US20030195548A1 - System and device for preventing restenosis in body vessels - Google Patents

System and device for preventing restenosis in body vessels Download PDF

Info

Publication number
US20030195548A1
US20030195548A1 US10/430,831 US43083103A US2003195548A1 US 20030195548 A1 US20030195548 A1 US 20030195548A1 US 43083103 A US43083103 A US 43083103A US 2003195548 A1 US2003195548 A1 US 2003195548A1
Authority
US
United States
Prior art keywords
ceramide
lipid
site
ether
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/430,831
Inventor
Mark Kester
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/430,831 priority Critical patent/US20030195548A1/en
Publication of US20030195548A1 publication Critical patent/US20030195548A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: PENNSYLVANIA STATE UNIVERSITY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/133Amines having hydroxy groups, e.g. sphingosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/164Amides, e.g. hydroxamic acids of a carboxylic acid with an aminoalcohol, e.g. ceramides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/22Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Definitions

  • Restenosis persists as a major complication in the maintenance of vessel patency after percutaneous transluminal angioplasty in coronary (PTCA) and other vessels. Restenosis is a consequence of multiple factors, including vessel recoil, negative vascular remodeling, residual plaque burden, and neointimal hyperplasia. Neointimal hyperplasia reflects the migration and proliferation of vascular smooth muscle (VSM) cells with subsequent deposition of extracellular matrix components at the site of injury.
  • VSM vascular smooth muscle
  • Ceramide is a growth arresting metabolite of sphingomyelin, a major lipid component of the cell membrane. More specifically, ceramide is a complex lipid which can be found in the plasma membrane. It is produced by the breakdown of sphingomyelin by sphingomyelinases, a process which is enhanced during inflammatory cytokine (IL-1,TNF and CD 95 ligand) induced growth arrest and/or cell death. It appears that ceramide acts as a bioactive which can mediate vascular smooth muscle-growth arrest and/or apoptosis by the direct activation of certain kinases.
  • IL-1,TNF and CD 95 ligand inflammatory cytokine
  • ceramide inhibits VSM proliferation by activating c-jun N-terminal kinase (JNK) while suppressing extracellular signal regulated kinase (ERK) and protein kinase B (PKB) in vitro. Yet, the possibility that a cell-permeable ceramide could diminish VSM proliferation in vivo has until now not been tested.
  • JNK c-jun N-terminal kinase
  • ERK extracellular signal regulated kinase
  • PBB protein kinase B
  • the present invention relates to a system and device for preventing stenosis (narrowing) and/or restenosis (renarrowing) after an invasive procedure (e.g., vascular or surgical intervention) in a body vessel or cavity having an inner wall surface, the system comprising inserting a device coated with a growth-arresting, lipid derived, bioactive substance at a desired location along the inner wall surface of the body vessel or cavity.
  • the present invention discloses a ceramide treatment which significantly reduces neointimal hyperplasia induced by balloon angioplasty in carotid arteries. It is demonstrated that ceramide ameliorates stenosis by decreasing the trauma-associated phosphorylation of extracellular signal regulated kinase (ERK) and protein kinase B (PKB). As described below, it has been demonstrated that the utility of cell-permeable ceramide is a novel therapy for reducing restenosis after balloon angioplasty.
  • ERK extracellular signal regulated kinase
  • PBB protein kinase B
  • the present invention relates to a method of preventing and/or treating stenosis at a site along a body vessel comprising administering to the site a lipid-derived bioactive compound which inhibits cell proliferation, wherein the compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines.
  • the present invention relates to a method of preventing and/or treating hyperplasia at a site in a body lumen, comprising administering to the site an amount of a lipid-derived bioactive compound which inhibits cell proliferation without inducing significant apoptosis, wherein the compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines.
  • the present invention relates to an intraluminal system for preventing and/or treating neointimal hyperplasia at a site in a vessel.
  • the system comprises a pharmaceutical formulation comprising a lipid-derived bioactive compound capable of inhibiting phosphorylation of a kinase, and a pharmaceutically acceptable carrier; and a device adapted for intraluminal delivery of the pharmaceutical formulation to the site.
  • the present invention relates to a method for preventing and/or treating hyperplasia at a site in a body lumen, comprising administering to the site a growth-arresting, lipid-derived bioactive compound which inhibits phosphorylation of a growth factor-induced extracellular signal regulated kinase (ERK) and/or a protein kinase B (PKB).
  • ERK growth factor-induced extracellular signal regulated kinase
  • PKA protein kinase B
  • the growth-arresting, lipid-derived bioactive compound in accordance with the various embodiments of the present invention is preferably selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines. More preferably, the compound is ceramide or a derivative thereof, that contains a 2-10 carbon short-chain fatty acid at SN-2 position. Most preferably, the ceramide or derivative thereof is a C 6 -ceramide.
  • FIG. 1 is a cross-sectional view of a balloon catheter coated with the growth arresting lipid-derived bioactive substance.
  • FIGS. 2 A-F are results of experiments evaluating the therapeutic potential of ceramide-coated embolectomy catheters upon restenosis after balloon angioplasty.
  • FIGS. 3 A-D show results of experiments conducted to quantify ceramide transfer between the balloon and the carotid artery.
  • FIGS. 4 A-F show the effects of ceramide treatment on VSM cell growth.
  • FIGS. 5 A-C show the evidence from in vitro studies that ceramide arrests cell growth.
  • the present invention relates to a system and device for preventing stenosis and/or restenosis after an invasive procedure in a body vessel or cavity having an inner wall surface, the system comprising inserting a device coated with a growth arresting, lipid-derived, bioactive substance at a desired location along the inner wall surface of the body vessel or cavity.
  • the devices which may be enhanced with the treatment of the present invention include, but are not limited to, simple catheter/simple (one) balloon designs, a dual balloon catheter design, or stents.
  • Microporous catheter design, infusion catheter design, rotary atherectorny device design, polymeric (e.g., polyacrylic acid) coated balloon designs, bioabsorbable coating designs, stent covers and perivascular matrices may all possibly be enhanced as well.
  • growth arresting it is meant that the cells (e.g., vascular smooth muscle cells) are no longer responsive to growth factors or cytokines released from damaged tissue.
  • lipid-derived it is meant that the substances are formed for the metabolism of lipids in membranes. Therefore, there is minimal immunologic/inflammatory response of the body to these compounds.
  • bioactive it is meant that the agents transduce information from the outside membranes of the cell to the nucleus where new genes are activated or inactivated to change the phenotype of the cell. Examples of such antimitogenic materials include ceramides and ceramide derivatives, e.g., cell-permeable analogs and forms which are subject to diminished metabolism.
  • ceramides include, but are not limited to, derivatives of the SN-1 position including 1-chloro and 1-benzoyl ceramides, which would not be subject to phosphorylation at this position, as well as derivatives at the SN-2 position (amide linkage), such as a methylcarbamate group or a 2-O-ethyl substituent, which would not be subject to degradation by ceramidases.
  • amide linkage such as a methylcarbamate group or a 2-O-ethyl substituent, which would not be subject to degradation by ceramidases.
  • cell-permeable forms of these ceramide analogs can be utilized. Examples of these cell-permeable ceramides and/or derivatives contain 2-10 carbons and have short-chain fatty acids at the SN-2 position (C6 ceramide).
  • growth arresting, lipid-derived, bioactive substances include, but are not limited to, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids, and sphinganines.
  • the device to be coated is preferably dipped in a vehicle including DMSO/ethanol, the actual coating process performed in a sterile environment so as to result in an effective amount of coating material remaining on the device.
  • Devices can then be subjected to radiation sterilization.
  • Ceramide-coated devices may be optimized for delivery from hydrophobic and hydrophilic coatings, as well as absorbable or polymeric matrices.
  • catheter 14 with associated balloon 10 is inserted into lumen 13 , surrounded by artery wall 12 .
