiteness index values
US20170016158A1 (en) * 2015-07-15 2017-01-19 Avintiv Specialty Materials Inc. Low linting imaged hydroentangled nonwoven composite
JP2019519692A (en) * 2016-06-10 2019-07-11 トレデガー フィルム プロダクツ コーポレーション Hydroformed expanded spunbonded nonwoven webs and hydroformed composite materials and methods of making them
USD907931S1 (en) * 2018-05-22 2021-01-19 Berry Global, Inc. Nonwoven fabric

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897621A1 (en) * 2006-02-17 2007-08-24 Rieter Perfojet Sa NON-WOVEN SELF-ADJUSTING CLOSURE FOR A CLOTHING.
FR2903426B1 (en) * 2006-07-07 2008-09-12 Rieter Perfojet Soc Par Action NON-WOVEN AS A WIPING CLOTH, PROCESS AND PRODUCTION PLANT THEREFOR.
US20100062671A1 (en) * 2008-09-05 2010-03-11 Nutek Disposables, Inc. Composite wipe
USD829327S1 (en) 2013-04-30 2018-09-25 Ostomycure As Implant having porous surface structure
USD827824S1 (en) 2013-04-30 2018-09-04 Ostomycure As Implant with internal porous surface structure
WO2017156162A1 (en) * 2016-03-08 2017-09-14 First Quality Nonwovens, Inc. Three-dimensionally patterned non-woven having stress recovery
USD897116S1 (en) * 2018-01-10 2020-09-29 Yupoong, Inc. Cloth for a cap
CN110106616B (en) * 2019-06-14 2023-12-15 福建省大渝机械科技有限公司 Jacquard knitting circular knitting machine

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029101A (en) * 1974-09-06 1977-06-14 Colgate-Palmolive Company Absorbent article
US5459912A (en) * 1992-03-31 1995-10-24 E. I. Du Pont De Nemours And Company Patterned spunlaced fabrics containing woodpulp and/or woodpulp-like fibers
US5843056A (en) * 1996-06-21 1998-12-01 Kimberly-Clark Worldwide, Inc. Absorbent article having a composite breathable backsheet
US6029274A (en) * 1997-08-26 2000-02-29 Kimberly-Clark Worldwide, Inc. Protective garment and method of manufacture
US6063390A (en) * 1998-08-07 2000-05-16 Chesebrough-Pond's Usa Co., A Division Of Conopco, Inc. Cosmetic effervescent cleansing pillow
US6074655A (en) * 1996-10-25 2000-06-13 The Procter & Gamble Company Cleansing products
US6103647A (en) * 1996-03-14 2000-08-15 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with good conformability
US6114017A (en) * 1997-07-23 2000-09-05 Fabbricante; Anthony S. Micro-denier nonwoven materials made using modular die units
US6191211B1 (en) * 1998-09-11 2001-02-20 The Dow Chemical Company Quick-set film-forming compositions
US6198018B1 (en) * 1996-11-06 2001-03-06 The Procter & Gamble Company Absorbent article having a breathable, fluid impervious backsheet
US6264864B1 (en) * 1998-10-16 2001-07-24 Exxon Chemical Patents Inc. Process for producing polyolefin microporous breathable film
US6280757B1 (en) * 1997-05-22 2001-08-28 The Procter & Gamble Company Cleansing articles for skin or hair
US6321425B1 (en) * 1999-12-30 2001-11-27 Polymer Group Inc. Hydroentangled, low basis weight nonwoven fabric and process for making same
US6430788B1 (en) * 1999-12-30 2002-08-13 Polymer Group, Inc. Hydroentangled, low basis weight nonwoven fabric and process for making same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001236789A1 (en) * 2000-02-11 2001-08-20 Polymer Group, Inc. Imaged nonwoven fabrics

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029101A (en) * 1974-09-06 1977-06-14 Colgate-Palmolive Company Absorbent article
US5459912A (en) * 1992-03-31 1995-10-24 E. I. Du Pont De Nemours And Company Patterned spunlaced fabrics containing woodpulp and/or woodpulp-like fibers
US6103647A (en) * 1996-03-14 2000-08-15 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with good conformability
US5843056A (en) * 1996-06-21 1998-12-01 Kimberly-Clark Worldwide, Inc. Absorbent article having a composite breathable backsheet
US6074655A (en) * 1996-10-25 2000-06-13 The Procter & Gamble Company Cleansing products
US6198018B1 (en) * 1996-11-06 2001-03-06 The Procter & Gamble Company Absorbent article having a breathable, fluid impervious backsheet
US6280757B1 (en) * 1997-05-22 2001-08-28 The Procter & Gamble Company Cleansing articles for skin or hair
US6114017A (en) * 1997-07-23 2000-09-05 Fabbricante; Anthony S. Micro-denier nonwoven materials made using modular die units
US6029274A (en) * 1997-08-26 2000-02-29 Kimberly-Clark Worldwide, Inc. Protective garment and method of manufacture
US6063390A (en) * 1998-08-07 2000-05-16 Chesebrough-Pond's Usa Co., A Division Of Conopco, Inc. Cosmetic effervescent cleansing pillow
US6217854B1 (en) * 1998-08-07 2001-04-17 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Cosmetic effervescent cleansing pillow
US6191211B1 (en) * 1998-09-11 2001-02-20 The Dow Chemical Company Quick-set film-forming compositions
US6264864B1 (en) * 1998-10-16 2001-07-24 Exxon Chemical Patents Inc. Process for producing polyolefin microporous breathable film
US6321425B1 (en) * 1999-12-30 2001-11-27 Polymer Group Inc. Hydroentangled, low basis weight nonwoven fabric and process for making same
US20020025753A1 (en) * 1999-12-30 2002-02-28 Polymer Group, Inc. Hydroentangled, low basis weight nonwoven fabric and process
US6430788B1 (en) * 1999-12-30 2002-08-13 Polymer Group, Inc. Hydroentangled, low basis weight nonwoven fabric and process for making same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903034B1 (en) * 1999-04-07 2005-06-07 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
US7091140B1 (en) * 1999-04-07 2006-08-15 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
US7132585B2 (en) * 2002-12-05 2006-11-07 Uni-Charm Corporation Absorbent article with liquid acquisition layer
US20050148970A1 (en) * 2002-12-05 2005-07-07 Uni-Charm Corporation Absorbent article with liquid acquisition layer
US20050020159A1 (en) * 2003-04-11 2005-01-27 Jerry Zucker Hydroentangled continuous filament nonwoven fabric and the articles thereof
US20080256768A1 (en) * 2004-06-18 2008-10-23 Erkki Lampila Method and Apparatus for Manufacturing Nonwoven Fabric
EP2010703A2 (en) * 2006-04-10 2009-01-07 First Quality Nonwovens, Inc. Cotendered nonwoven/pulp composite fabric and method for making the same.
EP2010703A4 (en) * 2006-04-10 2010-09-22 First Quality Nonwovens Inc Cotendered nonwoven/pulp composite fabric and method for making the same.
US9050777B2 (en) 2006-04-10 2015-06-09 First Quality Nonwovens, Inc. Contendered nonwoven/pulp composite fabric and method for making the same
US10259192B2 (en) 2006-04-10 2019-04-16 Pfnonwovens Llc Cotendered nonwoven/pulp fabric and method for making the same
US9925739B2 (en) 2006-04-10 2018-03-27 First Quality Nonwovens, Inc. Cotendered nonwoven/pulp fabric and method for making the same
US20080028581A1 (en) * 2006-08-04 2008-02-07 Stork Prints Austria Gmbh Screen, in particular for manufacturing nonwoven fabrics by means of a gaz jet or liquid jet solidification process
USD667641S1 (en) * 2011-10-27 2012-09-25 Cascades Canada Ulc Embossed tissue sheet
US20140308518A1 (en) * 2013-04-12 2014-10-16 The Procter & Gamble Company Fibrous structures exhibiting improved whiteness index values
US11591453B2 (en) 2013-04-12 2023-02-28 The Procter & Gamble Company Fibrous structures exhibiting improved whiteness index values
US11091606B2 (en) * 2013-04-12 2021-08-17 The Procter & Gamble Company Fibrous structures exhibiting improved whiteness index values
US20170016158A1 (en) * 2015-07-15 2017-01-19 Avintiv Specialty Materials Inc. Low linting imaged hydroentangled nonwoven composite
AU2016291657B2 (en) * 2015-07-15 2019-11-14 Avintiv Specialty Materials Inc. Low linting imaged hydroentangled nonwoven composite
JP2018520275A (en) * 2015-07-15 2018-07-26 アビンティブ・スペシャルティ・マテリアルズ・インコーポレイテッドAVINTIV Specialty Materials Inc. Low lint imaged hydroentangled nonwoven composites
US11332862B2 (en) * 2015-07-15 2022-05-17 Avintiv Specialty Materials Inc. Low linting imaged hydroentangled nonwoven composite
CN107847355A (en) * 2015-07-15 2018-03-27 阿文提特种材料公司 Low fibre shedding is imaged hydroentangled nonwoven composite
JP2019519692A (en) * 2016-06-10 2019-07-11 トレデガー フィルム プロダクツ コーポレーション Hydroformed expanded spunbonded nonwoven webs and hydroformed composite materials and methods of making them
JP2019523722A (en) * 2016-06-10 2019-08-29 トレデガー フィルム プロダクツ コーポレーション Composite material and manufacturing method thereof
USD907931S1 (en) * 2018-05-22 2021-01-19 Berry Global, Inc. Nonwoven fabric
USD907930S1 (en) * 2018-05-22 2021-01-19 Berry Global, Inc. Nonwoven fabric

