US20030208138A1 - Micro-needles and methods of manufacture and use thereof - Google Patents

Micro-needles and methods of manufacture and use thereof Download PDF

Info

Publication number
US20030208138A1
US20030208138A1 US10/417,541 US41754103A US2003208138A1 US 20030208138 A1 US20030208138 A1 US 20030208138A1 US 41754103 A US41754103 A US 41754103A US 2003208138 A1 US2003208138 A1 US 2003208138A1
Authority
US
United States
Prior art keywords
micro
needle
biological fluid
base
lumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/417,541
Inventor
Lorin Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/417,541 priority Critical patent/US20030208138A1/en
Publication of US20030208138A1 publication Critical patent/US20030208138A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150977Arrays of piercing elements for simultaneous piercing
    • A61B5/150984Microneedles or microblades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B2010/008Interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • This invention is related to micro-needles, fabrication of micro-needles, and methods of using the micro-needles for obtaining biological fluid samples and for delivering drugs, agents, formulations or biological molecules across biological tissue barriers.
  • Analyte detection assays find use in a variety of applications, including clinical laboratory testing, home testing, etc., where the results of such testing play a prominent role in the diagnosis and management of a variety of disease conditions.
  • Common analytes of interest include glucose, cholesterol, and the like.
  • a common technique for collecting a sample of blood for analyte determination is to pierce the skin at least into the subcutaneous layer to access the underlining blood vessels in order to produce localized bleeding on the body surface.
  • the accessed blood is then collected into a small tube for delivery and analyzed by testing equipment, often in the form of a hand-held instrument having a reagent sample onto which the blood sample is placed.
  • the fingertip is the most frequently used site for this method of blood collection due to the large number of small blood vessels located therein.
  • This method has the significant disadvantage of being painful because subcutaneous tissue of the fingertip has a large concentration of nerve endings.
  • This technique of blood sampling also runs the risk of infection and the transmission of disease to the patient, particularly when done on a high-frequency basis.
  • Micro-needles may be combined with analyte measurement systems to provide a minimally invasive fluid retrieval and analyte sensing system. These systems may include one or more micro-needles that penetrate tissue to obtain body fluid samples.
  • Micro-needles are typically made from stainless steel or other metals.
  • Metal needles are subject to numerous disadvantages. Some of the major disadvantages include the manufacturing complexities of metal needles, such as wire drawing, grinding, deburing and cleaning steps involved in the manufacturing process. Further, impurities in the metals can cause oxidation and deterioration of the needles. As such, the manufacturing process for metal micro-needles may also involve steps where impurities are eliminated from the metals. Another challenge is the difficulty in handling the micro-needles, which are very small and delicate, during each manufacturing step. It may be desirable to provide a certain feature, such as a customized or a typically designed needle tip, that is very difficult if not impossible to do in the conventional fabrication of metal needles.
  • the customized feature may require a means for providing or making such a feature which are not completely automated.
  • Customization of metal micro-needles is difficult due to an increase in the number of steps involved in a manufacturing process, the cost of manufacturing and the probability for inconsistent products increase. As such, there is a need in the art for micro-needles that overcome the disadvantages of metal micro-needles.
  • Micro-needles and methods for making and using such micro-needles are provided for the sampling of biological fluid from tissue and/or for the delivery of drugs, etc. to within tissue.
  • the subject micro-needles are useful in the context of analyte concentration measurement and is particularly suited for use in the measurement of glucose concentration in interstitial fluid.
  • the subject micro-needles are also useful for the delivery of drugs for local or systemic therapy or diagnosis.
  • Types of drugs and agents suitable for delivery with the devices of the present invention include, but are not limited to, nucleic acids, proteins, such as growth factors, and other agents such as antibiotics, steroids decongestants anesthetics, etc.
  • the subject micro-needle has a configuration optimized for minimally invasive sampling of biological fluids and, in particular, interstitial fluid sampling, as well as for the delivery of small doses of drugs or other formulations.
  • a feature of the subject micro-needle is the superior sharpness of its distal tip which may be advantageous in minimizing and eliminating the pain felt by patients, for example, when delivering materials to or withdrawing materials from the skin.
  • the subject micro-needle is fabricated by means of micro-replication techniques, such as injection molding of a plastic material or the like.
  • micro-replication techniques such as injection molding of a plastic material or the like.
  • the plastic molded injection process allows flexibility in the design of the subject micro-needle and, in particular, allows it to be optimized or customized for a particular intended use.
  • the micro-needle of the present invention may be used in conjunction with a biological fluid sampling and analyte measuring device or system or with a drug or biological material reservoir or the like.
  • the present invention further includes arrays of the subject micro-needle. Also provided by the present invention are methods of making, methods for using the micro-needle, and kits including one or more of the subject micro-needles or arrays thereof.
  • FIG. 1A is a cross-sectional view of a prior art micro-needle
  • FIG. 1B is a top view of a prior art micro-needle
  • FIG. 2A is a cross-sectional view of a micro-needle according to the present invention.
  • FIG. 2B is a top view of a micro-needle according to the present invention.
  • FIG. 3A is a two-dimensional schematic representation of one embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle intersect above the base of the micro-needle's oblique structure;
  • FIG. 3B is a two-dimensional schematic representation of another embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle intersect above the base of the micro-needle's oblique structure.
  • FIG. 3C is a two-dimensional schematic representation of another embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle intersect below the base of the micro-needle's oblique structure;
  • FIG. 3D is a two-dimensional schematic representation of another embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle are parallel to each other;
  • FIG. 4A is a cross-sectional view of one embodiment of a mold suitable for use in the fabrication of the micro-needles of the present invention.
  • FIG. 4B is a cross-sectional view of another embodiment of a mold suitable for use in the fabrication of the micro-needles of the present invention.
  • the subject micro-needle has a structure or a body having a customized configuration defined by a structure, such as an oblique cone (sometimes referred to as a “scalene cone”) where the apex of the cone defines a distal end having a distal tip and the base of the cone defines the proximal or base end of the micro-needle structure.
  • the distal tip has a sharp point for penetrating the skin surface and for accessing biological fluids therein.
  • the micro-needle structure further includes a lumen which extends from the distal tip to the base end of the micro-needle and serves as a delivery conduit or channel for biological fluid accessed at the distal tip of the micro-needle.
  • the diameter of the lumen is sized and configured to exert a capillary force on the biological fluid, thereby wicking it into the micro-needle structure.
  • the fluid sampling or transport capabilities of the micro-needle may be accomplished by vacuum assist means.
  • the base end of the micro-needle may be placed in fluid communication with another structure, such as a means for measuring certain characteristics of sampled fluid or a reservoir for holding a drug or biological material for delivery across a biological barrier, e.g., skin.
  • the micro-needle lumen acts to transfer wicked biological fluid into the measurement means, such as the reaction zone or chamber of an electrochemical cell, a porous structure containing a reagent material, or the like, commonly used in the detection and measurement of constituents within biological fluids.
  • the subject micro-needle may be integrally provided with such measurement means, collectively referred to as a “sensor device,” for determining the concentration of a constituent within the sampled fluid.
  • the subject sensor device may function as a part of an analyte sensing system that includes a means for controlling the sensor device.
  • the micro-needle lumen acts to transfer drugs, formulations or biological materials from a reservoir containing the fluid or material to be delivered.
  • the subject micro-needle may be integrally provided with such a reservoir means, collectively referred to as a “delivery device.”
  • the subject delivery device may function as a part of a drug delivery system that includes a means for controlling, for example, the volume and rate of the material being delivered to the subject.
  • the micro-needles may be integrated in a single device having both sensor and delivery capabilities and means.
  • the subject micro-needles, sensor devices, delivery devices and systems are useful in the minimally invasive sampling of fluids, such as interstitial fluid, and the minimally invasive delivery of fluids, such as a drug or other agent.
  • the sampling and sensor components and functions are particularly useful in the detection and measurement of various analytes, e.g., glucose, cholesterol, electrolytes, pharmaceuticals, or illicit drugs, and the like, present in the sampled fluid.
  • the delivery components and functions are particularly useful in delivery an amount of drug, such as insulin, and the like, for treatment of a disease or condition, such as diabetes.
  • FIGS. 1A and 1B illustrate an exemplary prior art micro-needle 40 and FIGS. 2A and 2B illustrate one embodiment of a micro-needle 80 of the present invention.
  • FIGS. 1A and 1B illustrate cross-sectional and perspective views, respectively, of prior art micro-needle 40 having a frustum conical shape (i.e., a cone truncated by a plane parallel to its base) defining a longitudinal axis or centerline 45 .
  • Micro-needle 40 has a body 35 and a tip 20 at its distal end and a base 30 at its proximal end. The plane defined by the annular distal edge of tip 20 is generally substantially parallel to base 30 .
  • Micro-needle 40 further includes a lumen 15 having the same longitudinal axis 45 as conically-shaped micro-needle body 35 (i.e., body 35 and lumen 15 are co-axial), extending from the distal end to the base 30 of micro-needle body 35 .
  • the walls 17 of lumen 15 are equidistant from centerline 45 along the entire length of lumen 15 .
  • micro-needle 40 is operatively mounted and in fluid communication with a planar substrate 10 , having sufficient rigidity to support micro-needle 40 .
  • Micro-needle 40 generally has the following dimensions: a height ranging from about 50 to 3,000 ⁇ m, a luminal diameter ranging from about 10 to 200 ⁇ m and a base diameter ranging from about 100 to 400 ⁇ m.
  • the frustum conical shape of prior art micro-needle 40 is designed to penetrate the skin with a planar, annular footprint (i.e., the annular ring of the edge of the distal tip) which distributes the penetration force applied to micro-needle 40 over a surface area of the skin generally in the range from about 3,000 to 10,000 ⁇ m 2 , depending on the desired depth of penetration.
  • the greater the penetration surface area the greater the force necessary to cause micro-needle 40 to disrupt the surface of the stratum corneum.
  • the necessary penetration force increases as the number of micro-needles is increased. Thus, with an array of micro-needles 40 , the amount of penetration force increases greatly.
  • micro-needle that has an extremely pointed and sharp tip with a footprint having a miniscule surface area, requiring very little force for the tip to disrupt the surface of the stratum corneum. As mentioned above, forming or creating such a tip is difficult with the micro-needle materials and fabrication processes of prior art.
  • Micro-needle 80 includes a body 75 having a distal end 58 and a proximal end or base 70 , and defining a structural or body axis 65 which extends from vertex 60 to the center 72 of base 70 .
  • Micro-needle 80 further includes an open lumen 55 that extends longitudinally from distal end 58 to base 70 , defining a lumenal axis 56 of micro-needle 80 which is perpendicular to base 70 .
  • body 75 has a substantially oblique shape defined by vertex 60 (also defined as the apex of micro-needle 80 ) at distal end 58 , base 70 , and the surface area defined between vertex 60 and base 70 , defined, in part, by phantom line 62 .
  • An oblique structure is one that has a vertex or apex and a substantially flat base whose structural or body axis, i.e., the line extending between the vertex and the center of its base, is not per perpendicular to the base.
  • body 75 may have a shape that is “regular” and not oblique, i.e., the line extending between the vertex and the center of its base is perpendicular to the base.
  • the resulting structure defines a vertex angle ⁇ and a structural or body axis 65 , that extends from vertex 60 to the center 72 of base 70 .
  • Angle ⁇ is determined by the selected height and base diameter (or width) of micro-needle 80 , discussed in more detail below, and may have any practical value for a selected application of the subject micro-needles.
  • the volume of body 75 is determined by the height of vertex 60 and the diameter of base 70 , discussed in further detail below.
  • base 70 has an annular-shaped cross-section (e.g., circular or elliptical), and as such, forming a conical-shaped oblique structure.
  • Lumenal axis 56 intersects with structural or body axis 65 defining an intersection angle ⁇ there between.
  • the intersection angle ⁇ is zero, i.e., lumenal axis 56 and structural axis 65 do not intersect but, instead, are parallel and not co-axial.
  • the intersection angle ⁇ is greater than zero (i.e., lumenal axis 56 and structural axis 65 are not co-axial nor are they parallel with each other) and has a value less than half of the vertex angle ⁇ . In other words the vertex angle ⁇ is greater than twice the intersection angle ⁇ . This relationship is represented by the following equations:
  • the micro-needle should have cone and wall strengths sufficient to withstand biological barrier penetration pressures for a given application.
  • Lumen 55 may have an annular or any suitable non-annular cross-sectional shape. As illustrated in FIG. 2B, lumen 55 has a cylindrical configuration. The wall defined by lumen 55 intersects with apex 60 to define the distal-most point of micro-needle 80 . Diametrically opposite to apex 60 , the lumenal wall intersects at a location 63 of micro-needle body 75 to define the most proximal point of distal end 58 . The linear distance between apex 60 and proximal point 63 is indicated by bracket 67 of FIG. 2A.
  • an angled or sliced distal tip configuration is provided which facilitates easy penetration of apex 60 into the skin with minimal pressure applied to micro-needle 80 , which may in turn reduce the pain felt by the patient.
  • the angled distal tip may further be beveled or contoured along distance 67 between apex 60 and proximal point 63 to further facilitate penetration of micro-needle 80 into the skin.
  • structural axis 65 of micro-needle 80 intersects lumenal axis 56 at a center 72 of base 70 .
  • axial intersection i.e., the “axial intersection” (AI)
  • proximal to i.e., below
  • proximal to i.e., above
  • base 70 proximal to, i.e., above
  • This point of axial intersection determines, at least in part, the diameter of lumen 55 , i.e., the distance 67 between apex 60 and proximal point 63 .
  • micro-needle and, more specifically, the desired fluid flow rate through lumen 55 (dependent upon the lumenal diameter) and the depth of penetration (dependent upon the lumenal length) dictates the relative location, i.e., proximal to base 70 , at base 70 , or distal to base 70 , of the axial intersection of the subject micro-needles.
  • FIGS. 3 A-D illustrate schematic representations of various embodiments of micro-needle lumen 55 and the portion of micro-needle body 75 defining apex 60 having different axial intersections; however, such are intended to be exemplary and are not intended to limit the possible locations of axial intersection.
  • a feature of the micro-needles of the present invention is that such an axial intersection can occur at any point below apex 60 .
  • the axial intersection for each embodiment will be discussed relative to the micro-needle base 70 .
  • AI is the point of intersection between lumenal axis 56 and structural axis 65 , wherein structural axis 65 is the line between apex 60 and the center point 95 of base 70 .
  • FIG. 3A illustrates an embodiment where AI 90 is above micro-needle base 70 .
  • vertex angle ⁇ is defined as ⁇ 1 and intersection angle ⁇ is defined as ⁇ 1 .
  • FIG. 3B illustrates an embodiment, such as the embodiment of FIGS. 2A and 2B, where AI 91 and the micro-needle base 70 are superimposed, i.e., lumenal axis 56 intersects structural axis 65 at a point along the plane which defines base 70 .
  • vertex angle ⁇ is defined as ⁇ 2 and intersection angle ⁇ is defined as ⁇ 2 .
  • FIG. 3C illustrates an embodiment where AI 92 is below micro-needle base 70 .
  • vertex angle ⁇ is defined as ⁇ 3 and intersection angle ⁇ is defined as ⁇ 3 .
