Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030119204 A1
Publication typeApplication
Application numberUS 10/132,673
Publication date26 Jun 2003
Filing date25 Apr 2002
Priority date24 Dec 2001
Also published asDE60237395D1, US7651841, US20030119203, US20030124739
Publication number10132673, 132673, US 2003/0119204 A1, US 2003/119204 A1, US 20030119204 A1, US 20030119204A1, US 2003119204 A1, US 2003119204A1, US-A1-20030119204, US-A1-2003119204, US2003/0119204A1, US2003/119204A1, US20030119204 A1, US20030119204A1, US2003119204 A1, US2003119204A1
InventorsNing Wei, Xuedong Song
Original AssigneeKimberly-Clark Worldwide, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Internal calibration system for flow-through assays
US 20030119204 A1
Abstract
A flow-through assay for detecting the quantity of an analyte residing in a test sample is provided. The flow-through assay contains a porous membrane that is in fluid communication with probe conjugates that contain a specific binding member and a detectable probe. The porous membrane also defines a detection zone and a calibration zone. The calibration zone includes two or more calibration regions (e.g., lines, dots, etc.) containing differing amounts of a binder that is configured to bind with the probe conjugates. As a result, calibration signals are generated that can be readily compared (visually, quantitatively, and the like) to a detection signal to determine the presence or quantity of an analyte in the test sample.
Images(10)
Previous page
Next page
Claims(23)
What is claimed is:
1. A flow-through assay for detecting the presence or quantity of an analyte residing in a test sample, said flow-through assay comprising a porous membrane, wherein said porous membrane is in fluid communication with a probe conjugate that contains a specific binding member and a detectable probe, said porous membrane defining:
a detection zone that contains a capture reagent that is capable of binding to the analyte or the probe conjugate, wherein said detection zone is capable of generating a detection signal that represents the presence or absence of the analyte;
a calibration zone that contains a binder configured to bind with said probe conjugate, said calibration zone including:
i) a first calibration region containing a first predetermined amount of said binder, said first calibration region being capable of generating a first calibration signal;
ii) a second calibration region containing a second predetermined amount of said binder that is greater than said first predetermined amount of said binder, said second calibration region being capable of generating a second calibration signal, said second calibration signal having a greater intensity than said first calibration signal; and
wherein the relative amount of the analyte within the test sample is determined by comparing said detection signal to said first calibration signal and said second calibration signal.
2. A flow-through assay as defined in claim 1, wherein said detection signal is capable of being visually compared to said first calibration signal and said second calibration signal.
3. A flow-through assay as defined in claim 1, wherein said detection signal is capable of being compared to said first calibration signal and said second calibration signal through the use of an instrument.
4. A flow-through assay as defined in claim 1, wherein a calibration curve is generated by plotting the intensity of said first and second calibration signals versus known levels of the analyte.
5. A flow-through assay as defined in claim 1, wherein said calibration zone further includes a third calibration region containing a third predetermined amount of said binder that is greater than said second predetermined amount of said binder, said third calibration region being capable of generating a third calibration signal that has a greater intensity than said second calibration signal.
6. A flow-through assay as defined in claim 1, wherein said first and said second calibration regions are disposed in a direction that is substantially parallel to the flow of the test sample through said porous membrane.
7. A flow-through assay as defined in claim 1, wherein said binder is a polyelectrolyte.
8. A flow-through assay as defined in claim 1, wherein said detectable probe is selected from the group consisting of chromogens, catalysts, fluorescent compounds, chemiluminescent compounds, radioactive labels, direct visual labels, liposomes, and combinations thereof.
9. A flow-through assay as defined in claim 8, wherein said detectable probe comprises a latex microparticle.
10. A flow-through assay as defined in claim 1, wherein the specific binding member of said probe conjugate is selected from the group consisting of antigens, haptens, antibodies, and complexes thereof.
11. A flow-through assay as defined in claim 1, wherein the capture reagent is selected from the group consisting of antigens, haptens, antibodies, and complexes thereof.
12. A flow-through assay as defined in claim 1, wherein the assay is a sandwich-type assay.
13. A flow-through assay as defined in claim 1, wherein the assay is a competitive-type assay.
14. A flow-through assay for detecting the presence or quantity of an analyte residing in a test sample, said flow-through assay comprising a porous membrane in fluid communication with a probe conjugate containing a specific binding member and a detectable probe, wherein said porous membrane defines:
a detection zone, said detection zone containing a capture reagent that is capable of binding to the analyte, wherein said detection zone is capable of generating a detection signal that represents the presence or absence of the analyte;
a calibration zone that contains a binder configured to bind with said probe conjugate, said calibration zone including:
i) a first calibration line containing a first predetermined amount of said binder, said first calibration line being capable of generating a first calibration signal;
ii) a second calibration line containing a second predetermined amount of said binder that is greater than said first predetermined amount of said binder, said second calibration line being capable of generating a second calibration signal, said second calibration signal having a greater intensity than said first calibration signal;
iii) a third calibration line containing a third predetermined amount of said binder that is greater than said second predetermined amount of said binder, said third calibration line being capable of generating a third calibration signal that has a greater intensity than said second calibration signal; and
wherein the relative amount of the analyte within the test sample is determined by comparing said detection signal to said first calibration signal, said second calibration signal, and said third calibration signal.
15. A flow-through assay as defined in claim 14, wherein said detection signal is capable of being visually compared to said first calibration signal, said second calibration signal, and said third calibration signal.
16. A flow-through assay as defined in claim 14, wherein said detection signal is capable of being compared to said first calibration signal, said second calibration signal, and said third calibration signal through the use of an instrument.
17. A flow-through assay as defined in claim 14, wherein a calibration curve is generated by plotting the intensity of said first, second, and third calibration signals versus known amounts of the analyte.
18. A flow-through assay as defined in claim 14, wherein said first, second, and third calibration lines are disposed in a direction that is substantially parallel to the flow of the test sample through said porous membrane.
19. A flow-through assay for detecting the presence or quantity of an analyte residing in a test sample, said flow-through assay comprising a porous membrane in fluid communication with probe conjugates containing a specific binding member and a detectable probe, said probe conjugates being configured to combine with the analyte in the test sample when contacted therewith such that probe conjugate/analyte complexes and uncomplexed probe conjugates are formed, wherein said porous membrane defines:
i) a detection zone in which a capture reagent is substantially non-diffusively immobilized on said porous membrane, said capture reagent being capable of binding to said probe conjugate/analyte complexes, wherein said detection zone is capable of generating a detection signal;
ii) a calibration zone that contains a binder configured to bind with said uncomplexed probe conjugates, said calibration zone including:
a) a first calibration region containing a first predetermined amount of said binder, said first calibration region being capable of generating a first calibration signal;
b) a second calibration region containing a second predetermined amount of said binder that is greater than said first predetermined amount of said binder, said second calibration region being capable of generating a second calibration signal, said second calibration signal having a greater intensity than said first calibration signal; and
wherein the relative amount of the analyte within the test sample is determined by comparing said detection signal to said first calibration signal and said second calibration signal.
20. A flow-through assay for detecting the presence or quantity of an analyte residing in a test sample, said flow-through assay comprising a porous membrane in fluid communication with probe conjugates that contain a specific binding member and a detectable probe, wherein said porous membrane defines:
i) a detection zone in which a predetermined amount of capture reagent is substantially non-diffusively immobilized on said porous membrane, said capture reagent being capable of binding to said probe conjugates and to the analyte, wherein said detection zone is capable of generating a detection signal, and
ii) a calibration zone that contains a binder configured to bind with said probe conjugates unbound to said capture reagents, said calibration zone including:
a) a first calibration region containing a first predetermined amount of said binder, said first calibration region being capable of generating a first calibration signal;
b) a second calibration region containing a second predetermined amount of said binder that is greater than said first predetermined amount of said binder, said second calibration region being capable of generating a second calibration signal, said second calibration signal having a greater intensity than said first calibration signal; and
wherein the relative amount of the analyte within the test sample is determined by comparing said detection signal to said first calibration signal and said second calibration signal.
21. A flow-through assay as defined in claim 20, wherein said specific binding member is identical to the analyte.
22. A flow-through assay for detecting the presence or quantity of an analyte residing in a test sample, said flow-through assay comprising a porous membrane in fluid communication with probe conjugates that contain a specific binding member and a detectable probe, said probe conjugates being configured to combine with the analyte in the test sample when contacted therewith such that probe conjugate/analyte complexes and uncomplexed probe conjugates are formed, wherein said porous membrane defines:
i) a detection zone in which a capture reagent is substantially non-diffusively immobilized on said porous membrane, said capture reagent being capable of binding to said uncomplexed probe conjugates, wherein said detection zone is capable of generating a detection signal, and
ii) a calibration zone that contains a binder configured to bind to said probe conjugate/analyte complexes and said probe conjugates remaining unbound to said capture reagents, said calibration zone including:
a) a first calibration region containing a first predetermined amount of said binder, said first calibration region being capable of generating a first calibration signal;
b) a second calibration region containing a second predetermined amount of said binder that is greater than said first predetermined amount of said binder, said second calibration region being capable of generating a second calibration signal, said second calibration signal having a greater intensity than said first calibration signal; and
wherein the relative amount of the analyte within the test sample is determined by comparing said detection signal to said first calibration signal and said second calibration signal.
23. A flow-through assay as defined in claim 22, wherein said capture reagent is identical to the analyte.
Description
    RELATED APPLICATIONS
  • [0001]
    The present application is a continuation-in-part of U.S. patent application Ser. No. 10/035,014, filed on Dec. 24, 2001.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Various analytical procedures and devices are commonly employed in flow-through assays to determine the presence and/or concentration of analytes that may be present in a test sample. For instance, immunoassays utilize mechanisms of the immune systems, wherein antibodies are produced in response to the presence of antigens that are pathogenic or foreign to the organisms. These antibodies and antigens, i.e., immunoreactants, are capable of binding with one another, thereby causing a highly specific reaction mechanism that can be used to determine the presence or concentration of that particular antigen in a biological sample.
  • [0003]
    There are several well-known immunoassay methods that use immunoreactants labeled with a detectable component so that the analyte can be detected analytically. For example, “sandwich-type” assays typically involve mixing the test sample with antibodies to the analyte. These antibodies are mobile and linked to a label or probe, such as dyed latex, a colloidal metal sol, or a radioisotope. This mixture is then contacted with a chromatographic medium containing a band or zone of immobilized antibodies to the analyte. The chromatographic medium is often in the form of a strip resembling a dipstick. When the complex of the analyte and the labeled antibody reaches the zone of the immobilized antibodies on the chromatographic medium, binding occurs and the bound labeled antibodies are localized at the zone. This indicates the presence of the analyte. This technique can be used to obtain quantitative or semi-quantitative results. Some examples of such sandwich-type assays are described in. by U.S. Pat. Nos. 4,168,146 to Grubb, et al. and 4,366,241 to Tom, et al.
  • [0004]
    An alternative technique is the “competitive-type” assay. In a “competitive-type” assay, the label is typically a labeled analyte or analyte-analogue that competes for binding of an antibody with any unlabeled analyte present in the sample. Competitive assays are typically used for detection of analytes such as haptens, each hapten being monovalent and capable of binding only one antibody molecule. Examples of competitive immunoassay devices are described in U.S. Pat. Nos. 4,235,601 to Deutsch, et al., 4,442,204 to Liotta, and 5,208,535 to Buechler, et al.
  • [0005]
    Many of these assays rely upon calibration to provide valid and meaningful results, particularly for semi-quantitative and quantitative detections. Specifically, either external or internal calibration systems are generally employed. In an external calibration system, a standard curve is usually obtained from standard samples containing a series of a known amount of analyte, and the results obtained from the samples are then compared with the standard curve to extract the presence and/or amount of the analyte in the sample. The external calibration method is relatively easy to design and simple to implement. However, it is often subject to interference from environmental and batch-to-batch variations, and is thus unreliable.
  • [0006]
    Conventional internal calibration systems, on the other hand, typically utilize a membrane that has a calibration zone and a detection zone on which the capturing reagent specific for the analyte is immobilized. Unfortunately, the ability of the calibration zone to provide a reliable and accurate comparison to the detection zone is often limited. Moreover, most internal calibration zones are relatively expensive, thereby making them impractical for certain applications.
  • [0007]
    As such, a need currently exists for an accurate calibration system for flow-through assays that is readily controllable and inexpensive.
  • SUMMARY OF THE INVENTION
  • [0008]
    In accordance with one embodiment of the present invention, a flow-through assay (e.g., sandwich, competitive, etc.) is disclosed for detecting the presence or quantity of an analyte residing in a test sample. The assay comprises a porous membrane that is in fluid communication with a probe conjugate that contains a specific binding member and a detectable probe. For example, in some embodiments, the detectable probe is selected from the group consisting of chromogens, catalysts, fluorescent compounds, chemiluminescent compounds, radioactive labels, direct visual labels, liposomes, and combinations thereof. In one particular embodiment, the detectable probe comprises a latex microparticle.
  • [0009]
    The porous membrane also defines a detection zone that contains a capture reagent capable of binding to the analyte or the probe conjugate. In some embodiments, for example, the capture reagent is selected from the group consisting of antigens, haptens, antibodies, and complexes thereof. The detection zone is capable of generating a detection signal to indicate the presence or absence of an analyte.
  • [0010]
    In addition, to assist in the determination of the amount of analyte present within the test sample, the porous membrane also defines a calibration zone that contains a binder configured to bind with the probe conjugate. The calibration zone includes:
  • [0011]
    i) a first calibration region (e.g., line, dot, etc.) containing a first predetermined amount of the binder, the first calibration region being capable of generating a first calibration signal; and
  • [0012]
    ii) a second calibration region (e.g., line, dot, etc.) containing a second predetermined amount of the binder that is greater than the first predetermined amount of the binder, the second calibration region being capable of generating a second calibration signal, the second calibration signal having a greater intensity than the first calibration signal.
  • [0013]
    Once the calibration regions generate signals, they can then be compared to the detection signal to determine the presence or relative amount of analyte in the test sample. For example, in some embodiments, the calibration signals can be visually observed and compared to the detection signal. Moreover, the calibration signals can also be compared to the detection signal through the use of an instrument, such as a fluorescent reader, a color intensity reader, and the like. If desired, a calibration curve can be developed by plotting the intensity of the calibration signals versus known amounts of the analyte. Once generated, the curve can then be used to determine an unknown amount of the analyte within a test sample.
  • [0014]
    To provide a greater degree of calibration accuracy, the calibration zone can employ more than two calibration regions. For instance, in some embodiments, the calibration zone further includes a third calibration region (e.g., line, dot, etc.) containing a third predetermined amount of the binder that is greater than the second predetermined amount of the binder. The third calibration region is capable of generating a third calibration signal that has a greater intensity than the second calibration signal. It should be understood, however, that any number of calibration regions, such as four or five, may also be used in the present invention.
  • [0015]
    The geometric disposition of the calibration regions can also be selected to increase or decrease the time required for calibration. For example, in one embodiment, at least one of the calibration regions is disposed in a direction that is substantially perpendicular to the flow of the test sample through the porous membrane. Moreover, in another embodiment, at least one of the calibration regions is disposed in a direction that is substantially parallel to the flow of the test sample through the porous membrane. Such a parallel disposition can allow simultaneous calibration of multiple calibration regions.
  • [0016]
    In accordance with another embodiment of the present invention, a flow-through assay for detecting the presence or quantity of an analyte residing in a test sample is disclosed. The flow-through assay comprises a porous membrane that is in fluid communication with probe conjugates that contain a specific binding member and a detectable probe. The probe conjugates are configured to combine with the analyte in the test sample when contacted therewith such that probe conjugate/analyte complexes and uncomplexed probe conjugates are formed. Further, the porous membrane defines a detection zone. A capture reagent is substantially non-diffusively immobilized on the porous membrane within the detection zone. The capture reagent is capable of binding to the probe conjugate/analyte complexes to generate a detection signal. The porous membrane also defines a calibration zone that contains a binder configured to bind with the uncomplexed probe conjugates. The calibration zone includes first and second calibration lines that generate calibration signals. The relative amount of the analyte within the test sample is determined by comparing the detection signal to the first calibration signal and the second calibration signal.
  • [0017]
    In accordance with another embodiment of the present invention, a flow-through assay for detecting the presence or quantity of an analyte (e.g., antigen) residing in a test sample is disclosed. The flow-through assay comprises a porous membrane that is fluid communication with probe conjugates containing a specific binding member and a detectable probe. For example, in one embodiment, the specific binding member is identical to the analyte. The porous membrane defines a detection zone in which a predetermined amount of capture reagent is substantially non-diffusively immobilized on the porous membrane. The capture reagent (e.g., antibody) is capable of binding to the analyte (e.g., antigen) such that the analyte of the test sample and probe conjugates compete for the predetermined amount of capture reagent. The detection zone is capable of generating a detection signal. The porous membrane also defines a calibration zone that contains a binder configured to bind with the probe conjugates unbound to the capture reagents. The calibration zone includes first and second calibration regions that generate calibration signals. The relative amount of the analyte within the test sample is determined by comparing the detection signal to the first calibration signal and the second calibration signal.
  • [0018]
    In accordance with still another embodiment of the present invention, a flow-through assay for detecting the presence or quantity of an analyte (e.g., antigen) residing in a test sample is disclosed. The assay comprises a porous membrane in communication with probe conjugates that contain a specific binding member (e.g., antibody) and a detectable probe. The probe conjugates are configured to combine with the analyte in the test sample when contacted therewith such that probe conjugate/analyte complexes and uncomplexed probe conjugates are formed. The porous membrane defines a detection zone in which a capture reagent is substantially non-diffusively immobilized on the porous membrane. The capture reagent (e.g., antigen) is capable of binding to the uncomplexed probe conjugates, wherein the detection zone is capable of generating a detection signal. The porous membrane also defines a calibration zone that contains a binder configured to bind with the bind with the probe conjugates unbound to the capture reagents. The calibration zone includes first and second calibration regions that generate calibration signals. The relative amount of the analyte within the test sample is determined by comparing the detection signal to the first calibration signal and the second calibration signal.
  • [0019]
    Other features and aspects of the present invention are discussed in greater detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, which makes reference to the appended figures in which:
  • [0021]
    [0021]FIG. 1 is a top view of one embodiment of the present invention, showing a flow-through assay having three calibration lines in a calibration zone;
  • [0022]
    [0022]FIG. 2 is a perspective schematic view of one embodiment of a flow-through assay of the present invention, showing the membrane strip after a test sample containing analyte has been applied to the sampling pad;
  • [0023]
    [0023]FIG. 3 illustrates the lateral assay shown in FIG. 2, but with the test sample migrated through the assay;
  • [0024]
    [0024]FIG. 4 is a top view of another embodiment of the present invention, in which FIG. 4A shows calibration lines substantially parallel to the flow of the analyte and FIG. 4B shows calibration dots substantially parallel to the flow of the analyte;
  • [0025]
    [0025]FIG. 5 shows a calibration curve that may be used in one embodiment of the present invention;
  • [0026]
    [0026]FIG. 6 shows a calibration curve for CRP detection as discussed in Example 3;
  • [0027]
    [0027]FIG. 7 shows a calibration curve for LH detection as discussed in Example 4; and
  • [0028]
    [0028]FIG. 8 shows a calibration curve for pre-albumin detection as discussed in Example 5.
  • [0029]
    Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
  • DETAILED DESCRIPTION OF REPRESENTATIVE EMBODIMENTS
  • [0030]
    Definitions
  • [0031]
    As used herein, the term “analyte” generally refers to a substance to be detected. For instance, analytes can includes antigenic substances, haptens, antibodies, and combinations thereof. Analytes include, but are not limited to, toxins, organic compounds, proteins, peptides, microorganisms, amino acids, nucleic acids, hormones, steroids, vitamins, drugs (including those administered for therapeutic purposes as well as those administered for illicit purposes), bacteria, virus particles and metabolites of or antibodies to any of the above substances. Specific examples of some analytes include ferritin; creatinine kinase MIB (CK-MB); digoxin; phenytoin; phenobarbitol; carbamazepine; vancomycin; gentamycin; theophylline; valproic acid; quinidine; leutinizing hormone (LH); follicle stimulating hormone (FSH); estradiol, progesterone; IgE antibodies; vitamin B2 micro-globulin; glycated hemoglobin (Gly. Hb); cortisol; digitoxin; N-acetylprocainamide (NAPA); procainamide; antibodies to rubella, such as rubella-IgG and rubella IgM; antibodies to toxoplasmosis, such as toxoplasmosis IgG (Toxo-IgG) and toxoplasmosis IgM (Toxo-IgM); testosterone; salicylates; acetaminophen; hepatitis B virus surface antigen (HBsAg); antibodies to hepatitis B core antigen, such as anti-hepatitis B core antigen IgG and IgM (Anti-HBC); human immune deficiency virus 1 and 2 (HIV 1 and 2); human T-cell leukemia virus 1 and 2 (HTLV); hepatitis B e antigen (HBeAg); antibodies to hepatitis B e antigen (Anti-HBe); thyroid stimulating hormone (TSH); thyroxine (T4); total triiodothyronine (Total T3); free triiodothyronine (Free T3); carcinoembryoic antigen (CEA); and alpha fetal protein (AFP). Drugs of abuse and controlled substances include, but are not intended to be limited to, amphetamine; methamphetamine; barbiturates, such as amobarbital, secobarbital, pentobarbital, phenobarbital, and barbital; benzodiazepines, such as librium and valium; cannabinoids, such as hashish and marijuana; cocaine; fentanyl; LSD; methaqualone; opiates, such as heroin, morphine, codeine, hydromorphone, hydrocodone, methadone, oxycodone, oxymorphone and opium; phencyclidine; and propoxyhene. Other potential analytes may be described in U.S. Pat. No. 4,366,241 to Tom et al.
  • [0032]
    As used herein, the term “test sample” generally refers to a material suspected of containing the analyte. The test sample can be used directly as obtained from the source or following a pretreatment to modify the character of the sample. The test sample can be derived from any biological source, such as a physiological fluid, including, blood, saliva, ocular lens fluid, cerebral spinal fluid, sweat, urine, milk, ascites fluid, raucous, synovial fluid, peritoneal fluid, amniotic fluid or the like. The test sample can be pretreated prior to use, such as preparing plasma from blood, diluting viscous fluids, and the like. Methods of treatment can involve filtration, distillation, concentration, inactivation of interfering components, and the addition of reagents. Besides physiological fluids, other liquid samples can be used such as water, food products and the like for the performance of environmental or food production assays. In addition, a solid material suspected of containing the analyte can be used as the test sample. In some instances it may be beneficial to modify a solid test sample to form a liquid medium or to release the analyte.
  • DETAILED DESCRIPTION
  • [0033]
    Reference now will be made in detail to various embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
  • [0034]
    In general, the present invention is directed to an internal calibration system for flow-through assays. In particular, the present invention employs the use of a calibration zone that contains two or more distinct calibration regions (e.g., lines, dots, etc.). The calibration regions contain a different amount of a binder so that one region is capable of generating a calibration signal that is less intense than the calibration signal generated by the other regions. In one embodiment, a calibration curve can be developed for the level of binder in each calibration region for comparison to a detection signal. It has been discovered that the internal calibration system provides an accurate, inexpensive, and readily controllable method of determining the presence of an analyte in a test sample.
  • [0035]
    Referring to FIGS. 1-3, for instance, one embodiment of a sandwich-type flow-through assay 20 that can be formed according to the present invention will now be described in more detail. As shown, the assay 20 is contains a porous membrane 23 optionally supported by a rigid material (not shown). In general, the porous membrane 23 can be made from any of a variety of materials through which the test sample is capable of passing. For example, the materials used to form the porous membrane 23 can include, but are not limited to, natural, synthetic, or naturally occurring materials that are synthetically modified, such as polysaccharides (e.g., cellulose materials such as paper and cellulose derivatives, such as cellulose acetate and nitrocellulose); silica; inorganic materials, such as deactivated alumina, diatomaceous earth, MgSO4, or other inorganic finely divided material uniformly dispersed in a porous polymer matrix, with polymers such as vinyl chloride, vinyl chloride-propylene copolymer, and vinyl chloride-vinyl acetate copolymer; cloth, both naturally occurring (e.g., cotton) and synthetic (e.g., nylon or rayon); porous gels, such as silica gel, agarose, dextran, and gelatin; polymeric films, such as polyacrylamide; and the like. In one particular embodiment, the porous membrane 23 is formed from nitrocellulose and/or polyester sulfone materials. It should be understood that the term “nitrocellulose” refers to nitric acid esters of cellulose, which may be nitrocellulose alone, or a mixed ester of nitric acid and other acids, such as aliphatic carboxylic acids having from 1 to 7 carbon atoms.
  • [0036]
    To initiate the detection of an analyte 40 within the test sample, a user may directly apply the test sample to a portion of the porous membrane 23 through which it can then travel to reach one or more detection and calibration zones (described below). Alternatively, the test sample may first be applied to a sampling pad that is in fluid communication with the porous membrane 23. For example, as shown in FIGS. 1-3, the lateral flow assay 20 can contain a sampling pad 21 generally configured to receive the test sample. Some suitable materials that can be used to form the sampling pad 21 include, but are not limited to, nitrocellulose, cellulose, porous polyethylene pads, and glass fiber filter paper. If desired, the sampling pad 21 may also contain one or more assay pretreatment reagents, either diffusively or non-diffusively attached thereto.
  • [0037]
    In the illustrated embodiment, the test sample travels from the sampling pad 21 to a conjugate pad 22 (as shown by the directional arrow 29 in FIG. 1) that is placed in communication with one end of the sampling pad 21. The conjugate pad 22 is formed from a material through which the test sample is capable of passing. For example, in one embodiment, the conjugate pad 22 is formed from glass fibers.
  • [0038]
    Besides simply allowing the test sample to pass therethrough, the conjugate pad 22 also typically performs other functions as well. For example, in some embodiments, various probes 41 (see FIG. 2) are releasibly applied to the conjugate pad 22. While contained on the conjugate pad 22, these probes 41 remain available for binding with the analyte 40 as the analyte 40 passes from the sample pad 21 through the conjugate pad 22. Upon binding with the analyte 40, the probes 41 can later serve to identify (e.g., visually, etc.) the presence of the analyte 40 in the detection zone of the assay 20.
  • [0039]
    Any substance generally capable of producing a signal that is visually detectable or detectable by an instrumental device may be used as the probes 41. Various suitable probes can include chromogens; catalysts; fluorescent compounds; chemiluminescent compounds; radioactive labels; direct visual labels, including colloidal metallic and non-metallic particles (e.g., gold), dye particles, enzymes or substrates, or organic polymer latex particles; liposomes or other vesicles containing signal producing substances; and the like. For instance, some enzymes suitable for use as probes are disclosed in U.S. Pat. No. 4,275,149 to Litman, et al., which is incorporated herein in its entirety by reference thereto for all purposes. One example of an enzyme/substrate probe system is the enzyme alkaline phosphatase and the substrate nitro blue tetrazolium-5-bromo-4-chloro-3-indolyl phosphate, or derivative or analog thereof, or the substrate 4-methylumbelliferyl-phosphate. In an alternative probe system, the probe can be a fluorescent compound where no enzymatic manipulation is required to produce a detectable signal. Fluorescent molecules, such as fluorescein, phycobiliprotein, rhodamine and their derivatives and analogs, are suitable for use as probes in this reaction. Commercially available examples of such fluorescent materials include fluorescent carboxylated microspheres sold by Molecular Probes, Inc. under the trade names “FluoSphere” (Red 580/605) and “TransfluoSphere” (543/620), as well as “Texas Red” and 5- and 6-carboxytetramethylrhodamine, which are also sold by Molecular Probes, Inc.
  • [0040]
    A visually detectable, colored microparticle (sometimes referred to as “beads” or “microbeads”) can also be used as a probe, thereby providing for a direct colored readout of the presence or concentration of the analyte in the sample without the need for further signal producing reagents. In some instances, the particles that are used in a quantitative assay can also contribute a signal (e.g., light absorption) that would cause the zone in which the particles are located to have a different signal than the rest of the membrane 23.
  • [0041]
    The type of microparticles utilized for the probes 41 may also vary. For instance, naturally occurring microparticles, such as nuclei, mycoplasma, plasmids, plastids, mammalian cells (e.g., erythrocyte ghosts), unicellular microorganisms (e.g., bacteria), polysaccharides (e.g., agarose), and the like, can be used. Further, synthetic microparticles may also be utilized. For example, in one embodiment, synthetic latex microparticles that are colored with a dye are utilized as the probes 41. Although any latex microparticle capable of adsorbing or covalently bonding to a binding partner may be used in the present invention, the latex microparticles are typically formed from polystyrene, butadiene styrenes, styreneacrylic-vinyl terpolymer, polymethylmethacrylate, polyethylmethacrylate, styrene-maleic anhydride copolymer, polyvinyl acetate, polyvinylpyridine, polydivinylbenzene, polybutyleneterephthalate, acrylonitrile, vinylchloride-acrylates, and the like, or an aldehyde, carboxyl, amino, hydroxyl, or hydrazide derivative thereof. Other suitable microparticles may be described in U.S. Pat. Nos. 5,670,381 to Jou, et al. and 5,252,459 to Tarcha, et al., which are incorporated herein in their entirety by reference thereto for all purposes. Commercially available examples of suitable colored, latex microparticles include carboxylated latex beads sold by Bang's Laboratory, Inc.
  • [0042]
    When utilized, the mean diameter of particulate probes 41 may generally vary as desired depending on factors such as the type of particle chosen, the pore size of the membrane, and the membrane composition. For example, in some embodiments, the mean diameter of the particulate probes 41 ranges from about 0.01 microns to about 100 microns, and in some embodiments, from about 0.1 microns to about 75 microns. In one particular embodiment, the particulate probes 41 have a mean diameter of about 0.3 microns. In such instances, the membrane 23 can have a pore size of from about 0.1 to about 0.3 microns.
  • [0043]
    When deposited on the conjugate pad 22, the probes 41 may be capable of directly bonding (covalently or non-covalently) with the analyte 40. However, it is often desired to modify the probes 41 in some manner so that they are more readily able to bond to the analyte 40. In such instances, the probes 41 can be modified with certain specific binding members 90 that are non-covalently (e.g., adsorbed) and/or covalently attached thereto to form probe conjugates 42.
  • [0044]
    Specific binding members generally refer to a member of a specific binding pair, i.e., two different molecules where one of the molecules chemically and/or physically binds to the second molecule. For instance, immunoreactive specific binding members can include antigens, haptens, antibodies, and complexes thereof, including those formed by recombinant DNA methods or peptide synthesis. An antibody can be a monoclonal or polyclonal antibody, a recombinant protein or a mixture(s) or fragment(s) thereof, as well as a mixture of an antibody and other specific binding members. The details of the preparation of such antibodies and their suitability for use as specific binding members are well known to those skilled in the art.
  • [0045]
    Other common specific binding pairs include but are not limited to, biotin and avidin, carbohydrates and lectins, complementary nucleotide sequences (including probe and capture nucleic acid sequences used in DNA hybridization assays to detect a target nucleic acid sequence), complementary peptide sequences including those formed by recombinant methods, effector and receptor molecules, hormone and hormone binding protein, enzyme cofactors and enzymes, enzyme inhibitors and enzymes, and the like. Furthermore, specific binding pairs can include members that are analogs of the original specific binding member. For example, a derivative or fragment of the analyte, i.e., an analyte-analog, can be used so long as it has at least one epitope in common with the analyte.
  • [0046]
    The specific binding members 90 can generally be attached to the probes 41 using any of a variety of well-known techniques. For instance, when using latex microparticles as the probes 41, covalent attachment of the specific binding members 90 thereto can be accomplished using carboxylic, amino, aldehyde, bromoacetyl, iodoacetyl, thiol, epoxy and other reactive or linking functional groups, as well as residual free radicals and radical cations, through which a protein coupling reaction can be accomplished. A surface functional group can also be incorporated as a functionalized co-monomer because the surface of the latex microparticle can contain a relatively high surface concentration of polar groups. In addition, although latex microparticle probes are typically functionalized after synthesis, in certain cases, such as poly(thiophenol), the microparticles are capable of direct covalent linking with a protein without the need for further modification.
  • [0047]
    Thus, referring again to FIGS. 2 and 3, a test sample containing an analyte 40 can initially be applied to the sampling pad 21. From the sampling pad, the test sample can then travel to the conjugate pad 22, where the analyte 40 binds to the specific binding member 90 of a probe conjugate 42 to form a probe conjugate/analyte complex 49. Moreover, because the conjugate pad 22 is in fluid communication with the porous membrane 23, the probe conjugate/analyte complex 49 can migrate from the conjugate pad 22 to a detection zone 31 present on the porous membrane 23.
  • [0048]
    The detection zone 31 may contain an immobilized capture reagent 45. Although not required, it may be desired that the capture reagents 45 be formed from the same class or category of materials (e.g., antibodies) as the specific binding members 90 used to form the probe conjugates 42. These capture reagents 45 serve as stationary binding sites for the probe conjugate/analyte complexes 49. In some instances, the analytes 40, such as antibodies, antigens, etc., have two binding sites. Upon reaching the detection zone 31, one of these binding sites is occupied by the specific binding member 90 of the probe conjugate/analyte complex 49. However, the free binding site of the analyte 40 can bind to the immobilized capture reagent 45. Upon being bound to the immobilized capture reagent 45, the probe conjugate 42 of a newly formed ternary complex 50 signals the presence of the analyte 40, either visually or through other methods of detection (e.g., instruments, etc.). Thus, to determine whether a particular analyte 40 is present within a test sample, a user can simply analyze the detection zone 31.
  • [0049]
    However, although a detection zone may indicate the presence of an analyte, it is often difficult to determine the relative concentration of the analyte within a test sample using solely a detection zone. Thus, in accordance with the present invention, the assay also includes a calibration zone that may be compared to the detection zone for determining the concentration of a particular analyte within a test sample. For instance, referring again to FIGS. 1-3, one embodiment of a flow-through assay 20 that includes a calibration zone 32 is illustrated. In this embodiment, the calibration zone 32 is formed on the porous membrane and is positioned downstream from the detection zone 31. The control zone 32 is provided with a binder 47 that is capable of binding to any remaining probes 41 and/or probe conjugates 42 that pass through the length of the membrane 23. In particular, upon being contacted with the test sample, any probes 41 and/or probe conjugates 42 that do not bind to the analyte 40 migrate through the detection zone 31 with the complexes 49. In the detection zone 31, as set forth above, the complexes 49 bind to capture reagents 45 and remain immobilized. However, the unbound probes 41 and/or probe conjugates 42 continue to migrate through the detection zone 31 and enter the calibration zone 32 of the porous membrane 23. At the calibration zone 32, these unbound probes 41 and/or probe conjugates 42 then bind to the binders 47. When immobilized in the calibration zone 32, the probes 41 and/or probe conjugates 42 are observable, either visually or by other methods, so that a user can compare the signal intensity in the detection zone 31 to the signal intensity in the calibration zone 32.
  • [0050]
    The calibration zone 32 may generally provide any number of distinct calibration regions so that a user can better determine the concentration of a particular analyte within a test sample. In most embodiments, for example, the calibration zone 32 includes two or more calibration distinct calibration regions (e.g., lines, dots, etc.). For instance, in the illustrated embodiment, at least three calibration regions 25, 26, and 27 in the form of lines are utilized. As shown in FIGS. 1-3, the calibration regions 25, 26, and/or 27 may be disposed in the form of lines in a direction that is substantially perpendicular to the flow of the test sample through the assay 20.
  • [0051]
    Likewise, in some embodiments, such as shown in FIG. 4A, the calibration regions 25, 26, and/or 27 can be disposed in the form of lines in a direction that is substantially parallel to the flow of the test sample through the assay. In yet another embodiment, such as shown in FIG. 4B, three calibration regions 25 a, 26 a, and 27 a are disposed in the form of dots in a direction that is substantially parallel to the flow of the test sample through the assay. In such instances, a user may be able to compare the calibration signal to the detection signal in a lesser amount of time because each of the calibration regions simultaneously generate a calibration signal.
  • [0052]
    The calibration regions 25, 26, and 27 may be pre-loaded on the porous membrane 23 with different amounts of the binder 47 so that a different signal intensity is generated by each calibration region 25, 26, and 27 upon migration of the probes 41 and/or probe conjugates 42. The overall amount of binder 47 within each calibration region can be varied by utilizing calibration regions of different sizes and/or by varying the solution concentration or volume of the binder 47 in each calibration region. Generally speaking, the concentration of a binder 47 within a given calibration region can range from about 0.01% to about 25% by weight of the solution.
  • [0053]
    If desired, an excess of probe molecules can be employed in the assay 20 so that each calibration region 25, 26, and 27 reaches its full and predetermined potential for signal intensity. That is, the amount of probes 41 that are deposited upon calibration regions 25, 26, and 27 are predetermined because the amount of the binder 47 employed on the calibration regions 25, 26, and 27 is set at a predetermined and known level. A comparison may be made between the intensity levels of the calibration regions 25, 26, and 27 and the detection line 24 to calculate the amount of analyte 40 present in the test sample. This comparison step may occur visually, with the aid of a reading device, or using other techniques.
  • [0054]
    Calibration and sample testing may be conducted under approximately the same conditions at the same time, thus providing reliable quantitative results, with increased sensitivity. The assay 20 may also be employed for semi-quantitative detection. Specifically, when multiple calibration regions 25, 26, and 27 provide a range of signal intensities, the signal intensity of the detection zone 31 can be compared (e.g., visually) with the intensity of the calibration regions 25, 26, and 27. Based upon the intensity range in which the detection zone 31 falls, the general concentration range for the analyte 40 may be determined. If desired, the signal ratio between the detection zone 31 and the calibration regions 25, 26, and 27 may be plotted versus analyte concentration for a range of known analyte concentrations to generate a calibration curve, such as shown in FIG. 5. To determine the quantity of an unknown test sample, the signal ratio may then be converted to analyte concentration according to the calibration curve. Moreover, when using fluorescence to determine the amount of analyte 40 in a test sample, a receiver or a receiving device can be used to measure the amount of fluorescence generated in the detection zone 31 and the calibration zone 32, and thereafter make the appropriate comparison to determine the quantity of analyte in a given test sample.
  • [0055]
    The binders 47 utilized in the calibration zone 32 can generally be formed from a variety of different materials capable of forming a chemical or physical bond with the probes 41 and/or probe conjugates 42. For example, in some embodiments, the binders 47 can contain a biological capture reagent that is the same or different than the capture reagents 45. Such biological capture reagents are well known in the art and can include, but are not limited to, antigens, haptens, antibodies, and complexes thereof.
  • [0056]
    In addition, it may also be desired to utilize various non-biological materials for the binders 47. For instance, in some embodiments, the binders 47 can include a polyelectrolyte that can bind to the probes 41 and/or probe conjugates 42. The polyelectrolytes can have a net positive or negative charge, as well as a net charge that is generally neutral. For instance, some suitable examples of polyelectrolytes having a net positive charge include, but are not limited to, polylysine (commercially available from Sigma-Aldrich Chemical Co., Inc. of St. Louis, Mo.), polyethylenimine; epichlorohydrin-functionalized polyamines and/or polyamidoamines, such as poly(dimethylamine-co-epichlorohydrin); polydiallyidimethyl-ammonium chloride; cationic cellulose derivatives, such as cellulose copolymers or cellulose derivatives grafted with a quaternary ammonium water-soluble monomer; and the like. In one particular embodiment, CelQuat® SC-230M or H-100 (available from National Starch & Chemical, Inc.), which are cellulosic derivatives containing a quaternary ammonium water-soluble monomer, can be utilized. Moreover, some suitable examples of polyelectrolytes having a net negative charge include, but are not limited to, polyacrylic acids, such as poly(ethylene-co-methacrylic acid, sodium salt), and the like. It should also be understood that other polyelectrolytes may also be utilized in the present invention, such as amphiphilic polyelectrolytes (i.e., having polar an non-polar portions). For instance, some examples of suitable amphiphilic polyelectrolytes include, but are not limited to, poly(styryl-b-N-methyl 2-vinyl pyridinium iodide) and poly(styryl-b-acrylic acid), both of which are available from Polymer Source, Inc. of Dorval, Canada.
  • [0057]
    Although any polyelectrolyte may generally be used, the polyelectrolyte selected for a particular application may vary depending on the nature of the probes/probe conjugates, the porous membrane, and the like. In particular, the distributed charge of a polyelectrolyte allows it to bind to substances having an opposite charge. Thus, for example, polyelectrolytes having a net positive charge are often better equipped to bind with probes 41 and/or probe conjugates 42 that are negatively charged, while polyelectrolytes that have a net negative charge are often better equipped to bind to probes 41 and/or probe conjugates 42 that are positively charged. Thus, in such instances, the ionic interaction between these molecules allows the required binding to occur within the calibration zone 32. Nevertheless, although ionic interaction is primarily utilized to achieve the desired binding in the calibration zone 32, it has also been discovered that polyelectrolytes can also bind with probes 41 and/or probe conjugates 42 having a similar charge.
  • [0058]
    Because the polyelectrolyte is designed to bind to the probes 41 and/or probe conjugates 42 to provide a calibration signal, it is typically desired that the polyelectrolyte be substantially non-diffusively immobilized on the surface of the porous membrane 23. Otherwise, the probes 41 and/or probe conjugates 42 would not be readily detectable by a user seeking to calibrate the assay. Thus, the polyelectrolytes can be applied to the porous membrane 23 in such a manner that the polyelectrolytes do not substantially diffuse into the matrix of the porous membrane 23. In particular, the polyelectrolytes typically form an ionic and/or covalent bond with functional groups present on the surface of the porous membrane 23 so that they remain immobilized thereon. Although not required, the formation of covalent bonds between the polyelectrolyte and the porous membrane 23 may be desired to more permanently immobilize the polyelectrolyte thereon.
  • [0059]
    For example, in one embodiment, the monomers used to form the polyelectrolyte are first formed into a solution and then applied directly to the porous membrane 23. Various solvents (e.g., organic solvents, water, etc.) may be utilized to form the solution. Once applied, the polymerization of the monomers is initiated using heat, electron beam radiation, free radical polymerization, and the like. In some instances, as the monomers polymerize, they form covalent bonds with certain functional groups of the porous membrane 23, thereby immobilizing the resulting polyelectrolyte thereon. For example, in one embodiment, an ethyleneimine monomer can form a covalent bond with a carboxyl group present on the surface of some porous membranes (e.g., nitrocellulose).
  • [0060]
    In another embodiment, the polyelectrolyte can be formed prior to application to the porous membrane 23. If desired, the polyelectrolyte may first be formed into a solution using organic solvents, water, and the like. Thereafter, the polyelectrolytic solution is applied directly to the porous membrane 23 and then dried. Upon drying, the polyelectrolyte may, as described above, form an ionic bond with certain functional groups present on the surface of the porous membrane 23 that have a charge opposite to the polyelectrolyte. For example, in one embodiment, positively-charged polyethyleneimine can form an ionic bond with negatively-charged carboxyl groups present on the surface of some porous membranes (e.g., nitrocellulose).
  • [0061]
    In addition, the polyelectrolyte may also be crosslinked to the porous membrane 23 using various well-known techniques. For example, in some embodiments, epichlorohydrin-functionalized polyamines and/or polyamidoamines can be used as a crosslinkable, positively-charged polyelectrolyte. Examples of these materials are described in U.S. Pat. Nos. 3,700,623 to Keim and 3,772,076 to Keim, 4,537,657 to Keim, which are incorporated herein in their entirety by reference thereto for all purposes and are believed to be sold by Hercules, Inc., Wilmington, Del. under the Kymene™ trade designation. For instance, Kymene™ 450 and 2064 are epichlorohydrin-functionalized polyamines and/or polyamidoamines that contain epoxide rings and quaternary ammonium groups that can form covalent bonds with carboxyl groups present on certain types of porous membranes (e.g., nitrocellulose) and crosslink with the polymer backbone of the porous membrane when cured. In some embodiments, the crosslinking temperature can range from about 50° C. to about 120° C. and the crosslinking time can range from about 10 to about 600 seconds.
  • [0062]
    Although various techniques for non-diffusively immobilizing polyelectrolytes on the porous membrane 23 have been described above, it should be understood that any other technique for non-diffusively immobilizing polyelectrolytic compounds can be used in the present invention. In fact, the aforementioned methods are only intended to be exemplary of the techniques that can be used in the present invention. For example, in some embodiments, certain components may be added to the polyelectrolyte solution that can substantially inhibit the diffusion of such polyelectrolytes into the matrix of the porous membrane 23.
  • [0063]
    Beside the above-mentioned components, the flow-through assay 20 may also contain additional components. For example, referring again to FIGS. 1-3, the assay 20 can also contain a wicking pad 28. The wicking pad 28 generally receives fluid that has migrated through the entire porous membrane 23. As is well known in the art, the wicking pad 28 can assist in promoting capillary action and fluid flow through the membrane 23.
  • [0064]
    Although various embodiments of assay configurations have been described above, it should be understood, that an assay of the present invention may generally have any configuration desired, and need not contain all of the components described above. Further, other well-known components of assays not specifically referred to herein may also be utilized in the present invention. For example, various assay configurations are described in U.S. Pat. Nos. 5,395,754 to Lambotte, et al.; 5,670,381 to Jou, et al.; and 6,194,220 to Malick, et al., which are incorporated herein in their entirety by reference thereto for all purposes. In addition, it should also be understood that competitive assays may also be formed according to the present invention. Techniques and configurations of competitive assays are well known to those skilled in the art.
  • [0065]
    For instance, in one embodiment, the flow-through assay 20 described above and illustrated in FIGS. 1-3 can be easily modified to form a competitive assay by utilizing probe conjugates 42 that contain specific binding members 90 identical to the analyte 40. As a result, the analyte 40 and probe conjugates 42 will compete for a predetermined number of capture reagents 45 in the detection zone 31. Generally speaking, because the analyte 40 is unbound, it will move faster through the porous membrane and occupy a greater number of binding sites in the detection zone 31. Any unbound probe conjugates 42 will then travel to the calibration zone 32 where they can bind with the binder 47. The signal thus generated in the calibration zone 32 can be compared to the signal generated in the detection zone 31, wherein the relative amount of analyte in the test sample is inversely proportional to the intensity of the detection signal and directly proportional to the intensity of the calibration signal.
  • [0066]
    Likewise, in another embodiment, a competitive assay can be formed by utilizing capture reagents 45 that are identical to the analyte 40. Thus, in this embodiment, the probe conjugates 42 initially bind to the analyte 40 to form ternary complexes 49. The unbound probe conjugates 42 and ternary complexes 49 then migrate to the detection zone 31, where the unbound probe conjugates 42 bind to the capture reagent 45. Any remaining unbound probe conjugates 42 and the ternary complexes 49 will then migrate to the calibration zone 32, where they compete for a predetermined amount of the binder 47. The signal thus generated in the calibration zone 32 can be compared to the signal generated in the detection zone 31, wherein the relative amount of analyte in the test sample is inversely proportional to the intensity of the detection signal and directly proportional to the intensity of the calibration signal.
  • [0067]
    The present invention may be better understood with reference to the following examples.
  • EXAMPLE 1
  • [0068]
    The ability of an internal calibration zone of the present invention to calibrate a sandwich assay was demonstrated. Initially, Millipore SX porous membrane samples made of nitrocellulose were laminated onto corresponding supporting cards having a length of approximately 30 centimeters. Aqueous solutions of polyethylenimine were then stripped onto the membrane (1×, 10×, and 100× dilution of 7.4% polyethyleneimine solution) to form three separate calibration lines of different concentrations. After application of the polyethylenimine, the membranes were dried for 1 hour at a temperature of 37° C.
  • [0069]
    A cellulosic fiber wicking pad (Millipore Co.) was attached to one end of the membrane. The other end of the membrane was inserted into a variety of probe and probe conjugate suspensions. In particular, the following probes were tested:
    Particle
    Size Net
    Probe Color (microns) Charge Vendor
    Colored Blue 0.3 Positive Bang's
    Carboxylate Laboratory, Inc.
    Latex Beads
    Fluorescent Red 0.5 Positive Molecular Probes,
    Carboxylate Inc.
    Latex Beads
  • [0070]
    The assays were also inserted into suspensions of probe conjugates. In particular, the above-mentioned probes were conjugated with anti-C-reactive protein monoclonal antibody (anti-CRP Mab), anti-leutinizing hormone monoclonal antibody (anti-LH Mab), and anti-prealbumin polyclonal antibody (anti-Pab) using well-known techniques. For instance, a 100-microliter suspension of the 0.5-micron fluorescent carboxylated microspheres (available from Molecular Probes, Inc.) was initially washed two times with a phosphate buffer saline (PBS) and then re-suspended in 200 microliters of PBS. To the suspension, 5 mg carbodiimide was added and the mixture was mixed gently for 1 hour. The microspheres were then washed twice with a borate buffer and then washed. The microspheres were re-suspended in a 185-microliter borate buffer. 15 microliters of α-LH monoclonal antibody (9.7 mg/ml) was then added to the suspension and allowed to react for 3 hours under gentle mixing. Thereafter, 200 microliters of a 1M ethanolamine aqueous solution was added to the reaction mixture for 20 minutes. The microspheres were then washed two times using PBS and stored in PBS.
  • [0071]
    The probe and probe conjugate suspensions contained water and 1.6% polyoxyethylene sorbitan monolaurate (a nonionic surfactant available from Sigma-Aldrich under the name “Tween 20”). The resulting concentration of the probes ranged from 0.001-5 mg/ml and the concentration of the probe conjugates range from 0.2-10 mg/ml.
  • [0072]
    After about 5 minutes, the stripped calibration lines were then observed to determine if the probes/probes conjugates were visually detectable. The line containing the 1× diluted solution exhibited the highest signal intensity, while the line containing the 100× diluted exhibited the lowest signal intensity.
  • EXAMPLE 2
  • [0073]
    The ability of an internal calibration zone of the present invention to calibrate a half-dipstick sandwich assay was demonstrated. Initially, Millipore SX porous membrane samples made of nitrocellulose were laminated onto corresponding supporting cards having a length of approximately 30 centimeters. 7.4% polyethylenimine aqueous solutions (1×, 10×, and 100× diluted samples) were then stripped onto the Millipore SX membrane to form three calibration lines of different concentrations.
  • [0074]
    Anti-C-reactive protein (anti-CRP) monoclonal antibody (Mab A5804, 1 mg/ml, obtained from BiosPacific, Inc.) was stripped onto the membrane to form a detection line. The membrane was dried for 1 hour at a temperature of 37° C. A cellulosic fiber wicking pad (Millipore Co.) was attached to one end of the membrane. The laminated membrane was then cut into small half dipsticks.
  • [0075]
    The end of the membrane opposite to the wicking pad was applied to a test well that contained C-reactive protein (CRP), Tween 20, anti-CRP Mab conjugated to blue latex beads (anti-CRP Mab-beads), and water. The mixture in the well migrated along the half dipstick to the detection line, calibration lines, and wicking pad of the dipstick.
  • [0076]
    The CRP analyte was captured by the anti-CRP Mab-beads at the detection line, while any remaining unbound anti-CRP Mab-beads were captured by the calibration lines. Thus, after about 5 minutes, one blue line was observed on the detection line, while three blue lines were observed on the calibration lines. The line containing the 1× diluted solution exhibited the highest signal intensity, while the line containing the 100× diluted exhibited the lowest signal intensity.
  • EXAMPLE b 3
  • [0077]
    The ability of an internal calibration zone of the present invention to calibrate a half-dipstick sandwich assay was demonstrated. Initially, HF 09002 porous membrane samples made of nitrocellulose were laminated onto corresponding supporting cards having a length of approximately 30 centimeters. 0.14% (calibration #1), 0.64% (calibration #2), and 1.4% (calibration #3) polyethylenimine aqueous solutions (1×, 10×, and 100× diluted samples) were then stripped onto the membrane to form three calibration lines of different concentrations.
  • [0078]
    Anti-C-reactive protein (anti-CRP) monoclonal antibody (Mab A5804, 1 mg/ml, obtained from BiosPacific, Inc.) was stripped onto the membrane to form a detection line. The membrane was dried for 1 hour at a temperature of 37° C. A cellulosic fiber wicking pad (Millipore Co.) was attached to one end of the membrane. The laminated membrane was then cut into small half dipsticks.
  • [0079]
    The end of the membrane opposite to the wicking pad was applied to three test wells that contained Tween 20, an excess amount of anti-CRP Mab conjugated to blue latex beads (anti-CRP Mab-beads), and water. The test wells also contained different concentrations of C-reactive protein (CRP). In particular, the solutions contained 0 nanograms (ng), 0.54 ng, 5.4 ng, and 54 ng of CRP, respectively.
  • [0080]
    The mixture in the wells migrated along each half dipstick to the detection line, calibration lines, and wicking pad of the dipstick. The CRP analyte was captured by the anti-CRP Mab-beads at the detection line, while any remaining unbound anti-CRP Mab-beads were captured by the calibration lines. Thus, for each sample, one blue line was observed on the detection line, while three blue lines were observed on the calibration lines. The line containing the 1.4% polyethyleneimine solution exhibited the highest signal intensity, while the line containing the 0.14% polyethyleneimine solution exhibited the lowest signal intensity. Based on analysis, it was determined that calibration line #1 contained 0.54 ng of CRP, calibration line #2 contained 5.4 ng of CRP, and calibration line #3 contained 54 ng of CRP.
  • [0081]
    Thus, when an unknown test sample is tested, CRP concentration can be visually determined by comparing the detection line with the three calibration lines. In particular, when the detection line intensity is visually determined to have an intensity between the intensity of calibration lines #2 and #3, the CRP concentration is between 5.4 and 54 ng. Likewise, when the detection line intensity is visually determined to have an intensity between the intensity of calibration lines #1 and #2, the CRP concentration is between 0.54 and 5.4 ng. Further, a detection line having an intensity less than the intensity of the calibration line #1 has a CRP concentration less than 0.54 ng, while a detection line having an intensity greater than the intensity of the calibration line #3 has a CRP concentration greater than 54 ng.
  • [0082]
    The calibration line intensity can also be measured by an instrument, such as an assay reader. For example, a calibration curve (shown in FIG. 6) was developed using the line intensities of calibration lines #1-#3 and their CRP concentrations. The mathematical equation generated by the calibration curve can be inputted into an instrument that is able to read intensity for detection of CRP in a test sample.
  • EXAMPLE 4
  • [0083]
    The ability of an internal calibration zone of the present invention to calibrate a half-dipstick sandwich assay was demonstrated. Initially, SHF 075 porous membrane samples made of nitrocellulose were laminated onto corresponding supporting cards having a length of approximately 30 centimeters. Varying concentrations of CelQuat® H-100 (a cellulosic derivative available from National Starch & Chemical, Inc.) were stripped onto the membrane to form three calibration lines having different concentrations. In particular, the concentrations utilized were 2.5 parts CelQuat® H-100 per million of the solution (ppm) (calibration #1), 5 ppm (calibration #2), and 20 ppm (calibration #3).
  • [0084]
    Anti-β-utilizing hormone (anti-β-LH) monoclonal antibody (Mab, 1 mg/ml, obtained from Fitzgerald Industries Intl., Inc.) was stripped onto the membrane to form a detection line. The membrane was dried for 1 hour at a temperature of 37° C. A cellulosic fiber wicking pad (Millipore Co.) was attached to one end of the membrane. The laminated membrane was then cut into small half dipsticks.
  • [0085]
    The end of the membrane opposite to the wicking pad was applied to a test well that contained Tween 20, anti-α-leutinizing hormone (anti-α-LH) Mab conjugated to blue latex beads (anti-α-LH Mab-beads), and water. The mixture also contained varying concentrations of β-leutinizing hormone (LH). In particular, the concentrations tested were 0 ppm, 20 ppm, and 100 ppm, which corresponded to solutions containing 0 nanograms (ng), 20 ng, and 100 ng of LH, respectively.
  • [0086]
    The mixture in the wells migrated along each half dipstick to the detection line, calibration lines, and wicking pad of the dipstick. The LH analyte was captured by the anti-α-LH Mab-beads at the detection line, while any remaining unbound anti-α-LH Mab-beads were captured by the calibration lines. Thus, for each sample, one blue line was observed on the detection line, while three blue lines were observed on the calibration lines. The line containing the 20 ppm CelQuat® solution exhibited the highest signal intensity, while the line containing the 2.5 ppm CelQuat® solution exhibited the lowest signal intensity. Based on analysis, it was determined that calibration line #1 contained 20 ng of LH and calibration line #3 contained 100 ng of LH. Moreover, using an instrument capable of reading line intensity, it was determined that calibration lines #1, #2, and #3 had a line intensity of 1, 2, and 4, respectively.
  • [0087]
    A calibration curve (shown in FIG. 7) was then developed using the line intensities of calibration lines #1-#3 and their LH concentrations. The mathematical equation generated by the calibration curve was then inputted into an instrument. A test sample containing an unknown level of LH was then applied to a membrane formed as described above. Using the instrument, it was determined that the intensity of the detection signal was about 1.5. As a result, it was determined that the concentration of the LH in the unknown test sample was about 36 ng.
  • EXAMPLE 5
  • [0088]
    The ability of an internal calibration zone of the present invention to calibrate a half-dipstick competitive assay was demonstrated. Initially, HF 120 porous membrane samples made of nitrocellulose were laminated onto corresponding supporting cards having a length of approximately 30 centimeters. Varying concentrations of CelQuat® H-100 (a cellulosic derivative available from National Starch & Chemical, Inc.) were stripped onto the membrane to form three calibration lines having different concentrations. In particular, the concentrations utilized were 2.5 parts CelQuat® H-100 per million of the solution (ppm) (calibration #1), 5 ppm (calibration #2), and 20 ppm (calibration #3).
  • [0089]
    Pre-albumin (1 mg/ml, obtained from Biogenesis, Inc.) was stripped onto the membrane to form a detection line. The membrane was dried for 1 hour at a temperature of 37° C. A cellulosic fiber wicking pad (Millipore Co.) was attached to one end of the membrane. The laminated membrane was then cut into small half dipsticks.
  • [0090]
    The end of the membrane opposite to the wicking pad was applied to a test well that contained 30 microliters of 2% Tween 20, 10 microliters of red fluorescent microspheres conjugated with anti-prealbumin polyclonal antibody, and water. The mixture also contained varying concentrations of pre-albumin in phosphate buffer saline. In particular, the concentrations tested were 0 micrograms, 75 micrograms and 125 micrograms.
  • [0091]
    It was observed that the three calibration lines turned different intensities of red, where the calibration line #3 has the highest and line #1 has the lowest intensity. The intensity of the detection line in this competitive assay was inversely proportional to the test pre-albumin concentration. When there was no pre-albumin, the conjugate was captured by the detection line and the three calibration lines. With an increased amount of pre-albumin antigen, the detection line became less intense.
  • [0092]
    The line intensity was then read by a fluorescence reader and used to generate a calibration curve. The results are shown below in Table 1.
    TABLE 1
    Calibration for Pre-albumin Detection with Line Intensity
    Signal Intensity
    Calibration #1  1  1  1
    Calibration #2 10 10 10
    Calibration #3 20 20 20
    Detection Line 20 10  0
  • [0093]
    For the detection line, the signal intensity values of 20, 10, and 0 was determined to correspond to pre-albumin amounts of 0 micrograms, 75 micrograms, and 125 micrograms, respectively. A calibration curve generated from this data is also shown in FIG. 8. Using this calibration curve, the presence and/or amount of an unknown level of pre-albumin can be determined.
  • [0094]
    While the invention has been described in detail with respect to the specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US14073 *8 Jan 1856 Improvement in seeding-machines
US17615 *23 Jun 1857 Printing-press
US55776 *19 Jun 1866Themselves And Daniel MccaineImprovement in tree-protectors
US146754 *9 Jan 187427 Jan 1874 Improvement in harness-names
US164659 *17 May 187522 Jun 1875 Improvement in processes of preparing pickles
US4094647 *2 Jul 197613 Jun 1978Thyroid Diagnostics, Inc.Test device
US4275149 *24 Nov 197823 Jun 1981Syva CompanyMacromolecular environment control in specific receptor assays
US4312228 *30 Jul 197926 Jan 1982Henry WohltjenMethods of detection with surface acoustic wave and apparati therefor
US4374925 *9 Feb 198122 Feb 1983Syva CompanyMacromolecular environment control in specific receptor assays
US4385126 *19 Mar 197924 May 1983International Diagnostic Technology, Inc.Double tagged immunoassay
US4427836 *25 Feb 198224 Jan 1984Rohm And Haas CompanySequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4435504 *15 Jul 19826 Mar 1984Syva CompanyImmunochromatographic assay with support having bound "MIP" and second enzyme
US4441373 *13 Feb 198110 Apr 1984American Hospital Supply CorporationCollection tube for drawing samples of biological fluids
US4442204 *10 Apr 198110 Apr 1984Miles Laboratories, Inc.Homogeneous specific binding assay device and preformed complex method
US4444592 *15 Nov 198224 Apr 1984The Sherwin-Williams CompanyPigment compositions and processes therefor
US4595661 *18 Nov 198317 Jun 1986Beckman Instruments, Inc.Immunoassays and kits for use therein which include low affinity antibodies for reducing the hook effect
US4596697 *4 Sep 198424 Jun 1986The United States Of America As Represented By The Secretary Of The ArmyChemical sensor matrix
US4661235 *3 Aug 198428 Apr 1987Krull Ulrich JChemo-receptive lipid based membrane transducers
US4722889 *2 Apr 19852 Feb 1988Leeco Diagnostics, Inc.Immunoassays using multiple monoclonal antibodies and scavenger antibodies
US4727019 *10 May 198523 Feb 1988Hybritech IncorporatedMethod and apparatus for immunoassays
US4731337 *24 Jul 198515 Mar 1988Labsystems OyFluorimetric immunological assay with magnetic particles
US4806312 *28 Aug 198521 Feb 1989Miles Inc.Multizone analytical element having detectable signal concentrating zone
US4837168 *15 Dec 19866 Jun 1989Janssen Pharmaceutica N.V.Immunoassay using colorable latex particles
US4843000 *21 May 198527 Jun 1989Syntex (U.S.A.) Inc.Simultaneous calibration heterogeneous immunoassay
US4895017 *23 Jan 198923 Jan 1990The Boeing CompanyApparatus and method for early detection and identification of dilute chemical vapors
US4916056 *28 Mar 198810 Apr 1990Abbott LaboratoriesSolid-phase analytical device and method for using same
US4917503 *30 Sep 198717 Apr 1990Lifelines Technology, Inc.Photoactivatable leuco base time-temperature indicator
US4992385 *22 Jul 198712 Feb 1991Ares-Serono Research And Development Limited PartnershipPolymer-coated optical structures and methods of making and using the same
US5003178 *14 Nov 198826 Mar 1991Electron Vision CorporationLarge-area uniform electron source
US5096671 *15 Mar 198917 Mar 1992Cordis CorporationFiber optic chemical sensors incorporating electrostatic coupling
US5114676 *28 Jul 198919 May 1992Avl AgOptical sensor for determining at least one parameter in a liquid or gaseous sample
US5196350 *29 May 199123 Mar 1993Omnigene, Inc.Ligand assay using interference modulation
US5200084 *26 Sep 19906 Apr 1993Immunicon CorporationApparatus and methods for magnetic separation
US5208535 *12 Dec 19914 May 1993Research Development Corporation Of JapanMr position detecting device
US5314923 *29 Aug 199124 May 1994Cytec Technology Corp.Porous polymer beads and process
US5316727 *28 Aug 199231 May 1994Terumo Kabushiki KaishaMeasuring apparatus
US5387503 *6 Jun 19917 Feb 1995Novo Nordisk A/SAssay method using internal calibration to measure the amount of analyte in a sample
US5395754 *31 Jul 19927 Mar 1995Hybritech IncorporatedMembrane-based immunoassay method
US5415842 *3 Feb 199216 May 1995Fisons PlcSurface plasmon resonance analytical device
US5418136 *10 Jun 199323 May 1995Biostar, Inc.Devices for detection of an analyte based upon light interference
US5482830 *10 Jun 19939 Jan 1996Biostar, Inc.Devices and methods for detection of an analyte based upon light interference
US5482867 *23 Apr 19939 Jan 1996Affymax Technologies N.V.Spatially-addressable immobilization of anti-ligands on surfaces
US5492840 *9 Nov 198920 Feb 1996Pharmacia Biosensor AbSurface plasmon resonance sensor unit and its use in biosensor systems
US5500350 *29 Apr 199419 Mar 1996Celltech LimitedBinding assay device
US5504013 *9 Nov 19942 Apr 1996Unipath LimitedAnalytical devices and methods of use thereof
US5508171 *21 Feb 199416 Apr 1996Boehringer Mannheim CorporationAssay method with enzyme electrode system
US5510481 *29 Oct 199323 Apr 1996The Regents, University Of CaliforniaSelf-assembled molecular films incorporating a ligand
US5512131 *4 Oct 199330 Apr 1996President And Fellows Of Harvard CollegeFormation of microstamped patterns on surfaces and derivative articles
US5514559 *29 Mar 19947 May 1996Boehringer Mannheim GmbhImmunologically active conjugates and method for their preparation
US5514785 *28 Oct 19947 May 1996Becton Dickinson And CompanySolid supports for nucleic acid hybridization assays
US5516635 *15 Oct 199214 May 1996Ekins; Roger P.Binding assay employing labelled reagent
US5518883 *15 Jun 199321 May 1996Soini; Erkki J.Biospecific multiparameter assay method
US5591581 *15 Apr 19947 Jan 1997Igen, Inc.Electrochemiluminescent rhenium moieties and methods for their use
US5596414 *5 Jun 199521 Jan 1997Tyler; Jonathan M.Solid state spectroflourimeter and method of using the same
US5599668 *22 Sep 19944 Feb 1997Abbott LaboratoriesLight scattering optical waveguide method for detecting specific binding events
US5618732 *4 May 19958 Apr 1997Behringwerke AgMethod of calibration with photoactivatable chemiluminescent matrices
US5618888 *20 Oct 19948 Apr 1997Lg Cehmical Ltd.Process for preparing emulsion polymers having a hollow structure
US5620850 *26 Sep 199415 Apr 1997President And Fellows Of Harvard CollegeMolecular recognition at surfaces derivatized with self-assembled monolayers
US5726064 *21 Sep 199410 Mar 1998Applied Research Systems Ars Holding NvMethod of assay having calibration within the assay
US5731147 *7 Jun 199524 Mar 1998Igen International, Inc.Luminescent metal chelate labels and means for detection
US5736188 *8 Aug 19957 Apr 1998Alcock; SusanPrinted fluid transport devices
US5753517 *29 Mar 199619 May 1998University Of British ColumbiaQuantitative immunochromatographic assays
US5876944 *10 Jun 19962 Mar 1999Bayer CorporationMethod for amplification of the response signal in a sandwich immunoassay
US5906921 *24 Sep 199825 May 1999Matsushita Electric Industrial Co., Ltd.Biosensor and method for quantitative measurement of a substrate using the same
US6020047 *4 Sep 19961 Feb 2000Kimberly-Clark Worldwide, Inc.Polymer films having a printed self-assembling monolayer
US6027904 *9 Oct 199722 Feb 2000University Of British ColumbiaPlatelet count assay using thrombospondin or β-thromboglobulin
US6027944 *24 Dec 199722 Feb 2000Applied Research Systems Ars Holding NvCapillary-fill biosensor device comprising a calibration zone
US6030792 *2 Nov 199829 Feb 2000Pfizer IncAssays for measurement of protein fragments in biological media
US6030840 *15 Jun 199829 Feb 2000Nen Life Sciences, Inc.Neutral enhancement of lanthanides for time resolved fluorescence
US6033574 *29 Jul 19977 Mar 2000Siddiqi; Iqbal W.Method for mixing and separation employing magnetic particles
US6048623 *18 Dec 199611 Apr 2000Kimberly-Clark Worldwide, Inc.Method of contact printing on gold coated films
US6057165 *7 Feb 19972 May 2000Becton, Dickinson And CompanyQuality control procedure for membrane flow-through diagnostic assay devices
US6060256 *16 Dec 19979 May 2000Kimberly-Clark Worldwide, Inc.Optical diffraction biosensor
US6171780 *24 Feb 19989 Jan 2001Aurora Biosciences CorporationLow fluorescence assay platforms and related methods for drug discovery
US6171870 *6 Aug 19989 Jan 2001Spectral Diagnostics, Inc.Analytical test device and method for use in medical diagnoses
US6174646 *16 Oct 199816 Jan 2001Konica CorporationImage forming method
US6180288 *21 Mar 199730 Jan 2001Kimberly-Clark Worldwide, Inc.Gel sensors and method of use thereof
US6184042 *22 May 19976 Feb 2001Boehringer Mannheim GmbhMethod for reducing hook effect in an immunoassay
US6194220 *25 Sep 199627 Feb 2001Becton, Dickinson And CompanyNon-instrumented assay with quantitative and qualitative results
US6200820 *7 Jun 199513 Mar 2001Sienna Biotech, Inc.Light scatter-based immunoassay
US6221238 *16 May 199724 Apr 2001Ufz-Umweltforschungszentrum Leipzig-Halle GmbhEnzymatic-electrochemical one-shot affinity sensor for the quantitative determination of analytes for aqueous media and affinity assay
US6221579 *11 Dec 199824 Apr 2001Kimberly-Clark Worldwide, Inc.Patterned binding of functionalized microspheres for optical diffraction-based biosensors
US6234974 *24 Dec 199622 May 2001Unilever Patent Holdings B.V.Monitoring method
US6235241 *14 May 199822 May 2001Unipath LimitedReading devices and assay devices for use therewith
US6235471 *3 Apr 199822 May 2001Caliper Technologies Corp.Closed-loop biochemical analyzers
US6348186 *5 Jun 199519 Feb 2002Quadrant Healthcare (Uk) LimitedPreparation of further diagnostic agents
US6362011 *2 Feb 199926 Mar 2002Meso Scale Technologies, LlcGraphitic nanotubes in luminescence assays
US6368873 *9 Apr 19989 Apr 2002Applied Biotech, Inc.Identification of human urine for drug testing
US6368875 *24 May 20009 Apr 2002Mark S. GeisbergInternally referenced competitive assays
US6387707 *28 May 199914 May 2002Bioarray SolutionsArray Cytometry
US6391558 *14 Apr 200021 May 2002Andcare, Inc.Electrochemical detection of nucleic acid sequences
US6509085 *10 Apr 200021 Jan 2003Caliper Technologies Corp.Fabrication of microfluidic circuits by printing techniques
US6509196 *4 Jan 200021 Jan 2003Response Biomedical Corp.Compensation for non-specific signals in quantitative immunoassays
US6511814 *12 Nov 199928 Jan 2003Idexx Laboratories, Inc.Method and device for detecting analytes in fluids
US6556299 *4 Jul 199729 Apr 2003Packard Instrument Company, Inc.Imaging system for fluorescence assays
US6566508 *11 Mar 200220 May 20033M Innovative Properties CompanyFluorogenic compounds and uses therefor
US6720007 *25 Oct 200113 Apr 2004Tufts UniversityPolymeric microspheres
US20060008921 *3 Aug 200412 Jan 2006Quantum Dot CorporationImmunochromatographic methods for detecting an analyte in a sample which employ semiconductor nanocrystals as detectable labels
USRE30267 *18 May 19786 May 1980Eastman Kodak CompanyMultilayer analytical element
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US757588728 Feb 200618 Aug 2009Kimberly-Clark, Worldwide, Inc.Detection of proteases secreted from pathogenic microorganisms
US766264320 Jul 200716 Feb 2010Kimberly-Clark Worldwide, Inc.Reduction of the hook effect in membrane-based assay devices
US767078622 Oct 20072 Mar 2010Kimberly-Clark Worldwide, Inc.Membrane-based assay devices
US768281723 Dec 200423 Mar 2010Kimberly-Clark Worldwide, Inc.Microfluidic assay devices
US771374821 Nov 200311 May 2010Kimberly-Clark Worldwide, Inc.Method of reducing the sensitivity of assay devices
US778117221 Nov 200324 Aug 2010Kimberly-Clark Worldwide, Inc.Method for extending the dynamic detection range of assay devices
US77904715 Oct 20077 Sep 2010Kimberly-Clark Worldwide, Inc.Metering technique for lateral flow assay devices
US780331929 Apr 200528 Sep 2010Kimberly-Clark Worldwide, Inc.Metering technique for lateral flow assay devices
US782934731 Aug 20059 Nov 2010Kimberly-Clark Worldwide, Inc.Diagnostic test kits with improved detection accuracy
US783825830 Sep 200923 Nov 2010Kimberly-Clark Worldwide, Inc.Meter strip and method for lateral flow assay devices
US784638315 Dec 20067 Dec 2010Kimberly-Clark Worldwide, Inc.Lateral flow assay device and absorbent article containing same
US785838429 Apr 200528 Dec 2010Kimberly-Clark Worldwide, Inc.Flow control technique for assay devices
US789736015 Dec 20061 Mar 2011Kimberly-Clark Worldwide, Inc.Enzyme detection techniques
US793553815 Dec 20063 May 2011Kimberly-Clark Worldwide, Inc.Indicator immobilization on assay devices
US793934230 Mar 200510 May 2011Kimberly-Clark Worldwide, Inc.Diagnostic test kits employing an internal calibration system
US794308919 Dec 200317 May 2011Kimberly-Clark Worldwide, Inc.Laminated assay devices
US794339521 Nov 200317 May 2011Kimberly-Clark Worldwide, Inc.Extension of the dynamic detection range of assay devices
US796434021 Apr 200921 Jun 2011Kimberly-Clark Worldwide, Inc.One-step enzymatic and amine detection technique
US801276114 Dec 20066 Sep 2011Kimberly-Clark Worldwide, Inc.Detection of formaldehyde in urine samples
US812442115 Dec 201028 Feb 2012Kimberly-Clark Worldwide, Inc.Flow control technique for assay devices
US813798512 Nov 200920 Mar 2012Kimberly-Clark Worldwide, Inc.Polyelectrolytic internal calibration system of a flow-through assay
US817338031 Aug 20108 May 2012Kimberly-Clark Worldwide, Inc.Metering technique for lateral flow assay devices
US83542357 Nov 200615 Jan 2013Roche Diagnostics Operations, Inc.Method for increasing the dynamic measuring range of test elements based on specific binding reactions
US853561730 Nov 200717 Sep 2013Kimberly-Clark Worldwide, Inc.Blood cell barrier for a lateral flow device
US8557604 *14 Dec 200715 Oct 2013Kimberly-Clark Worldwide, Inc.Membrane-based lateral flow assay devices that utilize phosphorescent detection
US8569073 *2 Dec 200929 Oct 2013Roche Diagnostics Operations Inc.Test element having combined control and calibration zone
US860940117 Aug 200917 Dec 2013Kimberly-Clark Worldwide, Inc.Detection of proteases secreted from a pathogenic microorganisms
US87035044 Sep 201322 Apr 2014Kimberly-Clark Worldwide, Inc.Membrane-based lateral flow assay devices that utilize phosphorescent detection
US87589896 Apr 200624 Jun 2014Kimberly-Clark Worldwide, Inc.Enzymatic detection techniques
US893287831 Mar 201113 Jan 2015Kimberly-Clark Worldwide, Inc.Diagnostic test kits employing an internal calibration system
US20060137434 *23 Dec 200429 Jun 2006Kimberly-Clark Worldwide, Inc.Microfluidic assay devices
US20060246597 *29 Apr 20052 Nov 2006Kimberly-Clark Worldwide, Inc.Flow control technique for assay devices
US20070134811 *13 Dec 200514 Jun 2007Kimberly-Clark Worldwide, Inc.Metering technique for lateral flow assay devices
US20070259450 *7 Nov 20068 Nov 2007Roche Diagnostics Operations, Inc.Method for Increasing the Dynamic Measuring Range of Test Elements Based on Specific Binding Reactions
US20080145945 *15 Dec 200619 Jun 2008Xuedong SongLateral flow assay device and absorbent article containing same
US20080145947 *14 Dec 200619 Jun 2008Kimberly-Clark Worldwide, Inc.Detection of formaldehyde in urine samples
US20080145949 *15 Dec 200619 Jun 2008Xuedong SongIndicator immobilization on assay devices
US20090142229 *30 Nov 20074 Jun 2009Kimberly-Clark Worldwide, Inc.Blood Cell Barrier for a Lateral Flow Device
US20100015658 *30 Sep 200921 Jan 2010Kimberly-Clark Worldwide, IncMeter Strip and Method for Lateral Flow Assay Devices
US20100290948 *15 May 200918 Nov 2010Xuedong SongAbsorbent articles capable of indicating the presence of urinary tract infections
US20100323392 *31 Aug 201023 Dec 2010Kimberly-Clark Worldwide, Inc.Metering Technique for Lateral Flow Assay Devices
US20110097734 *15 Dec 201028 Apr 2011Kimberly-Clark Worldwide, Inc.Flow Control Technique for Assay Devices
US20110244598 *2 Dec 20096 Oct 2011Roche Diagnostics Operations, Inc.Test Element Having Combined Control and Calibration Zone
US20120034711 *4 Aug 20119 Feb 2012Oil Crops Research Institute, Chinese Academy of Agricultural ScienceDigital immunochromatographic test strip for semi-quantitative detection of aflatoxin B1 and preparation method thereof
WO2004021005A1 *10 Jul 200311 Mar 2004Kimberly-Clark Worldwide, Inc.Flow-through assay with an internal calibration system using___ magnetic particles
WO2005111607A210 May 200524 Nov 2005Roche Diagnostics GmbhMethod for increasing the dynamic measuring range of test elements, especially immunological test elements, that are based on specific bonding reactions
WO2005111607A3 *10 May 20052 Feb 2006Roche Diagnostics GmbhMethod for increasing the dynamic measuring range of test elements, especially immunological test elements, that are based on specific bonding reactions
Classifications
U.S. Classification436/514
International ClassificationG01N33/558, G01N33/543
Cooperative ClassificationG01N33/558, G01N33/54386, G01N33/54393
European ClassificationG01N33/543M, G01N33/543K4, G01N33/558
Legal Events
DateCodeEventDescription
17 Jul 2002ASAssignment
Owner name: KIMBERLY-CLARK WORLDWIDE, INC, WISCONSIN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEI, NING;SONG, XUEDONG;REEL/FRAME:013106/0224;SIGNING DATES FROM 20020606 TO 20020617