  • Catheter tip 15 and balloon 10 are coated with the growth-arresting, lipid-derived bioactive substance 11 for use during a particular treatment, leading to opening of clogged and/or narrowed vessels that impede blood flow.
  • the present invention relates to balloon catheters and/or stents coated with growth-arresting, lipid-derived, bioactive substances and a system for preventing restenosis after an invasive procedure in a body vessel or cavity having an inner wall surface, the system comprising the steps of:
  • a therapeutic device e.g., balloon on an embolectomy catheter, stent, and/or rotary atherectomy device
  • a therapeutic device e.g., balloon on an embolectomy catheter, stent, and/or rotary atherectomy device
  • FIGS. 2 B-E illustrate hematoxylin and eosin stained cryostat sections of rabbit carotid arteries.
  • the three treatment groups included a vehicle-treated balloon (FIG. 2C, a C6-ceramide-coated balloon (FIG. 2D) and a dihydro-C6-ceramide (an inactive, inert substance)-coated balloon (FIG. 2E).
  • the C6-ceramide treatment significantly reduced the neointimal hyperplasia induced by balloon angioplasty.
  • C6-ceramide but not dihydro-C6-ceramide blocked neointimal hyperplasia after balloon angioplasty in rabbit carotid arteries.
  • Initial experiments optimized the methods to induce restenosis after angioplasty in carotid arteries from New Zealand white rabbits. Twenty-one rabbits were divided into three experimental groups, undergoing either balloon angioplasty with a vehicle-treated catheter, a C6-ceramide-treated catheter or a dihydro-C6-ceramide-treated catheter. Each rabbit underwent identical procedures to denude the common carotid artery of endothelium and establish the cellular conditions to promote restenosis.
  • FIG. 2A represents the time course of restenosis after angioplasty, while FIGS. 2 B- 2 E depict representative H/E stained sections.
  • the upper left panel depicts a sham-treated control artery while the upper right panel (FIG. 2C) shows an artery treated with a DMSO/ethanol (1:1, v/v)-coated balloon.
  • the bottom left panel (FIG.
  • FIG. 2D shows an artery treated with a C6-ceramide-coated balloon and the bottom right panel (FIG. 2E) an artery treated with dihydro-C6-ceramide, a biologically inactive form of ceramide.
  • the scale for these photomicrographs is 200 microns.
  • FIG. 2F quantifies the extent of restenotic lesions.
  • FIG. 3A shows that, after insertion and inflation, 12 ⁇ 2 nmol remained on the balloon. This translates to roughly 58 nmol of C6-ceramide being transferred from the balloon catheter during the angioplasty procedure.
  • the surgical procedure was performed using noninflated balloons. The recovered ceramide mass on the inserted but noninflated balloon was 14 ⁇ 3 nmol.
  • Rabbit carotid arteries treated with radiolabeled lipid were homogenized, and lipid products were separated by thin-layer chromatography (TLC) (FIG. 3A).
  • the mass of intact ceramide isolated 15 minutes after angioplasty was 2.7 ⁇ 0.4 nmol for inflated balloon treatments and 0.7 ⁇ 0.2 nmol for noninflated balloon treatments.
  • the amount of ceramide recovered from excised tissues did not differ significantly from the amount of ceramide transferred to the tissue as a consequence of balloon inflation.
  • the effective concentration of ceramide at the site of balloon injury is estimated to be 1.5 mmol/L.
  • a lipid-coated balloon delivers a therapeutic dose of ceramide to tissues underlying the site of vascular stretch injury, and demonstrates that a short-term application of cell-permeable ceramide is sufficient to completely penetrate injured arteries and to reduce intimal proliferation despite an inflammatory milieu.
  • infusion-type catheters have the advantage to deliver ceramide in a BSA vehicle at a discrete dose to the site of arterial injury. It was thus determined whether ceramide delivered by solution using an infusion-type catheter is also effective in reducing restenosis as ceramide delivered using a catheter with a gel coated balloon tip.
  • the balloon at the tip of a 4F arterial biTumen irrigation embolectomy catheter was inflated to a diameter equivalent to that of the earlier experiments.
  • Three infusions of 10 ⁇ M C6-ceramide for 1 minute each reduced restenosis after balloon angioplasty by 39%. Dihydro-C6-ceramide at an equivalent dose had no effect upon restenotic lesions.
  • ceramide-treated catheters reduced PCNA expression in vascular smooth muscle cells after angioplasty.
  • Smooth muscle actin expression was analyzed by immunohistochemistry utilizing a monoclonal anti-alpha smooth muscle antibody, and PCNA positive cell numbers were assessed with a primary mouse monoclonal IgG2a antibody for PCNA. Stain control slides substituted the primary antibody with nonspecific mouse IgG and did not reveal any specific or selective staining.
  • Panels A-B reflect smooth muscle actin staining for control and balloon-injured arteries, respectively, while panels C-F represent PCNA staining for control, balloon-injured, ceramide-coated balloon-injured and dihydro-ceramide-coated balloon-injured carotid arteries, respectively.
  • the scale for these photomicrographs is 200 microns.
  • acute ceramide therapy may directly modulate kinases or regulate putative ceramide-activated protein phosphatases that down-regulate these signaling pathways.
  • FIG. 5 ERK2 and PKBa phosphorylation were diminished after ceramide-coated balloon angioplasty in rabbit carotid arteries.
  • Panel A depicts a representative Western blot for ERK-2 and PKBa probed using phosphorylation-specific antibodies. Lysates from NIH3T3 cells treated with or without PDGF were used as positive and negative controls, respectively. This immunoblot is representative of similar experiments using a total of 8 animals. Panels B-C quantifies the immunoblot data.
  • C6-ceramide mimicked the effect of IL-1 to inhibit both tyrosine kinase receptor- and G-protein receptor-linked mitogenesis in A7r5 aortic smooth muscle cells and rat glomerular mesangial cells. Ceramide treatment correlated with growth arrest at G 0 G 1 and not apoptosis in these smooth muscle-like pericytes.
  • the present invention shows that C6-ceramide does not induce significant apoptosis in primary VSM isolated from rabbit carotid arteries as assessed by fluorescence-activated cell sorting after propidium iodide staining using a previously described doublet discrimination protocol.
  • ceramide derivatives can also limit neointimal hyperplasia.
  • Derivatives of ceramide, in which the amide-linked fatty acyl chain is replaced with dimethyl moieties, e.g., dimethylsphingosine, are also effective in limiting angioplasty-induced injury.
  • ceramide analogues Although altered ceramide metabolism has been implicated in atherosclerosis, diabetes mellitus and cancer, ceramide analogues have not yet been considered as therapeutics for proliferative vascular diseases. Increased concentrations of lactosyl- and glyco-ceramide conjugates at the expense of endogenous ceramide were noted in models of atherosclerosis and diabetes mellitus, and this diminished level of ceramide correlated with VSM proliferation and vasoconstriction. With endogenous levels of ceramide depleted, it is logical to consider the use of exogenous ceramide analogues as antimitogenic agents. The present invention demonstrates that ceramide is a strong candidate for preventing restenosis after angioplasty.
  • the present invention is also anticipated to be effective in treating stenosis of e.g., coronary, renal and femoral arteries, and may have venuous uses as well, e.g., as a calibrated portal caval shunting or unclogging blocked saphenous veins used for coronary bypass. Furthermore, the present invention may have uses in such areas as diabetic retinopathy, where smooth muscle-like cells are activated and proliferate in front of the retina, resulting in blindness. Locally delivered ceramide can also be used to potentially treat dysregulated smooth muscle growth in stenosis of vascular access lines after chronic dialysis.
  • these anti-mitogenic sphingolipid derivatives can be delivered as components of conventional or cationic liposomal vectors, potentially augmenting the efficacy of gene transfer and targeting strategies.
  • the present invention demonstrates inhibition of smooth muscle cell growth at the site of injury, when ceramide or other growth arresting, lipid-derived derivatives are locally administered by coating balloons and stents.
  • ceramides or other growth arresting, lipid-derived, bioactive substances can be delivered at fixed dosages via infusion or microporous catheter designs.
  • Infusion catheters deliver the substance through a port distal to the inflated balloon.
  • Microporous catheters deliver the substance via minute pores on the balloon surface.
  • the materials of the present invention can be delivered via a double balloon, infusion port, catheter design to deliver substance to the damaged arterial wall, isolated between the two inflated balloons.
  • C6-ceramide a cell permeable ceramide
  • other cell-permeable ceramide derivatives can also limit neointimal hyperplasia.
  • Derivatives of ceramide, in which the amide-linked fatty acyl chain is replaced with dimethyl moieties, are also effective in limiting angioplasty-induced injury.

Abstract

The present invention relates to a system and device for preventing stenosis and/or restenosis after an invasive procedure in a body vessel or cavity having an inner wall surface, the system comprising inserting a device coated with a growth arresting, lipid-derived, bioactive substance at a desired location along the inner wall surface of the body vessel or cavity.

Description

    RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. application Ser. No. 09/679,715 filed on Oct. 5, 2000, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/157,960 filed on Oct. 6, 1999.[0001]
  • BACKGROUND OF THE INVENTION
  • Restenosis persists as a major complication in the maintenance of vessel patency after percutaneous transluminal angioplasty in coronary (PTCA) and other vessels. Restenosis is a consequence of multiple factors, including vessel recoil, negative vascular remodeling, residual plaque burden, and neointimal hyperplasia. Neointimal hyperplasia reflects the migration and proliferation of vascular smooth muscle (VSM) cells with subsequent deposition of extracellular matrix components at the site of injury. Considerable evidence indicates that, in restenosis, growth factors stimulate the VSM cells to proliferate, resulting in a thickening of the tunica intima. Nearly 40% of all patients develop significant luminal narrowing within 6 months after angioplasty procedures. Consequently, despite the initial therapeutic benefits of angioplasty, within a few months after surgery, blood flow through the affected vessels can again become compromised. Conventional therapies, which include angiotensin-converting enzyme inhibitors, anticoagulants, and statins, are ineffective in preventing or reducing neointimal hyperplasia after stretch injury. Endovascular radiation therapy has shown some success in both animal and human trials, yet the long-term deleterious effects of this therapy on the artery have not been adequately evaluated. [0002]
  • Ceramide is a growth arresting metabolite of sphingomyelin, a major lipid component of the cell membrane. More specifically, ceramide is a complex lipid which can be found in the plasma membrane. It is produced by the breakdown of sphingomyelin by sphingomyelinases, a process which is enhanced during inflammatory cytokine (IL-1,TNF and CD 95 ligand) induced growth arrest and/or cell death. It appears that ceramide acts as a bioactive which can mediate vascular smooth muscle-growth arrest and/or apoptosis by the direct activation of certain kinases. It is hypothesized that direct and immediate delivery of a cell-permeable ceramide or analog via the balloon tip of an embolectomy catheter or chronic delivery via coating of a stent would reduce the VSM proliferation that is observed in restenosis after angioplasty. [0003]
  • It is known that ceramide inhibits VSM proliferation by activating c-jun N-terminal kinase (JNK) while suppressing extracellular signal regulated kinase (ERK) and protein kinase B (PKB) in vitro. Yet, the possibility that a cell-permeable ceramide could diminish VSM proliferation in vivo has until now not been tested. The use of catheters to open diseased arteries, body vessels or cavities is also known, as in e.g., U.S. Pat. No. 5,599,307, herein incorporated by reference. However, the prior art therapeutic devices themselves induce a significant amount of regrowth of VSM in the artery, which leads to secondary blockages or occlusions (i.e., restenosis). [0004]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a system and device for preventing stenosis (narrowing) and/or restenosis (renarrowing) after an invasive procedure (e.g., vascular or surgical intervention) in a body vessel or cavity having an inner wall surface, the system comprising inserting a device coated with a growth-arresting, lipid derived, bioactive substance at a desired location along the inner wall surface of the body vessel or cavity. By delivering the substance directly and immediately to the site of action, subsequent regrowth of smooth muscle cells is prevented, thus overcoming the inflammatory response which occurs due to the body's dealing with the original surgical intervention, e.g., angioplasty. [0005]
  • In a preferred embodiment, the present invention discloses a ceramide treatment which significantly reduces neointimal hyperplasia induced by balloon angioplasty in carotid arteries. It is demonstrated that ceramide ameliorates stenosis by decreasing the trauma-associated phosphorylation of extracellular signal regulated kinase (ERK) and protein kinase B (PKB). As described below, it has been demonstrated that the utility of cell-permeable ceramide is a novel therapy for reducing restenosis after balloon angioplasty. [0006]
  • In another preferred embodiment, the present invention relates to a method of preventing and/or treating stenosis at a site along a body vessel comprising administering to the site a lipid-derived bioactive compound which inhibits cell proliferation, wherein the compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines. [0007]
  • In another preferred embodiment, the present invention relates to a method of preventing and/or treating hyperplasia at a site in a body lumen, comprising administering to the site an amount of a lipid-derived bioactive compound which inhibits cell proliferation without inducing significant apoptosis, wherein the compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines. [0008]
  • In another preferred embodiment, the present invention relates to an intraluminal system for preventing and/or treating neointimal hyperplasia at a site in a vessel. The system comprises a pharmaceutical formulation comprising a lipid-derived bioactive compound capable of inhibiting phosphorylation of a kinase, and a pharmaceutically acceptable carrier; and a device adapted for intraluminal delivery of the pharmaceutical formulation to the site. [0009]
  • In another preferred embodiment, the present invention relates to a method for preventing and/or treating hyperplasia at a site in a body lumen, comprising administering to the site a growth-arresting, lipid-derived bioactive compound which inhibits phosphorylation of a growth factor-induced extracellular signal regulated kinase (ERK) and/or a protein kinase B (PKB). [0010]
  • The growth-arresting, lipid-derived bioactive compound in accordance with the various embodiments of the present invention is preferably selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines. More preferably, the compound is ceramide or a derivative thereof, that contains a 2-10 carbon short-chain fatty acid at SN-2 position. Most preferably, the ceramide or derivative thereof is a C[0011] 6-ceramide.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of a balloon catheter coated with the growth arresting lipid-derived bioactive substance. [0012]
  • FIGS. [0013] 2A-F are results of experiments evaluating the therapeutic potential of ceramide-coated embolectomy catheters upon restenosis after balloon angioplasty.
  • FIGS. [0014] 3A-D show results of experiments conducted to quantify ceramide transfer between the balloon and the carotid artery.
  • FIGS. [0015] 4A-F show the effects of ceramide treatment on VSM cell growth.
  • FIGS. [0016] 5A-C show the evidence from in vitro studies that ceramide arrests cell growth.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention relates to a system and device for preventing stenosis and/or restenosis after an invasive procedure in a body vessel or cavity having an inner wall surface, the system comprising inserting a device coated with a growth arresting, lipid-derived, bioactive substance at a desired location along the inner wall surface of the body vessel or cavity. By delivering the substance directly and immediately to the site of action, subsequent regrowth of smooth muscle cells is prevented, thus overcoming the inflammatory response which occurs due to the body's dealing with the original surgical intervention, e.g., angioplasty. The devices which may be enhanced with the treatment of the present invention include, but are not limited to, simple catheter/simple (one) balloon designs, a dual balloon catheter design, or stents. Microporous catheter design, infusion catheter design, rotary atherectorny device design, polymeric (e.g., polyacrylic acid) coated balloon designs, bioabsorbable coating designs, stent covers and perivascular matrices may all possibly be enhanced as well. [0017]
  • By “growth arresting,” it is meant that the cells (e.g., vascular smooth muscle cells) are no longer responsive to growth factors or cytokines released from damaged tissue. By “lipid-derived,” it is meant that the substances are formed for the metabolism of lipids in membranes. Therefore, there is minimal immunologic/inflammatory response of the body to these compounds. Finally, by “bioactive,” it is meant that the agents transduce information from the outside membranes of the cell to the nucleus where new genes are activated or inactivated to change the phenotype of the cell. Examples of such antimitogenic materials include ceramides and ceramide derivatives, e.g., cell-permeable analogs and forms which are subject to diminished metabolism. These include, but are not limited to, derivatives of the SN-1 position including 1-chloro and 1-benzoyl ceramides, which would not be subject to phosphorylation at this position, as well as derivatives at the SN-2 position (amide linkage), such as a methylcarbamate group or a 2-O-ethyl substituent, which would not be subject to degradation by ceramidases. In addition, cell-permeable forms of these ceramide analogs can be utilized. Examples of these cell-permeable ceramides and/or derivatives contain 2-10 carbons and have short-chain fatty acids at the SN-2 position (C6 ceramide). [0018]
  • Other examples of growth arresting, lipid-derived, bioactive substances include, but are not limited to, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids, and sphinganines. [0019]
  • The device to be coated is preferably dipped in a vehicle including DMSO/ethanol, the actual coating process performed in a sterile environment so as to result in an effective amount of coating material remaining on the device. Devices can then be subjected to radiation sterilization. Ceramide-coated devices may be optimized for delivery from hydrophobic and hydrophilic coatings, as well as absorbable or polymeric matrices. [0020]
  • As shown in FIG. 1, which displays an embodiment containing a catheter and single balloon design, [0021] catheter 14 with associated balloon 10 is inserted into lumen 13, surrounded by artery wall 12. Catheter tip 15 and balloon 10 are coated with the growth-arresting, lipid-derived bioactive substance 11 for use during a particular treatment, leading to opening of clogged and/or narrowed vessels that impede blood flow.
  • In a further preferred embodiment, the present invention relates to balloon catheters and/or stents coated with growth-arresting, lipid-derived, bioactive substances and a system for preventing restenosis after an invasive procedure in a body vessel or cavity having an inner wall surface, the system comprising the steps of: [0022]
  • (a) inserting a therapeutic device (e.g., balloon on an embolectomy catheter, stent, and/or rotary atherectomy device) to reduce the narrowing of arteries in a desired location along the inner wall surface, the device coated with a growth-arresting, lipid-derived, bioactive substance or derivative thereof; [0023]
  • (b) inflating the balloon on the embolectomy catheter or placing the stent in a portion of the vessel or cavity with damaged or diseased tissue; [0024]
  • (c) (i) supplying material (directly and immediately by inflation of the balloon, or at a sustained rate via the stent) to and (ii) removing plaque or debris from the diseased portion and/or serving as a scaffolding device; and [0025]
  • (d) providing a treatment to the diseased or occluded portion of the vessel or cavity. [0026]
  • Such steps will prevent secondary regrowth of the damaged vascular smooth muscle tissue, while still allowing wound healing. [0027]
  • Experiments were designed to evaluate the therapeutic potential of ceramide-coated embolectomy catheters upon restenosis after balloon angioplasty. Initial studies assessed the extent of restenosis in rabbit carotid arteries after balloon angioplasty as a function of time. Animals were sacrificed 1, 2, 4 and 6 weeks after balloon injury. Marked neointimal hyperplasia was observed as early as 1 week and peaked at 4 weeks (FIG. 2A). Sham-treated carotid arteries showed no signs of neointimal hyperplasia at anytime. The medial vascular smooth muscle layer also showed distinct hypertrophic injury after balloon treatment. Based upon these results, the effects of ceramide upon dynamic restenotic VSM growth, 2 weeks post balloon injury were investigated. FIGS. [0028] 2B-E illustrate hematoxylin and eosin stained cryostat sections of rabbit carotid arteries. In addition to the sham-treated control artery (FIG. 2B), the three treatment groups included a vehicle-treated balloon (FIG. 2C, a C6-ceramide-coated balloon (FIG. 2D) and a dihydro-C6-ceramide (an inactive, inert substance)-coated balloon (FIG. 2E). Surprisingly, the C6-ceramide treatment significantly reduced the neointimal hyperplasia induced by balloon angioplasty. A quantitative analysis revealed that ceramide inhibited the balloon-induced neointimal formation by 92% as reflected in the reduction of the neointimal/medial ratio (FIG. 2F). In contrast, dihydro-C6-ceramide, an inactive analogue of C6-ceramide, did not reduce restenosis after balloon injury. Thus, the inhibitory effect requires bioactive ceramide and cannot be duplicated using structurally similar but inactive lipids. Furthermore, it may be theorized that the effects of ceramide are due to biochemical actions and not lipophilic properties.
  • Specifically, in FIG. 2, C6-ceramide but not dihydro-C6-ceramide blocked neointimal hyperplasia after balloon angioplasty in rabbit carotid arteries. Initial experiments optimized the methods to induce restenosis after angioplasty in carotid arteries from New Zealand white rabbits. Twenty-one rabbits were divided into three experimental groups, undergoing either balloon angioplasty with a vehicle-treated catheter, a C6-ceramide-treated catheter or a dihydro-C6-ceramide-treated catheter. Each rabbit underwent identical procedures to denude the common carotid artery of endothelium and establish the cellular conditions to promote restenosis. The right common carotid served as the sham control while the left carotid served as the experimental side. There were no significant differences between sham control, vehicle control or ceramide-treated arteries in terms of either tissue wet weight or cellular protein content. FIG. 2A represents the time course of restenosis after angioplasty, while FIGS. [0029] 2B-2E depict representative H/E stained sections. The upper left panel (FIG. 2B) depicts a sham-treated control artery while the upper right panel (FIG. 2C) shows an artery treated with a DMSO/ethanol (1:1, v/v)-coated balloon. The bottom left panel (FIG. 2D) shows an artery treated with a C6-ceramide-coated balloon and the bottom right panel (FIG. 2E) an artery treated with dihydro-C6-ceramide, a biologically inactive form of ceramide. The scale for these photomicrographs is 200 microns. FIG. 2F quantifies the extent of restenotic lesions.
  • The inability of experimentally effective therapies to succeed in clinical trials is often the consequence of sub-optimal doses of therapeutics being delivered to the site of injury for the appropriate duration. Moreover, the efficacy of therapy may be a consequence of biomechanical force transferring ceramide from the inflated balloon to the site of vascular lesions. Therefore, experiments were conducted to quantify ceramide transfer between the balloon and the carotid artery; the pharmacokinetics of ceramide transfer and delivery from the balloon catheter to the damaged artery was assessed. Using [[0030] 3H]C6-ceramide as a tracer, it was calculated that 70±10 nmol of C6-ceramide was applied to the balloon as a gel from a solution of 5 μmol of C6-ceramide. FIG. 3A shows that, after insertion and inflation, 12±2 nmol remained on the balloon. This translates to roughly 58 nmol of C6-ceramide being transferred from the balloon catheter during the angioplasty procedure. To test whether inflation of the balloon within the carotid artery was essential for optimal transfer of the ceramide, the surgical procedure was performed using noninflated balloons. The recovered ceramide mass on the inserted but noninflated balloon was 14±3 nmol. Rabbit carotid arteries treated with radiolabeled lipid were homogenized, and lipid products were separated by thin-layer chromatography (TLC) (FIG. 3A). The mass of intact ceramide isolated 15 minutes after angioplasty was 2.7±0.4 nmol for inflated balloon treatments and 0.7±0.2 nmol for noninflated balloon treatments. The amount of ceramide recovered from excised tissues did not differ significantly from the amount of ceramide transferred to the tissue as a consequence of balloon inflation. As the transferred ceramide was initially delivered to 0.0365 cm3 of carotid artery luminal volume, the effective concentration of ceramide at the site of balloon injury is estimated to be 1.5 mmol/L. Thus, an effective and reproducible dose of ceramide can be delivered to the damaged artery as a consequence of the balloon inflation.
  • In situ autoradiography was utilized to document arterial penetrance for [[0031] 3H]C6-ceramide transferred from the balloon catheter after angioplasty (FIGS. 3B through 3D). Compared with unlabeled arteries (panel B), [3H]C6-ceramide was observed throughout the medial layers of the artery 15 minutes after angioplasty (panel C). This increase in pixel intensity reflects an increase in intact ceramide, as at this time point 89±4% of the radiolabel comigrates with authentic C6-ceramide standards. Pixel intensity was more intense in inflated (panel C) versus noninflated (panel D) arteries. Expressed as pixel density per square millimeter for 10 randomly selected blocks with background values subtracted, medial staining was increased 4.7±0.2-fold for ceramide-coated inflated versus noninflated balloons. Again, this supports the conclusion that balloon inflation leads to maximal delivery and penetrance. Thus, a lipid-coated balloon delivers a therapeutic dose of ceramide to tissues underlying the site of vascular stretch injury, and demonstrates that a short-term application of cell-permeable ceramide is sufficient to completely penetrate injured arteries and to reduce intimal proliferation despite an inflammatory milieu.
  • The degradation of the rapidly intercalated radiolabeled ceramide by TLC was also assessed. For the 15-minute postangioplasty time point, 89±4% of the TLC-separated lipid comigrated with authentic C6-ceramide standards. This corresponded to a recovered mass of 2.7±0.4 nmol of ceramide. At 60 minutes after angioplasty, 1.3±0.6 nmol of ceramide was recovered. Thus, 50% radiolabel can still be recovered as intact ceramide in 1 hour. This decrease in ceramide mass corresponded to an increase in TLC-separated gangliosides and cerebrosides but not sphingosines. [0032]
  • It is noted that infusion-type catheters have the advantage to deliver ceramide in a BSA vehicle at a discrete dose to the site of arterial injury. It was thus determined whether ceramide delivered by solution using an infusion-type catheter is also effective in reducing restenosis as ceramide delivered using a catheter with a gel coated balloon tip. The balloon at the tip of a 4F arterial biTumen irrigation embolectomy catheter was inflated to a diameter equivalent to that of the earlier experiments. Three infusions of 10 μM C6-ceramide for 1 minute each reduced restenosis after balloon angioplasty by 39%. Dihydro-C6-ceramide at an equivalent dose had no effect upon restenotic lesions. These studies further support the novelty and efficacy of ceramide-coated balloon catheters as intra-arterial site-specific delivery devices. [0033]
  • To prevent thrombus formation, patients routinely receive anti-coagulants prior to percutaneous transluminal coronary angioplasty. Thus, the consequences of anticoagulation therapy on the effectiveness of ceramide therapy were investigated. Neither ceramide- nor vehicle-treated balloon angioplasty induced thrombus formation. Lovenox (a low molecular weight heparin), administered subcutaneously (2.5 mg/kg) for 7 days postsurgery, did not by itself diminish restenosis and did not augment ceramide-induced inhibition of restenosis, suggesting that ceramide treatment is equally effective in both anti-coagulated and untreated protocols. [0034]
  • The effects of ceramide treatment upon VSM cell growth in vivo were also investigated. Immunohistochemical techniques were employed to identify VSM using smooth muscle cell-specific actin antibody (FIGS. [0035] 4A-B) and cell growth using proliferating cell nuclear antigen (PCNA) antibody (FIGS. 4C-F). The positive staining with the actin antibody indicates that VSM was a major component of balloon injury-induced neointimal formation (FIG. 4B). Also, this photomicrograph shows dramatic balloon angioplasty-induced ruffling and dispersion of VSM in the medial layer. PCNA is synthesized in early G1 and S phases of the cell cycle, and thus can be used as a marker for cell proliferation. In FIGS. 4C-F, representative photomicrographs depicting PCNA positive staining are shown for control, balloon-injured, ceramide-treated and dihydro-ceramide-treated carotid arteries, respectively. The percentage of PCNA positive cells in balloon-injured arteries (2.8%±0.1%) was dramatically increased compared with control vessels (0.2%±0.1%). C6-ceramide (0.6%±0.2%), but not dihydro-C6-ceramide (1.9%±0.3%) diminished the number of PCNA positive cells in the neointimal layer but not in the medial layer of the carotid artery. These data demonstrate that ceramide reduces neointimal hyperplasia by diminishing the percentage of VSM that enters the cell cycle after trauma to the vessel wall.
  • Specifically, in FIG. 4, ceramide-treated catheters reduced PCNA expression in vascular smooth muscle cells after angioplasty. Smooth muscle actin expression was analyzed by immunohistochemistry utilizing a monoclonal anti-alpha smooth muscle antibody, and PCNA positive cell numbers were assessed with a primary mouse monoclonal IgG2a antibody for PCNA. Stain control slides substituted the primary antibody with nonspecific mouse IgG and did not reveal any specific or selective staining. These immunohistochemical micrographs are representative of four separate experiments. Panels A-B reflect smooth muscle actin staining for control and balloon-injured arteries, respectively, while panels C-F represent PCNA staining for control, balloon-injured, ceramide-coated balloon-injured and dihydro-ceramide-coated balloon-injured carotid arteries, respectively. The scale for these photomicrographs is 200 microns. [0036]
  • Evidence from in vitro studies shows that ceramide arrests cell growth by inhibiting the growth factor-induced extracellular signal regulated kinase (ERK) cascade and possibly by inhibiting the protein kinase B (PKB) cascade. Thus, to elucidate mechanisms by which ceramide prevents restenosis, the phosphorylation states of ERK2 and PKBA were investigated using freshly excised carotid arteries after angioplasty (FIG. 5). Phosphorylation of ERK2 and PKBA were increased at 15 minutes and 24 hours post-balloon injury. The sustained phosphorylation of these kinases most likely reflects continuous remodeling of damaged arteries. Immediately after ceramide treatment, the phosphorylation states of these kinases were reduced below basal activation levels. Thus, acute ceramide therapy may directly modulate kinases or regulate putative ceramide-activated protein phosphatases that down-regulate these signaling pathways. [0037]
  • Specifically, in FIG. 5, ERK2 and PKBa phosphorylation were diminished after ceramide-coated balloon angioplasty in rabbit carotid arteries. Panel A depicts a representative Western blot for ERK-2 and PKBa probed using phosphorylation-specific antibodies. Lysates from NIH3T3 cells treated with or without PDGF were used as positive and negative controls, respectively. This immunoblot is representative of similar experiments using a total of 8 animals. Panels B-C quantifies the immunoblot data. [0038]
  • It has been previously demonstrated that C6-ceramide mimicked the effect of IL-1 to inhibit both tyrosine kinase receptor- and G-protein receptor-linked mitogenesis in A7r5 aortic smooth muscle cells and rat glomerular mesangial cells. Ceramide treatment correlated with growth arrest at G[0039] 0G1 and not apoptosis in these smooth muscle-like pericytes. The present invention shows that C6-ceramide does not induce significant apoptosis in primary VSM isolated from rabbit carotid arteries as assessed by fluorescence-activated cell sorting after propidium iodide staining using a previously described doublet discrimination protocol. Specifically, primary rabbit VSM treated with 5 μM C6-ceramide or dihydro-C6-ceramide for either 24 or 40 hours showed less than 1% apoptotic cell death. As a control, okadaic acid treatment (100 nM) significantly induced apoptosis after 24 hours (52%) and 40 hours (69%±2%). Thus, the therapeutic efficacy of cell-permeable ceramide in restenosis includes its ability to arrest VSM growth without inducing significant apoptosis.
  • Other cell-permeable ceramide derivatives can also limit neointimal hyperplasia. Derivatives of ceramide, in which the amide-linked fatty acyl chain is replaced with dimethyl moieties, e.g., dimethylsphingosine, are also effective in limiting angioplasty-induced injury. [0040]
  • Although altered ceramide metabolism has been implicated in atherosclerosis, diabetes mellitus and cancer, ceramide analogues have not yet been considered as therapeutics for proliferative vascular diseases. Increased concentrations of lactosyl- and glyco-ceramide conjugates at the expense of endogenous ceramide were noted in models of atherosclerosis and diabetes mellitus, and this diminished level of ceramide correlated with VSM proliferation and vasoconstriction. With endogenous levels of ceramide depleted, it is logical to consider the use of exogenous ceramide analogues as antimitogenic agents. The present invention demonstrates that ceramide is a strong candidate for preventing restenosis after angioplasty. The present invention is also anticipated to be effective in treating stenosis of e.g., coronary, renal and femoral arteries, and may have venuous uses as well, e.g., as a calibrated portal caval shunting or unclogging blocked saphenous veins used for coronary bypass. Furthermore, the present invention may have uses in such areas as diabetic retinopathy, where smooth muscle-like cells are activated and proliferate in front of the retina, resulting in blindness. Locally delivered ceramide can also be used to potentially treat dysregulated smooth muscle growth in stenosis of vascular access lines after chronic dialysis. In addition to delivering these drugs on the tips of balloon catheters, through infusion ports, or coated on stents, these anti-mitogenic sphingolipid derivatives can be delivered as components of conventional or cationic liposomal vectors, potentially augmenting the efficacy of gene transfer and targeting strategies. [0041]
  • Thus, the present invention demonstrates inhibition of smooth muscle cell growth at the site of injury, when ceramide or other growth arresting, lipid-derived derivatives are locally administered by coating balloons and stents. In addition, ceramides or other growth arresting, lipid-derived, bioactive substances can be delivered at fixed dosages via infusion or microporous catheter designs. Infusion catheters deliver the substance through a port distal to the inflated balloon. Microporous catheters deliver the substance via minute pores on the balloon surface. Also, the materials of the present invention can be delivered via a double balloon, infusion port, catheter design to deliver substance to the damaged arterial wall, isolated between the two inflated balloons. According to a preferred embodiment of the present invention, C6-ceramide, a cell permeable ceramide, inhibits smooth muscle cell proliferation at the angioplasty site. Alternatively, other cell-permeable ceramide derivatives can also limit neointimal hyperplasia. Derivatives of ceramide, in which the amide-linked fatty acyl chain is replaced with dimethyl moieties, are also effective in limiting angioplasty-induced injury. [0042]

Claims (15)

What is claimed is:
1. A method of preventing and/or treating stenosis at a site along a body vessel comprising administering to said site a lipid-derived bioactive compound which inhibits cell proliferation, wherein said compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines.
2. The method of claim 1, wherein said lipid-derived bioactive compound is ceramide or a derivative thereof, that contains a 2-10 carbon short-chain fatty acid at SN-2 position.
3. The method of claim 2, wherein the ceramide or derivative thereof is a C6-ceramide.
4. The method of claim 3, wherein the C6-ceramide is administered at a dose sufficient to inhibit cell proliferation without inducing significant apoptosis.
5. A method of preventing and/or treating hyperplasia at a site in a body lumen, comprising administering to said site an amount of a lipid-derived bioactive compound which inhibits cell proliferation without inducing significant apoptosis, wherein said compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines.
6. The method of claim 5, wherein said growth-arresting, lipid-derived bioactive compound is ceramide or a derivative thereof, that contains a 2-10 carbon short-chain fatty acid at SN-2 position.
7. The method of claim 5, wherein the ceramide or derivative thereof is a C6-ceramide.
8. An intraluminal system for preventing and/or treating neointimal hyperplasia at a site in a vessel, comprising:
a pharmaceutical formulation comprising a lipid-derived bioactive compound capable of inhibiting phosphorylation of a kinase, and a pharmaceutically acceptable carrier; and
a device adapted for intraluminal delivery of said pharmaceutical formulation to said site.
9. The intraluminal system of claim 8, wherein said compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines.
10. The intraluminal system of claim 9, wherein said compound is ceramide or a derivative thereof, that contains a 2-10 carbon short-chain fatty acid at SN-2 position.
11. The intraluminal system of claim 10, wherein the ceramide or derivative thereof is a C6-ceramide.
12. A method of preventing and/or treating hyperplasia at a site in a body lumen, comprising administering to said site a growth-arresting, lipid-derived bioactive compound which inhibits phosphorylation of a growth factor-induced extracellular signal regulated kinase (ERK) and/or a protein kinase B (PKB).
13. The method of claim 12, wherein said growth-arresting, lipid-derived bioactive compound is selected from the group consisting of ceramide or derivatives thereof, dimethyl sphingosine, ether-linked diglycerides, ether-linked phosphatidic acids and sphinganines.
14. The method of claim 13, wherein said growth-arresting, lipid-derived bioactive compound is ceramide or a derivative thereof, that contains a 2-10 carbon short-chain fatty acid at SN-2 position.
15. The method of claim 14, wherein the ceramide or derivative thereof is a C6-ceramide.
US10/430,831 1999-10-06 2003-05-07 System and device for preventing restenosis in body vessels Abandoned US20030195548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/430,831 US20030195548A1 (en) 1999-10-06 2003-05-07 System and device for preventing restenosis in body vessels

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15796099P 1999-10-06 1999-10-06
US09/679,715 US6682545B1 (en) 1999-10-06 2000-10-05 System and device for preventing restenosis in body vessels
US10/430,831 US20030195548A1 (en) 1999-10-06 2003-05-07 System and device for preventing restenosis in body vessels

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/679,715 Continuation US6682545B1 (en) 1999-10-06 2000-10-05 System and device for preventing restenosis in body vessels

Publications (1)

Publication Number Publication Date
US20030195548A1 true US20030195548A1 (en) 2003-10-16

Family

ID=28793991

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/679,715 Expired - Fee Related US6682545B1 (en) 1999-10-06 2000-10-05 System and device for preventing restenosis in body vessels
US10/430,831 Abandoned US20030195548A1 (en) 1999-10-06 2003-05-07 System and device for preventing restenosis in body vessels

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/679,715 Expired - Fee Related US6682545B1 (en) 1999-10-06 2000-10-05 System and device for preventing restenosis in body vessels

Country Status (1)

Country Link
US (2) US6682545B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750041B2 (en) 2001-03-26 2010-07-06 Bayer Schering Pharma Aktiengesellschaft Preparation for the prophylaxis of restenosis
US8257305B2 (en) 2002-09-20 2012-09-04 Bayer Pharma Aktiengesellschaft Medical device for dispensing medicaments
US8469943B2 (en) 1995-06-07 2013-06-25 Cook Medical Technologies Llc Coated implantable medical device

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254635A1 (en) * 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US7208010B2 (en) * 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7208011B2 (en) * 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US20050271701A1 (en) * 2000-03-15 2005-12-08 Orbus Medical Technologies, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8088060B2 (en) * 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US9522217B2 (en) * 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US20160287708A9 (en) * 2000-03-15 2016-10-06 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
EP1582180B1 (en) 2000-10-16 2008-02-27 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US20040204756A1 (en) * 2004-02-11 2004-10-14 Diaz Stephen Hunter Absorbent article with improved liquid acquisition capacity
US7056338B2 (en) * 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US20040249443A1 (en) * 2001-08-20 2004-12-09 Shanley John F. Expandable medical device for treating cardiac arrhythmias
WO2004043510A1 (en) * 2002-11-08 2004-05-27 Conor Medsystems, Inc. Method and apparatus for reducing tissue damage after ischemic injury
US20040143321A1 (en) * 2002-11-08 2004-07-22 Conor Medsystems, Inc. Expandable medical device and method for treating chronic total occlusions with local delivery of an angiogenic factor
US20040142014A1 (en) * 2002-11-08 2004-07-22 Conor Medsystems, Inc. Method and apparatus for reducing tissue damage after ischemic injury
US20050010170A1 (en) * 2004-02-11 2005-01-13 Shanley John F Implantable medical device with beneficial agent concentration gradient
ATE526038T1 (en) * 2003-03-28 2011-10-15 Innovational Holdings Llc IMPLANTABLE MEDICAL DEVICE WITH CONTINUOUS MEDIUM CONCENTRATION DISTANCE
US20040202692A1 (en) * 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device and method for in situ selective modulation of agent delivery
US20050100577A1 (en) * 2003-11-10 2005-05-12 Parker Theodore L. Expandable medical device with beneficial agent matrix formed by a multi solvent system
US7349971B2 (en) * 2004-02-05 2008-03-25 Scenera Technologies, Llc System for transmitting data utilizing multiple communication applications simultaneously in response to user request without specifying recipient's communication information
US20050287287A1 (en) * 2004-06-24 2005-12-29 Parker Theodore L Methods and systems for loading an implantable medical device with beneficial agent
US20060257493A1 (en) * 2005-04-28 2006-11-16 Amiji Mansoor M Nanoparticulate delivery systems for treating multi-drug resistance
US10076641B2 (en) 2005-05-11 2018-09-18 The Spectranetics Corporation Methods and systems for delivering substances into luminal walls
US9492192B2 (en) * 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
US8628549B2 (en) * 2006-06-30 2014-01-14 Atheromed, Inc. Atherectomy devices, systems, and methods
US20080045986A1 (en) 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
KR20090037906A (en) 2006-06-30 2009-04-16 아테로메드, 아이엔씨. Atherectomy devices and methods
US8361094B2 (en) 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US20110112563A1 (en) * 2006-06-30 2011-05-12 Atheromed, Inc. Atherectomy devices and methods
US9314263B2 (en) * 2006-06-30 2016-04-19 Atheromed, Inc. Atherectomy devices, systems, and methods
US20090018566A1 (en) * 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US8920448B2 (en) * 2006-06-30 2014-12-30 Atheromed, Inc. Atherectomy devices and methods
US8007506B2 (en) 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
MX354144B (en) * 2006-07-03 2018-02-14 Hemoteq Ag Manufacture, method, and use of active substance-releasing medical products for permanently keeping blood vessels open.
US20080085293A1 (en) * 2006-08-22 2008-04-10 Jenchen Yang Drug eluting stent and therapeutic methods using c-Jun N-terminal kinase inhibitor
US8414909B2 (en) * 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8414526B2 (en) * 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US8430055B2 (en) * 2008-08-29 2013-04-30 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US20080181928A1 (en) * 2006-12-22 2008-07-31 Miv Therapeutics, Inc. Coatings for implantable medical devices for liposome delivery
PL2269664T3 (en) * 2007-01-21 2013-03-29 Hemoteq Ag Medical product for treating closures of bodily passages and preventing reclosures
GR20070100291A (en) * 2007-05-14 2008-12-19 Κωνστατινος Σπαργιας Anti-restenosis drug covered and eluting baloons for valvuloplasty of aortic valve stenosiis for the prevention of restenosis.
US9192697B2 (en) * 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US20100292641A1 (en) * 2009-05-15 2010-11-18 Bandula Wijay Targeted drug delivery device and method
US10369256B2 (en) 2009-07-10 2019-08-06 Boston Scientific Scimed, Inc. Use of nanocrystals for drug delivery from a balloon
JP5933434B2 (en) 2009-07-17 2016-06-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Method for producing drug delivery balloon
EP2380604A1 (en) 2010-04-19 2011-10-26 InnoRa Gmbh Improved coating formulations for scoring or cutting balloon catheters
EP2611476B1 (en) 2010-09-02 2016-08-10 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
WO2013028208A1 (en) 2011-08-25 2013-02-28 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
US9345511B2 (en) 2011-10-13 2016-05-24 Atheromed, Inc. Atherectomy apparatus, systems and methods
US9358042B2 (en) 2013-03-13 2016-06-07 The Spectranetics Corporation Expandable member for perforation occlusion
US10499892B2 (en) 2015-08-11 2019-12-10 The Spectranetics Corporation Temporary occlusion balloon devices and methods for preventing blood flow through a vascular perforation
US10449336B2 (en) 2015-08-11 2019-10-22 The Spectranetics Corporation Temporary occlusions balloon devices and methods for preventing blood flow through a vascular perforation
US10350395B2 (en) 2017-06-23 2019-07-16 Cook Medical Technologies Llc Introducer for lumen support or dilation
US11304723B1 (en) 2020-12-17 2022-04-19 Avantec Vascular Corporation Atherectomy devices that are self-driving with controlled deflection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681589A (en) * 1994-02-02 1997-10-28 The Lipsome Company, Inc. Liposomal ceramide-related liposomes and the therapeutic use thereof
US6610835B1 (en) * 1998-02-12 2003-08-26 Emory University Sphingolipid derivatives and their methods of use

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257091B1 (en) 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
DE3743578A1 (en) 1987-12-22 1989-07-13 Andreas Dr Zeiher BALLOON CATHETER FOR RECANALIZING STENOSES IN BODY CHANNELS, IN PARTICULAR CORONARY VESSELS AND PERIPHERAL ARTERIAL VESSELS
US5634946A (en) * 1988-08-24 1997-06-03 Focal, Inc. Polymeric endoluminal paving process
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5545208A (en) * 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
AU8074591A (en) 1990-06-15 1992-01-07 Cortrak Medical, Inc. Drug delivery apparatus and method
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5324261A (en) * 1991-01-04 1994-06-28 Medtronic, Inc. Drug delivery balloon catheter with line of weakness
US5102402A (en) * 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5634901A (en) 1992-11-02 1997-06-03 Localmed, Inc. Method of using a catheter sleeve
EP0689465A1 (en) * 1993-03-18 1996-01-03 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5599307A (en) 1993-07-26 1997-02-04 Loyola University Of Chicago Catheter and method for the prevention and/or treatment of stenotic processes of vessels and cavities
US5509899A (en) 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
JPH11505435A (en) 1995-01-17 1999-05-21 ヘールライン・クリストフ Balloon catheter for preventing restenosis of blood vessels after angioplasty and method for constructing the balloon catheter
US5830430A (en) * 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
DK0964690T3 (en) * 1996-10-15 2003-10-20 Liposome Co Inc Peptide-lipid conjugates, liposomes and liposomal drug administration
US5833651A (en) * 1996-11-08 1998-11-10 Medtronic, Inc. Therapeutic intraluminal stents
US6143276A (en) * 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
US6280411B1 (en) * 1998-05-18 2001-08-28 Scimed Life Systems, Inc. Localized delivery of drug agents
WO2000010622A1 (en) * 1998-08-20 2000-03-02 Cook Incorporated Coated implantable medical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681589A (en) * 1994-02-02 1997-10-28 The Lipsome Company, Inc. Liposomal ceramide-related liposomes and the therapeutic use thereof
US6610835B1 (en) * 1998-02-12 2003-08-26 Emory University Sphingolipid derivatives and their methods of use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469943B2 (en) 1995-06-07 2013-06-25 Cook Medical Technologies Llc Coated implantable medical device
US7750041B2 (en) 2001-03-26 2010-07-06 Bayer Schering Pharma Aktiengesellschaft Preparation for the prophylaxis of restenosis
US8389043B2 (en) 2001-03-26 2013-03-05 Bayer Pharma Aktiengesellschaft Preparation for restenosis prevention
US9066990B2 (en) 2001-03-26 2015-06-30 Bayer Intellectual Property Gmbh Preparation for restenosis prevention
US8257305B2 (en) 2002-09-20 2012-09-04 Bayer Pharma Aktiengesellschaft Medical device for dispensing medicaments
US8439868B2 (en) 2002-09-20 2013-05-14 Bayer Pharma AG Medical device for dispersing medicaments
US9649476B2 (en) 2002-09-20 2017-05-16 Bayer Intellectual Property Gmbh Medical device for dispersing medicaments

Also Published As

Publication number Publication date
US6682545B1 (en) 2004-01-27

Similar Documents

Publication Publication Date Title
US6682545B1 (en) System and device for preventing restenosis in body vessels
AU773899B2 (en) System and device for preventing restenosis in body vessels
EP2292225B9 (en) Dosage form comprising taxol in crystalline form
EP2098230B1 (en) Implantable device comprising taxol in crystalline form for the inhibition or prevention of restenosis
EP1663339B1 (en) Endoluminal prosthesis comprising a therapeutic agent
US8895056B2 (en) Regional delivery of therapeutic agents for the treatment of vascular diseases
CN107073178A (en) The coating of expansible conduit in the tube chamber for the contact transfer that medicine pair micro-reservoirs are provided
WO2006052521A2 (en) Medical devices and compositions for treating restenosis
JP2005531332A (en) Hormone-coated stent to prevent stenosis or atherosclerosis
EP2056897B1 (en) Medical stent provided with a combination of melatonin and paclitaxel
Yang et al. Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation
Oberhoff et al. Inhibition of smooth muscle cell proliferation after local drug delivery of the antimitotic drug paclitaxel using a porous balloon catheter
US20080085293A1 (en) Drug eluting stent and therapeutic methods using c-Jun N-terminal kinase inhibitor
Zalewski et al. Synthetic DNA-based compounds for the prevention of coronary restenosis: current status and future challenges
US20080004695A1 (en) Everolimus/pimecrolimus-eluting implantable medical devices
US20040116329A1 (en) Inhibition of proteasomes to prevent restenosis
Kipshidze et al. Novel site‐specific systemic delivery of Rapamycin with perfluorobutane gas microbubble carrier reduced neointimal formation in a porcine coronary restenosis model
CN109996569B (en) Drug release coating for medical devices and method of making same
US20100004738A1 (en) Drug delivery coating for use with a medical device and methods of treating vascular injury
US10016488B2 (en) Nitric oxide synthase nanoparticles for treatment of vascular disease
Golden Intimal hyperplasia: Prospects for its control in the human
Nabel Cell Cycle Approaches to the Treatment of In-Stent Restenosis
WO2002060341A2 (en) Inhibition of proteasomes to prevent restenosis

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:PENNSYLVANIA STATE UNIVERSITY;REEL/FRAME:039724/0603

Effective date: 20120625