  • angles ⁇ and ⁇ both increase, respectively, as the AI approaches apex 60 .
  • the distance 67 between apex 60 and proximal point 63 decreases.
  • angles ⁇ and ⁇ both decrease, respectively, and distance 67 increases.
  • angle ⁇ preferably ranges from about 30 to 60° but may be more or less depending on the particular application.
  • the micro-needles of the present invention may have the following dimensions: a height or length generally in the range from about 100 to 10,000 ⁇ m, usually in the range from about 200 to 2,000 ⁇ m, and more usually in the range from 500 to 1,200 ⁇ m although the actual penetration depth of the micro-needle may be less; a base diameter generally in the range from about 100 to about 2,000 ⁇ m, and typically in the range from about 100 to 600 ⁇ m, and more typically in the range from about 250 to 500 ⁇ m; and a lumenal diameter capable of exerting a capillary force on fluid and, thus, is generally in the range from about 10 to 200 ⁇ m and more typically in the range from about 70 to 150 ⁇ m. Any appropriate aspect ratio between the height and base diameter of the micro-needle may be used, however, the aspect ratio is at least 1:1, and is usually between about 2:1 to 5:1.
  • the subject micro-needles are configured to be mechanically stable and strong enough to penetrate the stratum corneum.
  • the micro-needles are made of a biocompatible material so as not to cause irritation to the skin or an undesirable tissue response.
  • the micro-needles are made of a plastic or resin material. Specific examples of such materials include, but are not limited to, acrylic, polyacrylates, polycarbonate, epoxies, polyesters polyetheretherketone, polyvinylchloride, polyolefins, liquid crystalline polyesters, or their composites.
  • the subject micro-needles may be made of any suitable solid material, including stainless steel and other metals, provided such material is suitable for treatment in a micro-replication process.
  • the micro-needles of the present invention may be integrally provided with a measurement means to provide a fluid sampling and constituent measurement device, also referred to as a “sensor device”, for determining the concentration of one or more constituents within a sampled fluid.
  • a fluid sampling and constituent measurement device also referred to as a “sensor device”
  • the subject micro-needles may be integrally provided with a reservoir chamber for holding drugs or the like for the delivery of such for therapeutic and/or diagnostic applications.
  • the micro-needles may be integrated with a device which includes both fluid sampling/measurement means and fluid holding/delivery means.
  • FIGS. 2A and 2B schematically illustrate such an integral device.
  • Micro-needle 80 is operatively mounted or affixed to a substrate 50 or the like which may house, for example, an analyte measurement means (not shown) and/or a fluid reservoir (not shown).
  • the measurement means may include an electrochemical means, a photometric means or any other suitable means for measuring the level of a target constituent(s).
  • the fluid reservoir may include a chamber containing a selected volume or one or more doses of a drug or other material.
  • Lumen 55 of micro-needle 80 is shown in fluid communication with pore 52 of substrate 50 having the same or substantially the same diameter dimensions as lumen 55 .
  • substrate housing an analyte measurement means is able to receive a sampled biological fluid through lumen 55 by means of a capillary force when micro-needle 80 is penetrated within the skin.
  • pore 52 and lumen 55 may have the same or different diameter dimensions, depending on the desired delivery protocol.
  • the sensor/delivery device may provide at least one subject micro-needle 80 , or multiple micro-needles in the form of an array in which the micro-needles are mounted to or formed on, in close proximity with each other, to a base structure or substrate.
  • the micro-needles and the associated substrate may be separately fabricated components which are integrally connected or may be formed together to establish a single, generally continuous device if desired.
  • micro-needles may be employed with the sensor/delivery devices of the present invention. The optimal number will depend upon various factors including the type of fluid being sampled or delivered, the location and surface area of the biological tissue into which the micro-needles are inserted, the rate of sampling or delivery desired, the size of the device and the margin of accuracy desired. Regardless of the number micro-needles, they are sufficiently separated from each other so as to ensure that the stratum corneum can be penetrated without undue pressure on the skin. In general, micro-needles are separated from adjacent micro-needles a distance in the range from about 100 to about 1,000 ⁇ m, and typically from about 200 to 600 ⁇ m. Additionally, the micro-needle array may comprise micro-needles of the present invention having varying shapes, lengths, widths and tip configurations.
  • the subject sensor/delivery devices may be part of a system for sampling biological fluid and measuring the target analyte concentration therein or for deiverying therapeutic or diagnostic materials across a biological tissue barrier.
  • a system of the present invention may include a control unit for automatically controlling the function of the sensor/delivery device and for deriving specific information about the sampled fluid and its constituents and for displaying such information and/or for controlling the volume and rate of delivery of a fluid.
  • the control unit may be configured to generate and send input signals to the sensor/delivery device and to receive output signals from the sensor/delivery device. These functions, among others, may be controlled by a software algorithm programmed within the control unit.
  • control unit functions such as the automatic calculation of the concentration of a target analyte in a biological sample such that a user need only insert a micro-needle of the subject invention into the skin and then read the final analyte concentration result from a display of the device.
  • a control device is further described in U.S. Pat. No. 6,193,873 entitled “Sample Detection to Initiate Timing of an Electrochemical Assay,” the disclosure of which is herein incorporated by reference.
  • the micro-needles of the present invention are fabricated by micro-replication technology using any solid material.
  • suitable materials include, but are not limited to, plastics, polymers or resins, and the like which are suitable for forming components by means of injection molding.
  • Other solid materials, suitable for use in micro-replication technology, may also be used to form the micro-needles and devices of the present invention.
  • Plastic injection molding is one type of micro-fabrication technique which is particularly suitable for fabricating the micro-needles of the present invention.
  • An advantage of plastic injection molding is the ability to customize and precisely detail a micro-needle for its intended application far more quickly than by prior art micro-needle fabrication techniques.
  • the oblique structures, beveled tips and sharp points or apexes of the subject micro-needles discussed above may be fabricated by plastic injection-molding techniques in an automated fashion.
  • plastic resins and polymers are typical materials used in the form of pellets or small particles.
  • Particularly suitable resins and polymers include, but are not limited to, polyacrylate, polycarbonate, epoxies, polyester, polyetheretherketone, polyvinylchloride, polyolefins, liquid crystalline polymers, polyphenylene sulfide, polyphenylene oxide, polyacetal, polyimide, polyamide, polystyrene, copolymers or their composites or the like.
  • These pellets or particles are fed into an injection molding machine and heated until they become molten.
  • the molten material is then forced into a mold having a reverse image of the micro-needle structure to be formed.
  • the molten material is then allowed to cool and become solidified within the mold.
  • the resulting solid structure is then ejected from the mold by means of ejection pins which are run through the mold.
  • FIGS. 4A and 4B illustrate cross-sections of exemplary embodiments of molds that are suitable for use in the injection molding of the micro-needles of the present invention.
  • FIG. 4A shows a mold assembly 100 having a base portion 102 and structural portion 104 which are alignable in a sealing engagement with each other at rests 106 a and 106 b .
  • Base portion 102 provides a surface area 103 which forms either the base end of a micro-needle or, as here, the back-side of a substrate structure, such as those described above.
  • Structural portion 104 provides a negative image of the desired micro-needle structure 108 , such as the micro-needles structures of the present invention.
  • Structural portion 104 also provides a pin formation 110 within micro-needle structure 108 which forms the lumen within the micro-needle structure as well as provides a spacing 116 forming the structure and side walls of a substrate.
  • Through structural portion 104 and parallel with its y-axis are bores 112 a , 112 b for receiving and guiding ejection pins 114 a , 114 b , respectively.
  • Pins 114 a , 114 b serve to eject the molded structure off of structural portion 104 .
  • FIG. 4B illustrates another embodiment of a mold 120 having base portion 122 and structural portion 124 which are alignable in sealing engagement with each other at rests 126 a and 126 b .
  • Structural portion 124 provides a negative or opposite image of the desired micro-needle structure 132 , such as the micro-needles structures of the present invention.
  • Base portion 102 provides a surface area 128 which forms either the base end of a micro-needle or, as here, the back-side and side walls of a substrate structure, such as those described above.
  • base portion 122 also provides a pin formation 130 for forming a lumen within micro-needle structure 132 .
  • a granulated material is selected for filling the mold cavities.
  • Suitable materials for powder injection molding are metals, silicon carbide, silicon oxide, aluminum oxide, zirconium oxide, and their mixtures.
  • the granulated particles are then mixed with a binder material and heated to a high temperature until molten, then transferred into a mold, such as the molds of the present invention described above.
  • the molten material is then allowed to cool and harden.
  • the hardened structure is then removed from the mold, such as by means of the ejection pins discussed above, and placed in a solvent ore material to extract the binder material from the resulting structure.
  • the structure is then further hardened by means of a sintering process.
  • the cavities of the molds used in the above-described fabrication processes may be formed in the desired negative or opposite image, e.g., an oblique cone shape, of a micro-needle by means of an electrical discharge machining (EDM).
  • EDM electrical discharge machining
  • an electrode is used to cut or form the desired configuration of a micro-needle structure into the base and structural portions of the mold.
  • the formation pin used to form the micro-needle lumen may be formed by the EDM process or, alternatively, formed by a modular pin fastened within the cavity of either the base or structural portions of the mold.
  • the present invention also provides for a method of manufacturing tiny oblique structures.
  • These oblique structures have a base end and a vertex end.
  • the base end has a diameter generally in the range from about 100 to 2,000 ⁇ m and more typically in the range from about 100 to 500 ⁇ m.
  • the base-to-vertex height is generally in the range from about 100 to 10,000 ⁇ m, and more typically in the range from about 200 to 2,000 ⁇ m.
  • This method includes providing a suitable material from which said oblique structure can be fabricated by means of one or more micro-replication techniques, such as the injection molding technique and electrical discharge machining discussed above.
  • the manufacturing process further includes forming an open lumen within the oblique structure either in conjunction with the fabrication of the oblique structure or thereafter.
  • the open lumen is formed to extend from the base end of the structure to the vertex end and may have dimensions the same as or similar to those discussed with respect to the micro-needle embodiment of FIGS. 2A and 2B.
  • the process additionally includes customizing a tip at the vertex end of the structure. Again, such customization may be performed in conjunction with the fabrication of the oblique structure and/or in conjunction with the fabrication of the open lumen within the oblique structure.
  • the customized tip may be selectively beveled, for a particular application, such as those mentioned above.
  • the first step is to provide a device having one or more subject micro-needles or an array of subject micro-needles, as described above.
  • the subject micro-needle(s) may be made of material formed by a micro-replication technique, such as plastic injection molding. More specifically, that material may be a type of plastic, polymer or resin.
  • the micro-needle(s) may be provide as an integral part of a subject sensor device, which device may be particularly configured (i.e., containing the appropriate reagent) for targeting the analyte(s) of interest.
  • the sensor device may be a stand alone device, while in other embodiments of the present invention, the sensor device may be operatively engaged and interfaced with a control unit, described above, that can be manually held and controlled by the user.
  • the control unit is programmed for testing the targeted analyte(s).
  • the user positions sensor device over a selected area of the patient's skin and, with slight pressure, the micro-needle(s) of the sensor device is/are caused to penetrate into the skin.
  • the depth to which the micro-needles are inserted will depend on the length of the respective micro-needles or by some other means associated with the sensor unit for limiting the insertion depth.
  • an amount i.e., a sample
  • biological fluid present at the open tips of the micro-needles is wicked into the lumen by means of a capillary force, or by a vacuum assist device or the like.
  • the sampled fluid is then transported to a measurement area, e.g., a reaction zone of an electrochemical cell, of the measurement means.
  • a signal producing and receiving system of the measurement means defined by the type of measurement being made, e.g. electrochemical or photometric, measures the concentration of the analyte within the sampled fluid.
  • Representative analytes include glucose, cholesterol, lactate, alcohol, and the like.
  • the micro-needle(s) may be provide as an integral part of a delivery device containing a reservoir for holding a volume of drug or material to be delivered, which device may be particularly configured for controlling the rate of delivery such drug or material.
  • the delivery device may be a stand alone device, while in other embodiments of the present invention, the delivery device may be operatively engaged and interfaced with a control unit, described above, that can be manually held and controlled by the user.
  • the control unit may be programmed for delivering a selected amount of drug or material to be delivered.
  • the user positions the delivery device over a selected area of the patient's skin and, with slight pressure, the micro-needle(s) of the delivery device is/are caused to penetrate into the skin.
  • the depth to which the micro-needles are inserted will depend on the length of the respective micro-needles or by some other means associated with the delivery device for limiting the insertion depth.
  • an amount of the drug or material held within the delivery devices reservoir is injected or is otherwise caused to be transported via the micro-needle(s) to within the biological tissue.
  • Various drugs and materials to be delivered include therapeutic drugs diagnostic agents, genetic material biological material, and the like.
  • kits for use in practicing the subject methods include at least one subject micro-needle and/or one or more subject sensor and/or delivery devices having one or more subject micro-needles.
  • the sensor/delivery devices may include an array of micro-needles of the present invention having the same or different lengths.
  • Certain kits may include various sensor devices each containing the same or different reagents.
  • more than one reagent may be provides within a single micro-needle array, wherein one or more of the micro-needles are provided with a first reagent for testing a first target analyte and one or more other micro-needles are provided with other reagents for testing other targeted analytes.
  • kits may include various delivery devices each containing the same or different drug or formulation.
  • the kits may also include a reusable or disposable control unit that may be used with reusable or disposable sensor/delivery devices of the kit of the subject invention.
  • the kits preferably include instructions for using the subject devices in the determination of an analyte concentration in a biological sample and/or for delivering a drug or formulation across a biological barrier. These instructions may be present on one or more of the packaging, a label insert, or containers present in the kits, and the like.
  • the features of the subject micro-needles overcome many of the disadvantages of prior art micro-needles, and provide certain advantages including, but not limited to, providing micro-needles having extremely sharp tips for penetration into the skin, providing a customized micro-needle for the particular application at hand and providing easier and less costly manufacturing techniques.
  • Other advantages of the subject micro-needles is the reduction in pain experienced by a patient as a result of the reduced footprint of the micro-needle tip and the minimal pressure required to cause the micro-needle to penetrate the skin.
  • the subject invention represents a significant contribution to the field of fluid sampling and delivery across a biological barrier.

Abstract

A micro-needle is provided which is particularly useful for the minimally invasive sampling of a biological fluid and/or the minimally invasive delivery of a drug or other formulation across the skin. The micro-needle has a structure having a base at a proximal end and a vertex at a distal end, and an open lumen extending there through and through which fluid may be transferred. The structure defines a structural axis that intersects the lumenal axis defined by the open lumen. The point of intersection between these axes is at a point below the vertex of the micro-needle to provide a sharp apex at the distal end of the micro-needle and defines the general configuration of the distal end of the micro-needle, which may be selected or customized depending on the intended use of the microneedle. The micro-needle may be integral with a measurement device for measuring the concentration of a constituent within sampled biological fluid and/or with a fluid reservoir for containing a fluid to be delivered, and may also be used in conjunction with a remote control means. Methods of making and using the micro-needle of the present invention as well as kits comprising one or more of the micro-needles are also provided.

Description

    FIELD OF THE INVENTION
  • This invention is related to micro-needles, fabrication of micro-needles, and methods of using the micro-needles for obtaining biological fluid samples and for delivering drugs, agents, formulations or biological molecules across biological tissue barriers. [0001]
  • BACKGROUND
  • The detection of analytes in biological fluids is of ever increasing importance. Analyte detection assays find use in a variety of applications, including clinical laboratory testing, home testing, etc., where the results of such testing play a prominent role in the diagnosis and management of a variety of disease conditions. Common analytes of interest include glucose, cholesterol, and the like. [0002]
  • A common technique for collecting a sample of blood for analyte determination is to pierce the skin at least into the subcutaneous layer to access the underlining blood vessels in order to produce localized bleeding on the body surface. The accessed blood is then collected into a small tube for delivery and analyzed by testing equipment, often in the form of a hand-held instrument having a reagent sample onto which the blood sample is placed. The fingertip is the most frequently used site for this method of blood collection due to the large number of small blood vessels located therein. This method has the significant disadvantage of being painful because subcutaneous tissue of the fingertip has a large concentration of nerve endings. This technique of blood sampling also runs the risk of infection and the transmission of disease to the patient, particularly when done on a high-frequency basis. The problems with this technique are exacerbated by the fact that there is a limited amount of skin surface that can be used for the frequent sampling of blood. It is not uncommon for patients who require frequent monitoring of an analyte, to avoid having their blood sampled. With diabetics, for example, the failure to frequently measure their glucose level on a prescribed basis results in a lack of information necessary to properly control the level of glucose. Uncontrolled glucose levels can be very dangerous and even life-threatening. [0003]
  • Similarly, current methods of drug-delivery are invasive and suffer from the same disadvantages as current methods of biological fluid sampling. [0004]
  • To overcome the disadvantages of the above technique and others that are associated with a high degree of pain, certain analyte detection and drug delivery protocols and devices have been developed that use micro-needles, micro-piercing, or micro-cutting elements or analogous structures to penetrate the skin and other tissue barriers. Micro-needles may be combined with analyte measurement systems to provide a minimally invasive fluid retrieval and analyte sensing system. These systems may include one or more micro-needles that penetrate tissue to obtain body fluid samples. [0005]
  • Micro-needles are typically made from stainless steel or other metals. Metal needles are subject to numerous disadvantages. Some of the major disadvantages include the manufacturing complexities of metal needles, such as wire drawing, grinding, deburing and cleaning steps involved in the manufacturing process. Further, impurities in the metals can cause oxidation and deterioration of the needles. As such, the manufacturing process for metal micro-needles may also involve steps where impurities are eliminated from the metals. Another challenge is the difficulty in handling the micro-needles, which are very small and delicate, during each manufacturing step. It may be desirable to provide a certain feature, such as a customized or a typically designed needle tip, that is very difficult if not impossible to do in the conventional fabrication of metal needles. In such a case, the customized feature may require a means for providing or making such a feature which are not completely automated. Customization of metal micro-needles is difficult due to an increase in the number of steps involved in a manufacturing process, the cost of manufacturing and the probability for inconsistent products increase. As such, there is a need in the art for micro-needles that overcome the disadvantages of metal micro-needles. [0006]
  • Despite the work that has already been done in the area of micro-needles and the fabrication thereof, it is desirable to develop a micro-needle that is less expensive and easier to fabricate and customize. [0007]
  • SUMMARY OF THE INVENTION
  • Micro-needles and methods for making and using such micro-needles are provided for the sampling of biological fluid from tissue and/or for the delivery of drugs, etc. to within tissue. The subject micro-needles are useful in the context of analyte concentration measurement and is particularly suited for use in the measurement of glucose concentration in interstitial fluid. The subject micro-needles are also useful for the delivery of drugs for local or systemic therapy or diagnosis. Types of drugs and agents suitable for delivery with the devices of the present invention include, but are not limited to, nucleic acids, proteins, such as growth factors, and other agents such as antibiotics, steroids decongestants anesthetics, etc. [0008]
  • The subject micro-needle has a configuration optimized for minimally invasive sampling of biological fluids and, in particular, interstitial fluid sampling, as well as for the delivery of small doses of drugs or other formulations. A feature of the subject micro-needle is the superior sharpness of its distal tip which may be advantageous in minimizing and eliminating the pain felt by patients, for example, when delivering materials to or withdrawing materials from the skin. [0009]
  • The subject micro-needle is fabricated by means of micro-replication techniques, such as injection molding of a plastic material or the like. The plastic molded injection process allows flexibility in the design of the subject micro-needle and, in particular, allows it to be optimized or customized for a particular intended use. [0010]
  • The micro-needle of the present invention may be used in conjunction with a biological fluid sampling and analyte measuring device or system or with a drug or biological material reservoir or the like. The present invention further includes arrays of the subject micro-needle. Also provided by the present invention are methods of making, methods for using the micro-needle, and kits including one or more of the subject micro-needles or arrays thereof. [0011]
  • These and other features of the invention will become apparent to those persons killed in the art upon reading the details of the present invention as more fully described below.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a cross-sectional view of a prior art micro-needle; [0013]
  • FIG. 1B is a top view of a prior art micro-needle; [0014]
  • FIG. 2A is a cross-sectional view of a micro-needle according to the present invention; [0015]
  • FIG. 2B is a top view of a micro-needle according to the present invention; [0016]
  • FIG. 3A is a two-dimensional schematic representation of one embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle intersect above the base of the micro-needle's oblique structure; [0017]
  • FIG. 3B is a two-dimensional schematic representation of another embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle intersect above the base of the micro-needle's oblique structure. [0018]
  • FIG. 3C is a two-dimensional schematic representation of another embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle intersect below the base of the micro-needle's oblique structure; [0019]
  • FIG. 3D is a two-dimensional schematic representation of another embodiment of a micro-needle according to the present invention wherein the structural axis and lumenal axis of the micro-needle are parallel to each other; [0020]
  • FIG. 4A is a cross-sectional view of one embodiment of a mold suitable for use in the fabrication of the micro-needles of the present invention; and [0021]
  • FIG. 4B is a cross-sectional view of another embodiment of a mold suitable for use in the fabrication of the micro-needles of the present invention. [0022]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Before the present formulations and methods are described, it is to be understood that this invention is not limited to particular devices, formulas or steps described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims. [0023]
  • Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the invention. [0024]
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. [0025]
  • It must be noted that as used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a micro-needle” includes a plurality of such needles and reference to “the step” includes reference to one or more steps and equivalents thereof known to those skilled in the art, and so forth. [0026]
  • The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. [0027]
  • Overview of the Invention [0028]
  • In general, the subject micro-needle has a structure or a body having a customized configuration defined by a structure, such as an oblique cone (sometimes referred to as a “scalene cone”) where the apex of the cone defines a distal end having a distal tip and the base of the cone defines the proximal or base end of the micro-needle structure. The distal tip has a sharp point for penetrating the skin surface and for accessing biological fluids therein. The micro-needle structure further includes a lumen which extends from the distal tip to the base end of the micro-needle and serves as a delivery conduit or channel for biological fluid accessed at the distal tip of the micro-needle. The diameter of the lumen is sized and configured to exert a capillary force on the biological fluid, thereby wicking it into the micro-needle structure. Alternatively, the fluid sampling or transport capabilities of the micro-needle may be accomplished by vacuum assist means. [0029]
  • The base end of the micro-needle may be placed in fluid communication with another structure, such as a means for measuring certain characteristics of sampled fluid or a reservoir for holding a drug or biological material for delivery across a biological barrier, e.g., skin. In the former embodiment, the micro-needle lumen acts to transfer wicked biological fluid into the measurement means, such as the reaction zone or chamber of an electrochemical cell, a porous structure containing a reagent material, or the like, commonly used in the detection and measurement of constituents within biological fluids. As such, the subject micro-needle may be integrally provided with such measurement means, collectively referred to as a “sensor device,” for determining the concentration of a constituent within the sampled fluid. The subject sensor device may function as a part of an analyte sensing system that includes a means for controlling the sensor device. [0030]
  • In the fluid delivery embodiments of the present invention, the micro-needle lumen acts to transfer drugs, formulations or biological materials from a reservoir containing the fluid or material to be delivered. The subject micro-needle may be integrally provided with such a reservoir means, collectively referred to as a “delivery device.” The subject delivery device may function as a part of a drug delivery system that includes a means for controlling, for example, the volume and rate of the material being delivered to the subject. [0031]
  • In certain other embodiments of the present invention, the micro-needles may be integrated in a single device having both sensor and delivery capabilities and means. [0032]
  • The subject micro-needles, sensor devices, delivery devices and systems are useful in the minimally invasive sampling of fluids, such as interstitial fluid, and the minimally invasive delivery of fluids, such as a drug or other agent. The sampling and sensor components and functions are particularly useful in the detection and measurement of various analytes, e.g., glucose, cholesterol, electrolytes, pharmaceuticals, or illicit drugs, and the like, present in the sampled fluid. The delivery components and functions are particularly useful in delivery an amount of drug, such as insulin, and the like, for treatment of a disease or condition, such as diabetes. [0033]
  • The Micro-Needle [0034]
  • Referring now to the drawings, wherein like numerals indicate like elements, FIGS. 1A and 1B illustrate an exemplary [0035] prior art micro-needle 40 and FIGS. 2A and 2B illustrate one embodiment of a micro-needle 80 of the present invention.
  • FIGS. 1A and 1B illustrate cross-sectional and perspective views, respectively, of [0036] prior art micro-needle 40 having a frustum conical shape (i.e., a cone truncated by a plane parallel to its base) defining a longitudinal axis or centerline 45. Micro-needle 40 has a body 35 and a tip 20 at its distal end and a base 30 at its proximal end. The plane defined by the annular distal edge of tip 20 is generally substantially parallel to base 30.