Also Published As

Publication number Publication date
WO2003060215A1 (en) 2003-07-24
EP1470278A1 (en) 2004-10-27
AU2003202939A1 (en) 2003-07-30
US20060128249A1 (en) 2006-06-15
EP1470278A4 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US20060128249A1 (en) Hydroentangled continuous filament nonwoven fabric and the articles thereof
KR970005853B1 (en) Non-woven fibrous hydraulically entangled elastic coform material ane method of formation thereof
US20030129909A1 (en) Nonwoven barrier fabrics with enhanced barrier to weight performance
EP1458914B1 (en) Nonwoven fabrics having a durable three-dimensional image
EP0418493A1 (en) A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
US20050020159A1 (en) Hydroentangled continuous filament nonwoven fabric and the articles thereof
US20060264131A1 (en) Medical fabrics with improved barrier performance
KR20040024617A (en) Thermoplastic constructs with improved softness
US20040133177A1 (en) Barrier performance of absorbent article components
EP1492914B1 (en) Two-sided nonwoven fabrics having a three-dimensional image
US6878648B2 (en) Regionally imprinted nonwoven fabric
US20040142622A1 (en) Nonwoven barrier fabric comprising frangible fibrous component
WO2020101616A2 (en) A novel nonwoven fabric composite and production method thereof
EP1646346A2 (en) Unitized cover and transfer layer and process for making the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:POLYMER GROUP, INC.;REEL/FRAME:014192/0001

Effective date: 20030305

AS Assignment

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PUTNAM, MICHAEL;MOODY, RALPH A., III;DAY, GREG;AND OTHERS;REEL/FRAME:014219/0846;SIGNING DATES FROM 20030331 TO 20030514

AS Assignment

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:015380/0798

Effective date: 20040427

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:015380/0798

Effective date: 20040427

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICOPEE, INC.;FIBERTECH GROUP, INC;POLY-BOND, INC.;AND OTHERS;REEL/FRAME:015732/0080

Effective date: 20040805

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERA

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICOPEE, INC.;FIBERTECH GROUP, INC.;POLY-BOND, INC.;AND OTHERS;REEL/FRAME:015778/0311

Effective date: 20040805

AS Assignment

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: CITICORP NORTH AMERICA, INC., AS COLLATERAL AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNORS:POLYMER GROUP, INC.;CHICOPEE, INC.;FIBERTECH GROUP, INC.;AND OTHERS;REEL/FRAME:016851/0624

Effective date: 20051122

Owner name: PRISTINE BRANDS CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: LORETEX CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PGI POLYMER, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABRENE CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABRENE GROUP L.L.C., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: DOMINION TEXTILE (USA) INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA ACQUISITION, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA POLYMER CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLYLONIX SEPARATION TECHNOLOGIES, INC., SOUTH CAR

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PGI EUROPE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PRISTINE BRANDS CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FNA ACQUISITION, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERGOL CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERGOL CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: CHICOPEE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: BONLAM (S.C.), INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLY-BOND INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABRENE GROUP L.L.C., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI EUROPE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PNA CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: DOMINION TEXTILE (USA) INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: TECHNETICS GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABPRO ORIENTED POLYMERS, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PGI POLYMER, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: BONLAM (S.C.), INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: LORETEX CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLYLONIX SEPARATION TECHNOLOGIES, INC., SOUTH CAR

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABPRO ORIENTED POLYMERS, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: TECHNETICS GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FNA POLYMER CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLY-BOND INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: CHICOPEE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PNA CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION