US20030195432A1 - Rotatable and deflectable biopsy forceps - Google Patents

Rotatable and deflectable biopsy forceps Download PDF

Info

Publication number
US20030195432A1
US20030195432A1 US10/437,143 US43714303A US2003195432A1 US 20030195432 A1 US20030195432 A1 US 20030195432A1 US 43714303 A US43714303 A US 43714303A US 2003195432 A1 US2003195432 A1 US 2003195432A1
Authority
US
United States
Prior art keywords
jaw assembly
biopsy forceps
coupled
jaws
forceps instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/437,143
Inventor
Juergen Kortenbach
Saul Gottlieb
Kevin Smith
Charles Slater
Thomas Bales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IS LLC
Original Assignee
IS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IS LLC filed Critical IS LLC
Priority to US10/437,143 priority Critical patent/US20030195432A1/en
Assigned to IS, LLC reassignment IS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYNTHEON, LLC
Publication of US20030195432A1 publication Critical patent/US20030195432A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2938Independently actuatable jaw members, e.g. two actuating rods

Definitions

  • This invention relates broadly to surgical instruments. More particularly, this invention relates to biopsy forceps intended to be inserted through an endoscope or used in laparoscopic procedures.
  • Biopsy forceps are generally inserted through an endoscope and used to obtain tissue samples from within the body. It is often necessary to obtain a tissue sample from the wall or side of a biological lumen such as the esophagus.
  • a tissue sample from the wall or side of a biological lumen such as the esophagus.
  • the distal end of the scope must be turned to the side to aim the instrument in the direction of the tissue to be sampled.
  • the esophagus is quite narrow, making maneuvering of the endoscope within the lumen of the esophagus quite difficult.
  • biopsy forceps or similar devices which enable deflection of the distal end of the biopsy forceps without requiring bending of the distal end of the endoscope.
  • Such maneuvering permits samples to be taken off-axis from the endoscope lumen; i.e., “tangential” sampling.
  • U.S. Pat. No. 5,715,832 to Koblish et al. discloses a deflectable biopsy forceps which utilizes a catheter-like shaft and a deflection wire coupled to the distal end of the shaft and extending along the length of the shaft. A pair of biopsy jaws are also coupled to the distal end of the shaft. When the deflection wire is tensioned, the shaft bends in the direction of the tension to direct the jaws radially and eventually up to 180°.
  • U.S. Pat. No. 4,880,015 to Nierman discloses yet another biopsy forceps purportedly capable of tangential sampling.
  • the biopsy forceps device has a hinge at a distal end thereof, and a jaw assembly is coupled to the device distal of the hinge.
  • the jaw assembly is adapted to pivot, and thereby articulate, in one direction about the hinge to move the jaw assembly relative to the longitudinal axis of the device.
  • each of the above described devices may have the ability to controllably deflect or bend to some degree or another, there is nevertheless no way to direct the deflection to sample a tissue at a particular location about the inner surface of the biological lumen.
  • the known devices are only capable of deflection in a single direction. That is, in the direction of the tension (Koblish et al.), the direction of the spring bias (Schneebaum), or the direction of pivot about a hinge (Nierman).
  • the desired direction of deflection cannot even be obtained by rotating the entire biopsy forceps within the lumen of the endoscope, due to the inability of the construct of biopsy forceps, in general, to controllably transmit rotational force, i.e., torque, along their relatively long lengths.
  • an endoscopic or laparoscopic biopsy forceps instrument which includes a flexible tubular member having proximal and distal ends, a biopsy jaw assembly at the distal end of the tubular member, actuation means to operate the jaw assembly between open and closed positions, deflection means to deflect the biopsy jaw assembly relative to an endoscopic or laparoscopic lumen through which the instrument extends, and rotation means to rotate the distal end of the tubular member and jaw assembly about its longitudinal axis.
  • An endoscopic or laparoscopic biopsy forceps instrument which includes a flexible tubular member having proximal and distal ends, a biopsy jaw assembly at the distal end of the tubular member, an actuation assembly to operate the jaw assembly between open and closed positions, and a control assembly to deflect the biopsy jaw assembly relative to a lumen through which the instrument extends and to rotate the jaw assembly about the longitudinal axis of the instrument.
  • an actuation handle e.g., of the conventional shaft and spool type, is provided to open and close the jaw assembly, and a control handle, preferably of ball and socket configuration, operates to direct (i.e., both rotate and move angularly relative to the longitudinal axis A L of the instrument) the jaw assembly via control wires coupled at one end to the ball and at the other end to the clevis of the jaw assembly such that tangential biting by the jaw assembly is facilitated.
  • the jaws assembly includes two jaws positionable about the clevis, which in turn is rotatable relative to a coil. Actuation wires running from the actuation handle to the tangs of each jaw permit opening and closing of the jaw.
  • the jaw assembly includes two jaws, preferably made from a shape memory material and coupled together at their proximal ends, and a sleeve. Movement of the jaws relative to the sleeve, e.g., via coupling the proximal ends of the jaws to the actuation wire and fixing the sleeve at the distal end of the tubular member, operates to open and close the jaw assembly.
  • the jaw assembly includes a proximal portion and a distal portion spring-biased relative to the proximal portion and thereby adapted to be deflected at a desired angle relative to the longitudinal axis of the instrument.
  • the bias may be overcome when the instrument is forced through or withdrawn from an endoscope or lumen smaller than the radial extension of the distal portion of the jaw assembly.
  • An actuation means is provided for operating the jaws, and a rotation control means is provided for rotating the jaw assembly.
  • the jaw assembly includes a flexible tube, a clevis terminating in a stationary jaw, and a jaw pivotably coupled to the clevis and thereby movable between open and closed positions relative to the stationary jaw.
  • a proximal actuation means is provided to cause the movement.
  • the flexible tube is preferably made from nitinol or another shape memory material, and preferably includes a plurality of slots oriented transverse the longitudinal axis of the tube which, under compressive force, are adapted to form the tube into a curved configuration. Once the compressive force is released, the shape memory property of the nitinol urges the tube back towards a linear configuration.
  • a deflection wire in conjunction with the proximal actuation means is adapted to provide compressive force to the tube.
  • a means is also provided to rotate the tube and the jaw assembly of the instrument.
  • a biopsy forceps instrument in which the jaw assembly is deflected or deflectable, the jaw assembly can be rotated about the longitudinal axis of the instrument, and the jaws can be operated to open and close to take a biopsy sample.
  • FIG. 1 is a broken partial section view of a first embodiment of a rotatable deflectable biopsy forceps instrument according to the invention
  • FIG. 2 is an enlarged broken longitudinal section view of a distal control handle for controlling rotation and pitch of a biopsy jaw assembly according to the first embodiment of the invention
  • FIG. 3 is a view of a cross-section across line 3 - 3 in FIG. 2;
  • FIGS. 3 a and 3 b are views similar to FIG. 3 illustrating alternate sockets of the control handle of the first embodiment of the invention
  • FIG. 4 is a view of similar to FIG. 2 showing the ball oriented with the socket of the control handle to deflect the jaw assembly;
  • FIG. 5 is an enlarged side elevation of the distal end of the first embodiment of the invention showing the jaw deflected by the relative positions of the ball and socket in FIG. 4;
  • FIG. 6 is an enlarged broken section view of a biopsy forceps end effector according to a second embodiment of the invention, shown in a non-deflected configuration;
  • FIG. 7 is a view similar to FIG. 6 showing the biopsy forceps jaws in a deflected configuration
  • FIG. 8 is a proximal handle portion of a rotatable deflecting biopsy forceps instrument according to a third embodiment of the invention.
  • FIG. 9 is an enlarged broken section view of a deflected biopsy forceps end effector according to the third embodiment of the invention.
  • FIG. 10 is a section view across line 10 - 10 in FIG. 8.
  • FIG. 11 is a broken partial section of a fourth embodiment of a rotatable deflecting biopsy forceps instrument according to the invention.
  • FIG. 12 is an enlarged broken section view of a biopsy forceps end effector according to the fourth embodiment of the invention.
  • FIG. 13 is an enlarged perspective view of the biopsy forceps end effector of FIG. 11 shown in a deflected configuration.
  • a biopsy forceps surgical instrument 10 is shown.
  • the instrument 10 includes a proximal actuation handle 12 , a control handle 14 coupled to the actuation handle 12 , a first tubular member 16 extending between the actuation handle 12 and the control handle 14 , a second tubular member 18 , e.g., a coil, preferably including a lubricous coating 19 such as PTFE or FEP, and attached to the distal end 20 of the control handle 14 , and a biopsy forceps jaw assembly 22 coupled to the distal end 24 of the coil 18 .
  • a proximal actuation handle 12 e.g., a control handle 14 coupled to the actuation handle 12
  • a first tubular member 16 extending between the actuation handle 12 and the control handle 14
  • a second tubular member 18 e.g., a coil, preferably including a lubricous coating 19 such as PTFE or FEP, and attached to the distal end 20 of the control handle 14
  • the actuation handle 12 operates to open and close the jaw assembly 22
  • the control handle 14 operates to direct (i.e., both rotate and move angularly relative to the longitudinal axis A L of the instrument) the jaw assembly such that tangential biting by the jaw assembly is facilitated.
  • the actuation handle 14 preferably includes a stationary member (shaft) 30 and a displaceable spool 32 .
  • the proximal end of the stationary member 30 is provided with a thumb ring 34 and a longitudinal bore 36 is provided at the distal end of the shaft.
  • a longitudinal slot 38 extends from the proximal end of bore 36 to a point distal of the thumb ring 34 .
  • the proximal end 38 of the first tubular member 16 is coupled to the distal end of the bore 36 in the stationary member 30 .
  • the displaceable spool 32 is provided with a cross member (not shown) which passes through the slot 38 in the stationary member 30 and which secures the spool on the shaft.
  • proximal ends 42 , 44 of two actuation wires 46 , 48 are optionally rotatably coupled, e.g., with a swivel joint 49 , to the spool, e.g., at the cross member.
  • a swivel is not essential.
  • the control handle 14 includes a stationary socket 50 and a ball 52 movable within the socket.
  • Each of the socket and ball are preferably formed from plastic.
  • the socket 50 includes an axial port 54 , and two side openings 58 which permit access to the ball such that the ball may be manually rotated within the socket about the longitudinal axis A L of the instrument and also may be rotated within the socket in directions other than about the longitudinal axis of the instrument.
  • the openings 58 a for accessing the ball 52 a may alternatively be at the upper and lower portions of the socket 50 a , or referring to FIG.
  • the socket 50 may have any framework which permits manual access to the ball which facilitates movement of the ball 52 , and preferably which also provides an element grippable by the physician.
  • the ball 52 includes a preferably hourglass-shaped pathway 59 through which the actuation wires extend 46 , 48 extend.
  • the first tubular member 16 is coupled at its proximal end 59 to the shaft of the actuation handle, e.g., with a flare nut connection 61 (FIG. 1), and at its distal end 60 to the rear port 54 of the socket 50 , e.g., by gluing, a threaded connection, crimping, etc., and extends over the actuation wires 46 , 48 to the proximal actuation handle 12 .
  • the tubular member 16 is relatively long, e.g., twelve to eighty inches, and preferably made from a flexible plastic.
  • the tubular member 16 is relatively short, e.g., one-quarter inch to twelve inches, and preferably made from a relatively stiff material such as a substantially rigid plastic or metal.
  • the jaw assembly 22 preferably includes two jaws 66 , 68 pivotally coupled to a clevis 70 which is in turn rotatably coupled via a bushing (not shown) to the distal end 24 of the coil 18 , e.g., as shown in U.S. Pat. No. 5,439,478 to Palmer, which is hereby incorporated by reference herein in its entirety.
  • Each jaw 66 , 68 has a tang 74 , 76 to which is coupled the distal end 78 , 80 of an actuation wire 46 , 48 .
  • the actuation wires extend from spool 32 of the actuation handle 12 , through the first tubular member 16 , the axial port 54 of the socket, the pathway 59 through the ball, and the coil 18 , and to the tangs 74 , 76 of the jaw assembly 22 .
  • the jaw assembly 22 is described in more detail in U.S. Pat. No. 5,507,296, which is hereby incorporated by reference herein in its entirety. Movement of the spool relative to the shaft causes the jaws assembly 22 to open and close.
  • two control wires 82 , 84 extend from the ball 54 through the coil 18 to the jaw assembly 22 .
  • the control wires 82 , 84 are preferably coupled at their proximal ends 86 , 88 to the ball about a circumference oriented substantially perpendicular to axis A L , and at their distal ends 90 , 92 to upper and lower portions (or opposite sides) of the clevis 70 (or another stationary element at the distal end of the instrument), e.g., by welding.
  • the physician may control rotation and deflection of the jaw assembly via the control handle
  • the assistant may control opening and closing of the jaws via the actuation handle upon direction of the physician.
  • the actuation handle and control handle may be coupled directly together, or may be combined into a single handle assembly, in either instance eliminating the first tubular member 16 .
  • FIG. 6 an instrument substantially similar to the first embodiment is provided with the following distinctions.
  • a cylindrical sleeve 194 is rigidly coupled to the distal end 124 of the coil 118 .
  • the jaw assembly 122 includes two jaws 166 , 168 which are preferably integral with each other and preferably made from a shape memory alloy.
  • the sleeve 194 and jaw assembly 122 are described in greater detail in U.S. Pat. Nos. 5,636,639 and 5,638,827, which are hereby incorporated by reference herein in their entireties.
  • each control wire 182 , 184 is coupled at its distal end to a respective jaw 166 , 168 , e.g., by extending through holes 170 , 172 and providing a bend 174 , 176 at the distal end of each control wire.
  • a single actuation wire 146 is used to operate the jaw assembly 122 ; i.e., move the jaw assembly proximally and distally relative to the cylindrical sleeve.
  • a stop 196 (including, e.g., a disk 197 at the proximal end of the jaw assembly 122 and a ring 198 at the distal end of the sleeve 194 and having an inner diameter smaller than the disk) is preferably provided to limit the distance that the jaw assembly 122 can be opened.
  • the above distinctions provide a biopsy instrument which operates, from the physician's perspective, substantially the same as the first embodiment. That is, operation of the actuation handle opens and closes the jaw assembly, while operation of the control handle rotates and angularly deflects the jaw assembly (FIG. 7).
  • operation of the actuation handle causes the jaws to move relative to the sleeve, and when extended through the sleeve, permitted to open, and when retracted within the sleeve, forced closed.
  • manipulation of the ball within the socket of the control handle deflects the jaw assembly 122 relative to the longitudinal axis A L .
  • the instrument 210 includes a proximal actuation handle 212 similar to the first embodiment of the invention, a rotation control handle 214 , a first tubular member 216 coupling the handles 212 and 214 , and second tubular member or coil 218 distal of the control handle 214 , and a jaw assembly 222 at the distal end 224 of the coil 218 .
  • An actuation shaft (wire) 226 extends from the actuation handle, through the first tubular member, the rotation handle, and the coil, and is coupled to the jaw assembly.
  • the actuation shaft includes a swivel 228 permitting a distal portion 230 of the shaft to rotate freely relative to the proximal portion 232 of the shaft.
  • the actuation shaft 226 is rotatably coupled to the spool 234 of the actuation handle as discussed with respect to the first embodiment of the invention.
  • the jaw assembly 222 includes a proximal portion 236 rotatably coupled to the coil 218 , and a distal portion 238 including two jaws 240 , 242 and a cylinder 244 which acts on the jaws when the jaws are moved relative thereto.
  • the proximal and distal portions 236 , 238 are coupled with a pivot pin 245 .
  • a means for rotatably coupling the proximal portion 236 to the coil 218 preferably includes a rotation collet 246 on the jaw assembly and a retaining sleeve 248 on the distal end 224 of the coil.
  • the distal portion 238 is spring-biased by a spring portion 249 of cylinder 244 relative to the proximal portion 236 and thereby adapted to bend at a desired angle, e.g., 45° degrees, relative thereto.
  • the bias may be overcome when the instrument 210 is forced through an endoscope lumen with a radius smaller than the radial extension R of the distal portion 238 and withdrawing the instrument from the same.
  • the control handle 214 includes a body 250 and a knob 252 mounted in the body, e.g., on bearings, in a manner which permits the knob to rotate coaxially relative to the body.
  • the body 250 includes a central bore 254 with one or more apertures 256 , a threaded proximal end 258 , and a threaded distal end 260 .
  • the apertures 256 provide access to the knob 252 , so that the knob can be rotated relative to the body, e.g., by a physician.
  • the first tubular member 216 is connected to the threaded proximal end 258 of the body, e.g., by means of a flare-nut connection 262 .
  • the coil 218 is preferably similarly connected to the threaded distal end 260 .
  • the knob 252 includes a noncircular bore 264 , e.g., having the cross-sectional shape of a square.
  • the knob 252 (for reasons discussed below) is preferably at least as long as the distance of movement required to open and close the jaw assembly 222 .
  • the distal portion 230 of the actuation shaft 226 extending through the bore 264 of the knob is provided with a key 266 ; that is, a spline element fixed on and about the shaft or, alternatively, rigidly and fixedly interposed between two portions of the shaft.
  • the key 266 preferably has a rectangular shape but may have another noncircular shape.
  • the key 266 is slidably axially movable within the bore. Therefore, the shaft 226 may be moved axially through the bore 264 (and that is why the length of the knob is preferably at least as long as the distance of movement required to open and close the snare).
  • the knob 252 is rotated relative to the body 250
  • the key 266 within the bore 264 is rotated and, consequently, the shaft 226 (distal of the swivel 228 ) and jaw assembly 222 , at the distal end thereof, are rotated about the longitudinal axis A L of the instrument.
  • the actuation shaft 266 can be fixed within the knob 252 and the knob can be configured to move within the handle 250 the necessary longitudinal displacement.
  • control wires 268 , 270 are fixed at the distal end 272 of the knob 252 and extend through the coil 218 where they are fixed to one or more locations on the jaw assembly 222 , and preferably to the distal portion 238 of the jaw assembly.
  • the jaw assembly 222 In operation, when the distal end of the instrument 210 is extended beyond the lumen of an endoscope, the jaw assembly 222 naturally assumes an angled (or “deflected”) state. The orientation of the deflection may then may adjusted by operation of the rotation control handle 214 such that the actuation shaft 226 and control wires 268 , 270 all operate to torque the jaw assembly 222 in a rotational manner.
  • the key 266 on the actuation shaft 226 and the interfering bore 264 of the knob 252 provide rotational control to the actuation shaft 226 , while the control wires 268 , 270 , fixed to the distal end of the knob are controllably rotated by rotation of the knob to, in turn, also apply rotational forces to the jaw assembly.
  • FIGS. 11 - 13 a fourth embodiment of a biopsy forceps instrument 310 according to the invention is shown.
  • the instrument 310 includes a proximal actuation handle 312 , a coil 314 rotatably coupled to the distal end of the handle 312 , and a jaw assembly 318 at the distal end 320 of the coil 318 .
  • a jaw actuation wire 322 as well as a deflection wire 324 extend from the actuation handle 312 , through the coil 318 , and are coupled to the jaw assembly 318 , as described below.
  • the jaw assembly 318 includes a flexible, preferably nitinol tube 326 , a clevis 330 at the distal end of the nitinol tube and terminating in a stationary jaw 332 , and a rotatable jaw 334 rotatably coupled to the clevis, e.g., via a pin 335 , such that the rotatable jaw 334 may pivot relative to the stationary jaw between open and closed positions.
  • the nitinol tube 326 is provided with a plurality of preferably sector-shaped slots 336 oriented transverse the longitudinal axis of the tube.
  • the slots 336 permits the nitinol tube 326 to be forced upon itself into a curved configuration, while the shape memory property of the nitinol urges the tube towards a linear configuration.
  • the tube 326 also includes a proximal radial hole 338 on the side of the tube including the slots 336 .
  • the tube 326 is preferably fixedly coupled to the distal end 320 of the coil 318 ; for example, the proximal end of the tube may be provided with a decreased diameter portion 340 which is interference fit with the distal end of the coil 318 .
  • the clevis 330 also includes a radial hole 342 at preferably the same radial orientation as the radial hole 338 of the tube 326 .
  • the actuation wire 322 extends through the tube 326 and the clevis 330 , exits through an opening 344 in the clevis, and is coupled to a tang 346 of the rotatable jaw 334 .
  • the deflection wire 326 extends into the tube and then out the radial hole 338 of the tube and then preferably into the radial hole 342 of the clevis, where the deflection wire is coupled to the clevis, e.g., by soldering, welding, crimping, etc. Alternatively, no radial hole in the clevis is required, and the distal end of the deflection wire may be coupled to the outer surface of the clevis.
  • the actuation handle 312 includes a stationary member 350 , an actuation spool 352 slidable on the stationary member and to which the actuation wire 322 is coupled, and a rack assembly 354 including a rack 356 along the stationary member 350 and a pawl spool 358 which releasably engages the stationary member and to which the deflection wire 324 is coupled.
  • the pawl spool 358 includes a push button 360 , a first spring 362 biasing the push button outward, a pawl bar 364 engaging the rack 356 , a second spring 366 biasing the pawl bar towards the rack, and a link (not shown) which couples the push button 360 to the pawl bar 364 .
  • the push button is pushed to compress the first spring 362
  • the pawl bar 364 is moved against the second spring 366 and is released from the rack such that the pawl spool 358 may be moved along the rack.
  • the push button 360 is then released, the pawl spool 358 is engaged in another position along the length of the stationary member. Linear movement of the pawl spool 358 causes like linear movement of the distal end of the deflection wire 324 , which is coupled to the jaw assembly.
  • the distal end of the stationary member 350 is rotatably coupled to the coil 318 .
  • the distal end of the stationary member includes threads 370 .
  • the proximal end of the coil is provided with a preferably frustoconical element 372 fixedly secured about the coil.
  • a nut 374 extends over the element 372 and is threadably coupled to the stationary member 350 such that the element is permitted to rotate within the nut.
  • a finger grip 376 is preferably provided about a proximal portion of the coil 318 to facilitate rotation of the coil relative to the stationary member 350 .
  • the instrument 310 can be configured to effect rotation between the coil 318 and the tube 326 or between the tube 326 and the clevis 330 .
  • a biopsy forceps instrument in which the jaw assembly is deflected or deflectable, the jaw assembly can be rotated about the longitudinal axis of the instrument, and the jaws can be operated to open and close to take a biopsy sample.
  • tubular member is described between the actuation handle and the control handle, it will be appreciated that the tubular member may be eliminated and that the control handle may be coupled directly to the actuation handle, or that the control and actuation handles may be integrated into a single handle. Also, while several means for permitting a distal portion of an actuation wire (or shaft) to rotate relative to the actuation handle has been disclosed, it will be recognized that other mechanisms may be used as well. Furthermore, while it is preferred that a coil be used for the tubular member to which the jaw assembly is coupled, it will be understood that other tubular members may be used as well. Moreover, where two control wires for rotating the jaw assembly have been disclosed, it will be appreciated that more than two wires may be used as well.
  • a nitinol shape memory material is described, it will be appreciated that, as an alternative, other flexible or other shape memory materials known in the art may be used.
  • a slotted shape memory tube is stated to be part of a jaw assembly, it will be appreciated that the tubular member (coil) may be configured to include a transversely slotted distal portion to function as described.
  • a deflection wire is described as being coupled to the clevis of a jaw assembly, it will be appreciated that the deflection wire may alternatively be coupled to the distal end of the shape memory tube.
  • an axially movable jaw assembly in conjunction with a fixed closing sleeve, the jaw assembly may be fixed and the sleeve may be coupled to the actuation wire to be moved relative to the jaw assembly to accomplish opening and closing of the jaws.
  • the sleeve may be coupled to the actuation wire to be moved relative to the jaw assembly to accomplish opening and closing of the jaws.
  • stop mechanism has been described with respect to the previously discussed jaw assembly, other stop mechanisms may be used.
  • any described couplings can be different than that described, provided the components and assemblies operate relative to each other as required.
  • a preferred ratchet assembly for operating deflection of the jaw assembly of the fourth embodiment has been disclosed, other mechanisms accomplishing the same may be used.

Abstract

An endoscopic or laparoscopic biopsy forceps instrument is provided which includes a flexible tubular member having proximal and distal ends, a biopsy jaw assembly at the distal end of the tubular member, an actuation assembly to operate the jaw assembly between open and closed positions, and a control assembly to deflect the biopsy jaw assembly relative to a lumen through which the instrument extends and to rotate the jaw assembly about the longitudinal axis of the instrument.

Description

  • This application is a divisional of U.S. Ser. No. 09/661,593, filed on Sep. 14, 2000.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention relates broadly to surgical instruments. More particularly, this invention relates to biopsy forceps intended to be inserted through an endoscope or used in laparoscopic procedures. [0003]
  • 2. State of the Art [0004]
  • Biopsy forceps are generally inserted through an endoscope and used to obtain tissue samples from within the body. It is often necessary to obtain a tissue sample from the wall or side of a biological lumen such as the esophagus. When using a conventional end-viewing endoscope, the distal end of the scope must be turned to the side to aim the instrument in the direction of the tissue to be sampled. However, the esophagus is quite narrow, making maneuvering of the endoscope within the lumen of the esophagus quite difficult. Although a side-viewing endoscope can be used to obtain an esophageal biopsy, the scope is nearly useless in examining the stomach which is also typically done in a procedure in which esophageal samples are desired, thus necessitating both an end-viewing endoscope and a side-viewing endoscope for a single procedure. [0005]
  • Accordingly, several biopsy forceps or similar devices have been described which enable deflection of the distal end of the biopsy forceps without requiring bending of the distal end of the endoscope. Such maneuvering permits samples to be taken off-axis from the endoscope lumen; i.e., “tangential” sampling. [0006]
  • For example, U.S. Pat. No. 5,715,832 to Koblish et al. discloses a deflectable biopsy forceps which utilizes a catheter-like shaft and a deflection wire coupled to the distal end of the shaft and extending along the length of the shaft. A pair of biopsy jaws are also coupled to the distal end of the shaft. When the deflection wire is tensioned, the shaft bends in the direction of the tension to direct the jaws radially and eventually up to 180°. [0007]
  • Another biopsy forceps device is disclosed in U.S. Pat. No. 5,386,818 to Schneebaum et al. The distal end of the Schneebaum device is spring biased to have a tendency to form an arcuate configuration. When the distal end of the device is substantially within the lumen of the endoscope, the biopsy jaws are directed substantially axially with the lumen of the endoscope. However, as the distal end is advanced from the lumen of the endoscope, an increasingly larger arcuate shape is provided. [0008]
  • U.S. Pat. No. 4,880,015 to Nierman discloses yet another biopsy forceps purportedly capable of tangential sampling. The biopsy forceps device has a hinge at a distal end thereof, and a jaw assembly is coupled to the device distal of the hinge. The jaw assembly is adapted to pivot, and thereby articulate, in one direction about the hinge to move the jaw assembly relative to the longitudinal axis of the device. [0009]
  • While each of the above described devices may have the ability to controllably deflect or bend to some degree or another, there is nevertheless no way to direct the deflection to sample a tissue at a particular location about the inner surface of the biological lumen. This is because the known devices are only capable of deflection in a single direction. That is, in the direction of the tension (Koblish et al.), the direction of the spring bias (Schneebaum), or the direction of pivot about a hinge (Nierman). [0010]
  • In addition, the desired direction of deflection cannot even be obtained by rotating the entire biopsy forceps within the lumen of the endoscope, due to the inability of the construct of biopsy forceps, in general, to controllably transmit rotational force, i.e., torque, along their relatively long lengths. [0011]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the invention to provide a biopsy forceps instrument which is optimized to sample esophageal tissue or tissue along the length of another biological lumen. [0012]
  • It is another object of the invention to provide a biopsy forceps instrument adapted to sample tissue at any rotational location about an end of the instrument and the end of an endoscope through which the instrument extends. [0013]
  • It is a further object of the invention to provide a biopsy forceps instrument having a deflectable end which can be controlled to move in any direction about the end of the instrument and the end of the endoscope. [0014]
  • It is an additional object of the invention to provide a biopsy forceps instrument which has a deflectable end and a rotatable jaw assembly. [0015]
  • In accord with these objects, which will be discussed in detail below, an endoscopic or laparoscopic biopsy forceps instrument is provided which includes a flexible tubular member having proximal and distal ends, a biopsy jaw assembly at the distal end of the tubular member, actuation means to operate the jaw assembly between open and closed positions, deflection means to deflect the biopsy jaw assembly relative to an endoscopic or laparoscopic lumen through which the instrument extends, and rotation means to rotate the distal end of the tubular member and jaw assembly about its longitudinal axis. [0016]
  • An endoscopic or laparoscopic biopsy forceps instrument is provided which includes a flexible tubular member having proximal and distal ends, a biopsy jaw assembly at the distal end of the tubular member, an actuation assembly to operate the jaw assembly between open and closed positions, and a control assembly to deflect the biopsy jaw assembly relative to a lumen through which the instrument extends and to rotate the jaw assembly about the longitudinal axis of the instrument. [0017]
  • According to a first embodiment, an actuation handle, e.g., of the conventional shaft and spool type, is provided to open and close the jaw assembly, and a control handle, preferably of ball and socket configuration, operates to direct (i.e., both rotate and move angularly relative to the longitudinal axis A[0018] L of the instrument) the jaw assembly via control wires coupled at one end to the ball and at the other end to the clevis of the jaw assembly such that tangential biting by the jaw assembly is facilitated. In the first embodiment, the jaws assembly includes two jaws positionable about the clevis, which in turn is rotatable relative to a coil. Actuation wires running from the actuation handle to the tangs of each jaw permit opening and closing of the jaw.
  • According to a second embodiment similar to the first embodiment, the jaw assembly includes two jaws, preferably made from a shape memory material and coupled together at their proximal ends, and a sleeve. Movement of the jaws relative to the sleeve, e.g., via coupling the proximal ends of the jaws to the actuation wire and fixing the sleeve at the distal end of the tubular member, operates to open and close the jaw assembly. [0019]
  • According to a third embodiment of the invention, the jaw assembly includes a proximal portion and a distal portion spring-biased relative to the proximal portion and thereby adapted to be deflected at a desired angle relative to the longitudinal axis of the instrument. However, the bias may be overcome when the instrument is forced through or withdrawn from an endoscope or lumen smaller than the radial extension of the distal portion of the jaw assembly. An actuation means is provided for operating the jaws, and a rotation control means is provided for rotating the jaw assembly. [0020]
  • According to fourth embodiment, the jaw assembly includes a flexible tube, a clevis terminating in a stationary jaw, and a jaw pivotably coupled to the clevis and thereby movable between open and closed positions relative to the stationary jaw. A proximal actuation means is provided to cause the movement. The flexible tube is preferably made from nitinol or another shape memory material, and preferably includes a plurality of slots oriented transverse the longitudinal axis of the tube which, under compressive force, are adapted to form the tube into a curved configuration. Once the compressive force is released, the shape memory property of the nitinol urges the tube back towards a linear configuration. A deflection wire in conjunction with the proximal actuation means is adapted to provide compressive force to the tube. In addition, a means is also provided to rotate the tube and the jaw assembly of the instrument. [0021]
  • In each of the embodiments, a biopsy forceps instrument is provided in which the jaw assembly is deflected or deflectable, the jaw assembly can be rotated about the longitudinal axis of the instrument, and the jaws can be operated to open and close to take a biopsy sample. [0022]
  • Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.[0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a broken partial section view of a first embodiment of a rotatable deflectable biopsy forceps instrument according to the invention; [0024]
  • FIG. 2 is an enlarged broken longitudinal section view of a distal control handle for controlling rotation and pitch of a biopsy jaw assembly according to the first embodiment of the invention; [0025]
  • FIG. 3 is a view of a cross-section across line [0026] 3-3 in FIG. 2;
  • FIGS. 3[0027] a and 3 b are views similar to FIG. 3 illustrating alternate sockets of the control handle of the first embodiment of the invention;
  • FIG. 4 is a view of similar to FIG. 2 showing the ball oriented with the socket of the control handle to deflect the jaw assembly; [0028]
  • FIG. 5 is an enlarged side elevation of the distal end of the first embodiment of the invention showing the jaw deflected by the relative positions of the ball and socket in FIG. 4; [0029]
  • FIG. 6 is an enlarged broken section view of a biopsy forceps end effector according to a second embodiment of the invention, shown in a non-deflected configuration; [0030]
  • FIG. 7 is a view similar to FIG. 6 showing the biopsy forceps jaws in a deflected configuration; [0031]
  • FIG. 8 is a proximal handle portion of a rotatable deflecting biopsy forceps instrument according to a third embodiment of the invention; [0032]
  • FIG. 9 is an enlarged broken section view of a deflected biopsy forceps end effector according to the third embodiment of the invention; [0033]
  • FIG. 10 is a section view across line [0034] 10-10 in FIG. 8.
  • FIG. 11 is a broken partial section of a fourth embodiment of a rotatable deflecting biopsy forceps instrument according to the invention; [0035]
  • FIG. 12 is an enlarged broken section view of a biopsy forceps end effector according to the fourth embodiment of the invention; and [0036]
  • FIG. 13 is an enlarged perspective view of the biopsy forceps end effector of FIG. 11 shown in a deflected configuration.[0037]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Turning now to FIG. 1, according to a first embodiment of the invention, a biopsy forceps [0038] surgical instrument 10 is shown. The instrument 10 includes a proximal actuation handle 12, a control handle 14 coupled to the actuation handle 12, a first tubular member 16 extending between the actuation handle 12 and the control handle 14, a second tubular member 18, e.g., a coil, preferably including a lubricous coating 19 such as PTFE or FEP, and attached to the distal end 20 of the control handle 14, and a biopsy forceps jaw assembly 22 coupled to the distal end 24 of the coil 18. The actuation handle 12 operates to open and close the jaw assembly 22, and the control handle 14 operates to direct (i.e., both rotate and move angularly relative to the longitudinal axis AL of the instrument) the jaw assembly such that tangential biting by the jaw assembly is facilitated.
  • The actuation handle [0039] 14 preferably includes a stationary member (shaft) 30 and a displaceable spool 32. The proximal end of the stationary member 30 is provided with a thumb ring 34 and a longitudinal bore 36 is provided at the distal end of the shaft. A longitudinal slot 38 extends from the proximal end of bore 36 to a point distal of the thumb ring 34. The proximal end 38 of the first tubular member 16 is coupled to the distal end of the bore 36 in the stationary member 30. The displaceable spool 32 is provided with a cross member (not shown) which passes through the slot 38 in the stationary member 30 and which secures the spool on the shaft. The proximal ends 42, 44 of two actuation wires 46, 48 are optionally rotatably coupled, e.g., with a swivel joint 49, to the spool, e.g., at the cross member. However, due to slack in the actuation wires 46, 48 a swivel is not essential.
  • Referring to FIGS. 2 and 3, the control handle [0040] 14 includes a stationary socket 50 and a ball 52 movable within the socket. Each of the socket and ball are preferably formed from plastic. The socket 50 includes an axial port 54, and two side openings 58 which permit access to the ball such that the ball may be manually rotated within the socket about the longitudinal axis AL of the instrument and also may be rotated within the socket in directions other than about the longitudinal axis of the instrument. Referring to FIG. 3a, the openings 58 a for accessing the ball 52 a may alternatively be at the upper and lower portions of the socket 50 a, or referring to FIG. 3b there may be more than two openings, e.g., four openings 58 b, spaced about the socket for accessing the ball 52 b. That is, the socket 50 may have any framework which permits manual access to the ball which facilitates movement of the ball 52, and preferably which also provides an element grippable by the physician. The ball 52 includes a preferably hourglass-shaped pathway 59 through which the actuation wires extend 46, 48 extend.
  • The first [0041] tubular member 16 is coupled at its proximal end 59 to the shaft of the actuation handle, e.g., with a flare nut connection 61 (FIG. 1), and at its distal end 60 to the rear port 54 of the socket 50, e.g., by gluing, a threaded connection, crimping, etc., and extends over the actuation wires 46, 48 to the proximal actuation handle 12. According to one embodiment of the invention, the tubular member 16 is relatively long, e.g., twelve to eighty inches, and preferably made from a flexible plastic. According to another embodiment of the invention, the tubular member 16 is relatively short, e.g., one-quarter inch to twelve inches, and preferably made from a relatively stiff material such as a substantially rigid plastic or metal.
  • Referring back to FIG. 1, the [0042] jaw assembly 22 preferably includes two jaws 66, 68 pivotally coupled to a clevis 70 which is in turn rotatably coupled via a bushing (not shown) to the distal end 24 of the coil 18, e.g., as shown in U.S. Pat. No. 5,439,478 to Palmer, which is hereby incorporated by reference herein in its entirety. Each jaw 66, 68 has a tang 74, 76 to which is coupled the distal end 78, 80 of an actuation wire 46, 48. As such, the actuation wires extend from spool 32 of the actuation handle 12, through the first tubular member 16, the axial port 54 of the socket, the pathway 59 through the ball, and the coil 18, and to the tangs 74, 76 of the jaw assembly 22. The jaw assembly 22 is described in more detail in U.S. Pat. No. 5,507,296, which is hereby incorporated by reference herein in its entirety. Movement of the spool relative to the shaft causes the jaws assembly 22 to open and close.
  • Referring again to FIGS. 2 and 3, two [0043] control wires 82, 84 extend from the ball 54 through the coil 18 to the jaw assembly 22. The control wires 82, 84 are preferably coupled at their proximal ends 86, 88 to the ball about a circumference oriented substantially perpendicular to axis AL, and at their distal ends 90, 92 to upper and lower portions (or opposite sides) of the clevis 70 (or another stationary element at the distal end of the instrument), e.g., by welding. With the control wires arranged as stated, a non-axial movement of the ball 52 within the socket 50 (FIG. 4) results in displacement of the proximal ends 86, 88 of the control wires 82, 84 relative to each other such that the jaw assembly 22 is moved relative to the longitudinal axis AL of the instrument (FIG. 5), while rotation of the ball 52 relative to the socket 50 causes the jaw assembly 22 to rotate about the longitudinal axis AL and/or become biased or angled relative to the axis AL.
  • In addition, by separating the actuation handle [0044] 12 from the control handle 14 simultaneous control of the instrument by a physician and an assistant is facilitated. For example, the physician may control rotation and deflection of the jaw assembly via the control handle, and the assistant may control opening and closing of the jaws via the actuation handle upon direction of the physician. However, where a single physician will operate the instrument, the actuation handle and control handle may be coupled directly together, or may be combined into a single handle assembly, in either instance eliminating the first tubular member 16.
  • Turning now to FIG. 6, according to a second embodiment of the invention, an instrument substantially similar to the first embodiment is provided with the following distinctions. First, a [0045] cylindrical sleeve 194 is rigidly coupled to the distal end 124 of the coil 118. Second, the jaw assembly 122 includes two jaws 166, 168 which are preferably integral with each other and preferably made from a shape memory alloy. The sleeve 194 and jaw assembly 122 are described in greater detail in U.S. Pat. Nos. 5,636,639 and 5,638,827, which are hereby incorporated by reference herein in their entireties. Third, each control wire 182, 184 is coupled at its distal end to a respective jaw 166, 168, e.g., by extending through holes 170, 172 and providing a bend 174, 176 at the distal end of each control wire. Fourth, a single actuation wire 146 is used to operate the jaw assembly 122; i.e., move the jaw assembly proximally and distally relative to the cylindrical sleeve. Fifth, a stop 196 (including, e.g., a disk 197 at the proximal end of the jaw assembly 122 and a ring 198 at the distal end of the sleeve 194 and having an inner diameter smaller than the disk) is preferably provided to limit the distance that the jaw assembly 122 can be opened. The above distinctions provide a biopsy instrument which operates, from the physician's perspective, substantially the same as the first embodiment. That is, operation of the actuation handle opens and closes the jaw assembly, while operation of the control handle rotates and angularly deflects the jaw assembly (FIG. 7). More particularly, operation of the actuation handle causes the jaws to move relative to the sleeve, and when extended through the sleeve, permitted to open, and when retracted within the sleeve, forced closed. Referring to FIG. 7, manipulation of the ball within the socket of the control handle deflects the jaw assembly 122 relative to the longitudinal axis AL.
  • Referring now to FIGS. 8 and 9, a third embodiment of the [0046] biopsy forceps instrument 210 of the invention is shown. The instrument 210 includes a proximal actuation handle 212 similar to the first embodiment of the invention, a rotation control handle 214, a first tubular member 216 coupling the handles 212 and 214, and second tubular member or coil 218 distal of the control handle 214, and a jaw assembly 222 at the distal end 224 of the coil 218. An actuation shaft (wire) 226 extends from the actuation handle, through the first tubular member, the rotation handle, and the coil, and is coupled to the jaw assembly. The actuation shaft includes a swivel 228 permitting a distal portion 230 of the shaft to rotate freely relative to the proximal portion 232 of the shaft. Alternatively, the actuation shaft 226 is rotatably coupled to the spool 234 of the actuation handle as discussed with respect to the first embodiment of the invention.
  • The [0047] jaw assembly 222 includes a proximal portion 236 rotatably coupled to the coil 218, and a distal portion 238 including two jaws 240, 242 and a cylinder 244 which acts on the jaws when the jaws are moved relative thereto. The proximal and distal portions 236, 238 are coupled with a pivot pin 245. A means for rotatably coupling the proximal portion 236 to the coil 218 preferably includes a rotation collet 246 on the jaw assembly and a retaining sleeve 248 on the distal end 224 of the coil. The distal portion 238 is spring-biased by a spring portion 249 of cylinder 244 relative to the proximal portion 236 and thereby adapted to bend at a desired angle, e.g., 45° degrees, relative thereto. However, the bias may be overcome when the instrument 210 is forced through an endoscope lumen with a radius smaller than the radial extension R of the distal portion 238 and withdrawing the instrument from the same.
  • Referring to FIG. 8, the control handle [0048] 214 includes a body 250 and a knob 252 mounted in the body, e.g., on bearings, in a manner which permits the knob to rotate coaxially relative to the body. The body 250 includes a central bore 254 with one or more apertures 256, a threaded proximal end 258, and a threaded distal end 260. The apertures 256 provide access to the knob 252, so that the knob can be rotated relative to the body, e.g., by a physician. The first tubular member 216 is connected to the threaded proximal end 258 of the body, e.g., by means of a flare-nut connection 262. The coil 218 is preferably similarly connected to the threaded distal end 260.
  • Referring to FIGS. 8 and 10, the [0049] knob 252 includes a noncircular bore 264, e.g., having the cross-sectional shape of a square. The knob 252 (for reasons discussed below) is preferably at least as long as the distance of movement required to open and close the jaw assembly 222. Referring to FIGS. 8-10, the distal portion 230 of the actuation shaft 226 extending through the bore 264 of the knob is provided with a key 266; that is, a spline element fixed on and about the shaft or, alternatively, rigidly and fixedly interposed between two portions of the shaft. The key 266 preferably has a rectangular shape but may have another noncircular shape. The key 266 is slidably axially movable within the bore. Therefore, the shaft 226 may be moved axially through the bore 264 (and that is why the length of the knob is preferably at least as long as the distance of movement required to open and close the snare). However, when the knob 252 is rotated relative to the body 250, the key 266 within the bore 264 is rotated and, consequently, the shaft 226 (distal of the swivel 228) and jaw assembly 222, at the distal end thereof, are rotated about the longitudinal axis AL of the instrument. Alternatively, no key is required, as the longitudinal displacement necessary to open and close the jaw assembly is quite small. As such, the actuation shaft 266 can be fixed within the knob 252 and the knob can be configured to move within the handle 250 the necessary longitudinal displacement.
  • In addition, preferably two [0050] control wires 268, 270 are fixed at the distal end 272 of the knob 252 and extend through the coil 218 where they are fixed to one or more locations on the jaw assembly 222, and preferably to the distal portion 238 of the jaw assembly.
  • In operation, when the distal end of the [0051] instrument 210 is extended beyond the lumen of an endoscope, the jaw assembly 222 naturally assumes an angled (or “deflected”) state. The orientation of the deflection may then may adjusted by operation of the rotation control handle 214 such that the actuation shaft 226 and control wires 268, 270 all operate to torque the jaw assembly 222 in a rotational manner. To that effect, the key 266 on the actuation shaft 226 and the interfering bore 264 of the knob 252 provide rotational control to the actuation shaft 226, while the control wires 268, 270, fixed to the distal end of the knob are controllably rotated by rotation of the knob to, in turn, also apply rotational forces to the jaw assembly.
  • Turning now to FIGS. [0052] 11-13, a fourth embodiment of a biopsy forceps instrument 310 according to the invention is shown. The instrument 310 includes a proximal actuation handle 312, a coil 314 rotatably coupled to the distal end of the handle 312, and a jaw assembly 318 at the distal end 320 of the coil 318. A jaw actuation wire 322, as well as a deflection wire 324 extend from the actuation handle 312, through the coil 318, and are coupled to the jaw assembly 318, as described below.
  • More particularly, the [0053] jaw assembly 318 includes a flexible, preferably nitinol tube 326, a clevis 330 at the distal end of the nitinol tube and terminating in a stationary jaw 332, and a rotatable jaw 334 rotatably coupled to the clevis, e.g., via a pin 335, such that the rotatable jaw 334 may pivot relative to the stationary jaw between open and closed positions. The nitinol tube 326 is provided with a plurality of preferably sector-shaped slots 336 oriented transverse the longitudinal axis of the tube. The slots 336 permits the nitinol tube 326 to be forced upon itself into a curved configuration, while the shape memory property of the nitinol urges the tube towards a linear configuration. The tube 326 also includes a proximal radial hole 338 on the side of the tube including the slots 336. In addition, the tube 326 is preferably fixedly coupled to the distal end 320 of the coil 318; for example, the proximal end of the tube may be provided with a decreased diameter portion 340 which is interference fit with the distal end of the coil 318. The clevis 330 also includes a radial hole 342 at preferably the same radial orientation as the radial hole 338 of the tube 326. The actuation wire 322 extends through the tube 326 and the clevis 330, exits through an opening 344 in the clevis, and is coupled to a tang 346 of the rotatable jaw 334. The deflection wire 326 extends into the tube and then out the radial hole 338 of the tube and then preferably into the radial hole 342 of the clevis, where the deflection wire is coupled to the clevis, e.g., by soldering, welding, crimping, etc. Alternatively, no radial hole in the clevis is required, and the distal end of the deflection wire may be coupled to the outer surface of the clevis.
  • Referring particularly to FIG. 11, the [0054] actuation handle 312 includes a stationary member 350, an actuation spool 352 slidable on the stationary member and to which the actuation wire 322 is coupled, and a rack assembly 354 including a rack 356 along the stationary member 350 and a pawl spool 358 which releasably engages the stationary member and to which the deflection wire 324 is coupled. The pawl spool 358 includes a push button 360, a first spring 362 biasing the push button outward, a pawl bar 364 engaging the rack 356, a second spring 366 biasing the pawl bar towards the rack, and a link (not shown) which couples the push button 360 to the pawl bar 364. When the push button is pushed to compress the first spring 362, the pawl bar 364 is moved against the second spring 366 and is released from the rack such that the pawl spool 358 may be moved along the rack. When the push button 360 is then released, the pawl spool 358 is engaged in another position along the length of the stationary member. Linear movement of the pawl spool 358 causes like linear movement of the distal end of the deflection wire 324, which is coupled to the jaw assembly.
  • The distal end of the [0055] stationary member 350 is rotatably coupled to the coil 318. According to a one exemplar coupling, the distal end of the stationary member includes threads 370. The proximal end of the coil is provided with a preferably frustoconical element 372 fixedly secured about the coil. A nut 374 extends over the element 372 and is threadably coupled to the stationary member 350 such that the element is permitted to rotate within the nut. A finger grip 376 is preferably provided about a proximal portion of the coil 318 to facilitate rotation of the coil relative to the stationary member 350. Alternatively, the instrument 310 can be configured to effect rotation between the coil 318 and the tube 326 or between the tube 326 and the clevis 330.
  • In operation, rotation of the [0056] coil 318 relative to the stationary member 350 causes the jaw assembly to rotate about the longitudinal axis AL of the instrument. Movement of the pawl spool 352 along the rack of the stationary member 350 causes angular deflection of the nitinol tube 326 and thereby the jaws 332, 334 (FIG. 13)(via relative proximal movement of the pawl spool) or straightening (via relative distal movement) of the jaw assembly. Movement of the actuation spool along the stationary member operates to open and close the jaws of the jaw assembly.
  • In each of the embodiments, a biopsy forceps instrument is provided in which the jaw assembly is deflected or deflectable, the jaw assembly can be rotated about the longitudinal axis of the instrument, and the jaws can be operated to open and close to take a biopsy sample. [0057]
  • There have been described and illustrated herein several embodiments of a rotatable and deflectable biopsy forceps instrument. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular jaw assemblies have been disclosed, it will be appreciated that other jaw assemblies can be used as well. In addition, while particular types of actuation handles, e.g., a shaft and spool, have been disclosed, it will be understood that other actuation handle assemblies known in the art for opening and closing a jaw assembly can be used as well. Further, wherever a tubular member is described between the actuation handle and the control handle, it will be appreciated that the tubular member may be eliminated and that the control handle may be coupled directly to the actuation handle, or that the control and actuation handles may be integrated into a single handle. Also, while several means for permitting a distal portion of an actuation wire (or shaft) to rotate relative to the actuation handle has been disclosed, it will be recognized that other mechanisms may be used as well. Furthermore, while it is preferred that a coil be used for the tubular member to which the jaw assembly is coupled, it will be understood that other tubular members may be used as well. Moreover, where two control wires for rotating the jaw assembly have been disclosed, it will be appreciated that more than two wires may be used as well. Also, where a nitinol shape memory material is described, it will be appreciated that, as an alternative, other flexible or other shape memory materials known in the art may be used. Furthermore, where a slotted shape memory tube is stated to be part of a jaw assembly, it will be appreciated that the tubular member (coil) may be configured to include a transversely slotted distal portion to function as described. Moreover, while in the fourth embodiment a deflection wire is described as being coupled to the clevis of a jaw assembly, it will be appreciated that the deflection wire may alternatively be coupled to the distal end of the shape memory tube. In addition, where an axially movable jaw assembly is disclosed in conjunction with a fixed closing sleeve, the jaw assembly may be fixed and the sleeve may be coupled to the actuation wire to be moved relative to the jaw assembly to accomplish opening and closing of the jaws. Also, while an exemplar stop mechanism has been described with respect to the previously discussed jaw assembly, other stop mechanisms may be used. Furthermore, any described couplings can be different than that described, provided the components and assemblies operate relative to each other as required. Moreover, while a preferred ratchet assembly for operating deflection of the jaw assembly of the fourth embodiment has been disclosed, other mechanisms accomplishing the same may be used. In addition, wherever an endoscopic instrument is discussed, it will be appreciated that the same applies to a laparoscopic instrument or any instrument designed to be inserted into the human body through any medical scope device or otherwise. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed. [0058]

Claims (24)

1. A biopsy forceps instrument having a longitudinal axis, comprising:
a) an actuation handle having a stationary member and a movable member movable relative to said stationary member;
b) a rotation control assembly coupled to a distal portion of said actuation handle;
c) a tubular member having a proximal end and a distal end, said proximal end of said tubular member being coupled to a distal portion of said rotation control handle;
d) a jaw assembly coupled to said distal end of said tubular member; and
e) an actuation wire having a proximal end and a distal end, and coupled between said movable member and said jaw assembly,
wherein said jaw assembly includes a proximal portion and a distal portion spring-biased relative to the proximal portion and thereby adapted to be deflected at a predetermined angle relative to the longitudinal axis of said biopsy forceps instrument and define a predetermined radial extension of said distal portion of said jaw assembly.
2. A biopsy forceps instrument according to claim 1, wherein:
said spring-bias has a force which is overcome when said jaw assembly is forced through or withdrawn from a lumen smaller than said radial extension of said distal portion of said jaw assembly.
3. A biopsy forceps instrument according to claim 1, wherein:
said jaw assembly is rotatably coupled to said tubular member.
4. A biopsy forceps instrument according to claim 1, further comprising:
f) at least one control wire coupled at a proximal end-to said rotation control assembly,
wherein said rotation control assembly includes a body and a knob rotatably and coaxially mounted in the body, said body coupled between said actuation handle and said tubular member, and
said at least one control wire extends from said knob through said tubular member and is coupled to said jaw assembly, wherein rotation of said knob relative to said body causes axial rotation of said jaw assembly relative to actuation handle.
5. A biopsy forceps instrument according to claim 4, wherein:
said knob includes a non-circular bore, and a portion of said actuation wire extending through said bore is provided with a key rotationally interfering with said bore but slidably axially movable within said bore.
6. A biopsy forceps instrument according to claim 1, wherein:
said actuation wire includes a proximal portion and a distal portion adapted to swivel relative to said proximal portion.
7. A biopsy forceps instrument according to claim 1, wherein:
wherein said actuation wire is fixed relative to said knob.
8. A biopsy forceps instrument according to claim 1, wherein:
said jaw assembly includes a plurality of jaws made from a shape memory material, and a tubular sleeve extendable over at least a proximal portion of said jaws,
at least one of said jaws and said tubular sleeve being movable relative to the other such that when said tubular sleeve is positioned over said jaws at a first location, said jaws are forced into a closed position, and when said tubular member is at least partially withdrawn relative to said jaws, said jaws are permitted to attain an open position.
9. A biopsy forceps instrument according to claim 1, further comprising:
f) a second tubular member, wherein said actuation handle and said rotation control assembly are coupled to and spaced apart by said second tubular member.
10. A biopsy forceps instrument according to claim 1, wherein:
said actuation handle and said rotation control assembly are provided in a common handle assembly.
11. A biopsy forceps instrument having a longitudinal axis, comprising:
a) an elongate flexible shaft having a proximal end and a distal end;
b) a handle coupled to said proximal end of said shaft; and
c) a jaw assembly coupled to said distal end of said shaft, said jaw assembly including jaws which are radially spring-biased relative to said shaft and thereby adapted to be deflected at a predetermined angle relative to the longitudinal axis of said biopsy forceps instrument so as to define a predetermined radial extension of jaws of said jaw assembly relative to said shaft.
12. A biopsy forceps instrument according to claim 11, wherein:
said jaw assembly includes proximal and distal poritons which are spring-biased relative to each other, and said jaws are coupled to said distal portion.
13. A biopsy forceps instrument according to claim 11, wherein:
said spring-bias has a force which is overcome when said jaw assembly is forced through or withdrawn from a lumen smaller than said radial extension.
14. A biopsy forceps instrument according to claim 11, wherein:
said shaft is tubular.
15. A biopsy forceps instrument according to claim 11, wherein:
said jaw assembly is rotatably coupled to said shaft.
16. A biopsy forceps instrument according to claim 11, further comprising:
a rotation control means coupled to said jaw assembly.
17. A biopsy forceps instrument according to claim 11, wherein:
said jaws are made from a shape memory material, and said jaw assembly includes a tubular sleeve extendable over at least a proximal portion of said jaws,
at least one of said jaws and said tubular sleeve being movable relative to the other such that when said tubular sleeve is positioned over said jaws at a first location, said jaws are forced into a closed position, and when said tubular member is at least partially withdrawn relative to said jaws, said jaws are permitted to attain an open position.
18. A biopsy forceps instrument having a longitudinal axis, comprising:
a) a jaw assembly including jaws;
b) a rotation control assembly for rotating said jaws;
c) an actuation handle for moving said jaws between open and closed positions;
d) a first flexible tubular member, wherein said actuation handle and said rotation control assembly are coupled to and spaced apart by said first tubular member; and
e) a second flexible tubular member, wherein said rotation control assembly and said jaw assembly are coupled to and spaced apart by said second tubular member.
19. A biopsy forceps instrument according to claim 18, wherein:
wherein said jaw assembly includes a proximal portion and a distal portion spring-biased relative to the proximal portion and thereby adapted to be deflected at a predetermined angle relative to the longitudinal axis of said biopsy forceps instrument and define a predetermined radial extension of said distal portion of said jaw assembly.
20. A biopsy forceps instrument according to claim 18, wherein:
said spring-bias has a force which is overcome when said jaw assembly is forced through or withdrawn from a lumen smaller than said radial extension of said distal portion of said jaw assembly.
21. A surgical biopsy forceps instrument having a longitudinal axis, comprising:
a) a biopsy forceps jaw assembly;
b) a plurality of control elements each having a proximal end and a distal end, said distal ends of said control elements being coupled to said jaw assembly; and
c) control means for rotating said plurality of control elements relative to said actuation means about the longitudinal axis and also for maneuvering said plurality of control elements in a direction other than rotation about the longitudinal axis.
22. A surgical biopsy forceps instrument according to claim 21, wherein:
said control means includes a socket, and a ball rotatable within and relative to said socket and coupled to said proximal ends of said plurality of control elements.
23. A surgical biopsy forceps instrument according to claim 20, further comprising:
d) an actuation wire including proximal and distal ends, said distal end coupled to said end effector; and
e) an actuation handle coupled to said proximal end of said actuation wire,
wherein operation of said actuation handle causes longitudinal movement of said actuation wire relative to said jaw assembly such that said end effector moves between open and closed positions.
24. A surgical biopsy forceps instrument according to claim 23, further comprising:
f) a first flexible tubular member, wherein said actuation handle and said control means are coupled to and spaced apart by said first tubular member; and
g) a second flexible tubular member, wherein said control means and said jaw assembly are coupled to and spaced apart by said second tubular member.
US10/437,143 2000-09-14 2003-05-13 Rotatable and deflectable biopsy forceps Abandoned US20030195432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/437,143 US20030195432A1 (en) 2000-09-14 2003-05-13 Rotatable and deflectable biopsy forceps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/661,593 US6569105B1 (en) 2000-09-14 2000-09-14 Rotatable and deflectable biopsy forceps
US10/437,143 US20030195432A1 (en) 2000-09-14 2003-05-13 Rotatable and deflectable biopsy forceps

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/661,593 Division US6569105B1 (en) 2000-09-14 2000-09-14 Rotatable and deflectable biopsy forceps

Publications (1)

Publication Number Publication Date
US20030195432A1 true US20030195432A1 (en) 2003-10-16

Family

ID=24654256

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/661,593 Expired - Fee Related US6569105B1 (en) 2000-09-14 2000-09-14 Rotatable and deflectable biopsy forceps
US10/437,143 Abandoned US20030195432A1 (en) 2000-09-14 2003-05-13 Rotatable and deflectable biopsy forceps

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/661,593 Expired - Fee Related US6569105B1 (en) 2000-09-14 2000-09-14 Rotatable and deflectable biopsy forceps

Country Status (1)

Country Link
US (2) US6569105B1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004432A1 (en) * 2003-06-24 2005-01-06 Olympus Corporation Treatment tool for endoscope
US20050124915A1 (en) * 2003-07-30 2005-06-09 Eggers Philip E. Electrical apparatus and system with improved tissue capture component
US20050159676A1 (en) * 2003-08-13 2005-07-21 Taylor James D. Targeted biopsy delivery system
US20060009711A1 (en) * 2004-06-28 2006-01-12 Scimed Life Systems, Inc. End effector assembly cap and tissue removal device and related methods
US20060178699A1 (en) * 2005-01-20 2006-08-10 Wilson-Cook Medical Inc. Biopsy forceps
EP1838220A2 (en) * 2004-11-08 2007-10-03 The Johns Hopkins University Bioptome
US20080208329A1 (en) * 2006-10-20 2008-08-28 Gordon Bishop Handle mechanism to adjust a medical device
US20090082857A1 (en) * 2004-05-05 2009-03-26 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US20090107335A1 (en) * 2007-02-27 2009-04-30 Deka Products Limited Partnership Air trap for a medical infusion device
US7762960B2 (en) 2005-05-13 2010-07-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
WO2010124129A1 (en) * 2009-04-22 2010-10-28 Pare Surgical, Inc. Endoscopic tissue grasping apparatus and method
US20120046522A1 (en) * 2010-03-17 2012-02-23 Olympus Medical Systems Corp. Endoscopic system
WO2012058611A2 (en) * 2010-10-28 2012-05-03 Pare Surgical, Inc. Percutaneous tissue grasping apparatus and method
US20120157880A1 (en) * 2010-12-20 2012-06-21 Cook Medical Technologies Llc Coring tissue biopsy needle and method of use
US20120198835A1 (en) * 2008-10-13 2012-08-09 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
US20130289617A1 (en) * 2012-03-21 2013-10-31 Olympus Medical Systems Corp. Endoscope treatment tool
US8772030B2 (en) 2003-07-31 2014-07-08 Universita Degli Studi Di Roma “La Sapienza” Cardiac stem cells and methods for isolation of same
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
WO2016053742A1 (en) * 2014-09-29 2016-04-07 Transmed7, Llc Excisional devices and methods
US9463001B2 (en) 2013-05-28 2016-10-11 Transmed7, Llc Soft tissue coring biopsy devices and methods
US9592035B2 (en) 2013-08-22 2017-03-14 Transmed7, Llc Stereotactic soft tissue coring biopsy devices and methods
US9828603B2 (en) 2012-08-13 2017-11-28 Cedars Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9884076B2 (en) 2012-06-05 2018-02-06 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
US10070885B2 (en) 2013-09-12 2018-09-11 Transmed7, Llc Soft tissue coring biospy devices and methods
CN112472152A (en) * 2020-12-14 2021-03-12 浙江工业大学 Biopsy forceps based on oscillating bar mechanism
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
WO2022236021A1 (en) * 2021-05-06 2022-11-10 The Cleveland Clinic Foundation Articulated endoscopic instrument
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
US11759482B2 (en) 2017-04-19 2023-09-19 Cedars-Sinai Medical Center Methods and compositions for treating skeletal muscular dystrophy

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US6835200B2 (en) * 1999-06-22 2004-12-28 Ndo Surgical. Inc. Method and devices for tissue reconfiguration
US6494888B1 (en) * 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US7846180B2 (en) 1999-06-22 2010-12-07 Ethicon Endo-Surgery, Inc. Tissue fixation devices and methods of fixing tissue
US6821285B2 (en) 1999-06-22 2004-11-23 Ndo Surgical, Inc. Tissue reconfiguration
US8287554B2 (en) 1999-06-22 2012-10-16 Ethicon Endo-Surgery, Inc. Method and devices for tissue reconfiguration
US6663639B1 (en) 1999-06-22 2003-12-16 Ndo Surgical, Inc. Methods and devices for tissue reconfiguration
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US6569105B1 (en) * 2000-09-14 2003-05-27 Syntheon, Llc Rotatable and deflectable biopsy forceps
DE60139815D1 (en) 2001-04-06 2009-10-15 Covidien Ag Device for sealing and dividing a vessel with non-conductive end stop
EP1372506B1 (en) 2001-04-06 2006-06-28 Sherwood Services AG Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
DE10251785A1 (en) * 2002-11-05 2004-05-19 Lutz Kothe Surgical instrument
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
WO2004082495A1 (en) 2003-03-13 2004-09-30 Sherwood Services Ag Bipolar concentric electrode assembly for soft tissue fusion
US7147638B2 (en) 2003-05-01 2006-12-12 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
CA2525785C (en) 2003-05-15 2013-03-12 Sherwood Services Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US20040230205A1 (en) * 2003-05-16 2004-11-18 Syed Rizvi Device and method to treat genital lesions
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US20050015113A1 (en) * 2003-07-18 2005-01-20 Baptiste Reginald C. Guide system for controlled manipulation of surgical instruments
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7500975B2 (en) 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7052489B2 (en) * 2003-12-05 2006-05-30 Scimed Life Systems, Inc. Medical device with deflecting shaft and related methods of manufacture and use
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7736374B2 (en) * 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US20060184198A1 (en) * 2005-01-31 2006-08-17 Kms Biopsy, Llc End effector for surgical instrument, surgical instrument, and method for forming the end effector
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7846107B2 (en) 2005-05-13 2010-12-07 Boston Scientific Scimed, Inc. Endoscopic apparatus with integrated multiple biopsy device
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US10702285B2 (en) 2005-12-20 2020-07-07 Quantum Medical Innovations, LLC Method and apparatus for performing minimally invasive arthroscopic procedures
US9962168B2 (en) 2005-12-20 2018-05-08 CroJor, LLC Method and apparatus for performing minimally invasive arthroscopic procedures
US8679097B2 (en) * 2005-12-20 2014-03-25 Orthodynamix Llc Method and devices for minimally invasive arthroscopic procedures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8888684B2 (en) 2006-03-27 2014-11-18 Boston Scientific Scimed, Inc. Medical devices with local drug delivery capabilities
US20070250012A1 (en) * 2006-04-24 2007-10-25 Ifung Lu Medical instrument having a medical needle-knife
US20070249908A1 (en) * 2006-04-24 2007-10-25 Ifung Lu Medical cannula and medical cannula system
US8518024B2 (en) * 2006-04-24 2013-08-27 Transenterix, Inc. System and method for multi-instrument surgical access using a single access port
US9138250B2 (en) * 2006-04-24 2015-09-22 Ethicon Endo-Surgery, Inc. Medical instrument handle and medical instrument having a handle
CA2650474A1 (en) 2006-04-24 2007-11-08 Synecor, Llc Natural orifice surgical system
US8211114B2 (en) * 2006-04-24 2012-07-03 Ethicon Endo-Surgery, Inc. Medical instrument having a medical snare
US7837620B2 (en) * 2006-04-25 2010-11-23 Ethicon Endo-Surgery, Inc. Medical tubular assembly
US7927327B2 (en) * 2006-04-25 2011-04-19 Ethicon Endo-Surgery, Inc. Medical instrument having an articulatable end effector
US7758593B2 (en) * 2006-05-04 2010-07-20 Ethicon Endo-Surgery, Inc. Medical instrument handle and medical instrument having same
US7597661B2 (en) * 2006-05-11 2009-10-06 Ethicon Endo-Surgery, Inc. Medical instrument having a catheter and method for using a catheter
US7959642B2 (en) * 2006-05-16 2011-06-14 Ethicon Endo-Surgery, Inc. Medical instrument having a needle knife
US20070270639A1 (en) * 2006-05-17 2007-11-22 Long Gary L Medical instrument having a catheter and having a catheter accessory device and method for using
US7892166B2 (en) * 2006-05-18 2011-02-22 Ethicon Endo-Surgery, Inc. Medical instrument including a catheter having a catheter stiffener and method for using
AU2007257754A1 (en) 2006-06-08 2007-12-21 Bannerman, Brett Medical device with articulating shaft
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
EP2083702B1 (en) 2006-10-05 2019-02-13 Covidien LP Axial stitching device
US8795325B2 (en) * 2006-10-05 2014-08-05 Covidien Lp Handle assembly for articulated endoscopic instruments
US8372090B2 (en) * 2006-10-05 2013-02-12 Covidien Lp Flexible endoscopic stitching devices
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
AU2007307082B2 (en) * 2006-10-06 2013-01-24 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8852216B2 (en) 2007-03-23 2014-10-07 Ethicon Endo-Surgery, Inc. Tissue approximation methods
US8267935B2 (en) * 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US20080300461A1 (en) * 2007-05-31 2008-12-04 Ethicon Endo-Surgery, Inc. Endoscopic Device
US20110060183A1 (en) * 2007-09-12 2011-03-10 Salvatore Castro Multi-instrument access devices and systems
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
EP2881050B1 (en) 2008-03-31 2023-02-22 Applied Medical Resources Corporation Electrosurgical system with means for determining the end of a treatment based on a phase angle
US8864776B2 (en) * 2008-04-11 2014-10-21 Covidien Lp Deployment system for surgical suture
US8628545B2 (en) * 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
US20110040308A1 (en) 2008-06-13 2011-02-17 Ramiro Cabrera Endoscopic Stitching Devices
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US20110230723A1 (en) * 2008-12-29 2011-09-22 Salvatore Castro Active Instrument Port System for Minimally-Invasive Surgical Procedures
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632564B2 (en) 2009-01-14 2014-01-21 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8226650B2 (en) * 2009-03-26 2012-07-24 Tyco Healthcare Group Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US20100280526A1 (en) * 2009-04-29 2010-11-04 Arch Day Design, Llc Medical Device With Articulating Shaft Mechanism
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8226575B2 (en) * 2009-05-15 2012-07-24 Mayo Foundation For Medical Education And Research Biopsy needle assemblies
USD708746S1 (en) 2009-06-10 2014-07-08 Covidien Lp Handle for surgical device
US20100324446A1 (en) * 2009-06-18 2010-12-23 Vance Products Incorporated, D/B/A Cook Orolgoical Incorporated Telescoping Biopsy Device
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
AU2010278901A1 (en) * 2009-07-29 2012-03-15 Transenterix, Inc. Deflectable instrument ports
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8490713B2 (en) * 2009-10-06 2013-07-23 Covidien Lp Handle assembly for endoscopic suturing device
US8357161B2 (en) * 2009-10-30 2013-01-22 Covidien Lp Coaxial drive
US8556929B2 (en) * 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
DE102010008922A1 (en) * 2010-02-23 2011-08-25 Schölly Fiberoptic GmbH, 79211 Device for observing and / or manipulating objects arranged in a cavity accessible through a narrow opening
EP2415408B1 (en) * 2010-03-03 2016-12-28 Olympus Corporation Treatment device
WO2011119817A2 (en) * 2010-03-24 2011-09-29 United States Endoscopy Group, Inc. Multiple biopsy device
ES2912092T3 (en) 2010-10-01 2022-05-24 Applied Med Resources Electrosurgical instruments and connections thereto
CN102821705B (en) * 2010-10-28 2015-04-01 奥林巴斯医疗株式会社 Treatment tool
EP2567667B1 (en) * 2010-11-01 2014-04-16 Olympus Medical Systems Corp. Treatment apparatus
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8968340B2 (en) 2011-02-23 2015-03-03 Covidien Lp Single actuating jaw flexible endolumenal stitching device
JP2014087378A (en) * 2011-02-23 2014-05-15 Olympus Medical Systems Corp Treatment tool for endoscope
WO2012173616A1 (en) * 2011-06-15 2012-12-20 Empire Technology Development Llc Punch tool
US20130103032A1 (en) * 2011-10-20 2013-04-25 Richard B. Beaven Laparoscopic endometriosis articulating fulgurator
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
DE102012201081A1 (en) * 2012-01-25 2013-07-25 Herbert Maslanka Surgical instrument
US9211134B2 (en) 2012-04-09 2015-12-15 Carefusion 2200, Inc. Wrist assembly for articulating laparoscopic surgical instruments
DE102012208605A1 (en) * 2012-05-23 2013-11-28 Karl Storz Gmbh & Co. Kg Medical instrument with a shaft with a flexible section and a controlled bendable section
US9795379B2 (en) * 2013-02-28 2017-10-24 Ethicon Llc Surgical instrument with multi-diameter shaft
US9301738B2 (en) 2013-05-14 2016-04-05 Donald R. Waxler Tissue sample securement and extraction apparatus and method
CN105451670B (en) 2013-08-07 2018-09-04 柯惠有限合伙公司 Surgery forceps
KR102391471B1 (en) 2014-04-23 2022-04-27 어플라이드 메디컬 리소시스 코포레이션 Systems and methods for tissue removal
KR20230076143A (en) 2014-05-16 2023-05-31 어플라이드 메디컬 리소시스 코포레이션 Electrosurgical system
EP3148465B1 (en) 2014-05-30 2018-05-16 Applied Medical Resources Corporation Electrosurgical system with an instrument comprising a jaw with a central insulative pad
US9468434B2 (en) 2014-06-03 2016-10-18 Covidien Lp Stitching end effector
CA3207140A1 (en) 2014-08-18 2016-02-25 Applied Medical Resources Corporation Systems and methods for tissue containment and retrieval
US9636103B2 (en) 2014-08-28 2017-05-02 Covidien Lp Surgical suturing instrument
WO2016048898A2 (en) * 2014-09-22 2016-03-31 Boston Scientific Scimed, Inc. Hinged needle
ES2881213T3 (en) 2014-11-13 2021-11-29 Applied Med Resources Systems for tissue extraction
KR20230093365A (en) 2014-12-23 2023-06-27 어플라이드 메디컬 리소시스 코포레이션 Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
AU2016253021B2 (en) 2015-04-23 2021-02-11 Applied Medical Resources Corporation Systems and methods for tissue removal
US10092286B2 (en) 2015-05-27 2018-10-09 Covidien Lp Suturing loading unit
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
CA3001755A1 (en) 2015-10-20 2017-04-27 Lumendi Ltd. Medical instruments for performing minimally-invasive procedures
US11446081B2 (en) 2015-10-20 2022-09-20 Lumedi Ltd. Medical instruments for performing minimally-invasive procedures
US11504104B2 (en) 2015-10-20 2022-11-22 Lumendi Ltd. Medical instruments for performing minimally-invasive procedures
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
ES2929666T3 (en) 2016-01-22 2022-11-30 Applied Med Resources Systems and methods for tissue removal
US10820923B2 (en) * 2016-05-16 2020-11-03 Biosense Webster (Israel) Ltd. Insertion tube with deflectable tip
US10542970B2 (en) 2016-05-31 2020-01-28 Covidien Lp Endoscopic stitching device
WO2018069988A1 (en) * 2016-10-12 2018-04-19 オリンパス株式会社 Rotating mechanism for treatment tool
US9877833B1 (en) 2016-12-30 2018-01-30 Pipeline Medical Technologies, Inc. Method and apparatus for transvascular implantation of neo chordae tendinae
US11083580B2 (en) 2016-12-30 2021-08-10 Pipeline Medical Technologies, Inc. Method of securing a leaflet anchor to a mitral valve leaflet
US10925731B2 (en) 2016-12-30 2021-02-23 Pipeline Medical Technologies, Inc. Method and apparatus for transvascular implantation of neo chordae tendinae
US10709439B2 (en) 2017-02-06 2020-07-14 Covidien Lp Endoscopic stitching device
CN107238509B (en) * 2017-04-12 2019-05-21 蔡宏飞 Modified form pathology sampler
US10492811B2 (en) 2017-04-27 2019-12-03 Slatr Surgical Holdings Llc Rotatable endoscopic instrument
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
US10709431B2 (en) 2017-06-14 2020-07-14 Epic Medical Concepts & Innovations, Inc. Laparoscopic devices and related methods
CN107550522A (en) * 2017-09-30 2018-01-09 常州金龙医用塑料器械有限公司 Biopsy forceps
US10905411B2 (en) 2017-11-03 2021-02-02 Covidien Lp Surgical suturing and grasping device
US11197665B2 (en) 2018-08-06 2021-12-14 Covidien Lp Needle reload device for use with endostitch device
US11864812B2 (en) 2018-09-05 2024-01-09 Applied Medical Resources Corporation Electrosurgical generator control system
US11219457B2 (en) 2018-10-11 2022-01-11 Covidien Lp Laparoscopic purse string suture device
CA3120182A1 (en) 2018-11-16 2020-05-22 Applied Medical Resources Corporation Electrosurgical system
CN113286566A (en) 2018-12-12 2021-08-20 管道医疗技术公司 Method and apparatus for mitral chordae repair

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880015A (en) * 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US5354297A (en) * 1992-02-14 1994-10-11 Boaz Avitall Biplanar deflectable catheter for arrhythmogenic tissue ablation
US5386818A (en) * 1993-05-10 1995-02-07 Schneebaum; Cary W. Laparoscopic and endoscopic instrument guiding method and apparatus
US5439478A (en) * 1990-05-10 1995-08-08 Symbiosis Corporation Steerable flexible microsurgical instrument with rotatable clevis
US5454827A (en) * 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
US5507296A (en) * 1990-05-10 1996-04-16 Symbiosis Corporation Radial jaw biopsy forceps
US5620415A (en) * 1993-01-29 1997-04-15 Smith & Dyonics, Inc. Surgical instrument
US5624379A (en) * 1995-10-13 1997-04-29 G. I. Medical Technologies, Inc. Endoscopic probe with discrete rotatable tip
US5636639A (en) * 1992-02-18 1997-06-10 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5885288A (en) * 1994-05-24 1999-03-23 Endius Incorporated Surgical instrument
US5899914A (en) * 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US5967997A (en) * 1998-04-30 1999-10-19 Symbiosis Corporation Endoscopic surgical instrument with deflectable and rotatable distal end
US6235026B1 (en) * 1999-08-06 2001-05-22 Scimed Life Systems, Inc. Polypectomy snare instrument
US6569105B1 (en) * 2000-09-14 2003-05-27 Syntheon, Llc Rotatable and deflectable biopsy forceps

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880015A (en) * 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US5439478A (en) * 1990-05-10 1995-08-08 Symbiosis Corporation Steerable flexible microsurgical instrument with rotatable clevis
US5507296A (en) * 1990-05-10 1996-04-16 Symbiosis Corporation Radial jaw biopsy forceps
US5354297A (en) * 1992-02-14 1994-10-11 Boaz Avitall Biplanar deflectable catheter for arrhythmogenic tissue ablation
US5636639A (en) * 1992-02-18 1997-06-10 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5620415A (en) * 1993-01-29 1997-04-15 Smith & Dyonics, Inc. Surgical instrument
US5386818A (en) * 1993-05-10 1995-02-07 Schneebaum; Cary W. Laparoscopic and endoscopic instrument guiding method and apparatus
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5885288A (en) * 1994-05-24 1999-03-23 Endius Incorporated Surgical instrument
US5618294A (en) * 1994-05-24 1997-04-08 Aust & Taylor Medical Corporation Surgical instrument
US5454827A (en) * 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5624379A (en) * 1995-10-13 1997-04-29 G. I. Medical Technologies, Inc. Endoscopic probe with discrete rotatable tip
US5899914A (en) * 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US5967997A (en) * 1998-04-30 1999-10-19 Symbiosis Corporation Endoscopic surgical instrument with deflectable and rotatable distal end
US6235026B1 (en) * 1999-08-06 2001-05-22 Scimed Life Systems, Inc. Polypectomy snare instrument
US6569105B1 (en) * 2000-09-14 2003-05-27 Syntheon, Llc Rotatable and deflectable biopsy forceps

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663089B2 (en) * 2003-06-24 2014-03-04 Olympus Corporation Treatment tool for endoscope
US20050004432A1 (en) * 2003-06-24 2005-01-06 Olympus Corporation Treatment tool for endoscope
US7494473B2 (en) * 2003-07-30 2009-02-24 Intact Medical Corp. Electrical apparatus and system with improved tissue capture component
US20050124915A1 (en) * 2003-07-30 2005-06-09 Eggers Philip E. Electrical apparatus and system with improved tissue capture component
US8772030B2 (en) 2003-07-31 2014-07-08 Universita Degli Studi Di Roma “La Sapienza” Cardiac stem cells and methods for isolation of same
US8846396B2 (en) 2003-07-31 2014-09-30 Universita Degli Studi Di Roma “La Sapienza” Methods for the isolation of cardiac stem cells
US20050159676A1 (en) * 2003-08-13 2005-07-21 Taylor James D. Targeted biopsy delivery system
US20110144492A1 (en) * 2003-08-13 2011-06-16 Taylor James D Targeted Treatment Delivery System
US8317724B2 (en) 2003-08-13 2012-11-27 Envisioneering, Llc Targeted treatment delivery system
US20090082857A1 (en) * 2004-05-05 2009-03-26 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US10449040B2 (en) 2004-05-05 2019-10-22 Speyside Medical, LLC Method of treating a patient using a retrievable transcatheter prosthetic heart valve
US9510941B2 (en) 2004-05-05 2016-12-06 Direct Flow Medical, Inc. Method of treating a patient using a retrievable transcatheter prosthetic heart valve
US8377118B2 (en) 2004-05-05 2013-02-19 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US7311674B2 (en) * 2004-06-28 2007-12-25 Scimed Life Systems, Inc. End effector assembly cap and tissue removal device and related methods
US20060009711A1 (en) * 2004-06-28 2006-01-12 Scimed Life Systems, Inc. End effector assembly cap and tissue removal device and related methods
US20090012422A1 (en) * 2004-11-08 2009-01-08 Eduardo Marban Bioptome
EP1838220A4 (en) * 2004-11-08 2010-01-06 Univ Johns Hopkins Bioptome
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
EP1838220A2 (en) * 2004-11-08 2007-10-03 The Johns Hopkins University Bioptome
US20060178699A1 (en) * 2005-01-20 2006-08-10 Wilson-Cook Medical Inc. Biopsy forceps
US7762960B2 (en) 2005-05-13 2010-07-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US8317726B2 (en) 2005-05-13 2012-11-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US8672859B2 (en) 2005-05-13 2014-03-18 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US20080208329A1 (en) * 2006-10-20 2008-08-28 Gordon Bishop Handle mechanism to adjust a medical device
US20090107335A1 (en) * 2007-02-27 2009-04-30 Deka Products Limited Partnership Air trap for a medical infusion device
US9022682B2 (en) * 2008-10-13 2015-05-05 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
US20120198835A1 (en) * 2008-10-13 2012-08-09 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
WO2010124129A1 (en) * 2009-04-22 2010-10-28 Pare Surgical, Inc. Endoscopic tissue grasping apparatus and method
US8915841B2 (en) * 2010-03-17 2014-12-23 Olympus Medical Systems Corp. Endoscopic system
US20120046522A1 (en) * 2010-03-17 2012-02-23 Olympus Medical Systems Corp. Endoscopic system
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
WO2012058611A2 (en) * 2010-10-28 2012-05-03 Pare Surgical, Inc. Percutaneous tissue grasping apparatus and method
WO2012058611A3 (en) * 2010-10-28 2012-06-14 Pare Surgical, Inc. Percutaneous tissue grasping apparatus and method
US9968337B2 (en) * 2010-12-20 2018-05-15 Cook Medical Technologies Llc Coring tissue biopsy needle and method of use
US20120157880A1 (en) * 2010-12-20 2012-06-21 Cook Medical Technologies Llc Coring tissue biopsy needle and method of use
US20130289617A1 (en) * 2012-03-21 2013-10-31 Olympus Medical Systems Corp. Endoscope treatment tool
US9554819B2 (en) * 2012-03-21 2017-01-31 Olympus Corporation Endoscope treatment tool
US9884076B2 (en) 2012-06-05 2018-02-06 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
US9828603B2 (en) 2012-08-13 2017-11-28 Cedars Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US11220687B2 (en) 2012-08-13 2022-01-11 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US10457942B2 (en) 2012-08-13 2019-10-29 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US9463001B2 (en) 2013-05-28 2016-10-11 Transmed7, Llc Soft tissue coring biopsy devices and methods
US9592035B2 (en) 2013-08-22 2017-03-14 Transmed7, Llc Stereotactic soft tissue coring biopsy devices and methods
US10070885B2 (en) 2013-09-12 2018-09-11 Transmed7, Llc Soft tissue coring biospy devices and methods
US10555751B2 (en) 2013-09-12 2020-02-11 Transmed7, Llc Soft tissue coring biopsy devices and methods
WO2016053742A1 (en) * 2014-09-29 2016-04-07 Transmed7, Llc Excisional devices and methods
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11872251B2 (en) 2016-01-11 2024-01-16 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
US11759482B2 (en) 2017-04-19 2023-09-19 Cedars-Sinai Medical Center Methods and compositions for treating skeletal muscular dystrophy
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
CN112472152A (en) * 2020-12-14 2021-03-12 浙江工业大学 Biopsy forceps based on oscillating bar mechanism
WO2022236021A1 (en) * 2021-05-06 2022-11-10 The Cleveland Clinic Foundation Articulated endoscopic instrument

Also Published As

Publication number Publication date
US6569105B1 (en) 2003-05-27

Similar Documents

Publication Publication Date Title
US6569105B1 (en) Rotatable and deflectable biopsy forceps
US6638287B2 (en) Clamp having bendable shaft
US6602262B2 (en) Medical device having linear to rotation control
JP5701339B2 (en) Tool with rotation lock
US8409175B2 (en) Surgical instrument guide device
US6235026B1 (en) Polypectomy snare instrument
US6676676B2 (en) Clamp having bendable shaft
US20080300461A1 (en) Endoscopic Device
JP5523660B2 (en) Medical instrument with articulatable end effector
US6685715B2 (en) Clamp having bendable shaft
JP5198714B2 (en) Polypectomy snare instrument
US20120053595A1 (en) Endoscopic Instrument with Rotational and Axial Motion Control
EP2147638B1 (en) Endoscopically inserting surgical tool
US20080269727A1 (en) Surgical instrument guide device
US6001114A (en) Operative instrument for endoscopic surgery
JPH067366A (en) Gripping forceps
US10492811B2 (en) Rotatable endoscopic instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: IS, LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNTHEON, LLC;REEL/FRAME:014048/0966

Effective date: 20031010

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION