US20030132518A1 - Ball grid substrate for lead-on-chip semiconductor package - Google Patents

Ball grid substrate for lead-on-chip semiconductor package Download PDF

Info

Publication number
US20030132518A1
US20030132518A1 US10/348,842 US34884203A US2003132518A1 US 20030132518 A1 US20030132518 A1 US 20030132518A1 US 34884203 A US34884203 A US 34884203A US 2003132518 A1 US2003132518 A1 US 2003132518A1
Authority
US
United States
Prior art keywords
heat sink
slot
circuit
dielectric layer
bond pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/348,842
Inventor
Abram Castro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Touch Future Technology Ltd
Original Assignee
Castro Abram M.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castro Abram M. filed Critical Castro Abram M.
Priority to US10/348,842 priority Critical patent/US20030132518A1/en
Publication of US20030132518A1 publication Critical patent/US20030132518A1/en
Assigned to TOUCH FUTURE TECHNOLOGY LTD. reassignment TOUCH FUTURE TECHNOLOGY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUBSTRATE TECHNOLOGIES INCORPORATED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/4951Chip-on-leads or leads-on-chip techniques, i.e. inner lead fingers being used as die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to an integrated circuit substrate and, more particularly, to a ball grid array package that accommodates a lead-on-chip architecture.
  • An integrated circuit lead frame generally consists of a die paddle for mounting the integrated circuit (IC), leads that connect the integrated circuit to the package exterior, and a support structure that holds the frame together through the assembly operation.
  • IC integrated circuit
  • leads that connect the integrated circuit to the package exterior
  • support structure that holds the frame together through the assembly operation.
  • LOC lead-on-chip
  • LOC lead-under-chip
  • Memory architecture is heavily influenced by the objective of providing an evenly distributed I/O channel (bus) across all the memory cells within the device. Desired characteristics driving this include lower operating voltages, which make the device more sensitive to voltage drops (spikes), higher gate densities, faster access times, and increased clock speeds (shorter paths).
  • I/O interface aluminum bond pads
  • This centerline configuration provides minimized power, ground, and signal paths to every cell within the structure.
  • LOC designed packages uniquely accommodate the I/O interface with a centerline bond configuration fanning out to perimeter leads.
  • a basic LOC package structure employs an etched or stamped lead frame that incorporates a centerline slot into a die paddle.
  • the die paddle is connected to the leads and the frame via a tie bar that is eventually removed.
  • the die is mounted against the die paddle with the active side (I/O side) down against the paddle base, leads on the opposite side.
  • Package assemblers use a variety of die attachment methods, including tape and liquid adhesive.
  • the I/O connections (aluminum bond pads) on the die are left exposed on the opposite side via the centerline slot.
  • the bond pads are then electrically connected to the leads via conventional Au wire bond techniques.
  • the structure can be overmolded or liquid encapsulated to protect the silicon and wires.
  • the superstructure can then be removed, if not removed already, and the devices are left singulated from the frame.
  • the end configuration of the device can take numerous shapes based on lead frame technology used, but varieties include a small outline package (SOP), small outline integrated circuit (SOIC), plastic leaded chip carrier (PLCC) or a thin shrink small outline package (TSSOP).
  • SOP small outline package
  • SOIC small outline integrated circuit
  • PLCC plastic leaded chip carrier
  • TSSOP thin shrink small outline package
  • a second trend stressing conventional LOC packaging is clock speed.
  • the system's need for faster access times and greater bandwidth have driven memory clock speeds into the microprocessor realm of near and over 1 gigahertz.
  • These clock speeds demand improved (lower) line inductance, power/ground networks, and shielding that plastic LOC packages cannot deliver due either to materials sets and/or lead configuration limitations.
  • high-speed memory is permeating many high performance systems where the reliability of plastic (moisture absorbing) LOC packages comes into question.
  • a package substrate suitable for use with a ball grid array includes an electrically and thermally conductive heat sink having a top surface and a bottom surface, the heat sink having a slot formed therethrough which opens onto the top and bottom surfaces.
  • a dielectric layer is formed on the bottom surface of the heat sink proximate the slot, preferably directly thereon without an intervening adhesive layer.
  • a circuit is selectively formed in a circuit pattern on the dielectric layer.
  • An electrically resistive soldermask is disposed on the dielectric layer and the circuit, which soldermask has openings therethrough which expose bond pads of the circuit.
  • Such a substrate according to the invention permits the integrated circuit die to be mounted over the slot in the manner of a lead-on-chip package, but provides bond pads to which solder balls can be mounted in order to form a ball grid array.
  • a layer of an adhesive such as in a tape form, may be cut to size and secured to the top surface of the heat sink proximate the slot, eliminating the need for the user to apply the adhesive during the process of mounting the die.
  • the substrate includes one or more vias filled with electrically and thermally conductive material, which vias extend through the dielectric layer and accessible through the soldermask layer, and are typically located outside of the circuit pattern.
  • Solder balls may be connected to these filled vias in order to permit grounding of the heat sink to the motherboard and permit heat from the integrated circuit die to pass through the heat sink and via to the motherboard.
  • a portion of the bottom surface of the heat sink adjacent the slot may be left exposed, such as by selective removal of the dielectric coating, for connection to a ground wire connected to the die.
  • a ground wire can pass heat directly from the die to the heat sink, after which it can pass through the filled via into the motherboard.
  • a new lead frame, or “ball frame” captures the assembly advantages of LOC type packages and addresses the shortcomings described above.
  • the lead frame is improved by incorporation of a dielectric and circuit layer on the side opposite the die. This configuration can provide thermal management, active power and ground networks, and a ball grid array pin-out, while accommodating existing and foreseeable die sizes.
  • Such a lead frame of the invention preferably comprises a strip of package substrates as described above formed side by side and connected on the ends by rails. Each package substrate may be separated from each adjacent package substrate by an elongated widthwise slot having a greater length than the slot in the heat sink. The strip is cut both vertically and horizontally at the time of use to yield separate package substrates.
  • the invention further provides a method for manufacturing a substrate package.
  • the bottom surface of the heat sink is first treated with an adhesion promoter, and the dielectric layer is then formed directly on the treated bottom surface.
  • a circuit pattern is then formed on the dielectric layer, preferably by electrolytic deposition.
  • An electrically resistive soldermask is then formed over the dielectric layer and circuit, and portions of the soldermask are then selectively removed to expose wire bonding pads and ball pads on the circuit.
  • a via may be formed through the dielectric layer and filled with an electrically and thermally conductive material, and a further portion of the soldermask is selectively removed to expose and permit access to the filled via.
  • a slot is formed in the heat sink at a location adjacent the wire bonding pads, which slot opens onto top and bottom surfaces of the heat sink.
  • the adhesive layer for attaching the die may be pre-applied by cutting an adhesive sheet into a preform which has an opening therein of the same shape as the slot, and applying the preform to the top surface of the heat sink so that the preform opening is in alignment with the slot.
  • the substrate may then be shipped to an end user for completion. If a ground wire is to be run from the die directly to the heat sink as described above, then the process further includes a step of exposing an edge of the bottom surface of the heat sink adjacent the slot.
  • the foregoing steps are preferably performed on a series of substrates in strip form in order to produce a lead frame according to the invention.
  • the end user completes the integrated circuit package using a package substrate made by the foregoing process. If not already present, an adhesive is applied to the top surface of the heat sink around the slot, and an integrated circuit die is mounted to the top surface of the heat sink by means of the adhesive, such that wire bond pads on the die are exposed in the slot. Electrically conductive wires are bonded to the wire bond pads on the die and to the wire bond pads of the circuit adjacent the slot. The wires and die are then covered with an encapsulant, and solder balls are bonded (soldered) to the ball pads. The integrated circuit packages by then be singulated by cutting the lead frame as mentioned above.
  • FIG. 1 is a top view of an integrated circuit package substrate according to the invention.
  • FIG. 2 is a cross-sectional view along the line 2 - 2 in FIG. 1;
  • FIG. 3 is a cross-sectional view of a completed integrated circuit package according to the invention.
  • FIG. 4 is a cross-sectional view similar to FIG. 2 of an alternative embodiment of the invention.
  • FIG. 5 is a top view of a lead frame strip according to the invention.
  • an integrated circuit package substrate of the invention includes a thermally conductive paddle or heat sink 100 that serves as a package platform.
  • Heat sink 100 has a bottom face or surface 116 and a top face or surface 117 .
  • An adhesive layer 101 is adhered to top surface 117 adjacent a widthwise slot 110 which opens onto surfaces 116 , 117 .
  • a dielectric layer 102 is formed directly onto bottom surface 116 (i.e., without any intervening adhesive layer) which has been treated to promote adhesion of the dielectric 102 as described hereafter.
  • a circuit pattern 105 is formed on the dielectric 102 and covered by a soldermask layer 108 .
  • Micro-vias 103 filled with copper or a similar metal extend through dielectric 102 and are accessible through openings in soldermask 108 .
  • Two rows of electrically conductive wire bond pads 106 are formed adjacent slot 110 , either adjacent thereto as shown, or spaced therefrom by the width of exposed edge 104 as described hereafter.
  • Circuit pattern 105 spans pads 106 and a series of terminal (ball) pads 107 , which are left exposed through soldermask 108 so that solder balls can later be attached thereto.
  • a method of making an integrated circuit package substrate according to the invention includes the initial step of treating bottom surface 116 of heat sink 100 with an adhesion promoter, generally one that roughens or oxidizes bottom surface 116 of heat sink 100 , so that a dielectric layer 102 can be formed directly thereon without the use of an intervening adhesive.
  • the dielectric generally in liquid form, is then applied to bottom surface 116 to form a curable dielectric layer.
  • a circuit 105 is electrolytically and selectively formed on dielectric 108 in the first of one or more circuit patterns, and electrically resistive soldermask 108 is formed on and covers dielectric layer 102 and circuit 105 .
  • soldermask 108 preferably has a high epoxy-content.
  • Soldermask 108 has openings formed therein which expose bond areas 106 , 107 of the circuits 105 . Such openings may be formed by the known process of coating the soldermask layer, imaging through a photomask, and then removing the uncured areas which correspond to the locations of inner wire bond pads 106 and outer solder ball pads 107 .
  • Vias 103 are formed during the sequential build process and are filled (plated) with a thermally conductive and electrically material such as copper, so that heat may be conducted directly from heat sink 100 through the metal in via 103 without an intervening adhesive layer.
  • a copper layer is deposited on the dielectric layer and into micro-vias 103 , and then etched into the desired circuit pattern 105 , and for this reason the heat conductive metal deposited in vias 103 is preferably the same as the metal used to form circuit 105 .
  • circuit 105 preferably positions wire bond pads 106 at or near centerline slot 110 .
  • a rectangular layer of copper 130 is formed at the same time as circuit 105 .
  • Layer 130 is positioned to be centered on slot 110 , and is spaced from the edges of each circuit 105 . Areas 131 of layer 130 between circuits 105 serve to isolate the circuits 105 from interfering electrically with each other near slot 100 where the circuit density is greatest.
  • a pair of centered, rectangular end portions 133 may be left uncovered by soldermask 108 to serve as ground connections.
  • Widthwise slot 110 is then formed through the coated substrate in a trimming operation. Slot 110 is formed between left and right rows of bond areas 106 so that bond areas 106 adjoin opposite side edges of slot 110 .
  • identical widthwise slots 110 are formed at regular intervals along strip 120 , alternating with widthwise slots 121 greater in length than slots 110 .
  • Slots 121 separate the sides of one substrate from adjacent ones, but the strip remains united by a pair of end pieces or rails 122 which run the length of strip 120 .
  • Tooling holes 126 are formed to aid in subsequent processing, together with alignment fiducials 128 .
  • strip 120 may be shipped to its destination, but preferably layer 101 of an adhesive is first applied to top surface 117 of heat sink 100 adjacent slot 110 and covered with a removable liner.
  • strip 120 of the invention is then further processed by the user to make an integrated circuit package according to the invention.
  • Integrated circuit die 109 is attached to top surface 117 of heat sink 100 over slot 110 and secured thereto by the adhesive layer 101 . If the adhesive was pre-applied prior to shipping, then an adhesive release liner, if used, is removed. Wires 112 are then bonded between exposed bonding pads 111 on die 109 and wire bonding pads 106 formed near slot 110 , generally in two widthwise rows along opposite sides of slot 110 . Centerline slot 110 allows for easy access to aluminum wire bond pads 111 on the active side of die 109 . Conventional wire bonding techniques allow for electrical connection of die 109 to the circuitized wire bond pads 106 by wires 112 made of an electrically conductive metal such as gold.
  • one or more wires 112 A may be run from a grounding pad on die 109 to the exposed edge 104 of heat sink 100 and bonded thereto, providing additional heat dissipation for the integrated circuit as well as electrical grounding.
  • Exposed edge 104 is formed by selective removal of dielectric 108 from bottom surface 116 along the length of one or preferably both of the widthwise edges of slot 110 , and preferably has a width of up to about 0.02 inch.
  • Wires 112 , 112 A are then encapsulated in an electrically resistive plastic material in a manner known in the art, such as by liquid encapsulation.
  • encapsulant 113 must be placed on both sides of heat sink 100 as shown in FIG. 2, it is preferred to form encapsulant 113 by transfer molding in a manner known in the art.
  • Exposed copper end portions 124 on rails 122 act as gates for the molding process.
  • a standard ball attach process is used to attach solder balls 114 to the provided ball pads 107 in order to provide the electrical and thermal path to the package perimeter.
  • Solder balls 114 are soldered onto exposed ball pads 107 of the circuit 105 so that a ball grid array is formed, preferably as two or more parallel, widthwise rows with at least two such rows on opposite sides of slot 110 . Additional solder balls 114 A which are isolated from circuit 105 are bonded to conductive vias 103 to provide for thermal management. Balls 114 A permit heat from the integrated circuit to be conducted from heat sink 100 , through copper-filled vias 103 to the motherboard on which the integrated circuit package is mounted.
  • Strip 120 is subject to a final cutting operation in which rails 122 are removed, and individual packaged integrated circuits are ready for use.
  • Delivering numerous ball frame packages in-line (as a strip 120 ) according to current industry handling preferences provides a lead frame of the invention ideally suited for automated assembly.
  • the pattern to which the ball grid circuitry is laid out can accommodate conventional industry footprints (Jedec) and pitch, or be customized for application-specific requirements.
  • the foregoing method can produce a chip-scale package or a near chip-scale package (wherein the package is no more than 200% of the length and 200% the width of the die) with advanced thermal management features.
  • a lead frame such as strip 120 of the invention as described above preferably incorporates a thermally conductive heat sink providing a die paddle on one side and a built-up circuit on the opposite side.
  • the die 109 attached to the frame by adhesive 101 is wire bonded through slot 110 to the circuit side.
  • Circuit paths 105 route the signals electrically to a ball grid array pin out.
  • ground wire 112 A can pass through ground wire 112 A directly to heat sink 100 .
  • Some heat is dissipated directly through the dielectric layer 102 and into ambient air below the package, but the high thermal efficiency of the plated copper in via(s) 103 provides the most direct path out of the package. Incorporating more ball pads into this ground/thermal network can increase the thermal performance of the package.
  • Current electrical/thermal software modeling techniques can provide an optimized netlist or circuit path layout to accommodate performance requirements.
  • dielectric 102 Since dielectric 102 is applied to the circuit side without the use of adhesives, and because dielectric 102 can then be defined to access heat sink 100 where desirable, i.e., at vias 103 , numerous electrical advantages can be achieved. These include using heat sink 100 as a ground (reference) plane. Replacement of leads with solder balls decreases thermal resistance, reduces line inductance, and decreases package footprint. The addition of more dielectric layers permits higher layer counts when required, for example, where there are several circuits built on one another. The assembly of the new ball frame substrate of the invention is entirely suited to the assembly of standard LOC type packages. The ball attach process replaces the lead trim and form operation.
  • Optional adhesive layer 101 can be supplied on the frame to top surface 117 and pre-loaded in a “b-stage” format. This option preferably makes use of die bonding sheet type materials produced by companies such as Nippon Steel Chemical. Adhesive 101 may include a thermal conductivity enhancement agent such as a particulate silver filler to aid in transmission of heat from die 109 .
  • the die bonding sheet can be cut into a preform that matches the die size and centerline slot configuration of the substrate and can be tack attached in a simple, low cost operation to form adhesive layer 101 .
  • the incorporation of the adhesive onto the lead frame or strip 120 simplifies the assembly process for the assembly house, but can be omitted in favor of traditional die attach procedures used on a ball frame delivered without the optional adhesive attached.
  • dielectric layer 102 acts as an electrically isolating layer between heat sink 100 and ball grid circuit pattern 105 . Since dielectric layer 102 is definable by means of photolithography, laser etching, plasma etching, or other techniques prior to cure, and as there are no chemical adhesives used between dielectric layer 102 and heat sink 100 , heat sink 100 can be accessed by the formation of microvias 103 and edges 104 as shown in FIG. 4.
  • Heat sink 100 is preferably made of a copper alloy such as Olin Metal & Brass Copper Alloy 194 . This material is 98% copper, which is very low cost, with very high thermal conductivity. The other 2% consists of metallic fillers (Pb, Zn) that help increase mechanical properties (tensile strength, elongation) and consequently make heat sink 100 less susceptible to handling problems. Heat sink 100 can be thinner than prior BGA cores, preferably having a thickness from 250-300 microns, because the dies for use with the substrate of the present invention are smaller, and the heat sink is not required to have as much mechanical stiffness. Heat sink 100 could also be made of aluminum or be a copper-clad laminate of the type presently in commercial use.
  • the area of the die pad can be increased while the package footprint (length and width) is reduced. This advantage is further realized by improved thermal performance (heat dissipation as described above) in a smaller area.
  • package solder balls 114 replace the leads used in known LOC packages, the thermal path into the motherboard is reduced in length while the thermal mass that conducts heat, which is related to solder ball volume, is increased. This translates into a very effective heat sink for the integrated circuit.
  • the effectiveness of this heat sink can be further improved by designing the package for a near chip scale or slightly larger than integrated circuit configuration. In such a configuration, the die paddle on which the integrated circuit sits is large enough to both provide a platform for mold encapsulation and the maximum surface area for thermal transmission, but small enough to minimize package footprint per Jedec or custom requirements.
  • a further electrical advantage of the ball frame package of the invention relates to the dielectric constant of the materials used.
  • the photo-definable dielectric preferably contains minimal amounts of filler components, and ideally has a dielectric constant of below 3.5. This allows for reduced capacitance in the insulating material that is critical for high-speed circuitry.
  • the ball frame configuration of the invention as a ball grid array package allows shorter line lengths when compared to lead frame, and consequently less signal loss and line inductance. Additional electrical benefits can be obtained from the elimination of bus line antennae when plating the structure with wire-bondable nickel/gold. Additional power planes (circuits 105 ) can be obtained in the structure through use of the build-up circuitization techniques in which the process of applying dielectric and circuit layers to the frame is repeated until the design requirements are satisfied. Finally, designers can benefit from the fine geometries achieved thru the build-up circuitization process, which allow significant improvements in I/O routability for a high speed integrated circuit die.
  • An added benefit of the ball frame configuration of the invention is the low cost manufacturing process associated with the technology.
  • Current lead frame technology is based on a reel-to-reel image/etch process in dedicated lead frame factories. This technology is widely used and well understood in the industry. In production, these techniques allow for low cost volume production frames, but are difficult to re-tool for new designs, and are capital intensive to set up.
  • Ball frame technology is based on panel processing very similar to that employed by printed circuit board shops. Frames are processed in panel or strip format that are typically run in batches on standard equipment sets. At the end of the process, the frames are singulated from the panel through conventional printed wiring board milling or stamping techniques. This process allows for lower tooling costs and flexibility in manufacturing equipment.
  • the ball frame system of the invention can be adapted or delivered to suit applications beyond LOC configurations. These include integrated circuits designed for power management, such as hard disk drive controllers, LCD controllers, low level logic and control, or even identification applications. Regardless of the lead frame technology being replaced, applying a photo- or laser-definable dielectric to a heat sink and the delivery of the heat sink in a lead frame format with a ball grid configuration allows for numerous design and package circuitry advantages.
  • the motherboard may be provided with pins or projections which are bought into contact with the conductive pads on the integrated circuit package.

Abstract

A package substrate suitable for use with a ball grid array according to the invention includes an electrically and thermally conductive heat sink having a top surface and a bottom surface, the heat sink having a slot formed therethrough which opens onto the top and bottom surfaces. A dielectric layer is formed on the bottom surface of the heat sink proximate the slot, preferably directly thereon without an intervening adhesive layer. A circuit is selectively formed in a circuit pattern on the dielectric layer. An electrically resistive soldermask is disposed on the dielectric layer and the circuit, which soldermask has openings therethrough which expose bond pads of the circuit. Such a substrate according to the invention permits the integrated circuit die to be mounted over the slot in the manner of a lead-on-chip package, but provides bond pads to which solder balls can be mounted in order to form a ball grid array.

Description

    RELATED APPLICATION
  • This Application is a continuation of application Ser. No. 09/440,630, filed Nov. 15, 1999.[0001]
  • TECHNICAL FIELD
  • The present invention relates to an integrated circuit substrate and, more particularly, to a ball grid array package that accommodates a lead-on-chip architecture. [0002]
  • BACKGROUND OF THE INVENTION
  • An integrated circuit lead frame generally consists of a die paddle for mounting the integrated circuit (IC), leads that connect the integrated circuit to the package exterior, and a support structure that holds the frame together through the assembly operation. There are various configurations of lead frames currently in use in the semiconductor packaging industry including lead-on-chip (LOC) and lead-under-chip (LUC) configurations. These LOC packages have a unique mechanical configuration that, when assembled, best accommodate the needs of memory architecture. [0003]
  • Memory architecture is heavily influenced by the objective of providing an evenly distributed I/O channel (bus) across all the memory cells within the device. Desired characteristics driving this include lower operating voltages, which make the device more sensitive to voltage drops (spikes), higher gate densities, faster access times, and increased clock speeds (shorter paths). Thus, a large number of memory devices are typically designed with the I/O interface (aluminum bond pads) in a row bisecting the active side of the die. This centerline configuration provides minimized power, ground, and signal paths to every cell within the structure. LOC designed packages uniquely accommodate the I/O interface with a centerline bond configuration fanning out to perimeter leads. [0004]
  • A basic LOC package structure employs an etched or stamped lead frame that incorporates a centerline slot into a die paddle. The die paddle is connected to the leads and the frame via a tie bar that is eventually removed. During package assembly, the die is mounted against the die paddle with the active side (I/O side) down against the paddle base, leads on the opposite side. Package assemblers use a variety of die attachment methods, including tape and liquid adhesive. As the die is mounted, the I/O connections (aluminum bond pads) on the die are left exposed on the opposite side via the centerline slot. The bond pads are then electrically connected to the leads via conventional Au wire bond techniques. Once the device is wired, the structure can be overmolded or liquid encapsulated to protect the silicon and wires. The superstructure (frame and tie bars) can then be removed, if not removed already, and the devices are left singulated from the frame. The end configuration of the device can take numerous shapes based on lead frame technology used, but varieties include a small outline package (SOP), small outline integrated circuit (SOIC), plastic leaded chip carrier (PLCC) or a thin shrink small outline package (TSSOP). The lead frame technology and assembly techniques described are widely used within the industry. [0005]
  • Over the past five years, silicon trends have placed greater demands on the electrical, thermal, and reliability performance these LOC devices. One such trend relates to the gate densities now being achieved in the silicon itself. As device geometries decrease, the gate densities of memory devices have increased dramatically. Increased gate density translates into higher power concentration in smaller areas, which means more heat. Most LOC packages manage this heat by using a metal die pad, but the heat dissipation performance is reduced by the plastic encapsulant, a poor heat conductor, and the small surface area of the leads through which the heat is transmitted. Failure to properly manage the heat generated by the integrated circuit can result in an accelerated failure of the device circuitry. [0006]
  • A second trend stressing conventional LOC packaging is clock speed. The system's need for faster access times and greater bandwidth have driven memory clock speeds into the microprocessor realm of near and over 1 gigahertz. These clock speeds demand improved (lower) line inductance, power/ground networks, and shielding that plastic LOC packages cannot deliver due either to materials sets and/or lead configuration limitations. Finally, high-speed memory is permeating many high performance systems where the reliability of plastic (moisture absorbing) LOC packages comes into question. [0007]
  • Additionally, recent manufacturing trends have further compromised the effectiveness of traditional LOC packages. These trends involve the transition from traditional leaded integrated circuit packages to ball grid array (BGA) integrated circuit packages in a majority of high performance silicon applications. The main drivers of this trend include improved surface mountability, smaller package footprints, greater package densities, and growing assembly infrastructures. A need has thus arisen for a new LOC substrate solution for high speed memory packaging that has the advantages of a BGA package and has enhanced thermal and electrical properties. These and other needs are satisfied by the ball grid array substrate package of the present invention. [0008]
  • SUMMARY OF THE INVENTION
  • A package substrate suitable for use with a ball grid array according to the invention includes an electrically and thermally conductive heat sink having a top surface and a bottom surface, the heat sink having a slot formed therethrough which opens onto the top and bottom surfaces. A dielectric layer is formed on the bottom surface of the heat sink proximate the slot, preferably directly thereon without an intervening adhesive layer. A circuit is selectively formed in a circuit pattern on the dielectric layer. An electrically resistive soldermask is disposed on the dielectric layer and the circuit, which soldermask has openings therethrough which expose bond pads of the circuit. Such a substrate according to the invention permits the integrated circuit die to be mounted over the slot in the manner of a lead-on-chip package, but provides bond pads to which solder balls can be mounted in order to form a ball grid array. A layer of an adhesive, such as in a tape form, may be cut to size and secured to the top surface of the heat sink proximate the slot, eliminating the need for the user to apply the adhesive during the process of mounting the die. [0009]
  • According to preferred embodiments of the invention, the substrate includes one or more vias filled with electrically and thermally conductive material, which vias extend through the dielectric layer and accessible through the soldermask layer, and are typically located outside of the circuit pattern. Solder balls may be connected to these filled vias in order to permit grounding of the heat sink to the motherboard and permit heat from the integrated circuit die to pass through the heat sink and via to the motherboard. In addition, a portion of the bottom surface of the heat sink adjacent the slot may be left exposed, such as by selective removal of the dielectric coating, for connection to a ground wire connected to the die. Such a ground wire can pass heat directly from the die to the heat sink, after which it can pass through the filled via into the motherboard. [0010]
  • A new lead frame, or “ball frame” according to the invention captures the assembly advantages of LOC type packages and addresses the shortcomings described above. The lead frame is improved by incorporation of a dielectric and circuit layer on the side opposite the die. This configuration can provide thermal management, active power and ground networks, and a ball grid array pin-out, while accommodating existing and foreseeable die sizes. Such a lead frame of the invention preferably comprises a strip of package substrates as described above formed side by side and connected on the ends by rails. Each package substrate may be separated from each adjacent package substrate by an elongated widthwise slot having a greater length than the slot in the heat sink. The strip is cut both vertically and horizontally at the time of use to yield separate package substrates. [0011]
  • The invention further provides a method for manufacturing a substrate package. According to this method, the bottom surface of the heat sink is first treated with an adhesion promoter, and the dielectric layer is then formed directly on the treated bottom surface. A circuit pattern is then formed on the dielectric layer, preferably by electrolytic deposition. An electrically resistive soldermask is then formed over the dielectric layer and circuit, and portions of the soldermask are then selectively removed to expose wire bonding pads and ball pads on the circuit. Optionally, a via may be formed through the dielectric layer and filled with an electrically and thermally conductive material, and a further portion of the soldermask is selectively removed to expose and permit access to the filled via. A slot is formed in the heat sink at a location adjacent the wire bonding pads, which slot opens onto top and bottom surfaces of the heat sink. Optionally, the adhesive layer for attaching the die may be pre-applied by cutting an adhesive sheet into a preform which has an opening therein of the same shape as the slot, and applying the preform to the top surface of the heat sink so that the preform opening is in alignment with the slot. The substrate may then be shipped to an end user for completion. If a ground wire is to be run from the die directly to the heat sink as described above, then the process further includes a step of exposing an edge of the bottom surface of the heat sink adjacent the slot. The foregoing steps are preferably performed on a series of substrates in strip form in order to produce a lead frame according to the invention. [0012]
  • The end user completes the integrated circuit package using a package substrate made by the foregoing process. If not already present, an adhesive is applied to the top surface of the heat sink around the slot, and an integrated circuit die is mounted to the top surface of the heat sink by means of the adhesive, such that wire bond pads on the die are exposed in the slot. Electrically conductive wires are bonded to the wire bond pads on the die and to the wire bond pads of the circuit adjacent the slot. The wires and die are then covered with an encapsulant, and solder balls are bonded (soldered) to the ball pads. The integrated circuit packages by then be singulated by cutting the lead frame as mentioned above. These and other aspects of the invention are described further in the detailed description that follows.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein: [0014]
  • FIG. 1 is a top view of an integrated circuit package substrate according to the invention; [0015]
  • FIG. 2 is a cross-sectional view along the line [0016] 2-2 in FIG. 1;
  • FIG. 3 is a cross-sectional view of a completed integrated circuit package according to the invention; [0017]
  • FIG. 4 is a cross-sectional view similar to FIG. 2 of an alternative embodiment of the invention; and [0018]
  • FIG. 5 is a top view of a lead frame strip according to the invention.[0019]
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1 and 2, an integrated circuit package substrate of the invention includes a thermally conductive paddle or [0020] heat sink 100 that serves as a package platform. Heat sink 100 has a bottom face or surface 116 and a top face or surface 117. An adhesive layer 101 is adhered to top surface 117 adjacent a widthwise slot 110 which opens onto surfaces 116, 117. A dielectric layer 102 is formed directly onto bottom surface 116 (i.e., without any intervening adhesive layer) which has been treated to promote adhesion of the dielectric 102 as described hereafter. A circuit pattern 105 is formed on the dielectric 102 and covered by a soldermask layer 108. Micro-vias 103 filled with copper or a similar metal extend through dielectric 102 and are accessible through openings in soldermask 108. Two rows of electrically conductive wire bond pads 106 are formed adjacent slot 110, either adjacent thereto as shown, or spaced therefrom by the width of exposed edge 104 as described hereafter. Circuit pattern 105 spans pads 106 and a series of terminal (ball) pads 107, which are left exposed through soldermask 108 so that solder balls can later be attached thereto.
  • A method of making an integrated circuit package substrate according to the invention includes the initial step of treating [0021] bottom surface 116 of heat sink 100 with an adhesion promoter, generally one that roughens or oxidizes bottom surface 116 of heat sink 100, so that a dielectric layer 102 can be formed directly thereon without the use of an intervening adhesive. The dielectric, generally in liquid form, is then applied to bottom surface 116 to form a curable dielectric layer. A circuit 105 is electrolytically and selectively formed on dielectric 108 in the first of one or more circuit patterns, and electrically resistive soldermask 108 is formed on and covers dielectric layer 102 and circuit 105. For reliability purposes, soldermask 108 preferably has a high epoxy-content. Soldermask 108 has openings formed therein which expose bond areas 106, 107 of the circuits 105. Such openings may be formed by the known process of coating the soldermask layer, imaging through a photomask, and then removing the uncured areas which correspond to the locations of inner wire bond pads 106 and outer solder ball pads 107.
  • [0022] Vias 103 are formed during the sequential build process and are filled (plated) with a thermally conductive and electrically material such as copper, so that heat may be conducted directly from heat sink 100 through the metal in via 103 without an intervening adhesive layer. During the circuitization process, a copper layer is deposited on the dielectric layer and into micro-vias 103, and then etched into the desired circuit pattern 105, and for this reason the heat conductive metal deposited in vias 103 is preferably the same as the metal used to form circuit 105. To accommodate the subsequent wire bond interconnect, circuit 105 preferably positions wire bond pads 106 at or near centerline slot 110. Except as otherwise described herein, the process of circuitization and build-up of dielectric layer 102, circuit 105, vias 103 and soldermask 108 proceeds as described in commonly-assigned U.S. Ser. No. 09/075,286, filed May 8, 1998, and also as PCT Publication WO 98/59368, published Dec. 30, 1998, the entire contents of which applications are incorporated herein by reference for all purposes.
  • A rectangular layer of copper [0023] 130 is formed at the same time as circuit 105. Layer 130 is positioned to be centered on slot 110, and is spaced from the edges of each circuit 105. Areas 131 of layer 130 between circuits 105 serve to isolate the circuits 105 from interfering electrically with each other near slot 100 where the circuit density is greatest. A pair of centered, rectangular end portions 133 may be left uncovered by soldermask 108 to serve as ground connections.
  • Widthwise [0024] slot 110 is then formed through the coated substrate in a trimming operation. Slot 110 is formed between left and right rows of bond areas 106 so that bond areas 106 adjoin opposite side edges of slot 110. At the same time, if a number of substrates are being formed as a strip 120 as shown in FIG. 5, then identical widthwise slots 110 are formed at regular intervals along strip 120, alternating with widthwise slots 121 greater in length than slots 110. Slots 121 separate the sides of one substrate from adjacent ones, but the strip remains united by a pair of end pieces or rails 122 which run the length of strip 120. Tooling holes 126 are formed to aid in subsequent processing, together with alignment fiducials 128. At this stage, strip 120 may be shipped to its destination, but preferably layer 101 of an adhesive is first applied to top surface 117 of heat sink 100 adjacent slot 110 and covered with a removable liner.
  • Referring to FIG. 3, [0025] strip 120 of the invention is then further processed by the user to make an integrated circuit package according to the invention. Integrated circuit die 109 is attached to top surface 117 of heat sink 100 over slot 110 and secured thereto by the adhesive layer 101. If the adhesive was pre-applied prior to shipping, then an adhesive release liner, if used, is removed. Wires 112 are then bonded between exposed bonding pads 111 on die 109 and wire bonding pads 106 formed near slot 110, generally in two widthwise rows along opposite sides of slot 110. Centerline slot 110 allows for easy access to aluminum wire bond pads 111 on the active side of die 109. Conventional wire bonding techniques allow for electrical connection of die 109 to the circuitized wire bond pads 106 by wires 112 made of an electrically conductive metal such as gold.
  • Optionally, if the dielectric [0026] 108 is removed from bottom surface 116 along one or preferably both edges of slot 110 as shown in FIG. 4, then one or more wires 112A may be run from a grounding pad on die 109 to the exposed edge 104 of heat sink 100 and bonded thereto, providing additional heat dissipation for the integrated circuit as well as electrical grounding. Exposed edge 104 is formed by selective removal of dielectric 108 from bottom surface 116 along the length of one or preferably both of the widthwise edges of slot 110, and preferably has a width of up to about 0.02 inch.
  • [0027] Wires 112, 112A are then encapsulated in an electrically resistive plastic material in a manner known in the art, such as by liquid encapsulation. However, since encapsulant 113 must be placed on both sides of heat sink 100 as shown in FIG. 2, it is preferred to form encapsulant 113 by transfer molding in a manner known in the art. Exposed copper end portions 124 on rails 122 act as gates for the molding process. After encapsulation, a standard ball attach process is used to attach solder balls 114 to the provided ball pads 107 in order to provide the electrical and thermal path to the package perimeter. Solder balls 114 are soldered onto exposed ball pads 107 of the circuit 105 so that a ball grid array is formed, preferably as two or more parallel, widthwise rows with at least two such rows on opposite sides of slot 110. Additional solder balls 114A which are isolated from circuit 105 are bonded to conductive vias 103 to provide for thermal management. Balls 114A permit heat from the integrated circuit to be conducted from heat sink 100, through copper-filled vias 103 to the motherboard on which the integrated circuit package is mounted.
  • Upon assembly completion, the individual units are singulated from the frame by conventional trim and form techniques. [0028] Strip 120 is subject to a final cutting operation in which rails 122 are removed, and individual packaged integrated circuits are ready for use. Delivering numerous ball frame packages in-line (as a strip 120) according to current industry handling preferences provides a lead frame of the invention ideally suited for automated assembly. The pattern to which the ball grid circuitry is laid out can accommodate conventional industry footprints (Jedec) and pitch, or be customized for application-specific requirements. The foregoing method can produce a chip-scale package or a near chip-scale package (wherein the package is no more than 200% of the length and 200% the width of the die) with advanced thermal management features.
  • A lead frame such as [0029] strip 120 of the invention as described above preferably incorporates a thermally conductive heat sink providing a die paddle on one side and a built-up circuit on the opposite side. The die 109 attached to the frame by adhesive 101 is wire bonded through slot 110 to the circuit side. Circuit paths 105 route the signals electrically to a ball grid array pin out.
  • With reference to FIG. 4, additional heat can pass through [0030] ground wire 112A directly to heat sink 100. Some heat is dissipated directly through the dielectric layer 102 and into ambient air below the package, but the high thermal efficiency of the plated copper in via(s) 103 provides the most direct path out of the package. Incorporating more ball pads into this ground/thermal network can increase the thermal performance of the package. Current electrical/thermal software modeling techniques can provide an optimized netlist or circuit path layout to accommodate performance requirements.
  • Since [0031] dielectric 102 is applied to the circuit side without the use of adhesives, and because dielectric 102 can then be defined to access heat sink 100 where desirable, i.e., at vias 103, numerous electrical advantages can be achieved. These include using heat sink 100 as a ground (reference) plane. Replacement of leads with solder balls decreases thermal resistance, reduces line inductance, and decreases package footprint. The addition of more dielectric layers permits higher layer counts when required, for example, where there are several circuits built on one another. The assembly of the new ball frame substrate of the invention is entirely suited to the assembly of standard LOC type packages. The ball attach process replaces the lead trim and form operation.
  • Optional [0032] adhesive layer 101 can be supplied on the frame to top surface 117 and pre-loaded in a “b-stage” format. This option preferably makes use of die bonding sheet type materials produced by companies such as Nippon Steel Chemical. Adhesive 101 may include a thermal conductivity enhancement agent such as a particulate silver filler to aid in transmission of heat from die 109. The die bonding sheet can be cut into a preform that matches the die size and centerline slot configuration of the substrate and can be tack attached in a simple, low cost operation to form adhesive layer 101. The incorporation of the adhesive onto the lead frame or strip 120 simplifies the assembly process for the assembly house, but can be omitted in favor of traditional die attach procedures used on a ball frame delivered without the optional adhesive attached.
  • On [0033] bottom surface 116, dielectric layer 102 acts as an electrically isolating layer between heat sink 100 and ball grid circuit pattern 105. Since dielectric layer 102 is definable by means of photolithography, laser etching, plasma etching, or other techniques prior to cure, and as there are no chemical adhesives used between dielectric layer 102 and heat sink 100, heat sink 100 can be accessed by the formation of microvias 103 and edges 104 as shown in FIG. 4.
  • [0034] Heat sink 100 is preferably made of a copper alloy such as Olin Metal & Brass Copper Alloy 194. This material is 98% copper, which is very low cost, with very high thermal conductivity. The other 2% consists of metallic fillers (Pb, Zn) that help increase mechanical properties (tensile strength, elongation) and consequently make heat sink 100 less susceptible to handling problems. Heat sink 100 can be thinner than prior BGA cores, preferably having a thickness from 250-300 microns, because the dies for use with the substrate of the present invention are smaller, and the heat sink is not required to have as much mechanical stiffness. Heat sink 100 could also be made of aluminum or be a copper-clad laminate of the type presently in commercial use.
  • Because the leads and lead spacing required in traditional LOC packages can be eliminated in a package according to the invention, the area of the die pad can be increased while the package footprint (length and width) is reduced. This advantage is further realized by improved thermal performance (heat dissipation as described above) in a smaller area. As [0035] package solder balls 114 replace the leads used in known LOC packages, the thermal path into the motherboard is reduced in length while the thermal mass that conducts heat, which is related to solder ball volume, is increased. This translates into a very effective heat sink for the integrated circuit. The effectiveness of this heat sink can be further improved by designing the package for a near chip scale or slightly larger than integrated circuit configuration. In such a configuration, the die paddle on which the integrated circuit sits is large enough to both provide a platform for mold encapsulation and the maximum surface area for thermal transmission, but small enough to minimize package footprint per Jedec or custom requirements.
  • Electrical advantages of the ball frame package of the invention stem form the use of a photodielectric optimized for high speed performance. Such dielectrics are now commercially available from electronics materials suppliers including Shipley, Nippon Steel Chemical, and Ciba Giegy. The first advantage of using a photo-definable dielectric relates to its ability to ground the heat sink. As mentioned, the dielectric is applied without the use of adhesives, so there exists no interposing layer between the dielectric and heat sink. By designing vias into the dielectric in selected ground “nets”, and by plating these vias with an electrically as well as thermally conductive material like copper, the heat sink can be easily accessed as a ground, or return path for the circuitry. The thin nature of the dielectric, ideally applied to a thickness between 25 and 50 microns, further shortens this return. This is of benefit to designers using differential pair circuit design techniques for high speed applications. [0036]
  • A further electrical advantage of the ball frame package of the invention relates to the dielectric constant of the materials used. The photo-definable dielectric preferably contains minimal amounts of filler components, and ideally has a dielectric constant of below 3.5. This allows for reduced capacitance in the insulating material that is critical for high-speed circuitry. [0037]
  • The ball frame configuration of the invention as a ball grid array package allows shorter line lengths when compared to lead frame, and consequently less signal loss and line inductance. Additional electrical benefits can be obtained from the elimination of bus line antennae when plating the structure with wire-bondable nickel/gold. Additional power planes (circuits [0038] 105) can be obtained in the structure through use of the build-up circuitization techniques in which the process of applying dielectric and circuit layers to the frame is repeated until the design requirements are satisfied. Finally, designers can benefit from the fine geometries achieved thru the build-up circuitization process, which allow significant improvements in I/O routability for a high speed integrated circuit die.
  • An added benefit of the ball frame configuration of the invention is the low cost manufacturing process associated with the technology. Current lead frame technology is based on a reel-to-reel image/etch process in dedicated lead frame factories. This technology is widely used and well understood in the industry. In production, these techniques allow for low cost volume production frames, but are difficult to re-tool for new designs, and are capital intensive to set up. Ball frame technology is based on panel processing very similar to that employed by printed circuit board shops. Frames are processed in panel or strip format that are typically run in batches on standard equipment sets. At the end of the process, the frames are singulated from the panel through conventional printed wiring board milling or stamping techniques. This process allows for lower tooling costs and flexibility in manufacturing equipment. The use of a low cost dielectric system directly applied to the panel eliminates the need for costly adhesive and lamination processes associated with alternate LOC technologies that employ tape or laminate printed wiring boards in conjunction with a heat sink. Yield enhancements are achieved with the streamlined process flow associated with the build up circuitization technique. [0039]
  • The ball frame system of the invention can be adapted or delivered to suit applications beyond LOC configurations. These include integrated circuits designed for power management, such as hard disk drive controllers, LCD controllers, low level logic and control, or even identification applications. Regardless of the lead frame technology being replaced, applying a photo- or laser-definable dielectric to a heat sink and the delivery of the heat sink in a lead frame format with a ball grid configuration allows for numerous design and package circuitry advantages. [0040]
  • While the present invention has been described with reference to the illustrated embodiment, it is not intended to limit the invention but, on the contrary, it is intended to cover such alternatives, modifications and equivalents as may be included in the spirit and scope of the invention. For example, instead of solder balls, the motherboard may be provided with pins or projections which are bought into contact with the conductive pads on the integrated circuit package. These and other modifications involving, for example, reversal of parts, are within the scope of the claims which follow. [0041]

Claims (16)

1. A package substrate suitable for use with a ball grid array, comprising:
an electrically and thermally conductive heat sink having a top surface and a bottom surface, the heat sink having a slot formed therethrough which opens onto the top and bottom surfaces of the heat sink;
a dielectric layer formed directly on the bottom surface of the heat sink proximate the slot;
a circuit disposed on the dielectric layer, the circuit electrolytically and selectively formed in a circuit pattern; and
an electrically resistive soldermask disposed on the dielectric layer and the circuit, which soldermask has openings therethrough which expose bond pads of the circuit.
2. The package substrate of claim 1, further comprising a via filled with a heat conducting material, which via extends through the dielectric layer and is accessible through the soldermask.
3. The package substrate of claim 1, further comprising a layer of an adhesive secured to the top surface of the heat sink proximate the slot in a manner effective to adhere an integrated circuit die thereto.
4. The package substrate of claim 1, wherein the bond pads comprise:
a row of spaced wire bond pads formed adjacent a side edge of the slot and exposed through the openings in the soldermask, which wire bond pads are suitable for connection by wires to corresponding wire bond pads of an integrated circuit disposed over the slot on the top surface of the heat sink; and
a row of spaced terminal pads that is remote from the wire bond pads and slot edge, the circuit pattern including lines which connect each wire bond pad to its corresponding terminal pad.
5. The package substrate of claim 6, further comprising
a via filled with a heat conducting material, which via extends through the dielectric layer and is accessible through the soldermask; and
a layer of an adhesive secured to the top surface of the heat sink proximate the slot in a manner effective to adhere an integrated circuit die thereto.
6. The package substrate of claim 1, further comprising:
a layer of an adhesive secured to the top surface of the heat sink proximate the slot;
an integrated circuit die attached to the top surface of the heat sink by the adhesive layer on opposite sides of the slot, such that wire bond pads on the die are exposed in the slot;
electrically conductive wires bonded to the wire bond pads on the die and to wire bond pads of the circuit adjacent the slot;
an encapsulant covering the wires and the die; and
solder balls bonded to ball pads of the circuit.
7. The package substrate of claim 6, further comprising a via filled with a heat conducting material, which via extends through the dielectric layer and is accessible through the soldermask.
8. The package substrate of claim 6, wherein the bond pads comprise:
a row of spaced wire bond pads formed adjacent a side edge of the slot and exposed through the openings in the soldermask, which wire bond pads are suitable for connection by wires to corresponding wire bond pads of an integrated circuit disposed over the slot on the top surface of the heat sink; and
a row of spaced terminal pads that is remote from the wire bond pads and slot edge, the circuit pattern including lines which connect each wire bond pad to its corresponding terminal pad.
9. The package substrate of claim 1, wherein the heat sink consists essentially of copper.
10. The package substrate of claim 1, further comprising
a second dielectric layer formed on the circuit;
a second circuit disposed-on the second dielectric layer, the second circuit electrolytically and selectively formed in a second circuit pattern; and
an electrically resistive soldermask disposed on the dielectric layers and the circuits, which soldermask has openings therethrough which expose bond pads of the circuits.
11. The package substrate of claim 1, wherein only one circuit and one dielectric layer are included, such that the soldermask is formed directly over the circuit.
12. A lead frame, comprising a strip of package substrates as claimed in claim 1 formed side by side and connected on the ends by rails.
13. The lead frame of claim 12, wherein each package substrate is separated from each adjacent package substrate by an elongated widthwise slot having a greater length than the slot in the heat sink.
14. An integrated circuit and package substrate suitable for use with a ball grid array, comprising:
an electrically and thermally conductive heat sink having a top surface and a bottom surface, the heat sink having a slot formed therethrough which opens onto the top and bottom surfaces of the heat sink;
a dielectric layer formed directly on the bottom surface of the heat sink proximate the slot;
a circuit disposed on the dielectric layer, the circuit electrolytically and selectively formed in a circuit pattern; and
an electrically resistive soldermask disposed on the dielectric layer and the circuit, which soldermask has openings therethrough which expose bond pads of the circuit;
a via filled with a heat conducting material, which via extends through the dielectric layer and is accessible through the soldermask. and
an integrated circuit die attached to the top surface of the heat sink by an adhesive such that wire bond pads on the die are exposed in the slot.
15. The integrated circuit and package substrate of claim 14 wherein the via is formed directly on the electrically and thermally conductive heat sink and extends from the electrically and thermally conductive heat sink through the dielectric layer.
16. The integrated circuit package of claim 14 further comprising a plurality of vias extending from the electrically and thermally conductive heat sink through the dielectric layer.
US10/348,842 1999-11-15 2003-01-22 Ball grid substrate for lead-on-chip semiconductor package Abandoned US20030132518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/348,842 US20030132518A1 (en) 1999-11-15 2003-01-22 Ball grid substrate for lead-on-chip semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/440,630 US6534861B1 (en) 1999-11-15 1999-11-15 Ball grid substrate for lead-on-chip semiconductor package
US10/348,842 US20030132518A1 (en) 1999-11-15 2003-01-22 Ball grid substrate for lead-on-chip semiconductor package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/440,630 Continuation US6534861B1 (en) 1999-11-15 1999-11-15 Ball grid substrate for lead-on-chip semiconductor package

Publications (1)

Publication Number Publication Date
US20030132518A1 true US20030132518A1 (en) 2003-07-17

Family

ID=23749536

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/440,630 Expired - Fee Related US6534861B1 (en) 1999-11-15 1999-11-15 Ball grid substrate for lead-on-chip semiconductor package
US09/765,004 Expired - Fee Related US6300165B2 (en) 1999-11-15 2001-01-18 Ball grid substrate for lead-on-chip semiconductor package
US10/348,842 Abandoned US20030132518A1 (en) 1999-11-15 2003-01-22 Ball grid substrate for lead-on-chip semiconductor package

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/440,630 Expired - Fee Related US6534861B1 (en) 1999-11-15 1999-11-15 Ball grid substrate for lead-on-chip semiconductor package
US09/765,004 Expired - Fee Related US6300165B2 (en) 1999-11-15 2001-01-18 Ball grid substrate for lead-on-chip semiconductor package

Country Status (4)

Country Link
US (3) US6534861B1 (en)
JP (1) JP2003514396A (en)
KR (1) KR20020051934A (en)
WO (1) WO2001037337A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041166A1 (en) * 2002-08-28 2004-03-04 Morrison Michael W. Ball grid array structures and tape-based method of manufacturing same
US20040201111A1 (en) * 2003-04-09 2004-10-14 Thurgood Blaine J. Interposer substrates with multisegment interconnect slots, semiconductor die packages including same, semiconductor dice for use therewith and methods of fabrication
US20050116326A1 (en) * 2003-10-06 2005-06-02 Tessera, Inc. Formation of circuitry with modification of feature height
US20050173805A1 (en) * 2003-12-30 2005-08-11 Tessera, Inc. Micro pin grid array with pin motion isolation
US20050181655A1 (en) * 2003-12-30 2005-08-18 Tessera, Inc. Micro pin grid array with wiping action
US20050284658A1 (en) * 2003-10-06 2005-12-29 Tessera, Inc. Components with posts and pads
US20070077677A1 (en) * 2003-12-30 2007-04-05 Tessera, Inc. Microelectronic packages and methods therefor
US20080122056A1 (en) * 2006-11-09 2008-05-29 Samsung Electronics Co., Ltd. Semiconductor device package
US20090091019A1 (en) * 2003-11-17 2009-04-09 Joseph Charles Fjelstad Memory Packages Having Stair Step Interconnection Layers
US20100044860A1 (en) * 2008-08-21 2010-02-25 Tessera Interconnect Materials, Inc. Microelectronic substrate or element having conductive pads and metal posts joined thereto using bond layer
US8330272B2 (en) 2010-07-08 2012-12-11 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
US8580607B2 (en) 2010-07-27 2013-11-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
US8641913B2 (en) 2003-10-06 2014-02-04 Tessera, Inc. Fine pitch microcontacts and method for forming thereof
US8853558B2 (en) 2010-12-10 2014-10-07 Tessera, Inc. Interconnect structure
WO2014176411A1 (en) * 2013-04-24 2014-10-30 Rfaxis, Inc. Multiple band multiple mode transceiver front end flip-chip architecture and circuitry with integrated power amplifiers
US8884448B2 (en) 2007-09-28 2014-11-11 Tessera, Inc. Flip chip interconnection with double post
US9633971B2 (en) 2015-07-10 2017-04-25 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10535626B2 (en) 2015-07-10 2020-01-14 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331763B1 (en) * 1998-04-15 2001-12-18 Tyco Electronics Corporation Devices and methods for protection of rechargeable elements
US6856013B1 (en) * 1999-02-19 2005-02-15 Micron Technology, Inc. Integrated circuit packages, ball-grid array integrated circuit packages and methods of packaging an integrated circuit
US6825550B2 (en) * 1999-09-02 2004-11-30 Micron Technology, Inc. Board-on-chip packages with conductive foil on the chip surface
US6331453B1 (en) 1999-12-16 2001-12-18 Micron Technology, Inc. Method for fabricating semiconductor packages using mold tooling fixture with flash control cavities
US6577015B1 (en) 2000-03-07 2003-06-10 Micron Technology, Inc. Partial slot cover for encapsulation process
US6531335B1 (en) 2000-04-28 2003-03-11 Micron Technology, Inc. Interposers including upwardly protruding dams, semiconductor device assemblies including the interposers, and methods
FI20001384A (en) * 2000-06-09 2001-12-10 Nokia Networks Oy Trimming embedded structures
US6589820B1 (en) * 2000-06-16 2003-07-08 Micron Technology, Inc. Method and apparatus for packaging a microelectronic die
KR20020000012A (en) * 2000-06-20 2002-01-04 윤종용 Method for manufacturing chip scale package having slits
US7273769B1 (en) * 2000-08-16 2007-09-25 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
US6483044B1 (en) 2000-08-23 2002-11-19 Micron Technology, Inc. Interconnecting substrates for electrical coupling of microelectronic components
US6838760B1 (en) * 2000-08-28 2005-01-04 Micron Technology, Inc. Packaged microelectronic devices with interconnecting units
US6559537B1 (en) * 2000-08-31 2003-05-06 Micron Technology, Inc. Ball grid array packages with thermally conductive containers
US6762502B1 (en) * 2000-08-31 2004-07-13 Micron Technology, Inc. Semiconductor device packages including a plurality of layers substantially encapsulating leads thereof
JP2002190657A (en) * 2000-12-21 2002-07-05 Sony Chem Corp Flexible wiring board and its manufacturing method
TW567562B (en) * 2001-01-15 2003-12-21 Chuen Khiang Wang Method of packaging microchip devices, the interposer used therefor and the microchip device packaged thereby
US20040217472A1 (en) * 2001-02-16 2004-11-04 Integral Technologies, Inc. Low cost chip carrier with integrated antenna, heat sink, or EMI shielding functions manufactured from conductive loaded resin-based materials
US20030205828A9 (en) * 2001-04-05 2003-11-06 Larry Kinsman Circuit substrates, semiconductor packages, and ball grid arrays
US6668449B2 (en) * 2001-06-25 2003-12-30 Micron Technology, Inc. Method of making a semiconductor device having an opening in a solder mask
TW497236B (en) * 2001-08-27 2002-08-01 Chipmos Technologies Inc A soc packaging process
JP2003109986A (en) * 2001-09-27 2003-04-11 Toshiba Corp Semiconductor device
US20030064542A1 (en) * 2001-10-02 2003-04-03 Corisis David J. Methods of packaging an integrated circuit
US7473995B2 (en) * 2002-03-25 2009-01-06 Intel Corporation Integrated heat spreader, heat sink or heat pipe with pre-attached phase change thermal interface material and method of making an electronic assembly
US7846778B2 (en) * 2002-02-08 2010-12-07 Intel Corporation Integrated heat spreader, heat sink or heat pipe with pre-attached phase change thermal interface material and method of making an electronic assembly
US7138711B2 (en) * 2002-06-17 2006-11-21 Micron Technology, Inc. Intrinsic thermal enhancement for FBGA package
US7550842B2 (en) * 2002-12-12 2009-06-23 Formfactor, Inc. Integrated circuit assembly
WO2004114365A2 (en) * 2003-06-16 2004-12-29 Integral Technologies, Inc. Lost cost chip carrier manufactured from conductive loaded resin-based material
DE10339762B4 (en) * 2003-08-27 2007-08-02 Infineon Technologies Ag Chip stack of semiconductor chips and method of making the same
US7233064B2 (en) * 2004-03-10 2007-06-19 Micron Technology, Inc. Semiconductor BGA package having a segmented voltage plane and method of making
US7286359B2 (en) * 2004-05-11 2007-10-23 The U.S. Government As Represented By The National Security Agency Use of thermally conductive vias to extract heat from microelectronic chips and method of manufacturing
US20060270109A1 (en) * 2005-05-31 2006-11-30 Stephan Blaszczak Manufacturing method for an electronic component assembly and corresponding electronic component assembly
US20070090527A1 (en) * 2005-09-30 2007-04-26 Jochen Thomas Integrated chip device in a package
US20070209830A1 (en) * 2006-03-13 2007-09-13 Walton Advanced Engineering, Inc. Semiconductor chip package having a slot type metal film carrying a wire-bonding chip
US7838971B2 (en) * 2006-07-11 2010-11-23 Atmel Corporation Method to provide substrate-ground coupling for semiconductor integrated circuit dice constructed from SOI and related materials in stacked-die packages
US7948093B2 (en) * 2006-12-28 2011-05-24 Samgsung Electronics Co., Ltd. Memory IC package assembly having stair step metal layer and apertures
US8063481B2 (en) * 2007-02-21 2011-11-22 Rambus Inc. High-speed memory package
US7833456B2 (en) * 2007-02-23 2010-11-16 Micron Technology, Inc. Systems and methods for compressing an encapsulant adjacent a semiconductor workpiece
US7812430B2 (en) * 2008-03-04 2010-10-12 Powertech Technology Inc. Leadframe and semiconductor package having downset baffle paddles
TWI474452B (en) * 2011-09-22 2015-02-21 矽品精密工業股份有限公司 Substrate, semiconductor package and manufacturing method thereof
US8587099B1 (en) * 2012-05-02 2013-11-19 Texas Instruments Incorporated Leadframe having selective planishing
KR101572495B1 (en) 2014-08-20 2015-12-02 주식회사 루멘스 Manufacturing method for light emitting device package, alignment jig for light emitting device package, lead-frame strip for light emitting device package and lens strip for light emitting device package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048755A (en) * 1998-11-12 2000-04-11 Micron Technology, Inc. Method for fabricating BGA package using substrate with patterned solder mask open in die attach area
US6060778A (en) * 1997-05-17 2000-05-09 Hyundai Electronics Industries Co. Ltd. Ball grid array package
US6160705A (en) * 1997-05-09 2000-12-12 Texas Instruments Incorporated Ball grid array package and method using enhanced power and ground distribution circuitry
US6218731B1 (en) * 1999-05-21 2001-04-17 Siliconware Precision Industries Co., Ltd. Tiny ball grid array package
US6507098B1 (en) * 1999-08-05 2003-01-14 Siliconware Precision Industries Co., Ltd. Multi-chip packaging structure

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270267A (en) * 1989-05-31 1993-12-14 Mitel Corporation Curing and passivation of spin on glasses by a plasma process wherein an external polarization field is applied to the substrate
JP3088193B2 (en) 1992-06-05 2000-09-18 三菱電機株式会社 Method for manufacturing semiconductor device having LOC structure and lead frame used therein
JP2595909B2 (en) * 1994-09-14 1997-04-02 日本電気株式会社 Semiconductor device
US5677566A (en) * 1995-05-08 1997-10-14 Micron Technology, Inc. Semiconductor chip package
KR0144164B1 (en) 1995-05-12 1998-07-01 문정환 How to package ELC semiconductor package and semiconductor device
KR0159987B1 (en) * 1995-07-05 1998-12-01 아남산업주식회사 Heat sink structure of ball grid array package
US5785538A (en) * 1995-11-27 1998-07-28 International Business Machines Corporation High density test probe with rigid surface structure
US5674785A (en) * 1995-11-27 1997-10-07 Micron Technology, Inc. Method of producing a single piece package for semiconductor die
JP2859194B2 (en) * 1996-01-30 1999-02-17 九州日本電気株式会社 Plastic package type semiconductor integrated circuit and method of manufacturing the same
US6169329B1 (en) * 1996-04-02 2001-01-02 Micron Technology, Inc. Semiconductor devices having interconnections using standardized bonding locations and methods of designing
KR100196285B1 (en) 1996-04-18 1999-06-15 윤종용 Addition method of lead and chip, of lead on chip package
KR100224770B1 (en) 1996-06-24 1999-10-15 김영환 Lead on chip type lead frame and semiconductor package using it
US5723907A (en) * 1996-06-25 1998-03-03 Micron Technology, Inc. Loc simm
US5863805A (en) 1996-07-08 1999-01-26 Industrial Technology Research Institute Method of packaging semiconductor chips based on lead-on-chip (LOC) architecture
KR0185570B1 (en) * 1996-07-15 1999-03-20 김광호 Chip scale package and method of making the same
KR100202668B1 (en) * 1996-07-30 1999-07-01 구본준 Semiconductor package for crack preventing and manufacture method of the same and manufacture apparatus
JP2845841B2 (en) * 1996-09-27 1999-01-13 九州日本電気株式会社 Semiconductor device
US5904500A (en) * 1996-10-03 1999-05-18 The Dexter Corporation Method for the preparation of lead-on-chip assemblies
JP3793628B2 (en) * 1997-01-20 2006-07-05 沖電気工業株式会社 Resin-sealed semiconductor device
US6107683A (en) * 1997-06-20 2000-08-22 Substrate Technologies Incorporated Sequentially built integrated circuit package
KR100253116B1 (en) * 1997-07-07 2000-04-15 윤덕용 Method of manufacturing chip size package using the method
US6204093B1 (en) * 1997-08-21 2001-03-20 Micron Technology, Inc. Method and apparatus for applying viscous materials to a lead frame
US6013535A (en) * 1997-08-05 2000-01-11 Micron Technology, Inc. Method for applying adhesives to a lead frame
JP3482121B2 (en) * 1998-03-25 2003-12-22 松下電器産業株式会社 Semiconductor device
US5880520A (en) 1998-03-31 1999-03-09 Micron Technology, Inc. Low mutual inductance lead frame device
JP3055619B2 (en) * 1998-04-30 2000-06-26 日本電気株式会社 Semiconductor device and manufacturing method thereof
US5929514A (en) 1998-05-26 1999-07-27 Analog Devices, Inc. Thermally enhanced lead-under-paddle I.C. leadframe
US6084297A (en) * 1998-09-03 2000-07-04 Micron Technology, Inc. Cavity ball grid array apparatus
US6127833A (en) * 1999-01-04 2000-10-03 Taiwan Semiconductor Manufacturing Co. Test carrier for attaching a semiconductor device
US6143581A (en) * 1999-02-22 2000-11-07 Micron Technology, Inc. Asymmetric transfer molding method and an asymmetric encapsulation made therefrom
US6020692A (en) * 1999-03-31 2000-02-01 Taiwan Semiconductor Manufacturing Company, Ltd Marco lamp life extension in installation for ADI, AEI
US6210992B1 (en) * 1999-08-31 2001-04-03 Micron Technology, Inc. Controlling packaging encapsulant leakage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160705A (en) * 1997-05-09 2000-12-12 Texas Instruments Incorporated Ball grid array package and method using enhanced power and ground distribution circuitry
US6060778A (en) * 1997-05-17 2000-05-09 Hyundai Electronics Industries Co. Ltd. Ball grid array package
US6048755A (en) * 1998-11-12 2000-04-11 Micron Technology, Inc. Method for fabricating BGA package using substrate with patterned solder mask open in die attach area
US6218731B1 (en) * 1999-05-21 2001-04-17 Siliconware Precision Industries Co., Ltd. Tiny ball grid array package
US6507098B1 (en) * 1999-08-05 2003-01-14 Siliconware Precision Industries Co., Ltd. Multi-chip packaging structure

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323772B2 (en) * 2002-08-28 2008-01-29 Micron Technology, Inc. Ball grid array structures and tape-based method of manufacturing same
US20040041166A1 (en) * 2002-08-28 2004-03-04 Morrison Michael W. Ball grid array structures and tape-based method of manufacturing same
US7804168B2 (en) 2002-08-28 2010-09-28 Micron Technology, Inc. Ball grid array structures having tape-based circuitry
US20080164600A1 (en) * 2002-08-28 2008-07-10 Micron Technology, Inc. Ball grid array structures having tape-based circuitry
US7378736B2 (en) 2002-08-28 2008-05-27 Micron Technology, Inc. Ball grid array structures having tape-based circuitry
US20040201111A1 (en) * 2003-04-09 2004-10-14 Thurgood Blaine J. Interposer substrates with multisegment interconnect slots, semiconductor die packages including same, semiconductor dice for use therewith and methods of fabrication
US20040200063A1 (en) * 2003-04-09 2004-10-14 Thurgood Blaine J. Interposer substrates with multi-segment interconnect slots, semiconductor die packages including same, semiconductor dice for use therewith and methods of fabrication
US20040201075A1 (en) * 2003-04-09 2004-10-14 Thurgood Blaine J. Semiconductor die configured for use with interposer substrates having reinforced interconnect slots
US7078823B2 (en) 2003-04-09 2006-07-18 Micron Technology, Inc. Semiconductor die configured for use with interposer substrates having reinforced interconnect slots
US7102217B2 (en) * 2003-04-09 2006-09-05 Micron Technology, Inc. Interposer substrates with reinforced interconnect slots, and semiconductor die packages including same
US8046912B2 (en) 2003-10-06 2011-11-01 Tessera, Inc. Method of making a connection component with posts and pads
US7816251B2 (en) 2003-10-06 2010-10-19 Tessera, Inc. Formation of circuitry with modification of feature height
US20050284658A1 (en) * 2003-10-06 2005-12-29 Tessera, Inc. Components with posts and pads
US8641913B2 (en) 2003-10-06 2014-02-04 Tessera, Inc. Fine pitch microcontacts and method for forming thereof
US20050116326A1 (en) * 2003-10-06 2005-06-02 Tessera, Inc. Formation of circuitry with modification of feature height
US7462936B2 (en) * 2003-10-06 2008-12-09 Tessera, Inc. Formation of circuitry with modification of feature height
US7495179B2 (en) 2003-10-06 2009-02-24 Tessera, Inc. Components with posts and pads
US8604348B2 (en) 2003-10-06 2013-12-10 Tessera, Inc. Method of making a connection component with posts and pads
US20090133254A1 (en) * 2003-10-06 2009-05-28 Tessera, Inc. Components with posts and pads
US20090091019A1 (en) * 2003-11-17 2009-04-09 Joseph Charles Fjelstad Memory Packages Having Stair Step Interconnection Layers
US7554206B2 (en) 2003-12-30 2009-06-30 Tessera, Inc. Microelectronic packages and methods therefor
US20070077677A1 (en) * 2003-12-30 2007-04-05 Tessera, Inc. Microelectronic packages and methods therefor
US7709968B2 (en) 2003-12-30 2010-05-04 Tessera, Inc. Micro pin grid array with pin motion isolation
US20050173805A1 (en) * 2003-12-30 2005-08-11 Tessera, Inc. Micro pin grid array with pin motion isolation
US20050181655A1 (en) * 2003-12-30 2005-08-18 Tessera, Inc. Micro pin grid array with wiping action
US8207604B2 (en) 2003-12-30 2012-06-26 Tessera, Inc. Microelectronic package comprising offset conductive posts on compliant layer
US8531039B2 (en) 2003-12-30 2013-09-10 Tessera, Inc. Micro pin grid array with pin motion isolation
US20080122056A1 (en) * 2006-11-09 2008-05-29 Samsung Electronics Co., Ltd. Semiconductor device package
US8884448B2 (en) 2007-09-28 2014-11-11 Tessera, Inc. Flip chip interconnection with double post
US20100044860A1 (en) * 2008-08-21 2010-02-25 Tessera Interconnect Materials, Inc. Microelectronic substrate or element having conductive pads and metal posts joined thereto using bond layer
US8723318B2 (en) 2010-07-08 2014-05-13 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
US8330272B2 (en) 2010-07-08 2012-12-11 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
US9030001B2 (en) 2010-07-27 2015-05-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
US8580607B2 (en) 2010-07-27 2013-11-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
US9397063B2 (en) 2010-07-27 2016-07-19 Tessera, Inc. Microelectronic packages with nanoparticle joining
US9496236B2 (en) 2010-12-10 2016-11-15 Tessera, Inc. Interconnect structure
US8853558B2 (en) 2010-12-10 2014-10-07 Tessera, Inc. Interconnect structure
WO2014176411A1 (en) * 2013-04-24 2014-10-30 Rfaxis, Inc. Multiple band multiple mode transceiver front end flip-chip architecture and circuitry with integrated power amplifiers
US9418950B2 (en) 2013-04-24 2016-08-16 Skyworks Solutions, Inc. Multiple band multiple mode transceiver front end flip-chip architecture and circuitry with integrated power amplifiers
US9748985B2 (en) 2013-04-24 2017-08-29 Skyworks Solutions, Inc. Multiple band multiple mode transceiver front end flip-chip architecture and circuitry with integrated power amplifiers
US10484025B2 (en) 2013-04-24 2019-11-19 Skyworks Solutions, Inc. Multiple band multiple mode transceiver front end flip-chip architecture and circuitry with integrated power amplifiers
US11309926B2 (en) 2013-04-24 2022-04-19 Skyworks Solutions, Inc. Multiple band multiple mode transceiver front end flip-chip architecture and circuitry with integrated power amplifiers
US9633971B2 (en) 2015-07-10 2017-04-25 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9818713B2 (en) 2015-07-10 2017-11-14 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10535626B2 (en) 2015-07-10 2020-01-14 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10892246B2 (en) 2015-07-10 2021-01-12 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US11710718B2 (en) 2015-07-10 2023-07-25 Adeia Semiconductor Technologies Llc Structures and methods for low temperature bonding using nanoparticles

Also Published As

Publication number Publication date
JP2003514396A (en) 2003-04-15
US6534861B1 (en) 2003-03-18
US6300165B2 (en) 2001-10-09
WO2001037337A1 (en) 2001-05-25
KR20020051934A (en) 2002-06-29
US20010002321A1 (en) 2001-05-31

Similar Documents

Publication Publication Date Title
US6534861B1 (en) Ball grid substrate for lead-on-chip semiconductor package
US7804168B2 (en) Ball grid array structures having tape-based circuitry
US7335532B2 (en) Method of assembly for multi-flip chip on lead frame on overmolded IC package
US6833290B2 (en) Structure and method of forming a multiple leadframe semiconductor device
US6329606B1 (en) Grid array assembly of circuit boards with singulation grooves
US6124637A (en) Carrier strip and molded flex circuit ball grid array and method of making
US5620928A (en) Ultra thin ball grid array using a flex tape or printed wiring board substrate and method
US5710064A (en) Method for manufacturing a semiconductor package
US6664615B1 (en) Method and apparatus for lead-frame based grid array IC packaging
US5592025A (en) Pad array semiconductor device
US7501313B2 (en) Method of making semiconductor BGA package having a segmented voltage plane
US7923835B2 (en) Package, electronic device, substrate having a separation region and a wiring layers, and method for manufacturing
EP1171915B1 (en) Electrical conductor system of a semiconductor device and manufacturing method thereof
KR100282290B1 (en) Chip scale package and method for manufacture thereof
US6114760A (en) Ball grid array (BGA) semiconductor package member
US6284566B1 (en) Chip scale package and method for manufacture thereof
KR970005724B1 (en) Plastic encapsulating multichip hybrid integrated circuit
US6444494B1 (en) Process of packaging a semiconductor device with reinforced film substrate
US8907468B2 (en) Semiconductor device
JPH08321565A (en) Semiconductor device
KR100221917B1 (en) High radiating semiconductor package having double stage structure and method of making same
KR100252861B1 (en) Stack type semiconductor chip package and method for assembly of the same
JPH0845974A (en) Semiconductor device
KR20030066986A (en) A conductive bonding tape and a semiconductor package mounting method using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOUCH FUTURE TECHNOLOGY LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUBSTRATE TECHNOLOGIES INCORPORATED;REEL/FRAME:014699/0064

Effective date: 20031112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION