US20030180440A1 - Ether-stabilized organosilane compounds and methods for using the same - Google Patents

Ether-stabilized organosilane compounds and methods for using the same Download PDF

Info

Publication number
US20030180440A1
US20030180440A1 US10/392,746 US39274603A US2003180440A1 US 20030180440 A1 US20030180440 A1 US 20030180440A1 US 39274603 A US39274603 A US 39274603A US 2003180440 A1 US2003180440 A1 US 2003180440A1
Authority
US
United States
Prior art keywords
substrate
ether
water
organosilane
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/392,746
Inventor
Jacques Elfersy
Joachim Berkner
Timothy Moses
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21982293&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030180440(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/392,746 priority Critical patent/US20030180440A1/en
Publication of US20030180440A1 publication Critical patent/US20030180440A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/651Compounds without nitrogen
    • D06P1/65106Oxygen-containing compounds
    • D06P1/65131Compounds containing ether or acetal groups
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups

Definitions

  • the invention relates to organosilane compounds, products and methods for their use.
  • this invention provides water-stable organosilane compounds, products, and compositions for treating various substrates; articles treated with the compounds, products and compositions; and methods of treatment using the compounds, products and compositions.
  • New migratory activity for silanes is provided to the new compounds and compositions according to the invention.
  • the X moiety reacts with various hydroxyl containing molecules in aqueous media to liberate methanol, ethanol, HCl, HBr, HI, H 2 O, acetic acid, or an unsubstituted or substituted carboxylic acid and to form the hydroxylated, but condensation-prone compound.
  • organosilanes R n SiX 4-n where n is an integer from 0 to 2, hydrolysis of the first two X groups with water produces a species bearing —Si(OH) 2 — units which can self-condense through the hydroxyl moieties to linear and/or cyclic oligomers possessing the partial structure HO—Si—(O—Si) mm —O—Si—O—Si—O—Si—OH, where mm is an integer such that an oligomer is formed.
  • RSiX 3 hydrolysis of the third X group generates a silanetriol (RSi(OH) 3 ) which produces insoluble organosilicon polymers through linear and/or cyclic self-condensation of the Si(OH) units.
  • This water induced self-condensation generally precludes storage of most organosilanes R n SiX 4-n , where n ranges from 0 to 2, inclusive, in water.
  • the use of water solutions of most organosilanes require the use of freshly prepared solutions.
  • Dow Corning 5700 is a water activated antimicrobial integrated system which is capable of binding to a wide variety of natural and synthetic substrates, including fibers and fabrics, to produce a durable surface or fabric coating.
  • 3-(Trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride is prepared by quaternization of dimethyloctadecylamine with 3-chloropropyl trimethoxysilane.
  • the C 18 hydrocarbon chain quaternary ammonium portion of the molecule possesses long-acting antimicrobial properties and provides initial association with the surface of the substrate through ionic bonds and/or electrostatic interaction.
  • the treated surface becomes permanently coated with a covalently bound octadecylammonium ion, providing a durable, long-acting antimicrobial coating that is able to destroy microbes that come into contact with the surface.
  • organosilanes in water such as the activated mixture of 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride and water, are generally unstable and prone to self-condensation.
  • the mixture of 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride and water begins to lose effectiveness in as little as four to eight hours. Gel formation in this and similar silane formulations in water begins to occur in even shorter times.
  • the limitations of such organosilanes in aqueous media are further described in U.S. Pat. No. 5,411,585, the contents of which are hereby incorporated by this reference.
  • such products are notorious for agitation difficulty during the addition of the silane to water.
  • the present invention fulfills these needs by providing water-stable organosilane compounds, products (i.e., the compounds or compositions formed from performing a specified reaction) and compositions, methods for their use, and articles prepared using the compounds, products, and compositions.
  • the present invention provides the product formed from mixing an organosilane of the formula R n SiX 4-n where n is an integer of from 0 to 3, preferably 0 to 2; each R is, independently, a nonhydrolyzable organic group; and each X is, independently, a hydrolyzable group (hereinafter, “organosilane of interest”); with an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality.
  • this invention provides a water-stable composition, comprising the product or composition of the invention and water.
  • the present invention provides a composition for treating a substrate, comprising a carrier and an effective amount of the product or compound of the invention.
  • the present invention provides a method of treating a substrate, comprising mixing the substrate with a sufficient amount of the product, compound, or composition of the invention for a period of time sufficient for treatment of the substrate.
  • the present invention provides a composition for treating a substrate by incorporation into the substrate.
  • the present invention provides a composition as a concentrated solution, easily diluted with water, providing a water stable composition.
  • the present invention provides an application to a concentrated solution if not easily dissolved in water after aging, by applying an amine oxide or similar surfactant to the water prior or after silane addition to accelerate dissolution.
  • the present invention provides a composition as a concentrated solution to improve ease of dissolution in water, by applying an amine oxide or similar surfactant to the concentrate, to accelerate dissolution.
  • the present invention provides a composition as a concentrated solution that when diluted with water provides a white mixture easily clarified with acid or amine oxide or similar surfactant.
  • the present invention provides a treated substrate having adhered thereto or dispersed therein the product, compound, or composition of the invention.
  • the present invention provides a method of dyeing and treating a substrate, comprising contacting the substrate with an aqueous composition comprising an aqueous soluble dye suitable for dyeing a substrate and the product formed from mixing an organosilane of interest with an ether.
  • a further embodiment of the present invention provides a method of antimicrobially treating a substrate selected from the group consisting of a concrete pipe, a tooth brush, a food article, fluid container, latex medical article, gloves, shoes, a comb, a hair brush, a denture, an orthodontic retainer, a spa or pool filter, an air filter, an HVAC air system, a cabin air system, a marble article, a statue, an exposed work of art, a PE, PP or polyester cover, a silicone or TEFLON® coated fiberglass article, a Dryvitt finish, a stucco finish, blended cotton, a bio-film, a bio-adhesive, a single ply roofing, a roofing shingle, and a fiberglass reinforcement product, comprising contacting the substrate with an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has
  • the present invention also provides a method of antimicrobially enhancing a product of rubbing alcohol, a flower preservative, or a waterproofing solution, comprising admixing with the product an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality.
  • a further embodiment of this invention is a method for making an organosilane of interest from starting materials in an aqueous solution in the presence of an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has a hydroxy functionality or a carboxylic ester functionality.
  • alkyl refers to a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl (“Me”), ethyl (“Et”), n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like.
  • Alkyl alcohol refers to an alkyl having attached thereto one or more hydroxy moieties, such as, but not limited to, —CH 2 CH 2 OH, CH 2 CH(OH)CH, 3 CHO 2 H, CH 2 CH 2 CH 2 OH, CH 2 CH 2 CH(OH)CH 3 , CH 2 CH 2 CH(OH)CH 2 OH, or CH 2 CH(OH)CH(OH)CH 3 .
  • alkoxy intends an alkyl group bound through a single terminal ether linkage; that is, an “alkoxy” group may be defined as —OR where R is alkyl as defined above.
  • glycol refers to glycol compounds having up to 24 carbon atoms, which includes, but is not limited to, ethylene glycol, propylene glycol, butylene glycol, isobutylene glycol or hexylene glycol.
  • Polyglycol refers to a compound or moiety which takes the polymeric form of glycol, such as, but not limited to, polyethylene glycol or polypropylene glycol. Polyglycol would also include, for example, block and copolymers of ethylene glycol and propylene glycol. Polyglycols useful in the subject invention may have an average molecular weight of up to about 10,000 g/mol.
  • Polyalkylethers refers to alkyls or alkyl alchohols interconnected by or otherwise possessing multiple ether linkages. Polyalkylethers useful in the subject invention may have an average molecular weight of up to about 10,000 g/mol.
  • Alkyl glycol refers to an alkyl connected to a glycol through an ether linkage.
  • An example of an alkyl glycol includes, but is not limited to, butyl glycol.
  • Alkyl polyglycol refers to alkyl connected to a polyglycol through and ether linkage. Alkyl polyglycol compounds useful in the subject invention may have an average molecular weight of up to 10,000 g/mol.
  • optionally or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
  • optionally substituted lower alkyl means that the lower alkyl group may or may not be substituted and that the description includes both unsubstituted lower alkyls and lower alkyls where there is substitution.
  • an effective amount of a compound, product, or composition as provided herein is meant a sufficient amount of the compound, product, or composition to provide the desired result.
  • the exact amount required will vary from substrate to substrate, depending on the particular compound, product, or composition used, its mode of administration, and the like. Thus, it is not always practical to specify an exact “effective amount,” especially because a range of amounts or concentrations will usually be effective. However, an appropriate effective amount may be determined by one of ordinary skill in the art using only routine experimentation as a matter of optimization.
  • cyclic is used to refer to all aliphatic or aromatic hydrocarbons having one or more closed rings, whether unsaturated or saturated.
  • cyclic compounds possess rings of from 5 to 7 atoms, preferably 6 carbon atoms. Such rings fall into three classes: alicyclic, aromatic (“arene”), and heterocyclic.
  • unsaturated refers to such compound or moiety possessing at least one double or triple bond or otherwise constituting an aromatic compound or moiety.
  • saturated refers to compounds or moieties possessing no double or triple bonds within the ring, i.e., where all available valence bonds of an atom, especially carbon, are attached to other atoms.
  • heterocyclic refers to a cyclic compound or moiety where one or more of the carbon atoms of the ring has been substituted with a heteroatom, including, but not limited to O, N, or S.
  • aryl and “aromatic” are used interchangeably herein and refer to a compound or moiety whose molecules have a ring or multiple (poly) ring structure characteristic of benzene, naphthalene, phenanthrene, anthracene, etc.
  • aryls or aromatics also include, but are not limited to, phenyl, benzyl, naphthyl, benzylidine, xylil, styrene, styryl, phenethyl, phenylene, benzenetriyl, etc.
  • heteroaryl and “heteroaromatic” are used interchangebly and refer to an aryl where one or more of the carbon atoms of a ring have been substituted with a heteroatom, including, but not limited to, O, N, or S.
  • cyclic alcohol refers to a cyclic molecule substitued with one or more hydroxy moieties. Examples include, but are not limited to, Phenol and cyclohexanol.
  • lower refers to a moiety having from 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • suitable is used to refer a moiety which is compatible with the compounds, products, or compositions as provided herein for the stated purpose. Suitability for the stated purpose may be determined by one of ordinary skill in the art using only routine experimentation.
  • substituted is used to refer, generally, to a carbon or suitable heteroatom having a hydrogen or other atom removed and replaced with a further moiety.
  • halogen, hydroxy, and nitrogen based substitutions of hydrocarbon hydrogens are contemplated as within the scope of the present invention for the claimed structures.
  • substituted refers to substitutions which do not change the basic and novel utility of the underlying compounds, products, or compositions of the present invention.
  • Unsubstituted refers to a structure wherein the reference atom does not have any further moieties attached thereto or substituted therefor.
  • branched is used to refer, generally, to a moiety having a carbon chain backbone, e.g., alkyl or alkoxy, wherein the backbone may contain one or more subordinate carbon chain branches.
  • isobutyl, t-butyl, isopropyl, CH 2 CH 2 C(CH 3 )(H)CH 2 CH 3 , CH 2 C(CH 2 CH 3 )(H)CH 2 CH 3 , CH 2 CH 2 C(CH 3 )CH 3 , and CH 2 CH 2 C(CH 3 ) 3 would all be considered branched moieties.
  • branched variations of the moieties herein described refer to variations which do not change the basic and novel utility of the underlying compounds, products, or compositions of the present invention. “Unbranched” refers to a structure wherein the carbon chain does not have any branches thereon, i.e., where the carbon chain extends in a direct line.
  • acyl refers to organic acid derived moieties of the formula RCO where R is an organic molecule.
  • R is an organic molecule.
  • the free valence on C is used to bond to other groups or atoms.
  • acyloxy refers to organic acid derived moieties of the formula RCOX where R is an organic molecule and X, instead of being hydroxy, is represents oxygen attached to another group or atom.
  • perfluoro or “perfluoro-analog” refers to a hydrocarbon where the hydrogen atoms attached to carbons have been replaced with F atoms. Preferably, but not necessarily, in perfluoro-analogs, most if not all of the H atoms are replaced with F atoms.
  • a “fluoro-” analog is contemplated to indicate a hydrocarbon where at least one hydrogen atom attached to a carbon is replaced with an F atom.
  • substrate refers to any article, product, or surface that can be treated with the inventive compounds, preferably as enumerated hereinbelow under the heading “Uses,” as described in the Examples hereto, and as specified in the relevant claims appended hereto.
  • Suitable substrates are generally characterized by either having a negatively charged surface of oxygen atoms, or any surface capable of electrostatically, ionically, or covalently adhering or binding to the compounds, products, or compositions of the present invention.
  • the adhering or binding occurs at the silicon atoms of the organosilane portion of the compounds, products, or compositions of the present invention, but such binding is not a requirement.
  • Substrate also refers to materials that are treated by incorporation of the compounds and/or compositions of the present invention. Incorporation in this case includes the process of blending and mixing, and incorporation by becoming part of the material, i.e., polymer backbone and cement. As used herein, the term “adhere” is meant to refer to ionic, covalent, electrostatic, or other chemical attachment of a compound, product, or composition to a substrate.
  • the term “antimicrobially enhancing” refers to the use of the compounds, products, or compositions of the present invention, preferably those wherein the organosilane has antimicrobial activity, along with other ingredients, surfactants, fillers, wetting agents, pigments, dyes, antimigrants, etc., to create a composition or solution capable of fulfilling its original purpose, based upon the other ingredients, and also of providing antimicrobial protection during the particular application.
  • the term “enhance” refers to the addition of antimicrobial activity to such compositions or solutions where no such activity previously existed, or to the increase of antimicrobial activity where the starting compositions or solutions already possessed antimicrobial activity.
  • hydrolyzable refers to whether the moiety is capable of or prone to hydrolysis (i.e., splitting of the molecule or moiety into two or more new molecules or moieties) in aqueous or other suitable media.
  • nonhydrolyzable refers to moieties that are not prone to or capable of hydrolysis in aqueous or other suitable media.
  • cationic is used to refer to any compound, ion, or moiety possessing a positive charge.
  • anionic is used to refer to any compound, ion, or moiety possessing a negative charge.
  • divalent and divalent are used to refer to moieties having valances of one and two, respectively.
  • salt is meant to apply in its generally defined sense as “compound formed by replacing all or part of the hydrogen ions of an acid with one or more cations of a base.” See, e.g., American Heritage Dictionary, Definition of “Salt” (1981).
  • suitable salts for the present invention may be formed by replacing a hydrogen ion of a moiety with a cation, such as K + , Na + , Ca 2+ , Mg 2+ , etc.
  • a cation such as K + , Na + , Ca 2+ , Mg 2+ , etc.
  • other suitable methods of generating salts are specified throughout this specification and are within the scope of the present definition.
  • the specific identity of the cation used for forming the salt is of lesser importance than the chemical structure of the anion of which the salt is formed.
  • food article refers to perishable or nonperishable foods such as meats, fruits and vegetables, and also refers to other foods such as grains and dairy products.
  • the food articles referred to herein are those which are perishable or prone to spoilage upon exposure to microbes or other pathogens.
  • a “consumable product” is meant to refer to food articles, fluids for drinking, medicines for ingestion, or any other product introduced internally via any means into a human or animal.
  • antimicrobial is used in its general sense to refer to the property of the described compound, product, composition, or article to prevent or reduce the growth, spread, formation, or other livelihood of organisms such as bacteria, viruses, protozoa, molds, or other organisms likely to cause spoilage or infection.
  • medical article is used to refer to any suitable substrate which is or may come into contact with medical patients (human or animal), medical caregivers, bodily fluids, or any other source of contamination or infection generally associated with hospitals, clinics, physician's offices, etc.
  • stabilizer is used to refer to ethers.
  • An archetypal ether is one having the formula R—O—R, wherein R is, independently, an organic group, and the ether has either a hydroxy functionality or a carboxylic ester functionality.
  • R is, independently, an organic group
  • the ether has either a hydroxy functionality or a carboxylic ester functionality.
  • the present invention provides the product formed from mixing an organosilane of the formula R n SiX 4-n where n is an integer of from 0 to 3, preferably 0 to 2; each R is, independently, a nonhydrolizable organic group; and each X is, independently, a hydrolyzable group; with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether has either a hydroxy functionality or a carboxylic ester functionality.
  • each R is, independently,
  • alkyl from 1 to 24 carbon atoms
  • alkyl polyol polyethylene glycol, polypropylene glycol, block and
  • alkyl triol with 3 to 24 carbon atoms
  • alkyl tetrol with 4 to 24 carbon atoms
  • alkyl pentol with 5 to 24 carbon atoms and alkyl hexol with 6 to 24 carbon atoms
  • glycol and polyols in formula R—O—R above are attached by either replacing a hydroxyl group or replacing any other atom in the glycol or polyol and attach the resulting radical to R—O.
  • each of the above hydroxide containing compounds is independently substituted by R′ in a number from 0 to the number of replaceable hydroxide hydrogen;
  • R′ in place of either hydroxyl hydrogen or hydroxyl group, being independently H, alkyl of from 1 to 24 carbon atoms, carbonic acid of from 1 to 24 carbon atoms, R′′ ring substituted aromatic phenol, heteroaryl ring substituted with R′′, phenol, (R′′—) x ring substituted saturated or unsaturated cyclic alcohol, where x is an integer from 0 to 15.
  • the cycle or ring size is from 3 to 8 carbon atoms, for the heterocycles O, N, and S are replacing carbon atoms in any number and combination.
  • R′′ is H, F, Cl, Br, I, CN, SCN, NH 2 , alkyl of from 1 to about 24 carbon atoms, acetyl, acetoxy, acyl, acyloxy, X 2 PO 4 , where X is any suitable cation.
  • R can contain a R′′′ x Y 3-x PO 4 group with x being an integer of 1 to 3 and R′′′ equals R, R as described above with the limitation that each R contains not more than 4R′′′ x Y 3-x PO 4 groups.
  • the molecular weight of the ether is up to approximately 10 000 grams average molecular weight and the ether contains at least one hydroxyl or alternatively one ester functionality.
  • the invention provides the product described above, wherein the organosilane is of the formula I, II, III, or IV
  • each R 1 is, independently, halogen or R 6 O, where R 6 is H, alkyl of from 1 to about 24 carbon atoms, acetyl, acetoxy, acyl, acyloxy, propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, block and copolymers of ethylene and propylene glycol, the alkyl monoether of from 1 to 24 carbons of the following: propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, block and copolymers of ethylene and propylene glycol; or the monoester of a carbonic acid of from 1 to 24 carbons and at least one of the following: propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, block and copolymers of ethylene and propylene glycol; sorbitan esters and their ethers; phenolic compounds substituted with an alkyl of from about 1 to about 24 carbons, such
  • R 35 is R 6 , H, halogen (such as Cl, Br, F, or I), NH 2 (CH 2 ) 2 NHR 2 , NH 2 R 2 , C 3 H 5 O 2 R 2 , C 4 H 5 O 2 R 2 , NaO(CH 3 O)P(O)R 2 , or ClCH 2 C 6 H 4 R 2 ;
  • halogen such as Cl, Br, F, or I
  • R 36 and R 37 are, independently, R 35 , halogen, H, alkyl, preferably of from 1 to 4 carbon atoms, more preferably of from 1 to 2 carbon atoms, isobutyl, phenyl, or n-octyl;
  • R 2 is R 6 , benzyl, vinyl or alkyl
  • R 3 and R 4 are, independently, R 35 , alkyl alcohol, alkoxy, alkyl of from 1 to 24 carbon atoms, preferably 1 to about 10 carbon atoms, more preferably alkyl of from 1 to 4 carbon atoms, or more preferably of from 1 to 2 carbon atoms;
  • R 3 and R 4 can, together, form a morpholine or cyclic or heterocyclic, unsaturated or saturated, five to seven-membered ring of the formula V:
  • k is an integer from 0 to 2, preferably 0 to 1, most preferably 1,
  • R 7 where the ring is saturated is CH 2 , O, S, NH, NH 2 + , NCH 2 CH 2 NH 2 , NCH 2 CH 2 NH 3 + , NCH 2 CH 2 N(R 8 )(R 9 ), NCH 2 CH 2 N + (R 8 )(R 9 )(R 10 ), N(alkyl), N(aryl), N(benzyl), where each R 8 , R 9 , and R 10 is, independently, benzyl, R 37 , polyglycol, preferably of from 1 to 4 carbon atoms, alkyl alcohol, preferably of from 1 to 4 carbon atoms, alkoxy, preferably of from 1 to 4 carbon atoms, or alkyl, from 1 to 24 carbon atoms, preferably 1 to about 10 carbon atoms, and the “alkyl” specified above is of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 3 carbon atoms,
  • the ring provided by formula V represents R 3 or R 4 , independently.
  • the nitrogen in formula I or II that is part of the ring structure of formula V is replaced by CH or CH 2 or saturated with hydrogen or alkyl substitution of from 1 to about 24 carbons or by removal of a positive charge.
  • This ring is attached to the nitrogen in structure I or II, by removing any one hydrogen from the structure and placing a bond from the nitrogen of I or II to the atom missing the hydrogen.
  • R 5 is alkyl alcohol, preferably of from 1 to 6 carbon atoms, more preferably of from 1 to 4 carbon atoms, R 35 , CH 2 C 6 H 5 , polyglycol, such as a polyethylene glycol or a polypropylene glycol, alkyl of from 1 to 24 carbon atoms, preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, alkoxy, of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, perfluoroalkyl, of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, perfluoroalkylsulfonate, of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, perfluoroalkylcarboxylate,
  • This invention provides a water stable composition, comprising water and an organosilane of interest, mixed with an ether; and a composition providing silane and ether, easily dissolved in many solvents, including water, storable and water stable when diluted with water. Further, the compositions according to the invention provide silane coatings that are capable of migration.
  • the present invention provides a composition for treating a substrate, comprising a carrier and an effective amount of an organosilane of interest and an ether as described herein.
  • the carrier may be water, or in further embodiments, the carrier is other than water.
  • the present invention also provides a product resulting from mixing an organosilane of the formula I, II, III, or IV:
  • the present invention also provides a method of treating a substrate, comprising contacting the substrate with a sufficient amount of the composition as described above for a period of time sufficient for treatment of the substrate.
  • the present invention provides a method of treating a substrate, comprising contacting the substrate with a sufficient amount of the compound as described above for a period of time sufficient for treatment of the substrate.
  • the present invention provides a treated substrate having adhered thereto the product produced by contacting the organosilane and the ether as described above.
  • the present invention provides a treated substrate having adhered thereto a compound produced by contacting the organosilane and the ether as described above.
  • the present invention provides a method of dyeing and treating a substrate, comprising contacting the substrate with an aqueous (i.e., substantially water soluble) composition comprising an aqueous soluble dye suitable for dyeing a substrate and the product formed from mixing an organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality.
  • an aqueous (i.e., substantially water soluble) composition comprising an aqueous soluble dye suitable for dyeing a substrate and the product formed from mixing an organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality.
  • the present invention provides a method of antimicrobially treating a substrate selected from the group consisting of a concrete pipe, food article, fluid container, glove, shower curtain, shower door, latex medical article, a tooth brush, a comb, a hair brush, a denture, an orthodontic retainer, a spa or pool filter, an air filter, an HVAC air system, a cabin air system, a marble article, a statue, an exposed work of art, a PE, PP or polyester plastic cover, a silicone or TEFLON® coated fiberglass article, a Dryvitt finish, a stucco finish, blended cotton, a bio-film, a bio-adhesive, a single ply roofing, a roofing shingle, and a fiberglass reinforcement product, comprising contacting the substrate with an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether
  • a further embodiment of the present invention provides a method of antimicrobially enhancing a product of rubbing alcohol, a flower preservative, or a waterproofing solution, comprising admixing with the product an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality.
  • the present invention provides water-stabilized and solubilized organosilane compounds, products, and compositions, methods of their use, and articles prepared using the compounds, products, and compositions.
  • the present invention is useful in stabilizing a broad variety of organosilanes of the general formula R n SiX 4-n where n is an integer of from 0 to 3, preferably 0 to 2; R is a nonhydrolizable organic group, such as but not limited to, alkyl, aromatic, organofunctional, or a combination thereof; and X is halogen, such as but not limited to, Cl, Br, or I, or X is hydroxy, alkoxy such as methoxy or ethoxy, acetoxy, or unsubstituted or substituted acyl or acyloxy.
  • X is prone to react with various hydroxyl containing molecules.
  • the present invention employs an ether as solvent.
  • the silane and ether mixture are stable.
  • the ether-silane mixtures often are less flammable than methanol mixtures and are easier to dissolve in water than many silanes in methanol.
  • the stabilizers are not sufficiently water-soluble, additional stability is achieved by mixing the organosilane with the stabilizer in a non-aqueous solvent.
  • the remaining solvent e.g., methanol
  • the remaining solvent is liberated via distillation, freeze-drying, evaporation or other methods known in the art for removal of volatile organic solvents.
  • an organosilane-stabilizing effect in water may still be achieved.
  • the solutions are stable for extended periods, from several days to several months. It will also be recognized that while aqueous silane stock solutions of up to 45% silane may be stabilized by ethers disclosed herein, working silane concentrations tend to be in the 0.001-10% silane range where the stabilization effects of the herein disclosed stabilizers are less challenged by the higher silane concentrations required in stock solutions. Acid pHs appear to be preferred, but not required, for stability of the solutions of the subject invention, whereas high pH reduces the stability of the aqueous compositions.
  • the solutions of the present invention are, in certain preferred embodiments, useful for the application of various organosilane coupling agents to surfaces in industrial and household uses without the use of toxic and/or flammable organic solvents.
  • One of ordinary skill in the art would recognize that the above preparation steps are merely guidelines and such a person would, without undue experimentation, be able to prepare the composition by varying the parameters for contacting or mixing the organosilane and the polyol and order of introduction of reagents and starting materials without deviating from the basic and novel characteristics of the present invention.
  • the present invention is useful for stabilizing organosilanes of the general formula R n SiX 4-n where n is an integer of from 0 to 3, preferably 0 to 2; R is a nonhydrolizable organic group (alkyl, aromatic, organofunctional or a combination thereof); and X is hydroxy, alkoxy, preferably methoxy or ethoxy, halogen, preferably Cl, Br, or I, acetoxy, acyl or substituted acyl or acyloxy, or a hydrolyzable polymer or other moiety prone to hydrolysis and/or environmental harmfulness.
  • organosilanes used in the practice of the present invention need not be, and often are not, water soluble.
  • the organosilanes selected for use in the present invention are solubilized in water by the stabilizer.
  • 4,390,712 is hereby incorporated by reference for its teaching of siloxane synthesis in an aqueous medium.
  • aqueous siloxane synthesis methods of the U.S. Pat. No. 4,390,712 patent are modified to advantage by performing the siloxane synthesis in the presence of the ether stabilizer as defined herein, thereby forming a stabilized siloxane-water composition while still taking advantage of the accelerated kinetics of siloxane formation in aqueous media noted in the U.S. Pat. No. 4,390,712 patent.
  • a further embodiment of this invention is a method for making an organosilane of the formula R n SiX 4-n where n is an integer of from 0 to 3, preferably 0 to 2; each R is, independently, a nonhydrolizable organic group; and each X is, independently, a hydrolyzable group; from starting materials in an aqueous solution in the presence of an effective amount of ether sufficient to stabilize the organosilane as it is formed from the reactants.
  • silanes for use in the compounds, products and compositions and methods of the present invention include silanes of the following formula:
  • each R 1 is, independently, halogen [Cl, Br, I, F] or R 6 O, where R 6 is H, alkyl of from 1 to about 6 carbon atoms, unsubstituted or substituted, preferably from 1 to about 2 carbon atoms and more preferably 1 carbon atom, or acetyl- or other acyl, including substituted acyl and acyloxy; or R 6 O can be derived from any hydroxylated polymer, hydroxylated liquid, or hydroxylated solid regardless of water solubility; or R 6 O can be derived from any polyglycol such as, but not limited to, polyethyleneglycols or polypropyleneglycols, such as poly(propyleneglycol)triol (glycerol propoxylate); R 2 is unsubstituted or substituted benzyl- or an unsubstituted or substituted alkyl of from 1 to about 3 carbon atoms, preferably alkyl of from 1 to 3 carbon
  • k is an integer from 0 to 2 and R 7 , where the ring is saturated, is CH 2 , O, S, NH, NH 2 + , NCH 2 CH 2 NH 2 , NCH 2 CH 2 NH 3 + , NCH 2 CH 2 N(R 8 )(R 9 ), NCH 2 CH 2 N + (R 8 )(R 9 )(R 10 ), N(alkyl), N(aryl), N(benzyl), and R 7 , where the ring is unsaturated is, N, N + H, N + (alkyl), N + (aryl), N + (benzyl), N—CH 2 —N, N + H—CH 2 —N, N + (alkyl)-CH 2 —N, N + (aryl)—CH 2 —N, or N + (benzyl)—CH 2 —N where R 8 , R 9 , and R 10 are, independently, benzyl, polyglycol, lower alkyl alcohol of from 1
  • Preferred organosilanes include, but are not limited to:
  • aminoethylaminopropyltrimethoxysilane NH 2 (CH 2 ) 2 NH(CH 2 ) 3 Si(OCH 3 ) 3 ,
  • silane-modified melamine Dow Corning Q1-6106
  • n-2-vinylbenzylamino-ethyl-3-aminopropyltrimethoxysilane HCL Dow Corning Z-6032
  • vinyltriethoxysilane H 2 C ⁇ CHSi(OCH 2 CH 3 ) 3 ,
  • dimethyldichlorosilane (CH 3 ) 2 SiCl 2 ,
  • dimethyldimethoxysilane (CH 3 ) 2 Si(OCH 3 ) 2 ,
  • diphenyldichlorosilane (C 6 H 5 ) 2 SiCl 2 ,
  • n-propyltrichlorosilane C 3 H 7 SiCl 3 ,
  • n-propyltrimethoxysilane C 3 H 7 Si(OCH 3 ) 3 ,
  • organosilane as a UV protectant
  • para-amino benzoic acid, cinnamic acid, benzoic acid and benzophenone are active ingredients.
  • These compounds and their alkyl derivatives attached to a silane are part of this invention. Attachment of the aforementioned molecules is by removal of one atom or group from these compounds and utilizing this free valence for bond formation to a silane from which an atom or group has been removed also. Additional examples are:
  • the compounds, products and compositions of the present invention are useful for a multitude of purposes. Such purposes include any known use for the preferred starting material organosilanes of the above-described general formula.
  • the presently described, water-stabilized, organosilane compounds, products, and compositions are suitable to applications such as: 1) treatment of surfaces, including fillers and pigments, 2) additives to coatings such as dyes, 3) as additives to organic monomers (such as acrylics) prior to formation of the respective polymer, 4) addition to the polymer prior to processing into final products, or 5) incorporation into polymer or substrate backbone, such as polyester or concrete.
  • organosilane quaternary ammonium compounds such as 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride as surface bonding antimicrobial agents
  • organofunctional silanes are contemplated, such as the use of the compounds, products and compositions of the invention in coating applications which include the treatment of surfaces or particles (pigments or fillers), in primers, in paints, inks, dyes and adhesives, and as reactive intermediates for silicone resin synthesis.
  • the present invention can be used to prepare, inter alia, agricultural products, cleaning compositions, antimicrobial sponges, antimicrobial bleaching agents, antimicrobial fillers for paints, plastics, or concrete, and to treat concrete structures such as livestock shelters, where microbial infestation is a problem.
  • surfaces and substrates treatable with the compounds, products and compositions of the invention solution include, but are not limited to, textiles, carpet, carpet backing, upholstery, clothing, sponges, plastics, metals, surgical dressings, masonry, silica, sand, alumina, aluminum chlorohydrate, titanium dioxide, calcium carbonate, wood, glass beads, containers, tiles, floors, curtains, marine products, tents, backpacks, roofing, siding, fencing, trim, insulation, wall-board, trash receptacles, outdoor gear, water purification systems, and soil.
  • articles treatable with the compounds, products and compositions of the invention include, but are not limited to, air filters and materials used for the manufacture thereof, aquarium filters, buffer pads, fiberfill for upholstery, fiberglass ductboard, underwear and outerwear apparel, polyurethane and polyethylene foam, sand bags, tarpaulins, sails, ropes, shoes, socks, towels, disposal wipes, hosiery and intimate apparel; cosmetics, lotions, creams, ointments, disinfectant sanitizers, wood preservatives, plastics, adhesives, paints, pulp, paper, cooling water, and laundry additives and non-food or food contacting surfaces in general.
  • treatment generally involves contacting or mixing the article to be treated with a water-stabilized organosilane solution of the present invention, comprising the organosilane-stabilizer derived compound in an aqueous solution, for a period of time sufficient for permanent bonding of the active organosilane ingredient (or portion thereof) to the article.
  • organosilane-ether mixtures according to the invention can be used directly without dilution with water, or, alternatively, dilutions with solvents other than water can be used according to the invention.
  • treatment begins immediately upon contact, but preferably requires from about 15 seconds to about 48 hours.
  • the public literature provides many examples and guidelines for efficient silane surface treatment and incorporation, for example “Applying A Silane Coupling Agent,” page 49, Gelest Catalog, by Gelest, Inc. Tullytown, Pa., 1995. Further general guidelines for application are as follows: For dipping a large object, it is preferred that 1-2 minutes of submersion is allowed in the solution and then the object is permitted to dry or is dried. However, some objects will benefit from very short dipping, mixing or contacting times, for example, fabric may pass through an aqueous bath of the composition at a rate of 40 yards per minute or more. After dipping, excess solution may be gently wiped or rinsed off.
  • the solution may be sprayed on the substrate.
  • the composition of the invention may be placed in a high intensity solid mixer and formed into a powder which is then dried. The dried powder may then be used in a sprayer, if desired.
  • the solutions may be wiped onto the substrate and applied using sponges or cloths, etc.
  • the solutions of the present invention can be added to pigments and fillers and stirred therewith for several (2-3) minutes.
  • the solutions can be added to an emulsion or other existing formulation prior to use.
  • the solutions can be used in addition to, with or as a spray coolant for extruded fibers.
  • compositions can be used in padding processes as are known in textile mills.
  • the surface or fabric may, optionally, be heated to further complete bonding of the compound, product, or composition to the surface or substrate.
  • the water-stable organosilane compounds, products and compositions of the present invention are, therefore, advantageous in treating a variety of substrates without the use of toxic organic solvents, and provide for the safe, long-term storage of activated organosilanol compound which can be used without further preparation.
  • the stabilization scheme described herein does not interfere with the binding of the organosilane (or at least the core, operative portion thereof) to the substrate.
  • the present invention provides a generally applicable scheme for solvating some water insoluble organosilanes.
  • organosilanes R n SiX 4-n are prepared, dissolved, stored, applied, and in any way used in water.
  • organosilanes R n SiX 4-n in other solvents or mixed in other media (solids, polymer mixes, fillers, pigments, powders, dyes or emulsions) where exposure to water occurs but could be detrimental due to undesired or untimely self-condensation of the silanol.
  • the stabilizing compounds and methods could be used in addition to or in conjunction with various art-known stabilization methods for organosilanes, such as the use of ionic or non-ionic surfactants and detergents.
  • the present compounds, products and compositions can be used in the incorporation of an organosilane antimicrobial agent in most textile goods (woven and non-woven) and yarns (synthetic and natural).
  • the process provides articles that are durable and the process itself is effective and does not require additional manufacturing steps or increase manufacturing cost.
  • incorporation process 1 does not add any additional step in the manufacturing process and does not require any equipment modification; and 2) is believed not to lose its antimicrobial characteristics and its effectiveness during further production of the textile goods.
  • the water-stable compounds, products and compositions of the present invention during the dye process not only would the organosilane antimicrobial agent remain unaffected by the dying agent, but the end-product textile goods would also exhibit excellent dyeing properties.
  • the water-stabilized organosilane compounds, products and compositions of the present invention are useful for a number of applications where the previous instability, insolubility prevented or, at least, hindered or restricted use of some organosilane agents.
  • the previous instability, insolubility prevented or, at least, hindered or restricted use of some organosilane agents are useful for a number of applications where the previous instability, insolubility prevented or, at least, hindered or restricted use of some organosilane agents.
  • Treating food crops e.g., perishables such as vegetables, fruits, or grains
  • the compounds, products and compositions of the present invention imparts antimicrobial protection to the outer surface of the food crop. It is believed that such protection occurs without diffusing, migrating or leaching the antimicrobial agent from the bonded antimicrobial coating of the food item, and provides prolonged, safe and non-toxic antimicrobial protection.
  • the method involves treating fruits and vegetables in the rinse cycle, during or after the normal cleaning/water spraying or during or after blanching. Thorough cleaning of fruits and vegetables at the processing plant is preferred for initially removing microorganisms.
  • machines are used initially to remove soil, chemicals used in growing, spoilage bacteria, and other foreign materials. These machines also use high velocity water sprays to clean the products. After the cleaning, raw foods or other crop materials are prepared for further processing such blanching (i.e., the food is immersed in water at 190 to 210 degrees F. or exposed to steam).
  • Microorganisms are controlled by the production plant up until the fruit or vegetable is removed. But once it is removed, organisms such as yeast, mold, and bacteria, begin to multiply, causing the food to loose flavor and change in color and texture. To keep the food from spoiling, a number of methods have been employed, such as refrigerators, to slow down the microorganisms and delay deterioration. Unfortunately, such known methods will preserve raw foods for few weeks at the most.
  • the compounds, products and compositions of the present invention can preserve these items for extended periods. For instance, the compositions, products, or compounds may be added to an existing water line feeding the sprayers for the foods, where such sprayers are used.
  • a simple dipping process may be used, where the dipping requires only a few seconds to impart antimicrobial protection.
  • Low concentrations of 0.1 to 1% aqueous solution (0.1 to 1% by volume) of the compositions provide satisfactory results.
  • the presently described method can also control pathogens on poultry carcasses and in other susceptible meat and fish.
  • Treating baby milk/juice bottles, nipples, pacifiers and toys with the compounds, products and compositions of the present invention in the factory or leaching the agent from the bonded surface, can provide prolonged and safe/non-toxic antimicrobial protection. Treating such articles also eliminates odors caused by microbial contamination. A dipping method as described above may be used to treat these articles.
  • the present compounds, products and compositions can be used to treat these articles to prevent microbial growth and contamination by coating an effective amount of the products and compounds of the invention thereon.
  • the articles employed can be coated by allowing for 1 to 2 minutes submersion (e.g., by dipping), and thereafter, the treated surface is allowed to dry at room temperature. The article is then rinsed of any excess antimicrobial agent.
  • Thorough cleaning and sterilization is a preferred step in removing the microorganisms on the surface of the article prior to “coating” the said articles.
  • concentrations of 10% or less by weight of the compounds, products and compositions of the invention in water are used for long lasting protection.
  • Treating surgical gloves with the compounds, products and compositions of the present invention before or during a surgical procedure can kill microorganisms on contact. It is believed that the treated gloves do not diffuse or leach the antimicrobial agent from the glove surface and provide prolonged antimicrobial activity with safe and non-toxic antimicrobial protection.
  • the antimicrobial treatment of surgical gloves with compositions according to the invention provides a zone of inhibition and migration of the active ingredient to improve surface coverage while providing long-lasting, residual protection.
  • Surgical gloves are treated, preferably, by submerging in the solution of Example I, diluted to 1% W/V for at least 30 seconds. This method will permit doctors to use and, if necessary, re-use the same gloves (even without removing them) without undue fear of contamination.
  • Treating polymers and other materials such as concrete by incorporation into the bulk material protects from deterioration, odor build-up and potentially harmful contamination of the surface.
  • Incorporation of a sun protection into polymers and/or application of sun protection to the surface extends the life of the product and reduces damage to products and skin.
  • HDP high density polyester fabric plastic covers for dump sites, water reservoirs and generally for soil protection
  • a method of treating blended cotton before or after picking machines make the cotton into rolls or laps
  • the silane in the following examples is Dow Corning 5772 or a silane of similar composition as Dow Corning 5772. Both are collectively referred to as silane concentrate.
  • a solution or mixture is considered stable if an aqueous solution can be produced and remain without precipitation of the silane for longer time than would be expected for the non-stabilized silane. If the silane itself is insoluble in water than the formation of an aqueous solution is a benefit within the scope of the invention.
  • Glycol Ether DB is diethylene glycolbutylether
  • BARTOX is the commercial name for a variety of amine oxides which are surfactants, and “BARLOX 12” is a specific type of such surfactant
  • DI Water is deionized or purified water.
  • a fabric sample from Southern Phenix Textiles, Inc., treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to the American Association of Textile Chemists and Colorists (AATCC) Test Method 147-1993.
  • the test method involves the incubation of the test material with staphylococcus aureus ATCC 6538 and in another part with klebsiella pneumoniae ATCC 4352. Incubation is at 37° C. for 18 to 24 hours. Inhibition is indicated by prevention of growth of microorganisms under the sample. Inhibition of growth beyond the sample, called the zone of inhibition is a result of migration of the antimicrobial material into the nutrient broth.
  • the fabric pieces provided inhibition under the sample for staphylococcus aureus and klebsiella pneumoniae for washed and unwashed samples.
  • the zone of inhibition was found to be 1 mm for both organisms for the washed sample and 8 mm for staphylococcus aureus and 3 mm for klebsiella pneumoniae for the unwashed sample.
  • a sample of Spa and Pool Filter Medium, treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to (AATCC) Test Method 147-1993 according to the previous example.
  • the fabric pieces provided inhibition under the sample for staphylococcus aureus and no inhibition of klebsiella pneumoniae.
  • the zone of inhibition was found to be 2 mm for staphylococcus aureus and 0 mm for klebsiella pneumoniae.
  • a sample of flooring tile, treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to (AATCC) Test Method 147-1993 according to the previous example.
  • the fabric pieces provided inhibition under the sample for staphylococcus aureus and no inhibition of klebsiella pneumoniae.
  • the zone of inhibition was found to be 2 mm for staphylococcus aureus and 0 mm for klebsiella pneumoniae.

Abstract

The composition formed by mixing an organosilane with an ether. Water-stabilized organosilane compounds. A water stable composition made from the ether and organosilane composition and water. A method of treating a substrate by mixing or contacting the substrate with the product, compound, or composition of this invention for a period of time sufficient for treatment of the substrate. A treated substrate having adhered thereto the product, compound, or composition of this invention. A method of dyeing and treating a substrate. A method of antimicrobially treating a food article. A method of antimicrobially coating a fluid container. A method of antimicrobially coating a latex medical article.

Description

    CROSS-REFERENCE TO A RELATED APPLICATION
  • This is a continuation of Ser. No. 09/654,232, filed Sep. 2, 2000, which is a continuation of Ser. No. 09/116,636, filed Jul. 16, 1998, now U.S. Pat. No. 6,113,815, issued Sep. 5, 2000, which claims the benefit to provisional application Serial No. 60/053,155, filed Jul. 18, 1997 under 35 USC §119.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The invention relates to organosilane compounds, products and methods for their use. In particular, this invention provides water-stable organosilane compounds, products, and compositions for treating various substrates; articles treated with the compounds, products and compositions; and methods of treatment using the compounds, products and compositions. New migratory activity for silanes is provided to the new compounds and compositions according to the invention. [0003]
  • 2. Background [0004]
  • Organosilanes of the general formula R[0005] nSiX4-n where n is an integer of from 0 to 3, but more generally from 0 to 2 (where when n is 3 the organosilanes may only dimerize); R is a nonhydrolyzable organic group, such as, but not limited to, alkyl, aromatic, organofunctional, or a combination thereof, and X is alkoxy, such as methoxy or ethoxy, are prone to self-condensation rendering such organosilanes unstable in water over commercially relevant periods of time. Additionally, X can be a halogen, such as Cl, Br, or I, and is similarly liberated as HCl, HBr, or HI. For such organosilanes, the X moiety reacts with various hydroxyl containing molecules in aqueous media to liberate methanol, ethanol, HCl, HBr, HI, H2O, acetic acid, or an unsubstituted or substituted carboxylic acid and to form the hydroxylated, but condensation-prone compound.
  • For organosilanes R[0006] nSiX4-n, where n is an integer from 0 to 2, hydrolysis of the first two X groups with water produces a species bearing —Si(OH)2— units which can self-condense through the hydroxyl moieties to linear and/or cyclic oligomers possessing the partial structure HO—Si—(O—Si)mm—O—Si—O—Si—O—Si—OH, where mm is an integer such that an oligomer is formed. For those cases, RSiX3, hydrolysis of the third X group generates a silanetriol (RSi(OH)3) which produces insoluble organosilicon polymers through linear and/or cyclic self-condensation of the Si(OH) units. This water induced self-condensation generally precludes storage of most organosilanes RnSiX4-n, where n ranges from 0 to 2, inclusive, in water. Except for some organosilanes which can be stable in very dilute solutions at specific pH ranges, the use of water solutions of most organosilanes require the use of freshly prepared solutions.
  • One commercially relevant example of an organosilane suffering from such undesirable self-condensation is the antimicrobial Dow Corning 5700 (Dow Corning Corporation, Midland, Mich.). The literature describes the active ingredient of Dow Corning 5700 as 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride. However, in aqueous media, it is believed that the correct active ingredient is more likely 3-(trihydroxysilyl)propyl-dimethyloctadecyl ammonium chloride. Nonetheless, Dow Corning 5700 is a water activated antimicrobial integrated system which is capable of binding to a wide variety of natural and synthetic substrates, including fibers and fabrics, to produce a durable surface or fabric coating. 3-(Trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride is prepared by quaternization of dimethyloctadecylamine with 3-chloropropyl trimethoxysilane. [0007]
  • The C[0008] 18 hydrocarbon chain quaternary ammonium portion of the molecule possesses long-acting antimicrobial properties and provides initial association with the surface of the substrate through ionic bonds and/or electrostatic interaction. Preferably, the treated surface becomes permanently coated with a covalently bound octadecylammonium ion, providing a durable, long-acting antimicrobial coating that is able to destroy microbes that come into contact with the surface.
  • Unfortunately, as noted above, organosilanes in water, such as the activated mixture of 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride and water, are generally unstable and prone to self-condensation. For instance, the mixture of 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride and water begins to lose effectiveness in as little as four to eight hours. Gel formation in this and similar silane formulations in water begins to occur in even shorter times. The limitations of such organosilanes in aqueous media are further described in U.S. Pat. No. 5,411,585, the contents of which are hereby incorporated by this reference. Moreover, such products are notorious for agitation difficulty during the addition of the silane to water. [0009]
  • The use of quaternary ammonium silicon compounds as antimicrobial agents in accordance with the prior art is well known and taught in a wide variety of United States patents, e.g., U.S. Pat. Nos. 3,560,385; 3,794,736; 3,814,739, the contents of which are hereby incorporated by this reference. It is also taught that these compounds possess certain antimicrobial properties which make them valuable and very useful for a variety of surfaces, substrates, instruments and applications (see, e.g., U.S. Pat. Nos. 3,730,701; 3,794,736; 3,860,709; 4,282,366; 4,504,541; 4,615,937; 4,692,374; 4,408,996; and 4,414,268, the contents of which are hereby incorporated by this reference). While these quaternary ammonium silicon compounds have been employed to sterilize or disinfect many surfaces, their employment is still limited because of their toxicity often as a result of the solvent system used to deliver the compound, the necessity for a solvent solution (for instance, Dow Corning antimicrobial agent 5700 contains over 49% methanol), short term stability (stability of aqueous silane solutions varies from hours to several weeks only), and poor water solubility. For instance, while 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride does not suffer from water insolubility, it is difficult to dissolve in water and tends to form lumps before it slowly dissolves. It is unstable in water, and, because it is shipped in 50% methanol, it is overly toxic and flammable. Many other antimicrobial organosilanes, especially quaternary ammonium silicon compounds, also suffer from problems associated with physical health hazards, e.g., precautions must be taken to avoid contact with both skin and eyes, accidental spills to the surrounding area, flammability, and the added manufacturing steps needed in order to incorporate the such antimicrobial agents into other articles and surfaces, resulting in much higher manufacturing costs. [0010]
  • Therefore, there exists a need for extended shelf-life, water-stable organosilane compounds, products and compositions whereby, upon application, the active portion of the organosilane is operative for the selected application. Moreover, there exists a need for water-stable, organosilane compounds, products and compositions which are essentially non-toxic, non-flammable, uniformly dispersable, and simple and economical to use. There also exists a need for highly concentrated organosilane compositions which are essentially non-toxic or of low toxicity, non-flammable, uniformly dispersible and simple and economical to use and stable in water when further diluted with water. In the instant application, we disclose the finding that compounds having a least one ether group and hydroxyl or ester functionality, stabilize aqueous organosilane solutions. The archetypal example of ether according to the instant invention being glycol ether DB. Accordingly, this invention provides for a much expanded scope of ether compounds useful in the stabilization of organosilane compounds. [0011]
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention fulfills these needs by providing water-stable organosilane compounds, products (i.e., the compounds or compositions formed from performing a specified reaction) and compositions, methods for their use, and articles prepared using the compounds, products, and compositions. [0012]
  • In particular, the present invention provides the product formed from mixing an organosilane of the formula R[0013] nSiX4-n where n is an integer of from 0 to 3, preferably 0 to 2; each R is, independently, a nonhydrolyzable organic group; and each X is, independently, a hydrolyzable group (hereinafter, “organosilane of interest”); with an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality.
  • Accordingly, in one embodiment, this invention provides a water-stable composition, comprising the product or composition of the invention and water. [0014]
  • In a further embodiment, the present invention provides a composition for treating a substrate, comprising a carrier and an effective amount of the product or compound of the invention. [0015]
  • In yet another embodiment, the present invention provides a method of treating a substrate, comprising mixing the substrate with a sufficient amount of the product, compound, or composition of the invention for a period of time sufficient for treatment of the substrate. [0016]
  • In a further embodiment, the present invention provides a composition for treating a substrate by incorporation into the substrate. [0017]
  • In a further embodiment, the present invention provides a composition as a concentrated solution, easily diluted with water, providing a water stable composition. [0018]
  • In a further embodiment, the present invention provides an application to a concentrated solution if not easily dissolved in water after aging, by applying an amine oxide or similar surfactant to the water prior or after silane addition to accelerate dissolution. [0019]
  • In a further embodiment, the present invention provides a composition as a concentrated solution to improve ease of dissolution in water, by applying an amine oxide or similar surfactant to the concentrate, to accelerate dissolution. [0020]
  • In a further embodiment, the present invention provides a composition as a concentrated solution that when diluted with water provides a white mixture easily clarified with acid or amine oxide or similar surfactant. [0021]
  • In a further embodiment, the present invention provides a treated substrate having adhered thereto or dispersed therein the product, compound, or composition of the invention. [0022]
  • In addition, the present invention provides a method of dyeing and treating a substrate, comprising contacting the substrate with an aqueous composition comprising an aqueous soluble dye suitable for dyeing a substrate and the product formed from mixing an organosilane of interest with an ether. [0023]
  • A further embodiment of the present invention provides a method of antimicrobially treating a substrate selected from the group consisting of a concrete pipe, a tooth brush, a food article, fluid container, latex medical article, gloves, shoes, a comb, a hair brush, a denture, an orthodontic retainer, a spa or pool filter, an air filter, an HVAC air system, a cabin air system, a marble article, a statue, an exposed work of art, a PE, PP or polyester cover, a silicone or TEFLON® coated fiberglass article, a Dryvitt finish, a stucco finish, blended cotton, a bio-film, a bio-adhesive, a single ply roofing, a roofing shingle, and a fiberglass reinforcement product, comprising contacting the substrate with an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has a hydroxy functionality or a carboxylic ester functionality. [0024]
  • In addition, the present invention also provides a method of antimicrobially enhancing a product of rubbing alcohol, a flower preservative, or a waterproofing solution, comprising admixing with the product an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality. [0025]
  • A further embodiment of this invention is a method for making an organosilane of interest from starting materials in an aqueous solution in the presence of an ether, where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has a hydroxy functionality or a carboxylic ester functionality. [0026]
  • Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. [0027]
  • DETAILED DISCLOSURE OF THE INVENTION
  • The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention. [0028]
  • Before the present compounds, products, compositions, and methods are disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It is also to be understood that subject matter covered under the definition of certain terms, may, in some instances, fall under another term as well. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. [0029]
  • Throughout this application, where publications are referenced, the disclosures of these publications in their entireties are hereby incorporated by reference into this application. [0030]
  • The term “alkyl” as used herein refers to a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl (“Me”), ethyl (“Et”), n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. [0031]
  • “Alkyl alcohol” as used herein refers to an alkyl having attached thereto one or more hydroxy moieties, such as, but not limited to, —CH[0032] 2CH2OH, CH2CH(OH)CH,3CHO2H, CH2CH2CH2OH, CH2CH2CH(OH)CH3, CH2CH2CH(OH)CH2OH, or CH2CH(OH)CH(OH)CH3.
  • The term “alkoxy” as used herein intends an alkyl group bound through a single terminal ether linkage; that is, an “alkoxy” group may be defined as —OR where R is alkyl as defined above. [0033]
  • “Glycol” as used herein refers to glycol compounds having up to 24 carbon atoms, which includes, but is not limited to, ethylene glycol, propylene glycol, butylene glycol, isobutylene glycol or hexylene glycol. [0034]
  • “Polyglycol” as used herein refers to a compound or moiety which takes the polymeric form of glycol, such as, but not limited to, polyethylene glycol or polypropylene glycol. Polyglycol would also include, for example, block and copolymers of ethylene glycol and propylene glycol. Polyglycols useful in the subject invention may have an average molecular weight of up to about 10,000 g/mol. [0035]
  • “Polyalkylethers” refers to alkyls or alkyl alchohols interconnected by or otherwise possessing multiple ether linkages. Polyalkylethers useful in the subject invention may have an average molecular weight of up to about 10,000 g/mol. [0036]
  • “Alkyl glycol” as used herein refers to an alkyl connected to a glycol through an ether linkage. An example of an alkyl glycol includes, but is not limited to, butyl glycol. [0037]
  • “Alkyl polyglycol” as used herein refers to alkyl connected to a polyglycol through and ether linkage. Alkyl polyglycol compounds useful in the subject invention may have an average molecular weight of up to 10,000 g/mol. [0038]
  • As used herein, “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, the phrase “optionally substituted lower alkyl” means that the lower alkyl group may or may not be substituted and that the description includes both unsubstituted lower alkyls and lower alkyls where there is substitution. [0039]
  • By the term “effective amount” of a compound, product, or composition as provided herein is meant a sufficient amount of the compound, product, or composition to provide the desired result. As will be pointed out below, the exact amount required will vary from substrate to substrate, depending on the particular compound, product, or composition used, its mode of administration, and the like. Thus, it is not always practical to specify an exact “effective amount,” especially because a range of amounts or concentrations will usually be effective. However, an appropriate effective amount may be determined by one of ordinary skill in the art using only routine experimentation as a matter of optimization. [0040]
  • The term “cyclic” is used to refer to all aliphatic or aromatic hydrocarbons having one or more closed rings, whether unsaturated or saturated. Preferably, cyclic compounds possess rings of from 5 to 7 atoms, preferably 6 carbon atoms. Such rings fall into three classes: alicyclic, aromatic (“arene”), and heterocyclic. Moreover, when used with respect to cyclic compounds or moieties, the term “unsaturated” refers to such compound or moiety possessing at least one double or triple bond or otherwise constituting an aromatic compound or moiety. Moreover, the term “saturated” refers to compounds or moieties possessing no double or triple bonds within the ring, i.e., where all available valence bonds of an atom, especially carbon, are attached to other atoms. [0041]
  • The term “heterocyclic” refers to a cyclic compound or moiety where one or more of the carbon atoms of the ring has been substituted with a heteroatom, including, but not limited to O, N, or S. [0042]
  • The term “aryl” and “aromatic” are used interchangeably herein and refer to a compound or moiety whose molecules have a ring or multiple (poly) ring structure characteristic of benzene, naphthalene, phenanthrene, anthracene, etc. Examples of aryls or aromatics also include, but are not limited to, phenyl, benzyl, naphthyl, benzylidine, xylil, styrene, styryl, phenethyl, phenylene, benzenetriyl, etc. [0043]
  • The term “heteroaryl” and “heteroaromatic” are used interchangebly and refer to an aryl where one or more of the carbon atoms of a ring have been substituted with a heteroatom, including, but not limited to, O, N, or S. [0044]
  • The term “cyclic alcohol” as used herein refers to a cyclic molecule substitued with one or more hydroxy moieties. Examples include, but are not limited to, Phenol and cyclohexanol. [0045]
  • As used herein, especially in reference to alkyl and alkoxy, the term “lower” refers to a moiety having from 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. [0046]
  • As used herein, the term “suitable” is used to refer a moiety which is compatible with the compounds, products, or compositions as provided herein for the stated purpose. Suitability for the stated purpose may be determined by one of ordinary skill in the art using only routine experimentation. [0047]
  • As used herein, “substituted” is used to refer, generally, to a carbon or suitable heteroatom having a hydrogen or other atom removed and replaced with a further moiety. In one embodiment, halogen, hydroxy, and nitrogen based substitutions of hydrocarbon hydrogens are contemplated as within the scope of the present invention for the claimed structures. Moreover, it is intended that “substituted” refers to substitutions which do not change the basic and novel utility of the underlying compounds, products, or compositions of the present invention. “Unsubstituted” refers to a structure wherein the reference atom does not have any further moieties attached thereto or substituted therefor. [0048]
  • As used herein, “branched” is used to refer, generally, to a moiety having a carbon chain backbone, e.g., alkyl or alkoxy, wherein the backbone may contain one or more subordinate carbon chain branches. For example, isobutyl, t-butyl, isopropyl, CH[0049] 2CH2C(CH3)(H)CH2CH3, CH2C(CH2CH3)(H)CH2CH3, CH2CH2C(CH3)CH3, and CH2CH2C(CH3)3 would all be considered branched moieties. Moreover, it is intended that “branched” variations of the moieties herein described refer to variations which do not change the basic and novel utility of the underlying compounds, products, or compositions of the present invention. “Unbranched” refers to a structure wherein the carbon chain does not have any branches thereon, i.e., where the carbon chain extends in a direct line.
  • As used herein, the term “acyl” refers to organic acid derived moieties of the formula RCO where R is an organic molecule. The free valence on C is used to bond to other groups or atoms. [0050]
  • As used herein, the term “acyloxy” refers to organic acid derived moieties of the formula RCOX where R is an organic molecule and X, instead of being hydroxy, is represents oxygen attached to another group or atom. [0051]
  • As used herein, the term “perfluoro” or “perfluoro-analog” refers to a hydrocarbon where the hydrogen atoms attached to carbons have been replaced with F atoms. Preferably, but not necessarily, in perfluoro-analogs, most if not all of the H atoms are replaced with F atoms. A “fluoro-” analog is contemplated to indicate a hydrocarbon where at least one hydrogen atom attached to a carbon is replaced with an F atom. [0052]
  • As used herein, “substrate” refers to any article, product, or surface that can be treated with the inventive compounds, preferably as enumerated hereinbelow under the heading “Uses,” as described in the Examples hereto, and as specified in the relevant claims appended hereto. Suitable substrates are generally characterized by either having a negatively charged surface of oxygen atoms, or any surface capable of electrostatically, ionically, or covalently adhering or binding to the compounds, products, or compositions of the present invention. Preferably the adhering or binding occurs at the silicon atoms of the organosilane portion of the compounds, products, or compositions of the present invention, but such binding is not a requirement. “Substrate” also refers to materials that are treated by incorporation of the compounds and/or compositions of the present invention. Incorporation in this case includes the process of blending and mixing, and incorporation by becoming part of the material, i.e., polymer backbone and cement. As used herein, the term “adhere” is meant to refer to ionic, covalent, electrostatic, or other chemical attachment of a compound, product, or composition to a substrate. [0053]
  • As used herein, the term “antimicrobially enhancing” refers to the use of the compounds, products, or compositions of the present invention, preferably those wherein the organosilane has antimicrobial activity, along with other ingredients, surfactants, fillers, wetting agents, pigments, dyes, antimigrants, etc., to create a composition or solution capable of fulfilling its original purpose, based upon the other ingredients, and also of providing antimicrobial protection during the particular application. The term “enhance” refers to the addition of antimicrobial activity to such compositions or solutions where no such activity previously existed, or to the increase of antimicrobial activity where the starting compositions or solutions already possessed antimicrobial activity. [0054]
  • As used herein, “hydrolyzable” refers to whether the moiety is capable of or prone to hydrolysis (i.e., splitting of the molecule or moiety into two or more new molecules or moieties) in aqueous or other suitable media. Conversely, “nonhydrolyzable” refers to moieties that are not prone to or capable of hydrolysis in aqueous or other suitable media. [0055]
  • As used herein, “cationic” is used to refer to any compound, ion, or moiety possessing a positive charge. Moreover, “anionic” is used to refer to any compound, ion, or moiety possessing a negative charge. Furthermore, “monovalent” and “divalent” are used to refer to moieties having valances of one and two, respectively. As used herein, the term “salt” is meant to apply in its generally defined sense as “compound formed by replacing all or part of the hydrogen ions of an acid with one or more cations of a base.” See, e.g., American Heritage Dictionary, Definition of “Salt” (1981). Therefore, suitable salts for the present invention may be formed by replacing a hydrogen ion of a moiety with a cation, such as K[0056] +, Na+, Ca2+, Mg2+, etc. In addition, other suitable methods of generating salts are specified throughout this specification and are within the scope of the present definition. For the purposes of the present invention, the specific identity of the cation used for forming the salt is of lesser importance than the chemical structure of the anion of which the salt is formed.
  • As used herein, “food article” refers to perishable or nonperishable foods such as meats, fruits and vegetables, and also refers to other foods such as grains and dairy products. In preferable embodiments, the food articles referred to herein are those which are perishable or prone to spoilage upon exposure to microbes or other pathogens. In addition, a “consumable product” is meant to refer to food articles, fluids for drinking, medicines for ingestion, or any other product introduced internally via any means into a human or animal. [0057]
  • As used herein, the term “antimicrobial” is used in its general sense to refer to the property of the described compound, product, composition, or article to prevent or reduce the growth, spread, formation, or other livelihood of organisms such as bacteria, viruses, protozoa, molds, or other organisms likely to cause spoilage or infection. [0058]
  • As used herein, the term “medical article” is used to refer to any suitable substrate which is or may come into contact with medical patients (human or animal), medical caregivers, bodily fluids, or any other source of contamination or infection generally associated with hospitals, clinics, physician's offices, etc. [0059]
  • As used herein, the term “stabilizer” is used to refer to ethers. An archetypal ether is one having the formula R—O—R, wherein R is, independently, an organic group, and the ether has either a hydroxy functionality or a carboxylic ester functionality. Such compounds have been found to stabilize the organosilanes of the invention by preventing self-condensation or other inactivation of the resulting compounds and products and simplifying transportation, dilution with water, and stabilization in water and providing new migratory properties to the products. [0060]
  • With these definitions in mind, the present invention provides the product formed from mixing an organosilane of the formula R[0061] nSiX4-n where n is an integer of from 0 to 3, preferably 0 to 2; each R is, independently, a nonhydrolizable organic group; and each X is, independently, a hydrolyzable group; with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether has either a hydroxy functionality or a carboxylic ester functionality.
  • More preferably, in the above product, n is an integer from 0 to 2, preferably 1; each R is, independently, alkyl, preferably of from 1 to 22 carbon atoms branched or unbranched, substituted or unsubstituted, more preferably of from 1 to 6 carbon atoms or from 10 to 20 carbon atoms, most preferably of from 1 to 4 carbon atoms or of from 14 to 18 carbon atoms; alkyl alcohol of similar carbon lengths, branching, and substitution, or aromatic, such as benzyl, phenyl, etc.; each X is, independently, hydroxy, alkoxy, halogen (such as, but not limited to, Cl, Br, I, or F), acetyl, acetoxy, acyl, acyloxy, a hydroxylated solid or liquid polymeric moiety, polyglycol or polyalkylether; and ether stabilizers according to the invention are of the formula [0062]
  • R—O—R
  • and each R is, independently, [0063]
  • alkyl from 1 to 24 carbon atoms, [0064]
  • alkyl polyol, polyethylene glycol, polypropylene glycol, block and [0065]
  • co-polymers of ethylene and propylene glycol and [0066]
  • block and copolymers of [0067]
  • ethylene glycol, propylene glycol, butyl glycol, pentyl glycol, hexyl glycol, alkyl glycol with 2 to 24 carbon atoms, ethylene glycol, propylene glycol, butyl glycol, pentyl glycol, hexyl glycol, alkyl glycol with 2 to 24 carbon atoms, [0068]
  • alkyl triol with 3 to 24 carbon atoms, alkyl tetrol with 4 to 24 carbon atoms, and alkyl pentol with 5 to 24 carbon atoms and alkyl hexol with 6 to 24 carbon atoms, [0069]
  • aromatic alcohol, heteroaromatic alcohol, saturated and unsaturated aliphatic cyclic alcohol, each with ring sizes of from 3 to 8 carbon atoms and in addition in hetero-cycles N, O, S in place of carbon atoms in any number and combination, with from 1 to 6 hydroxyl groups on the cyclic alcohol, and substitution on the ring by (R[0070] 3)x with x being an integer from 0 to 3, where R3 is, independently, a (OH)y substituted alkyl from 1 to 24 carbon atoms where y is an integer from 0 to 6.
  • The glycol and polyols in formula R—O—R above are attached by either replacing a hydroxyl group or replacing any other atom in the glycol or polyol and attach the resulting radical to R—O. [0071]
  • Alternatively, each of the above hydroxide containing compounds is independently substituted by R′ in a number from 0 to the number of replaceable hydroxide hydrogen; [0072]
  • and with R′ in place of either hydroxyl hydrogen or hydroxyl group, being independently H, alkyl of from 1 to 24 carbon atoms, carbonic acid of from 1 to 24 carbon atoms, R″ ring substituted aromatic phenol, heteroaryl ring substituted with R″, phenol, (R″—)[0073] x ring substituted saturated or unsaturated cyclic alcohol, where x is an integer from 0 to 15. The cycle or ring size is from 3 to 8 carbon atoms, for the heterocycles O, N, and S are replacing carbon atoms in any number and combination. Where R″ is H, F, Cl, Br, I, CN, SCN, NH2, alkyl of from 1 to about 24 carbon atoms, acetyl, acetoxy, acyl, acyloxy, X2PO4, where X is any suitable cation.
  • In addition R can contain a R′″[0074] xY3-xPO4 group with x being an integer of 1 to 3 and R′″ equals R, R as described above with the limitation that each R contains not more than 4R′″xY3-xPO4 groups.
  • The molecular weight of the ether is up to approximately 10 000 grams average molecular weight and the ether contains at least one hydroxyl or alternatively one ester functionality. [0075]
  • In a further embodiment of the invention, the invention provides the product described above, wherein the organosilane is of the formula I, II, III, or IV [0076]
  • (R1)3SiR2N+(R3)(R4)(R5)Y  (I)
  • (R1)3SiR2N(R3)(R4)  (II)
  • (R1)3SiR2R35  (III)
  • (R1)3Si(R36)(R37)  (IV)
  • wherein each R[0077] 1 is, independently, halogen or R6O, where R6 is H, alkyl of from 1 to about 24 carbon atoms, acetyl, acetoxy, acyl, acyloxy, propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, block and copolymers of ethylene and propylene glycol, the alkyl monoether of from 1 to 24 carbons of the following: propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, block and copolymers of ethylene and propylene glycol; or the monoester of a carbonic acid of from 1 to 24 carbons and at least one of the following: propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, block and copolymers of ethylene and propylene glycol; sorbitan esters and their ethers; phenolic compounds substituted with an alkyl of from about 1 to about 24 carbons, such as octylphenol, and nonylphenol, and their ethers.
  • R[0078] 35 is R6, H, halogen (such as Cl, Br, F, or I), NH2(CH2)2NHR2, NH2R2, C3H5O2R2, C4H5O2R2, NaO(CH3O)P(O)R2, or ClCH2C6H4R2;
  • R[0079] 36 and R37 are, independently, R35, halogen, H, alkyl, preferably of from 1 to 4 carbon atoms, more preferably of from 1 to 2 carbon atoms, isobutyl, phenyl, or n-octyl;
  • R[0080] 2 is R6, benzyl, vinyl or alkyl;
  • R[0081] 3 and R4 are, independently, R35, alkyl alcohol, alkoxy, alkyl of from 1 to 24 carbon atoms, preferably 1 to about 10 carbon atoms, more preferably alkyl of from 1 to 4 carbon atoms, or more preferably of from 1 to 2 carbon atoms;
  • R[0082] 3 and R4 can, together, form a morpholine or cyclic or heterocyclic, unsaturated or saturated, five to seven-membered ring of the formula V:
  • —R3—(R7)k—R4—  (V)
  • where k is an integer from 0 to 2, preferably 0 to 1, most preferably 1, [0083]
  • R[0084] 7, where the ring is saturated is CH2, O, S, NH, NH2 +, NCH2CH2NH2, NCH2CH2NH3 +, NCH2CH2N(R8)(R9), NCH2CH2N+(R8)(R9)(R10), N(alkyl), N(aryl), N(benzyl), where each R8, R9, and R10 is, independently, benzyl, R37, polyglycol, preferably of from 1 to 4 carbon atoms, alkyl alcohol, preferably of from 1 to 4 carbon atoms, alkoxy, preferably of from 1 to 4 carbon atoms, or alkyl, from 1 to 24 carbon atoms, preferably 1 to about 10 carbon atoms, and the “alkyl” specified above is of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 3 carbon atoms, the “aryl” is more preferably phenyl or benzyl, and R7, where the ring is unsaturated is CH, N, N+H, N+(alkyl), N+(aryl), N+(benzyl), N—CH2—N, N+H—CH2—N, N+(alkyl)-CH2—N, N+(aryl)-CH2—N,2 or N+(benzyl)-CH2—N, where the alkyl, aryl, or benzyl is as described above; wherein the ring is unsubstituted or substituted with alkyl of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 3 carbon atoms, ester, aldehyde, carboxylate (preferably acetoxy, acetyl, acyl, acyloxy or perfluorocarboxylate) amide, thionamide, nitro, amine, or halide, most preferably Cl, Br, or I.
  • Alternatively, the ring provided by formula V represents R[0085] 3 or R4, independently. The nitrogen in formula I or II that is part of the ring structure of formula V is replaced by CH or CH2 or saturated with hydrogen or alkyl substitution of from 1 to about 24 carbons or by removal of a positive charge. This ring is attached to the nitrogen in structure I or II, by removing any one hydrogen from the structure and placing a bond from the nitrogen of I or II to the atom missing the hydrogen.
  • R[0086] 5 is alkyl alcohol, preferably of from 1 to 6 carbon atoms, more preferably of from 1 to 4 carbon atoms, R35, CH2C6H5, polyglycol, such as a polyethylene glycol or a polypropylene glycol, alkyl of from 1 to 24 carbon atoms, preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, alkoxy, of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, perfluoroalkyl, of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, perfluoroalkylsulfonate, of from 1 to 24 carbon atoms, more preferably of from 1 to 10 carbon atoms, most preferably of from 1 to 6 carbon atoms, perfluoroalkylcarboxylate, or is a five to seven-membered ring of formula V as described above; and Y is a suitable anionic moiety to form salts of the compound of formula I, II, III, IV.
  • This invention provides a water stable composition, comprising water and an organosilane of interest, mixed with an ether; and a composition providing silane and ether, easily dissolved in many solvents, including water, storable and water stable when diluted with water. Further, the compositions according to the invention provide silane coatings that are capable of migration. [0087]
  • The present invention provides a composition for treating a substrate, comprising a carrier and an effective amount of an organosilane of interest and an ether as described herein. The carrier may be water, or in further embodiments, the carrier is other than water. [0088]
  • Moreover, the present invention also provides a product resulting from mixing an organosilane of the formula I, II, III, or IV: [0089]
  • (R1)3SiR2N+(R3)(R4)(R5)Y  (I)
  • (R1)3SiR2N(R3)(R4)  (II)
  • (R1)3SiR2R35  (III)
  • (R1)2Si(R36)(R37)  (IV)
  • as substantially previously described with reference to the formula numbers I, II, III, and IV, with ether stabilizers according to the invention as described above. [0090]
  • In addition, the present invention also provides a method of treating a substrate, comprising contacting the substrate with a sufficient amount of the composition as described above for a period of time sufficient for treatment of the substrate. Moreover, in an alternate embodiment, the present invention provides a method of treating a substrate, comprising contacting the substrate with a sufficient amount of the compound as described above for a period of time sufficient for treatment of the substrate. [0091]
  • In addition, the present invention provides a treated substrate having adhered thereto the product produced by contacting the organosilane and the ether as described above. Alternatively, the present invention provides a treated substrate having adhered thereto a compound produced by contacting the organosilane and the ether as described above. [0092]
  • In yet another embodiment, the present invention provides a method of dyeing and treating a substrate, comprising contacting the substrate with an aqueous (i.e., substantially water soluble) composition comprising an aqueous soluble dye suitable for dyeing a substrate and the product formed from mixing an organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality. [0093]
  • In yet another embodiment, the present invention provides a method of antimicrobially treating a substrate selected from the group consisting of a concrete pipe, food article, fluid container, glove, shower curtain, shower door, latex medical article, a tooth brush, a comb, a hair brush, a denture, an orthodontic retainer, a spa or pool filter, an air filter, an HVAC air system, a cabin air system, a marble article, a statue, an exposed work of art, a PE, PP or polyester plastic cover, a silicone or TEFLON® coated fiberglass article, a Dryvitt finish, a stucco finish, blended cotton, a bio-film, a bio-adhesive, a single ply roofing, a roofing shingle, and a fiberglass reinforcement product, comprising contacting the substrate with an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality. [0094]
  • A further embodiment of the present invention provides a method of antimicrobially enhancing a product of rubbing alcohol, a flower preservative, or a waterproofing solution, comprising admixing with the product an effective amount of the product formed from mixing an antimicrobial organosilane of interest with an ether where the ether is of the formula R—O—R, where R is, independently an organic group and where the ether either has either a hydroxy functionality or a carboxylic ester functionality. [0095]
  • The present invention provides water-stabilized and solubilized organosilane compounds, products, and compositions, methods of their use, and articles prepared using the compounds, products, and compositions. In particular, the present invention is useful in stabilizing a broad variety of organosilanes of the general formula R[0096] nSiX4-n where n is an integer of from 0 to 3, preferably 0 to 2; R is a nonhydrolizable organic group, such as but not limited to, alkyl, aromatic, organofunctional, or a combination thereof; and X is halogen, such as but not limited to, Cl, Br, or I, or X is hydroxy, alkoxy such as methoxy or ethoxy, acetoxy, or unsubstituted or substituted acyl or acyloxy. For such organosilanes, X is prone to react with various hydroxyl containing molecules.
  • In a further embodiment, the present invention employs an ether as solvent. The silane and ether mixture are stable. The ether-silane mixtures often are less flammable than methanol mixtures and are easier to dissolve in water than many silanes in methanol. [0097]
  • Alternatively, where the stabilizers are not sufficiently water-soluble, additional stability is achieved by mixing the organosilane with the stabilizer in a non-aqueous solvent. In such an alternative preparation, the remaining solvent (e.g., methanol) is liberated via distillation, freeze-drying, evaporation or other methods known in the art for removal of volatile organic solvents. For ethers within this invention that are themselves not very soluble in water, an organosilane-stabilizing effect in water may still be achieved. [0098]
  • The solutions are stable for extended periods, from several days to several months. It will also be recognized that while aqueous silane stock solutions of up to 45% silane may be stabilized by ethers disclosed herein, working silane concentrations tend to be in the 0.001-10% silane range where the stabilization effects of the herein disclosed stabilizers are less challenged by the higher silane concentrations required in stock solutions. Acid pHs appear to be preferred, but not required, for stability of the solutions of the subject invention, whereas high pH reduces the stability of the aqueous compositions. [0099]
  • The solutions of the present invention are, in certain preferred embodiments, useful for the application of various organosilane coupling agents to surfaces in industrial and household uses without the use of toxic and/or flammable organic solvents. One of ordinary skill in the art would recognize that the above preparation steps are merely guidelines and such a person would, without undue experimentation, be able to prepare the composition by varying the parameters for contacting or mixing the organosilane and the polyol and order of introduction of reagents and starting materials without deviating from the basic and novel characteristics of the present invention. [0100]
  • Silanes [0101]
  • The present invention is useful for stabilizing organosilanes of the general formula R[0102] nSiX4-n where n is an integer of from 0 to 3, preferably 0 to 2; R is a nonhydrolizable organic group (alkyl, aromatic, organofunctional or a combination thereof); and X is hydroxy, alkoxy, preferably methoxy or ethoxy, halogen, preferably Cl, Br, or I, acetoxy, acyl or substituted acyl or acyloxy, or a hydrolyzable polymer or other moiety prone to hydrolysis and/or environmental harmfulness.
  • The organosilanes used in the practice of the present invention need not be, and often are not, water soluble. By varying the stabilizer and preparation method, the organosilanes selected for use in the present invention are solubilized in water by the stabilizer. [0103]
  • Numerous art-known organosilanes are suitable for the present stabilization procedures to produce water-stabilized compounds, products and compositions. U.S. Pat. Nos. 5,411,585; 5,064,613; 5,145,592, and the publication entitled “A Guide to DC Silane Coupling Agent” (Dow Corning, 1990) disclose many suitable organosilanes. The contents of these references are hereby incorporated in their entirety herein by this reference for the teachings of suitable organosilanes. These organosilanes are suitable for the formation of the water-stabilized organosilane compounds, products and compositions of the present invention. In addition, the disclosure of U.S. Pat. No. 4,390,712 is hereby incorporated by reference for its teaching of siloxane synthesis in an aqueous medium. Per the instant disclosure, those skilled in the art will appreciate that the aqueous siloxane synthesis methods of the U.S. Pat. No. 4,390,712 patent are modified to advantage by performing the siloxane synthesis in the presence of the ether stabilizer as defined herein, thereby forming a stabilized siloxane-water composition while still taking advantage of the accelerated kinetics of siloxane formation in aqueous media noted in the U.S. Pat. No. 4,390,712 patent. Accordingly, a further embodiment of this invention is a method for making an organosilane of the formula R[0104] nSiX4-n where n is an integer of from 0 to 3, preferably 0 to 2; each R is, independently, a nonhydrolizable organic group; and each X is, independently, a hydrolyzable group; from starting materials in an aqueous solution in the presence of an effective amount of ether sufficient to stabilize the organosilane as it is formed from the reactants.
  • Preferred silanes for use in the compounds, products and compositions and methods of the present invention include silanes of the following formula: [0105]
  • (R1)3SiR2N+(R3)(R4)(R5)Y or (R1)3SiR2N+C5H5Y
  • wherein each R[0106] 1 is, independently, halogen [Cl, Br, I, F] or R6O, where R6 is H, alkyl of from 1 to about 6 carbon atoms, unsubstituted or substituted, preferably from 1 to about 2 carbon atoms and more preferably 1 carbon atom, or acetyl- or other acyl, including substituted acyl and acyloxy; or R6O can be derived from any hydroxylated polymer, hydroxylated liquid, or hydroxylated solid regardless of water solubility; or R6O can be derived from any polyglycol such as, but not limited to, polyethyleneglycols or polypropyleneglycols, such as poly(propyleneglycol)triol (glycerol propoxylate); R2 is unsubstituted or substituted benzyl- or an unsubstituted or substituted alkyl of from 1 to about 3 carbon atoms, preferably alkyl of from 1 to 3 carbon atoms; R3 and R4 are, independently, lower alkoxy of from 1 to 4 carbon atoms, preferably of 2 carbon atoms, such as CH2CH2OH, CH2CH(OH)CH3, alkyl of from 1 to about 22 carbon atoms, preferably from 1 to about 10 carbon atoms and most preferably from 1 to 2 carbon atoms or R3 and R4 can, together, form a morpholine or other cyclic or heterocyclic, unsaturated or saturated, five to seven-membered ring of the formula:
  • —R3—(R7)k—R4
  • where k is an integer from 0 to 2 and R[0107] 7, where the ring is saturated, is CH2, O, S, NH, NH2 +, NCH2CH2NH2, NCH2CH2NH3 +, NCH2CH2N(R8)(R9), NCH2CH2N+(R8)(R9)(R10), N(alkyl), N(aryl), N(benzyl), and R7, where the ring is unsaturated is, N, N+H, N+(alkyl), N+(aryl), N+(benzyl), N—CH2—N, N+H—CH2—N, N+(alkyl)-CH2—N, N+(aryl)—CH2—N, or N+(benzyl)—CH2—N where R8, R9, and R10 are, independently, benzyl, polyglycol, lower alkyl alcohol of from 1 to 4 carbon atoms, lower alkoxy of from 1 to 4 carbon atoms, or alkyl of from 1 to about 22 carbon atoms, preferably 1 to about 10 carbon atoms; R5 is CH2C6H5, CH2CH2OH, CH2CH(OH)CH3, a polyglycol such as polyethyleneglycol: —(CH2CH2O)aH, polypropyleneglycol: —(CH2CH(CH3)O)aH, or alkylated polyoxyethylene: —(CH2CH2O)aB where B is alkyl of from 1 to 22 carbon atoms, unsubstituted or substituted, and where each a is, independently, an integer of from 1 to 12, more preferably of from about 1 to about 5, or R5 is alkyl or perfluoroalkyl of from 1 to about 22 carbon atoms, preferably from about 12 to about 20 carbon atoms and even more preferably from 14 to about 18 carbon atoms; and Y is halogen (such as Cl, Br, I), acetate, sulfate, tosylate or carboxylate, such as acetate, polycarboxylate salts, alcoholates, functionalized carboxylate, such as trifluoroacetate and perfluoroalkylcarboxylates, or other alkyl and arylsulfonate salts, including trifluoromethylsulfonate and anionic metal oxides, perfluoroalkylsulfonate salts, phosphate and phosphonate salts, borate and boronate salts, benzoates or any other suitable anionic moiety and the ring provided for formula V represents R3 or R4, independently, with the ring nitrogen of formula I or II replaced by CH or CH2. This ring is attached to the nitrogen in structure I or II, by removing any one hydrogen from the structure and placing a bond from the nitrogen of I or II to the atom missing the hydrogen.
  • Preferred organosilanes include, but are not limited to: [0108]
  • 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium chloride, [0109]
  • 3-(trimethoxysilyl)propylmethyldi(decyl) ammonium chloride, [0110]
  • 3-chloropropyltrimethylsilane, [0111]
  • octadecyltrimethoxysilane, [0112]
  • perfluorooctyltriethoxysilane, [0113]
  • (CH[0114] 3O)3Si(CH2)3N+(CH3)2C18H37Cl,
  • (CH[0115] 3O)3Si(CH2)3N+(CH3)2C18H37Br,
  • (CH[0116] 3O)3Si(CH2)3N+(C10H21)CH3Cl,
  • (CH[0117] 3O)3Si(CH2)3N+(C10H21)CH3Br,
  • (CH[0118] 3O)3Si(CH2)3N+(CH3)3Cl,
  • (CH[0119] 3O)3Si(CH2)3N+(CH3)2C8H17Cl,
  • (CH[0120] 3O)3Si(CH2)3N+(CH3)2C10H21Cl,
  • (CH[0121] 3O)3Si(CH2)3N+(CH3)2C12H25Cl,
  • (CH[0122] 3O)3Si(CH2)3N+(CH3)2C14H29Cl,
  • (CH[0123] 3O)3Si(CH2)3N+(CH3)2C16H33Cl,
  • (CH[0124] 3O)3Si(CH2)3N+(CH3)2C20H41Cl,
  • (CH[0125] 3O)3Si(CH2)3N+(C4H9)3Cl,
  • (CH[0126] 3O)3Si(CH2)3N+(C2H5)3Cl,
  • (CH[0127] 3CH2O)3Si(CH2)3N+(CH3)2C18H27Cl,
  • (CH[0128] 3O)3Si(CH2)3NHC(O)(CF2)6CF3,
  • (CH[0129] 3O)3Si(CH2)3NHC(O)(CF2)8CF3,
  • (CH[0130] 3O)3Si(CH2)3NHC(O)(CF2)10CF3,
  • (CH[0131] 3O)3Si(CH2)3NHC(O)(CF2)12CF3,
  • (CH[0132] 3O)3Si(CH2)3NHC(O)(CF2)14CF3,
  • (CH[0133] 3O)3Si(CH2)3NHC(O)(CF2)16CF3,
  • (CH[0134] 3O)3Si(CH2)3NHSO2(CF2)7CF3,
  • (CH[0135] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CH2)6CH3,
  • (CH[0136] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CH2)8CH3,
  • (CH[0137] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CH2)10CH3,
  • (CH[0138] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CH2)12CH3,
  • (CH[0139] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CH2)14CH3,
  • (CH[0140] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CH2)16CH3,
  • (CH[0141] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CF2)6CF3,
  • (CH[0142] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CF2)8CF3,
  • (CH[0143] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CF2)10CF3,
  • (CH[0144] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CF2)12CF3,
  • (CH[0145] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CF2)14CF3,
  • (CH[0146] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHC(O)(CF2)16CF3,
  • (CH[0147] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHSO2(CF2)7CF3,
  • (CH[0148] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHSO2(CF2)9CF3,
  • (CH[0149] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHSO2(CF2)11CF3,
  • (CH[0150] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHSO2(CF2)13CF3,
  • (CH[0151] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHSO2(CF2)15CF3,
  • (CH[0152] 3O)3Si(CH2)3N+(CH3)2(CH2)3NHSO2(CF2)16CF3,
  • aminoethylaminopropyltrimethoxysilane: NH[0153] 2(CH2)2NH(CH2)3Si(OCH3)3,
  • 3-aminopropyltrimethoxysilane: NH[0154] 2(CH2)3Si(OCH3)3,
  • 3-aminopropyltriethoxysilane: NH[0155] 2(CH2)3Si(OCH2CH3)3,
  • 3-chloropropyltrimethoxysilane: Cl(CH[0156] 2)3Si(OCH3)3,
  • 3-chloropropyltriethoxysilane: Cl(CH[0157] 2)3Si(OCH2CH3)3,
  • 3-chloropropyltrichlorosilane: Cl(CH[0158] 2)3SiCl3,
  • 3-glycidoxypropyltrimethoxysilane: C[0159] 3H5O2(CH2)3Si(OCH3)3,
  • 3-glycidoxypropyltriethoxysilane: C[0160] 3H5O2(CH2)3Si(OCH2CH3)3,
  • 3-methacryloxypropyltrimethoxysilane: C[0161] 4H5O2(CH2)3Si(OCH3)3,
  • 3-methacryloxypropyltriethoxysilane: C[0162] 4H5O2(CH2)3Si(OCH2CH3)3,
  • methyldichlorosilane: CH[0163] 3SiHCl2,
  • silane-modified melamine: Dow Corning Q1-6106, [0164]
  • sodium (trihydroxysilyl)propylmethylphosphonate: NaO(CH[0165] 3O)P(O)(CH2)3Si(OH)3,
  • trichlorosilane, SiHCl[0166] 3,
  • n-2-vinylbenzylamino-ethyl-3-aminopropyltrimethoxysilane HCL: Dow Corning Z-6032, [0167]
  • vinyltriacetoxysilane: H[0168] 2C═CHSi(OCOCH3)3,
  • vinyltrimethoxysilane: H[0169] 2C═CHSi(OCH3)3,
  • vinyltriethoxysilane: H[0170] 2C═CHSi(OCH2CH3)3,
  • vinyltrichlorosilane: H[0171] 2C═CHSiCl3,
  • dimethyldichlorosilane: (CH[0172] 3)2SiCl2,
  • dimethyldimethoxysilane: (CH[0173] 3)2Si(OCH3)2,
  • diphenyldichlorosilane: (C[0174] 6H5)2SiCl2,
  • ethyltrichlorosilane: (C[0175] 2H5)SiCl3,
  • ethyltrimethoxysilane: (C[0176] 2H5)Si(OCH3)3,
  • ethyltriethoxysilane: (C[0177] 2H5)Si(OCH2CH3)3,
  • isobutyltrimethoxysilane, [0178]
  • n-octyltriethoxysilane, [0179]
  • methylphenyldichlorosilane: CH[0180] 3(C6H5)SiCl2,
  • methyltrichlorosilane: CH[0181] 3SiCl3,
  • methyltrimethoxysilane: CH[0182] 3Si(OCH3)3,
  • phenyltrichlorosilane: C[0183] 6H5SiCl3,
  • phenyltrimethoxysilane: C[0184] 6H5Si(OCH3)3,
  • n-propyltrichlorosilane: C[0185] 3H7SiCl3,
  • n-propyltrimethoxysilane: C[0186] 3H7Si(OCH3)3,
  • silicon tetrachloride: SiCl[0187] 4,
  • ClCH[0188] 2C6H4CH2CH2SiCl3,
  • ClCH[0189] 2C6H4CH2CH2Si(OCH3)3,
  • ClCH[0190] 2C6H4CH2CH2Si(OCH2CH3)3,
  • decyltrichlorosilane, [0191]
  • dichloromethyl(4-methylphenethyl)silane, [0192]
  • diethoxymethylphenylsilane, [0193]
  • [3-(diethylamino)propyl]trimethoxysilane, [0194]
  • 3-(dimethoxymethylsilyl)-1-propanethiol, [0195]
  • dimethoxymethylvinylsilane, [0196]
  • 3-[tris(trimethylsilyloxy)silyl]propyl methacrylate, [0197]
  • trichloro[4-(chloromethyl)phenyl]silane, [0198]
  • methylbis(trimethylsilyloxy)vinylsilane, [0199]
  • methyltripropoxysilane, and [0200]
  • trichlorocyclopentylsilane. [0201]
  • In one particular embodiment of this invention, namely the use of the organosilane as a UV protectant, for example, in a sun-tan lotion, para-amino benzoic acid, cinnamic acid, benzoic acid and benzophenone are active ingredients. These compounds and their alkyl derivatives attached to a silane are part of this invention. Attachment of the aforementioned molecules is by removal of one atom or group from these compounds and utilizing this free valence for bond formation to a silane from which an atom or group has been removed also. Additional examples are: [0202]
  • (CH[0203] 3O)3Si(CH2)3NHC6H4COOH
  • (CH[0204] 3O)3Si(CH2)3NHC6H4COOCH3
  • (CH[0205] 3O)3Si(CH2)3NHC6H4COOC2H5
  • (CH[0206] 3O)3Si(CH2)3NHC6H4COOC3H7
  • (CH[0207] 3O)3Si(CH2)3NHC6H4COOC4H9
  • (CH[0208] 3O)3Si(CH2)3NHC6H4COOCH2C6H5
  • (CH[0209] 3O)3Si(CH2)3NHC6H4COOCH2C6H4NH2
  • (CH[0210] 3O)3Si(CH2)3NHC6H4COOCH2C6H4N(CH3)2
  • (CH[0211] 3O)3Si(CH2)3NHC6H4COOCH2C6H4N(CH2CH3)2
  • (CH[0212] 3O)3Si(CH2)3NHC6H4COOCH2C6H4N+(CH3)3Y
  • (CH[0213] 3O)3Si(CH2)3NHC6H4COOCH2C6H4N+(CH2CH3)3Y
  • (CH[0214] 3O)3Si(CH2)3NCH3C6H4COOH
  • (CH[0215] 3O)3Si(CH2)3NCH3C6H4COOCH3
  • (CH[0216] 3O)3Si(CH2)3NCH3C6H4COOC2H5
  • (CH[0217] 3O)3Si(CH2)3NCH3C6H4COOC3H7
  • (CH[0218] 3O)3Si(CH2)3NCH3C6H4COOC4H9
  • (CH[0219] 3O)3Si(CH2)3NCH3C6H4COOCH2C6H5
  • (CH[0220] 3O)3Si(CH2)3NCH3C6H4COOCH2C6H4NH2
  • (CH[0221] 3O)3Si(CH2)3NCH3C6H4COOCH2C6H4N(CH3)2
  • (CH[0222] 3O)3Si(CH2)3NCH3C6H4COOCH2C6H4N(CH2CH3)2
  • (CH[0223] 3O)3Si(CH2)3NCH3C6H4COOCH2C6H4N+(CH3)3Y
  • (CH[0224] 3O)3Si(CH2)3NCH3C6H4COOCH2C6H4N+(CH2CH3)3Y
  • (CH[0225] 3O)3Si(CH2)3N+(CH3)2C6H4COOH Y
  • (CH[0226] 3O)3SI(CH2)3N+(CH3)2C6H4COOCH3Y
  • (CH[0227] 3O)3SI(CH2)3N+(CH3)2C6H4COOC2H5Y
  • (CH[0228] 3O)3SI(CH2)3N+(CH3)2C6H4COOC3H7Y
  • (CH[0229] 3O)3SI(CH2)3N+(CH3)2C6H4COOC4H9Y
  • (CH[0230] 3O)3SI(CH2)3N+(CH3)2C6H4COOCH2C6H5Y
  • (CH[0231] 3O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4NH2Y
  • (CH[0232] 3O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N(CH3)2Y
  • (CH[0233] 3O)3Si(CH2)3N+(CH3)2C6H4 COOCH 2C6H4N(CH2CH3)2Y
  • (CH[0234] 3O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N+(CH3)3YY
  • (CH[0235] 3O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N+(CH2CH3)3YY
  • (CH[0236] 3O)3Si(CH2)3NC2H5C6H4COOH
  • (CH[0237] 3O)3Si(CH2)3NC2H5C6H4COOCH3
  • (CH[0238] 3O)3Si(CH2)3NC2H5C6H4COOC4H9
  • (CH[0239] 3O)3Si(CH2)3NC2H5C6H4COOC3H7
  • (CH[0240] 3O)3Si(CH2)3NC2H5C6H4COOC4H9
  • (CH[0241] 3O)3Si(CH2)3NC2H5C6H4COOCH2C6H5
  • (CH[0242] 3O)3Si(CH2)3NC2H5C6H4COOCH2C6H4NH2
  • (CH[0243] 3O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N(CH3)2
  • (CH[0244] 3O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N(CH2CH3)2
  • (CH[0245] 3O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N+(CH3)3Y
  • (CH[0246] 3O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N+(CH2CH3)3Y
  • (CH[0247] 3O)3Si(CH2)3N+(C2H5)2C6H4COOH Y
  • (CH[0248] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH3Y
  • (CH[0249] 3O)3Si(CH2)3N+(C2H5)2C6H4COOC2H5Y
  • (CH[0250] 3O)3Si(CH2)3N+(C2H5)2C6H4COOC3H7Y
  • (CH[0251] 3O)3Si(CH2)3N+(C2H5)2C6H4COOC4H9Y
  • (CH[0252] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H5Y
  • (CH[0253] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N2Y
  • (CH[0254] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N(CH3)2Y
  • (CH[0255] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N(CH2CH3)2Y
  • (CH[0256] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N+(CH3)3YY
  • (CH[0257] 3O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N+(CH2CH3)3YY
  • (CH[0258] 3CH2O)3Si(CH2)3NHC6H4COOH (CH3CH2O)3Si(CH2)3NHC6H4COOCH3
  • (CH[0259] 3CH2O)3Si(CH2)3NHC6H4COOC2H5
  • (CH[0260] 3CH2O)3Si(CH2)3NHC6H4COOC3H7
  • (CH[0261] 3CH2O)3Si(CH2)3NHC6H4COOC4H9
  • (CH[0262] 3CH2O)3Si(CH2)3NHC6H4COOCH2C6H5
  • (CH[0263] 3CH2O)3Si(CH2)3NHC6H4COOCH2C6H4NH2
  • (CH[0264] 3CH2O)3Si(CH2)3NHC6H4COOCH2C6H4N(CH3)2
  • (CH[0265] 3CH2O)3Si(CH2)3NHC6H4COOCH2C6H4N(CH2CH3)2
  • (CH[0266] 3CH2O)3Si(CH2)3NHC6H4COOCH2C6H4N+(CH3)3Y
  • (CH[0267] 3CH2O)3Si(CH2)3NHC6H4COOCH2C6H4N+(CH2CH3)3Y
  • (CH[0268] 3CH2O)3Si(CH2)3NCH3C6H4COOH
  • (CH[0269] 3CH2O)3Si(CH2)3NCH3C6H4COOCH3
  • (CH[0270] 3CH2O)3Si(CH2)3NCH3C6H4COOC2H5
  • (CH[0271] 3CH2O)3Si(CH2)3NCH3C6H4COOC3H7
  • (CH[0272] 3CH2O)3Si(CH2)3NCH3C6H4COOC4H9
  • (CH[0273] 3CH2O)3Si(CH2)3NCH3C6H4COOCH2C6H5
  • (CH[0274] 3CH2O)3Si(CH2)3NCH3C6H4COOCH2C6H4NH2
  • (CH[0275] 3CH2O)3Si(CH2)3NCH3C6H4COOCH2C6H4N(CH3)2
  • (CH[0276] 3CH2O)3Si(CH2)3NCH3C6H4COOCH2C6H4N(CH2CH3)2
  • (CH[0277] 3CH2O)3Si(CH2)3NCH3C6H4COOCH2C6H4N+(CH3)3Y
  • (CH[0278] 3CH2O)3Si(CH2)3NCH3C6H4COOCH2C6H4N+(CH2CH3)3Y
  • (CH[0279] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOH Y
  • (CH[0280] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH3Y
  • (CH[0281] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOC2H5Y
  • (CH[0282] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOC3H7Y
  • (CH[0283] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOC4H9Y
  • (CH[0284] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H5Y
  • (CH[0285] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4NH2Y
  • (CH[0286] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N(CH3)2Y
  • (CH[0287] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N(CH2CH3)2Y
  • (CH[0288] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N+(CH3)3YY
  • (CH[0289] 3CH2O)3Si(CH2)3N+(CH3)2C6H4COOCH2C6H4N+(CH2CH3)3YY
  • (CH[0290] 3CH2O)3Si(CH2)3NC2H5C6H4COOH
  • (CH[0291] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH3
  • (CH[0292] 3CH2O)3Si(CH2)3NC2H5C6H4COOC2H5
  • (CH[0293] 3CH2O)3Si(CH2)3NC2H5C6H4COOC3H7
  • (CH[0294] 3CH2O)3Si(CH2)3NC2H5C6H4COOC4H9
  • (CH[0295] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH2C6H5
  • (CH[0296] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH2C6H4NH2
  • (CH[0297] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N(CH3)2
  • (CH[0298] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N(CH2CH3)2
  • (CH[0299] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N+(CH3)3Y
  • (CH[0300] 3CH2O)3Si(CH2)3NC2H5C6H4COOCH2C6H4N+(CH2CH3)3Y
  • (CH[0301] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOH Y
  • (CH[0302] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH3Y
  • (CH[0303] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOC2H5Y
  • (CH[0304] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOC3H7Y
  • (CH[0305] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOC4H9Y
  • (CH[0306] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H5Y
  • (CH[0307] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4NH2Y
  • (CH[0308] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N(CH3)2Y
  • (CH[0309] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N(CH2CH3)2Y
  • (CH[0310] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N+(CH3)3YY, and
  • (CH[0311] 3CH2O)3Si(CH2)3N+(C2H5)2C6H4COOCH2C6H4N+(CH2CH3)3YY.
  • Uses [0312]
  • The compounds, products and compositions of the present invention are useful for a multitude of purposes. Such purposes include any known use for the preferred starting material organosilanes of the above-described general formula. In preferred embodiments, the presently described, water-stabilized, organosilane compounds, products, and compositions are suitable to applications such as: 1) treatment of surfaces, including fillers and pigments, 2) additives to coatings such as dyes, 3) as additives to organic monomers (such as acrylics) prior to formation of the respective polymer, 4) addition to the polymer prior to processing into final products, or 5) incorporation into polymer or substrate backbone, such as polyester or concrete. [0313]
  • Therefore, in addition to the utility of prior organosilane quaternary ammonium compounds such as 3-(trimethoxysilyl)propyl-dimethyloctadecyl ammonium chloride as surface bonding antimicrobial agents, numerous other uses of organofunctional silanes are contemplated, such as the use of the compounds, products and compositions of the invention in coating applications which include the treatment of surfaces or particles (pigments or fillers), in primers, in paints, inks, dyes and adhesives, and as reactive intermediates for silicone resin synthesis. [0314]
  • The present invention can be used to prepare, inter alia, agricultural products, cleaning compositions, antimicrobial sponges, antimicrobial bleaching agents, antimicrobial fillers for paints, plastics, or concrete, and to treat concrete structures such as livestock shelters, where microbial infestation is a problem. [0315]
  • In various embodiment, surfaces and substrates treatable with the compounds, products and compositions of the invention solution include, but are not limited to, textiles, carpet, carpet backing, upholstery, clothing, sponges, plastics, metals, surgical dressings, masonry, silica, sand, alumina, aluminum chlorohydrate, titanium dioxide, calcium carbonate, wood, glass beads, containers, tiles, floors, curtains, marine products, tents, backpacks, roofing, siding, fencing, trim, insulation, wall-board, trash receptacles, outdoor gear, water purification systems, and soil. Furthermore, articles treatable with the compounds, products and compositions of the invention include, but are not limited to, air filters and materials used for the manufacture thereof, aquarium filters, buffer pads, fiberfill for upholstery, fiberglass ductboard, underwear and outerwear apparel, polyurethane and polyethylene foam, sand bags, tarpaulins, sails, ropes, shoes, socks, towels, disposal wipes, hosiery and intimate apparel; cosmetics, lotions, creams, ointments, disinfectant sanitizers, wood preservatives, plastics, adhesives, paints, pulp, paper, cooling water, and laundry additives and non-food or food contacting surfaces in general. [0316]
  • For the above described substrates, mixtures and applications, treatment generally involves contacting or mixing the article to be treated with a water-stabilized organosilane solution of the present invention, comprising the organosilane-stabilizer derived compound in an aqueous solution, for a period of time sufficient for permanent bonding of the active organosilane ingredient (or portion thereof) to the article. In alternative embodiments, organosilane-ether mixtures according to the invention can be used directly without dilution with water, or, alternatively, dilutions with solvents other than water can be used according to the invention. Generally, treatment begins immediately upon contact, but preferably requires from about 15 seconds to about 48 hours., The public literature provides many examples and guidelines for efficient silane surface treatment and incorporation, for example “Applying A Silane Coupling Agent,” page 49, Gelest Catalog, by Gelest, Inc. Tullytown, Pa., 1995. Further general guidelines for application are as follows: For dipping a large object, it is preferred that 1-2 minutes of submersion is allowed in the solution and then the object is permitted to dry or is dried. However, some objects will benefit from very short dipping, mixing or contacting times, for example, fabric may pass through an aqueous bath of the composition at a rate of 40 yards per minute or more. After dipping, excess solution may be gently wiped or rinsed off. Alternatively, the solution may be sprayed on the substrate. Moreover, the composition of the invention may be placed in a high intensity solid mixer and formed into a powder which is then dried. The dried powder may then be used in a sprayer, if desired. In addition, the solutions may be wiped onto the substrate and applied using sponges or cloths, etc. Moreover, the solutions of the present invention can be added to pigments and fillers and stirred therewith for several (2-3) minutes. In addition, the solutions can be added to an emulsion or other existing formulation prior to use. Also, the solutions can be used in addition to, with or as a spray coolant for extruded fibers. However, one of ordinary skill in the art would recognize that numerous other uses and modes of application are readily apparent from the stabilized organosilane compounds, products and compositions of the present invention and would, without undue experimentation, be able to determine effective application methods and treating times for any particular substrate, article, or other application. In addition, the compositions can be used in padding processes as are known in textile mills. [0317]
  • Moreover, after treating a surface or fabric with the compound, product or compositions of the present invention, the surface or fabric may, optionally, be heated to further complete bonding of the compound, product, or composition to the surface or substrate. [0318]
  • The water-stable organosilane compounds, products and compositions of the present invention are, therefore, advantageous in treating a variety of substrates without the use of toxic organic solvents, and provide for the safe, long-term storage of activated organosilanol compound which can be used without further preparation. Moreover, the stabilization scheme described herein does not interfere with the binding of the organosilane (or at least the core, operative portion thereof) to the substrate. In addition, the present invention provides a generally applicable scheme for solvating some water insoluble organosilanes. [0319]
  • Also apparent will be those applications where organosilanes R[0320] nSiX4-n are prepared, dissolved, stored, applied, and in any way used in water. In addition, also apparent will be those applications of organosilanes RnSiX4-n, in other solvents or mixed in other media (solids, polymer mixes, fillers, pigments, powders, dyes or emulsions) where exposure to water occurs but could be detrimental due to undesired or untimely self-condensation of the silanol.
  • Moreover, the stabilizing compounds and methods could be used in addition to or in conjunction with various art-known stabilization methods for organosilanes, such as the use of ionic or non-ionic surfactants and detergents. [0321]
  • Moreover, the present compounds, products and compositions can be used in the incorporation of an organosilane antimicrobial agent in most textile goods (woven and non-woven) and yarns (synthetic and natural). The process provides articles that are durable and the process itself is effective and does not require additional manufacturing steps or increase manufacturing cost. [0322]
  • Incorporating the compounds, products and compositions of the present invention during the dye process yields a textile material with a built-in antimicrobial activity or other desired property with the organosilane characteristic. The incorporation process 1) does not add any additional step in the manufacturing process and does not require any equipment modification; and 2) is believed not to lose its antimicrobial characteristics and its effectiveness during further production of the textile goods. By incorporating the water-stable compounds, products and compositions of the present invention during the dye process, not only would the organosilane antimicrobial agent remain unaffected by the dying agent, but the end-product textile goods would also exhibit excellent dyeing properties. [0323]
  • The water-stabilized organosilane compounds, products and compositions of the present invention are useful for a number of applications where the previous instability, insolubility prevented or, at least, hindered or restricted use of some organosilane agents. For example: [0324]
  • Treating food crops (e.g., perishables such as vegetables, fruits, or grains) after removal (pickled/harvested) with the compounds, products and compositions of the present invention imparts antimicrobial protection to the outer surface of the food crop. It is believed that such protection occurs without diffusing, migrating or leaching the antimicrobial agent from the bonded antimicrobial coating of the food item, and provides prolonged, safe and non-toxic antimicrobial protection. The method involves treating fruits and vegetables in the rinse cycle, during or after the normal cleaning/water spraying or during or after blanching. Thorough cleaning of fruits and vegetables at the processing plant is preferred for initially removing microorganisms. As one of ordinary skill in the art would recognize, machines are used initially to remove soil, chemicals used in growing, spoilage bacteria, and other foreign materials. These machines also use high velocity water sprays to clean the products. After the cleaning, raw foods or other crop materials are prepared for further processing such blanching (i.e., the food is immersed in water at 190 to 210 degrees F. or exposed to steam). [0325]
  • Microorganisms are controlled by the production plant up until the fruit or vegetable is removed. But once it is removed, organisms such as yeast, mold, and bacteria, begin to multiply, causing the food to loose flavor and change in color and texture. To keep the food from spoiling, a number of methods have been employed, such as refrigerators, to slow down the microorganisms and delay deterioration. Unfortunately, such known methods will preserve raw foods for few weeks at the most. The compounds, products and compositions of the present invention can preserve these items for extended periods. For instance, the compositions, products, or compounds may be added to an existing water line feeding the sprayers for the foods, where such sprayers are used. Otherwise, a simple dipping process may be used, where the dipping requires only a few seconds to impart antimicrobial protection. Low concentrations of 0.1 to 1% aqueous solution (0.1 to 1% by volume) of the compositions provide satisfactory results. In addition, it is believed that the presently described method can also control pathogens on poultry carcasses and in other susceptible meat and fish. [0326]
  • Treating baby milk/juice bottles, nipples, pacifiers and toys with the compounds, products and compositions of the present invention in the factory or leaching the agent from the bonded surface, can provide prolonged and safe/non-toxic antimicrobial protection. Treating such articles also eliminates odors caused by microbial contamination. A dipping method as described above may be used to treat these articles. [0327]
  • To date, parents have used soaps, detergents, and surface cleaners to alleviate the problems of contamination of these articles. However, these and other similar treatments have, for the most part, been inadequate and required repeated treatment. In addition, these treatments have been found to be limited in their ability to offer broad spectrum control of microorganisms. Therefore, the present compounds, products and compositions can be used to treat these articles to prevent microbial growth and contamination by coating an effective amount of the products and compounds of the invention thereon. The articles employed can be coated by allowing for 1 to 2 minutes submersion (e.g., by dipping), and thereafter, the treated surface is allowed to dry at room temperature. The article is then rinsed of any excess antimicrobial agent. Thorough cleaning and sterilization is a preferred step in removing the microorganisms on the surface of the article prior to “coating” the said articles. In addition, concentrations of 10% or less by weight of the compounds, products and compositions of the invention in water are used for long lasting protection. [0328]
  • Treating surgical gloves with the compounds, products and compositions of the present invention before or during a surgical procedure can kill microorganisms on contact. It is believed that the treated gloves do not diffuse or leach the antimicrobial agent from the glove surface and provide prolonged antimicrobial activity with safe and non-toxic antimicrobial protection. However, the antimicrobial treatment of surgical gloves with compositions according to the invention provides a zone of inhibition and migration of the active ingredient to improve surface coverage while providing long-lasting, residual protection. Surgical gloves are treated, preferably, by submerging in the solution of Example I, diluted to 1% W/V for at least 30 seconds. This method will permit doctors to use and, if necessary, re-use the same gloves (even without removing them) without undue fear of contamination. Treating polymers and other materials such as concrete by incorporation into the bulk material protects from deterioration, odor build-up and potentially harmful contamination of the surface. Incorporation of a sun protection into polymers and/or application of sun protection to the surface extends the life of the product and reduces damage to products and skin. [0329]
  • Moreover, one of ordinary skill in the art would be able to implement numerous other end uses based upon the disclosure of the compounds, products and compositions of the present invention. Not all uses require aqueous solutions and some require non-aqueous environments, both applications are part of the invention. Furthermore antimicrobial properties of the silane compounds according to the invention is only one of many possible properties. Mixtures of silanes according to the invention often provide additional benefits. For instance, the following uses, applications and substrates, are contemplated: [0330]
  • 1. Concrete, Concrete Water Conduits, Storm and Sewer Pipes treated with the compounds, products and compositions of the present invention. Agents to kill microorganism on contact and provide prolonged antimicrobial protection to prevent deterioration of the concrete and its coatings. [0331]
  • 2. Tooth Brushes, Combs, Hair Brushes, Dentures and Retainers [0332]
  • 3. Spa and Pool Filters meeting stringent requirements that no other antimicrobial agent can meet and protection for Air Filtration such as air conditioning filters, HVAC applications and cabin air [0333]
  • 4. Marble Slabs (building facia, tombs, floors) treated with the compounds, products and compositions of the present invention [0334]
  • 5. Rubbing Alcohol [0335]
  • 6. Statues and exposed art work [0336]
  • 7. HDP, high density polyester fabric plastic covers for dump sites, water reservoirs and generally for soil protection [0337]
  • 8. Liquid Additive (as flower water preservative for potted plants and cut flowers) [0338]
  • 9. Silicone and Teflon coated Fiberglass with antimicrobial protection including acrylic backing wall covering [0339]
  • 10. Dryvitt and Stucco finish [0340]
  • 11. Waterproofing treated with the compounds, products and compositions of the present invention [0341]
  • 12. A method of treating blended cotton before or after picking machines make the cotton into rolls or laps [0342]
  • 13. Food packaging and containers [0343]
  • 14. Bio-films and adhesives (tapes and silicone wafers) [0344]
  • 15. Single Ply Roofing and Roof shingles [0345]
  • 16. Fiberglass reinforcement product [0346]
  • The preferred embodiments of the above-described water-stabilized antimicrobial compounds, products, compositions, and methods are set forth in the following examples. [0347]
  • Other features of the invention will become apparent from the following examples, which are for illustrative purposes only and are not intended as a limitation upon the present invention. [0348]
  • The silane in the following examples is Dow Corning 5772 or a silane of similar composition as Dow Corning 5772. Both are collectively referred to as silane concentrate. A solution or mixture is considered stable if an aqueous solution can be produced and remain without precipitation of the silane for longer time than would be expected for the non-stabilized silane. If the silane itself is insoluble in water than the formation of an aqueous solution is a benefit within the scope of the invention.[0349]
  • EXAMPLE 1
  • The following table lists examples of mixtures and their stability. The entries are in weight percent of total mixture. [0350]
    Silane Glycol Barlox Stable
    # Concentrate Ether DB 12 DI Water (Y/N)
    1 14 6 15 65 y
    2 49 23 0 28 n
    3 50 12 0 39 n
    4 28 6 15 51 n
    5 21 6 15 58 n
    6 50 30 20 0 n
  • “Glycol Ether DB” is diethylene glycolbutylether; “BARTOX” is the commercial name for a variety of amine oxides which are surfactants, and “BARLOX 12” is a specific type of such surfactant; and “DI Water” is deionized or purified water. [0351]
  • EXAMPLE 2
  • 1.506 g of an ‘aged’ sample of a mixture of Dow Corning 5772 and glycol ether DB (1:1 by weight) was added to 29.996 g water. 0.1 N hydrochloric acid was added dropwise to the cloudy solution until the mixture clarified. The pH was measured during the addition. The mixture was still cloudy at pH 3.04 and clear at 3.00. It was observed, that a mixture of ‘aged’ silane—ether mixture when allowed to stir clarifies after prolonged stirring. [0352]
  • EXAMPLE 3
  • Water dilutions of a mixture containing 20.045 g silane concentrate and 19.998 g tripropylene glycol methyl ether have been stable at 13.8 weight % mixture in water. At 27.5 weight % the water diluted mixture appeared unstable. [0353]
  • EXAMPLE 4
  • Water dilutions of a mixture containing 20.094 g silane concentrate and 20.180 g diethylene glycol methyl ether have been stable at 13.7 weight % mixture in water. At 27.6 weight % the water diluted mixture appeared unstable. [0354]
  • EXAMPLE 5
  • Water dilutions of a mixture containing 20.132 g silane concentrate and 20.021 g tripropylene glycol butyl ether have been stable at 2.73 weight % mixture in water. At 13.1 weight % the water diluted mixture appeared unstable. [0355]
  • EXAMPLE 6
  • Water dilutions of a mixture containing 20.191 g silane concentrate and 20.021 g dipropylene glycol methyl ether acetate have been stable at 2.80 weight % mixture in water. At 14.1 weight % the water diluted mixture appeared unstable. [0356]
  • EXAMPLE 7
  • Water dilutions of a mixture containing 20.002 g silane concentrate and 20.007 g dipropylene glycol butyl ether have been stable at 2.84 weight % mixture in water. At 14.3 weight % the water diluted mixture appeared unstable. [0357]
  • EXAMPLE 8
  • Water dilutions of a mixture containing 20.191 g silane concentrate and 20.021 g propylene glycol butyl ether have been stable at 2.74 weight % mixture in water. At 14.0 weight % the water diluted mixture appeared unstable. [0358]
  • EXAMPLE 9
  • A fabric sample from Southern Phenix Textiles, Inc., treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to the American Association of Textile Chemists and Colorists (AATCC) Test Method 147-1993. The test method involves the incubation of the test material with [0359] staphylococcus aureus ATCC 6538 and in another part with klebsiella pneumoniae ATCC 4352. Incubation is at 37° C. for 18 to 24 hours. Inhibition is indicated by prevention of growth of microorganisms under the sample. Inhibition of growth beyond the sample, called the zone of inhibition is a result of migration of the antimicrobial material into the nutrient broth. The fabric pieces provided inhibition under the sample for staphylococcus aureus and klebsiella pneumoniae for washed and unwashed samples. The zone of inhibition was found to be 1 mm for both organisms for the washed sample and 8 mm for staphylococcus aureus and 3 mm for klebsiella pneumoniae for the unwashed sample.
  • EXAMPLE 10
  • Another fabric sample from Southern Phenix Textiles, Inc., treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to (AATCC) Test Method 147-1993 according to the previous example. The fabric pieces provided inhibition under the sample for [0360] staphylococcus aureus and klebsiella pneumoniae. The zone of inhibition was found to be 3 mm for staphylococcus aureus and 6 mm for klebsiella pneumoniae.
  • EXAMPLE 11
  • A sample of Spa and Pool Filter Medium, treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to (AATCC) Test Method 147-1993 according to the previous example. The fabric pieces provided inhibition under the sample for [0361] staphylococcus aureus and no inhibition of klebsiella pneumoniae. The zone of inhibition was found to be 2 mm for staphylococcus aureus and 0 mm for klebsiella pneumoniae.
  • EXAMPLE 12
  • A sample of flooring tile, treated with silane concentrate, glycol ether DB and water mixtures showed a zone of inhibition when subjected to (AATCC) Test Method 147-1993 according to the previous example. The fabric pieces provided inhibition under the sample for [0362] staphylococcus aureus and no inhibition of klebsiella pneumoniae. The zone of inhibition was found to be 2 mm for staphylococcus aureus and 0 mm for klebsiella pneumoniae.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the claims. [0363]
  • It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the claims. [0364]

Claims (99)

1. A method of antimicrobially treating a substrate selected from the group consisting of a concrete surface; a tooth brush; a comb; a hair brush; a denture; an orthodontic retainer; a spa or pool filter; a spa or pool surface; an air filter; an HVAC air system; a cabin air system; a marble article; a statue; an exposed work of art; a PE, PP or polyester plastic cover; a fiberglass surface; a silicone or polytetrafluoroethylene coated fiberglass article; a Dryvitt finish, a stucco finish; blended cotton; a bio-film; a bio-adhesive; single ply roofing, a roofing shingle; carpet; a paper product; teeth; skin; bone; cartilage; a metal finish; a car finish; a fabric; and a fiberglass reinforcement product; comprising contacting the substrate with an effective amount of a water-stabilized organosilane/ether composition formed from mixing:
a) an antimicrobial organosilane of the formula RnSiX4-n where n is an integer of from 0 to 3; each R is, independently, a nonhydrolyzable organic group; and each X is, independently, a hydrolyzable group, with
b) an ether of the formula R50—O—R50, wherein R50 is, independently, an organic group, and the ether has either a hydroxy functionality or a carboxylic ester functionality.
2. The method of claim 1 wherein the substrate is a concrete surface.
3. The method of claim 1 wherein the substrate is a tooth brush.
4. The method of claim 1 wherein the substrate is a comb.
5. The method of claim 1 wherein the substrate is a hair brush.
6. The method of claim 1 wherein the substrate is a denture.
7. The method of claim 1 wherein the substrate is an orthodontic retainer.
8. The method of claim 1 wherein the substrate is a spa or pool filter.
9. The method of claim 1 wherein the substrate is a spa or pool surface.
10. The method of claim 1 wherein the substrate is an air filter.
11. The method of claim 1 wherein the substrate is any surface of an HVAC air system exposed to the flow of air.
12. The method of claim 1 wherein the substrate is any surface of a cabin air system exposed to the flow of air.
13. The method of claim 1 wherein the substrate is a marble article.
14. The method of claim 1 wherein the substrate is a statue.
15. The method of claim 1 wherein the substrate is an exposed work of art.
16. The method of claim 1 wherein the substrate is a PE, PP or polyester plastic cover.
17. The method of claim 1 wherein the substrate is a fiberglass surface.
18. The method of claim 1 wherein the substrate is a silicone or polytetrafluoroethylene coated fiberglass article.
19. The method of claim 1 wherein the substrate is a Dryvitt finish.
20. The method of claim 1 wherein the substrate is blended cotton.
21. The method of claim 1 wherein the substrate is a biofilm.
22. The method of claim 1 wherein the substrate is a bio-adhesive.
23. The method of claim 1 wherein the substrate is single ply roofing.
24. The method of claim 1 wherein the substrate is a roofing shingle.
25. The method of claim 1 wherein the substrate is a carpet backing.
26. The method of claim 1 wherein the substrate is a paper product.
27. The method of claim 1 wherein the substrate is teeth.
28. The method of claim 1 wherein the substrate is skin.
29. The method of claim 1 wherein the substrate is bone.
30. The method of claim 1 wherein the substrate is cartilage.
31. The method of claim 1 wherein the substrate is a metal finish.
32. The method of claim 1 wherein the substrate is a car finish.
33. The method of claim 1 wherein the substrate is a fabric.
34. The method of claim 1 wherein the substrate is a fiberglass reinforcement product.
35. A method of antimicrobially treating a substrate selected from the group consisting of textiles, carpet, carpet backing, upholstery, clothing, sponges, plastics, metals, surgical dressings, masonry, silica, sand, alumina, aluminum chlorohydrate, titanium dioxide, calcium carbonate, wood, glass beads, containers, tiles, floors, curtains, marine products, tents, backpacks, roofing, siding, fencing, trim, insulation, wall-board, trash receptacles, outdoor gear, water purification systems, soil, air filters and materials used for the manufacture thereof, aquarium filters, buffer pads, fiberfill for upholstery, fiberglass ductboard, underwear and outerwear apparel, polyurethane and polyethylene foam, sand bags, tarpaulins, sails, ropes, shoes, socks, towels, disposable wipes, hosiery and intimate apparel; cosmetics, lotions, creams, ointments, disinfectant sanitizers, wood preservatives, plastics, adhesives, paints, pulp, paper, cooling water, and laundry additives and non-food or food contacting surfaces in general, comprising contacting the substrate with an effective amount of a water-stabilized organosilane/ether composition formed from mixing:
a) an antimicrobial organosilane of the formula RnSiX4-n where n is an integer of from 0 to 3; each R is, independently, a nonhydrolyzable organic group; and each X is, independently, a hydrolyzable group, with
b) an ether of the formula R50—O—R50, wherein R50 is, independently, an organic group, and the ether has either a hydroxy functionality or a carboxylic ester functionality.
36. The method of claim 35 wherein the substrate is a textile.
37. The method of claim 35 wherein the substrate is a carpet.
38. The method of claim 35 wherein the substrate is a carpet backing.
39. The method of claim 35 wherein the substrate is upholstery.
40. The method of claim 35 wherein the substrate is an article of clothing.
41. The method of claim 35 wherein the substrate is a sponge.
42. The method of claim 35 wherein the substrate is a plastic.
43. The method of claim 35 wherein the substrate is metal.
44. The method of claim 35 wherein the substrate is a surgical dressing.
45. The method of claim 35 wherein the substrate is masonry.
46. The method of claim 35 wherein the substrate is silica.
47. The method of claim 35 wherein the substrate is sand.
48. The method of claim 35 wherein the substrate is alumina.
49. The method of claim 35 wherein the substrate is aluminum chlorohydrate.
50. The method of claim 35 wherein the substrate is titanium dioxide.
51. The method of claim 35 wherein the substrate is calcium carbonate.
52. The method of claim 35 wherein the substrate is wood.
53. The method of claim 35 wherein the substrate is a glass bead.
54. The method of claim 35 wherein the substrate is a container.
55. The method of claim 35 wherein the substrate is a tile.
56. The method of claim 35 wherein the substrate is a floor.
57. The method of claim 35 wherein the substrate is a curtain.
58. The method of claim 35 wherein the substrate is a marine product subject to microbial degradation.
59. The method of claim 35 wherein the substrate is a tent.
60. The method of claim 35 wherein the substrate is a backpack.
61. The method of claim 35 wherein the substrate is roofing.
62. The method of claim 35 wherein the substrate is siding.
63. The method of claim 35 wherein the substrate is fencing.
64. The method of claim 35 wherein the substrate is trim.
65. The method of claim 35 wherein the substrate is insulation.
66. The method of claim 35 wherein the substrate is wall-board.
67. The method of claim 35 wherein the substrate is trash receptacles.
68. The method of claim 35 wherein the substrate is outdoor gear.
69. The method of claim 35 wherein the substrate is water purification systems.
70. The method of claim 35 wherein the substrate is soil.
71. The method of claim 35 wherein the substrate is air filters or materials used for the manufacture thereof.
72. The method of claim 35 wherein the substrate is an aquarium filter.
73. The method of claim 35 wherein the substrate is a buffer pad.
74. The method of claim 35 wherein the substrate is fiberfill for upholstery.
75. The method of claim 35 wherein the substrate is fiberglass ductboard.
76. The method of claim 35 wherein the substrate is underwear or outerwear apparel.
77. The method of claim 35 wherein the substrate is polyurethane or polyethylene foam.
78. The method of claim 35 wherein the substrate is a sand bag.
79. The method of claim 35 wherein the substrate is a tarpaulin.
80. The method of claim 35 wherein the substrate is a sail.
81. The method of claim 35 wherein the substrate is a rope.
82. The method of claim 35 wherein the substrate is a shoe.
83. The method of claim 35 wherein the substrate is a sock.
84. The method of claim 35 wherein the substrate is a towel.
85. The method of claim 35 wherein the substrate is a disposable wipe.
86. The method of claim 35 wherein the substrate is hosiery or intimate apparel.
87. The method of claim 35 wherein the substrate is a cosmetic.
88. The method of claim 35 wherein the substrate is a lotion.
89. The method of claim 35 wherein the substrate is an ointment.
90. The method of claim 35 wherein the substrate is a disinfectant sanitizer.
91. The method of claim 35 wherein the substrate is a wood preservative.
92. The method of claim 35 wherein the substrate is a high density polyester plastic fabric cover.
93. The method of claim 35 wherein the substrate is an adhesive.
94. The method of claim 35 wherein the substrate is paint.
95. The method of claim 35 wherein the substrate is pulp.
96. The method of claim 35 wherein the substrate is paper.
97. The method of claim 35 wherein the substrate is cooling water.
98. The method of claim 35 wherein the substrate is a laundry additive.
99. The method of claim 35 wherein the substrate is non-food or food contacting surfaces in general.
US10/392,746 1997-07-18 2003-03-19 Ether-stabilized organosilane compounds and methods for using the same Abandoned US20030180440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/392,746 US20030180440A1 (en) 1997-07-18 2003-03-19 Ether-stabilized organosilane compounds and methods for using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5315597P 1997-07-18 1997-07-18
US09/116,636 US6113815A (en) 1997-07-18 1998-07-16 Ether-stabilized organosilane compositions and methods for using the same
US65423200A 2000-09-02 2000-09-02
US10/392,746 US20030180440A1 (en) 1997-07-18 2003-03-19 Ether-stabilized organosilane compounds and methods for using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US65423200A Continuation 1997-07-18 2000-09-02

Publications (1)

Publication Number Publication Date
US20030180440A1 true US20030180440A1 (en) 2003-09-25

Family

ID=21982293

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/116,636 Expired - Lifetime US6113815A (en) 1997-07-18 1998-07-16 Ether-stabilized organosilane compositions and methods for using the same
US10/392,746 Abandoned US20030180440A1 (en) 1997-07-18 2003-03-19 Ether-stabilized organosilane compounds and methods for using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/116,636 Expired - Lifetime US6113815A (en) 1997-07-18 1998-07-16 Ether-stabilized organosilane compositions and methods for using the same

Country Status (7)

Country Link
US (2) US6113815A (en)
EP (1) EP0996624A1 (en)
JP (1) JP2001510206A (en)
AU (1) AU8495198A (en)
BR (1) BR9811509A (en)
CA (1) CA2296397A1 (en)
WO (1) WO1999003865A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000034A1 (en) * 2004-06-30 2006-01-05 Mcgrath Kevin P Textile ink composition
WO2009130486A1 (en) 2008-04-25 2009-10-29 Reckitt Benckiser N.V. Dye transfer inhibition composition
US8691340B2 (en) 2008-12-31 2014-04-08 Apinee, Inc. Preservation of wood, compositions and methods thereof
US9096712B2 (en) * 2009-07-21 2015-08-04 3M Innovative Properties Company Curable compositions, method of coating a phototool, and coated phototool
US9878464B1 (en) 2011-06-30 2018-01-30 Apinee, Inc. Preservation of cellulosic materials, compositions and methods thereof
US11118352B2 (en) 2017-12-20 2021-09-14 Certainteed Llc Microbial growth and dust retardant roofing shingles
US11236117B2 (en) 2015-09-30 2022-02-01 Amorepacific Corporation Alkoxysilane compound or salt thereof, preparation method therefor, and hair composition containing same
US20230021428A1 (en) * 2021-06-25 2023-01-26 Shin-Etsu Chemical Co., Ltd. Aqueous solution composition containing organosilicon compounds

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045588A (en) 1997-04-29 2000-04-04 Whirlpool Corporation Non-aqueous washing apparatus and method
AU3887500A (en) 1999-03-16 2000-10-04 Coating Systems Laboratories, Inc. Antimicrobial skin preparations containing organosilane quaternaries
US6300379B2 (en) * 1999-03-22 2001-10-09 S. C. Johnson & Son, Inc. Production of stable hydrolyzable organosilane solutions
DE19928127C1 (en) * 1999-06-19 2000-05-31 Clariant Gmbh Production of antimicrobial formulation containing known and new trialkoxysilanyl-substituted quaternary ammonium compounds useful for treatment of surfaces e.g. textiles, glass, metals and plastics
DE19929845A1 (en) * 1999-06-29 2001-01-11 Degussa Surface-modified pyrogenic titanium dioxide, used in cosmetics e.g. sun-protection agents, is treated with ammonium-functional silane
BR9917501A (en) * 1999-09-27 2002-05-21 Oreal Cosmetic makeup
US6794352B2 (en) * 2000-06-12 2004-09-21 Jeffrey S. Svendsen Cleaning towel having a color identifying label and sanitizer release polymer composition
US6924326B2 (en) * 2001-08-07 2005-08-02 Mainstream Engineering Corporation Method and formulation using passive electrostaticity for improving filter performance
US6667290B2 (en) 2001-09-19 2003-12-23 Jeffrey S. Svendsen Substrate treated with a binder comprising positive or neutral ions
US7203173B2 (en) * 2002-01-25 2007-04-10 Architecture Technology Corp. Distributed packet capture and aggregation
US20040248759A1 (en) * 2002-05-22 2004-12-09 Smith Kim R. Composition and method for modifying the soil release properties of a surface
US20040151919A1 (en) * 2003-01-31 2004-08-05 Kimberly-Clark Worldwide, Inc. Glove having reduced microbe affinity and transmission
US7739891B2 (en) 2003-10-31 2010-06-22 Whirlpool Corporation Fabric laundering apparatus adapted for using a select rinse fluid
US7695524B2 (en) 2003-10-31 2010-04-13 Whirlpool Corporation Non-aqueous washing machine and methods
US6994890B2 (en) * 2003-10-31 2006-02-07 Resource Development L.L.C. Cleaning and multifunctional coating composition containing an organosilane quaternary compound and hydrogen peroxide
US8257780B2 (en) 2003-10-31 2012-09-04 Resource Development L.L.C. Therapeutic composition containing an organosilane quaternary compound and hydrogen peroxide for treating skin disorders and methods of using
DE10361893A1 (en) * 2003-12-19 2005-07-21 Degussa Ag Special process for the preparation of silicon compounds bearing fluoroalkyl groups by hydrosilylation
US7837741B2 (en) 2004-04-29 2010-11-23 Whirlpool Corporation Dry cleaning method
US20060134163A1 (en) * 2004-12-16 2006-06-22 Bagwell Alison S Immobilizing anti-microbial compounds on elastomeric articles
US8999363B2 (en) * 2005-02-07 2015-04-07 Sishield Technologies, Inc. Methods and compositions for antimicrobial surfaces
EP1887863A2 (en) * 2005-02-07 2008-02-20 SiShield Technologies Methods and compositions for biocidal treatments
CA2601594A1 (en) * 2005-03-22 2006-09-28 Biosafe Inc. Method of creating a solvent-free polymeric silicon-containing quaternary ammonium antimicrobial agent having superior sustained antimicrobial properties
US7966684B2 (en) 2005-05-23 2011-06-28 Whirlpool Corporation Methods and apparatus to accelerate the drying of aqueous working fluids
US7754004B2 (en) * 2005-07-06 2010-07-13 Resource Development, L.L.C. Thickened surfactant-free cleansing and multifunctional liquid coating compositions containing nonreactive abrasive solid particles and an organosilane quaternary compound and methods of using
JP2007092188A (en) * 2005-09-27 2007-04-12 Suminoe Textile Co Ltd Train interior fabric using colored glass fibers
US20070141126A1 (en) * 2005-12-21 2007-06-21 Hudson Tammy M Germicidal surface-covering assembly
US20070166344A1 (en) * 2006-01-18 2007-07-19 Xin Qu Non-leaching surface-active film compositions for microbial adhesion prevention
WO2007099144A2 (en) * 2006-03-02 2007-09-07 Vitec Speciality Chemicals Limited Water-stabilised antimicrobial organosilane products, compositions, and methods for using the same
US7589054B2 (en) * 2007-01-02 2009-09-15 Resource Development L.L.C. Clathrates of an organosilane quaternary ammonium compound and urea and methods of use
US7820100B2 (en) * 2007-05-17 2010-10-26 Garfield Industries, Inc. System and method for photocatalytic oxidation air filtration using a substrate with photocatalyst particles powder coated thereon
US8178617B2 (en) * 2007-07-16 2012-05-15 Allvivo Vascular, Inc. Antimicrobial constructs
WO2009030640A1 (en) 2007-09-06 2009-03-12 Vitec Speciality Chemicals Limited Methods for diluting water-stabilized antimicrobial organosilane compositions
WO2009030641A1 (en) * 2007-09-06 2009-03-12 Vitec Speciality Chemicals Limited Water-stabilized antimicrobial organosilane compositions, and methods for using the same
US20090252647A1 (en) * 2008-04-02 2009-10-08 Crosstex International, Inc. Compositions and methods for applying antimicrobials to substrates
ES2869252T3 (en) * 2008-12-25 2021-10-25 Univ Hiroshima Antibacterial composition containing a silicon-containing compound, mouth cleaning
US8735618B2 (en) 2010-05-07 2014-05-27 Resource Development L.L.C. Solvent-free organosilane quaternary ammonium compositions, method of making and use
EP2571383B1 (en) 2010-05-20 2022-01-26 Ecolab USA Inc. Rheology modified low foaming liquid antimicrobial compositions and methods of use thereof
BR112013027654B1 (en) 2011-04-27 2020-04-14 Lifestraw Sa water purification device
US11053141B2 (en) 2013-10-28 2021-07-06 Vestergaard Sa Water purification device
US9969903B2 (en) * 2014-01-28 2018-05-15 Silver Cornia Method of applying an organosilane solution to rigid substrates and grout
KR101460352B1 (en) 2014-02-28 2014-11-10 동우 화인켐 주식회사 Adhesive composition
JP2017508808A (en) 2014-03-17 2017-03-30 ジー・エフ・エス.コーポレーション.エー・ユー・エス.ピー・ティー・ワイ.エル・ティー・ディーGfs Corporation Aus Pty Ltd Antibacterial disinfectant composition and use thereof
JP6570332B2 (en) * 2015-06-15 2019-09-04 大日本除蟲菊株式会社 Water-based fungicide
USD783773S1 (en) 2015-07-14 2017-04-11 Lifestraw Sa Water purifier
USD782609S1 (en) 2015-07-14 2017-03-28 Lifestraw Sa Water purifier
USD782610S1 (en) 2015-11-09 2017-03-28 Lifestraw Sa Water purifier
WO2017127044A1 (en) * 2016-01-18 2017-07-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Si-containing film forming compositions for ald/cvd of silicon-containing films
WO2017145142A1 (en) 2016-02-25 2017-08-31 Nobio Ltd. Micro and nanoparticulate compositions comprising anti-microbially active groups
CN109071366B (en) 2016-03-16 2022-05-10 建筑研究和技术有限公司 Surface applied corrosion inhibitor
JP7119074B2 (en) 2017-08-30 2022-08-16 ノビオ リミテッド Antimicrobial particles and methods of use thereof
WO2020239468A1 (en) * 2019-05-27 2020-12-03 Unilever N.V. A fabric impregnated with organosilane for purification of liquids
CN112480163A (en) * 2021-01-13 2021-03-12 北京万博汇佳科贸有限公司 Organosilicon quaternary ammonium salt, preparation method and application thereof

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560385A (en) * 1968-11-01 1971-02-02 Dow Corning Method of lubricating siliceous materials
US3730701A (en) * 1971-05-14 1973-05-01 Method for controlling the growth of algae in an aqueous medium
US3794736A (en) * 1971-09-29 1974-02-26 Dow Corning Method of inhibiting the growth of bacteria and fungi using organosilicon amines
US3814739A (en) * 1971-12-27 1974-06-04 Toray Industries Method of manufacturing fibers and films from an acrylonitrile copolymer
US3817739A (en) * 1971-11-12 1974-06-18 Dow Corning Method of inhibiting the growth of algae
US3860709A (en) * 1971-09-29 1975-01-14 Dow Corning Method of inhibiting the growth of bacteria and fungi using organosilicon amines
US3865728A (en) * 1971-11-12 1975-02-11 Dow Corning Algicidal surface
US3940430A (en) * 1974-08-28 1976-02-24 Schwarz Services International Ltd. Silanized antimicrobial compounds
US4005024A (en) * 1975-04-22 1977-01-25 The Procter & Gamble Company Rinse aid composition containing an organosilane
US4035332A (en) * 1974-02-10 1977-07-12 Shin-Etsu Chemical Co., Water-soluble silicone-modified resin compositions
US4110263A (en) * 1977-06-17 1978-08-29 Johnson & Johnson Baby Products Company Mild cleansing compositions containing alkyleneoxylated bisquaternary ammonium compounds
US4243767A (en) * 1978-11-16 1981-01-06 Union Carbide Corporation Ambient temperature curable hydroxyl containing polymer/silicon compositions
US4282366A (en) * 1979-11-06 1981-08-04 International Paper Company Organosilicon quaternary ammonium antimicrobial compounds
US4284548A (en) * 1978-12-29 1981-08-18 Union Carbide Corporation Ambient temperature curable hydroxyl containing polymer/silicon compositions
US4377608A (en) * 1979-09-24 1983-03-22 Dow Corning Corporation Method of modifying a substrate
US4395454A (en) * 1981-10-09 1983-07-26 Burlington Industries, Inc. Absorbent microbiocidal fabric and product
US4408996A (en) * 1981-10-09 1983-10-11 Burlington Industries, Inc. Process for dyeing absorbent microbiocidal fabric and product so produced
US4413086A (en) * 1982-03-04 1983-11-01 Ppg Industries, Inc. Coating compositions containing organosilane-polyol
US4414268A (en) * 1981-10-09 1983-11-08 Burlington Industries, Inc. Absorbent microbiocidal fabric and process for making same
US4446292A (en) * 1983-01-31 1984-05-01 Ppg Industries, Inc. Moisture curable compositions containing reaction products of hydrophobic polyols and monomer organosilicon-containing substances
US4465849A (en) * 1982-08-19 1984-08-14 Shin-Etsu Chemical Co., Ltd. Method for the preparation of an aqueous emulsion of silicone
US4467081A (en) * 1983-01-31 1984-08-21 Ppg Industries, Inc. Gelable, silicate rich resins from hydrophobic polyols and volatile and/or incompatible organosilicates
US4501872A (en) * 1983-01-31 1985-02-26 Ppg Industries, Inc. Moisture curable compositions containing reaction products of hydrophobic polyols and organosilicon-containing materials
US4504541A (en) * 1984-01-25 1985-03-12 Toyo Boseki Kabushiki Kaisha Antimicrobial fabrics having improved susceptibility to discoloration and process for production thereof
US4514342A (en) * 1982-02-16 1985-04-30 Dentsply Limited Polyethylenically unsaturated monophosphates
US4555545A (en) * 1984-02-09 1985-11-26 Toshiba Silicone Co., Ltd. Composition for coating
US4561435A (en) * 1984-04-04 1985-12-31 Chesebrough-Ponds, Inc. Wound dressing
US4613451A (en) * 1983-01-31 1986-09-23 Ppg Industries, Inc. Gelable blends of organosilicon-containing materials and hydrophobic polyols
US4615937A (en) * 1985-09-05 1986-10-07 The James River Corporation Antimicrobially active, non-woven web used in a wet wiper
US4615882A (en) * 1982-09-27 1986-10-07 Stockel Richard F Disinfectant solution for contact lens
US4622369A (en) * 1985-04-30 1986-11-11 Ppg Industries, Inc. Urethane resins containing hydrolyzable moieties from organosilane compounds
US4623697A (en) * 1985-04-30 1986-11-18 Ppg Industries, Inc. Ungelled resins containing hydrolyzable moieties from organosilane compounds
US4631297A (en) * 1984-03-12 1986-12-23 Dow Corning Corporation Antimicrobially effective organic foams and methods for their preparation
US4631273A (en) * 1984-11-05 1986-12-23 Dow Corning Corporation Aqueous emulsions using cationic silanes
US4648904A (en) * 1986-02-14 1987-03-10 Scm Corporation Aqueous systems containing silanes for rendering masonry surfaces water repellant
US4657941A (en) * 1984-11-29 1987-04-14 Dentsply Research & Development Corp. Biologically compatible adhesive containing a phosphorus adhesion promoter and a sulfinic accelerator
US4736467A (en) * 1986-12-24 1988-04-12 Burlington Industries, Inc. Operating room clothing system
US4772593A (en) * 1985-07-01 1988-09-20 The Dow Chemical Company Alkoxysilane compounds in the treatment of swine dysentery
US4822667A (en) * 1988-03-04 1989-04-18 Precision Fabrics Group Woven medical fabric
US4842766A (en) * 1987-02-17 1989-06-27 Dow Corning Corporation Silane microemulsions
US4919998A (en) * 1988-03-04 1990-04-24 Precision Fabrics Group Woven medical fabric
US4921701A (en) * 1988-08-11 1990-05-01 Dow Corning Corporation Antimicrobial water soluble substrates
US4939289A (en) * 1985-08-15 1990-07-03 Allied-Signal Inc. Fiber surface modifiers
US5024851A (en) * 1988-03-04 1991-06-18 Precision Fabrics Group Inc. Process for preparing a woven medical fabric
US5027438A (en) * 1986-12-24 1991-07-02 Burlington Industries, Inc. Operating room clothing with coated fabric
US5035892A (en) * 1988-05-09 1991-07-30 Dow Corning Corporation Antimicrobial superabsorbent compositions and methods
US5064613A (en) * 1989-11-03 1991-11-12 Dow Corning Corporation Solid antimicrobial
US5073298A (en) * 1988-07-20 1991-12-17 Dow Corning Corporation Antimicrobial antifoam compositions and methods
US5135811A (en) * 1986-02-04 1992-08-04 Dow Corning Corporation Polyamide yarn provided with a built-in antibacterial and method for its production
US5169625A (en) * 1988-08-11 1992-12-08 Dow Corning Corporation Antimicrobial water soluble substrates
US5244718A (en) * 1991-04-03 1993-09-14 Taylor Jeffrey L Synthetic fabrics and surgical/medical products made therefrom
US5411585A (en) * 1991-02-15 1995-05-02 S. C. Johnson & Son, Inc. Production of stable hydrolyzable organosilane solutions
US5959014A (en) * 1996-05-07 1999-09-28 Emory University Water-stabilized organosilane compounds and methods for using the same
US20020141959A1 (en) * 1999-03-16 2002-10-03 Coating Systems Laboratories, Inc. Antimicrobial skin preparations containing organosilane quaternaries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL232473A (en) * 1957-10-21
EP0459003A1 (en) * 1990-06-01 1991-12-04 Kabushikikaisha Nippan Kenkyusho Coating composition and antimicrobial deodorant composed of the coating compositions
WO1997042220A1 (en) * 1996-05-03 1997-11-13 Thomas Jefferson University Metastatic colorectal cancer vaccine
WO1997042200A1 (en) * 1996-05-07 1997-11-13 Bioshield Technologies, Inc. Water-stabilized organosilane compounds and methods for using the same

Patent Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560385A (en) * 1968-11-01 1971-02-02 Dow Corning Method of lubricating siliceous materials
US3730701A (en) * 1971-05-14 1973-05-01 Method for controlling the growth of algae in an aqueous medium
US3794736A (en) * 1971-09-29 1974-02-26 Dow Corning Method of inhibiting the growth of bacteria and fungi using organosilicon amines
US3860709A (en) * 1971-09-29 1975-01-14 Dow Corning Method of inhibiting the growth of bacteria and fungi using organosilicon amines
US3817739A (en) * 1971-11-12 1974-06-18 Dow Corning Method of inhibiting the growth of algae
US3865728A (en) * 1971-11-12 1975-02-11 Dow Corning Algicidal surface
US3814739A (en) * 1971-12-27 1974-06-04 Toray Industries Method of manufacturing fibers and films from an acrylonitrile copolymer
US4035332A (en) * 1974-02-10 1977-07-12 Shin-Etsu Chemical Co., Water-soluble silicone-modified resin compositions
US3940430A (en) * 1974-08-28 1976-02-24 Schwarz Services International Ltd. Silanized antimicrobial compounds
US4005024A (en) * 1975-04-22 1977-01-25 The Procter & Gamble Company Rinse aid composition containing an organosilane
US4110263A (en) * 1977-06-17 1978-08-29 Johnson & Johnson Baby Products Company Mild cleansing compositions containing alkyleneoxylated bisquaternary ammonium compounds
US4243767A (en) * 1978-11-16 1981-01-06 Union Carbide Corporation Ambient temperature curable hydroxyl containing polymer/silicon compositions
US4284548A (en) * 1978-12-29 1981-08-18 Union Carbide Corporation Ambient temperature curable hydroxyl containing polymer/silicon compositions
US4377608A (en) * 1979-09-24 1983-03-22 Dow Corning Corporation Method of modifying a substrate
US4282366A (en) * 1979-11-06 1981-08-04 International Paper Company Organosilicon quaternary ammonium antimicrobial compounds
US4395454A (en) * 1981-10-09 1983-07-26 Burlington Industries, Inc. Absorbent microbiocidal fabric and product
US4408996A (en) * 1981-10-09 1983-10-11 Burlington Industries, Inc. Process for dyeing absorbent microbiocidal fabric and product so produced
US4414268A (en) * 1981-10-09 1983-11-08 Burlington Industries, Inc. Absorbent microbiocidal fabric and process for making same
US4514342A (en) * 1982-02-16 1985-04-30 Dentsply Limited Polyethylenically unsaturated monophosphates
US4413086A (en) * 1982-03-04 1983-11-01 Ppg Industries, Inc. Coating compositions containing organosilane-polyol
US4465849A (en) * 1982-08-19 1984-08-14 Shin-Etsu Chemical Co., Ltd. Method for the preparation of an aqueous emulsion of silicone
US4615882A (en) * 1982-09-27 1986-10-07 Stockel Richard F Disinfectant solution for contact lens
US4613451A (en) * 1983-01-31 1986-09-23 Ppg Industries, Inc. Gelable blends of organosilicon-containing materials and hydrophobic polyols
US4501872A (en) * 1983-01-31 1985-02-26 Ppg Industries, Inc. Moisture curable compositions containing reaction products of hydrophobic polyols and organosilicon-containing materials
US4467081A (en) * 1983-01-31 1984-08-21 Ppg Industries, Inc. Gelable, silicate rich resins from hydrophobic polyols and volatile and/or incompatible organosilicates
US4446292A (en) * 1983-01-31 1984-05-01 Ppg Industries, Inc. Moisture curable compositions containing reaction products of hydrophobic polyols and monomer organosilicon-containing substances
US4504541A (en) * 1984-01-25 1985-03-12 Toyo Boseki Kabushiki Kaisha Antimicrobial fabrics having improved susceptibility to discoloration and process for production thereof
US4555545A (en) * 1984-02-09 1985-11-26 Toshiba Silicone Co., Ltd. Composition for coating
US4631297A (en) * 1984-03-12 1986-12-23 Dow Corning Corporation Antimicrobially effective organic foams and methods for their preparation
US4561435A (en) * 1984-04-04 1985-12-31 Chesebrough-Ponds, Inc. Wound dressing
US4631273A (en) * 1984-11-05 1986-12-23 Dow Corning Corporation Aqueous emulsions using cationic silanes
US4657941A (en) * 1984-11-29 1987-04-14 Dentsply Research & Development Corp. Biologically compatible adhesive containing a phosphorus adhesion promoter and a sulfinic accelerator
US4623697A (en) * 1985-04-30 1986-11-18 Ppg Industries, Inc. Ungelled resins containing hydrolyzable moieties from organosilane compounds
US4622369A (en) * 1985-04-30 1986-11-11 Ppg Industries, Inc. Urethane resins containing hydrolyzable moieties from organosilane compounds
US4772593A (en) * 1985-07-01 1988-09-20 The Dow Chemical Company Alkoxysilane compounds in the treatment of swine dysentery
US4939289A (en) * 1985-08-15 1990-07-03 Allied-Signal Inc. Fiber surface modifiers
US4615937B1 (en) * 1985-09-05 1990-06-05 James River Corp
US4692374A (en) * 1985-09-05 1987-09-08 James River Corporation Antimicrobially active, non-woven web used in a wet wiper
US4615937A (en) * 1985-09-05 1986-10-07 The James River Corporation Antimicrobially active, non-woven web used in a wet wiper
US4692374B1 (en) * 1985-09-05 1990-06-19 James River Corp
US5135811A (en) * 1986-02-04 1992-08-04 Dow Corning Corporation Polyamide yarn provided with a built-in antibacterial and method for its production
US4648904B1 (en) * 1986-02-14 1988-12-06
US4648904A (en) * 1986-02-14 1987-03-10 Scm Corporation Aqueous systems containing silanes for rendering masonry surfaces water repellant
US4736467A (en) * 1986-12-24 1988-04-12 Burlington Industries, Inc. Operating room clothing system
US5027438A (en) * 1986-12-24 1991-07-02 Burlington Industries, Inc. Operating room clothing with coated fabric
US4842766A (en) * 1987-02-17 1989-06-27 Dow Corning Corporation Silane microemulsions
US4822667A (en) * 1988-03-04 1989-04-18 Precision Fabrics Group Woven medical fabric
US5024851A (en) * 1988-03-04 1991-06-18 Precision Fabrics Group Inc. Process for preparing a woven medical fabric
US4919998A (en) * 1988-03-04 1990-04-24 Precision Fabrics Group Woven medical fabric
US5035892A (en) * 1988-05-09 1991-07-30 Dow Corning Corporation Antimicrobial superabsorbent compositions and methods
US5073298A (en) * 1988-07-20 1991-12-17 Dow Corning Corporation Antimicrobial antifoam compositions and methods
US5169625A (en) * 1988-08-11 1992-12-08 Dow Corning Corporation Antimicrobial water soluble substrates
US4921701A (en) * 1988-08-11 1990-05-01 Dow Corning Corporation Antimicrobial water soluble substrates
US5064613A (en) * 1989-11-03 1991-11-12 Dow Corning Corporation Solid antimicrobial
US5411585A (en) * 1991-02-15 1995-05-02 S. C. Johnson & Son, Inc. Production of stable hydrolyzable organosilane solutions
US5244718A (en) * 1991-04-03 1993-09-14 Taylor Jeffrey L Synthetic fabrics and surgical/medical products made therefrom
US5959014A (en) * 1996-05-07 1999-09-28 Emory University Water-stabilized organosilane compounds and methods for using the same
US20020141959A1 (en) * 1999-03-16 2002-10-03 Coating Systems Laboratories, Inc. Antimicrobial skin preparations containing organosilane quaternaries

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006969A1 (en) * 2004-06-30 2006-01-19 Kimberly-Clark Worldwide, Inc. Textile ink composition
US20060000034A1 (en) * 2004-06-30 2006-01-05 Mcgrath Kevin P Textile ink composition
WO2009130486A1 (en) 2008-04-25 2009-10-29 Reckitt Benckiser N.V. Dye transfer inhibition composition
US20110167567A1 (en) * 2008-04-25 2011-07-14 Reckitt Benckiser N.V. Dye Transfer Inhibition Composition
AU2009239784B2 (en) * 2008-04-25 2013-07-04 Reckitt Benckiser Vanish B.V. Dye transfer inhibition composition
US9314938B2 (en) 2008-12-31 2016-04-19 Apinee, Inc. Preservation of wood, compositions and methods thereof
US8691340B2 (en) 2008-12-31 2014-04-08 Apinee, Inc. Preservation of wood, compositions and methods thereof
US9096712B2 (en) * 2009-07-21 2015-08-04 3M Innovative Properties Company Curable compositions, method of coating a phototool, and coated phototool
US9878464B1 (en) 2011-06-30 2018-01-30 Apinee, Inc. Preservation of cellulosic materials, compositions and methods thereof
US11236117B2 (en) 2015-09-30 2022-02-01 Amorepacific Corporation Alkoxysilane compound or salt thereof, preparation method therefor, and hair composition containing same
US11118352B2 (en) 2017-12-20 2021-09-14 Certainteed Llc Microbial growth and dust retardant roofing shingles
US20230021428A1 (en) * 2021-06-25 2023-01-26 Shin-Etsu Chemical Co., Ltd. Aqueous solution composition containing organosilicon compounds
US11691994B2 (en) * 2021-06-25 2023-07-04 Shin-Etsu Chemical Co., Ltd. Aqueous solution composition containing organosilicon compounds

Also Published As

Publication number Publication date
JP2001510206A (en) 2001-07-31
WO1999003865A1 (en) 1999-01-28
AU8495198A (en) 1999-02-10
EP0996624A1 (en) 2000-05-03
BR9811509A (en) 2000-09-26
CA2296397A1 (en) 1999-01-28
US6113815A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US6113815A (en) Ether-stabilized organosilane compositions and methods for using the same
US6762172B1 (en) Water-stabilized organosilane compounds and methods for using the same
US6221944B1 (en) Water-stabilized organosilane compounds and methods for using the same
US6632805B1 (en) Methods for using water-stabilized organosilanes
US7732395B2 (en) Water-stabilized antimicrobial organosilane products, compositions, and methods for using the same
US6120587A (en) Water-stabilized organosilane compounds and methods for using the same
US20090074971A1 (en) Water-Stabilized Antimicrobial Organosilane Compositions, and Methods for Using the Same
US7851459B2 (en) Methods for diluting water-stabilized antimicrobial organosilane compositions
IL122555A (en) Water-stabilized organosilane compounds and methods for using the same
WO1999003866A1 (en) Water-stabilized organosilane compounds and their use
AU771983B2 (en) Water-stabilized organosilane compounds and methods for use
JPH11322767A (en) Water-stabilized organosilane and its usage
MXPA00000627A (en) Water-stabilized organosilane compounds and methods for using the same
MXPA00000625A (en) Water-stabilized organosilane compounds and their use

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION