Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030153908 A1
Publication typeApplication
Application numberUS 10/374,097
Publication date14 Aug 2003
Filing date27 Feb 2003
Priority date5 Mar 1999
Also published asUS6582427, US20070225699
Publication number10374097, 374097, US 2003/0153908 A1, US 2003/153908 A1, US 20030153908 A1, US 20030153908A1, US 2003153908 A1, US 2003153908A1, US-A1-20030153908, US-A1-2003153908, US2003/0153908A1, US2003/153908A1, US20030153908 A1, US20030153908A1, US2003153908 A1, US2003153908A1
InventorsColin Goble, Francis Amoah, Nigel Goble
Original AssigneeGyrus Medical Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrosurgery system
US 20030153908 A1
Abstract
An electrosurgery system includes an electrosurgical generator (10) coupled to or part of an electrosurgical instrument, the generator being operable to generate electrosurgical power in low frequency (typically at 1 MHz) and high frequency bands (typically at 2.45 GHz) either simultaneously or individually. The generator includes a load-responsive control circuit which, in one mode, causes power to be generated predominantly at 1 MHz when the load impedance is high and predominantly at 2.45 MHz when it is low. This allows automatic switching between cutting and coagulation operation. In one embodiment, the instrument includes a gas plasma generator operating such that an ionisable gas is energised in a gas supply passage by the 2.45 GHz component to form a plasma stream which acts as a conductor for delivering the 1 MHz component to a tissue treatment outlet of the passage.
Images(10)
Previous page
Next page
Claims(44)
1. An electrosurgery system comprising an electrosurgical generator, a feed structure and an electrode assembly, the electrode assembly having at least one active electrode and at least one adjacent return electrode, each of which is coupled to the generator via the feed structure, wherein the generator and feed structure are capable of delivering radio frequency (r.f.) power to the active and return electrodes in lower and upper frequency ranges, the upper range containing frequencies at least three times the frequencies of the lower frequency range.
2. A system according to claim 1, wherein the lower frequency range is 100 kHz to 100 MHz and the upper frequency range is 300 MHz to 10 GHz.
3. A system according to claim 2, wherein upper frequency range is above 1 GHz and the operating frequencies in the said upper and lower ranges have a frequency ratio of 5:1 or greater.
4. A system according to claim 2, wherein the generator is arranged such that the r.f. power delivered in the upper frequency range is at a fixed frequency which is at least ten times the frequency of r.f. power delivered in the lower frequency range.
5. A system according to claim 4, wherein the fixed frequency is fixed to the extent that it remains within 50 MHz of 2.45 GHz.
6. A system according to claim 1, wherein the generator and feed structure are arranged to deliver r.f. power to the electrodes in the lower and upper frequency ranges simultaneously.
7. A system according to claim 1, wherein the generator includes a control circuit responsive to electrical load and operable to cause the delivered power to have a predominant frequency component in the lower frequency range when the load impedance is in an upper impedance range and to have a predominant frequency component in the upper frequency range when the load impedance is in a lower impedance range.
8. A system according to claim 1, comprising a supply unit, a handpiece, and a cable connecting the handpiece to the supply unit, wherein:
the electrode assembly is mounted in the handpiece,
the generator has first and second stages for generating power in the lower and upper frequency ranges respectively, both stages being contained in the supply unit, and
the supply unit and the cable are configured such that power is supplied to the handpiece in both the lower and the upper frequency range via the cable.
9. A system according to claim 1, comprising a supply unit, a handpiece, and a cable connecting the handpeice supply unit, wherein
the electrode assembly is mounted in the handpiece, and
the generator has first and second stages for generating power in the lower and upper frequency ranges respectively, the fir stage being contained in the supply unit and the second stage being contained in the combination of the handpiece and the electrode assembly.
10. A system according to claim 1, wherein the feed structure comprises:
a rigid or resilient coaxial feed supporting the electrodes at a distal end, the coaxial feed having an inner supply conductor and an outer supply conductor, and
an isolating choke element in the form of a conductive sleeve connected to the outer supply conductor in the region of the said distal end, and having an axial length which is an odd number multiple (1, 3, 5, . . . ) of a quarter wavelength at an operating frequency of the generator in the upper frequency band.
11. A system according to claim 1, wherein the return electrode comprises a conductive sleeve.
12. A system according to claim 11, wherein:
the active electrode comprises a rod projecting from the conductive sleeve;
the feed structure comprises a rigid or resilient coaxial feed; and
the active electrode and the return electrode are connected to the inner and outer conductors respectively of the feed at its distal end, and extend respectively distally and proximally with respect to the said connection to form a dipole at an operating frequency of the generator in the upper frequency range.
13. A system according to claim 1, wherein the return electrode is covered with a electrically insulative layer.
14. A system according to claim 1, wherein the electrode assembly includes a gas supply passage and the active electrode is located in the passage to act as a gas iodising electrode.
15. A system according to claim 6, wherein the electrode assembly includes a gas supply passage and the active electrode is located in the passage to act as a gas ionising electrode, and wherein the active electrode is an elongate conductor having an electrical length in the region of a quarter wavelength at the operating frequency of the generator in the upper frequency range.
16. A system according to claim 14, wherein the active electrode is capacitively coupled to the return electrode.
17. A method of operating an electrosurgical instrument having an electrode assembly with an active electrode and a return electrode, comprising delivering to the electrodes radio frequency (r.f.) power at frequencies in both a lower frequency range and an upper frequency range, the upper frequency range containing frequencies which are at least three times the frequencies of the lower frequency range.
18. A method according to claim 17, wherein the lower frequency range is 100 kHz to 100 MHz and the upper frequency range is 300 M to 10 GHz, power being delivered to the electrodes at upper and lower operating frequencies which have a frequency ratio of at least 5:1.
19. A method according to claim 18, wherein the r.f. power delivered in the upper frequency range is at a fixed frequency which is at least ten times the frequency of power delivered in the lower frequency range.
20. A method according to claim 19, wherein the fixed frequency is in the region of 2.45 GHz.
21. A method according to claim 17, comprising delivering r.f. power to the electrodes in the lower and upper frequency ranges simultaneously.
22. A method according to claim 19, wherein the r.f. power is delivered in the lower and upper frequency ranges via a common feed.
23. A method according to claim 17, including automatically controlling the delivered power in response to electrical load impedance such that the delivered power has a predominant frequency component in the lower frequency range when the load impedance is in an upper impedance range and a predominant frequency component in the upper frequency range when the load impedance is in a lower impedance range.
24. A method according to claim 17, in which an ionisible gas is passed through a passage containing the active electrode, the gas is ionised by delivering power to the electrodes in the said upper frequency range to form a gas plasma in the passage, and causing the gas plasma to emerge at a treatment outlet of the passage.
25. A method according to claim 24, in which r.f. power is delivered to the electrodes simultaneously in both the upper and the lower frequency ranges, the emerging gas plasma generated by power in the upper frequency range acting as a conductor to the outside for treatment current in the lower frequency range.
26. A method according to claim 17, wherein the return electrode acts as a capacitive non-tissue-contacting electrosurgical current return element.
27. A method according to claim 21, in which the amplitudes of the delivered r.f. power in the lower and upper frequency ranges are varied with respect to each other.
28. A dual frequency electrosurgical system for cutting living tissue, the system being arranged to operate normally in a low frequency cutting or vaporisation mode, but to operate in a UHF coagulation mode in response to detection of a lower than normal load impedance as would typically be encountered when a blood vessel is severed.
29. A system according to claim 28, wherein the system comprises an electrosurgical generator, an electrode assembly and at least fist and second supply conductors coupling the electrode assembly to the generator, the electrode assembly comprising at least one active electrode and a capacitive return element adjacent the active electrode, and the active electrode and the return element being coupled to the generator by the first and second supply conductors respectively.
30. A system according to claim 28, arranged to operate predominantly at a first frequency in the range of from 100 kHz to 40 MHz when in the low frequency cutting mode and predominantly at a second frequency above 300 MHz when in the UHF coagulation mode.
31. A system according to claim 30, wherein the first frequency is less than 10 MHz and the second frequency is greater than 1 GHz.
32. A method of electrosurgically treating tissue using an electrosurgical instrument having an electrode assembly with an active electrode and an adjacent return element set back from the active electrode, wherein electrosurgical cutting or vaporisation is performed by supplying electrosurgical energy to the assembly in a lower frequency range and electrosurgical coagulation is performed by supplying electrosurgical energy to the assembly in an upper frequency range, the upper frequency range containing frequencies which are at least three times the frequencies of the lower frequency range.
33. A method of electrosurgically treating tissue using an electrosurgical instrument having a electrode assembly with an active electrode and an adjacent return element set back from the active electrode, wherein the active electrode is applied to the tissue to be treated and manipulated whilst r.f. electrosurgical energy is supplied to the assembly predominantly in a lower frequency range at a voltage level sufficient to cause cutting or vaporisation of the tissue until the load impedance drops to a predetermined degree at which time the energy is supplied predominantly in an upper frequency range to cause coagulation of the tissue, the supplied energy reverting predominantly to the lower frequency range when the load impedance rises again, and wherein the upper frequency range contains frequencies which are at least three times the frequencies of the lower frequency range.
34. A method according to claim 33, wherein treatment in the lower and upper frequency ranges is performed respectively with and without arcing in a current path between the active electrode and the return element.
35. A method according to claim 33, wherein the lower frequency range is from 100 kHz to 40 MHz and the upper frequency range is from 300 M to 10 GHz.
36. A method according to claim 33, wherein the predominant frequency of the r.f. electrosurgical energy associated with said coagulation is at least ten times the predominant frequency of the r.f. electrosurgical energy associated with said cutting or vaporisation.
37. A dual frequency electrosurgical system configured to perform electrosurgical cutting or vaporisation at a first frequency within a lower frequency range and electrosurgical coagulation at a second frequency within an upper frequency UHF range.
38. A system according to claim 37, wherein the first frequency is within the range of from 100 kHz to 5 MHz and the second frequency is within the range of from 300 MHz to 10 GHz.
39. An electrosurgical system comprising an electrode assembly with at least a pair of electrodes for receiving radio-frequency electrosurgical power, and a gas supply passage containing at least one of the said electrodes, the arrangement of the electrodes and the passage being such that when the electrodes are energised with sufficient radio frequency power at a frequency in the range of from 300 MHz to 10 GHz, and when an ionisable gas is passed through the passage, a gas plasma is formed in the passage.
40. A system according to claim 39, wherein the passage terminates in a distal nozzle downstream of the said at least one electrode.
41. A system according to claim 39, wherein the electrode assembly is part of a sterilised electrosurgical device.
42. A system according to claim 39, including a generator coupled to the electrodes and operable to generate electrosurgical power at a frequency in the range of from 300 MHz to 10 GHz.
43. A method of operating an electrosurgical instrument having at least a pair of electrodes, at least one of which is located in a gas supply passage, comprising delivering to the electrodes radio frequency power at a frequency in the range of from 300 GHz to 10 GHz and passing an ionisable gas through the passage to form a gas plasma in the passage.
44. A method according to claim 42, fisher comprising causing the gas plasma to emerge at a treatment outlet of the passage.
Description
  • [0001]
    This invention relates to a radio frequency electrosurgery system and a method of operating an electrosurgical instrument at UHF frequencies.
  • [0002]
    It is known to use a needle or narrow rod electrode for cutting tissue in monopolar electrosurgery at frequencies in the range of 300 kHz to 3 MHz. An electrosurgical signal in this frequency range is applied to the electrode, and the electrical current path is completed by conduction through tissue to an e ng plate secured to the patients body elsewhere. The voltage applied to the electrode must be sufficiently high to cause arcing and consequent thermal rupture so that tissue adjacent the needle is ablated or vaporised.
  • [0003]
    At lower power levels, coagulation of the tissue can be achieved, i.e. without arcing, due to thermal dissipation of energy in the tissue adjacent the electrode. However, with a narrow electrode as commonly used for tissue cutting, desiccation of the tissue immediately adjacent the electrode and build-up of desiccated material on the electrode itself constitutes a high-impedance barrier to further coagulation. Spatula-shaped electrodes have been produced to overcome the difficulty in providing a dual-purpose electrode, i.e. one suitable for both cutting and coagulation. The designer's intention is that the edge of the electrode is used for cutting, whereas the flat surface is used for coagulation. However, coagulation with such an electrode tends to be imprecise due to the size of the flat surface, with the result that a large thermal margin is produced.
  • [0004]
    It is an object of the invention to provide a means of achieving both tissue cutting and coagulation with a single electrode assembly.
  • [0005]
    According to this invention, to is provided an electrosurgery system comprising an electrosurgical generator, a feed structure and art electrode assembly, the electrode assembly having at least one active electrode and at least one adjacent return electrode each of which is coupled to the generator via the feed structure wherein the generator and feed structure capable of delivering radio frequency (r.f.) power to the active and return electrodes in lower and upper frequency ranges, the upper range containing frequencies at least three times the frequencies of the lower frequency range. The lower frequency range may extend from 100 kHz to 100 MHz, preferably 300 kHz to 40 MHz, and the upper frequency range may extend from 300 MHz to 10 GHz, preferably above 1 GHz, with operating frequencies in the upper and lower ranges having a frequency ratio of 5:1 or greater. Typically, the generator is arranged such that the r.f. power delivered in the upper fluency range is at a fixed frequency which is at least ten times the frequency of power delivered in the lower frequency range. Indeed, a fixed frequency of 2.45 GHz in the upper frequency range is preferred.
  • [0006]
    The preferred system allows simultaneous delivery of lower and upper frequency range components to the electrodes to provide a combination of medium or low frequency tissue cutting, vaporisation or ablation together with coagulation of surrounding tissue to a degree dependent upon the amplitude of the component in the upper frequency range.
  • [0007]
    For tissue cutting, vaporisation or ablation the system preferably operates in a monopolar mode with a separate earthing electrode applied to the outside of the patient's body, whilst coagulation occurs in a quasi-bipolar mode whereby the return current path in the upper frequency range runs from the tissue adjacent the operation site to the return electrode of the electrode assembly due to capacitive coupling. It will be understood that the system may allow selection of power delivery either in the lower frequency range or the upper frequency range depending upon the kind of treatment required. This selection may be performed manually by the surgeon or automatically in the manner to be described below. In addition, power may be supplied in both frequency ranges simultaneously to obtain a blended cutting and coagulation effect, the two components being linearly added or otherwise combined in a single signal feed structure.
  • [0008]
    In a particularly preferred embodiment of the invention, the generator includes a control circuit responsive to electrical load and operable to cause the delivered power to have a predominant frequency component in the lower frequency range when the load impedance is in an upper impedance range, and to have a predominant frequency component in the upper frequency range when the load impedance is in a lower impedance range. In this way, it is possible to cut, ablate or vaporise living tissue (i.e. causing cell rupture) with the lower frequency range component but also to bring about efficient coagulation when a very low load impedance is detected, indicating the presence of electrolytic fluid such as blood from a blood vessel, requiring coagulation. The system reverts to predominantly low frequency operation once the impedance has risen above a predetermined threshold following coagulation.
  • [0009]
    When electrical load impedance is used as the control stimulus, a signal representative of load impedance being compared with a reference signal, the reference signal may have different levels depending on whether the generator is to be switched from a predominant low frequency component to a predominant high frequency component or vice versa. In other words, different load impedance thresholds may be selected when operating in the lower frequency range or the upper frequency range respectively.
  • [0010]
    A composite signal having components from both frequency ranges may be produced by combining (e.g. adding) the signals from two generator stages, one operating in the region of, say, 1 MHz and the other operating at 2.45 GHz. Both generator stages may be in a single supply unit coupled to al electrosurgical instrument which consists of a handpiece mounting the electrode assembly so that, for instance, the two frequency components are fed from the supply unit to the handpiece by common delivery means such as a low loss flexible coaxial cable. Alternatively, the generator stage producing the UHF frequency component may be located in the handpiece to reduce transmission losses and radiated interference, the signal combination being performed within the handpiece as well.
  • [0011]
    For dual-purpose operation, i.e. cutting and coagulation, an electrode assembly having a needle-like active electrode is preferred.
  • [0012]
    Typically, the electrode assembly is at the distal end of a rigid or resilient coaxial feed forming the above-mentioned feed structure. To reduce extraneous UHF radiation, an isolating choke element in the form of a conductive quarter-wave stub or sleeve may be mounted to the outer supply conductor of the coaxial feed in the region of the distal end. As stated above, the active electrode may take the form of a rod or pin projecting from the coaxial feed distal end. The return electrode may be a conductive sleeve, plate or pad connected to the outer supply conductor at the feed distal end and extending proximally over the outer conductor but spaced from the latter so that the active electrode rod and the return electrode sleeve, plate or pad together form an axially oriented dipole at the operating frequency of the generator in the upper frequency range. Alternatively, the return electrode simply takes the form of a distal end portion of the feed outer conductor located distally of the choke. The return electrode may be covered with an electrically insulative layer in order that, when the active electrode is applied to tissue, the return electrode, being set back from the active electrode so as normally to be spaced from the tissue, acts as a capacitive element forming part of a capacitive return path between the treated tissue and the return supply conductor of the feed.
  • [0013]
    In an alternative embodiment in accordance with the invention, the electrode assembly includes a gas supply passage and the active electrode is located within the passage where it acts as a gas-ionising electrode. In this case, the active electrode acts as a low- to high-impedance transformer at the operating frequency of the generator in the upper frequency range, producing an intense electric field in the space between the distal end portion of the active electrode and the return electrode. Accordingly, when there is an ionisable gas in the passage, the major part of the power delivered to the electrode assembly in the upper frequency range is dissipated in the passage. In the lower frequency range no transforming effect occurs and the frequency component in the lower frequency range is, instead, delivered to the tissue to be treated by the ionised gas plasma which, in effect, acts as a monopolar gaseous electrode. Use of a UHF frequency component as a plasma generator and a lower frequency component for electrosurgery allows independent control of plasma generation and electrosurgical power delivery, thereby avoiding the disadvantage of known single r.f. source gas plasma electrosurgery devices. Typically, in such a prior device the ability of the source to deliver current through the plasma is severely hampered due to the requirement for high peak voltages when using low frequencies (i.e. typically, less than 1 MHz).
  • [0014]
    The invention will now be described by way of example and with reference to the drawings in which:
  • [0015]
    [0015]FIG. 1 is a diagram showing an electrosurgical system in accordance with the invention;
  • [0016]
    [0016]FIG. 2 is a diagrammatic cut away perspective view of an electrode assembly and associated feed structure;
  • [0017]
    [0017]FIG. 3 is a diagram showing a simulation of the electric field pattern obtainable with the electrode assembly of FIG. 2;
  • [0018]
    [0018]FIG. 4 is an electrical block diagram of the system of FIG. 1;
  • [0019]
    [0019]FIG. 5 is a circuit diagram of a low frequency part of the generator used in the system of FIG. 4;
  • [0020]
    [0020]FIG. 6 is a graph showing the variation of delivered power and voltage obtained from the generator part of FIG. 5;
  • [0021]
    [0021]FIG. 7 is a circuit diagram of a generator control circuit,
  • [0022]
    [0022]FIG. 8 is a microstrip layout for a mixer holding the signals obtained from the low and high frequency part of the generator;
  • [0023]
    [0023]FIG. 9 is a circuit diagram for a power control circuit forming a portion of the high frequency generator part;
  • [0024]
    [0024]FIG. 10 is a cross-section diagram of an alternative electrode assembly configured for gas plasma generation; and
  • [0025]
    [0025]FIG. 11 is a cross-section diagram of a further alternative electrode assembly configured for gas plasma generation.
  • [0026]
    The preferred embodiments of the present invention are applicable mainly to the performance of electrosurgery upon tissue in a gaseous environment using a dual electrode instrument having active and return electrodes situated at the distal end of an instrument shaft. The active electrode is applied directly to the tissue. The return electrode does not contact the tissue being treated, but is normally adjacent the tissue surface where it is capactively coupled to the tissue at UHF frequencies.
  • [0027]
    A system incorporating such an instrument is shown in FIG. 1. Referring to FIG. 1, the system has a electrosurgical supply unit 10 with an output socket 10S providing a radio frequency (r.f.) output for the electrosurgical instrument 12 via a flexible cable 14. Instrument 12 has a handpiece 12A and, mounted to the handpiece, all instrument shaft 12B having an electrode assembly 16 at its distal end. A patient U pad 17 is also connected to the supply unit 10. Activation of the supply unit may be performed from the handpiece 12A via a control connection in cable 14, or by means of a foot switch 18 connected separately to the rear of the supply unit 10 by a foot switch connection cable 20.
  • [0028]
    Instrument shaft 12B constitutes a feed structure for the electrode assembly 16 and takes the form of a rigid coaxial feed having an inner conductor and an outer supply conductor made with rigid material cons as a resilient metal tube or as a plastics tube with a metallic coating. The distal end of the feed structure appears in FIG. 2 from which it will be seen that the inner conductor 22 has an extension which projects beyond the outer conductor 24 as a rod 26 forming an axially extending active electrode of a diameter typically less than 1 mm. Where they are surrounded by the outer supply conductor 24, the inner supply conductor 22 and the active electrode 26 are encased in a coaxial ceramic or high-temperature polymer sleeve 28 acting as an insulator and as a dielectric defining the characteristic impedance of the transmission line formed by the coaxial feed.
  • [0029]
    The return electrode is formed as a coaxial conductive sleeve 30 surrounding a distal end portion of the outer supply conductor 24 with an intervening annular space 31. An connection between the return electrode 30 and the outer supply conductor 24 is formed as an annular connection 30A at one end only, here the distal end, of the return electrode 30 such that the projecting portion of the active electrode 26 and the return electrode 30 together constitute an axially extending dipole with a feed point at the extreme distal end of the coaxial feed. This dipole 26, 30 is dimensioned to match the load represented by the tissue and air current path to the characteristic impedance of the feed at or near 2.45 GHz.
  • [0030]
    Located proximally of the electrode assembly formed by active electrode 26 and return electrode 30 is an isolating choke constituted by a second conductive sleeve 32 connected at one of its ends to the outer supply conductor 24 by an annular connection 32A. In this instance, the annular connection is at the proximal end of the sleeve. The sleeve itself has an electrical length which is a quarter-wavelength (λ/4) at 2.43 GHz or thereabouts, the sleeve thereby acting as an balun promoting at least an approximately balanced feed for the dipole 26, 30 at that frequency.
  • [0031]
    The projecting part of the active electrode 26 has a length in the region of 10 mm while the return electrode 30 is somewhat greater than 10 mm in length. The reason for this difference in length is that the relative dielectric constant of living tissue is higher than that of air, which tends to increase the electrical length of the active electrode for a given physical length. The electrode assembly 16 and choke 32 are configured to provide an electrical impedance match with the tissue being treated and advantageously, a mismatch to the impedance of free space, so that power transmission from the electrode assembly is minimised when the active electrode is removed from tissue whilst an electrosurgical voltage is still being applied at 2.45 GHz.
  • [0032]
    Sleeve 32 has an important function insofar as it ac as an isolating trap isolating the outer supply conductor 24 of the feed structure from the return electrode 30, largely eliminating r.f. currents at 2.45 GHz on the outside of the outer supply conductor 24. This also has the effect of constraining the electric field which results from the application of a voltage at 2.45 GHz between the active electrode and the return electrode, as seen in FIG. 3.
  • [0033]
    [0033]FIG. 3 is a computer-generated finite element simulation of the electric (E) field pattern produced by the electrode assembly 16 and choke 32 of FIG. 2 when energised via the coaxial feed 12B at 2.45 GHz. It should be noted that the components of the electrode assembly and the sleeve 32 are shown quartered in FIG. 3 (i.e. with a 90 sector cross-section). The active electrode 26 is shown with its tip in contact with a body 40 of tissue. The pattern 42 of E-field contours in a plane containing the axis of the electrode assembly illustrates the marked concentration of E-field in the space 44 surrounding the active electrode 26 and the distal part of the return electrode 30 immediately adjacent the tissue surface 40S. Proximally of this space, the E-field intensity is much reduced, as will be seen by the relatively wide spacing of the contours. (It should be noted that the region 44 of greatest intensity appears as a white area in the drawing. In this region and the immediately surrounding region the contour lines are too closely spaced to be shown separately.) The presence of an intense E-field region between the distal end of the return electrode 30 and the tissue surface 40S is also indicative of capacitive coupling between these two surfaces at the frequency of operation (which is 2.45 GHz in the simulation of FIG. 3). Localisation of the E-field in this manner also has the effect of reducing radiated loss in comparison with an arrangement in which intense field regions exist further from the tissue surface 40S, with the effect that radiated loss is minimised.
  • [0034]
    Referring back to FIG. 2, it will be understood that the feed structure makes use of a coaxial feed rather than a waveguide to transmit power to the electrode assembly from the handpeice and, indeed, as shown in FIG. 1, there is a flexible cable between the handpiece 12 and the electrosurgical supply unit 10. Use of coaxial feeders rather than waveguides in both cases allows the transmission of voltage components of widely spaced frequencies in a single transmission line. This also provides the advantage of a flexible connection between the handpiece 12 and the supply unit 10. Dielectric losses in the cable 14 are mitigated by selection of a cable with a low density, partly air-filled dielectric structure. A further reduction in dielectric loss can be obtained by increasing the diameter of the cable. Such increased diameter need not be used over the whole length of the cable 14. Indeed, a smaller diameter may be retained near the handpiece to retain flexibility of movement
  • [0035]
    The ability to feed different voltage components at different frequencies from the supply unit to the handpiece in a single transmission line has advantages related to the main aspect of the present invention which is the provision of means for delivering r.f. power to the electrode assembly in lower and upper frequency ranges, the upper range containing frequencies at least five times the frequencies of the lower frequency range. Thus, the supply unit may include generator parts generating electrosurgical signals at, for instance, 1 MHz and 2.45 GHz respectively to suit different operation site conditions and surgical requirements. In the preferred embodiments of the invention, these different components are supplied simultaneously through cable 14 to the handpiece 12 and electrode assembly 16.
  • [0036]
    Details of the electrosurgical generator for delivering electrosurgical power in this way will now described with reference to FIGS. 4 to 9.
  • [0037]
    Referring to FIG. 4, the supply unit 10 contains separate 1 MHz and 2.54 GHz synthesisers 50, 52 the output signals of which are summed in an adder stage 54 having low- and high-pass filters coupled to inputs arranged to receive the 1 MHz and 2.45 GHz signals respectively, as shown. A circulator 56 connected in series between the 2.45 GHz synthesiser 52 and the adder 54 serves to provide a 50 ohm source impedance for synthesiser 52 under conditions of varying load impedance, reflected power being dissipated in a 50 ohm reflected energy sink or dump 58, also connected to the circulator 56.
  • [0038]
    At the output of the adder 54 a composite signal consisting principally of the two frequency components at 1 MHz and 2.45 GHz is delivered to the output socket 10S of the supply unit and thence via cable 14, which is typically in the region of three metres long, to the handheld instrument, represented in FIG. 4 by an impedance transformer 60 operable at 2.45 GHz, and thereafter to the tissue 40 under treatment.
  • [0039]
    Referring to FIG. 5, the 1 MHz synthesiser has a push-pull output stage 64 which drives an output transformer 66 via a current limiting inductor 67 of 3 μH and a series coupling capacitor 68 of 1 μF. Included in the primary circuit of the transformer 66 is a shunt current transformer 70 having an output winding (not shown) for monitoring the output current of the synthesiser at 1 MHz. The transformer secondary winding is coupled to the output 10S through a toning inductance 72 of 840 μH which resonates with the capacitance of the cable 14 and other components on the secondary side of the transformer 66. In this example the cable has an inherent shunt inductance of about 80 μH and the series capacitance 78 between the return electrode and the tissue being treated is in the region of 30 pF. The tissue is shown as a resistance 40. Those skilled in the art will understand that at 1 MHz, series inductance 72 and capacitance 78 can resonate so as to act as a short circuit, thereby coupling the load (tissue resistance 40) directly to the transformer secondary under matched conditions. The effect of the series inductance 67 in the primary circuit is to limit the secondary current at 1 MHz typically to 50 mA. The capacitance 78 is larger than 30 pF of the patient-attached return pad 17 (se FIG. 1) is used such that, at 1 MHz, the system is used in a monopolar mode.
  • [0040]
    It will be understood that the filter/adder circuitry shown in FIG. 4 has been omitted from FIG. 5 for clarity.
  • [0041]
    As will be seen from the graph of FIG. 6, the arrangement described above with reference to FIG. 5 yields maximum power transfer to the tissue when the tissue impedance is in the region of 10 k ohms. At 1 k ohm and below, both the delivered power and the output voltage are comparatively low, representing a stall condition. Stalling occurs, typically, when the electrode assembly encounters an electrolyte, such as when a blood vessel is cut. This condition is detected in a manner which will now be described.
  • [0042]
    Referring to FIG. 7, a 1 MHz stall detector, forming part of the 1 MHz synthesiser 50 shown in FIG. 4, has voltage and current inputs 80 and 82 respectively. In the first instance, the stall detector applies the voltage from the pr y winding of the transformer 66 (see FIG. 5) to a pulse width modulation chip 84 to produce a pulsed output signal having a pulse width which varies according to the voltage supplied at input 90. At input 82, a voltage proportional to the current in the primary winding of transformer 66, as sensed by the current transformer 70, is supplied to a potential divider 88A, 88B, the tap of the divider being connected to the output line 86 of the pulse width modulation chip 84. Accordingly, the voltage applied to buffer circuit 90, smoothed by capacitor 89, is equivalent to the pule width modulation output on output line 86, scaled according to the level of the transformer primary current. In other words, the signal applied to buffer 90 represents the product of the transformer primary voltage and primary current, i.e. the delivered power at 1 MHz.
  • [0043]
    Thus, the signal at the output of buffer 90 is proportional to power, and is delivered to one input of an OR-gate formed by diodes 92, 94 which receives, at its other input, the voltage applied to input 80. Accordingly, the signal at the output 98 of the OR-gate is low only when both the delivered power at 1 MHz and the output voltage at 1 MHz are low, i.e. in accordance with the power and voltage characteristics show in FIG. 6 when the load impedance is less than a few kilohms, and typically less than 1 k ohm. An output comparator circuit 100 is used to compare the output voltage from the OR-gate 92, 94 with a reference voltage applied to input 102, representing a reference value of the voltage obtained from the push-pull pair 64 (See FIG. 5) in open-circuit conditions. The resulting output at the detector output 104 is a control signal for enabling the 2.45 GHz synthesiser 52 shown in FIG. 4.
  • [0044]
    The adder 54 is formed as a microstrip device, as shown in FIG. 8. This is a 3-port device having a first input port 104 for the UHF signal from the 2.45 GHz generator part and a second input port 106 for the low frequency signal from the 1 MHz generator part. The device allows the UHF signal to be transmitted to an output port 108 with little loss whilst being isolated from the low frequency input port 106. Similarly, the low frequency signal applied to port 106 is transmitted to the output port 108 with low loss whilst being isolated from the UHF input port 104 a quarter wave (λ/4) short circuit stub 110 and series capacitor 111 at the UHF input port 104 are transparent to the signal applied at input port 104, which is thereby transmitted to the output port 108 via an output limb 112. Between the output limb 112 and the low frequency input 106 are three λ/4 open circuit stabs 114, 116, 118, the first 114 of these being spaced from the output limb 112 by a series λ/4 section 120. These open circuit stubs 114, 116, 118 reactively attenuate the 2.45 GHz signal to isolate it from the low frequency input 106. The base of the output limb 122 constitutes a sum injunction 112 and the λ/4 length of the line section 120 extends from this junction 112 to the base 124 of the first open circuit stub 114.
  • [0045]
    The open circuit stubs 114, 116, 118 are transparent to the 1 MHz signal, whereas the series capacitor 111 and the short circuit stub 110 reactively attenuate the 1 MHz signal in order to isolate the UHF input port 104 at 1 MHz.
  • [0046]
    It will be appreciated that the λ/4 components described above may have an electrical length which is any odd-number multiple of λ/4. Here, λ is the wavelength of the applied UHF (2.45 GHz) signal in the microstrip medium
  • [0047]
    The 2.45 GHz synthesiser includes a power control circuit as shown in FIG. 9. Referring to FIG. 9, the power control circuit has two inputs 130, 132 coupled to the input and the “reflected” power output of the circulator 56 (see FIG. 4) respectively. The reflected voltage applied to input 132 is subtracted from the input voltage supplied to 130 in comparator 134 and the resulting difference value compared with a reference voltage set by potentiometer 136 in an output comparator 138 to produce a switching signal for limiting the power output to a threshold value set by the user (or set automatically using a microprocessor controller forming part of the supply unit). Different power settings may be used depending upon the size of the electrode assembly connected to the handpiece and environment
  • [0048]
    It will be appreciated that electrosurgical power may be delivered from the supply unit 10 shown in FIG. 1 either exclusively at 1 MHz or exclusively at 2.45 GHz for predominantly tissue vaporisation or thermal tissue coagulation respectively. In addition, power may be delivered at both frequencies simultaneously on the basis of a user-defined combination depending upon the characteristics of the tissue being treated A third mode of operation is an auto-detection mode using the stall detection circuit described above with reference to FIG. 6, such that either of the two components predominate in a composite output voltage waveform, according to tissue impedance. In the latter case, the user typically selects a tissue vaporisation mode for predominant tissue cleaving or vaporisation, in which mode the 2.45 GHz component is enabled only when the tissue being treated presents a very low impedance. As mentioned above, this typically indicates the presence of an electrolyte such as blood from a blood vessel. Under these circumstances, the UHF component (i.e. the 2.45 GHz component) of the composite voltage waveform provides coagulation and/or desiccation of the tissue in the region of blood loss the generator continuing in that mode until the detected tissue impedance rises again, whereupon the UHF component is disabled and treatment continues again exclusively at 1 MHz.
  • [0049]
    As described above, detection of low tissue impedance in these circumstances can be achieved by comparison of voltage and current amplitudes at the output of the 1 MHz source, prior to the adder 54 shown in FIG. 4. To avoid a low impedance detection output occurring as a result of reactive loading between the generator and the tissue being treated, the detector circuit may be modified to generate a signal representative of (V cos φ)/I, where V is the magnitude of the 1 MHz voltage component, I is the magnitude of the 1 MHz current component, and φ the phase angle between the said voltage and current.
  • [0050]
    It should be noted that detection of low power delivery at 1 MHz as described above with reference to FIG. 7 makes use of a signal representative of the real power delivered to the load, scaled by the voltage that would be obtained from the 1 MHz synthesiser with an open circuit output.
  • [0051]
    In an alternative embodiment, not shown in the drawings the UHF (2.45 GHz) synthesiser 52 shown in FIG. 4 may be installed in the handpiece 12 together with the circulator 56, energy dump 58, and adder 54. This has the advantage that the cable 14 (see FIG. 1) between the supply unit and the headpiece 12 may be an inexpensive smaller diameter component A d.c. power supply for the UHF synthesiser is also required, and may be provided by an additional cable or additional wires in the 1 MHz feed together with, when necessary, a further line for control functions. The composite output voltage is, in this case, fed directly from the adder 54 to the feeder structure represented by the instrument shaft.
  • [0052]
    It will be appreciated that losses at UHF are much reduced with this embodiment, to the extent that the power output of the UHF synthesiser may be reduced. Drawbacks include the additional bulk and weight of the handpiece and the possible need for forced fluid cooling of the UHF synthesiser, depending on the required power output. Such cooling could take place by evacuating air from the operation site into a passage at the distal end of the electrode shaft through a filter element to the UHF synthesiser, performing the dual functions of cooling the synthesiser and removing smoke or vapour from the operation site to enhance visibility.
  • [0053]
    The ability to supply electrosurgical voltages at widely spaced frequencies also has application in a further alternative embodiment making use of a gas plasma electrode, as will now be described with reference to FIG. 10.
  • [0054]
    It is well known to use an inert gas such as argon, ionised using an r.f voltage and fed via a nozzle, typically having a diameter in excess of 1 mm, to produce a hot plasma “bcam”. Directing this gas plasma onto the tissue being t causes coagulation through transfer of thermal energy.
  • [0055]
    The behaviour of the argon plasma depends upon the incident energy. The higher the temperature of the argon, the greater its electrical conductivity. Paradoxically, the more energy initially imparted to the plasmas the less is the energy absorbed by the plasma due to its lower electrical impedance.
  • [0056]
    Supplying upper and lower frequency components simultaneously to a plasma-generating electrode assembly has the advantage that formation of the plasma can be performed independently of the conduction of energy along the plasma beam. As described above with reference to FIGS. 1 to 9, the tipper and lower components typically have frequencies of 2.45 GHz and 1 MHz respectively.
  • [0057]
    Referring to FIG. 10, the preferred electrode assembly consists of a ceramic nozzle body 200 attached to the end of a coaxial feed structure which has the same configuration as the feed structure in the embodiment described above with reference to FIGS. 1 to 9. Nozzle body 200 has an axial gas supply chamber 202 with a communicating lateral gas inlet 204. The nozzle body 200 is tapered distally to form a narrow tube 206 with an axial bore 208 providing an outlet from the chamber 202, the exit nozzle having an internal diameter in the region of 50 to 300 μm. Situated axially within the gas supply chamber 202 and the nozzle bore 208 is a whisker electrode 210 coupled to the inner supply conductor 22 of the coaxial feed. As shown in FIG. 10, the whisker electrode 210 is coiled within the chamber 202 and has an extension extending axially into bore 208 so that the total electrical length of the electrode 210 is about λ/4 at the frequency of the upper component.
  • [0058]
    Plated on the lateral exterior she of the ceramic nozzle body 200 is a conductive return electrode 212 adjacent to the outer supply conductor 24 of the feed structure 12B and spaced from the supply conductor 24 by a gap 213.
  • [0059]
    Essentially then, the plasma generator comprises a whisker antenna within a ceramic tube having a metallised shroud. The capacitance between the whisker electrode 210 and the return electrode 212 is typically in the region of 0.5 to 5 pF. Clearly, this is a relatively low impedance at 2.45 GHz but a very high impedance at 1 MHz. This, coupled with the fact that the λ/4 length of the electrode 210 causes the electrode 210 to act as an impedance transformer producing a high voltage at the tip of the electrode, means that the 2.45 GHz component is dissipated within the plasma chamber when an ionisable gas is introduced via inlet 204 (causing plasma generation in bore 208) whereas the low frequency component at 1 MHz is conducted along the plasma beam to target tissue and to earth via the return pad attached to the patient (see FIG. 1).
  • [0060]
    The plasma generator is highly efficient at UHF frequencies, which means that the plasma may be generated with sufficient flow to absorb as much as 100 watts. The ionised gas is pumped from the chamber 202 through bore 208 which may have a bore as small as 0.1 mms. Since the majority of the power is dissipated within the chamber, little or no power at UHF is conducted to the nozzle outlet by the plasma. Instead, the UHF current component flows from the whisker electrode 210 via capacitive coupling to the return electrode 212, and thence via further capacitive coupling to the outer conductor 24 of the feed structure 12B.
  • [0061]
    Using the UHF source alone, the plasma beam acts as a powerful tissue coagulation tool, the depth and area of the coagulation effect being determined by the dispersion of the gas beyond the nozzle which depends, in turn, upon the distance the nozzle is held from the tissue surface. This is a purely thermal effect.
  • [0062]
    As described above, when both lower and upper frequency components are supplied, the lower frequency component at medium frequencies such as 1 MHz (a range of 100 kHz to 5 MHZ is applicable in this instance) results in power being conducted along the plasma beam to the target tissue and thence to earth, vaporising the tissue.
  • [0063]
    Since the 1 MHz component is not coupled in plasma generation, its voltage can be comparatively low, at typically 300 volts to 1000 volts rms. It follows that the ability of the low frequency source to support significant current delivery at low power is superior to that achievable in known prior systems.
  • [0064]
    The ionising ability of the UHF source is such that gases other than argon may be used. Argon has tended to be used in the prior art because it has a low ionisation potential, it is an inert gas, and it is the most abundant of the noble inert gases and consequently the cheapest. However, when using the described electrode assembly, with the plasma beam acting as an active electrode conveying electrosurgical tissue vaporising power at 1 MHz, a significant amount of residual carbon can be produced. This is the result of vaporising the tissue in an oxygen-free environment.
  • [0065]
    Use of an oxidising gas plasma by supplying oxygen or an oxide of nitrogen, gases which are both readily available in an operating theatre, counters the formation of carbon. Such gases have a considerably higher ionisation potential than argon with the result that considerably higher temperatures are attained with sufficiently conductive plasma streams, to the extent that the gas delivery rate has to be correspondingly reduced. An oxidising gas can be mixed with the argon before plasma generation, and introduced directly via inlet 204. Alternatively, the oxidising gas may be mixed with the argon plasma using an electrode assembly having a second gas inlet, as shown in FIG. 11. The embodiment shown in FIG. 11 makes use of a ceramic body 200 with a second lateral gas inlet 214 communicating with the bore 208 of the nozzle tube 206.
  • [0066]
    The whisker electrode 210 is preferably tungsten or tantalum due to the high melting point of these metals. Where an oxidising gas is introduced into the plasma generating chamber, a platinum or platinum-coated electrode is more appropriate, in order to avoid electrode oxidisation. The electrode may also be constructed from a thoriated alloy such as a thorium-toungsten alloy to improve electron emission and to promote predictable ionisation.
  • [0067]
    Dual frequency operation of a gas plasma electrode assembly as described above avoids the difficulties created by generating the plasma and the tissue effects from the same electrical source. Consequently, the difficulty in generating a plasma from a voltage which varies due to large variations in load impedance is avoided, and the lower frequency r.f. source can be used to deliver current through the plasma without relatively high peak voltages when using low frequencies, which places high power demands upon the r.f. generator.
  • [0068]
    Narrow jet diameters, as disclosed above, as allowed by high excitation voltages and low impedance, result in higher current density upon tissue contact, giving the opportunity to perform rapid but fine tissue vaporisation.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3699967 *30 Apr 197124 Oct 1972Valleylab IncElectrosurgical generator
US3903891 *12 Oct 19709 Sep 1975Hogle Kearns IntMethod and apparatus for generating plasma
US4494539 *4 May 198222 Jan 1985Toshio ZenitaniMethod and apparatus for surgical operation using microwaves
US4534347 *8 Apr 198313 Aug 1985Research CorporationMicrowave coagulating scalpel
US4583556 *13 Dec 198222 Apr 1986M/A-Com, Inc.Microwave applicator/receiver apparatus
US4641649 *30 Oct 198510 Feb 1987Rca CorporationMethod and apparatus for high frequency catheter ablation
US4712544 *12 Feb 198615 Dec 1987Castle CompanyElectrosurgical generator
US4825880 *19 Jun 19872 May 1989The Regents Of The University Of CaliforniaImplantable helical coil microwave antenna
US5150717 *18 Sep 199029 Sep 1992Arye RosenMicrowave aided balloon angioplasty with guide filament
US5254117 *17 Mar 199219 Oct 1993Alton Dean MedicalMulti-functional endoscopic probe apparatus
US5267998 *13 Oct 19927 Dec 1993Delma Elektro-Und Medizinische Apparatebau Gesellschaft MbhMedical high frequency coagulation cutting instrument
US5423809 *30 Aug 199313 Jun 1995Valleylab Inc.Electrosurgical control for a trocar
US5630426 *3 Mar 199520 May 1997Neovision CorporationApparatus and method for characterization and treatment of tumors
US5669904 *7 Mar 199523 Sep 1997Valleylab Inc.Surgical gas plasma ignition apparatus and method
US5683382 *15 May 19954 Nov 1997Arrow International Investment Corp.Microwave antenna catheter
US5762626 *23 Aug 19969 Jun 1998Vidamed, Inc.Transurethral needle ablation device with cystoscope and method for treatment of the prostate
US5954686 *2 Feb 199821 Sep 1999Garito; Jon CDual-frequency electrosurgical instrument
US6224593 *13 Jan 19991 May 2001Sherwood Services AgTissue sealing using microwaves
US6245065 *10 Sep 199812 Jun 2001Scimed Life Systems, Inc.Systems and methods for controlling power in an electrosurgical probe
US6582427 *3 Mar 200024 Jun 2003Gyrus Medical LimitedElectrosurgery system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US764849921 Mar 200619 Jan 2010Covidien AgSystem and method for generating radio frequency energy
US765149226 Jan 2010Covidien AgArc based adaptive control system for an electrosurgical unit
US765149326 Jan 2010Covidien AgSystem and method for controlling electrosurgical snares
US772260130 Apr 200425 May 2010Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US77317178 Aug 20068 Jun 2010Covidien AgSystem and method for controlling RF output during tissue sealing
US77492176 May 20036 Jul 2010Covidien AgMethod and system for optically detecting blood and controlling a generator during electrosurgery
US77666933 Aug 2010Covidien AgConnector systems for electrosurgical generator
US77669053 Aug 2010Covidien AgMethod and system for continuity testing of medical electrodes
US778066224 Aug 2010Covidien AgVessel sealing system using capacitive RF dielectric heating
US779445728 Sep 200614 Sep 2010Covidien AgTransformer for RF voltage sensing
US78244003 Mar 20062 Nov 2010Covidien AgCircuit for controlling arc energy from an electrosurgical generator
US783448416 Nov 2010Tyco Healthcare Group LpConnection cable and method for activating a voltage-controlled generator
US79014008 Mar 2011Covidien AgMethod and system for controlling output of RF medical generator
US792732824 Jan 200719 Apr 2011Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US794703912 Dec 200524 May 2011Covidien AgLaparoscopic apparatus for performing electrosurgical procedures
US797232824 Jan 20075 Jul 2011Covidien AgSystem and method for tissue sealing
US801215030 Apr 20046 Sep 2011Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US80340498 Aug 200611 Oct 2011Covidien AgSystem and method for measuring initial tissue impedance
US805905929 May 200815 Nov 2011Vivant Medical, Inc.Slidable choke microwave antenna
US808000820 Dec 2011Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US810495623 Oct 200331 Jan 2012Covidien AgThermocouple measurement circuit
US810532324 Oct 200631 Jan 2012Covidien AgMethod and system for controlling output of RF medical generator
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US815715317 Apr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197724 Apr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US81671851 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721248 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818043330 Sep 200815 May 2012Vivant Medical, Inc.Microwave system calibration apparatus, system and method of use
US818655531 Jan 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656029 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 Aug 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US819679612 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US821622010 Jul 2012Tyco Healthcare Group LpSystem and method for transmission of combined data stream
US824127814 Aug 2012Covidien AgLaparoscopic apparatus for performing electrosurgical procedures
US824278230 Sep 200814 Aug 2012Vivant Medical, Inc.Microwave ablation generator control system
US8248075 *21 Aug 2012Vivant Medical, Inc.System, apparatus and method for dissipating standing wave in a microwave delivery system
US826792829 Mar 201118 Sep 2012Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US826792916 Dec 201118 Sep 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US828752730 Sep 200816 Oct 2012Vivant Medical, Inc.Microwave system calibration apparatus and method of use
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US829288123 Oct 2012Vivant Medical, Inc.Narrow gauge high strength choked wet tip microwave ablation antenna
US83035826 Nov 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832879911 Dec 2012Vivant Medical, Inc.Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US83288005 Aug 200911 Dec 2012Vivant Medical, Inc.Directive window ablation antenna with dielectric loading
US832880117 Aug 200911 Dec 2012Vivant Medical, Inc.Surface ablation antenna with dielectric loading
US83463701 Jan 2013Vivant Medical, Inc.Delivered energy generator for microwave ablation
US834813129 Sep 20068 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US835390518 Jun 201215 Jan 2013Covidien LpSystem and method for transmission of combined data stream
US836029729 Jan 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836106229 Jan 2013Vivant Medical, Inc.Slidable choke microwave antenna
US836597629 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US839862617 Nov 201119 Mar 2013Covidien AgElectrosurgical system employing multiple electrodes
US84145779 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 Nov 201023 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US845952011 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952511 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Jan 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US847544723 Aug 20122 Jul 2013Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US848599316 Jan 201216 Jul 2013Covidien AgSwitched resonant ultrasonic power amplifier system
US848606124 Aug 201216 Jul 2013Covidien LpImaginary impedance process monitoring and intelligent shut-off
US849999312 Jun 20126 Aug 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US851233221 Sep 200720 Aug 2013Covidien LpReal-time arc control in electrosurgical generators
US851724314 Feb 201127 Aug 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85345281 Mar 201117 Sep 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 Jan 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854201913 Aug 201224 Sep 2013Covidien LpMicrowave ablation generator control system
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 Jun 201210 Dec 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dec 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 Oct 200817 Dec 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86164319 Feb 201231 Dec 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Jan 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US86361873 Feb 201128 Jan 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 Feb 200828 Jan 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US86473404 Jan 201211 Feb 2014Covidien AgThermocouple measurement system
US865212010 Jan 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 Jan 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866321424 Jan 20074 Mar 2014Covidien AgMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US866813024 May 201211 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US86722085 Mar 201018 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 May 20111 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US86966626 Feb 200715 Apr 2014Aesculap AgElectrocautery method and apparatus
US87280726 Feb 200720 May 2014Aesculap AgElectrocautery method and apparatus
US873443821 Oct 200527 May 2014Covidien AgCircuit and method for reducing stored energy in an electrosurgical generator
US87465292 Dec 201110 Jun 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 Sep 201210 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874723828 Jun 201210 Jun 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875274720 Mar 201217 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 May 201117 Jun 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875333410 May 200617 Jun 2014Covidien AgSystem and method for reducing leakage current in an electrosurgical generator
US87638756 Mar 20131 Jul 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US87638791 Mar 20111 Jul 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US877794110 May 200715 Jul 2014Covidien LpAdjustable impedance electrosurgical electrodes
US87835419 Feb 201222 Jul 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878974123 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879703924 Sep 20135 Aug 2014Covidien LpMicrowave ablation generator control system
US88008389 Feb 201212 Aug 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880816123 Oct 200319 Aug 2014Covidien AgRedundant temperature monitoring in electrosurgical systems for safety mitigation
US880832519 Nov 201219 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US88206031 Mar 20112 Sep 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 Feb 20122 Sep 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US88406033 Jun 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 Feb 201230 Sep 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US889394923 Sep 201125 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US88994655 Mar 20132 Dec 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US891147114 Sep 201216 Dec 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US8920412 *3 Jun 200930 Dec 2014Erbe Elektromedizin GmbhElectrosurgical generator for the treatment of a biological tissue, method for regulating an output voltage of an electrosurgical generator, and corresponding use of the electrosurgical generator
US89257883 Mar 20146 Jan 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168227 May 201113 Jan 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US8958887 *10 Oct 200717 Feb 2015Creo Medical LimitedNeedle structure and method of performing needle biopsies
US896698116 Jul 20133 Mar 2015Covidien AgSwitched resonant ultrasonic power amplifier system
US896828819 Feb 20103 Mar 2015Covidien LpAblation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US897380418 Mar 201410 Mar 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US8974449 *16 Jul 201010 Mar 2015Covidien LpDual antenna assembly with user-controlled phase shifting
US897895429 Apr 201117 Mar 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US899167629 Jun 200731 Mar 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 May 201431 Mar 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 May 201131 Mar 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 May 20147 Apr 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US9005192 *8 Nov 201014 Apr 2015Biosense Webster (Israel) Ltd.Simultaneous ablation by multiple electrodes
US9005193 *22 Nov 201014 Apr 2015Biosense Webster (Israel) Ltd.Multichannel ablation with frequency differentiation
US900523018 Jan 201314 Apr 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US90284763 Feb 201112 May 2015Covidien LpDual antenna microwave resection and ablation device, system and method of use
US902849428 Jun 201212 May 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 Feb 201112 May 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US904423013 Feb 20122 Jun 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US904423810 Apr 20122 Jun 2015Covidien LpElectrosurgical monopolar apparatus with arc energy vascular coagulation control
US90500817 Sep 20109 Jun 2015Erbe Elektromedizin GmbhAnti-carbonization device
US905008323 Sep 20089 Jun 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 Sep 20119 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 Sep 201116 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 May 201123 Jun 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 Jun 20147 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 May 20117 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 Jun 20127 Jul 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US908460115 Mar 201321 Jul 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US909533919 May 20144 Aug 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US911387424 Jun 201425 Aug 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911390031 Jan 201225 Aug 2015Covidien AgMethod and system for controlling output of RF medical generator
US911965728 Jun 20121 Sep 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912566228 Jun 20128 Sep 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913822526 Feb 201322 Sep 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US9144451 *13 Aug 200929 Sep 2015Erbe Elektromedizin GmbhSoft generator
US914927417 Feb 20116 Oct 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US916808931 Jan 201227 Oct 2015Covidien AgMethod and system for controlling output of RF medical generator
US917991123 May 201410 Nov 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 May 201110 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 Jun 201417 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US919243722 Oct 201224 Nov 2015Covidien LpNarrow gauge high strength choked wet tip microwave ablation antenna
US919866226 Jun 20121 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 Aug 20148 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 Jun 20128 Dec 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 Mar 20128 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 Mar 201215 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 Jan 201515 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921601923 Sep 201122 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 Jun 20125 Jan 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 Mar 201212 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US923789127 May 201119 Jan 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 Mar 201226 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179020 Aug 20131 Mar 2016Coviden LpReal-time arc control in electrosurgical generators
US927179925 Jun 20141 Mar 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 Feb 20131 Mar 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 Mar 20128 Mar 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US927796225 Mar 20118 Mar 2016Aesculap AgImpedance mediated control of power delivery for electrosurgery
US92829628 Feb 201315 Mar 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 Feb 201415 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 Aug 201315 Mar 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 Dec 201422 Mar 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921217 Sep 201022 Mar 2016Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US928925628 Jun 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US930175228 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US93017599 Feb 20125 Apr 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930180421 Apr 20155 Apr 2016Covidien LpDual antenna microwave resection and ablation device, system and method of use
US930796525 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 Mar 201312 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798828 Oct 201312 Apr 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 Jun 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 Aug 201526 Apr 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 Oct 201226 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 Mar 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 Mar 20133 May 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 Mar 20133 May 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US933297428 Mar 201210 May 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 Mar 201310 May 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 Mar 201310 May 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US933932315 May 200817 May 2016Aesculap AgElectrocautery method and apparatus
US934547725 Jun 201224 May 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 Mar 201324 May 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935171330 Dec 201431 May 2016Creo Medical LimitedNeedle structure and method of performing needle biopsies
US935172614 Mar 201331 May 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 Mar 201331 May 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 Mar 201231 May 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 Mar 20137 Jun 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 Jun 20157 Jun 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 Jun 201214 Jun 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 Mar 201214 Jun 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US20060009763 *14 Sep 200512 Jan 2006Rhytech LimitedTissue treatment system
US20070185482 *6 Feb 20079 Aug 2007Eder Joseph CElectrocautery method and apparatus
US20080071263 *19 Sep 200620 Mar 2008Sherwood Services AgSystem and method for return electrode monitoring
US20080228179 *4 Apr 200818 Sep 2008Joseph Charles EderElectrocautery method and apparatus
US20090182323 *24 Mar 200916 Jul 2009Aragon Surgical, Inc.Electrocautery method and apparatus
US20090295674 *29 May 20083 Dec 2009Kenlyn BonnSlidable Choke Microwave Antenna
US20100030107 *10 Oct 20074 Feb 2010Medical Device InnovationsNeedle structure and method of performing needle biopsies
US20100079215 *1 Apr 2010Brannan Joseph DSystem, apparatus and method for dissipating standing wave in a microwave delivery system
US20100082022 *30 Sep 20081 Apr 2010Haley Kaylen JDelivered energy generator for microwave ablation
US20100082025 *1 Apr 2010Brannan Joseph DMicrowave ablation generator control system
US20100082083 *30 Sep 20081 Apr 2010Brannan Joseph DMicrowave system tuner
US20100082084 *30 Sep 20081 Apr 2010Brannan Joseph DMicrowave system calibration apparatus and method of use
US20100249768 *28 Jul 200830 Sep 2010Konstantin Stanislavovich AvramenkoMethod for removing tattoos or scars
US20100305559 *27 May 20092 Dec 2010Vivant Medical, Inc.Narrow Gauge High Strength Choked Wet Tip Microwave Ablation Antenna
US20110034913 *10 Feb 2011Vivant Medical, Inc.Directive Window Ablation Antenna with Dielectric Loading
US20110034917 *10 Feb 2011Vivant Medical, Inc.Electrosurgical Devices having Dielectric Loaded Coaxial Aperture with Distally Positioned Resonant Structure and Method of Manufacturing Same
US20110040300 *17 Feb 2011Vivant Medical, Inc.Surface Ablation Antenna with Dielectric Loading
US20110112526 *3 Jun 200912 May 2011Martin FritzElectrosurgical generator for the treatment of a biological tissue, method for regulating an output voltage of an electrosurgical generator, and corresponding use of the electrosurgical generator
US20110172656 *13 Aug 200914 Jul 2011Heiko SchallSoft generator
US20110174860 *21 Jul 2011Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US20110208177 *25 Aug 2011Vivant Medical, Inc.Ablation Devices With Dual Operating Frequencies, Systems Including Same, and Methods of Adjusting Ablation Volume Using Same
US20120016360 *16 Jul 201019 Jan 2012Vivant Medical, Inc.Dual Antenna Assembly with User-Controlled Phase Shifting
US20120116386 *8 Nov 201010 May 2012Assaf GovariSimultaneous ablation by multiple electrodes
CN102753111A *7 Sep 201024 Oct 2012厄比电子医学有限责任公司Anti-carbonisation device
Classifications
U.S. Classification606/41, 606/45, 606/34, 606/49
International ClassificationA61B18/12, A61B18/14, A61B18/00
Cooperative ClassificationA61B18/14, A61B18/12, A61B2018/0066, A61B18/042, A61B18/1206
European ClassificationA61B18/12G, A61B18/04B, A61B18/12