  • Micro-needle [0037] 40 further includes a lumen 15 having the same longitudinal axis 45 as conically-shaped micro-needle body 35 (i.e., body 35 and lumen 15 are co-axial), extending from the distal end to the base 30 of micro-needle body 35. The walls 17 of lumen 15 are equidistant from centerline 45 along the entire length of lumen 15. In the illustrated embodiment, micro-needle 40 is operatively mounted and in fluid communication with a planar substrate 10, having sufficient rigidity to support micro-needle 40.
  • Micro-needle [0038] 40 generally has the following dimensions: a height ranging from about 50 to 3,000 μm, a luminal diameter ranging from about 10 to 200 μm and a base diameter ranging from about 100 to 400 μm.
  • The frustum conical shape of [0039] prior art micro-needle 40 is designed to penetrate the skin with a planar, annular footprint (i.e., the annular ring of the edge of the distal tip) which distributes the penetration force applied to micro-needle 40 over a surface area of the skin generally in the range from about 3,000 to 10,000 μm2, depending on the desired depth of penetration. The greater the penetration surface area, the greater the force necessary to cause micro-needle 40 to disrupt the surface of the stratum corneum. The necessary penetration force increases as the number of micro-needles is increased. Thus, with an array of micro-needles 40, the amount of penetration force increases greatly. The greater the penetration force and the penetration surface area, the more pain likely to be felt by the patient. As such, it would be desirable to provide a micro-needle that has an extremely pointed and sharp tip with a footprint having a miniscule surface area, requiring very little force for the tip to disrupt the surface of the stratum corneum. As mentioned above, forming or creating such a tip is difficult with the micro-needle materials and fabrication processes of prior art.
  • Referring now to FIGS. 2A and 2B, there is shown cross-sectional and perspective views, respectively, of a micro-needle [0040] 80 according to the present invention. Micro-needle 80 includes a body 75 having a distal end 58 and a proximal end or base 70, and defining a structural or body axis 65 which extends from vertex 60 to the center 72 of base 70. Micro-needle 80 further includes an open lumen 55 that extends longitudinally from distal end 58 to base 70, defining a lumenal axis 56 of micro-needle 80 which is perpendicular to base 70.
  • The micro-needles of the present invention are characterized in part in that [0041] structural axis 65 and lumenal axis 56 are not co-axial. In many embodiments, body 75 has a substantially oblique shape defined by vertex 60 (also defined as the apex of micro-needle 80) at distal end 58, base 70, and the surface area defined between vertex 60 and base 70, defined, in part, by phantom line 62. An oblique structure is one that has a vertex or apex and a substantially flat base whose structural or body axis, i.e., the line extending between the vertex and the center of its base, is not per perpendicular to the base. In other embodiments, body 75 may have a shape that is “regular” and not oblique, i.e., the line extending between the vertex and the center of its base is perpendicular to the base.
  • With either configuration, the resulting structure defines a vertex angle α and a structural or [0042] body axis 65, that extends from vertex 60 to the center 72 of base 70. Angle α is determined by the selected height and base diameter (or width) of micro-needle 80, discussed in more detail below, and may have any practical value for a selected application of the subject micro-needles. The volume of body 75 is determined by the height of vertex 60 and the diameter of base 70, discussed in further detail below. Here, base 70 has an annular-shaped cross-section (e.g., circular or elliptical), and as such, forming a conical-shaped oblique structure. Other configurations, such as pyramids wherein the base may have three or more sides (defining, e.g., a triangle, square, rectangular, etc.) or any appropriate non-annular cross-section, such as a polygonal shape, are also suitable for the micro-needles of the present invention.
  • [0043] Lumenal axis 56 intersects with structural or body axis 65 defining an intersection angle β there between. For micro-needle embodiments having non-oblique configurations, the intersection angle β is zero, i.e., lumenal axis 56 and structural axis 65 do not intersect but, instead, are parallel and not co-axial. For micro-needle embodiments having an oblique structure, the intersection angle β is greater than zero (i.e., lumenal axis 56 and structural axis 65 are not co-axial nor are they parallel with each other) and has a value less than half of the vertex angle α. In other words the vertex angle α is greater than twice the intersection angle β. This relationship is represented by the following equations:
  • β<α/2 and α>2β.
  • In addition to satisfying these equations, the micro-needle should have cone and wall strengths sufficient to withstand biological barrier penetration pressures for a given application. [0044]
  • [0045] Lumen 55 may have an annular or any suitable non-annular cross-sectional shape. As illustrated in FIG. 2B, lumen 55 has a cylindrical configuration. The wall defined by lumen 55 intersects with apex 60 to define the distal-most point of micro-needle 80. Diametrically opposite to apex 60, the lumenal wall intersects at a location 63 of micro-needle body 75 to define the most proximal point of distal end 58. The linear distance between apex 60 and proximal point 63 is indicated by bracket 67 of FIG. 2A. As such, an angled or sliced distal tip configuration is provided which facilitates easy penetration of apex 60 into the skin with minimal pressure applied to micro-needle 80, which may in turn reduce the pain felt by the patient. The angled distal tip may further be beveled or contoured along distance 67 between apex 60 and proximal point 63 to further facilitate penetration of micro-needle 80 into the skin.
  • In the illustrated embodiment of FIG. 2A, [0046] structural axis 65 of micro-needle 80 intersects lumenal axis 56 at a center 72 of base 70. However, other points of intersection between the two axes, i.e., the “axial intersection” (AI), either proximal to, i.e., below, or proximal to, i.e., above, base 70, are within the scope of the present invention. This point of axial intersection determines, at least in part, the diameter of lumen 55, i.e., the distance 67 between apex 60 and proximal point 63. The intended use of the micro-needle and, more specifically, the desired fluid flow rate through lumen 55 (dependent upon the lumenal diameter) and the depth of penetration (dependent upon the lumenal length) dictates the relative location, i.e., proximal to base 70, at base 70, or distal to base 70, of the axial intersection of the subject micro-needles.
  • FIGS. [0047] 3A-D illustrate schematic representations of various embodiments of micro-needle lumen 55 and the portion of micro-needle body 75 defining apex 60 having different axial intersections; however, such are intended to be exemplary and are not intended to limit the possible locations of axial intersection. A feature of the micro-needles of the present invention is that such an axial intersection can occur at any point below apex 60. For simplicity only, the axial intersection for each embodiment will be discussed relative to the micro-needle base 70. In each embodiment, AI is the point of intersection between lumenal axis 56 and structural axis 65, wherein structural axis 65 is the line between apex 60 and the center point 95 of base 70.
  • FIG. 3A illustrates an embodiment where [0048] AI 90 is above micro-needle base 70. Here, vertex angle α is defined as α1 and intersection angle β is defined as β1. FIG. 3B illustrates an embodiment, such as the embodiment of FIGS. 2A and 2B, where AI 91 and the micro-needle base 70 are superimposed, i.e., lumenal axis 56 intersects structural axis 65 at a point along the plane which defines base 70. Here, vertex angle α is defined as α2 and intersection angle β is defined as β2. FIG. 3C illustrates an embodiment where AI 92 is below micro-needle base 70. Here, vertex angle α is defined as α3 and intersection angle β is defined as β3. Apparent from above-described FIGS. 3A-C, angles α and β both increase, respectively, as the AI approaches apex 60. As such, the distance 67 between apex 60 and proximal point 63 decreases. Conversely, as the AI moves away from apex 60, angles α and β both decrease, respectively, and distance 67 increases.
  • FIG. 3D illustrates an embodiment where angle β[0049] 4=0 and angle α4 has any suitable value for minimally invasive penetration through a biological barrier. As such, angle α preferably ranges from about 30 to 60° but may be more or less depending on the particular application.
  • The micro-needles of the present invention may have the following dimensions: a height or length generally in the range from about 100 to 10,000 μm, usually in the range from about 200 to 2,000 μm, and more usually in the range from 500 to 1,200 μm although the actual penetration depth of the micro-needle may be less; a base diameter generally in the range from about 100 to about 2,000 μm, and typically in the range from about 100 to 600 μm, and more typically in the range from about 250 to 500 μm; and a lumenal diameter capable of exerting a capillary force on fluid and, thus, is generally in the range from about 10 to 200 μm and more typically in the range from about 70 to 150 μm. Any appropriate aspect ratio between the height and base diameter of the micro-needle may be used, however, the aspect ratio is at least 1:1, and is usually between about 2:1 to 5:1. [0050]
  • Materials [0051]
  • The subject micro-needles are configured to be mechanically stable and strong enough to penetrate the stratum corneum. Preferably, the micro-needles are made of a biocompatible material so as not to cause irritation to the skin or an undesirable tissue response. In certain embodiments, the micro-needles are made of a plastic or resin material. Specific examples of such materials include, but are not limited to, acrylic, polyacrylates, polycarbonate, epoxies, polyesters polyetheretherketone, polyvinylchloride, polyolefins, liquid crystalline polyesters, or their composites. In other embodiments, the subject micro-needles may be made of any suitable solid material, including stainless steel and other metals, provided such material is suitable for treatment in a micro-replication process. [0052]
  • Micro-Needle(S) Integrated with Sensor and/or Delivery Devices [0053]
  • The micro-needles of the present invention may be integrally provided with a measurement means to provide a fluid sampling and constituent measurement device, also referred to as a “sensor device”, for determining the concentration of one or more constituents within a sampled fluid. Alternatively, the subject micro-needles may be integrally provided with a reservoir chamber for holding drugs or the like for the delivery of such for therapeutic and/or diagnostic applications. Additionally, the micro-needles may be integrated with a device which includes both fluid sampling/measurement means and fluid holding/delivery means. [0054]
  • FIGS. 2A and 2B schematically illustrate such an integral device. Micro-needle [0055] 80 is operatively mounted or affixed to a substrate 50 or the like which may house, for example, an analyte measurement means (not shown) and/or a fluid reservoir (not shown). The measurement means may include an electrochemical means, a photometric means or any other suitable means for measuring the level of a target constituent(s). The fluid reservoir may include a chamber containing a selected volume or one or more doses of a drug or other material.
  • [0056] Lumen 55 of micro-needle 80 is shown in fluid communication with pore 52 of substrate 50 having the same or substantially the same diameter dimensions as lumen 55. As such, substrate housing an analyte measurement means is able to receive a sampled biological fluid through lumen 55 by means of a capillary force when micro-needle 80 is penetrated within the skin. With delivery devices of the present invention, pore 52 and lumen 55 may have the same or different diameter dimensions, depending on the desired delivery protocol.
  • In certain embodiments, the sensor/delivery device may provide at least one subject micro-needle [0057] 80, or multiple micro-needles in the form of an array in which the micro-needles are mounted to or formed on, in close proximity with each other, to a base structure or substrate. The micro-needles and the associated substrate may be separately fabricated components which are integrally connected or may be formed together to establish a single, generally continuous device if desired.
  • Any suitable number of micro-needles may be employed with the sensor/delivery devices of the present invention. The optimal number will depend upon various factors including the type of fluid being sampled or delivered, the location and surface area of the biological tissue into which the micro-needles are inserted, the rate of sampling or delivery desired, the size of the device and the margin of accuracy desired. Regardless of the number micro-needles, they are sufficiently separated from each other so as to ensure that the stratum corneum can be penetrated without undue pressure on the skin. In general, micro-needles are separated from adjacent micro-needles a distance in the range from about 100 to about 1,000 μm, and typically from about 200 to 600 μm. Additionally, the micro-needle array may comprise micro-needles of the present invention having varying shapes, lengths, widths and tip configurations. [0058]
  • The subject sensor/delivery devices may be part of a system for sampling biological fluid and measuring the target analyte concentration therein or for deiverying therapeutic or diagnostic materials across a biological tissue barrier. Such a system of the present invention may include a control unit for automatically controlling the function of the sensor/delivery device and for deriving specific information about the sampled fluid and its constituents and for displaying such information and/or for controlling the volume and rate of delivery of a fluid. For example, the control unit may be configured to generate and send input signals to the sensor/delivery device and to receive output signals from the sensor/delivery device. These functions, among others, may be controlled by a software algorithm programmed within the control unit. With such a control unit, functions such as the automatic calculation of the concentration of a target analyte in a biological sample such that a user need only insert a micro-needle of the subject invention into the skin and then read the final analyte concentration result from a display of the device. Such a control device is further described in U.S. Pat. No. 6,193,873 entitled “Sample Detection to Initiate Timing of an Electrochemical Assay,” the disclosure of which is herein incorporated by reference. [0059]
  • Methods of Manufacture [0060]
  • As mentioned above, the micro-needles of the present invention are fabricated by micro-replication technology using any solid material. As mentioned previously, suitable materials include, but are not limited to, plastics, polymers or resins, and the like which are suitable for forming components by means of injection molding. Other solid materials, suitable for use in micro-replication technology, may also be used to form the micro-needles and devices of the present invention. [0061]
  • Plastic injection molding is one type of micro-fabrication technique which is particularly suitable for fabricating the micro-needles of the present invention. An advantage of plastic injection molding is the ability to customize and precisely detail a micro-needle for its intended application far more quickly than by prior art micro-needle fabrication techniques. In particular, the oblique structures, beveled tips and sharp points or apexes of the subject micro-needles discussed above may be fabricated by plastic injection-molding techniques in an automated fashion. [0062]
  • In plastic injection molding, plastic resins and polymers are typical materials used in the form of pellets or small particles. Particularly suitable resins and polymers include, but are not limited to, polyacrylate, polycarbonate, epoxies, polyester, polyetheretherketone, polyvinylchloride, polyolefins, liquid crystalline polymers, polyphenylene sulfide, polyphenylene oxide, polyacetal, polyimide, polyamide, polystyrene, copolymers or their composites or the like. These pellets or particles are fed into an injection molding machine and heated until they become molten. The molten material is then forced into a mold having a reverse image of the micro-needle structure to be formed. The molten material is then allowed to cool and become solidified within the mold. The resulting solid structure is then ejected from the mold by means of ejection pins which are run through the mold. [0063]
  • Another micro-replication technique suitable for fabricating the micro-needles of the present invention is powder injection molding. In this fabrication process, a mold is provided having a cavity resembling the negative image of the micro-needle device. FIGS. 4A and 4B illustrate cross-sections of exemplary embodiments of molds that are suitable for use in the injection molding of the micro-needles of the present invention. [0064]
  • FIG. 4A shows a [0065] mold assembly 100 having a base portion 102 and structural portion 104 which are alignable in a sealing engagement with each other at rests 106 a and 106 b. Base portion 102 provides a surface area 103 which forms either the base end of a micro-needle or, as here, the back-side of a substrate structure, such as those described above. Structural portion 104 provides a negative image of the desired micro-needle structure 108, such as the micro-needles structures of the present invention. Structural portion 104 also provides a pin formation 110 within micro-needle structure 108 which forms the lumen within the micro-needle structure as well as provides a spacing 116 forming the structure and side walls of a substrate. Through structural portion 104 and parallel with its y-axis are bores 112 a, 112 b for receiving and guiding ejection pins 114 a, 114 b, respectively. Pins 114 a, 114 b serve to eject the molded structure off of structural portion 104.
  • FIG. 4B illustrates another embodiment of a [0066] mold 120 having base portion 122 and structural portion 124 which are alignable in sealing engagement with each other at rests 126 a and 126 b. Structural portion 124 provides a negative or opposite image of the desired micro-needle structure 132, such as the micro-needles structures of the present invention. Base portion 102 provides a surface area 128 which forms either the base end of a micro-needle or, as here, the back-side and side walls of a substrate structure, such as those described above. Additionally, base portion 122 also provides a pin formation 130 for forming a lumen within micro-needle structure 132. Through base portion 122 and parallel with its y-axis are bores 134 a, 134 b for receiving and guiding ejection pins 136 a, 136 b, respectively. Pins 136 a, 136 b serve to eject the molded structure off of base portion 122.
  • Next, a granulated material is selected for filling the mold cavities. Suitable materials for powder injection molding are metals, silicon carbide, silicon oxide, aluminum oxide, zirconium oxide, and their mixtures. The granulated particles are then mixed with a binder material and heated to a high temperature until molten, then transferred into a mold, such as the molds of the present invention described above. The molten material is then allowed to cool and harden. The hardened structure is then removed from the mold, such as by means of the ejection pins discussed above, and placed in a solvent ore material to extract the binder material from the resulting structure. The structure is then further hardened by means of a sintering process. [0067]
  • The cavities of the molds used in the above-described fabrication processes may be formed in the desired negative or opposite image, e.g., an oblique cone shape, of a micro-needle by means of an electrical discharge machining (EDM). In this process, an electrode is used to cut or form the desired configuration of a micro-needle structure into the base and structural portions of the mold. The formation pin used to form the micro-needle lumen may be formed by the EDM process or, alternatively, formed by a modular pin fastened within the cavity of either the base or structural portions of the mold. [0068]
  • The present invention also provides for a method of manufacturing tiny oblique structures. These oblique structures have a base end and a vertex end. The base end has a diameter generally in the range from about 100 to 2,000 μm and more typically in the range from about 100 to 500 μm. The base-to-vertex height is generally in the range from about 100 to 10,000 μm, and more typically in the range from about 200 to 2,000 μm. [0069]
  • This method includes providing a suitable material from which said oblique structure can be fabricated by means of one or more micro-replication techniques, such as the injection molding technique and electrical discharge machining discussed above. The manufacturing process further includes forming an open lumen within the oblique structure either in conjunction with the fabrication of the oblique structure or thereafter. The open lumen is formed to extend from the base end of the structure to the vertex end and may have dimensions the same as or similar to those discussed with respect to the micro-needle embodiment of FIGS. 2A and 2B. The process additionally includes customizing a tip at the vertex end of the structure. Again, such customization may be performed in conjunction with the fabrication of the oblique structure and/or in conjunction with the fabrication of the open lumen within the oblique structure. The customized tip may be selectively beveled, for a particular application, such as those mentioned above. [0070]
  • Methods of Using [0071]
  • Methods for using the subject micro-needles in the context of biological fluid sampling and/or the delivery of a material across a biological tissue barrier are also provided by the present invention. In practicing these methods, the first step is to provide a device having one or more subject micro-needles or an array of subject micro-needles, as described above. The subject micro-needle(s) may be made of material formed by a micro-replication technique, such as plastic injection molding. More specifically, that material may be a type of plastic, polymer or resin. [0072]
  • In the context of biological fluid sampling and testing applications, the micro-needle(s) may be provide as an integral part of a subject sensor device, which device may be particularly configured (i.e., containing the appropriate reagent) for targeting the analyte(s) of interest. In certain embodiments, the sensor device may be a stand alone device, while in other embodiments of the present invention, the sensor device may be operatively engaged and interfaced with a control unit, described above, that can be manually held and controlled by the user. The control unit is programmed for testing the targeted analyte(s). In either case, the user positions sensor device over a selected area of the patient's skin and, with slight pressure, the micro-needle(s) of the sensor device is/are caused to penetrate into the skin. The depth to which the micro-needles are inserted will depend on the length of the respective micro-needles or by some other means associated with the sensor unit for limiting the insertion depth. [0073]
  • Upon insertion into the patient's skin, an amount (i.e., a sample) of biological fluid present at the open tips of the micro-needles is wicked into the lumen by means of a capillary force, or by a vacuum assist device or the like. The sampled fluid is then transported to a measurement area, e.g., a reaction zone of an electrochemical cell, of the measurement means. A signal producing and receiving system of the measurement means, defined by the type of measurement being made, e.g. electrochemical or photometric, measures the concentration of the analyte within the sampled fluid. Different analytes of interest may be detected using the subject systems. Representative analytes include glucose, cholesterol, lactate, alcohol, and the like. [0074]
  • In the context of drug or biological material delivery applications, the micro-needle(s) may be provide as an integral part of a delivery device containing a reservoir for holding a volume of drug or material to be delivered, which device may be particularly configured for controlling the rate of delivery such drug or material. In certain embodiments, the delivery device may be a stand alone device, while in other embodiments of the present invention, the delivery device may be operatively engaged and interfaced with a control unit, described above, that can be manually held and controlled by the user. The control unit may be programmed for delivering a selected amount of drug or material to be delivered. In either case, the user positions the delivery device over a selected area of the patient's skin and, with slight pressure, the micro-needle(s) of the delivery device is/are caused to penetrate into the skin. The depth to which the micro-needles are inserted will depend on the length of the respective micro-needles or by some other means associated with the delivery device for limiting the insertion depth. [0075]
  • Upon insertion into the patient's skin, an amount of the drug or material held within the delivery devices reservoir is injected or is otherwise caused to be transported via the micro-needle(s) to within the biological tissue. Various drugs and materials to be delivered include therapeutic drugs diagnostic agents, genetic material biological material, and the like. [0076]
  • Kits [0077]
  • Also provided by the subject invention are kits for use in practicing the subject methods. The kits of the subject invention include at least one subject micro-needle and/or one or more subject sensor and/or delivery devices having one or more subject micro-needles. The sensor/delivery devices may include an array of micro-needles of the present invention having the same or different lengths. Certain kits may include various sensor devices each containing the same or different reagents. Also, more than one reagent may be provides within a single micro-needle array, wherein one or more of the micro-needles are provided with a first reagent for testing a first target analyte and one or more other micro-needles are provided with other reagents for testing other targeted analytes. Other kits may include various delivery devices each containing the same or different drug or formulation. The kits may also include a reusable or disposable control unit that may be used with reusable or disposable sensor/delivery devices of the kit of the subject invention. Finally, the kits preferably include instructions for using the subject devices in the determination of an analyte concentration in a biological sample and/or for delivering a drug or formulation across a biological barrier. These instructions may be present on one or more of the packaging, a label insert, or containers present in the kits, and the like. [0078]
  • It is evident from the above description that the features of the subject micro-needles overcome many of the disadvantages of prior art micro-needles, and provide certain advantages including, but not limited to, providing micro-needles having extremely sharp tips for penetration into the skin, providing a customized micro-needle for the particular application at hand and providing easier and less costly manufacturing techniques. Other advantages of the subject micro-needles is the reduction in pain experienced by a patient as a result of the reduced footprint of the micro-needle tip and the minimal pressure required to cause the micro-needle to penetrate the skin. As such, the subject invention represents a significant contribution to the field of fluid sampling and delivery across a biological barrier. [0079]
  • The subject invention is shown and described herein in what is considered to be the most practical, and preferred embodiments. It is recognized, however, that departures may be made there from, which are within the scope of the invention, and that obvious modifications will occur to one skilled in the art upon reading this disclosure. [0080]
  • The specific devices and methods disclosed and the applications, biological fluids and constituents, drugs and formulations discussed herein are considered to be illustrative and not restrictive. Modifications that come within the meaning and range of equivalents of the disclosed concepts, such as those that would readily occur to one skilled in the relevant art, are intended to be included within the scope of the appended claims. [0081]

Claims (39)

What is claimed is:
1. A micro-needle comprising:
an oblique structure comprising a base at a proximal end and a vertex, defining a vertex angle, at a distal end; and
an open lumen comprising a lumenal wall extending from said base to said distal end wherein said lumenal wall intersects said vertex at a point defining the apex of said micro-needle.
2. The micro-needle of claim 1, wherein said oblique structure defines a structural axis, said lumen defines a lumenal axis, and said structural axis intersects said lumenal axis at a point of axial intersection and at an intersection angle, wherein said point of axial intersection is at a point proximal to said apex and said intersection angle is less than half of said vertex angle.
3. The micro-needle of claim 2, wherein said axial intersection is at a point distal to said base.
4. The micro-needle of claim 2, wherein said axial intersection is at a point along said base.
5. The micro-needle of claim 2, wherein said axial intersection is at a point proximal to said base.
6. The micro-needle of claim 1, wherein said lumen has a diameter sufficient to exert a capillary force upon fluid present at said distal end.
7. The micro-needle of claim 6, wherein said lumen has a diameter in the range form about 10 to 200 microns.
8. The micro-needle of claim 7, wherein said lumen has a diameter in the range from about 70 to 150 microns.
9. The micro-needle of claim 1, wherein said oblique structure comprises a conical configuration.
10. The micro-needle of claim 1, wherein said oblique structure comprises a pyramidal configuration.
11. The micro-needle of claim 1, wherein said oblique structure comprises a molded plastic material.
12. The micro-needle of claim 1, wherein said lumenal wall also intersects said oblique structure at a point diametrically opposite said apex, wherein the line between said apex and said point diametrically opposite said apex define an angled distal tip at said distal end.
13. The micro-needle of claiml2 wherein said distal tip is beveled.
14. A device for sampling biological fluid and measuring the concentration of at least one target constituent therein, comprising:
at least one micro-needle according to claim 1 wherein said at least one micro-needle configured for sampling biological fluid; and
a means for measuring a constituent contained within the sampled biological fluid, wherein said micro-needle is in fluid communication with said measurement means.
15. The device of claim 14, wherein said measurement means comprises an electrochemical cell.
16. The device of claim 14, wherein said biological fluid is interstitial fluid and said constituent is glucose.
18. A system for sampling biological fluid from the skin of a patient and measuring a target analyte within the biological fluid, the system comprising:
at least one device according to claim 14;
a control means in communication with said at least one system, said control means comprising means for sending an input signal to said at least one device and for receiving an output signal from said at least one device, and
a software algorithm associated with said control means which automatically calculates and determines the concentration of the target analyte in the biological sample upon receipt of said output signal by said control means.
19. The system of claim 18 wherein said at least one device comprises an array of micro-needles according to claim 14.
20. A method for making the micro-needle of claim 1 comprising the steps of:
providing a mold comprising a cavity having configuration of the negative image of said oblique structure of the micro-needle of claim 1;
providing particulated material;
heating said particulated material until molten; and
transferring said molten material to within said cavity of said mold; and
cooling said molten material to provide a resulting oblique structure of the micro-needle of claim 1.
21. The method according to claim 20 wherein said step of providing a mold comprises the step of cutting the negative image of said oblique structure into said cavity.
22. The method according to claim 21 wherein said step of cutting comprises using an electrical discharge machining electrode.
23. The method according to claim 20 further comprising the step of providing a pin within said cavity for forming said micro-needle lumen.
24. The method according to claim 20 wherein said particulated material comprises a plastic material.
25. The method according to claim 20 wherein said method comprises plastic injection molding techniques.
26. The method according to claim 20 wherein said method comprises powder injection molding techniques.
27. A method for sampling a biological fluid from within the skin of a patient and for determining the concentration of a target analyte contained therein, the method comprising the steps of:
providing at least one micro-needle according to claim 1;
inserting said at least one micro-needle into the skin to a selected depth; and
transferring a sample of the biological fluid present at the open distal end of said lumen into an analyte measurement device.
29. The method of claim 27, wherein said step of transferring said sample comprises the step of exerting capillary force on the biological fluid present at the open distal end of said lumen.
30. The method of claim 27 further comprising the step of determining the concentration of said target analyte within said sampled biological fluid.
31. The method of claim 30 wherein said biological fluid is interstitial fluid and said target analyte is glucose.
32. A method of manufacturing a structure comprising the steps of:
providing a suitable material from which said structure can be fabricated by means of one or more micro-replication techniques;
fabricating said structure from said suitable material by means of one or more micro-replication techniques, wherein said structure has a proximal end defining a base and a distal end having a vertex wherein said base has a diameter in the range from about 100 to 2,000 μm and the line extending from the center of the base to the vertex defines a structural axis having a length in the range from about 100 to 10,000 μm;
forming an open lumen within said structure, said open lumen extending from said base to said distal end, wherein the distal end of said open lumen intersects said vertex; and
customizing a tip at said vertex end, said customized tip being selectively angled for a particular application.
33. The method according to claim 32, wherein said open lumen during the step of fabricating.
34. The method according to claim 32, wherein said step of customizing comprises the use of an electrical discharge machining device.
35. The method according to claim 32 wherein said selectively angled tip comprises a beveled edge.
33. A kit for sampling a biological fluid from the skin of a patient and for measuring the concentration of an analyte within the sampled biological fluid, the kit comprising at least one micro-needle according to claim 1.
40. A kit for sampling a biological fluid from the skin of a patient and for measuring the concentration of an analyte within the sampled biological fluid, the kit comprising at least one device according to claim 14.
41. The kit of claim 40 wherein said at least one device comprises an array of micro-needles.
42. A kit for sampling a biological fluid from the skin of a patient and for measuring the concentration of an analyte within the sampled biological fluid, the kit comprising at least one system according to claim 18.
43. A device for delivering a formulation to across a biological barrier, comprising:
at least one micro-needle according to claim 1 configured to penetrate the biological barrier; and
a reservoir in fluid communication with said at least one micro-needle, wherein said reservoir is configured to contain a volume of formulation.
44. A kit for delivering a formulation to across a biological barrier, the kit comprising at least one micro-needle according to claim 1.
US10/417,541 2001-07-09 2003-04-16 Micro-needles and methods of manufacture and use thereof Abandoned US20030208138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/417,541 US20030208138A1 (en) 2001-07-09 2003-04-16 Micro-needles and methods of manufacture and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/901,535 US6749792B2 (en) 2001-07-09 2001-07-09 Micro-needles and methods of manufacture and use thereof
US10/417,541 US20030208138A1 (en) 2001-07-09 2003-04-16 Micro-needles and methods of manufacture and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/901,535 Division US6749792B2 (en) 2001-07-09 2001-07-09 Micro-needles and methods of manufacture and use thereof

Publications (1)

Publication Number Publication Date
US20030208138A1 true US20030208138A1 (en) 2003-11-06

Family

ID=25414377

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/901,535 Expired - Fee Related US6749792B2 (en) 2001-07-09 2001-07-09 Micro-needles and methods of manufacture and use thereof
US10/417,541 Abandoned US20030208138A1 (en) 2001-07-09 2003-04-16 Micro-needles and methods of manufacture and use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/901,535 Expired - Fee Related US6749792B2 (en) 2001-07-09 2001-07-09 Micro-needles and methods of manufacture and use thereof

Country Status (12)

Country Link
US (2) US6749792B2 (en)
EP (1) EP1287847A1 (en)
JP (1) JP2003088514A (en)
KR (1) KR20030007039A (en)
CN (1) CN1494876A (en)
AR (1) AR034723A1 (en)
CA (1) CA2391810A1 (en)
IL (1) IL150468A0 (en)
MX (1) MXPA02006647A (en)
PL (1) PL354857A1 (en)
RU (1) RU2002118232A (en)
TW (1) TW590782B (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054410A1 (en) * 2000-08-08 2004-03-18 Barrows Thomas H Scaffolds for tissue engineered hair
US20050191748A1 (en) * 1999-02-08 2005-09-01 Aderans Research Institute, Inc. Filamentary means for introducing agents into tissue of a living host
US20060062770A1 (en) * 2004-08-13 2006-03-23 Aderans Research Institute, Inc. Organogenesis from dissociated cells
US7032302B1 (en) * 2001-09-07 2006-04-25 Orbital Research Inc. Dry physiological recording device
US7032301B1 (en) * 2001-09-07 2006-04-25 Orbital Research Inc Dry physiological recording electrode
US7286864B1 (en) 2001-09-07 2007-10-23 Orbital Research, Inc. Dry physiological recording device
US20080138583A1 (en) * 2006-07-17 2008-06-12 Rajmohan Bhandari Micro-needle arrays having non-planar tips and methods of manufacture thereof
US20080138581A1 (en) * 2006-07-17 2008-06-12 Rajmohan Bhandari Masking high-aspect aspect ratio structures
CN100431487C (en) * 2007-01-25 2008-11-12 中国科学院上海微系统与信息技术研究所 Processing method of three-dimensional implantable microelectrode array
KR100869277B1 (en) * 2006-12-22 2008-11-18 호남석유화학 주식회사 Microneedle array and mold thereof
US20090053673A1 (en) * 2007-08-23 2009-02-26 Zimmer, Inc. Method for localized treatment of periodontal tissue
US20090234288A1 (en) * 2008-03-12 2009-09-17 Ultradent Products, Inc. Dental intraligamentary injection needles and related methods of manufacture
US20090301994A1 (en) * 2008-05-12 2009-12-10 Rajmohan Bhandari Methods for Wafer Scale Processing of Needle Array Devices
US20100305516A1 (en) * 2004-03-12 2010-12-02 Yuan Xu Methods and moulds for use in fabricating side-ported microneedles
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
US20110137143A1 (en) * 2008-08-01 2011-06-09 Lightnix, Inc. Sensor with fine needle having channel formed therein
US20120010529A1 (en) * 2010-06-23 2012-01-12 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US8201330B1 (en) * 2001-09-07 2012-06-19 Orbital Research Inc Physiological recording device or electrode
US8216190B2 (en) 2000-10-16 2012-07-10 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US20120245445A1 (en) * 2011-03-21 2012-09-27 Michael Darryl Black Glucose Monitoring System
US20130184609A1 (en) * 2006-07-12 2013-07-18 University Of Utah Research Foundation 3d fabrication of needle tip geometry and knife blade
US8561795B2 (en) 2010-07-16 2013-10-22 Seventh Sense Biosystems, Inc. Low-pressure packaging for fluid devices
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US8808202B2 (en) 2010-11-09 2014-08-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
US8821412B2 (en) 2009-03-02 2014-09-02 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US8886279B2 (en) 2008-06-03 2014-11-11 University Of Utah Research Foundation High aspect ratio microelectrode arrays enabled to have customizable lengths and methods of making the same
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9113836B2 (en) 2009-03-02 2015-08-25 Seventh Sense Biosystems, Inc. Devices and techniques associated with diagnostics, therapies, and other applications, including skin-associated applications
US9119578B2 (en) 2011-04-29 2015-09-01 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
US9192313B1 (en) 2013-03-14 2015-11-24 Orbital Research Inc. Dry physiological recording device and method of manufacturing
US9295417B2 (en) 2011-04-29 2016-03-29 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10543310B2 (en) 2011-12-19 2020-01-28 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11177029B2 (en) 2010-08-13 2021-11-16 Yourbio Health, Inc. Systems and techniques for monitoring subjects
US11202895B2 (en) 2010-07-26 2021-12-21 Yourbio Health, Inc. Rapid delivery and/or receiving of fluids
US20220032027A1 (en) * 2018-06-20 2022-02-03 Altergon Sa Hollow microneedle for transdermal delivery of active molecules and/or for the sampling of biological fluids and manufacturing method of such hollow microneedle
WO2022187196A1 (en) * 2021-03-02 2022-09-09 Dermtech, Inc. Predicting therapeutic response
US11578373B2 (en) 2019-03-26 2023-02-14 Dermtech, Inc. Gene classifiers and uses thereof in skin cancers
US11753687B2 (en) 2008-05-14 2023-09-12 Dermtech, Inc. Diagnosis of melanoma and solar lentigo by nucleic acid analysis

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9704076D0 (en) * 1997-11-06 1997-11-06 Holdingbolaget Vid Goeteborgs Method for permeabilization of cell structures and use thereof
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
SE0003841D0 (en) * 2000-10-20 2000-10-20 Daniel Chiu A method and apparatus for penetration of lipid bilayer membranes
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
DE60217393T2 (en) * 2001-11-27 2007-10-18 Cellectricon Ab METHOD FOR THE COMBINED PARALLEL INTRODUCTION OF AGENTS AND ELECTROPORATION FOR CELL STRUCTURES AND USE THEREOF
US20040068284A1 (en) * 2002-01-29 2004-04-08 Barrows Thomas H. Method for stimulating hair growth and kit for carrying out said method
JP2005518873A (en) * 2002-03-04 2005-06-30 ナノ パス テクノロジーズ リミテッド Apparatus and method for fluid transport across a biological barrier
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
DE10305831B4 (en) * 2003-02-12 2007-01-04 Siemens Ag diagnostic device
US7415299B2 (en) * 2003-04-18 2008-08-19 The Regents Of The University Of California Monitoring method and/or apparatus
CN1321706C (en) * 2003-05-29 2007-06-20 财团法人工业技术研究院 Numerical group style micro-needle soft substrate structure and its manufacture
EP2238892A3 (en) 2003-05-30 2011-02-09 Pelikan Technologies Inc. Apparatus for body fluid sampling
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
GB2406794B (en) 2003-10-06 2008-03-05 Inverness Medical Ltd A lancing device using a piezoelectric actuator
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
JP4457229B2 (en) * 2003-11-10 2010-04-28 エイジェンシー フォー サイエンス, テクノロジー アンド リサーチ Manufacture of microneedles and microneedles
WO2005060621A2 (en) * 2003-11-21 2005-07-07 The Regents Of The University Of California Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8551391B2 (en) * 2004-02-17 2013-10-08 Avery Dennison Corporation Method of making microneedles
US7597885B2 (en) * 2004-03-26 2009-10-06 Aderans Research Institute, Inc. Tissue engineered biomimetic hair follicle graft
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH &amp; Co. KG Printable hydrogel for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7086266B2 (en) 2004-08-05 2006-08-08 Becton, Dickinson And Company Method of producing tapered or pointed cannula
US7076987B2 (en) 2004-08-05 2006-07-18 Becton, Dickinson And Company Method of producing tapered or pointed cannula
SE0402100D0 (en) * 2004-08-30 2004-08-30 Bonsens Ab Molded micro-needles
US7132054B1 (en) 2004-09-08 2006-11-07 Sandia Corporation Method to fabricate hollow microneedle arrays
US7785459B2 (en) 2004-10-22 2010-08-31 Hewlett-Packard Development Company, L.P. Microneedles and methods of fabricating
US7097776B2 (en) * 2004-10-22 2006-08-29 Hewlett-Packard Development Company, L.P. Method of fabricating microneedles
AU2005314151B2 (en) 2004-12-07 2011-09-08 3M Innovative Properties Company Method of molding a microneedle
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
WO2006075716A1 (en) * 2005-01-14 2006-07-20 Fujikura Ltd. Drug delivery instrument and method of producing the same
WO2006105146A2 (en) * 2005-03-29 2006-10-05 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
JP4826711B2 (en) * 2005-03-31 2011-11-30 ニプロ株式会社 Needle
MX2008004928A (en) * 2005-10-17 2008-09-12 Aderans Res Inst Inc Method of delivering hair follicle progenitor cells to the skin.
TW200800240A (en) * 2005-11-22 2008-01-01 Aderans Res Inst Inc Hair follicle graft from tissue engineered skin
AR057628A1 (en) * 2005-11-22 2007-12-05 Aderans Res Inst Inc CAPITAL DIVERTS DERIVED FROM EXTRACTED HAIR
DK1959828T3 (en) * 2005-12-14 2013-05-21 Scibase Ab Diagnosis of a disease state of the skin using impedance
US9636035B2 (en) * 2005-12-14 2017-05-02 Scibase Ab Medical apparatus for determination of biological conditions using impedance measurements
WO2007092929A2 (en) * 2006-02-09 2007-08-16 Aderans Research Institute, Inc. Apparatus and methods for delivering fluid and material to a subject
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
US20090131778A1 (en) * 2006-03-28 2009-05-21 Jina Arvind N Devices, systems, methods and tools for continuous glucose monitoring
US20100049021A1 (en) * 2006-03-28 2010-02-25 Jina Arvind N Devices, systems, methods and tools for continuous analyte monitoring
US20080154107A1 (en) * 2006-12-20 2008-06-26 Jina Arvind N Device, systems, methods and tools for continuous glucose monitoring
US8197435B2 (en) 2006-05-02 2012-06-12 Emory University Methods and devices for drug delivery to ocular tissue using microneedle
TWI300055B (en) * 2006-05-26 2008-08-21 Nat Univ Tsing Hua Method of manufacturing hollow micro-needle structures
US20070276330A1 (en) * 2006-05-28 2007-11-29 Beck Patricia A Microneedles and methods of fabricating thereof
US8012566B2 (en) * 2006-07-12 2011-09-06 Hewlett-Packard Development Company, L.P. Microneedles formed by electroplating and selectively releasing temperature sensitive layers
WO2008027011A1 (en) * 2006-08-28 2008-03-06 Agency For Science, Technology And Research Microneedles and methods for fabricating microneedles
US20080058726A1 (en) * 2006-08-30 2008-03-06 Arvind Jina Methods and Apparatus Incorporating a Surface Penetration Device
US20080097352A1 (en) * 2006-09-12 2008-04-24 Beck Patricia A Methods of fabricating microneedles with bio-sensory functionality
EP2063934A1 (en) * 2006-09-18 2009-06-03 Agency for Science, Technology and Research Needle structures and methods for fabricating needle structures
WO2008089344A2 (en) * 2007-01-19 2008-07-24 Joseph Neev Devices and methods for generation of subsurface micro-disruptions for biomedical applications
US20080234562A1 (en) * 2007-03-19 2008-09-25 Jina Arvind N Continuous analyte monitor with multi-point self-calibration
US7985537B2 (en) * 2007-06-12 2011-07-26 Aderans Research Institute, Inc. Methods for determining the hair follicle inductive properties of a composition
US20080312518A1 (en) * 2007-06-14 2008-12-18 Arkal Medical, Inc On-demand analyte monitor and method of use
US7959969B2 (en) 2007-07-10 2011-06-14 California Institute Of Technology Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion
US9549746B2 (en) * 2007-09-28 2017-01-24 The Queen's University Of Belfast Delivery device and method
US20090099427A1 (en) * 2007-10-12 2009-04-16 Arkal Medical, Inc. Microneedle array with diverse needle configurations
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
WO2010087971A2 (en) 2009-01-27 2010-08-05 California Institute Of Technology Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
CN102458559B (en) 2009-04-10 2014-06-04 3M创新有限公司 Methods of making hollow microneedle arrays and articles and uses therefrom
EP2260764A1 (en) * 2009-06-10 2010-12-15 F. Hoffmann-La Roche AG Microneedle and method for its manufacture
KR101213223B1 (en) * 2009-07-07 2013-01-09 한국전자통신연구원 The method for manufacturing hallow microneedle structures
JP5568324B2 (en) * 2010-01-15 2014-08-06 凸版印刷株式会社 Microneedle manufacturing method
US9115424B2 (en) 2010-04-07 2015-08-25 California Institute Of Technology Simple method for producing superhydrophobic carbon nanotube array
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
CN106214321B (en) 2010-10-15 2018-08-28 科尼尔赛德生物医学公司 Device for entering eyes
WO2012079066A2 (en) 2010-12-10 2012-06-14 California Institute Of Technology Method for producing graphene oxide with tunable gap
JP2014519344A (en) * 2011-03-18 2014-08-14 ユニヴェルシテ リブル ドゥ ブリュッセル Device for drilling holes in the membrane of the human or animal body
WO2012135238A1 (en) 2011-03-29 2012-10-04 California Institute Of Technology Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
JP2013090837A (en) * 2011-10-26 2013-05-16 Toppan Printing Co Ltd Method for manufacturing needle-like body and needle-like body
WO2013090844A1 (en) 2011-12-14 2013-06-20 California Institute Of Technology Sharp tip carbon nanotube microneedle devices and their fabrication
JP5856475B2 (en) * 2011-12-28 2016-02-09 Asti株式会社 Manufacturing method of microneedle
CN102526870B (en) * 2012-01-09 2013-08-28 上海交通大学 Anomalous plane hollow microneedle based on surface micro processing process and preparation method thereof
AU2013212528B2 (en) * 2012-01-24 2017-10-05 International Scientific Pty Ltd Delivery device
JP2013166363A (en) * 2012-02-17 2013-08-29 Toppan Printing Co Ltd Microneedle chip injection mold and method for injection molding of the microneedle chip
USD690004S1 (en) 2012-03-16 2013-09-17 Aderans Research Institute, Inc. Holder for a device for delivering cellular material and physiologic fluids
WO2013170171A1 (en) * 2012-05-11 2013-11-14 10X Technology Llc Hollow silica glass microneedle arrays and method and apparatus for manufacturing same
WO2014022314A1 (en) 2012-07-30 2014-02-06 California Institute Of Technology Nano tri-carbon composite systems and manufacture
CA2882184C (en) * 2012-08-27 2021-09-07 Clearside Biomedical, Inc. Apparatus and methods for drug delivery using microneedles
MX2015005839A (en) 2012-11-08 2015-12-17 Clearside Biomedical Inc Methods and devices for the treatment of ocular diseases in human subjects.
US10820860B2 (en) 2013-03-14 2020-11-03 One Drop Biosensor Technologies, Llc On-body microsensor for biomonitoring
US9182368B2 (en) 2013-03-14 2015-11-10 Sano Intelligence, Inc. Method of manufacturing a sensor for sensing analytes
CN105246529B (en) 2013-05-03 2019-06-14 科尼尔赛德生物医学公司 Device and method for ocular injection
US10188550B2 (en) 2013-06-03 2019-01-29 Clearside Biomedical, Inc. Apparatus and methods for drug delivery using multiple reservoirs
EP3007841A4 (en) * 2013-06-13 2017-02-22 Microdermics Inc. Metallic microneedles
EP3021929B1 (en) * 2013-07-16 2020-02-26 3M Innovative Properties Company Hollow microneedle with bevel opening
WO2015009524A1 (en) * 2013-07-16 2015-01-22 3M Innovative Properties Company Hollow microneedle with beveled tip
US10595754B2 (en) 2014-03-13 2020-03-24 Sano Intelligence, Inc. System for monitoring body chemistry
CN106102578A (en) 2014-03-13 2016-11-09 萨诺智能公司 For monitoring the system of body chemistry
WO2015196085A2 (en) 2014-06-20 2015-12-23 Clearside Biomedical, Inc. Variable diameter cannula and methods for controlling insertion depth for medicament delivery
JP6906885B2 (en) 2014-11-14 2021-07-21 ロレアル Microneedle sheet to reduce wrinkles
JP6909366B2 (en) * 2015-01-21 2021-07-28 キンデーバ ドラッグ デリバリー リミティド パートナーシップ Microneedle array and usage
EP3260160A4 (en) * 2015-02-16 2018-09-05 Toppan Printing Co., Ltd. Microneedle
JP6317690B2 (en) * 2015-03-03 2018-04-25 富士フイルム株式会社 Transdermal absorption sheet and method for producing the same
JP6482323B2 (en) 2015-03-03 2019-03-13 富士フイルム株式会社 Transdermal absorption sheet
CN107405477B (en) * 2015-03-18 2020-06-16 凸版印刷株式会社 Drug administration device and method for manufacturing drug administration device
EP3413851B1 (en) 2016-02-10 2023-09-27 Clearside Biomedical, Inc. Packaging
JP2019514581A (en) 2016-05-02 2019-06-06 クリアサイド バイオメディカル,インコーポレイテッド Systems and methods for ocular drug delivery
US10973681B2 (en) 2016-08-12 2021-04-13 Clearside Biomedical, Inc. Devices and methods for adjusting the insertion depth of a needle for medicament delivery
CN109091728A (en) * 2017-08-01 2018-12-28 中国科学院深圳先进技术研究院 A kind of micro liquid syringe and the method that parenchymal tissue is injected
US11213667B2 (en) * 2018-07-11 2022-01-04 Santa Clara University 3D printed microneedles for microencapsulated mammalian cell extrusion
JP6737460B1 (en) * 2019-02-12 2020-08-12 近畿精工株式会社 Micro needle
KR102531521B1 (en) 2021-01-05 2023-05-15 인싸이토(주) Slope needle set and slope needle using micro needle
USD988882S1 (en) 2021-04-21 2023-06-13 Informed Data Systems Inc. Sensor assembly
WO2023212214A1 (en) * 2022-04-29 2023-11-02 Board Of Regents, The University Of Texas System Microneedle-based plant sensors and methods of making and using thereof
WO2024040387A1 (en) * 2022-08-22 2024-02-29 Wenzhou Institute, University Of Chinese Academy Of Sciences (Wiucas) Microneedle arrays and method of making

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838877A (en) * 1985-08-06 1989-06-13 Massau Bruce A Polymeric hypodermic device
US5928207A (en) * 1997-06-30 1999-07-27 The Regents Of The University Of California Microneedle with isotropically etched tip, and method of fabricating such a device
US6233389B1 (en) * 1998-07-30 2001-05-15 Tivo, Inc. Multimedia time warping system
US6310886B1 (en) * 1997-08-28 2001-10-30 Tivo, Inc. Method and apparatus implementing a multimedia digital network
US20020137998A1 (en) * 2001-03-26 2002-09-26 Wilson Smart Silicon microprobe with integrated biosensor
US20020187556A1 (en) * 2001-06-12 2002-12-12 Robert Shartle Biological fluid constituent sampling and measurement devices and methods
US6501976B1 (en) * 2001-06-12 2002-12-31 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6558361B1 (en) * 2000-03-09 2003-05-06 Nanopass Ltd. Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems
US6607513B1 (en) * 2000-06-08 2003-08-19 Becton, Dickinson And Company Device for withdrawing or administering a substance and method of manufacturing a device
US6612111B1 (en) * 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
US6721586B2 (en) * 2001-06-12 2004-04-13 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6767341B2 (en) * 2001-06-13 2004-07-27 Abbott Laboratories Microneedles for minimally invasive drug delivery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964482A (en) 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
US5217671A (en) * 1988-09-22 1993-06-08 Terumo Kabushiki Kaisha Method of making a tubular body
US5250066A (en) * 1990-03-19 1993-10-05 Becton Dickinson And Company Plastic pointed articles and method for their preparation
US5078700A (en) * 1990-03-19 1992-01-07 Becton, Dickinson And Company Liquid crystalline catheter
CA2157568C (en) * 1993-03-09 2001-10-02 John Frederick Stevens Method of manufacturing needles
US5403291A (en) * 1993-08-02 1995-04-04 Quinton Instrument Company Catheter with elongated side holes
US5733266A (en) 1996-07-26 1998-03-31 Gravlee, Jr.; Joseph F. Hypodermic needle
US6077462A (en) * 1998-02-20 2000-06-20 3M Innovative Properties Company Method and apparatus for seamless microreplication using an expandable mold
US6117386A (en) * 1998-04-30 2000-09-12 Medronic Inc. Centering perfusion delivery catheter and method of manufacture
DE60044084D1 (en) 1999-06-04 2010-05-12 Georgia Tech Res Inst DEVICES FOR THE ENLARGED PENETRATION OF MICRONEDES IN BIOLOGICAL HARDENING
US6379324B1 (en) 1999-06-09 2002-04-30 The Procter & Gamble Company Intracutaneous microneedle array apparatus
US6256533B1 (en) 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6312612B1 (en) * 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
US6406638B1 (en) 2000-01-06 2002-06-18 The Regents Of The University Of California Method of forming vertical, hollow needles within a semiconductor substrate, and needles formed thereby

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838877A (en) * 1985-08-06 1989-06-13 Massau Bruce A Polymeric hypodermic device
US5928207A (en) * 1997-06-30 1999-07-27 The Regents Of The University Of California Microneedle with isotropically etched tip, and method of fabricating such a device
US6310886B1 (en) * 1997-08-28 2001-10-30 Tivo, Inc. Method and apparatus implementing a multimedia digital network
US6233389B1 (en) * 1998-07-30 2001-05-15 Tivo, Inc. Multimedia time warping system
US6558361B1 (en) * 2000-03-09 2003-05-06 Nanopass Ltd. Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems
US6612111B1 (en) * 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
US6607513B1 (en) * 2000-06-08 2003-08-19 Becton, Dickinson And Company Device for withdrawing or administering a substance and method of manufacturing a device
US20020137998A1 (en) * 2001-03-26 2002-09-26 Wilson Smart Silicon microprobe with integrated biosensor
US20020187556A1 (en) * 2001-06-12 2002-12-12 Robert Shartle Biological fluid constituent sampling and measurement devices and methods
US6501976B1 (en) * 2001-06-12 2002-12-31 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6721586B2 (en) * 2001-06-12 2004-04-13 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6767341B2 (en) * 2001-06-13 2004-07-27 Abbott Laboratories Microneedles for minimally invasive drug delivery

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191748A1 (en) * 1999-02-08 2005-09-01 Aderans Research Institute, Inc. Filamentary means for introducing agents into tissue of a living host
US7198641B2 (en) 2000-08-08 2007-04-03 Aderans Research Institute, Inc. Scaffolds for tissue engineered hair
US20040054410A1 (en) * 2000-08-08 2004-03-18 Barrows Thomas H Scaffolds for tissue engineered hair
US8216190B2 (en) 2000-10-16 2012-07-10 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US7489959B1 (en) 2001-09-07 2009-02-10 Orbital Research Inc. Physiological recording device
US7032302B1 (en) * 2001-09-07 2006-04-25 Orbital Research Inc. Dry physiological recording device
US7032301B1 (en) * 2001-09-07 2006-04-25 Orbital Research Inc Dry physiological recording electrode
US7286864B1 (en) 2001-09-07 2007-10-23 Orbital Research, Inc. Dry physiological recording device
US8201330B1 (en) * 2001-09-07 2012-06-19 Orbital Research Inc Physiological recording device or electrode
US20100305516A1 (en) * 2004-03-12 2010-12-02 Yuan Xu Methods and moulds for use in fabricating side-ported microneedles
US8671544B2 (en) * 2004-03-12 2014-03-18 Agency For Science, Technology And Research Methods and moulds for use in fabricating side-ported microneedles
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
US20060062770A1 (en) * 2004-08-13 2006-03-23 Aderans Research Institute, Inc. Organogenesis from dissociated cells
US20130184609A1 (en) * 2006-07-12 2013-07-18 University Of Utah Research Foundation 3d fabrication of needle tip geometry and knife blade
US8865288B2 (en) 2006-07-17 2014-10-21 University Of Utah Research Foundation Micro-needle arrays having non-planar tips and methods of manufacture thereof
US20080138581A1 (en) * 2006-07-17 2008-06-12 Rajmohan Bhandari Masking high-aspect aspect ratio structures
US20080138583A1 (en) * 2006-07-17 2008-06-12 Rajmohan Bhandari Micro-needle arrays having non-planar tips and methods of manufacture thereof
KR100869277B1 (en) * 2006-12-22 2008-11-18 호남석유화학 주식회사 Microneedle array and mold thereof
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
CN100431487C (en) * 2007-01-25 2008-11-12 中国科学院上海微系统与信息技术研究所 Processing method of three-dimensional implantable microelectrode array
US10238848B2 (en) 2007-04-16 2019-03-26 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US9498524B2 (en) 2007-04-16 2016-11-22 Corium International, Inc. Method of vaccine delivery via microneedle arrays
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9452280B2 (en) 2007-04-16 2016-09-27 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US20090053673A1 (en) * 2007-08-23 2009-02-26 Zimmer, Inc. Method for localized treatment of periodontal tissue
US8398397B2 (en) 2008-03-12 2013-03-19 Ultradent Products, Inc. Dental intraligamentary injection needles and related methods of manufacture
US20090234288A1 (en) * 2008-03-12 2009-09-17 Ultradent Products, Inc. Dental intraligamentary injection needles and related methods of manufacture
US20090301994A1 (en) * 2008-05-12 2009-12-10 Rajmohan Bhandari Methods for Wafer Scale Processing of Needle Array Devices
US11753687B2 (en) 2008-05-14 2023-09-12 Dermtech, Inc. Diagnosis of melanoma and solar lentigo by nucleic acid analysis
US8886279B2 (en) 2008-06-03 2014-11-11 University Of Utah Research Foundation High aspect ratio microelectrode arrays enabled to have customizable lengths and methods of making the same
US20110137143A1 (en) * 2008-08-01 2011-06-09 Lightnix, Inc. Sensor with fine needle having channel formed therein
US9775551B2 (en) 2009-03-02 2017-10-03 Seventh Sense Biosystems, Inc. Devices and techniques associated with diagnostics, therapies, and other applications, including skin-associated applications
US9730624B2 (en) 2009-03-02 2017-08-15 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US8821412B2 (en) 2009-03-02 2014-09-02 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US10799166B2 (en) 2009-03-02 2020-10-13 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US9113836B2 (en) 2009-03-02 2015-08-25 Seventh Sense Biosystems, Inc. Devices and techniques associated with diagnostics, therapies, and other applications, including skin-associated applications
US10939860B2 (en) 2009-03-02 2021-03-09 Seventh Sense Biosystems, Inc. Techniques and devices associated with blood sampling
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US20120010529A1 (en) * 2010-06-23 2012-01-12 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US9033898B2 (en) * 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US8561795B2 (en) 2010-07-16 2013-10-22 Seventh Sense Biosystems, Inc. Low-pressure packaging for fluid devices
US11202895B2 (en) 2010-07-26 2021-12-21 Yourbio Health, Inc. Rapid delivery and/or receiving of fluids
US11177029B2 (en) 2010-08-13 2021-11-16 Yourbio Health, Inc. Systems and techniques for monitoring subjects
US8808202B2 (en) 2010-11-09 2014-08-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US20120245445A1 (en) * 2011-03-21 2012-09-27 Michael Darryl Black Glucose Monitoring System
US10188335B2 (en) 2011-04-29 2019-01-29 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
US9295417B2 (en) 2011-04-29 2016-03-29 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US9119578B2 (en) 2011-04-29 2015-09-01 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
US11253179B2 (en) 2011-04-29 2022-02-22 Yourbio Health, Inc. Systems and methods for collection and/or manipulation of blood spots or other bodily fluids
US8827971B2 (en) 2011-04-29 2014-09-09 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US10835163B2 (en) 2011-04-29 2020-11-17 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US10543310B2 (en) 2011-12-19 2020-01-28 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US9192313B1 (en) 2013-03-14 2015-11-24 Orbital Research Inc. Dry physiological recording device and method of manufacturing
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US20220032027A1 (en) * 2018-06-20 2022-02-03 Altergon Sa Hollow microneedle for transdermal delivery of active molecules and/or for the sampling of biological fluids and manufacturing method of such hollow microneedle
US11578373B2 (en) 2019-03-26 2023-02-14 Dermtech, Inc. Gene classifiers and uses thereof in skin cancers
WO2022187196A1 (en) * 2021-03-02 2022-09-09 Dermtech, Inc. Predicting therapeutic response

Also Published As

Publication number Publication date
CN1494876A (en) 2004-05-12
PL354857A1 (en) 2003-01-13
MXPA02006647A (en) 2004-06-29
IL150468A0 (en) 2002-12-01
EP1287847A1 (en) 2003-03-05
CA2391810A1 (en) 2003-01-09
US20030009113A1 (en) 2003-01-09
KR20030007039A (en) 2003-01-23
US6749792B2 (en) 2004-06-15
RU2002118232A (en) 2004-01-27
TW590782B (en) 2004-06-11
JP2003088514A (en) 2003-03-25
AR034723A1 (en) 2004-03-17

Similar Documents

Publication Publication Date Title
US6749792B2 (en) Micro-needles and methods of manufacture and use thereof
US20220062607A1 (en) Rapid delivery and/or receiving of fluids
JP4836392B2 (en) Skin permeation enhancing device for extracting or administering a substance and method for manufacturing the device
JP4668535B2 (en) A device that supplies or withdraws substances through the skin of animals
KR100869655B1 (en) Biological fluid constituent sampling and measurement devices
EP1140275A1 (en) Insertion sets with micro-piercing members for use with medical devices and methods of using the same
US20080058726A1 (en) Methods and Apparatus Incorporating a Surface Penetration Device
KR20020094896A (en) Percutaneous biological fluid constituent sampling and measurement devices and methods
Singh et al. Microneedles for drug delivery and monitoring
US9717451B2 (en) Device for withdrawing or administering a substance and method of manufacturing a device
JP3855048B2 (en) Collecting tool for trace samples
Keservani et al. A novel approach of drug delivery: Microneedles

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION