US20030204198A1 - Vessel cutting devices - Google Patents

Vessel cutting devices Download PDF

Info

Publication number
US20030204198A1
US20030204198A1 US10/456,180 US45618003A US2003204198A1 US 20030204198 A1 US20030204198 A1 US 20030204198A1 US 45618003 A US45618003 A US 45618003A US 2003204198 A1 US2003204198 A1 US 2003204198A1
Authority
US
United States
Prior art keywords
section
body conduit
tissue
wall
penetration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/456,180
Inventor
Todd Berg
Christopher Prigge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical ATG Inc
Original Assignee
St Jude Medical ATG Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Jude Medical ATG Inc filed Critical St Jude Medical ATG Inc
Priority to US10/456,180 priority Critical patent/US20030204198A1/en
Publication of US20030204198A1 publication Critical patent/US20030204198A1/en
Priority to US11/901,550 priority patent/US8382784B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/32053Punch like cutting instruments, e.g. using a cylindrical or oval knife
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1107Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis for blood vessels

Definitions

  • This invention relates to vessel cutting devices for use in the repair, replacement, or supplement of a medical patient's natural body organ structures or tissues. More particularly, this invention relates to vessel cutting devices for use in vascular anastomosis (the surgical connection of vessels).
  • Vascular anastomosis is a delicate and time-consuming procedure in which fast and accurate vessel cutting plays a particularly important role.
  • the distal end of the cutting catheter is rotated to cut through the patient's existing tubular body organ structure at the access site.
  • a cutting catheter with a conical (preferably star-shaped) cutting edge is pushed through the patient's existing tubular body organ structure at the access site.
  • the present invention can also be used to create an aperture in the patient's existing tubular body organ structure by advancing a distal end of the cutting catheter through from outside to inside of the patient's existing tubular body organ structure at the access site.
  • all or substantially all necessary apparatus is inserted into the patient via the patient's existing body organ vessel.
  • all or substantially all apparatus functions are controlled by the physician (a term used herein to also include supporting technicians) from outside the patient's body.
  • FIG. 1 a is a simplified sectional view showing the distal end of a delivery sheath in the interior of a portion of the existing tubular body organ structure with a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site;
  • FIG. 1 b is a view similar to portions of FIG. 1 a showing a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the end portion of the centering wire includes a selectively enlargeable structure;
  • FIG. 1 c is another view similar to portions of FIG. 1 a showing a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the end portion of the centering wire includes fasteners;
  • FIG. 2 is yet another view similar to FIG. 1 a showing a cutting catheter positioned for cutting at the distal end of a delivery sheath at the access site;
  • FIG. 3 is still another view similar to FIG. 1 a showing forming the aperture by advancing a distal end of the cutting catheter through from inside to outside of the patient's existing tubular body organ structure at the access site;
  • FIG. 4 is yet another view similar to FIG. 1 a showing advancing the distal end of the delivery sheath through from inside to outside of the patient's existing tubular body organ structure at the access site;
  • FIG. 5 is a simplified elevational view, partly in section, showing the distal end of the cutting catheter advancing through from outside to inside to create an aperture in the patient's existing tubular body organ structure;
  • FIG. 6 is a side view of the patient's existing tubular body organ structure of FIG. 5, showing the aperture created;
  • FIG. 7 a is still another view similar to FIG. 1 a showing the distal end of a delivery sheath in the interior of a portion of the existing tubular body organ structure with a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the cutting catheter includes a dilator;
  • FIG. 7 b is yet another view similar to FIG. 1 a forming the aperture by advancing a distal end of the cutting catheter through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the cutting catheter includes a dilator;
  • FIG. 7 c is still another view similar to FIG. 1 a showing advancing the delivery sheath through the aperture at the access site;
  • FIG. 8 is yet another view similar to FIG. 1 a showing a delivery sheath which includes distal and proximal selectively enlargeable structures.
  • a delivery sheath 20 is passed axially along the interior of a portion of tubular body organ structure 1 to place a distal end of delivery sheath 20 near access site 10 .
  • a centering wire 30 is passed axially along the interior of the sheath until the end portion of centering wire 30 emerges from the distal end of the sheath and pokes through from inside to outside of tubular body organ structure 1 .
  • Centering wire 30 provides a pilot track for cutting catheter 40 to follow.
  • FIG. 1 a shows the distal end of delivery sheath 20 in the interior of a portion of tubular body organ structure 1 with a centering wire 30 piercing through from inside to outside of the organ structure at access site 10 .
  • centering wire 30 is preferably deformable to facilitate deployment and removal, but resumes its operational (preferably hooked) shape once deployed.
  • Centering wire 30 is kept relatively straight when it is inside sheath 20 . But, when centering wire 30 is pushed axially out the distal end of sheath 20 , it curves to one side, as shown in FIGS. 1 a , 1 b and 1 c .
  • FIGS. 1 b and 1 c show alternative structures for centering wire 30 . In FIG.
  • the end portion of centering wire 30 includes a selectively enlargeable structure (such as a balloon 50 which extends annularly around the exterior of the centering wire and projects radially outwardly from the centering wire in all radially outward directions when inflated).
  • a selectively enlargeable structure such as a balloon 50 which extends annularly around the exterior of the centering wire and projects radially outwardly from the centering wire in all radially outward directions when inflated.
  • the end portion of centering wire 30 includes struts 55 spaced circumferentially around centering wire 30 and which are resiliently biased to project from the centering wire after the end portion of the centering wire pierces through body organ structure 1 at access site 10 .
  • the enlargeable structure serves to seal the aperture and displace tissue from around the outside of organ structure 1 near access site 10 , thereby creating a space. Such a space helps to prevent cutting head 45 from cutting other tissues after exiting organ structure 1 at access site 10 .
  • FIG. 2 shows cutting head 45 of cutting catheter 40 positioned for cutting at the distal end of delivery sheath 20 at access site 10 .
  • FIG. 3 shows how the aperture is formed by advancing the distal end of cutting catheter 40 (i.e., cutting head 45 ) through from inside to outside of organ structure 1 at access site 10 by rotating and/or pushing the distal end of the cutting catheter.
  • the distal end of cutting catheter 40 has a circular cutting edge.
  • Cutting catheter 40 which when advanced by rotation, cuts through tissue and removes tissue plug 60 .
  • the preferred embodiment of cutting head 45 also includes a serrated cutting edge and an axially aligned recess for accepting tissue plug 60 .
  • FIG. 4 shows advancing the distal end of delivery sheath 20 through from inside to outside of organ structure 1 at access site 10 and removing centering wire 30 and cutting catheter 40 along with tissue plug 60 contained within cutting head 45 .
  • non-rotating cutting catheter 40 can be used to create specific geometric aperture shapes (e.g., oblong aperture 70 for coronary anastomosis).
  • FIG. 5 also shows the use of the present invention in creating an aperture in organ structure 1 by advancing a distal end of cutting catheter 40 through from outside to inside of the organ structure at access site 10 . Centering wire 30 is tracked through cutting catheter 40 and is shown piercing organ structure 1 at access site 10 . Following such an outside-to-inside aperture, delivery sheath 20 can be passed axially along the interior of a portion of organ structure 1 to place a distal end of delivery sheath 20 near second access site 10 where an inside-to-outside aperture can be created. (Note that organ structure 1 is shown smaller in scale relative to sheath 20 and cutting catheter 40 .)
  • FIG. 6 is a side view of organ structure 1 , showing aperture 70 created using non-rotating cutting catheter 40 of FIG. 5.
  • Cutting catheter 40 shown in FIG. 7 a is a rotating catheter.
  • Cutting head 45 could be a saw-tooth or a razor-edge type, for example.
  • the distal end of delivery sheath 20 is shown in the interior of a portion of organ structure 1 with centering wire 30 piercing through from inside to outside of the organ structure at access site 10 , wherein cutting catheter 40 includes dilator 80 .
  • Dilator 80 facilitates advancing sheath 20 through the aperture (as is shown by the succession of steps illustrated by FIGS. 7 b and 7 c ).
  • the outer diameter of dilator 80 is close to the inner diameter of sheath 20 and is typically larger than the diameter of cutting head 45 . As shown in FIG. 7 b , as dilator 80 advances through the aperture at access site 10 , the aperture is simultaneously sealed against bleeding.
  • FIG. 8 shows delivery sheath 20 which includes proximal and distal selectively enlargeable structures 90 , 100 .
  • both selectively enlargeable structures 90 and 100 are balloons which extend annularly around the exterior of delivery sheath 20 and project radially outward when inflated.
  • the embodiment shown in FIG. 8 includes both proximal and distal selectively enlargeable structures, either one or both may be included.
  • proximal selectively enlargeable structure 90 prevents more than the portion of delivery sheath 20 which is distal of the enlargeable structure from passing out of the tubular structure via the aperture.
  • distal selectively enlargeable structure 100 prevents the portion of delivery sheath 20 which is distal of the enlargeable structure from passing back in to the tubular structure via the aperture.
  • Delivery sheath 20 (preferably about 4.0 mm in diameter) including cutting catheter 40 is introduced into organ structure 1 percutaneously through the femoral artery near the thigh.
  • Cutting catheter 40 includes cutting head 45 (preferably about 3.5 mm in diameter).
  • Delivery sheath 20 is positioned at access site 10 , here the ascending aorta.
  • Centering wire 30 is tracked through cutting catheter 40 and is caused to pierce the aortic artery at access site 10 .
  • Cutting catheter 40 is then tracked over centering wire 30 by either pushing or rotating (or a combination of both pushing and rotating) and caused to advance through the aortic wall.
  • An approximately 3.5 mm aperture is created with tissue plug 60 retained in cutting head 45 and removed along with the cutting catheter 40 .
  • Delivery sheath 20 can now be advanced through the approximately 3.5 mm aperture created by the cutting catheter 40 , causing organ structure 1 to stretch slightly (i.e., about 0.5 mm). This stretching is desirable because it provides a blood seal around delivery sheath 20 to prevent bleeding into the chest cavity.
  • Delivery sheath 20 can now be used to introduce other catheters (including cameras, for example) from the femoral artery into the chest cavity for the purpose of diagnosis or intervention (e.g., grafts or TMR laser surgery).
  • delivery sheath 20 , cutting catheter 40 , and centering wire 30 are all preferably coupled to and controlled by a controller located on the outside of the patient.

Abstract

A catheter-based system for accessing specific body cavities percutaneously and minimizing patient trauma is provided. In the preferred embodiment, in order to create an aperture at an access site in a patient's existing tubular body organ structure, a delivery sheath is passed axially along the interior of a portion of the existing tubular body organ structure to place a distal end of the delivery sheath near the access site. A centering wire is passed axially along the interior of the delivery sheath, piercing through from inside to outside of the patient's existing tubular body organ structure at the access site by causing an end portion of the centering wire to emerge from the distal end of the delivery sheath. A cutting catheter is passed substantially coaxially over the centering wire and axially along the interior of the delivery sheath. The aperture is formed by advancing a distal end of the cutting catheter through from inside to outside of the patient's existing tubular body organ structure at the access site and advancing the distal end of the delivery sheath through from inside to outside of the patient's existing tubular body organ structure at the access site.

Description

  • This application is a continuation of U.S. patent application Ser. No. 09/850,021, filed May 7, 2001, which is a continuation of U.S. patent application Ser. No. 09/014,759, filed Jan. 28, 1998 (now U.S. Pat. No. 6,416,527). Both of these prior applications are hereby incorporated by reference herein in their entireties.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention relates to vessel cutting devices for use in the repair, replacement, or supplement of a medical patient's natural body organ structures or tissues. More particularly, this invention relates to vessel cutting devices for use in vascular anastomosis (the surgical connection of vessels). [0002]
  • An example of the possible uses of the invention is a minimally invasive cardiac bypass procedure. This and other examples are considered in detail in Goldsteen et al. U.S. Pat. No. 5,976,178, which is hereby incorporated by reference herein in its entirety. [0003]
  • Vascular anastomosis is a delicate and time-consuming procedure in which fast and accurate vessel cutting plays a particularly important role. [0004]
  • In view of the foregoing, it would be desirable to provide a catheter-based system for accessing specific body cavities percutaneously, thereby minimizing patient trauma. [0005]
  • It would also be desirable to provide fast and accurate vessel cutting devices. [0006]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a catheter-based system for accessing specific body cavities percutaneously, thereby minimizing patient trauma. It is also an object to provide fast and accurate vessel cutting devices. [0007]
  • These and other objects are accomplished by providing a method and apparatus for creating an aperture at an access site in a patient's existing tubular body organ structure by passing a delivery sheath axially along the interior of a portion of the existing tubular body organ structure to place a distal end of the delivery sheath near the access site, passing a centering wire axially along the interior of the delivery sheath, piercing through from inside to outside of the patient's existing tubular body organ structure at the access site by causing an end portion of the centering wire to emerge from the distal end of the delivery sheath, passing a cutting catheter substantially coaxially over the centering wire and axially along the interior of the delivery sheath, forming the aperture by advancing a distal end of the cutting catheter through from inside to outside of the patient's existing tubular body organ structure at the access site and advancing the distal end of the delivery sheath through from inside to outside of the patient's existing tubular body organ structure at the access site. [0008]
  • In one embodiment, the distal end of the cutting catheter is rotated to cut through the patient's existing tubular body organ structure at the access site. In another embodiment, a cutting catheter with a conical (preferably star-shaped) cutting edge is pushed through the patient's existing tubular body organ structure at the access site. [0009]
  • The present invention can also be used to create an aperture in the patient's existing tubular body organ structure by advancing a distal end of the cutting catheter through from outside to inside of the patient's existing tubular body organ structure at the access site. [0010]
  • In the most preferred embodiment, all or substantially all necessary apparatus is inserted into the patient via the patient's existing body organ vessel. In addition, all or substantially all apparatus functions are controlled by the physician (a term used herein to also include supporting technicians) from outside the patient's body.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which: [0012]
  • FIG. 1[0013] a is a simplified sectional view showing the distal end of a delivery sheath in the interior of a portion of the existing tubular body organ structure with a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site;
  • FIG. 1[0014] b is a view similar to portions of FIG. 1a showing a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the end portion of the centering wire includes a selectively enlargeable structure;
  • FIG. 1[0015] c is another view similar to portions of FIG. 1a showing a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the end portion of the centering wire includes fasteners;
  • FIG. 2 is yet another view similar to FIG. 1[0016] a showing a cutting catheter positioned for cutting at the distal end of a delivery sheath at the access site;
  • FIG. 3 is still another view similar to FIG. 1[0017] a showing forming the aperture by advancing a distal end of the cutting catheter through from inside to outside of the patient's existing tubular body organ structure at the access site;
  • FIG. 4 is yet another view similar to FIG. 1[0018] a showing advancing the distal end of the delivery sheath through from inside to outside of the patient's existing tubular body organ structure at the access site;
  • FIG. 5 is a simplified elevational view, partly in section, showing the distal end of the cutting catheter advancing through from outside to inside to create an aperture in the patient's existing tubular body organ structure; [0019]
  • FIG. 6 is a side view of the patient's existing tubular body organ structure of FIG. 5, showing the aperture created; [0020]
  • FIG. 7[0021] a is still another view similar to FIG. 1a showing the distal end of a delivery sheath in the interior of a portion of the existing tubular body organ structure with a centering wire piercing through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the cutting catheter includes a dilator;
  • FIG. 7[0022] b is yet another view similar to FIG. 1a forming the aperture by advancing a distal end of the cutting catheter through from inside to outside of the patient's existing tubular body organ structure at the access site, wherein the cutting catheter includes a dilator;
  • FIG. 7[0023] c is still another view similar to FIG. 1a showing advancing the delivery sheath through the aperture at the access site; and
  • FIG. 8 is yet another view similar to FIG. 1[0024] a showing a delivery sheath which includes distal and proximal selectively enlargeable structures.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As a preliminary step in creating an aperture at an [0025] access site 10 in a patient's existing tubular body organ structure 1, a delivery sheath 20 is passed axially along the interior of a portion of tubular body organ structure 1 to place a distal end of delivery sheath 20 near access site 10. When the distal end of delivery sheath 20 is adjacent to access site 10, a centering wire 30 is passed axially along the interior of the sheath until the end portion of centering wire 30 emerges from the distal end of the sheath and pokes through from inside to outside of tubular body organ structure 1. Centering wire 30 provides a pilot track for cutting catheter 40 to follow. FIG. 1a shows the distal end of delivery sheath 20 in the interior of a portion of tubular body organ structure 1 with a centering wire 30 piercing through from inside to outside of the organ structure at access site 10.
  • The distal end of centering [0026] wire 30 is preferably deformable to facilitate deployment and removal, but resumes its operational (preferably hooked) shape once deployed. Centering wire 30 is kept relatively straight when it is inside sheath 20. But, when centering wire 30 is pushed axially out the distal end of sheath 20, it curves to one side, as shown in FIGS. 1a, 1 b and 1 c. FIGS. 1b and 1 c show alternative structures for centering wire 30. In FIG. 1b, the end portion of centering wire 30 includes a selectively enlargeable structure (such as a balloon 50 which extends annularly around the exterior of the centering wire and projects radially outwardly from the centering wire in all radially outward directions when inflated). In FIG. 1c, the end portion of centering wire 30 includes struts 55 spaced circumferentially around centering wire 30 and which are resiliently biased to project from the centering wire after the end portion of the centering wire pierces through body organ structure 1 at access site 10. By providing a selectively enlargeable structure disposed on the exterior of the centering wire at a predetermined distance proximally from the distal end of the centering wire and enlarging that structure after the centering wire has pierced organ structure 1, it is possible to prevent the portion of centering wire 30 which is distal of the enlargeable structure from passing back into the organ structure. In addition to the retaining function, the enlargeable structure serves to seal the aperture and displace tissue from around the outside of organ structure 1 near access site 10, thereby creating a space. Such a space helps to prevent cutting head 45 from cutting other tissues after exiting organ structure 1 at access site 10.
  • After piercing through organ structure [0027] 1 at access site 10 with centering wire 30, cutting catheter 40 is passed substantially coaxially over the centering wire and axially along the interior of sheath 20. FIG. 2 shows cutting head 45 of cutting catheter 40 positioned for cutting at the distal end of delivery sheath 20 at access site 10.
  • Centering [0028] wire 30 holds cutting catheter 40 and delivery sheath 20 against organ structure 1 at access site 10, thereby preventing undue bleeding during and after the creation of the aperture that could occur if the cutting catheter and the delivery sheath were to move away from the access site. FIG. 3 shows how the aperture is formed by advancing the distal end of cutting catheter 40 (i.e., cutting head 45) through from inside to outside of organ structure 1 at access site 10 by rotating and/or pushing the distal end of the cutting catheter.
  • As shown in FIGS. 2, 3, and [0029] 4, the distal end of cutting catheter 40 has a circular cutting edge. Cutting catheter 40, which when advanced by rotation, cuts through tissue and removes tissue plug 60. The preferred embodiment of cutting head 45 also includes a serrated cutting edge and an axially aligned recess for accepting tissue plug 60. By removing plug 60 of tissue (rather than merely displacing tissue, as in FIGS. 5 and 6), the elastic recoil of organ structure 1 at access site 10 is reduced, which may be a desirable condition for optimal graft attachment.
  • FIG. 4 shows advancing the distal end of [0030] delivery sheath 20 through from inside to outside of organ structure 1 at access site 10 and removing centering wire 30 and cutting catheter 40 along with tissue plug 60 contained within cutting head 45.
  • As shown in FIG. 5, [0031] non-rotating cutting catheter 40 can be used to create specific geometric aperture shapes (e.g., oblong aperture 70 for coronary anastomosis). FIG. 5 also shows the use of the present invention in creating an aperture in organ structure 1 by advancing a distal end of cutting catheter 40 through from outside to inside of the organ structure at access site 10. Centering wire 30 is tracked through cutting catheter 40 and is shown piercing organ structure 1 at access site 10. Following such an outside-to-inside aperture, delivery sheath 20 can be passed axially along the interior of a portion of organ structure 1 to place a distal end of delivery sheath 20 near second access site 10 where an inside-to-outside aperture can be created. (Note that organ structure 1 is shown smaller in scale relative to sheath 20 and cutting catheter 40.)
  • FIG. 6 is a side view of organ structure [0032] 1, showing aperture 70 created using non-rotating cutting catheter 40 of FIG. 5.
  • Cutting [0033] catheter 40 shown in FIG. 7a is a rotating catheter. Cutting head 45 could be a saw-tooth or a razor-edge type, for example. The distal end of delivery sheath 20 is shown in the interior of a portion of organ structure 1 with centering wire 30 piercing through from inside to outside of the organ structure at access site 10, wherein cutting catheter 40 includes dilator 80. Dilator 80 facilitates advancing sheath 20 through the aperture (as is shown by the succession of steps illustrated by FIGS. 7b and 7 c).
  • The outer diameter of [0034] dilator 80 is close to the inner diameter of sheath 20 and is typically larger than the diameter of cutting head 45. As shown in FIG. 7b, as dilator 80 advances through the aperture at access site 10, the aperture is simultaneously sealed against bleeding.
  • FIG. 8 shows [0035] delivery sheath 20 which includes proximal and distal selectively enlargeable structures 90, 100. Preferably, both selectively enlargeable structures 90 and 100 are balloons which extend annularly around the exterior of delivery sheath 20 and project radially outward when inflated. Although the embodiment shown in FIG. 8 includes both proximal and distal selectively enlargeable structures, either one or both may be included. When enlarged, proximal selectively enlargeable structure 90 prevents more than the portion of delivery sheath 20 which is distal of the enlargeable structure from passing out of the tubular structure via the aperture. Similarly, when enlarged, distal selectively enlargeable structure 100 prevents the portion of delivery sheath 20 which is distal of the enlargeable structure from passing back in to the tubular structure via the aperture.
  • As an illustrative example of the application of the present invention, consider the following. Delivery sheath [0036] 20 (preferably about 4.0 mm in diameter) including cutting catheter 40 is introduced into organ structure 1 percutaneously through the femoral artery near the thigh. Cutting catheter 40 includes cutting head 45 (preferably about 3.5 mm in diameter). Delivery sheath 20 is positioned at access site 10, here the ascending aorta. Centering wire 30 is tracked through cutting catheter 40 and is caused to pierce the aortic artery at access site 10. Cutting catheter 40 is then tracked over centering wire 30 by either pushing or rotating (or a combination of both pushing and rotating) and caused to advance through the aortic wall. An approximately 3.5 mm aperture is created with tissue plug 60 retained in cutting head 45 and removed along with the cutting catheter 40. Delivery sheath 20 can now be advanced through the approximately 3.5 mm aperture created by the cutting catheter 40, causing organ structure 1 to stretch slightly (i.e., about 0.5 mm). This stretching is desirable because it provides a blood seal around delivery sheath 20 to prevent bleeding into the chest cavity. Delivery sheath 20 can now be used to introduce other catheters (including cameras, for example) from the femoral artery into the chest cavity for the purpose of diagnosis or intervention (e.g., grafts or TMR laser surgery).
  • To minimize patient trauma, [0037] delivery sheath 20, cutting catheter 40, and centering wire 30 are all preferably coupled to and controlled by a controller located on the outside of the patient.
  • Various methods and apparatus for delivering and installing plugs in walls of organ structures, as well as methods and apparatus for promoting the closing and healing of apertures in walls of organ structures, are available (e.g., of the type shown in Goldsteen et al. U.S. Pat. No. 5,976,178; published PCT patent application WO 98/47430; and published PCT patent application WO 98/55027, all of which are hereby incorporated by reference herein). [0038]
  • Thus, it is seen that a method and apparatus for creating an aperture at an access site in-a patient's existing tubular body organ structure and making it possible to access specific body cavities percutaneously, thereby minimizing patient trauma, is provided. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims which follow. [0039]

Claims (50)

What is claimed is:
1. Hole forming apparatus for forming an opening in a blood vessel, comprising:
a penetration head having a sharp tip adapted to be inserted through a wall of a blood vessel;
a base section defining an inner lumen;
at least one cutting surface defined on said base section and adapted to cut through a wall of said blood vessel without said apparatus pulling said blood vessel towards said cutting surface; and
a shaft mechanically coupling said penetration head to said base section, said shaft defining a tissue holding shaft section between said base section and said penetration head, said penetration head adapted to prevent tissue transfixed on said shaft section from slipping off said penetration head, said shaft having a first mechanically defined and axially locked resting position in which said penetration head is at least partially enclosed by said base section in said inner lumen and a second mechanically defined resting position in which said penetration head is axially locked relative to said base section and said shaft section is exposed between said base section and said penetration head.
2. Apparatus according to claim 1, wherein moving said shaft between said positions is not mechanically coupled to rotation of said base section.
3. Apparatus according to claim 1, wherein said penetration head has a geometry of a cone.
4. Apparatus according to claim 1, wherein said penetration head comprises at least one protrusion having a radial extent greater than a minimum diameter of said shaft section.
5. Apparatus according to claim 4, wherein said at least one protrusion comprises a barb cut out of said shaft section.
6. Apparatus according to claim 5, wherein said barb is elastic and flexible enough to be pushed against said shaft section by said wall of said vessel when said penetration head is inserted into said vessel.
7. Apparatus according to claim 1, wherein in said first resting position said penetration head is fully retracted into said lumen.
8. Apparatus according to claim 1, adapted for forming an aperture from outside a blood vessel.
9. Apparatus according to claim 1, wherein said shaft is rigid.
10. Apparatus according to claim 1, wherein said penetration head is adapted and arranged to not pull back said vessel wall during said cutting.
11. Apparatus according to claim 1, comprising externally powered means from moving said shaft between said positions.
12. Hole forming apparatus for forming an opening in a blood vessel, comprising:
a penetration head having a sharp tip adapted to be inserted through a wall of a blood vessel, said tip defining a lumen in a direction of said wall;
a base section defining an inner lumen;
at least one cutting surface defined on said base section and adapted to cut through a wall of said blood vessel; and
a shaft mechanically coupling said penetration head to said base section and fixing an axial position of said penetration head relative to said base.
13. Apparatus according to claim 12, wherein said lumen is adapted to engage tissue.
14. Apparatus according to claim 12, wherein said lumen is adapted to allow one directional of motion of tissue relative to the lumen.
15. Hole forming apparatus for forming an opening in a blood vessel, comprising:
a penetration head having a sharp tip adapted to be inserted through a wall of a blood vessel;
a base section defining an inner lumen;
at least one cutting surface defined on said base section and adapted to cut through a wall of said blood vessel without said apparatus pulling said blood vessel towards said cutting surface; and
a shaft mechanically coupling said penetration head to said base section and fixing an axial position of said penetration head relative to said base.
16. Apparatus according to claim 15, wherein said inner lumen is adapted to engage tissue.
17. Apparatus according to claim 15, wherein said penetration head has a fixed diameter.
18. Hole forming apparatus for forming an opening in a blood vessel, comprising:
a base section defining an inner lumen, said inner lumen being adapted to engage blood vessel tissue;
at least one cutting surface defined on said base section and adapted to cut through a wall of said blood vessel; and
a trans-axial stabilizer having a fixed axial position relative to said cutting surface.
19. Hole forming apparatus for forming a hole in a blood vessel, comprising:
a penetration shaft, having a tip adapted to be inserted through a wall of a blood vessel;
a tissue holder, configured to hold a portion of said wall, said holder being activated to perform said holding separately from an insertion of said penetration shaft through said wall; and
a cutting surface adapted to cut through the wall.
20. Hole forming apparatus according to claim 19, wherein said tissue holder comprises a flexible barb.
21. Hole forming apparatus according to claim 19, wherein the tissue holder comprises a hollow tube surrounding the penetration shaft.
22. Hole forming apparatus according to claim 19, wherein said tissue holder lies alongside said penetration shaft.
23. Hole forming apparatus according to claim 19, wherein said tissue holder is mounted on said penetration shaft and comprising a holder releaser configured to selectively release said holder to hold tissue.
24. Hole forming apparatus according to claim 19, wherein said tissue holder is configured to be advanced along said penetration shaft after said insertion.
25. Apparatus according to claim 19, wherein said tissue holder is configured to be axially moved relative to said penetration shaft, thereby activating said tissue holder.
26. Apparatus according to claim 19, wherein said tissue holder is configured to be rotated relative to said penetration shaft, thereby activating said tissue holder.
27. Apparatus according to any of claim 19-26, wherein said cutting surface is configured to cut by rotation.
28. Apparatus according to claim 27, wherein said cutting surface is not rotationally fixed to said tissue holder.
29. Apparatus according to any of claim 19-26, wherein said cutting surface is configured to cut by from an opposite side of said wall from said penetration tip.
30. Apparatus according to any of claim 19-26, wherein said cutting surface is configured to cut by from a same side of said wall from said penetration tip.
31. Apparatus according to any of claim 19-26, wherein said penetration tip is configured to enter said wall from an outside of said vessel.
32. Apparatus according to any of claim 19-26, wherein said tissue holder engages a wall of said vessel.
33. Apparatus according to any of claim 19-26, wherein said tissue holder contacts a wall of said vessel at a stop location and thereby prevents relative motion of said wall in a direction of said stop location.
34. Hole forming apparatus for forming a hole in a blood vessel, comprising:
a penetration head adapted to penetrate a blood vessel wall;
a slotted anchor, defining a trans-axial slot having a width sufficient to receive a thickness of said wall; and
a cutting surface configured to cut said wall while said wall is held by said slotted anchor.
35. Apparatus according to claim 34, wherein said anchor comprises a trans-axially-slotted tube.
36. Hole forming apparatus according to claim 34, wherein the penetration head comprises a distal portion of the anchor.
37. Hole forming apparatus according to any of claims 34-36, and including a tissue holder which prevents a cut out portion of the wall of the blood vessel from passing into the blood vessel.
38. Apparatus according to claim 34, wherein said cutting surface is formed on a proximal side of said penetration head.
39. Instrumentation for facilitating cutting an opening in a side wall of a body conduit comprising:
a tubular structure defining a lumen and having a sharpened distal end portion configured to cut a section of the body conduit to create the opening; and
a tissue holding structure axially movable within the lumen of the tubular structure, the tissue holding structure comprising a piercing portion to permit passage of the tissue holding structure through the body conduit from an entrance side adjacent the tubular structure to an exit side thereof, and a retention member to secure the section of the body conduit to the tissue holding structure during movement of the tissue holding structure to approximate the entrance side of the section of the body conduit and the sharpened distal portion of the tubular structure which cuts the section of body conduit.
40. The instrumentation as defined in claim 39, wherein the tissue holding structure and the section of body conduit secured thereto by the retention member are movable into the lumen of the tubular structure.
41. The instrumentation as defined in claim 39, wherein the retention member is a barb that is resiliently biased radially outwardly in order to secure the section of body conduit.
42. The instrumentation as defined in claim 41, wherein the barb is deflected radially inwardly during the distal passage of the tissue holding structure through the section of the body conduit.
43. The instrumentation as defined in claim 39, wherein the sharpened distal end portion of the tubular structure is configured to cut the section of body conduit by axial rotation of the tubular structure.
44. The instrumentation as defined in claim 39, wherein the sharpened distal end portion of the tubular structure is configured to cut the section of body conduit by longitudinal advancement of the tubular structure through the body conduit.
45. A method for cutting an opening in a body conduit comprising:
providing a tissue holding structure having a retention member to secure a section of the body conduit to the tissue holding structure;
securing the retention member to the section of the body conduit by at least partially inserting the tissue holding structure into the body conduit;
providing a tubular structure having a sharpened distal portion;
approximating the body conduit and the sharpened distal portion of the tubular structure by relative movement of the tissue holding structure towards the tubular structure; and
cutting the section of the body conduit with the sharpened distal portion of the tubular structure to provide the opening in the body conduit.
46. The method as defined in claim 45, wherein the tubular structure defines an internal lumen, the method further comprising:
after cutting the section of the body conduit, withdrawing the tissue holding structure and the section of the body conduit into the internal lumen of the tubular structure.
47. The method as defined in claim 45, wherein cutting the section of the body conduit comprises angularly rotating the tubular structure while contacting the section of body conduit.
48. The method as defined in claim 45, wherein cutting the section of the body conduit comprises longitudinally advancing the tubular structure through the section of body conduit.
49. The method as defined in claim 45, wherein the retention member is a barb that is resiliently biased radially outwardly in order to secure the tissue holding structure to the body conduit and capable of deflection radially inwardly, and
wherein securing the retention member to the body conduit comprises maintaining the barb radially inwardly while inserting the tissue holding structure into the body conduit, and subsequently allowing the barb to deflect radially outwardly to engage the body conduit.
50. The method as defined in claim 45, wherein the tissue holding structure further comprises a piercing portion, and
wherein securing the retention member to the body conduit comprises piercing the body conduit with the piercing portion of the tissue holding structure.
US10/456,180 1998-01-28 2003-06-06 Vessel cutting devices Abandoned US20030204198A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/456,180 US20030204198A1 (en) 1998-01-28 2003-06-06 Vessel cutting devices
US11/901,550 US8382784B2 (en) 1998-01-28 2007-09-17 Vessel cutting devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/014,759 US6416527B1 (en) 1998-01-28 1998-01-28 Vessel cutting device
US09/850,021 US20010016752A1 (en) 1998-01-28 2001-05-07 Vessel cutting devices
US10/456,180 US20030204198A1 (en) 1998-01-28 2003-06-06 Vessel cutting devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/850,021 Continuation US20010016752A1 (en) 1998-01-28 2001-05-07 Vessel cutting devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/901,550 Division US8382784B2 (en) 1998-01-28 2007-09-17 Vessel cutting devices

Publications (1)

Publication Number Publication Date
US20030204198A1 true US20030204198A1 (en) 2003-10-30

Family

ID=21767554

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/014,759 Expired - Lifetime US6416527B1 (en) 1998-01-28 1998-01-28 Vessel cutting device
US09/850,021 Abandoned US20010016752A1 (en) 1998-01-28 2001-05-07 Vessel cutting devices
US10/456,180 Abandoned US20030204198A1 (en) 1998-01-28 2003-06-06 Vessel cutting devices
US10/659,951 Abandoned US20040049218A1 (en) 1998-01-28 2003-09-10 Vessel cutting devices
US11/901,550 Expired - Fee Related US8382784B2 (en) 1998-01-28 2007-09-17 Vessel cutting devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/014,759 Expired - Lifetime US6416527B1 (en) 1998-01-28 1998-01-28 Vessel cutting device
US09/850,021 Abandoned US20010016752A1 (en) 1998-01-28 2001-05-07 Vessel cutting devices

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/659,951 Abandoned US20040049218A1 (en) 1998-01-28 2003-09-10 Vessel cutting devices
US11/901,550 Expired - Fee Related US8382784B2 (en) 1998-01-28 2007-09-17 Vessel cutting devices

Country Status (6)

Country Link
US (5) US6416527B1 (en)
EP (2) EP1051115B1 (en)
AT (2) ATE536139T1 (en)
AU (1) AU2309699A (en)
DE (1) DE69937288T2 (en)
WO (1) WO1999038441A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094525A2 (en) 2004-03-23 2005-10-13 Correx, Inc. Apparatus and method for connecting a conduit to a hollow organ
US20110196408A1 (en) * 2004-03-23 2011-08-11 Correx, Inc. Apparatus and method for forming a hole in a hollow organ

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730103B2 (en) 1997-05-19 2004-05-04 Pepi Dakov Connector system and methods for cutting and joining hollow anatomical structures
US20050101983A1 (en) * 1998-05-29 2005-05-12 By-Pass,Inc. Method and apparatus for forming apertures in blood vessels
US6726704B1 (en) 1998-05-29 2004-04-27 By-Pass, Inc. Advanced closure device
US20040073247A1 (en) * 1998-05-29 2004-04-15 By-Pass, Inc. Method and apparatus for forming apertures in blood vessels
US20040087985A1 (en) * 1999-03-19 2004-05-06 Amir Loshakove Graft and connector delivery
US6945980B2 (en) 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6475222B1 (en) * 1998-11-06 2002-11-05 St. Jude Medical Atg, Inc. Minimally invasive revascularization apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
EP1265536A1 (en) * 2000-03-20 2002-12-18 By-Pass, Inc. Graft delivery system
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US6554764B1 (en) 2000-11-13 2003-04-29 Cardica, Inc. Graft vessel preparation device and methods for using the same
HUP0101033A2 (en) * 2001-03-10 2002-12-28 László Csiky Surgical stapling instrument with modified circular tool
AU2002259215A1 (en) 2001-05-14 2002-11-25 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
US8241309B2 (en) * 2001-06-29 2012-08-14 World Heart Corporation Cannulation apparatus and method
US8292908B2 (en) * 2001-06-29 2012-10-23 World Heart Corporation Endoscopic cannulation apparatus and method
US6814743B2 (en) * 2001-12-26 2004-11-09 Origin Medsystems, Inc. Temporary seal and method for facilitating anastomosis
US8012164B1 (en) 2002-01-22 2011-09-06 Cardica, Inc. Method and apparatus for creating an opening in the wall of a tubular vessel
US20030181843A1 (en) * 2002-06-11 2003-09-25 Scout Medical Technologies, Llc Device and method providing arterial blood flow for perfusion of ischemic myocardium
US7258694B1 (en) 2002-06-17 2007-08-21 Origin Medsystems, Inc. Medical punch and surgical procedure
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US8377082B2 (en) * 2003-01-14 2013-02-19 Medtronic, Inc. Methods and apparatus for making precise incisions in body vessels
WO2004086985A1 (en) 2003-03-28 2004-10-14 St Jude Medical Atg, Inc. Apparatus for making anastomotic connections larger than the graft conduit
US7322999B2 (en) * 2003-05-09 2008-01-29 Atrion Medical Products, Inc. Tissue punch and method for creating an anastomosis for locating a bypass graft
US8574246B1 (en) 2004-06-25 2013-11-05 Cardica, Inc. Compliant anastomosis system utilizing suture
US7794471B1 (en) * 2003-06-26 2010-09-14 Cardica, Inc. Compliant anastomosis system
US7182769B2 (en) 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US20050043749A1 (en) 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US7799043B2 (en) * 2003-12-01 2010-09-21 Boston Scientific Scimed, Inc. Cutting balloon having sheathed incising elements
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US20050222598A1 (en) * 2004-04-05 2005-10-06 Manoa Medical, Inc., A Delaware Corporation Tissue cutting device
US8277465B2 (en) * 2004-12-15 2012-10-02 Correx, Inc. Apparatus and method for connecting a conduit to a hollow vessel
EP2012709A1 (en) * 2006-04-06 2009-01-14 Correx, Inc. Apparatus and method for suturelessly connecting a conduit to a hollow organ
WO2009042816A2 (en) * 2007-09-25 2009-04-02 Correx, Inc. Applicator, assembly, and method for connecting an inlet conduit to a hollow organ
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9566146B2 (en) * 2008-12-19 2017-02-14 St. Jude Medical, Inc. Cardiovascular valve and valve housing apparatuses and systems
US8905961B2 (en) * 2008-12-19 2014-12-09 St. Jude Medical, Inc. Systems, apparatuses, and methods for cardiovascular conduits and connectors
US20100160939A1 (en) * 2008-12-19 2010-06-24 St. Jude Medical, Inc. Systems, apparatuses, and methods for cardiovascular cutting devices and valves
US8728012B2 (en) * 2008-12-19 2014-05-20 St. Jude Medical, Inc. Apparatus and method for measuring blood vessels
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
AU2010253912B2 (en) 2009-05-28 2015-03-05 Avinger, Inc. Optical Coherence Tomography for biological imaging
WO2011068540A1 (en) 2009-12-03 2011-06-09 Therix Medical Development, Ltd. Central venous access system
WO2014039096A1 (en) 2012-09-06 2014-03-13 Avinger, Inc. Re-entry stylet for catheter
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
JP2013531542A (en) 2010-07-01 2013-08-08 アビンガー・インコーポレイテッド An atherectomy catheter having a longitudinally movable drive shaft
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
EP2691038B1 (en) 2011-03-28 2016-07-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
EP2768406B1 (en) 2011-10-17 2019-12-04 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US10092726B2 (en) 2012-02-09 2018-10-09 Bluegrass Vascular Technologies, Inc. Occlusion access system
WO2013172972A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
EP2849660B1 (en) 2012-05-14 2021-08-25 Avinger, Inc. Atherectomy catheter drive assemblies
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
WO2015120146A1 (en) 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
EP2892448B1 (en) 2012-09-06 2020-07-15 Avinger, Inc. Balloon atherectomy catheters with imaging
WO2014143064A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Chronic total occlusion crossing devices with imaging
EP2967507B1 (en) 2013-03-15 2018-09-05 Avinger, Inc. Tissue collection device for catheter
WO2014142958A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Optical pressure sensor assembly
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
JP6896699B2 (en) 2015-07-13 2021-06-30 アビンガー・インコーポレイテッドAvinger, Inc. Microformed anamorphic reflector lens for image-guided therapy / diagnostic catheter
CN108882857A (en) 2016-01-25 2018-11-23 阿维格公司 With the modified OCT image conduit of lag
EP3422968B1 (en) 2016-02-29 2022-12-14 Bluegrass Vascular Technologies, Inc. Catheter systems for gaining access to a vessel
EP3435892B1 (en) 2016-04-01 2024-04-03 Avinger, Inc. Atherectomy catheter with serrated cutter
CN109475368A (en) 2016-06-03 2019-03-15 阿维格公司 Conduit device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
EP4044942A4 (en) 2019-10-18 2023-11-15 Avinger, Inc. Occlusion-crossing devices

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837345A (en) * 1973-08-31 1974-09-24 A Matar Venous valve snipper
US4018228A (en) * 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5403338A (en) * 1992-01-21 1995-04-04 Scanlan International, Inc. Punch for opening passages between two compartments
US5488958A (en) * 1992-11-09 1996-02-06 Vance Products Incorporated Surgical cutting instrument for coring tissue affixed thereto
US5676670A (en) * 1996-06-14 1997-10-14 Beth Israel Deaconess Medical Center Catheter apparatus and method for creating a vascular bypass in-vivo
US5702412A (en) * 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
US5824002A (en) * 1995-09-22 1998-10-20 Conmed Corporation Trocar-cannula device
US5830222A (en) * 1995-10-13 1998-11-03 Transvascular, Inc. Device, system and method for intersititial transvascular intervention
US5972017A (en) * 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
US5976178A (en) * 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US6001124A (en) * 1997-10-09 1999-12-14 Vascular Science, Inc. Oblique-angle graft connectors
US6030392A (en) * 1995-01-18 2000-02-29 Motorola, Inc. Connector for hollow anatomical structures and methods of use
US6036702A (en) * 1997-04-23 2000-03-14 Vascular Science Inc. Medical grafting connectors and fasteners
US6068654A (en) * 1997-12-23 2000-05-30 Vascular Science, Inc. T-shaped medical graft connector
US6074416A (en) * 1997-10-09 2000-06-13 St. Jude Medical Cardiovascular Group, Inc. Wire connector structures for tubular grafts
US6120432A (en) * 1997-04-23 2000-09-19 Vascular Science Inc. Medical grafting methods and apparatus
US6254618B1 (en) * 1995-01-18 2001-07-03 Pepi Dakov Connector for hollow anatomical organs
US20010039425A1 (en) * 1997-05-19 2001-11-08 Pepi Dakov Connectors for hollow anatomical structures and methods of use

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577979A (en) * 1968-02-06 1971-05-11 Harry Van Der Gaast Disposable surgical skin punch
US4007732A (en) * 1975-09-02 1977-02-15 Robert Carl Kvavle Method for location and removal of soft tissue in human biopsy operations
US5353804A (en) * 1990-09-18 1994-10-11 Peb Biopsy Corporation Method and device for percutaneous exisional breast biopsy
US5454790A (en) * 1994-05-09 1995-10-03 Innerdyne, Inc. Method and apparatus for catheterization access
ATE275880T1 (en) 1995-10-13 2004-10-15 Transvascular Inc DEVICE FOR BYPASSING ARTERIAL Narrowings AND/OR FOR PERFORMING OTHER TRANSVASCULAR PROCEDURES
US5980545A (en) 1996-05-13 1999-11-09 United States Surgical Corporation Coring device and method
AU7288298A (en) 1997-06-05 1998-12-21 Vascular Science Inc. Minimally invasive medical bypass methods and apparatus using partial relocationof tubular body conduit
US6120511A (en) * 1997-11-18 2000-09-19 Chan; Kwan-Ho Drill guide assembly and method for producing a bone tunnel
CA2431405A1 (en) 2000-12-11 2002-06-20 By-Pass, Inc. Method and apparatus for forming apertures in blood vessels

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837345A (en) * 1973-08-31 1974-09-24 A Matar Venous valve snipper
US4018228A (en) * 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5403338A (en) * 1992-01-21 1995-04-04 Scanlan International, Inc. Punch for opening passages between two compartments
US5488958A (en) * 1992-11-09 1996-02-06 Vance Products Incorporated Surgical cutting instrument for coring tissue affixed thereto
US6030392A (en) * 1995-01-18 2000-02-29 Motorola, Inc. Connector for hollow anatomical structures and methods of use
US6254618B1 (en) * 1995-01-18 2001-07-03 Pepi Dakov Connector for hollow anatomical organs
US5824002A (en) * 1995-09-22 1998-10-20 Conmed Corporation Trocar-cannula device
US5702412A (en) * 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
US5830222A (en) * 1995-10-13 1998-11-03 Transvascular, Inc. Device, system and method for intersititial transvascular intervention
US5676670A (en) * 1996-06-14 1997-10-14 Beth Israel Deaconess Medical Center Catheter apparatus and method for creating a vascular bypass in-vivo
US5976178A (en) * 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US5972017A (en) * 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
US6036702A (en) * 1997-04-23 2000-03-14 Vascular Science Inc. Medical grafting connectors and fasteners
US6120432A (en) * 1997-04-23 2000-09-19 Vascular Science Inc. Medical grafting methods and apparatus
US20010039425A1 (en) * 1997-05-19 2001-11-08 Pepi Dakov Connectors for hollow anatomical structures and methods of use
US6074416A (en) * 1997-10-09 2000-06-13 St. Jude Medical Cardiovascular Group, Inc. Wire connector structures for tubular grafts
US6001124A (en) * 1997-10-09 1999-12-14 Vascular Science, Inc. Oblique-angle graft connectors
US6068654A (en) * 1997-12-23 2000-05-30 Vascular Science, Inc. T-shaped medical graft connector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094525A2 (en) 2004-03-23 2005-10-13 Correx, Inc. Apparatus and method for connecting a conduit to a hollow organ
EP1761202A2 (en) * 2004-03-23 2007-03-14 Correx, Inc. Apparatus and method for connecting a conduit to a hollow organ
US20110196408A1 (en) * 2004-03-23 2011-08-11 Correx, Inc. Apparatus and method for forming a hole in a hollow organ
EP1761202A4 (en) * 2004-03-23 2012-06-13 Correx Inc Apparatus and method for connecting a conduit to a hollow organ
US8679138B2 (en) 2004-03-23 2014-03-25 Correx, Inc. Apparatus and method for forming a hole in a hollow organ

Also Published As

Publication number Publication date
ATE375121T1 (en) 2007-10-15
DE69937288T2 (en) 2008-02-07
EP1051115B1 (en) 2007-10-10
EP1776926A1 (en) 2007-04-25
EP1776926B1 (en) 2011-12-07
US20040049218A1 (en) 2004-03-11
US20010016752A1 (en) 2001-08-23
US20080039882A1 (en) 2008-02-14
WO1999038441A1 (en) 1999-08-05
US6416527B1 (en) 2002-07-09
EP1051115A1 (en) 2000-11-15
DE69937288D1 (en) 2007-11-22
ATE536139T1 (en) 2011-12-15
US8382784B2 (en) 2013-02-26
AU2309699A (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US20030204198A1 (en) Vessel cutting devices
US7309343B2 (en) Method for cutting tissue
US6719769B2 (en) Integrated anastomosis tool with graft vessel attachment device and cutting device
US6673088B1 (en) Tissue punch
US6699256B1 (en) Medical grafting apparatus and methods
US8109947B2 (en) Medical grafting methods and apparatus
US20160135833A1 (en) Tissue access site system and method
US8357190B2 (en) Laparoscopic vascular access
WO2000069349A1 (en) Tissue punch
EP3451940B1 (en) Vascular access devices and systems
WO2002000122A1 (en) Device and method for performing vascular anastomosis
US6814751B2 (en) Method and apparatus for performing an anastamosis
WO2000074579A2 (en) Surgical grafting apparatus and methods
US7066953B2 (en) Method and apparatus for performing an anastamosis
RU99102248A (en) STENT FOR TRANSMYCARDIC REVASCULARIZATION (TMR) AND ITS DELIVERY SYSTEM

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION