US20030120045A1 - Erythropoietin conjugates - Google Patents

Erythropoietin conjugates Download PDF

Info

Publication number
US20030120045A1
US20030120045A1 US10/293,551 US29355102A US2003120045A1 US 20030120045 A1 US20030120045 A1 US 20030120045A1 US 29355102 A US29355102 A US 29355102A US 2003120045 A1 US2003120045 A1 US 2003120045A1
Authority
US
United States
Prior art keywords
thr
asn
conjugate
ser
glycoprotein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/293,551
Inventor
Pascal Bailon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27495518&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030120045(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/293,551 priority Critical patent/US20030120045A1/en
Publication of US20030120045A1 publication Critical patent/US20030120045A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]

Definitions

  • Erythropoiesis is the production of red blood cells, which occurs to offset cell destruction. Erythropoiesis is a controlled physiological mechanism that enables sufficient red blood cells to be available for proper tissue oxygenation.
  • Naturally occurring human erythropoietin (hEPO) is produced in the kidney and is the humoral plasma factor which stimulates red blood cell production (Carnot, P and Deflandre, C (1906) C.R. Acad. Sci. 143: 432; Erslev, A J (1953 Blood 8: 349; Reissmann, K R (1950) Blood 5: 372; Jacobson, L O, Goldwasser, E, Freid, W and Plzak, L F (1957) Nature 179: 6331-4).
  • Naturally occurring EPO stimulates the division and differentiation of committed erythroid progenitors in the bone marrow and exerts its biological activity by binding to receptors on erythroid precursors (Krantz, B S (1991) Blood 77: 419).
  • Erythropoietin has been manufactured biosynthetically using recombinant DNA technology (Egrie, J C, Strickland, T W, Lane, J et al. (1986) Immunobiol. 72: 213-224) and is the product of a cloned human EPO gene inserted into and expressed in the ovarian tissue cells of the chinese hamster (CHO cells).
  • the primary structure of the predominant, fully processed form of hEPO is illustrated in SEQ ID NO:1.
  • the molecular weight of the polypeptide chain of EPO without the sugar moieties is 18,236 Da.
  • EPO is used in the treatment of anemia in chronic renal failure patients (CRF) (Eschbach, J W, Egri, J C, Downing, M R et al. (1987) NEJM 316: 73-78; Eschbach, J W, Abdulhadi, M H, Browne, J K et al. (1989) Ann. Intern. Med. 111: 992; Egrie, J C, Eschbach, J W, McGuire, T, Adamson, J W (1988) Kidney Intl.
  • CRF chronic renal failure patients
  • This invention provides an erythropoietin conjugate, said conjugate comprising an erythropoietin glycoprotein having at least one free amino group and having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to “n” poly(ethylene glycol) groups of the formula —CO—(CH 2 ) x —(OCH 2 CH 2 ) m —OR with the —CO (i.e.
  • the present conjugates Compared to unmodified EPO (i.e., EPO without a PEG attached) and conventional PEG-EPO conjugates, the present conjugates have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity in vivo.
  • the conjugates of this invention have the same uses as EPO.
  • the conjugates of this invention are useful to treat patients by stimulating the division and differentiation of committed erythroid progenitors in the bone marrow in the same way EPO is used to treat patients.
  • FIG. 1 Influence of pH on thermal stability. The transition temperature is plotted against the pH.
  • FIG. 2 Influence of ionic strength on thermal stability. The transition temperature is plotted against the phosphate concentration.
  • FIG. 3 Dependence of thermal stability on buffer substance.
  • FIG. 4 shows that sulfate is also a suitable buffer/additive at low pH (e.g. pH 6.2), whereas phosphate is less suitable at pH 6.2 compared to pH 7.5. This shows that sulfate keeps the thermal stability high, even at low pH.
  • FIG. 5 Dependency of peg-EPO aggregation on pH. Peg-EPO samples after heat stress (as described above) were analyzed by SDS-PAGE. Proteins were stained with silver. Lane 1: molecular weight standard. Lane 2: pH 5. Lane 3: pH 5, reduced. Lane 4: pH 6. Lane 5: pH 6, reduced. Lane 6: pH 6.5. Lane 7: pH 6.5, reduced. Lane 8: pH 7. Lane 9: pH 7, reduced. Lane 10: peg-EPO, unstressed.
  • FIG. 6 shows that the use of 1 mg/ml acetylcysteine as an antioxidant prevents the formation of aggregates under heat stress.
  • conjugates comprising an erythropoietin glycoprotein having at least one free amino group and having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to “n” poly(ethylene glycol) groups of the formula —CO—(CH 2 ) x —(OCH 2 CH 2 ) m —OR with the —CO (i.e.
  • the conjugates of this invention can be used in the same manner as unmodified EPO. However, the conjugates of this invention have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity in vivo. Because of these improved properties, the conjugates of this invention can be administered once weekly instead of the three times weekly for unmodified EPO. Decreased frequency of administration is expected to result in improved patient compliance leading to improved treatment outcomes, as well as improved patient quality of life. Compared to conventional conjugates of EPO linked to poly(ethylene glycol) it has been found that conjugates having the molecular weight and linker structure of the conjugates of this invention have an improved potency, stability, AUC, circulating half-life, and cost of goods profile.
  • the conjugates in accordance of this invention can be administered in a therapeutically effective amount to patients in the same way EPO is administered.
  • the therapeutically effective amount is that amount of conjugate necessary for the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells.
  • the exact amount of conjugate is a matter of preference subject to such factors as the exact type of condition being treated, the condition of the patient being treated, as well as the other ingredients in the composition.
  • the pharmaceutical compositions containing the conjugate may be formulated at a strength effective for administration by various means to a human patient experiencing blood disorders characterized by low or defective red blood cell production. Average therapeutically effective amounts of the conjugate may vary and in particular should be based upon the recommendations and prescription of a qualified physician.
  • the erythropoietin glycoprotein products prepared in accordance with this invention may be prepared in pharmaceutical compositions suitable for injection with a pharmaceutically acceptable carrier or vehicle by methods known in the art.
  • a pharmaceutically acceptable carrier or vehicle suitable for injection with a pharmaceutically acceptable carrier or vehicle.
  • preferred pharmaceutically acceptable carriers for formulating the products of the invention are human serum album, human plasma proteins, etc.
  • erythropoietin refers to a glycoprotein, having the amino acid sequence set out in (SEQ ID NO: 1) or (SEQ ID NO: 2) or an amino acid sequence substantially homologous thereto, whose biological properties relate to the stimulation of red blood cell production and the stimulation of the division and differentiation of committed erythroid progenitors in the bone marrow.
  • these terms include such proteins modified deliberately, as for example, by site directed mutagenesis or accidentally through mutations.
  • analogs having from 1 to 6 additional sites for glycosylation analogs having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site, and analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation.
  • analogs having from 1 to 6 additional sites for glycosylation analogs having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site, and analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation.
  • the erythropoietin conjugates of this invention can be represented by Formula 1:
  • P is the residue of an erythropoietin glycoprotein described herein, (i.e. without the amino group or amino groups which form an amide linkage with the carbonyl shown in Formula I), having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells.
  • P may be selected from the group consisting of residues of human erythropoietin and analogs thereof having from 1 to 6 additional sites for glycosylation. As set out in detail below, the preparation and purification of EPO are well known in the art.
  • EPO is meant the natural or recombinant protein, preferably human, as obtained from any conventional source such as tissues, protein synthesis, cell culture with natural or recombinant cells. Any protein having the activity of EPO, such as muteins or otherwise modified proteins, is encompassed.
  • Recombinant EPO may be prepared via expression in CHO-, BHK- or HeLa cell lines, by recombinant DNA technology or by endogenous gene activation. Expression of proteins, including EPO, by endogenous gene activation is well known in the art and is disclosed, for example in U.S. Pat. Nos. 5,733,761, 5,641,670, and 5,733,746, and international patent publication Nos.
  • the preferred EPO species for the preparation of erythropoietin glycoprotein products are human EPO species. More preferably, the EPO species is the human EPO having the amino acid sequence set out in SEQ ID NO:1 or SEQ ID NO:2, more preferably the amino acid sequence SEQ ID NO:1.
  • P may be the residue of a glycoprotein analog having from 1 to 6 additional sites for glycosylation.
  • Glycosylation of a protein occurs at specific locations along a polypeptide backbone and greatly affects the physical properties of the protein such as protein stability, secretion, subcellular localization, and biological activity. Glycosylation is usually of two types. O-linked oligosaccharides are attached to serine or threonine residues and N-linked oligosaccharides are attached to asparagine residues.
  • oligosaccharide found on both N-linked and O-linked oligosaccharides is N-acetylneuraminic acid (sialic acid), which is a family of amino sugars containing 9 or more carbon atoms.
  • Sialic acid is usually the terminal residue on both N-linked and O-linked oligosaccharides and, because it bears a negative charge, confers acidic properties to the glycoprotein.
  • Human erythropoietin having 165 amino acids, contains three N-linked and one O-linked oligosaccharide chains which comprise about 40% of the total molecular weight of the glycoprotein.
  • N-linked glycosylation occurs at asparagine residues located at positions 24, 38, and 83 and O-linked glycosylation occurs at a serine residue located at position 126.
  • the oligosaccharide chains are modified with terminal sialic acid residues. Enzymatic removal of all sialic acid residues from the glycosylated erythropoietin results in loss of in vivo activity but not in vitro activity because sialylation of erythropoietin prevents its binding, and subsequent clearance, by hepatic binding protein.
  • glycoproteins of the present invention include analogs of human erythropoietin with one or more changes in the amino acid sequence of human erythropoietin which result in an increase in the number of sites for sialic acid attachment. These glycoprotein analogs may be generated by site-directed mutagenesis having additions, deletions, or substitutions of amino acid residues that increase or alter sites that are available for glycosylation. Glycoprotein analogs having levels of sialic acid greater than those found in human erythropoietin are generated by adding glycosylation sites which do not perturb the secondary or tertiary conformation required for biological activity.
  • the glycoproteins of the present invention also include analogs having increased levels of carbohydrate attachment at a glycoslyation site which usually involve the substitution of one or more amino acids in close proximity to an N-linked or O-linked site.
  • the glycoproteins of the present invention also include analogs having one or more amino acids extending from the carboxy terminal end of erythropoietin and providing at least one additional carbohydrate site.
  • the glycoproteins of the present invention also include analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. Such a rearrangement of glycosylation site involves the deletion of one or more glycosylation sites in human erythropoietin and the addition of one or more non-naturally occurring glycosylation sites.
  • erythropoietin Increasing the number of carbohydrate chains on erythropoietin, and therefore the number of sialic acids per erythropoietin molecules may confer advantageous properties such as increased solubility, greater resistance to proteolysis, reduced immunogenecity, increased serum half-life, and increased biological activity.
  • Erythropoietin analogs with additional glycosylation sites are disclosed in more detail in European Patent Application 640 619, to Elliot published Mar. 1, 1995.
  • the glycoproteins of the present invention comprise an amino acid sequence which includes at least one additional site for glycosylation such as, but not limited to, erythropoietins comprising the sequence of human erythropoietin modified by a modification selected from the following:
  • the notation used herein for modification of amino acid sequence means that the position(s) of the corresponding unmodified protein (e.g. hEPO of SEQ ID NO:1 or SEQ ID NO:2) indicated by the superscripted number(s) is changed to the amino acid(s) that immediately precede the respective superscripted number(s).
  • the glycoprotein may also be an analog having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site.
  • the additional amino acid may comprise a peptide fragment derived from the carboxy terminal end of human chorionic gonadotropin.
  • the glycoprotein is an analog selected from the group consisting of (a) human erythropoietin having the amino acid sequence, Ser Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro IIe Leu Pro Gln (SEQ ID NO:3), extending from the carboxy terminus; (b) the analog in (a) further comprising Ser 87 Asn 88 Thr 90 EPO; and (c) the analog in (a) further comprising Asn 30 Thr 32 Val 87 Asn 88 Thr 90 EPO.
  • the glycoprotein may also be an analog having an amino acid sequence which includes a rearrangement of at least one site for glycosylation.
  • the rearrangement may comprise a deletion of any of the N-linked carbohydrate sites in human erythropoietin and an addition of an N-linked carbohydrate site at position 88 of the amino acid sequence of human erythropoietin.
  • the glycoprotein is an analog selected from the group consisting of Gln 24 Ser 87 Asn 88 Thr 90 EPO; Gln 38 Ser 87 Asn 88 Thr 90 EPO; and Gln 83 Ser 87 Asn 88 Thr 90 EPO.
  • lower alkyl means a linear or branched alkyl group having from one to six carbon atoms. Examples of lower alkyl groups include methyl, ethyl and isopropyl. In accordance with this invention, R is any lower alkyl. Conjugates in which R is methyl are preferred.
  • m represents the number of ethylene oxide residues (OCH 2 CH 2 ) in the poly(ethylene oxide) group.
  • a single PEG subunit of ethylene oxide has a molecular weight of about 44 daltons.
  • the molecular weight of the conjugate depends on the number “m”.
  • “m” is from about 450 to about 900 (corresponding to a molecular weight of about 20 kDa to about 40 kDa), preferably from about 650 to about 750 (corresponding to a molecular weight of about 30 kDa).
  • the number m is selected such that the resulting conjugate of this invention has a physiological activity comparable to unmodified EPO, which activity may represent the same as, more than, or a fraction of the corresponding activity of unmodified EPO.
  • a molecular weight of “about” a certain number means that it is within a reasonable range of that number as determined by conventional analytical techniques.
  • the number “m” is selected so that the molecular weight of each poly(ethylene glycol) group covalently linked to the erythropoietin glycoprotein is from about 20 kDa to about 40 kDa, and is preferably about 30 kDa.
  • the number “n is the number of polyethylene glycol groups covalently bound to free amino groups (including ⁇ amino groups of a lysine amino acid and/or the amino-terminal amino group) of an erythropoietin protein via amide linkage(s).
  • a conjugate of this invention may have one, two, or three PEG groups per molecule of EPO.
  • “n” is an integer ranging from 1 to 3, preferably “n” is 1 or 2, and more preferably “n” is 1.
  • the compound of Formula I can be prepared from the known polymeric material:
  • succinimidyl ester is a leaving group causing the amide formation.
  • succinimidyl esters such as the compounds of formula II to produce conjugates with proteins are disclosed in U.S. Pat. No. 5,672,662, issued Sep. 30, 1997 (Harris, et al.).
  • Human EPO contains nine free amino groups, the amino-terminal amino group plus the ⁇ -amino groups of 8 lysine residues.
  • a SBA compound of Formula II When the pegylation reagent was combined with a SBA compound of Formula II, it has been found that at pH 7.5, a protein:PEG ratio of 1:3, and a reaction temperature of from 20-25° C., a mixture of mono-, di-, and trace amounts of the tri-pegylated species were produced.
  • the pegylation reagent was a SPA compound of Formula II, at similar conditions except that the protein:PEG ratio was 1:2, primarily the mono-pegylated species is produced.
  • the pegylated EPO can be administered as a mixture, or as the cation exchange chromatography separated different pegylated species.
  • the reaction conditions e.g., ratio of reagents, pH, temperature, protein concentration, time of reaction etc.
  • the relative amounts of the different pegylated species can be varied.
  • EPO Human erythropoietin
  • Erythropoietin for therapeutic uses may be produced by recombinant means (EP-B 0 148 605, EP-B 0 209 539 and Egrie, J. C., Strickland, T. W., Lane, J. et al. (1986) Immunobiol. 72: 213-224).
  • EP-A 0 267 678 an ion exchange chromatography on S-Sepharose, a preparative reverse phase HPLC on a C 8 column and a gel filtration chromatography are described for the purification of EPO produced in serum-free culture after dialysis.
  • the gel filtration chromatography step can be replaced by ion exchange chromatography on S-Sepharose fast flow. It is also proposed that a dye chromatography on a Blue Trisacryl column be carried out before the ion exchange chromatography.
  • EPO or EPO conjugates in accordance with this invention can be determined by various assays known in the art.
  • the biological activity of the purified EPO proteins of this invention are such that administration of the EPO protein by injection to human patients results in bone marrow cells increasing production of reticulocytes and red blood cells compared to non-injected or control groups of subjects.
  • the biological activity of the EPO proteins, or fragments thereof, obtained and purified in accordance with this invention can be tested by methods according to Annable, et al., Bull. Wld. Hlth. Org. (1972) 47: 99-112 and Pharm. Europa Spec. Issue Erythropoietin BRP Bio 1997(2).
  • Example 4 Another biological assay for determining the activity of EPO protein, the normocythaemic mouse assay, is described in Example 4.
  • This invention provides a composition comprised of conjugates as described above.
  • mono-PEG conjugates of erythropoietin glycoproteins are desirable because they tend to have higher activity than di-PEG conjugates.
  • the percentage of mono-PEG conjugates as well as the ratio of mono- and di-PEG species can be controlled by pooling broader fractions around the elution peak to decrease the percentage of mono-PEG or narrower fractions to increase the percentage of mono-PEG in the composition.
  • compositions in which, for example, at least ninety-two percent or at least ninety-six percent of the conjugates are mono-PEG species (n equals 1) may be desired.
  • the percentage of conjugates where n is 1 is from ninety percent to ninety-six percent.
  • One vial of the Working Cell Bank originating from an EPO-producing CHO cell line (ATCC CRL8695, disclosed in EP 411 678 (Genetics Institute) can be used) is taken from the gas phase of the liquid nitrogen storage tank.
  • the cells are transferred into glass spinner flasks and cultivated in a hydrogen carbonate-buffered medium in a humidified CO 2 incubator.
  • Typical serum free media used for the inocolum preparation and fermentation are disclosed in European Patent Application 513 738, to Koch published Jun. 12, 1992, or WO 96/35718, to Burg published Nov. 14, 1996, for example contain as medium DMEM/F12 (e.g. JRH Biosciences/Hazleton Biologics, Denver, US, order No.
  • 57-736) and additionally sodium hydrogencarbonate, L+glutamine, D+glucose, recombinant insulin, sodium selenite, diaminobutane, hydrocortisone, iron(II) sulfate, asparagine, aspartic acid, serine and a stabilizer for mammalian cells such as e.g. polyvinyl alcohol, methyl cellulose, polydextran, polyethylene glycol, Pluronic F68, plasma expander polygelin (HEMACCEL®) or polyvinyl pyrrolidone (WO 96/35718).
  • the cultures are microscopically checked for the absence of contaminating microorganisms, and the cell densities are determined. These tests are performed at each splitting step.
  • the cell culture is diluted with fresh medium to the starting cell density and undergoes another growth cycle. This procedure is repeated until a culture volume of approximately 2 l per glass spinner flask has been obtained. After approx. 12 doublings 1 to 5 liter of this culture is available which then is used as inoculum for the 10 l inoculum fermenter.
  • the culture in the 10 l fermenter can be used as inoculum for the 100 l inoculum fermenter.
  • the culture in the 100 l fermenter can be used as inoculum for the 1000 l production fermenter.
  • a batch refeed process is used, i.e. when the desired cell density is reached, approx. 80% of the culture is harvested. The remaining culture is replenished with fresh culture medium and cultivated until the next harvest.
  • One production run consists of a maximum of 10 subsequent harvests: 9 partial harvests and 1 overall harvest at the end of fermentation. Harvesting takes place every 3-4 days.
  • the determined harvest volume is transferred into a cooled vessel.
  • the cells are removed by centrifugation or filtration and discarded.
  • the EPO containing supernatant of the centrifugation step is in-line filtered and collected in a second cooled vessel. Each harvest is processed separately during purification.
  • Blue Sepharose (Pharmacia) consists of Sepharose beads to the surface of which the Cibacron blue dye is covalently bound. Since EPO binds more strongly to Blue Sepharose than most non-proteinaceous contaminants, some proteinaceous impurities and PVA, EPO can be enriched in this step. The elution of the Blue Sepharose column is performed by increasing the salt concentration as well as the pH.
  • the column is filled with 80-100 l of Blue Sepharose, regenerated with NaOH and equilibrated with equilibration buffer (sodium/calcium chloride and sodium acetate).
  • equilibration buffer sodium/calcium chloride and sodium acetate.
  • the acidified and filtered fermenter supernatant is loaded.
  • the column is washed first with a buffer similar to the equilibration buffer containing a higher sodium chloride concentration and consecutively with a Tris-base buffer.
  • the product is eluted with a Tris-base buffer and collected in a single fraction in accordance with the master elution profile.
  • the Butyl Toyopearl 650 C (Toso Haas) is a polystyrene based matrix to which aliphatic butyl-residues are covalently coupled. Since EPO binds more strongly to this gel than most of the impurities and PVA, it has to be eluted with a buffer containing isopropanol.
  • the column is packed with 30-40 l of Butyl Toyopearl 650 C, regenerated with NaOH, washed with a Tris-base buffer and equilibrated with a Tris-base buffer containing isopropanol.
  • the Blue Sepharose eluate is adjusted to the concentration of isopropanol in the column equilibration buffer and loaded onto the column. Then the column is washed with equilibration buffer with increased isopropanol concentration. The product is eluted with elution buffer (Tris-base buffer with high isopropanol content) and collected in a single fraction in accordance with the master elution profile.
  • elution buffer Tris-base buffer with high isopropanol content
  • the Hydroxyapatite Ultrogel (Biosepra) consists of hydroxyapatite which is incorporated in an agarose matrix to improve the mechanical properties. EPO has a low affinity to hydroxyapatite and can therefore be eluted at lower phosphate concentrations than protein impurities.
  • the column is filled with 30-40 l of Hydroxyapatite Ultrogel and regenerated with a potassium phosphate/calcium chloride buffer and NaOH followed by a Tris-base buffer. Then it is equilibrated with a Tris-base buffer containing a low amount of isopropanol and sodium chloride.
  • Vydac C4 (Vydac)consists of silica gel particles, the surfaces of which carry C4-alkyl chains.
  • the separation of EPO from the proteinaceous impurities is based on differences in the strength of hydrophobic interactions. Elution is performed with an acetonitrile gradient in diluted trifluoroacetic acid.
  • Preparative HPLC is performed using a stainless steel column (filled with 2.8 to 3.2 liter of Vydac C4 silicagel).
  • the Hydroxyapatite Ultrogel eluate is acidified by adding trifluoro-acetic acid and loaded onto the Vydac C4 column.
  • an acetonitrile gradient in diluted trifluoroacetic acid is used. Fractions are collected and immediately neutralized with phosphate buffer. The EPO fractions which are within the IPC limits are pooled.
  • the DEAE Sepharose (Pharmacia) material consists of diethylaminoethyl (DEAE)—groups which are covalently bound to the surface of Sepharose beads.
  • DEAE diethylaminoethyl
  • the binding of EPO to the DEAE groups is mediated by ionic interactions. Acetonitrile and trifluoroacetic acid pass through the column without being retained. After these substances have been washed off, trace impurities are removed by washing the column with acetate buffer at a low pH. Then the column is washed with neutral phosphate buffer and EPO is eluted with a buffer with increased ionic strength.
  • the column is packed with DEAE Sepharose fast flow.
  • the column volume is adjusted to assure an EPO load in the range of 3-10 mg EPO/ml gel.
  • the column is washed with water and equilibration buffer (sodium/potassium phosphate).
  • the pooled fractions of the HPLC eluate are loaded and the column is washed with equilibration buffer.
  • the column is washed with washing buffer (sodium acetate buffer) followed by washing with equilibration buffer.
  • EPO is eluted from the column with elution buffer (sodium chloride, sodium/potassium phosphate) and collected in a single fraction in accordance with the master elution profile.
  • EPO purified in accordance with the serum free procedure of Example 1 was homogeneous as determined by analytical methods and showed the typical isoform pattern consisting of 8 isoforms. It had a specific biological activity of 190,000 IU/mg as determined by the normocythaemic mouse assay.
  • the pegylation reagent used was a methoxy-PEG-SBA, which is a compound of Formula II in which R is methyl; x is 3; and m is from 650 to 750 (avg. about 680, corresponding to an average molecular weight of about 30 kDa).
  • EPOsf 9.71 ml of a 10.3 mg/ml EPOsf stock, 5.48 ⁇ mol
  • 10 ml of 0.1 M potassium phosphate buffer, pH, 7.5 containing 506 mg of 30 kDa methoxy-PEG-SBA (16.5 ⁇ mol) obtained from Shearwater Polymers, Inc., Huntsville, Ala.
  • the final protein concentration was 5 mg/ml and the protein:PEG reagent ratio was 1:3.
  • the reaction was stopped by adjusting the pH to 4.5 with glacial acetic acid and stored at ⁇ 20° C., until ready for purification.
  • Di-PEG and Mono-PEG-EPOsf The purified conjugate mixture eluted from the column in the previous step was diluted 4-fold with the buffer and reapplied onto the column and washed as described. Di-PEG-EPOsf and mono-PEG-EPOsf were separately eluted from the column with 0.1M NaCl and 0.175 M NaCl, respectively. Elution was also performed with 750 mM NaCl to elute any remaining unmodified EPOsf.
  • reaction mixture was diluted 5-fold with the acetate buffer and applied onto the SP-Sepharose column ( ⁇ 0.5 mg protein/ml gel). Column was washed and adsorbed mono-PEG-EPOsf,di-PEG-EPOsf and unmodified EPOsf were eluted as described in the previous section.
  • PEG-EPOsf was synthesized by chemically conjugating a linear PEG molecule with a number average molecular weight of 30 kDa.
  • PEG-EPOsf was derived from the reaction between the primary amino groups of EPOsf and the succinimidyl ester derivative of a 30 kDa PEG-butyric acid, resulting in an amide bond.
  • Results are summarized in Table1.
  • Purified conjugate mixture comprised of mono- and di-PEG-EPOsf and was free of unmodified EPOsf as determined by SDS-PAGE analysis. Conjugate mixture accounted for 23.4 mg or 78% of the starting material. Cation exchange chromatographic separation of mono- and di-PEG-EPOsf indicated that mono- to di-PEG ratio in the conjugate mixture was almost 1:1. After completion of the reaction, ratio of the individual components of Mono:Di:Unmodified were 40:38:20 (%). Overall yield was almost quantitative. TABLE 1 Summary of results of EPOsf pegylation Sample Protein (mg) Yield (%) Rxn. Mix 30 100 Mono- 12.0 40 Di- 11.4 38 Unmod. 6.0 20 Conju. Mix. 23.4 78
  • Example 2 A different aliquot of the EPOsf used in Example 2 was reacted with 30 kDa methoxy-PEG-SPA (Shearwater Polymers, Inc., Huntsville, Ala.). Reaction was performed at a protein:reagent ratio of 1:2 and purification techniques were in accordance with Example 2. Primarily the mono-pegylated species was produced.
  • 30 kDa methoxy-PEG-SPA Shearwater Polymers, Inc., Huntsville, Ala.
  • the normocythaemic mouse bioassay is known in the art (Pharm. Europa Spec. Issue Erythropoietin BRP Bio 1997(2)) and a method in the monography of erythropoietin of Ph. Eur. BRP.
  • the samples were diluted with BSA-PBS.
  • reticulocyte counts were carried out microfluorometrically in a flow cytometer by analysis of the red fluorescence histogram. The reticulocyte counts were given in terms of absolute figures (per 30,000 blood cells analyzed). For the data presented, each group consisted of 5 mice per day, and the mice were bled only once.
  • reaction mixture from the previous step was diluted 1:5 with 10 mM sodium acetate, pH 4.5 and applied to 300 ml SP-Sepharose FF (sulfopropyl cation exchange resin) packed into a 4.2 ⁇ 19 cm column.
  • the column was previously equilibrated with the same buffer.
  • Column effluents were monitored at 280 nm with a Gilson UV monitor and recorded with a Kipp and Zonen recorder.
  • the column was washed with 300 ml or 1 bed volume of equilibration buffer to remove excess reagents, reaction byproducts and oligomeric PEG-EPO. It was followed by washing with 2 bed volumes of 100 mM NaCl to remove di-PEG-EPO.
  • Mono-PEG-EPO was then eluted with 200 mM NaCl. During elution of the mono-PEG-EPO, the first 50 ml of the protein peak was discarded and the mono-PEG-EPO was collected as a 150 ml fraction. Unmodified EPOsf remaining on the column was eluted with 750 mM NaCl. All elution buffers were made in the equilibration buffer. All eluted samples were analyzed by SDS-PAGE and by high performance Size Exclusion Chromatography (SEC).
  • SEC Size Exclusion Chromatography
  • EPOsf Approximately 75% of EPOsf was pegylated. After purification, total yield was ⁇ 30% mono-PEG-EPO with no detectable unmodified EPOsf and around 25% di-PEG-EPO. Oligomers, and unpegylated EPOsf accounted for the remaining protein.
  • the mono-PEG-EPO pool obtained from the 150 ml fraction contained approximately 90% mono-PEG-EPO and approximately 10% di-PEG-EPO.
  • transition temperature of thermal denaturation measured by differential scanning calorimetry is a valid indicator for the thermostability of proteins.
  • Erythropoietin or pegylated erythropoietin (prepared according to Example 3) solutions with concentrations between 0.6 and 1.2 mg/ml were analyzed in various buffers with or without stabilizers by means of a Nano-DSC (Calorimetric Sciences Corporation, Utah, USA) at a heating rate of 2 K/min.
  • An increase in transition temperature indicates an increase in thermal stability of the protein.
  • the measured temperature values should not be understood as absolute values but rather represent differences in the stability of the individual formulations relative to one another.
  • FIG. 1 shows a plateau of maximal transition temperature between about pH 6 to about pH 9 and a sharp decrease below pH 5.5. This indicates that the optimal pH for maximal thermal stability lies above pH 5.5. (FIG. 1).
  • FIG. 2 shows that the thermal stability increases with an increase in ionic strength of the formulation.
  • FIG. 4 shows that sulfate is also a suitable buffer/additive at low pH (e.g. pH 6.2), whereas phosphate is less suitable at pH 6.2 compared to pH 7.5. This shows that sulfate keeps the thermal stability high, even at low pH. This finding allows a formulation at a pH between 6.0 and 6.5, without severe losses in thermal stability of erythropoietin.
  • FIG. 5 shows the pH dependency of aggregation under heat stress. This experiment clearly shows that the formation of aggregates is suppressed at a pH below 6.5. The higher the pH, the higher the amount of aggregation. Most of the aggregates that are formed can be reduced by treatment of the samples with a reducing agent during SDS-PAGE, suggesting that a great portion of the aggregates that are formed under heat stress are disulfide-bridged dimers, oligomers and higher order aggregates. Taken together, his indicates that the formation of aggregates can be prevented to a great extent by keeping the pH of the formulation at or below pH 6.5.
  • FIG. 5 Dependency of peg-EPO aggregation on pH.
  • Peg-EPO samples prepared accord to Example 3 were subjected to heat stress (as described above) and then analyzed by SDS-PAGE. Proteins were stained with silver.
  • Lane 1 molecular weight standard.
  • Lane 2 pH 5.
  • Lane 3 pH 5, reduced.
  • Lane 4 pH 6.
  • Lane 5 pH 6, reduced.
  • Lane 6 pH 6.5.
  • Lane 7 pH 6.5, reduced.
  • Lane 8 pH 7.
  • Lane 9 pH 7, reduced.
  • Lane 10 peg-EPO, unstressed.
  • FIG. 6 shows that the use of 1 mg/ml acetylcysteine as an antioxidant prevents the formation of aggregates under heat stress. Therefore, it is useful to use an antioxidant, like e.g. acetylcysteine at a low pH, e.g. pH 6.2, to prevent aggregate formation under heat stress.
  • an antioxidant like e.g. acetylcysteine at a low pH, e.g. pH 6.2
  • FIG. 6 Peg-EPO aggregation can be prevented by pH 6.2 and/or acetylcysteine.
  • Peg-EPO samples prepared according to Example 3 were subjected to heat stress (as described above) and then analyzed by SDS-PAGE. Proteins were stained with silver. Lane 1: peg-EPO, unstressed. Lane 2: pH 7.5, stressed. Lane 3: pH 6.2, stressed. Lane 4: pH 6.2, stressed, reduced. Lane 5: pH 7.5, 1 mg/ml acetylcysteine, stressed. Lane 6: pH 7.5, 1 mg/ml acetylcysteine, stressed, reduced.
  • Pegylated EPO prepared according to Example 3 in various formulations is incubated at several temperatures. At indicated time points, samples are taken and the stability is assessed by reversed phase high performance chromatography (rpHPLC), high performance size exclusion chromatography (SEC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Table 3 compares the stability of peg-EPO in various formulations at several temperatures. These data clearly show the superiority of the herein enclosed formulations regarding protein recovery and aggregation. TABLE 3 Stability of peg-EPO in various formulations at several temperatures: Aggregation at % recovery after 40° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Psychiatry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Neurosurgery (AREA)
  • AIDS & HIV (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

Conjugates of erythropoietin with poly(ethylene glycol) comprise an erythropoietin glycoprotein having at least one free amino group and having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to “n” poly(ethylene glycol) groups of the formula —CO—(CH2)x(OCH2CH2)m—OR with the carbonyl of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein R is lower alkyl; x is 2 or 3; m is about 450 to about 900; n is from 1 to 3; and n and m are chosen so that the molecular weight of the conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The priority of U.S. Provisional Application No. 60/142,254, filed Jul. 2, 1999; No. 60/150,225, filed Aug. 23, 1999; No. 60/151,548, filed Aug. 31, 1999; No. 60/166,151, filed Nov. 17, 1999 and U.S. application Ser. No. 09/604,938, filed Jun. 27, 2000 is claimed.[0001]
  • BACKGROUND OF THE INVENTION
  • Erythropoiesis is the production of red blood cells, which occurs to offset cell destruction. Erythropoiesis is a controlled physiological mechanism that enables sufficient red blood cells to be available for proper tissue oxygenation. Naturally occurring human erythropoietin (hEPO) is produced in the kidney and is the humoral plasma factor which stimulates red blood cell production (Carnot, P and Deflandre, C (1906) C.R. Acad. Sci. 143: 432; Erslev, A J (1953 Blood 8: 349; Reissmann, K R (1950) Blood 5: 372; Jacobson, L O, Goldwasser, E, Freid, W and Plzak, L F (1957) Nature 179: 6331-4). Naturally occurring EPO stimulates the division and differentiation of committed erythroid progenitors in the bone marrow and exerts its biological activity by binding to receptors on erythroid precursors (Krantz, B S (1991) Blood 77: 419). [0002]
  • Erythropoietin has been manufactured biosynthetically using recombinant DNA technology (Egrie, J C, Strickland, T W, Lane, J et al. (1986) Immunobiol. 72: 213-224) and is the product of a cloned human EPO gene inserted into and expressed in the ovarian tissue cells of the chinese hamster (CHO cells). The primary structure of the predominant, fully processed form of hEPO is illustrated in SEQ ID NO:1. There are two disulfide bridges between Cys[0003] 7-Cys161 and Cys29-Cys33. The molecular weight of the polypeptide chain of EPO without the sugar moieties is 18,236 Da. In the intact EPO molecule, approximately 40% of the molecular weight are accounted for by the carbohydrate groups that glycosylate the protein at glycosylation sites on the protein (Sasaki, H, Bothner, B, Dell, A and Fukuda, M (1987) J. Biol. Chem. 262: 12059).
  • Because human erythropoietin is essential in red blood cell formation, the hormone is useful in the treatment of blood disorders characterized by low or defective red blood cell production. Clinically, EPO is used in the treatment of anemia in chronic renal failure patients (CRF) (Eschbach, J W, Egri, J C, Downing, M R et al. (1987) NEJM 316: 73-78; Eschbach, J W, Abdulhadi, M H, Browne, J K et al. (1989) Ann. Intern. Med. 111: 992; Egrie, J C, Eschbach, J W, McGuire, T, Adamson, J W (1988) Kidney Intl. 33: 262; Lim, V S, Degowin, R L, Zavala, D et al. (1989) Ann. Intern. Med. 110: 108-114) and in AIDS and cancer patients undergoing chemotherapy (Danna, R P, Rudnick, S A, Abels, R I In: M B, Garnick, ed. Erythropoietin in Clinical Applications—An International Perspective. New York, N.Y.: Marcel Dekker; 1990: p. 301-324). However, the bioavailability of commercially avilable protein therapeutics such as EPO is limited by their short plasma half-life and susceptibility to protease degradation. These shortcomings prevent them from attaining maximum clinical potency. [0004]
  • SUMMARY OF THE INVENTION
  • This invention provides an erythropoietin conjugate, said conjugate comprising an erythropoietin glycoprotein having at least one free amino group and having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to “n” poly(ethylene glycol) groups of the formula —CO—(CH[0005] 2)x—(OCH2CH2)m—OR with the —CO (i.e. carbonyl) of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein R is lower alkyl; x is 2 or 3; m is from about 450 to about 900; n is from 1 to 3; and n and m are chosen so that the molecular weight of the conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons. This invention further provides compositions containing conjugates described herein in which the percentage of conjugates in the composition in which n is 1 is at least ninety percent.
  • Compared to unmodified EPO (i.e., EPO without a PEG attached) and conventional PEG-EPO conjugates, the present conjugates have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity in vivo. The conjugates of this invention have the same uses as EPO. In particular, the conjugates of this invention are useful to treat patients by stimulating the division and differentiation of committed erythroid progenitors in the bone marrow in the same way EPO is used to treat patients.[0006]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1: Influence of pH on thermal stability. The transition temperature is plotted against the pH. [0007]
  • FIG. 2: Influence of ionic strength on thermal stability. The transition temperature is plotted against the phosphate concentration. [0008]
  • FIG. 3: Dependence of thermal stability on buffer substance. [0009]
  • FIG. 4 shows that sulfate is also a suitable buffer/additive at low pH (e.g. pH 6.2), whereas phosphate is less suitable at pH 6.2 compared to pH 7.5. This shows that sulfate keeps the thermal stability high, even at low pH. [0010]
  • FIG. 5: Dependency of peg-EPO aggregation on pH. Peg-EPO samples after heat stress (as described above) were analyzed by SDS-PAGE. Proteins were stained with silver. Lane 1: molecular weight standard. Lane 2: [0011] pH 5. Lane 3: pH 5, reduced. Lane 4: pH 6. Lane 5: pH 6, reduced. Lane 6: pH 6.5. Lane 7: pH 6.5, reduced. Lane 8: pH 7. Lane 9: pH 7, reduced. Lane 10: peg-EPO, unstressed.
  • FIG. 6 shows that the use of 1 mg/ml acetylcysteine as an antioxidant prevents the formation of aggregates under heat stress.[0012]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention provides conjugates, said conjugates comprising an erythropoietin glycoprotein having at least one free amino group and having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to “n” poly(ethylene glycol) groups of the formula —CO—(CH[0013] 2)x—(OCH2CH2)m—OR with the —CO (i.e. carbonyl) of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein R is lower alkyl; x is 2 or 3; m is from about 450 to about 900; n is from 1 to 3; and n and m are chosen so that the molecular weight of the conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons.
  • It has been found that the conjugates of this invention can be used in the same manner as unmodified EPO. However, the conjugates of this invention have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity in vivo. Because of these improved properties, the conjugates of this invention can be administered once weekly instead of the three times weekly for unmodified EPO. Decreased frequency of administration is expected to result in improved patient compliance leading to improved treatment outcomes, as well as improved patient quality of life. Compared to conventional conjugates of EPO linked to poly(ethylene glycol) it has been found that conjugates having the molecular weight and linker structure of the conjugates of this invention have an improved potency, stability, AUC, circulating half-life, and cost of goods profile. [0014]
  • The conjugates in accordance of this invention can be administered in a therapeutically effective amount to patients in the same way EPO is administered. The therapeutically effective amount is that amount of conjugate necessary for the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells. The exact amount of conjugate is a matter of preference subject to such factors as the exact type of condition being treated, the condition of the patient being treated, as well as the other ingredients in the composition. The pharmaceutical compositions containing the conjugate may be formulated at a strength effective for administration by various means to a human patient experiencing blood disorders characterized by low or defective red blood cell production. Average therapeutically effective amounts of the conjugate may vary and in particular should be based upon the recommendations and prescription of a qualified physician. [0015]
  • The erythropoietin glycoprotein products prepared in accordance with this invention may be prepared in pharmaceutical compositions suitable for injection with a pharmaceutically acceptable carrier or vehicle by methods known in the art. Among the preferred pharmaceutically acceptable carriers for formulating the products of the invention are human serum album, human plasma proteins, etc. [0016]
  • The term “erythropoietin” or “EPO” refers to a glycoprotein, having the amino acid sequence set out in (SEQ ID NO: 1) or (SEQ ID NO: 2) or an amino acid sequence substantially homologous thereto, whose biological properties relate to the stimulation of red blood cell production and the stimulation of the division and differentiation of committed erythroid progenitors in the bone marrow. As used herein, these terms include such proteins modified deliberately, as for example, by site directed mutagenesis or accidentally through mutations. These terms also include analogs having from 1 to 6 additional sites for glycosylation, analogs having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site, and analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. These terms include both natural and recombinantly produced human erythropoietin. [0017]
  • The erythropoietin conjugates of this invention can be represented by Formula 1:[0018]
  • P—[NHCO—(CH2)x—(OCH2CH2)m—OR]n  (I)
  • wherein x, m, n and R are as above. [0019]
  • In Formula I, P is the residue of an erythropoietin glycoprotein described herein, (i.e. without the amino group or amino groups which form an amide linkage with the carbonyl shown in Formula I), having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells. P may be selected from the group consisting of residues of human erythropoietin and analogs thereof having from 1 to 6 additional sites for glycosylation. As set out in detail below, the preparation and purification of EPO are well known in the art. By EPO is meant the natural or recombinant protein, preferably human, as obtained from any conventional source such as tissues, protein synthesis, cell culture with natural or recombinant cells. Any protein having the activity of EPO, such as muteins or otherwise modified proteins, is encompassed. Recombinant EPO may be prepared via expression in CHO-, BHK- or HeLa cell lines, by recombinant DNA technology or by endogenous gene activation. Expression of proteins, including EPO, by endogenous gene activation is well known in the art and is disclosed, for example in U.S. Pat. Nos. 5,733,761, 5,641,670, and 5,733,746, and international patent publication Nos. WO 93/09222, WO 94/12650, WO 95/31560, WO 90/11354, WO 91/06667 and WO 91/09955, the contents of each of which are incorporated herein by reference. The preferred EPO species for the preparation of erythropoietin glycoprotein products are human EPO species. More preferably, the EPO species is the human EPO having the amino acid sequence set out in SEQ ID NO:1 or SEQ ID NO:2, more preferably the amino acid sequence SEQ ID NO:1. [0020]
  • In an embodiment, P may be the residue of a glycoprotein analog having from 1 to 6 additional sites for glycosylation. Glycosylation of a protein, with one or more oligosaccharide groups, occurs at specific locations along a polypeptide backbone and greatly affects the physical properties of the protein such as protein stability, secretion, subcellular localization, and biological activity. Glycosylation is usually of two types. O-linked oligosaccharides are attached to serine or threonine residues and N-linked oligosaccharides are attached to asparagine residues. One type of oligosaccharide found on both N-linked and O-linked oligosaccharides is N-acetylneuraminic acid (sialic acid), which is a family of amino sugars containing 9 or more carbon atoms. Sialic acid is usually the terminal residue on both N-linked and O-linked oligosaccharides and, because it bears a negative charge, confers acidic properties to the glycoprotein. Human erythropoietin, having 165 amino acids, contains three N-linked and one O-linked oligosaccharide chains which comprise about 40% of the total molecular weight of the glycoprotein. N-linked glycosylation occurs at asparagine residues located at positions 24, 38, and 83 and O-linked glycosylation occurs at a serine residue located at position 126. The oligosaccharide chains are modified with terminal sialic acid residues. Enzymatic removal of all sialic acid residues from the glycosylated erythropoietin results in loss of in vivo activity but not in vitro activity because sialylation of erythropoietin prevents its binding, and subsequent clearance, by hepatic binding protein. [0021]
  • The glycoproteins of the present invention include analogs of human erythropoietin with one or more changes in the amino acid sequence of human erythropoietin which result in an increase in the number of sites for sialic acid attachment. These glycoprotein analogs may be generated by site-directed mutagenesis having additions, deletions, or substitutions of amino acid residues that increase or alter sites that are available for glycosylation. Glycoprotein analogs having levels of sialic acid greater than those found in human erythropoietin are generated by adding glycosylation sites which do not perturb the secondary or tertiary conformation required for biological activity. The glycoproteins of the present invention also include analogs having increased levels of carbohydrate attachment at a glycoslyation site which usually involve the substitution of one or more amino acids in close proximity to an N-linked or O-linked site. The glycoproteins of the present invention also include analogs having one or more amino acids extending from the carboxy terminal end of erythropoietin and providing at least one additional carbohydrate site. The glycoproteins of the present invention also include analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. Such a rearrangement of glycosylation site involves the deletion of one or more glycosylation sites in human erythropoietin and the addition of one or more non-naturally occurring glycosylation sites. Increasing the number of carbohydrate chains on erythropoietin, and therefore the number of sialic acids per erythropoietin molecules may confer advantageous properties such as increased solubility, greater resistance to proteolysis, reduced immunogenecity, increased serum half-life, and increased biological activity. Erythropoietin analogs with additional glycosylation sites are disclosed in more detail in European Patent Application 640 619, to Elliot published Mar. 1, 1995. [0022]
  • In a preferred embodiment, the glycoproteins of the present invention comprise an amino acid sequence which includes at least one additional site for glycosylation such as, but not limited to, erythropoietins comprising the sequence of human erythropoietin modified by a modification selected from the following: [0023]
  • Asn[0024] 30Thr32;
  • Asn[0025] 51Thr53,
  • Asn[0026] 57Thr59;
  • Asn[0027] 69;
  • Asn[0028] 69Thr71;
  • Ser[0029] 68Asn69Thr71;
  • Val[0030] 87Asn88Thr90;
  • Ser[0031] 87Asn88Thr90;
  • Ser[0032] 87Asn88Gly89Thr90;
  • Ser[0033] 87Asn88Thr90Thr92;
  • Ser[0034] 87Asn88Thr90Ala162;
  • Asn[0035] 69Thr71Ser87Asn88Thr90;
  • Asn[0036] 30Thr32Val87Asn88Thr90;
  • Asn[0037] 89Ile90Thr91;
  • Ser[0038] 87Asn89Ile90Thr91;
  • Asn[0039] 136Thr138;
  • Asn[0040] 138Thr140;
  • Thr[0041] 125; and
  • Pro[0042] 124Thr125.
  • The notation used herein for modification of amino acid sequence means that the position(s) of the corresponding unmodified protein (e.g. hEPO of SEQ ID NO:1 or SEQ ID NO:2) indicated by the superscripted number(s) is changed to the amino acid(s) that immediately precede the respective superscripted number(s). [0043]
  • The glycoprotein may also be an analog having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site. The additional amino acid may comprise a peptide fragment derived from the carboxy terminal end of human chorionic gonadotropin. Preferably, the glycoprotein is an analog selected from the group consisting of (a) human erythropoietin having the amino acid sequence, Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro IIe Leu Pro Gln (SEQ ID NO:3), extending from the carboxy terminus; (b) the analog in (a) further comprising Ser[0044] 87 Asn88 Thr90 EPO; and (c) the analog in (a) further comprising Asn30 Thr32 Val87 Asn88 Thr90 EPO.
  • The glycoprotein may also be an analog having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. The rearrangement may comprise a deletion of any of the N-linked carbohydrate sites in human erythropoietin and an addition of an N-linked carbohydrate site at position 88 of the amino acid sequence of human erythropoietin. Preferably, the glycoprotein is an analog selected from the group consisting of Gln[0045] 24 Ser87 Asn88 Thr90 EPO; Gln38 Ser87 Asn88 Thr90 EPO; and Gln83 Ser87 Asn88 Thr90 EPO.
  • As used herein, “lower alkyl” means a linear or branched alkyl group having from one to six carbon atoms. Examples of lower alkyl groups include methyl, ethyl and isopropyl. In accordance with this invention, R is any lower alkyl. Conjugates in which R is methyl are preferred. [0046]
  • The symbol “m” represents the number of ethylene oxide residues (OCH[0047] 2CH2) in the poly(ethylene oxide) group. A single PEG subunit of ethylene oxide has a molecular weight of about 44 daltons. Thus, the molecular weight of the conjugate (excluding the molecular weight of the EPO) depends on the number “m”. In the conjugates of this invention “m” is from about 450 to about 900 (corresponding to a molecular weight of about 20 kDa to about 40 kDa), preferably from about 650 to about 750 (corresponding to a molecular weight of about 30 kDa). The number m is selected such that the resulting conjugate of this invention has a physiological activity comparable to unmodified EPO, which activity may represent the same as, more than, or a fraction of the corresponding activity of unmodified EPO. A molecular weight of “about” a certain number means that it is within a reasonable range of that number as determined by conventional analytical techniques. The number “m” is selected so that the molecular weight of each poly(ethylene glycol) group covalently linked to the erythropoietin glycoprotein is from about 20 kDa to about 40 kDa, and is preferably about 30 kDa.
  • In the conjugates of this invention, the number “n is the number of polyethylene glycol groups covalently bound to free amino groups (including ε amino groups of a lysine amino acid and/or the amino-terminal amino group) of an erythropoietin protein via amide linkage(s). A conjugate of this invention may have one, two, or three PEG groups per molecule of EPO. “n” is an integer ranging from 1 to 3, preferably “n” is 1 or 2, and more preferably “n” is 1. [0048]
  • The compound of Formula I can be prepared from the known polymeric material: [0049]
    Figure US20030120045A1-20030626-C00001
  • in which R and m are as described above, by condensing the compound of Formula II with the erythropoietin glycoprotein. Compounds of Formula II in which x is 3 are alpha-lower alkoxy, butyric acid succinimidyl esters of poly(ethylene glycol) (lower alkoxy-PEG-SBA). Compounds of Formula II in which x is 2 are alpha-lower alkoxy, propionic acid succinimidyl esters of poly(ethylene glycol) (lower alkoxy-PEG-SPA). Any conventional method of reacting an activated ester with an amine to form an amide can be utilized. In the reaction described above, the exemplified succinimidyl ester is a leaving group causing the amide formation. The use of succinimidyl esters such as the compounds of formula II to produce conjugates with proteins are disclosed in U.S. Pat. No. 5,672,662, issued Sep. 30, 1997 (Harris, et al.). [0050]
  • Human EPO contains nine free amino groups, the amino-terminal amino group plus the ε-amino groups of 8 lysine residues. When the pegylation reagent was combined with a SBA compound of Formula II, it has been found that at pH 7.5, a protein:PEG ratio of 1:3, and a reaction temperature of from 20-25° C., a mixture of mono-, di-, and trace amounts of the tri-pegylated species were produced. When the pegylation reagent was a SPA compound of Formula II, at similar conditions except that the protein:PEG ratio was 1:2, primarily the mono-pegylated species is produced. The pegylated EPO can be administered as a mixture, or as the cation exchange chromatography separated different pegylated species. By manipulating the reaction conditions (e.g., ratio of reagents, pH, temperature, protein concentration, time of reaction etc.), the relative amounts of the different pegylated species can be varied. [0051]
  • Human erythropoietin (EPO) is a human glycoprotein which stimulates the formation of erythrocytes. Its preparation and therapeutic application are described in detail for example in U.S. Pat. Nos. 5,547,933 and 5,621,080, EP-[0052] B 0 148 605, Huang, S. L., Proc. Natl. Acad. Sci. USA (1984) 2708-2712, EP-B 0 205 564, EP-B 0 209 539 and EP-B 0 411 678 as well as Lai, P. H. et al., J. Biol. Chem. 261 (1986) 3116-3121, an Sasaki, H. et al., J. Biol. Chem. 262 (1987) 12059-12076. Erythropoietin for therapeutic uses may be produced by recombinant means (EP-B 0 148 605, EP-B 0 209 539 and Egrie, J. C., Strickland, T. W., Lane, J. et al. (1986) Immunobiol. 72: 213-224).
  • Methods for the expression and preparation of erythropoietin in serum free medium are described for example in WO 96/35718, to Burg published Nov. 14, 1996, and in European Patent Publication No. 513 738, to Koch published Jun. 12, 1992. In addition to the publications mentioned above, it is known that a serum-free fermentation of recombinant CHO cells which contain an EPO gene can be carried out. Such methods are described for example in EP-[0053] A 0 513 738, EP-A 0 267 678 and in a general form by Kawamoto, T. et al., Analytical Biochem. 130 (1983) 445-453, EP-A 0 248 656, Kowar, J. and Franek, F., Methods in Enzymology 421 (1986) 277-292, Bavister, B., Expcology 271 (1981) 45-51, EP-A 0 481 791, EP-A 0 307 247, EP-A 0 343 635, WO 88/00967.
  • In EP-[0054] A 0 267 678 an ion exchange chromatography on S-Sepharose, a preparative reverse phase HPLC on a C8 column and a gel filtration chromatography are described for the purification of EPO produced in serum-free culture after dialysis. In this connection the gel filtration chromatography step can be replaced by ion exchange chromatography on S-Sepharose fast flow. It is also proposed that a dye chromatography on a Blue Trisacryl column be carried out before the ion exchange chromatography.
  • A process for the purification of recombinant EPO is described by Nobuo, I. et al., J. Biochem. 107 (1990) 352-359. In this process EPO is treated however with a solution of Tween® 20, phenylmethylsulfonyl fluoride, ethylmaleimide, pepstatin A, copper sulfate and oxamic acid prior to the purification steps. Publications, including WO 96/35718, to Burg published Nov. 14, 1996, discloses a process for preparing erythropoietin in a serum free fermentation process (EPOsf). [0055]
  • The specific activity of EPO or EPO conjugates in accordance with this invention can be determined by various assays known in the art. The biological activity of the purified EPO proteins of this invention are such that administration of the EPO protein by injection to human patients results in bone marrow cells increasing production of reticulocytes and red blood cells compared to non-injected or control groups of subjects. The biological activity of the EPO proteins, or fragments thereof, obtained and purified in accordance with this invention can be tested by methods according to Annable, et al., Bull. Wld. Hlth. Org. (1972) 47: 99-112 and Pharm. Europa Spec. Issue Erythropoietin BRP Bio 1997(2). Another biological assay for determining the activity of EPO protein, the normocythaemic mouse assay, is described in Example 4. This invention provides a composition comprised of conjugates as described above. A composition containing at least ninety percent mono-PEG conjugates, i.e. in which n is 1, can be prepared as shown in Example 5. Usually mono-PEG conjugates of erythropoietin glycoproteins are desirable because they tend to have higher activity than di-PEG conjugates. The percentage of mono-PEG conjugates as well as the ratio of mono- and di-PEG species can be controlled by pooling broader fractions around the elution peak to decrease the percentage of mono-PEG or narrower fractions to increase the percentage of mono-PEG in the composition. About ninety percent mono-PEG conjugates is a good balance of yield and activity. Sometimes compositions in which, for example, at least ninety-two percent or at least ninety-six percent of the conjugates are mono-PEG species (n equals 1) may be desired. In an embodiment of this invention the percentage of conjugates where n is 1 is from ninety percent to ninety-six percent. [0056]
  • The invention will be better understood by reference to the following examples which illustrate but do not limit the invention described herein. [0057]
  • EXAMPLE 1
  • Fermentation and Purification of Human EPO [0058]
  • a) Inoculum Preparation and Fermentation [0059]
  • One vial of the Working Cell Bank, originating from an EPO-producing CHO cell line (ATCC CRL8695, disclosed in EP 411 678 (Genetics Institute) can be used) is taken from the gas phase of the liquid nitrogen storage tank. The cells are transferred into glass spinner flasks and cultivated in a hydrogen carbonate-buffered medium in a humidified CO[0060] 2 incubator. Typical serum free media used for the inocolum preparation and fermentation are disclosed in European Patent Application 513 738, to Koch published Jun. 12, 1992, or WO 96/35718, to Burg published Nov. 14, 1996, for example contain as medium DMEM/F12 (e.g. JRH Biosciences/Hazleton Biologics, Denver, US, order No. 57-736) and additionally sodium hydrogencarbonate, L+glutamine, D+glucose, recombinant insulin, sodium selenite, diaminobutane, hydrocortisone, iron(II) sulfate, asparagine, aspartic acid, serine and a stabilizer for mammalian cells such as e.g. polyvinyl alcohol, methyl cellulose, polydextran, polyethylene glycol, Pluronic F68, plasma expander polygelin (HEMACCEL®) or polyvinyl pyrrolidone (WO 96/35718).
  • The cultures are microscopically checked for the absence of contaminating microorganisms, and the cell densities are determined. These tests are performed at each splitting step. [0061]
  • After the initial growth period, the cell culture is diluted with fresh medium to the starting cell density and undergoes another growth cycle. This procedure is repeated until a culture volume of approximately 2 l per glass spinner flask has been obtained. After approx. 12 [0062] doublings 1 to 5 liter of this culture is available which then is used as inoculum for the 10 l inoculum fermenter.
  • After 3-5 days, the culture in the 10 l fermenter can be used as inoculum for the 100 l inoculum fermenter. [0063]
  • After additional 3-5 days of cultivation, the culture in the 100 l fermenter can be used as inoculum for the 1000 l production fermenter. [0064]
  • b) Harvesting and Cell Separation [0065]
  • A batch refeed process is used, i.e. when the desired cell density is reached, approx. 80% of the culture is harvested. The remaining culture is replenished with fresh culture medium and cultivated until the next harvest. One production run consists of a maximum of 10 subsequent harvests: 9 partial harvests and 1 overall harvest at the end of fermentation. Harvesting takes place every 3-4 days. [0066]
  • The determined harvest volume is transferred into a cooled vessel. The cells are removed by centrifugation or filtration and discarded. The EPO containing supernatant of the centrifugation step is in-line filtered and collected in a second cooled vessel. Each harvest is processed separately during purification. [0067]
  • A typical process for the purification of EPO-protein is disclosed in WO 96/35718, to Burg published Nov. 14, 1996. The purification process is explained in the following. [0068]
  • a) Blue Sepharose Chromatography [0069]
  • Blue Sepharose (Pharmacia) consists of Sepharose beads to the surface of which the Cibacron blue dye is covalently bound. Since EPO binds more strongly to Blue Sepharose than most non-proteinaceous contaminants, some proteinaceous impurities and PVA, EPO can be enriched in this step. The elution of the Blue Sepharose column is performed by increasing the salt concentration as well as the pH. [0070]
  • The column is filled with 80-100 l of Blue Sepharose, regenerated with NaOH and equilibrated with equilibration buffer (sodium/calcium chloride and sodium acetate). The acidified and filtered fermenter supernatant is loaded. After completion of the loading, the column is washed first with a buffer similar to the equilibration buffer containing a higher sodium chloride concentration and consecutively with a Tris-base buffer. The product is eluted with a Tris-base buffer and collected in a single fraction in accordance with the master elution profile. [0071]
  • b) Butyl Toyopearl Chromatography [0072]
  • The Butyl Toyopearl 650 C (Toso Haas) is a polystyrene based matrix to which aliphatic butyl-residues are covalently coupled. Since EPO binds more strongly to this gel than most of the impurities and PVA, it has to be eluted with a buffer containing isopropanol. [0073]
  • The column is packed with 30-40 l of Butyl Toyopearl 650 C, regenerated with NaOH, washed with a Tris-base buffer and equilibrated with a Tris-base buffer containing isopropanol. [0074]
  • The Blue Sepharose eluate is adjusted to the concentration of isopropanol in the column equilibration buffer and loaded onto the column. Then the column is washed with equilibration buffer with increased isopropanol concentration. The product is eluted with elution buffer (Tris-base buffer with high isopropanol content) and collected in a single fraction in accordance with the master elution profile. [0075]
  • c) Hydroxyapatite Ultrogel Chromatography [0076]
  • The Hydroxyapatite Ultrogel (Biosepra) consists of hydroxyapatite which is incorporated in an agarose matrix to improve the mechanical properties. EPO has a low affinity to hydroxyapatite and can therefore be eluted at lower phosphate concentrations than protein impurities. [0077]
  • The column is filled with 30-40 l of Hydroxyapatite Ultrogel and regenerated with a potassium phosphate/calcium chloride buffer and NaOH followed by a Tris-base buffer. Then it is equilibrated with a Tris-base buffer containing a low amount of isopropanol and sodium chloride. [0078]
  • The EPO containing eluate of the Butyl Toyopearl chromatography is loaded onto the column. Subsequently the column is washed with equilibration buffer and a Tris-base buffer without isopropanol and sodium chloride. The product is eluted with a Tris-base buffer containing a low concentration of potassium phosphate and collected in a single fraction in accordance with the master elution profile. [0079]
  • d) Reversed Phase HPLC on Vydac C4 [0080]
  • The RP-HPLC material Vydac C4 (Vydac)consists of silica gel particles, the surfaces of which carry C4-alkyl chains. The separation of EPO from the proteinaceous impurities is based on differences in the strength of hydrophobic interactions. Elution is performed with an acetonitrile gradient in diluted trifluoroacetic acid. [0081]
  • Preparative HPLC is performed using a stainless steel column (filled with 2.8 to 3.2 liter of Vydac C4 silicagel). The Hydroxyapatite Ultrogel eluate is acidified by adding trifluoro-acetic acid and loaded onto the Vydac C4 column. For washing and elution an acetonitrile gradient in diluted trifluoroacetic acid is used. Fractions are collected and immediately neutralized with phosphate buffer. The EPO fractions which are within the IPC limits are pooled. [0082]
  • e) DEAE Sepharose Chromatography [0083]
  • The DEAE Sepharose (Pharmacia) material consists of diethylaminoethyl (DEAE)—groups which are covalently bound to the surface of Sepharose beads. The binding of EPO to the DEAE groups is mediated by ionic interactions. Acetonitrile and trifluoroacetic acid pass through the column without being retained. After these substances have been washed off, trace impurities are removed by washing the column with acetate buffer at a low pH. Then the column is washed with neutral phosphate buffer and EPO is eluted with a buffer with increased ionic strength. [0084]
  • The column is packed with DEAE Sepharose fast flow. The column volume is adjusted to assure an EPO load in the range of 3-10 mg EPO/ml gel. The column is washed with water and equilibration buffer (sodium/potassium phosphate). The pooled fractions of the HPLC eluate are loaded and the column is washed with equilibration buffer. Then the column is washed with washing buffer (sodium acetate buffer) followed by washing with equilibration buffer. Subsequently, EPO is eluted from the column with elution buffer (sodium chloride, sodium/potassium phosphate) and collected in a single fraction in accordance with the master elution profile. [0085]
  • The eluate of the DEAE Sepharose column is adjusted to the specified conductivity. The resulting drug substance is sterile filtered into Teflon bottles and stored at −70° C. [0086]
  • EXAMPLE 2
  • Pegylation of EPO with mPEG-SBA [0087]
  • EPO purified in accordance with the serum free procedure of Example 1 (EPOsf) was homogeneous as determined by analytical methods and showed the typical isoform pattern consisting of 8 isoforms. It had a specific biological activity of 190,000 IU/mg as determined by the normocythaemic mouse assay. The pegylation reagent used was a methoxy-PEG-SBA, which is a compound of Formula II in which R is methyl; x is 3; and m is from 650 to 750 (avg. about 680, corresponding to an average molecular weight of about 30 kDa). [0088]
  • Pegylation Reaction [0089]
  • To one hundred milligrams of EPOsf (9.71 ml of a 10.3 mg/ml EPOsf stock, 5.48 μmol) 10 ml of 0.1 M potassium phosphate buffer, pH, 7.5 containing 506 mg of 30 kDa methoxy-PEG-SBA (16.5 μmol) (obtained from Shearwater Polymers, Inc., Huntsville, Ala.) was added and mixed for 2 h at room temperature (20-23° C.). The final protein concentration was 5 mg/ml and the protein:PEG reagent ratio was 1:3. After two hours, the reaction was stopped by adjusting the pH to 4.5 with glacial acetic acid and stored at −20° C., until ready for purification. [0090]
  • Purification [0091]
  • 1. Conjugate Mixture: Approximately 28 ml of SP-SEPHAROSE FF (sulfo-propyl cation exchange resin) was packed into an AMICON glass column (2.2×7.5 cm) and equilibrated with 20 mM acetate buffer pH, 4.5 at a flowrate of 150 ml/h. Six milliliters of the reaction mixture containing 30 mg protein was diluted 5-fold with the equilibration buffer and applied onto the column. Unadsorbed materials were washed away with the buffer and the adsorbed PEG conjugate mixture was eluted from the column with 0.175 M NaCl in the equilibration buffer. Unmodified EPOsf still remaining on the column was eluted with 750 mM NaCl. Column was reequilibrated in the starting buffer. Samples were analyzed by SDS-PAGE and their degree of pegylation were determined. It was found that the 0.175M NaCl eluate contained, mono- as well as di- and trace amounts of the tri-pegylated species, whereas the 750 mM NaCl eluate contained unmodified EPOsf. [0092]
  • 2. Di-PEG and Mono-PEG-EPOsf: The purified conjugate mixture eluted from the column in the previous step was diluted 4-fold with the buffer and reapplied onto the column and washed as described. Di-PEG-EPOsf and mono-PEG-EPOsf were separately eluted from the column with 0.1M NaCl and 0.175 M NaCl, respectively. Elution was also performed with 750 mM NaCl to elute any remaining unmodified EPOsf. [0093]
  • Alternatively, the reaction mixture was diluted 5-fold with the acetate buffer and applied onto the SP-Sepharose column (˜0.5 mg protein/ml gel). Column was washed and adsorbed mono-PEG-EPOsf,di-PEG-EPOsf and unmodified EPOsf were eluted as described in the previous section. [0094]
  • Results [0095]
  • PEG-EPOsf was synthesized by chemically conjugating a linear PEG molecule with a number average molecular weight of 30 kDa. PEG-EPOsf was derived from the reaction between the primary amino groups of EPOsf and the succinimidyl ester derivative of a 30 kDa PEG-butyric acid, resulting in an amide bond. [0096]
  • Results are summarized in Table1. Purified conjugate mixture comprised of mono- and di-PEG-EPOsf and was free of unmodified EPOsf as determined by SDS-PAGE analysis. Conjugate mixture accounted for 23.4 mg or 78% of the starting material. Cation exchange chromatographic separation of mono- and di-PEG-EPOsf indicated that mono- to di-PEG ratio in the conjugate mixture was almost 1:1. After completion of the reaction, ratio of the individual components of Mono:Di:Unmodified were 40:38:20 (%). Overall yield was almost quantitative. [0097]
    TABLE 1
    Summary of results of EPOsf pegylation
    Sample Protein (mg) Yield (%)
    Rxn. Mix 30 100
    Mono- 12.0 40
    Di- 11.4 38
    Unmod. 6.0 20
    Conju. Mix. 23.4 78
  • EXAMPLE 3
  • Pegylation of EPO with mPEG-SPA [0098]
  • A different aliquot of the EPOsf used in Example 2 was reacted with 30 kDa methoxy-PEG-SPA (Shearwater Polymers, Inc., Huntsville, Ala.). Reaction was performed at a protein:reagent ratio of 1:2 and purification techniques were in accordance with Example 2. Primarily the mono-pegylated species was produced. [0099]
  • EXAMPLE 4
  • In-vivo Activity of Pegylated EPO Determined by the Normocythaemic Mouse Assay [0100]
  • The normocythaemic mouse bioassay is known in the art (Pharm. Europa Spec. Issue Erythropoietin BRP Bio 1997(2)) and a method in the monography of erythropoietin of Ph. Eur. BRP. The samples were diluted with BSA-PBS. Normal healthy mice, 7-15 weeks old, were administered s.c. 0.2 ml of the EPO-fraction containing un-pegylated EPO or tri-, di- or mono-pegylated EPO from Example 2 or 3. Over a period of 6 days, blood was drawn by puncture of the tail vein and diluted such that 1 μl of blood was present in 1 ml of an 0.15 μmol acridine orange staining solution. The staining time was 3 to 10 minutes. The reticulocyte counts were carried out microfluorometrically in a flow cytometer by analysis of the red fluorescence histogram. The reticulocyte counts were given in terms of absolute figures (per 30,000 blood cells analyzed). For the data presented, each group consisted of 5 mice per day, and the mice were bled only once. [0101]
  • In separate experiments, a single dose of unmodified EPO (25 ng of EPO), the PEG(SBA)-EPO mixture from Example 2 (10 ng of conjugate), mono- and di-pegylated EPOs from Example 2 (10 ng of conjugate), the PEG(SPA)-EPO from Example 3 (10 ng of conjugate), and buffer solution were administered to mice. The results are shown in Table 2. The results show the superior activity and the prolonged half life of the pegylated EPO species indicated by the significantly increased amounts of reticulocytes and the shift of the reticulocytes count maximum using the same dose per mouse (10 ng), compared to a dose of 25 ng for unmodified EPO. [0102]
    TABLE 2
    PEG-EPO
    EPO
    30 kDa SPA Mono 30K Di 30K SBA Conjugate Control
    (Unmodified) PEG SBA SBA Mixture Buffer
     72 h 1000 1393 1411 994 1328 857
     96 h 500 1406 1501 926 1338 697
    120 h ˜200 1100 1182 791 944 701
    144 h ˜0 535 607 665 660 708
  • EXAMPLE 5
  • Preparation of Predominantly Mono-PEG-EPO [0103]
  • Pegylation Reaction [0104]
  • Starting with 100 mg (5.48 μmol) of EPOsf in 100 mM potassium phosphate buffer pH 7.5 prepared in accordance with Example 1, there was added 329 mg (10.96 μmol) of 30 kDa PEG-SBA reagent dissolved in 3 [0105] ml 1 mM HCL. Enough 100 mM potassium phosphate buffer pH 7.5 was added to make the reaction mixture volume to 20 ml. The final protein concentration was 5 mg/ml and the protein:PEG reagent ratio was 1:2. The reaction mixture was mixed for 2 h at ambient temperature (20-22° C.). After 2 h, the reaction was stopped by adjusting the pH to 4.5 with glacial acetic acid and stored frozen at −20° C. until ready for purification.
  • Purification [0106]
  • The reaction mixture from the previous step was diluted 1:5 with 10 mM sodium acetate, pH 4.5 and applied to 300 ml SP-Sepharose FF (sulfopropyl cation exchange resin) packed into a 4.2×19 cm column. The column was previously equilibrated with the same buffer. Column effluents were monitored at 280 nm with a Gilson UV monitor and recorded with a Kipp and Zonen recorder. The column was washed with 300 ml or 1 bed volume of equilibration buffer to remove excess reagents, reaction byproducts and oligomeric PEG-EPO. It was followed by washing with 2 bed volumes of 100 mM NaCl to remove di-PEG-EPO. Mono-PEG-EPO was then eluted with 200 mM NaCl. During elution of the mono-PEG-EPO, the first 50 ml of the protein peak was discarded and the mono-PEG-EPO was collected as a 150 ml fraction. Unmodified EPOsf remaining on the column was eluted with 750 mM NaCl. All elution buffers were made in the equilibration buffer. All eluted samples were analyzed by SDS-PAGE and by high performance Size Exclusion Chromatography (SEC). The mono-PEG-EPO pool obtained from the 150 ml fraction, which had no detectable unmodified EPOsf, was then concentrated to ˜4.5-7.5 mg/ml and diafiltered into the storage buffer, 10 mM potassium phosphate, 100 mM NaCl, pH 7.5. Concentration/Diafiltration was performed with Millipore Labscale™ TFF System fitted with 50 kDa cut off Millipore [0107] Pellicon XL Biomax 50 membrane at ambient temperature. Concentrated mono-PEG-EPO was sterile filtered and stored frozen at −20° C.
  • Approximately 75% of EPOsf was pegylated. After purification, total yield was ˜30% mono-PEG-EPO with no detectable unmodified EPOsf and around 25% di-PEG-EPO. Oligomers, and unpegylated EPOsf accounted for the remaining protein. The mono-PEG-EPO pool obtained from the 150 ml fraction contained approximately 90% mono-PEG-EPO and approximately 10% di-PEG-EPO. [0108]
  • EXAMPLE 6
  • Thermostability of EPO and Pegylated EPO in Various Formulations: Analysis by DSC (Differential Scanning Calorimetry) [0109]
  • It is generally accepted that the transition temperature of thermal denaturation measured by differential scanning calorimetry is a valid indicator for the thermostability of proteins. Erythropoietin or pegylated erythropoietin (prepared according to Example 3) solutions with concentrations between 0.6 and 1.2 mg/ml were analyzed in various buffers with or without stabilizers by means of a Nano-DSC (Calorimetric Sciences Corporation, Utah, USA) at a heating rate of 2 K/min. An increase in transition temperature indicates an increase in thermal stability of the protein. The measured temperature values should not be understood as absolute values but rather represent differences in the stability of the individual formulations relative to one another. [0110]
  • In order to define the optimal pH of the formulation, the pH-dependence of the thermal denaturation of pegylated erythropoietin in the range between 4 and 9 was studied. The protein samples were analyzed in 30 mM Na[0111] 2HPO4, 30 mM sodium citrate, 30 mM borate. FIG. 1 shows a plateau of maximal transition temperature between about pH 6 to about pH 9 and a sharp decrease below pH 5.5. This indicates that the optimal pH for maximal thermal stability lies above pH 5.5. (FIG. 1).
  • In order to investigate the effect of ionic strength, the phosphate concentration dependence of thermal denaturation was determined. FIG. 2 shows that the thermal stability increases with an increase in ionic strength of the formulation. [0112]
  • The influence of the buffer substance was also investigated by DSC. From FIG. 3 one can see that the most suitable buffers or additives for a high thermal stability are sulfate, citrate or phosphate. Glycine, which is used as a buffer in currently available formulations (see above) is not very suitable. [0113]
  • FIG. 4 shows that sulfate is also a suitable buffer/additive at low pH (e.g. pH 6.2), whereas phosphate is less suitable at pH 6.2 compared to pH 7.5. This shows that sulfate keeps the thermal stability high, even at low pH. This finding allows a formulation at a pH between 6.0 and 6.5, without severe losses in thermal stability of erythropoietin. [0114]
  • EXAMPLE 7
  • Aggregation of EPO and Peg-EPO Under Thermal Stress: Analysis by SDS-PAGE (Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis) [0115]
  • In order to investigate the effect of heat stress on the erythropoietin protein, samples in different formulations were exposed to heat stress (20 min 80° C.) and analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing (with DTT in sample buffer) and non-reducing (w/o DTT in sample buffer) conditions. This method allows the detection of covalent aggregate formation. As outlined above, aggregate formation is one of the major degradation pathways of proteins and therefore should be prevented in pharmaceutical formulations of proteins. Aggregates that are detectable in the absence of reducing agent (e.g. DTT) and not detectable in the presence of reducing agent are highly likely to be formed by incorrect disulfide bridging, an oxidation reaction, under heat stress. FIG. 5 shows the pH dependency of aggregation under heat stress. This experiment clearly shows that the formation of aggregates is suppressed at a pH below 6.5. The higher the pH, the higher the amount of aggregation. Most of the aggregates that are formed can be reduced by treatment of the samples with a reducing agent during SDS-PAGE, suggesting that a great portion of the aggregates that are formed under heat stress are disulfide-bridged dimers, oligomers and higher order aggregates. Taken together, his indicates that the formation of aggregates can be prevented to a great extent by keeping the pH of the formulation at or below pH 6.5. [0116]
  • FIG. 5: Dependency of peg-EPO aggregation on pH. Peg-EPO samples prepared accord to Example 3 were subjected to heat stress (as described above) and then analyzed by SDS-PAGE. Proteins were stained with silver. Lane 1: molecular weight standard. Lane 2: [0117] pH 5. Lane 3: pH 5, reduced. Lane 4: pH 6. Lane 5: pH 6, reduced. Lane 6: pH 6.5. Lane 7: pH 6.5, reduced. Lane 8: pH 7. Lane 9: pH 7, reduced. Lane 10: peg-EPO, unstressed.
  • The formation of aggregates can also be prevented by the use of antioxidants. FIG. 6 shows that the use of 1 mg/ml acetylcysteine as an antioxidant prevents the formation of aggregates under heat stress. Therefore, it is useful to use an antioxidant, like e.g. acetylcysteine at a low pH, e.g. pH 6.2, to prevent aggregate formation under heat stress. [0118]
  • FIG. 6: Peg-EPO aggregation can be prevented by pH 6.2 and/or acetylcysteine. Peg-EPO samples prepared according to Example 3 were subjected to heat stress (as described above) and then analyzed by SDS-PAGE. Proteins were stained with silver. Lane 1: peg-EPO, unstressed. Lane 2: pH 7.5, stressed. Lane 3: pH 6.2, stressed. Lane 4: pH 6.2, stressed, reduced. Lane 5: pH 7.5, 1 mg/ml acetylcysteine, stressed. Lane 6: pH 7.5, 1 mg/ml acetylcysteine, stressed, reduced. [0119]
  • Example 8
  • Stability of Peg-EPO in Various Formulations at 4, 25, 30 and 40° C. [0120]
  • Pegylated EPO prepared according to Example 3 in various formulations is incubated at several temperatures. At indicated time points, samples are taken and the stability is assessed by reversed phase high performance chromatography (rpHPLC), high performance size exclusion chromatography (SEC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Table 3 compares the stability of peg-EPO in various formulations at several temperatures. These data clearly show the superiority of the herein enclosed formulations regarding protein recovery and aggregation. [0121]
    TABLE 3
    Stability of peg-EPO in various formulations at several temperatures:
    Aggregation
    at
    % recovery after 40° C.
    Formu- PegEPO one month at detectable
    lation* (μg/ml) 4° C. 25° C. 30° C. 40° C. (+/−)
    A 10 95 92 n.d. 66
    B 10 93 90 n.d. 64
    C 10 115 115 111 105
    D 10 100 99 102 93
    E 50 n.d. 106 99 84 +
    F 50 98 100 98 89
    G 50 101 101 101 100
    H 50 105 103 101 102
    I 50 103 101 104 104
    A 100 100 99 n.d. 79 +
    B 100 103 100 n.d. 77 +
    C 100 103 102 103 88
    D 100 105 106 106 98
    E 400 98 96 89 88 +
    F 400 99 97 96 93
    G 400 98 96 100 106
    H 400 107 108 102 97
    I 400 104 105 98 103
  • [0122]
  • 1 3 1 165 PRT Homo sapiens 1 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 1 5 10 15 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 30 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 50 55 60 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 80 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110 Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 130 135 140 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 155 160 Cys Arg Thr Gly Asp 165 2 166 PRT Homo sapiens 2 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 1 5 10 15 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 30 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 50 55 60 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 80 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110 Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 130 135 140 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 155 160 Cys Arg Thr Gly Asp Arg 165 3 28 PRT Homo sapiens 3 Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg 1 5 10 15 Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln 20 25

Claims (17)

What is claimed is:
1. A conjugate comprising an erythropoietin glycoprotein having a free amino group and having the in vivo biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to “n” poly(ethylene glycol) groups of the formula —CO—(CH2)x—(OCH2CH2)m—OR by the —CO of said poly(ethylene glycol) group forming an amide bond with said amino groups; wherein R is lower alkyl; x is 2 or 3; m is from about 450 to about 900; and m is chosen so that the molecular weight of the conjugates minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons.
2. The conjugate of claim 1, of the formula:
P—[NHCO—(CH2)x—(OCH2CH2)m—OR]n  (I)
wherein m, n and R are as above, and P is the residue of the glycoprotein without the n amino group(s) which form amide linkage(s) with the poly(ethylene glycol) group(s).
3. The conjugate of claim 2 wherein x is 3.
4. The conjugate of claim 3 wherein n is 1.
5. The conjugate of claim 4 wherein said molecular weight is from about 20 kDa to about 40 kDa.
6. The conjugate of claim 5 wherein said molecular weight is about 30 kDa.
7. The conjugate of claim 2, wherein the glycoprotein has the sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites.
8. The conjugate of claim 2, wherein the glycoprotein has the sequence of human erythropoietin modified by the rearrangement of at least one glycosylation site.
9. The conjugate of claim 8 wherein n is 1.
10. The conjugate of claim 2 wherein the glycoprotein is human erythropoietin.
11. The conjugate of claim 8, wherein the human erythropoietin glycoprotein is expressed by endogenous gene activation.
12. The conjugate of claim 10, wherein the glycoprotein has the sequence SEQ ID NO:1.
13. The conjugate of claim 12, wherein R is methyl.
14. The congjugate of claim 7 wherein the glycopprotein has the sequence of human erythropoietin modified by a modification selected from the group consisting of:
Asn30Thr32;
Asn51Thr53,
Asn57Thr59;
Asn69;
Asn69Thr71;
Ser68Asn69Thr71;
Val87Asn88Thr90;
Ser87Asn88Thr90;
Ser87Asn88Gly89Thr90;
Ser87Asn88Thr90Thr92;
Ser87Asn88Thr90 Ala162;
Asn69Thr71Ser87 Asn88Thr90;
Asn30Thr32Val87 Asn88Thr90;
Asn89Ile90Thr91;
Ser87 Asn89Ile90Thr91;
Asn136Thr138;
Asn138Thr140;
Thr125; and
Pro124Thr125.
15. The conjugate of claim 7, wherein the rearrangement comprises deletion of any of the N-linked glycosylation sites in human erythropoietin and addition of an N-linked glycosylation site at position 88 of the sequence of human erythropoietin.
16. The conjugate of claim 2, wherein the glycoprotein has the sequence of human erythropoietin modified by a modification selected from the group consisting of:
Gln24 Ser87 Asn88 Thr90;
Gln38 Ser87 Asn88 Thr90; and
Gln83 Ser87 Asn88 Thr90.
17. The conjugate of claim 16, wherein R is methyl.
US10/293,551 1999-07-02 2002-11-14 Erythropoietin conjugates Abandoned US20030120045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/293,551 US20030120045A1 (en) 1999-07-02 2002-11-14 Erythropoietin conjugates

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US14225499P 1999-07-02 1999-07-02
US15022599P 1999-08-23 1999-08-23
US15154899P 1999-08-31 1999-08-31
US16615199P 1999-11-17 1999-11-17
US09/604,938 US6583272B1 (en) 1999-07-02 2000-06-27 Erythropoietin conjugates
US10/293,551 US20030120045A1 (en) 1999-07-02 2002-11-14 Erythropoietin conjugates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/604,938 Continuation US6583272B1 (en) 1999-07-02 2000-06-27 Erythropoietin conjugates

Publications (1)

Publication Number Publication Date
US20030120045A1 true US20030120045A1 (en) 2003-06-26

Family

ID=27495518

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/604,938 Expired - Lifetime US6583272B1 (en) 1999-07-02 2000-06-27 Erythropoietin conjugates
US10/293,551 Abandoned US20030120045A1 (en) 1999-07-02 2002-11-14 Erythropoietin conjugates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/604,938 Expired - Lifetime US6583272B1 (en) 1999-07-02 2000-06-27 Erythropoietin conjugates

Country Status (52)

Country Link
US (2) US6583272B1 (en)
EP (2) EP1839676A3 (en)
JP (2) JP3727009B2 (en)
KR (1) KR100593143B1 (en)
CN (2) CN1283664C (en)
AR (2) AR024625A1 (en)
AT (1) ATE370748T1 (en)
AU (1) AU736067B2 (en)
BG (1) BG65449B1 (en)
BR (2) BRPI0002276B8 (en)
CA (1) CA2310536C (en)
CO (1) CO5190661A1 (en)
CY (2) CY1107719T1 (en)
CZ (1) CZ299516B6 (en)
DE (3) DE60036053T2 (en)
DK (1) DK1064951T3 (en)
DO (1) DOP2000000030A (en)
EA (1) EA003777B1 (en)
ES (2) ES2289985T3 (en)
FR (2) FR2795734B1 (en)
GB (2) GB2393960C (en)
GC (1) GC0000197A (en)
GE (1) GEP20022804B (en)
GT (1) GT200000109A (en)
HK (2) HK1033328A1 (en)
HR (1) HRP20000436B1 (en)
HU (1) HU226233B1 (en)
ID (1) ID26447A (en)
IL (1) IL137056A0 (en)
IS (1) IS2492B (en)
IT (1) IT1318606B1 (en)
LU (1) LU91363I2 (en)
MA (1) MA26746A1 (en)
MX (1) MXPA00006547A (en)
MY (1) MY128500A (en)
NL (1) NL300289I9 (en)
NO (2) NO327043B1 (en)
NZ (1) NZ505454A (en)
OA (1) OA11442A (en)
PA (1) PA8497801A1 (en)
PE (1) PE20010297A1 (en)
PL (1) PL202758B1 (en)
PT (1) PT1064951E (en)
RS (1) RS49928B (en)
SG (1) SG92717A1 (en)
SI (1) SI1064951T1 (en)
SK (1) SK286301B6 (en)
SV (1) SV2002000120A (en)
TN (1) TNSN00147A1 (en)
TR (1) TR200001956A2 (en)
TW (1) TWI235667B (en)
UY (1) UY26228A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107297A1 (en) * 2003-05-12 2005-05-19 Holmes Christopher P. Novel poly(ethylene glycol) modified compounds and uses thereof
US20050137329A1 (en) * 2003-05-12 2005-06-23 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
US20060020116A1 (en) * 2002-09-09 2006-01-26 Rene Gantier Rational evolution of cytokines for higher stability, the cytokines and encoding nucleic acid molecules
US20060034799A1 (en) * 2002-07-03 2006-02-16 Michael Brines Tissue protective cytokines for the protection, restoration, and enhancement fo responsive cells, tissues and organs
US20070027074A1 (en) * 2003-05-12 2007-02-01 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
US20070032408A1 (en) * 2003-05-12 2007-02-08 Holmes Christopher P Novel spacer moiety for poly (ethylene glycol) modified peptide based compounds
US20070104704A1 (en) * 2005-06-03 2007-05-10 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US20070129293A1 (en) * 2003-09-29 2007-06-07 The Kenneth S. Warren Institute, Inc. Tissue protective cytokines for the treatment and prevention of sepsis and the formation of adhesions
US20080014193A1 (en) * 1999-04-13 2008-01-17 Michael Brines Modulation of excitable tissue function by peripherally administered erythropoietin
US20080108564A1 (en) * 2004-11-11 2008-05-08 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
WO2008065372A2 (en) 2006-11-28 2008-06-05 Nautilus Biotech, S.A. Modified erythropoietin polypeptides and uses thereof for treatment
US7463047B2 (en) 2004-05-25 2008-12-09 International Business Machines Corporation Increase productivity at wafer test using probe retest data analysis
US20090005292A1 (en) * 2004-11-11 2009-01-01 Affymax, Inc. Novel Peptides that Bind to the Erythropoietin Receptor
US20090118183A1 (en) * 2005-06-03 2009-05-07 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US20100184655A1 (en) * 2006-08-04 2010-07-22 Prolong Pharmaceuticals, Inc. Modified erythropoietin
US7767643B2 (en) 2000-12-29 2010-08-03 The Kenneth S. Warren Institute, Inc. Protection, restoration, and enhancement of erythropoietin-responsive cells, tissues and organs
US7919461B2 (en) 2005-06-03 2011-04-05 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US10052567B2 (en) 2009-07-30 2018-08-21 Hoffmann-La Roche Inc. Moveable chromatography column separator
US11241638B2 (en) 2011-02-02 2022-02-08 Hoffmann-La Roche Inc. Chromatography column support
CN116492448A (en) * 2023-04-12 2023-07-28 深圳赛保尔生物药业有限公司 PEG-EPO and mesenchymal stem cell-loaded composition, medicament and preparation method thereof

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1037927T3 (en) 1997-12-08 2004-09-06 Emd Lexigen Res Ct Corp Heterodimeric fusion proteins useful for targeted immunotherapy and general immune stimulation
US20030105294A1 (en) * 1998-02-25 2003-06-05 Stephen Gillies Enhancing the circulating half life of antibody-based fusion proteins
EP1071468B1 (en) * 1998-04-15 2006-06-14 Lexigen Pharmaceuticals Corp. Enhancement of antibody-cytokine fusion protein mediated immune responses by co-administration with angiogenesis inhibitor
US7304150B1 (en) * 1998-10-23 2007-12-04 Amgen Inc. Methods and compositions for the prevention and treatment of anemia
CZ299516B6 (en) * 1999-07-02 2008-08-20 F. Hoffmann-La Roche Ag Erythropoietin glycoprotein conjugate, process for its preparation and use and pharmaceutical composition containing thereof
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
US7067110B1 (en) 1999-07-21 2006-06-27 Emd Lexigen Research Center Corp. Fc fusion proteins for enhancing the immunogenicity of protein and peptide antigens
ATE316982T1 (en) * 1999-08-09 2006-02-15 Lexigen Pharm Corp MULTIPLE CYTOKINE ANTIBODIES COMPLEXES
US20050202538A1 (en) * 1999-11-12 2005-09-15 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
DE60122286T2 (en) * 2000-02-11 2007-08-02 Merck Patent Gmbh INCREASING THE CIRCULATORY HALF-TIME OF ANTIBODY-BASED FUSION PROTEINS
US6586398B1 (en) * 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
DE60109625T3 (en) * 2000-05-15 2017-08-03 F. Hoffmann-La Roche Ag LIQUID MEDICINE PREPARATION CONTAINING AN ERYTHROPOIETIN DERIVATIVE
BR0112111A (en) * 2000-06-29 2003-05-06 Merck Patent Gmbh Enhancement of antibody-cytokine fusion protein-mediated immune responses by combined treatment with immunocytocin uptake enhancers
AU2001290312A1 (en) * 2000-10-16 2002-04-29 Chugai Seiyaku Kabushiki Kaisha Peg-modified erythropoietin
DE60144439D1 (en) * 2000-12-20 2011-05-26 Hoffmann La Roche CONJUGATES OF ERYTHROPOIETIN (EPO) WITH POLYETHYLENE GLYCOL (PEG)
CA2431964C (en) * 2000-12-20 2013-09-10 F. Hoffmann-La Roche Ag Conjugates of erythropoietin (pep) with polyethylene glycol (peg)
EP1234583A1 (en) * 2001-02-23 2002-08-28 F. Hoffmann-La Roche Ag PEG-conjugates of HGF-NK4
CA2440221C (en) * 2001-03-07 2013-02-05 Merck Patent Gesellschaft Mit Beschraenkter Haftung Expression technology for proteins containing a hybrid isotype antibody moiety
DE10112825A1 (en) 2001-03-16 2002-10-02 Fresenius Kabi De Gmbh HESylation of active ingredients in aqueous solution
US6992174B2 (en) * 2001-03-30 2006-01-31 Emd Lexigen Research Center Corp. Reducing the immunogenicity of fusion proteins
DE60239454D1 (en) * 2001-05-03 2011-04-28 Merck Patent Gmbh RECOMBINANT, TUMOR-SPECIFIC ANTIBODY AND ITS USE
US6818613B2 (en) 2001-11-07 2004-11-16 Ortho-Mcneil Pharmaceutical, Inc. Aqueous sustained-release formulations of proteins
KR100467751B1 (en) 2001-12-03 2005-01-24 씨제이 주식회사 Fusion protein having the enhanced in vivo erythropoietin activity
WO2003048334A2 (en) * 2001-12-04 2003-06-12 Merck Patent Gmbh Immunocytokines with modulated selectivity
CN1602360A (en) * 2001-12-06 2005-03-30 法布罗根股份有限公司 Methods of increasing endogenous erythropoietin (EPO)
DE10209821A1 (en) 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Coupling of proteins to a modified polysaccharide
DE10209822A1 (en) 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Coupling of low molecular weight substances to a modified polysaccharide
US7129267B2 (en) 2002-03-11 2006-10-31 Janssen Pharmaceutica N.V. Methods for SHP1 mediated neuroprotection
JP2006507228A (en) * 2002-07-01 2006-03-02 ザ ケネス エス.ウォーレン インスティテュート,インコーポレーテッド Recombinant tissue protective cytokine and nucleic acid encoding the same for protecting, restoring and enhancing responsive cells, tissues and organs
EP1526872A1 (en) 2002-07-24 2005-05-04 F. Hoffmann-La Roche Ag Polyalkylene glycol acid additives
US7459435B2 (en) * 2002-08-29 2008-12-02 Hoffmann-La Roche Inc. Treatment of disturbances of iron distribution
US20050176627A1 (en) * 2002-09-09 2005-08-11 Anthony Cerami Long acting erythropoietins that maintain tissue protective activity of endogenous erythropoietin
PL217085B1 (en) * 2002-09-11 2014-06-30 Fresenius Kabi Gmbh Hasylated polypeptides, especially hasylated erythropoietin
US7459436B2 (en) * 2002-11-22 2008-12-02 Hoffmann-La Roche Inc. Treatment of disturbances of iron distribution
US7388079B2 (en) * 2002-11-27 2008-06-17 The Regents Of The University Of California Delivery of pharmaceutical agents via the human insulin receptor
CA2510180C (en) * 2002-12-17 2012-09-11 Merck Patent Gesellschaft Mit Beschraenkter Haftung Humanized antibody (h14.18) of the mouse 14.18 antibody binding to gd2 and its fusion with il-2
US7553930B2 (en) 2003-01-06 2009-06-30 Xencor, Inc. BAFF variants and methods thereof
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US7642340B2 (en) 2003-03-31 2010-01-05 Xencor, Inc. PEGylated TNF-α variant proteins
AU2004227937B2 (en) 2003-03-31 2007-09-20 Xencor, Inc Methods for rational pegylation of proteins
US7610156B2 (en) 2003-03-31 2009-10-27 Xencor, Inc. Methods for rational pegylation of proteins
US7279174B2 (en) * 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
JP2007537986A (en) * 2003-05-30 2007-12-27 セントカー・インコーポレーテツド Formation of a novel erythropoietin complex using transglutaminase
US7662607B2 (en) * 2003-07-30 2010-02-16 New Century Pharmaceuticals, Inc. Chalaropsis lysozyme protein and its method of use in anti-bacterial applications
WO2005014655A2 (en) 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
EP2327723A3 (en) 2003-10-10 2012-06-27 Xencor, Inc. Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders
DK1696947T3 (en) * 2003-12-19 2014-03-17 Hoffmann La Roche APPLICATION OF ERYTHROPOIETIN IN THE TREATMENT OF DISORDERS OF THE IRON DISTRIBUTION IN CHRONIC INFLAMMATORY INTESTINAL DISEASES
EP1548031A1 (en) * 2003-12-22 2005-06-29 Dubai Genetics FZ-LLC Nature-identical erythropoietin
EP1699821B1 (en) * 2003-12-31 2012-06-20 Merck Patent GmbH Fc-ERYTHROPOIETIN FUSION PROTEIN WITH IMPROVED PHARMACOKINETICS
CN1934143B (en) * 2004-01-21 2010-10-20 耐科塔医药公司 Method of preparing propionic acid-terminated polymers
ZA200606224B (en) * 2004-02-02 2007-11-28 Ambrx Inc Modified human growth hormone polypeptides and their uses
DE202005021885U1 (en) 2004-03-11 2011-03-03 Fresenius Kabi Deutschland Gmbh Hydroxyalkyl starch-protein conjugates prepared by reductive amination
US7588745B2 (en) * 2004-04-13 2009-09-15 Si Options, Llc Silicon-containing products
RU2007132188A (en) 2005-01-25 2009-03-10 Селл Терапьютикс, Инк. (Us) CONJUGATES OF BIOLOGICALLY ACTIVE PROTEINS WITH A MODIFIED HALF-TIME IN VIVO
US7714114B2 (en) * 2005-02-16 2010-05-11 Nektar Therapeutics Conjugates of an EPO moiety and a polymer
US20070072795A1 (en) * 2005-09-28 2007-03-29 Anton Haselbeck Treatment of neurodegenerative disorders
DK1931704T3 (en) * 2005-10-04 2011-03-14 Zymogenetics L L C Generation and Purification of IL-29
US8142781B2 (en) * 2005-10-07 2012-03-27 Armagen Technologies, Inc. Fusion proteins for blood-brain barrier delivery
US8741260B2 (en) * 2005-10-07 2014-06-03 Armagen Technologies, Inc. Fusion proteins for delivery of GDNF to the CNS
US8124095B2 (en) * 2005-10-07 2012-02-28 Armagen Technologies, Inc. Fusion proteins for delivery of erythropoietin to the CNS
US20080171696A1 (en) * 2005-10-21 2008-07-17 Avigenics, Inc. Pharmacodynamically enhanced therapeutic proteins
CN101291684A (en) * 2005-10-21 2008-10-22 阿维季尼克斯股份有限公司 Glycolated and glycosylated poultry derived therapeutic proteins
US8841255B2 (en) 2005-12-20 2014-09-23 Duke University Therapeutic agents comprising fusions of vasoactive intestinal peptide and elastic peptides
US8178495B2 (en) 2008-06-27 2012-05-15 Duke University Therapeutic agents comprising a GLP-1 receptor agonist and elastin-like peptide
US20130172274A1 (en) * 2005-12-20 2013-07-04 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
LT1988910T (en) * 2006-02-28 2018-01-10 Kodiak Sciences Inc. Acryloyloxyethylphosphorylcholine containing polymer conjugates and their preparation
EP1997505A4 (en) 2006-03-22 2013-02-13 Chugai Pharmaceutical Co Ltd Erythropoietin solution preparation
US8759297B2 (en) * 2006-08-18 2014-06-24 Armagen Technologies, Inc. Genetically encoded multifunctional compositions bidirectionally transported between peripheral blood and the cns
TW201307390A (en) * 2007-02-02 2013-02-16 Amgen Inc Hepcidin, hepcidin antagonists and methods of use
US20090011040A1 (en) * 2007-05-02 2009-01-08 Naash Muna I Use of compacted nucleic acid nanoparticles in non-viral treatments of ocular diseases
AR067537A1 (en) * 2007-07-17 2009-10-14 Hoffmann La Roche PURIFIED POLYPEPTIDES PURIFICATION
AR067536A1 (en) * 2007-07-17 2009-10-14 Hoffmann La Roche METHOD FOR OBTAINING A MONO-PEGILATED ERYTHROPOYETIN IN A SUBSTANTIALLY HOMOGENOUS FORM
CA2694762A1 (en) 2007-07-27 2009-02-05 Armagen Technologies, Inc. Methods and compositions for increasing alpha-l-iduronidase activity in the cns
AU2008304111B2 (en) 2007-09-27 2014-04-24 Amgen Inc. Pharmaceutical formulations
ES2962777T3 (en) 2007-11-15 2024-03-21 Amgen Inc Antioxidant-stabilized aqueous antibody formulation for parenteral administration
KR101486449B1 (en) 2008-01-11 2015-01-26 세리나 쎄라퓨틱스, 인코포레이티드 Multifunctional forms of polyoxazoline copolymers and drug compositions comprising the same
US8101706B2 (en) * 2008-01-11 2012-01-24 Serina Therapeutics, Inc. Multifunctional forms of polyoxazoline copolymers and drug compositions comprising the same
JP5701064B2 (en) 2008-01-25 2015-04-15 アムジエン・インコーポレーテツド Ferroportin antibody and method of use thereof
NZ620606A (en) 2008-02-08 2015-08-28 Ambrx Inc Modified leptin polypeptides and their uses
TWI395593B (en) 2008-03-06 2013-05-11 Halozyme Inc In vivo temporal control of activatable matrix-degrading enzymes
NZ588638A (en) 2008-04-14 2012-09-28 Halozyme Inc Screening method for identifying a subject for treatment with a modified hyaluronidase polypeptides
US9315577B2 (en) 2008-05-01 2016-04-19 Amgen Inc. Anti-hepcidin antibodies and methods of use
KR101647164B1 (en) 2008-09-26 2016-08-09 암브룩스, 인코포레이티드 Modified animal erythropoietin polypeptides and their uses
CA2742871C (en) 2008-11-13 2018-10-23 Herb Lin Methods and compositions for regulating iron homeostasis by modulation of bmp-6
MX2011006110A (en) 2008-12-09 2011-06-24 Halozyme Inc Extended soluble ph20 polypeptides and uses thereof.
EP2408474B1 (en) 2009-03-18 2019-06-26 Armagen, Inc. Compositions and methods for blood-brain barrier delivery of igg-decoy receptor fusion proteins
WO2011024025A1 (en) * 2009-08-28 2011-03-03 Avesthagen Limited An erythropoietin analogue and a method thereof
DK2477603T3 (en) 2009-09-17 2016-06-13 Baxalta Inc STABLE CO-DEVELOPMENT OF hyaluronidase and Immunoglobulin, AND METHODS OF USE THEREOF
US20120264688A1 (en) * 2009-09-23 2012-10-18 Walter Hinderer Process for the purification of recombinant human erythropoietin (epo), epo thus purified and pharmaceutical compositions comprising same
EP2485761B1 (en) 2009-10-09 2019-02-27 Armagen, Inc. Methods and compositions for increasing iduronate 2-sulfatase activity in the cns
WO2011050333A1 (en) 2009-10-23 2011-04-28 Amgen Inc. Vial adapter and system
US8765432B2 (en) 2009-12-18 2014-07-01 Oligasis, Llc Targeted drug phosphorylcholine polymer conjugates
SG10201908916UA (en) 2010-04-27 2019-11-28 Scil Tech Gmbh Stable MIA/CD-RAP formulations
US9061097B2 (en) 2010-06-07 2015-06-23 Amgen Inc. Drug delivery device
ES2661089T3 (en) 2010-07-20 2018-03-27 Halozyme Inc. Methods of treatment or prevention of adverse side effects associated with the administration of an anti-hyaluronan agent
JP5735650B2 (en) 2010-09-14 2015-06-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for purifying PEGylated erythropoietin
ES2634669T3 (en) 2011-02-08 2017-09-28 Halozyme, Inc. Composition and lipid formulation of a hyaluronan degradation enzyme and use thereof for the treatment of benign prostatic hyperplasia
MX341790B (en) 2011-03-31 2016-09-02 Amgen Inc Vial adapter and system.
CA2833748C (en) 2011-04-20 2019-07-16 Amgen Inc. Autoinjector apparatus
US9993529B2 (en) 2011-06-17 2018-06-12 Halozyme, Inc. Stable formulations of a hyaluronan-degrading enzyme
ES2729993T3 (en) 2011-10-14 2019-11-07 Amgen Inc Injector and assembly procedure
MX342735B (en) 2011-10-24 2016-10-07 Halozyme Inc Companion diagnostic for anti-hyaluronan agent therapy and methods of use thereof.
WO2013081706A1 (en) 2011-12-02 2013-06-06 Armagen Technologies, Inc. Methods and compositions for increasing arylsulfatase a activity in the cns
US9447401B2 (en) 2011-12-30 2016-09-20 Halozyme, Inc. PH20 polypeptide variants, formulations and uses thereof
LT2833905T (en) 2012-04-04 2018-07-10 Halozyme, Inc. Combination therapy with hyaluronidase and a tumor-targeted taxane
CN102816227A (en) * 2012-08-30 2012-12-12 深圳赛保尔生物药业有限公司 Erythropoietin recovery method
WO2014062856A1 (en) 2012-10-16 2014-04-24 Halozyme, Inc. Hypoxia and hyaluronan and markers thereof for diagnosis and monitoring of diseases and conditions and related methods
EP2922590B1 (en) 2012-11-21 2020-02-05 Amgen Inc. Drug delivery device
CN105263514B (en) 2013-03-15 2019-04-26 本质生命科学有限公司 Anti- hepcidin antibody and application thereof
TWI580451B (en) 2013-03-15 2017-05-01 安美基公司 Cassette for an injector and method of using an autoinjector apparatus having an autoinjector and a cassette
EP3593839A1 (en) 2013-03-15 2020-01-15 Amgen Inc. Drug cassette
LT2976117T (en) 2013-03-22 2021-02-25 Amgen Inc. Injector and method of assembly
TW201534726A (en) 2013-07-03 2015-09-16 Halozyme Inc Thermally stable PH20 hyaluronidase variants and uses thereof
SI3041513T1 (en) 2013-09-08 2020-11-30 Kodiak Sciences Inc. Factor viii zwitterionic polymer conjugates
WO2015061389A1 (en) 2013-10-24 2015-04-30 Amgen Inc. Drug delivery system with temperature-sensitive control
AU2014340171B2 (en) 2013-10-24 2019-05-30 Amgen Inc. Injector and method of assembly
WO2015119906A1 (en) 2014-02-05 2015-08-13 Amgen Inc. Drug delivery system with electromagnetic field generator
CA3193070A1 (en) 2014-05-07 2015-11-12 Amgen Inc. Autoinjector with shock reducing elements
JP6817074B2 (en) 2014-06-03 2021-01-20 アムジエン・インコーポレーテツド Controllable drug delivery system and usage
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
HUE043847T2 (en) 2014-08-28 2019-09-30 Halozyme Inc Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
NZ730186A (en) 2014-09-22 2020-04-24 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
ES2753391T3 (en) 2014-10-14 2020-04-08 Halozyme Inc Adenosine deaminase 2 (ADA2) compositions, variants thereof and methods of use thereof
MX2021014323A (en) 2014-10-14 2023-02-02 Amgen Inc Drug injection device with visual and audio indicators.
WO2016061562A2 (en) 2014-10-17 2016-04-21 Kodiak Sciences Inc. Butyrylcholinesterase zwitterionic polymer conjugates
US11357916B2 (en) 2014-12-19 2022-06-14 Amgen Inc. Drug delivery device with live button or user interface field
EP3233163B1 (en) 2014-12-19 2021-10-13 Amgen Inc. Drug delivery device with proximity sensor
US10538589B2 (en) 2015-01-14 2020-01-21 Armagen Inc. Methods and compositions for increasing N-acetylglucosaminidase (NAGLU) activity in the CNS using a fusion antibody comprising an anti-human insulin receptor antibody and NAGLU
CA3069716C (en) 2015-02-17 2021-11-09 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
EP3981450A1 (en) 2015-02-27 2022-04-13 Amgen, Inc Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
JP7082568B2 (en) 2015-12-09 2022-06-08 アムジエン・インコーポレーテツド Automatic syringe with signal transduction cap
WO2017117464A1 (en) 2015-12-30 2017-07-06 Kodiak Sciences Inc. Antibodies and conjugates thereof
WO2017120178A1 (en) 2016-01-06 2017-07-13 Amgen Inc. Auto-injector with signaling electronics
EP3721922B1 (en) 2016-03-15 2022-05-04 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
CN105820232B (en) * 2016-04-08 2019-05-17 昂德生物药业有限公司 The preparation method and its product of mono-modified polyethylene glycol Recombinant Human Erythropoietin and application
US11541168B2 (en) 2016-04-29 2023-01-03 Amgen Inc. Drug delivery device with messaging label
US11389588B2 (en) 2016-05-02 2022-07-19 Amgen Inc. Syringe adapter and guide for filling an on-body injector
CA3018426A1 (en) 2016-05-13 2017-11-16 Amgen Inc. Vial sleeve assembly
WO2017200989A1 (en) 2016-05-16 2017-11-23 Amgen Inc. Data encryption in medical devices with limited computational capability
EP3465124A1 (en) 2016-06-03 2019-04-10 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
EP3478342A1 (en) 2016-07-01 2019-05-08 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
KR20220158870A (en) 2016-07-15 2022-12-01 에프. 호프만-라 로슈 아게 Method for purifying pegylated erythropoietin
WO2018034784A1 (en) 2016-08-17 2018-02-22 Amgen Inc. Drug delivery device with placement detection
US20200261643A1 (en) 2016-10-25 2020-08-20 Amgen Inc. On-body injector
AU2018210301A1 (en) 2017-01-17 2019-08-01 Amgen Inc. Injection devices and related methods of use and assembly
EP3582829A1 (en) 2017-02-17 2019-12-25 Amgen Inc. Insertion mechanism for drug delivery device
MX2019009625A (en) 2017-02-17 2019-10-09 Amgen Inc Drug delivery device with sterile fluid flowpath and related method of assembly.
CA3050927A1 (en) 2017-03-06 2018-09-13 Brian Stonecipher Drug delivery device with activation prevention feature
CA3052482A1 (en) 2017-03-07 2018-09-13 Amgen Inc. Needle insertion by overpressure
IL303449B1 (en) 2017-03-09 2024-04-01 Amgen Inc Insertion mechanism for drug delivery device
JP2020511499A (en) 2017-03-20 2020-04-16 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for in vitro glycosylation of erythropoiesis stimulating proteins
CN114588404A (en) 2017-03-28 2022-06-07 美国安进公司 Plunger rod and syringe assembly systems and methods
AU2018280054B2 (en) 2017-06-08 2023-07-13 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
AU2018282077B2 (en) 2017-06-08 2023-11-23 Amgen Inc. Torque driven drug delivery device
NZ760116A (en) 2017-06-22 2024-03-22 Vertex Pharma Modified membrane type serine protease 1 (mtsp-1) polypeptides and methods of use
AU2018288604B2 (en) 2017-06-22 2023-12-21 Amgen Inc. Device activation impact/shock reduction
MX2019015479A (en) 2017-06-23 2020-02-20 Amgen Inc Electronic drug delivery device comprising a cap activated by a switch assembly.
WO2019014014A1 (en) 2017-07-14 2019-01-17 Amgen Inc. Needle insertion-retraction system having dual torsion spring system
JP2020527376A (en) 2017-07-21 2020-09-10 アムジエン・インコーポレーテツド Gas permeable sealing material and assembly method for drug containers
EP3658203B1 (en) 2017-07-25 2022-08-31 Amgen Inc. Drug delivery device with gear module and related method of assembly
JP7242562B2 (en) 2017-07-25 2023-03-20 アムジエン・インコーポレーテツド Drug delivery device with container access system and associated method of assembly
MA49838A (en) 2017-08-09 2020-06-17 Amgen Inc DRUG DELIVERY SYSTEM WITH CHAMBER HYDRAULIC-PNEUMATIC PRESSURE
US11077246B2 (en) 2017-08-18 2021-08-03 Amgen Inc. Wearable injector with sterile adhesive patch
US11103636B2 (en) 2017-08-22 2021-08-31 Amgen Inc. Needle insertion mechanism for drug delivery device
US11759565B2 (en) 2017-10-04 2023-09-19 Amgen Inc. Flow adapter for drug delivery device
EP4257164A3 (en) 2017-10-06 2024-01-17 Amgen Inc. Drug delivery device with interlock assembly and related method of assembly
US11464903B2 (en) 2017-10-09 2022-10-11 Amgen Inc. Drug delivery device with drive assembly and related method of assembly
WO2019090086A1 (en) 2017-11-03 2019-05-09 Amgen Inc. Systems and approaches for sterilizing a drug delivery device
MA50569A (en) 2017-11-06 2020-09-16 Amgen Inc FILLING-FINISHING UNITS AND ASSOCIATED PROCESSES
MA50553A (en) 2017-11-06 2020-09-16 Amgen Inc DRUG ADMINISTRATION DEVICE WITH POSITIONING AND FLOW DETECTION
JP7247174B2 (en) 2017-11-10 2023-03-28 アムジエン・インコーポレーテツド plunger for drug delivery device
MA50903A (en) 2017-11-16 2021-05-12 Amgen Inc SELF-INJECTOR WITH STALL AND END POINT DETECTION
AU2018368340B2 (en) 2017-11-16 2024-03-07 Amgen Inc. Door latch mechanism for drug delivery device
WO2019129876A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Process for providing pegylated protein composition
SG11202005952TA (en) 2017-12-29 2020-07-29 Hoffmann La Roche Process for providing pegylated protein composition
WO2019129877A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Process for providing pegylated protein composition
US20190351031A1 (en) 2018-05-16 2019-11-21 Halozyme, Inc. Methods of selecting subjects for combination cancer therapy with a polymer-conjugated soluble ph20
US10835685B2 (en) 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
US11083840B2 (en) 2018-06-01 2021-08-10 Amgen Inc. Modular fluid path assemblies for drug delivery devices
US20210228815A1 (en) 2018-07-24 2021-07-29 Amgen Inc. Hybrid drug delivery devices with grip portion
WO2020023220A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation
CA3103681A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
MA53375A (en) 2018-07-24 2021-06-02 Amgen Inc ADMINISTRATION DEVICES FOR THE ADMINISTRATION OF MEDICINES
MA53320A (en) 2018-07-31 2021-11-03 Amgen Inc FLUID PATH ASSEMBLY FOR DRUG DELIVERY DEVICE
EP3613486B1 (en) * 2018-08-24 2020-10-07 UGA Biopharma GmbH Method and installation for the purification of epo and/or an epo derivative
US20210346601A1 (en) 2018-09-24 2021-11-11 Amgen Inc. Interventional dosing systems and methods
WO2020068476A1 (en) 2018-09-28 2020-04-02 Amgen Inc. Muscle wire escapement activation assembly for a drug delivery device
AR116679A1 (en) 2018-10-02 2021-06-02 Amgen Inc INJECTION SYSTEMS FOR THE ADMINISTRATION OF DRUGS WITH INTERNAL FORCE TRANSMISSION
US20210338936A1 (en) 2018-10-05 2021-11-04 Amgen Inc. Drug delivery device having dose indicator
CA3109988A1 (en) 2018-10-15 2020-04-23 Amgen Inc. Platform assembly process for drug delivery device
EP3866890A1 (en) 2018-10-15 2021-08-25 Amgen Inc. Drug delivery device having damping mechanism
EP3873567A1 (en) 2018-11-01 2021-09-08 Amgen Inc. Drug delivery devices with partial needle retraction
WO2020091956A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
WO2020091981A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
US11613744B2 (en) 2018-12-28 2023-03-28 Vertex Pharmaceuticals Incorporated Modified urokinase-type plasminogen activator polypeptides and methods of use
MX2021012557A (en) 2019-04-24 2021-11-12 Amgen Inc Syringe sterilization verification assemblies and methods.
US20220273887A1 (en) 2019-08-23 2022-09-01 Amgen Inc. Drug delivery device with configurable needle shield engagement components and related methods
AU2020364071A1 (en) 2019-10-10 2022-05-26 Kodiak Sciences Inc. Methods of treating an eye disorder
WO2022063082A1 (en) 2020-09-22 2022-03-31 美国杰科实验室有限公司 Glycosylation-modified erythopoietin and use thereof
WO2022159414A1 (en) 2021-01-22 2022-07-28 University Of Rochester Erythropoietin for gastroinfestinal dysfunction
CA3219950A1 (en) 2021-05-10 2022-11-17 Chiome Bioscience Inc. Purification method of antibody composition
CA3217207A1 (en) 2021-05-21 2022-11-24 Amgen Inc. Method of optimizing a filling recipe for a drug container
WO2023209074A1 (en) 2022-04-28 2023-11-02 Institut National de la Santé et de la Recherche Médicale Methods of restoring erythropoiesis in patients suffering from a sf3b1 mutant myelodysplastic syndrome by correcting coasy mis-splicing

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) * 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4806524A (en) * 1984-10-18 1989-02-21 Chugai Seiyaku Kabushiki Kaisha Stable erythropoietin preparation and process for formulating the same
US4902502A (en) * 1989-01-23 1990-02-20 Cetus Corporation Preparation of a polymer/interleukin-2 conjugate
US4917888A (en) * 1985-06-26 1990-04-17 Cetus Corporation Solubilization of immunotoxins for pharmaceutical compositions using polymer conjugation
US5359030A (en) * 1993-05-10 1994-10-25 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US5547933A (en) * 1983-12-13 1996-08-20 Kirin-Amgen, Inc. Production of erythropoietin
US5643575A (en) * 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5672662A (en) * 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5674534A (en) * 1992-06-11 1997-10-07 Alkermes, Inc. Composition for sustained release of non-aggregated erythropoietin
US5681811A (en) * 1993-05-10 1997-10-28 Protein Delivery, Inc. Conjugation-stabilized therapeutic agent compositions, delivery and diagnostic formulations comprising same, and method of making and using the same
US5919455A (en) * 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5932462A (en) * 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US6025324A (en) * 1996-05-15 2000-02-15 Hoffmann-La Roche Inc. Pegylated obese (ob) protein compositions
US6025325A (en) * 1995-05-05 2000-02-15 Hoffman-La Roche Inc. Pegylated obese (ob) protein compositions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3572982D1 (en) 1984-03-06 1989-10-19 Takeda Chemical Industries Ltd Chemically modified lymphokine and production thereof
US5641663A (en) * 1985-11-06 1997-06-24 Cangene Corporation Expression system for the secretion of bioactive human granulocyte macrophage colony stimulating factor (GM-CSF) and other heterologous proteins from steptomyces
US5166322A (en) 1989-04-21 1992-11-24 Genetics Institute Cysteine added variants of interleukin-3 and chemical modifications thereof
NZ250375A (en) 1992-12-09 1995-07-26 Ortho Pharma Corp Peg hydrazone and peg oxime linkage forming reagents and protein derivatives
IL110669A (en) * 1993-08-17 2008-11-26 Kirin Amgen Inc Erythropoietin analogs
TW517067B (en) * 1996-05-31 2003-01-11 Hoffmann La Roche Interferon conjugates
DK0902085T3 (en) * 1997-09-01 2004-04-05 Aventis Pharma Gmbh Recombinant human erythropoietin with favorable glycosylation profile
AU2346900A (en) 1998-11-30 2000-06-19 Eli Lilly And Company Erythropoietic compounds
CZ299516B6 (en) * 1999-07-02 2008-08-20 F. Hoffmann-La Roche Ag Erythropoietin glycoprotein conjugate, process for its preparation and use and pharmaceutical composition containing thereof
JO2291B1 (en) * 1999-07-02 2005-09-12 اف . هوفمان لاروش ايه جي Erythopintin derivatives
WO2001068141A2 (en) 2000-03-17 2001-09-20 Maxygen Aps Dispersions of polypeptide conjugates
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
DE60109625T3 (en) * 2000-05-15 2017-08-03 F. Hoffmann-La Roche Ag LIQUID MEDICINE PREPARATION CONTAINING AN ERYTHROPOIETIN DERIVATIVE

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) * 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US5547933A (en) * 1983-12-13 1996-08-20 Kirin-Amgen, Inc. Production of erythropoietin
US4806524A (en) * 1984-10-18 1989-02-21 Chugai Seiyaku Kabushiki Kaisha Stable erythropoietin preparation and process for formulating the same
US4917888A (en) * 1985-06-26 1990-04-17 Cetus Corporation Solubilization of immunotoxins for pharmaceutical compositions using polymer conjugation
US4902502A (en) * 1989-01-23 1990-02-20 Cetus Corporation Preparation of a polymer/interleukin-2 conjugate
US5674534A (en) * 1992-06-11 1997-10-07 Alkermes, Inc. Composition for sustained release of non-aggregated erythropoietin
US5681811A (en) * 1993-05-10 1997-10-28 Protein Delivery, Inc. Conjugation-stabilized therapeutic agent compositions, delivery and diagnostic formulations comprising same, and method of making and using the same
US5359030A (en) * 1993-05-10 1994-10-25 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US5643575A (en) * 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5919455A (en) * 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5932462A (en) * 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US6025325A (en) * 1995-05-05 2000-02-15 Hoffman-La Roche Inc. Pegylated obese (ob) protein compositions
US5672662A (en) * 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US6025324A (en) * 1996-05-15 2000-02-15 Hoffmann-La Roche Inc. Pegylated obese (ob) protein compositions

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014193A1 (en) * 1999-04-13 2008-01-17 Michael Brines Modulation of excitable tissue function by peripherally administered erythropoietin
US7767643B2 (en) 2000-12-29 2010-08-03 The Kenneth S. Warren Institute, Inc. Protection, restoration, and enhancement of erythropoietin-responsive cells, tissues and organs
US20060034799A1 (en) * 2002-07-03 2006-02-16 Michael Brines Tissue protective cytokines for the protection, restoration, and enhancement fo responsive cells, tissues and organs
US8404226B2 (en) 2002-07-03 2013-03-26 The Kenneth S. Warren Institute, Inc. Tissue protective cytokines for the protection, restoration, and enhancement of responsive cells, tissues and organs
US20070254838A1 (en) * 2002-09-09 2007-11-01 Rene Gantier Rational evolution of cytokines for higher stability, the cytokines and encoding nucleic acid molecules
US8114839B2 (en) 2002-09-09 2012-02-14 Hanall Biopharma Co., Ltd. Protease resistant modified erythropoietin polypeptides
US20060020116A1 (en) * 2002-09-09 2006-01-26 Rene Gantier Rational evolution of cytokines for higher stability, the cytokines and encoding nucleic acid molecules
US20090131318A1 (en) * 2002-09-09 2009-05-21 Rene Gantier Rational evolution of cytokines for higher stability, the cytokines and encoding nucleic acid molecules
US20070027074A1 (en) * 2003-05-12 2007-02-01 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
US7528104B2 (en) 2003-05-12 2009-05-05 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US8729030B2 (en) 2003-05-12 2014-05-20 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US20070032408A1 (en) * 2003-05-12 2007-02-08 Holmes Christopher P Novel spacer moiety for poly (ethylene glycol) modified peptide based compounds
US20050137329A1 (en) * 2003-05-12 2005-06-23 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
US8592365B2 (en) 2003-05-12 2013-11-26 Affymax, Inc. Spacer moiety for poly(ethylene glycol) modified peptide based compounds
US7414105B2 (en) 2003-05-12 2008-08-19 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US7855175B2 (en) 2003-05-12 2010-12-21 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US20060040858A1 (en) * 2003-05-12 2006-02-23 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
US8304391B2 (en) 2003-05-12 2012-11-06 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US7919118B2 (en) 2003-05-12 2011-04-05 Affymax, Inc. Spacer moiety for poly (ethylene glycol) modified peptide based compounds
US7084245B2 (en) 2003-05-12 2006-08-01 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US20050107297A1 (en) * 2003-05-12 2005-05-19 Holmes Christopher P. Novel poly(ethylene glycol) modified compounds and uses thereof
US20090227508A1 (en) * 2003-05-12 2009-09-10 Affymax, Inc. Peptides that bind to the erythropoietin receptor
US7645733B2 (en) 2003-09-29 2010-01-12 The Kenneth S. Warren Institute, Inc. Tissue protective cytokines for the treatment and prevention of sepsis and the formation of adhesions
US20070129293A1 (en) * 2003-09-29 2007-06-07 The Kenneth S. Warren Institute, Inc. Tissue protective cytokines for the treatment and prevention of sepsis and the formation of adhesions
US7463047B2 (en) 2004-05-25 2008-12-09 International Business Machines Corporation Increase productivity at wafer test using probe retest data analysis
US20090005292A1 (en) * 2004-11-11 2009-01-01 Affymax, Inc. Novel Peptides that Bind to the Erythropoietin Receptor
US20080108564A1 (en) * 2004-11-11 2008-05-08 Affymax, Inc. Novel peptides that bind to the erythropoietin receptor
US7550433B2 (en) 2005-06-03 2009-06-23 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US7919461B2 (en) 2005-06-03 2011-04-05 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US7906485B2 (en) 2005-06-03 2011-03-15 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US8324159B2 (en) 2005-06-03 2012-12-04 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US20090118183A1 (en) * 2005-06-03 2009-05-07 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US20070104704A1 (en) * 2005-06-03 2007-05-10 Affymax, Inc. Erythropoietin receptor peptide formulations and uses
US20100184655A1 (en) * 2006-08-04 2010-07-22 Prolong Pharmaceuticals, Inc. Modified erythropoietin
US8765924B2 (en) 2006-08-04 2014-07-01 Prolong Pharmaceuticals, Inc. Modified erythropoietin
US8252743B2 (en) 2006-11-28 2012-08-28 Hanall Biopharma Co., Ltd. Modified erythropoietin polypeptides and uses thereof for treatment
WO2008065372A2 (en) 2006-11-28 2008-06-05 Nautilus Biotech, S.A. Modified erythropoietin polypeptides and uses thereof for treatment
US10052567B2 (en) 2009-07-30 2018-08-21 Hoffmann-La Roche Inc. Moveable chromatography column separator
US11241638B2 (en) 2011-02-02 2022-02-08 Hoffmann-La Roche Inc. Chromatography column support
CN116492448A (en) * 2023-04-12 2023-07-28 深圳赛保尔生物药业有限公司 PEG-EPO and mesenchymal stem cell-loaded composition, medicament and preparation method thereof

Also Published As

Publication number Publication date
SG92717A1 (en) 2002-11-19
DK1064951T3 (en) 2007-10-08
DE60036053T2 (en) 2008-01-03
FR2795734B1 (en) 2005-09-30
UY26228A1 (en) 2000-10-31
GB2393960A (en) 2004-04-14
SK9872000A3 (en) 2002-06-04
PT1064951E (en) 2007-09-10
HK1068354A1 (en) 2005-04-29
MY128500A (en) 2007-02-28
PL341187A1 (en) 2001-01-15
GB2393960C (en) 2012-08-29
BG65449B1 (en) 2008-08-29
PL202758B1 (en) 2009-07-31
GB0400086D0 (en) 2004-02-04
ID26447A (en) 2001-01-04
EP1839676A3 (en) 2008-09-03
TNSN00147A1 (en) 2005-11-10
LU91363I2 (en) 2007-11-12
ES2191511A1 (en) 2003-09-01
CN1283664C (en) 2006-11-08
FR2795734A1 (en) 2001-01-05
SK286301B6 (en) 2008-07-07
IS5554A (en) 2001-01-02
HU0002553D0 (en) 2000-08-28
GT200000109A (en) 2001-12-21
JP2004155787A (en) 2004-06-03
ITMI20001479A0 (en) 2000-06-30
AU736067B2 (en) 2001-07-26
BRPI0002276B1 (en) 2019-05-14
FR07C0051I2 (en) 2008-05-09
HRP20000436A2 (en) 2001-06-30
NO20003372D0 (en) 2000-06-28
FR07C0051I1 (en) 2007-12-14
IS2492B (en) 2009-02-15
BG104570A (en) 2001-09-28
SI1064951T1 (en) 2007-12-31
NO2009010I1 (en) 2009-05-25
CA2310536C (en) 2007-09-11
GB2353281B (en) 2004-06-09
CY2007021I1 (en) 2009-11-04
AU4274400A (en) 2001-01-04
IL137056A0 (en) 2001-06-14
CZ20002386A3 (en) 2002-04-17
KR100593143B1 (en) 2006-06-26
CA2310536A1 (en) 2001-01-02
CZ299516B6 (en) 2008-08-20
GB0016205D0 (en) 2000-08-23
HRP20000436B1 (en) 2008-01-31
AR055650A2 (en) 2007-08-29
EA003777B1 (en) 2003-08-28
RS49928B (en) 2008-09-29
JP2001064300A (en) 2001-03-13
CN1184233C (en) 2005-01-12
BRPI0002276B8 (en) 2021-05-25
EP1839676A2 (en) 2007-10-03
EP1064951A2 (en) 2001-01-03
GB2353281A (en) 2001-02-21
CO5190661A1 (en) 2002-08-29
DE122007000064I2 (en) 2010-03-25
PA8497801A1 (en) 2001-12-14
NL300289I1 (en) 2007-11-01
BR0002276A (en) 2001-12-11
HUP0002553A2 (en) 2001-03-28
MXPA00006547A (en) 2004-10-28
CY2007021I2 (en) 2009-11-04
ATE370748T1 (en) 2007-09-15
NL300289I2 (en) 2010-02-01
EP1064951A3 (en) 2002-03-20
AR024625A1 (en) 2002-10-16
NZ505454A (en) 2001-12-21
JP3727009B2 (en) 2005-12-14
GB2393960B (en) 2004-08-04
GC0000197A (en) 2006-03-29
ES2289985T3 (en) 2008-02-16
EA200000607A1 (en) 2001-02-26
HU226233B1 (en) 2008-07-28
CY1107719T1 (en) 2010-07-28
EP1064951B1 (en) 2007-08-22
DE10031839A1 (en) 2001-02-01
DOP2000000030A (en) 2002-07-15
LU91363I9 (en) 2018-12-31
NO327043B1 (en) 2009-04-06
TR200001956A2 (en) 2001-01-22
MA26746A1 (en) 2004-12-20
OA11442A (en) 2004-04-28
NO20003372L (en) 2001-01-03
US6583272B1 (en) 2003-06-24
NL300289I9 (en) 2019-08-21
KR20010049676A (en) 2001-06-15
CN1515590A (en) 2004-07-28
DE60036053D1 (en) 2007-10-04
SV2002000120A (en) 2002-01-31
NO2009010I2 (en) 2014-06-02
HUP0002553A3 (en) 2005-11-28
HK1033328A1 (en) 2001-08-24
CN1280137A (en) 2001-01-17
ITMI20001479A1 (en) 2001-12-30
IT1318606B1 (en) 2003-08-27
ES2191511B1 (en) 2005-01-01
YU40700A (en) 2003-12-31
GEP20022804B (en) 2002-09-25
DE122007000064I1 (en) 2008-01-03
TWI235667B (en) 2005-07-11
PE20010297A1 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US6583272B1 (en) Erythropoietin conjugates
US6340742B1 (en) Erythropoietin conjugates
CA2408685C (en) Liquid pharmaceutical composition containing an erythropoietin derivate
RU2232163C2 (en) Conjugates of erythropoietin and polyethylene glycol, pharmaceutical compositions (variants), method for prophylactic and/or therapeutic treatment of disturbances and method for preparing conjugate or composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION